

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2017/062717 A1

(43) International Publication Date
13 April 2017 (13.04.2017)

WIPO | PCT

(51) International Patent Classification:

H03K 17/955 (2006.01) *G06F 3/044* (2006.01)
G06F 3/041 (2006.01) *H03K 17/96* (2006.01)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2016/055905

(22) International Filing Date:

7 October 2016 (07.10.2016)

(25) Filing Language:

English

(26) Publication Language:

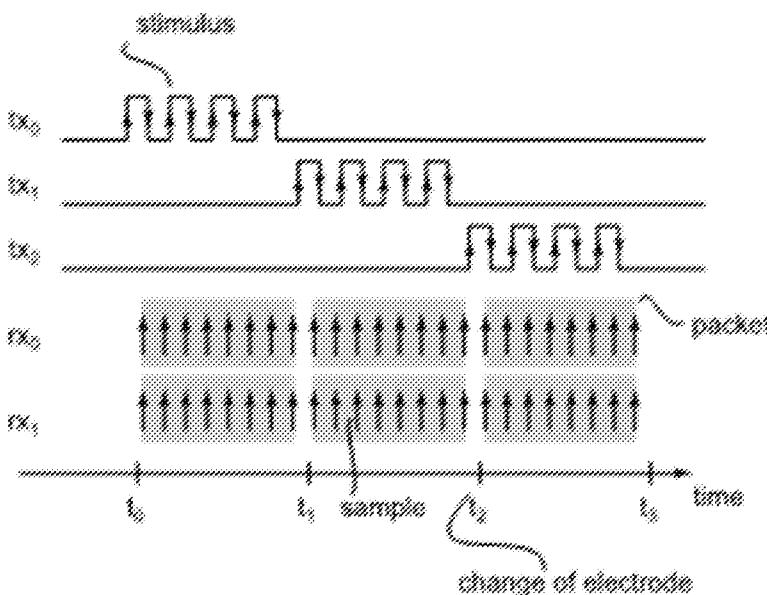
English

(30) Priority Data:

62/238,318 7 October 2015 (07.10.2015) US
15/286,986 6 October 2016 (06.10.2016) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(71) Applicant: MICROCHIP TECHNOLOGY INCORPORATED [US/US]; 2355 West Chandler Blvd., Chandler, Arizona 85224-6199 (US).


Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))

(54) Title: CAPACITANCE MEASUREMENT DEVICE WITH REDUCED NOISE

(57) Abstract: A method or sensor arrangement for providing capacitive sensor detection with at least one capacitive sensor comprises a transmitting electrode and a receiving electrode. A stimulus at the transmitting electrode is generated and a signal is received from the receiving electrode and data packets are generated, each packet comprising a plurality of samples. The plurality of samples are weighted by providing less gain at a beginning and end of each packet with respect to a center of each packet; and the weighted samples are integrated to generate an output signal for each packet.

Figure 2

Capacitance Measurement Device With Reduced Noise

RELATED PATENT APPLICATION

5 This application claims priority to commonly owned United States Provisional Patent Application No. 62/238,318; filed October 7, 2015; which is hereby incorporated by reference herein for all purposes.

TECHNICAL FIELD

10 The present disclosure relates to methods and systems for capacitance measurement, in particular capacitance measurement with reduced noise.

BACKGROUND

Projected capacitive sensors are often incorporated in touch screens, touch pads or buttons. Similar sensors are used in non-touching three-dimensional position detection sensor arrangements. These sensors use receiving electrodes and in some embodiments also emitting electrodes. When using two electrodes, one electrode acts as a transmitter and the other electrode as a receiver. A matrix can be formed to allow for a plurality of keys to share transmitting and receiving lines. In practice, the measurement system connected to the receiving electrodes is then often used in a time multiplexing manner. To keep a good responsiveness to user inputs, projected capacitive devices must scan quickly several locations 20 of a mesh of electrodes.

For example, the standardized test "IEC61000-4-6 Immunity to Conducted Disturbances" reveals a common problem of projected capacitive sensors: to acquire a weak signal from the receive electrode at a given frequency when a disturbing noise overlaps the signal with a slightly different frequency. Furthermore, the requirement for short scan time 25 exacerbates this problem of distinguishing signal and noise occupying nearby frequencies.

SUMMARY

According to an embodiment, a method for providing capacitive sensor detection with at least one capacitive sensor comprising a transmitting electrode and a receiving electrode may comprise the steps of: generating a stimulus at the transmitting electrode, receiving a signal

from the receiving electrode and generating data packets, each packet comprising a plurality of samples; weighting the plurality of samples by providing less gain at a beginning and end of each packet with respect to a center of each packet; and integrating the weighted samples to generate an output signal for each packet.

5 According to a further embodiment, a stimulus may comprise a sequence of pulses. According to a further embodiment, each pulse may alternate between ground and a supply voltage. According to a further embodiment, a gain distribution can be symmetrical with respect to the center of each packet and a gain distribution curve is selected from a group of gain curves consisting of a Gaussian curve, a Hamming window, a Hanning window, and a
10 Blackman window. According to a further embodiment, weighting can be performed by applying gain to the analog signals received from the columns or rows. According to a further embodiment, weighting can be performed by applying gain to the digital signals during post processing of each packet. According to a further embodiment, the capacitive sensor can be a touch sensor. According to a further embodiment, a plurality of touch sensors can be arranged
15 in a matrix comprising columns and rows and packets of samples are sampled in parallel from each column or row. According to a further embodiment, a plurality of touch sensors can be arranged in a matrix comprising columns and rows and packets of samples of different columns/rows are sampled sequentially using multiplexing. According to a further embodiment, a plurality of touch sensors can be formed by horizontal and vertical electrodes
20 arranged in a matrix. According to a further embodiment, a plurality of touch sensors can be arranged in a matrix and wherein horizontal and vertical electrodes of the matrix are arranged in different layers. According to a further embodiment, four receiving electrodes can be associated with the transmitting electrode and form a three-dimensional position detection sensor. According to a further embodiment, the four receiving electrodes can be arranged in a
25 frame-like fashion. According to a further embodiment, the four receiving electrodes may surround a display or a touchpad sensor.

According to another embodiment, a sensor arrangement with at least one capacitive sensor may comprise a transmitting electrode configured to receive a stimulus, a receiving electrode capacitively coupled with the transmitting electrode and configured to receive a
30 signal from the transmitting electrode, and an evaluation circuit coupled with the receiving electrode and configured to generate data packets, each packet comprising a plurality of samples, wherein the plurality of samples are weighted by providing less gain at a beginning

and end of each packet with respect to a center of each packet, and wherein the evaluating circuit is further configured to integrate the weighted samples to generate an output signal for each packet.

According to a further embodiment of the sensor arrangement, a packet of the stimulus 5 may comprise a sequence of pulses. According to a further embodiment of the sensor arrangement, each pulse may alternate between ground and a supply voltage. According to a further embodiment of the sensor arrangement, a gain distribution can be symmetrical with respect to the center of each packet and a gain distribution curve is selected from a group of gain curves consisting of a Gaussian curve, a Hamming window, a Hanning window, and a 10 Blackman window. According to a further embodiment of the sensor arrangement, gain can be applied to the analog signals received from the receiving electrode. According to a further embodiment of the sensor arrangement, gain can be applied to the digital signals during post processing of each packet. According to a further embodiment of the sensor arrangement, a plurality of touch sensors can be arranged in a matrix comprising columns and rows and packets 15 of samples are sampled in parallel from each column or row. According to a further embodiment of the sensor arrangement, the capacitive sensor can be a touch sensor. According to a further embodiment of the sensor arrangement, a plurality of touch sensors can be arranged in a matrix comprising columns and rows and packets of samples of different columns/rows are sampled sequentially using multiplexing. According to a further embodiment of the sensor 20 arrangement, a plurality of touch sensors can be formed by horizontal and vertical electrodes arranged in a matrix. According to a further embodiment of the sensor arrangement, the sensor arrangement may comprise a plurality of touch sensors are arranged in a matrix and wherein horizontal and vertical electrodes of the matrix are arranged in different layers. According to a further embodiment of the sensor arrangement, four receiving electrodes can be associated 25 with the transmitting electrode and form a three-dimensional position detection sensor. According to a further embodiment of the sensor arrangement, the four receiving electrodes can be arranged in a frame-like fashion. According to a further embodiment of the sensor arrangement, the four receiving electrodes may surround a display or a touchpad sensor.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows an electrode matrix of a touch sensor arrangement;

Fig. 2 shows a timing diagram of stimulus and received signals according to a first embodiment;

5 Fig. 3 shows a timing diagram of stimulus and received signals according to a second embodiment;

Fig. 4 shows a first embodiment of a weighting function applied to the received signals;

Fig. 5 shows an exemplary circuit arrangement of a touch sensor according to an embodiment;

10 Fig. 6 shows a timing diagram of various signals according to Fig. 5;

Fig. 7 shows demodulation and weighting according to an embodiment;

Fig. 8 shows spectral analysis with and without using weighting according to various embodiments;

Fig. 9 shows an embodiment of a touchless sensor arrangement; and

15 Fig. 10 shows an embodiment of a combined touchless and touch sensor arrangement.

DETAILED DESCRIPTION

According to various embodiments, a proposed solution is to acquire, for a given selection of active receiving or active emitting electrodes, multiple measurement samples and to integrate these samples with varying gain. One sample is for example a voltage sample 20 converted by an A/D circuit, but the concept is not limited to digital, it also applies to analogue discrete time circuit like switched capacitor circuit and charge integration circuits. These multiple samples form a packet; and packets are delimited by change of the selection of active electrodes.

According to various embodiments, for example, the following method is proposed: 25 following a change of active electrodes, the system gradually increases the importance of measured samples until the middle of the packet and then gradually reduces their importance before the next change of electrodes. Therefore, samples collected after or before a change contribute less to the total result.

When working with an A/D converter, a solution can be implemented with a weighted average of the collected samples, where weight values come from a look up table. It is surprising and remarkable that frequency separation of noise and signal can be achieved after the measurement is done, as a pure mathematical post processing operation. The same 5 operation could be carried in analogue domain by varying, for each sample, the reference level of the A/D converter: more generally, an amplifier with a variable gain located before the signal integration also can be used to allow for a proper implementation.

In the field or projected capacitance sensing, noise and lack of sensitivity is a prevalent concern. A common measure is to average the result over more ADC samples. Since acquiring 10 more ADC samples cost power and time, the intuition is to use the full contribution of each sample, with the hope of getting more total signal. However, against intuition, the various embodiments propose to strongly reduce (but not entirely cancel) the contribution of head and tail samples.

Figure 1 shows a typical exemplary projected capacitive device with one or more 15 receiver electrodes (rx_i), and one or more optional stimuli nodes (tx_j). Typically, the transmitting lines tx_n and the receiving lines rx_n are arranged in a matrix such that the nodes where a transmission line crosses a receiving line form a capacitor that serves as the actual sensor. The matrix reduces the number of lines that would be otherwise needed. The example shown in Fig. 1 uses two receiving lines and four transmitting lines. However, any other 20 number of lines may be used depending on the design. A measurement or evaluation circuit RX in the exemplary embodiment of Fig. 1 are connected to two receiver electrodes rx_0 and rx_1 , and stimulus circuit TX, such as, for example, I/O ports of a microcontroller, are connected to four emitting electrodes tx_0 , tx_1 , tx_2 , and tx_3 in this example.

Figure 2 shows as an example bursts of stimuli pulses applied in a scan sequence to, for 25 example, three emitting electrodes tx_0 , tx_1 , tx_2 and corresponding changes at times t_0 , t_1 , t_2 ... of active emitting electrode tx_0 , tx_1 , tx_2 which delimit packets of samples. Note, that samples do not necessarily synchronize with stimuli pulses. The fourth transmission line is here not used for a better overview only. In figure 2, one assumes each receiving electrode (rx_0 , rx_1) has its own measurement circuit so measurements can be made in parallel.

30 However, a single measurement circuit with multiplexer circuitry may also be possible but would require a repeated stimulus for each line. Figure 3 shows such an alternative to

figure 2. The measure circuit is here multiplexed to different receiving electrodes, and packets of samples p_0, p_1, p_2 are delimited by changes of active receiving electrode rx_0, rx_1 as well as active emitting electrodes tx_0, tx_1 .

Figure 4 shows a packet of samples acquired between a start and a stop time t_i and t_{i+1} , 5 respectively. Here, each sample is weighted by a gain a ($a_0, a_{1..m}, a_e$). The resulting output is shown as the weighted sum. It is shown how weight applied to samples near the transitions t_i and t_{i+1} get less importance in absolute value (a_0, a_e) compared to samples in the middle of the packet (a_m, a_n). According to some embodiments, a Gaussian weight curve may be applied. Other distribution weight curves may apply, such as Hamming, Hanning, Blackman etc., as 10 long as the first and last measurements receive less gain than a center value.

Figure 5 shows an example of projected capacitive system with a single capacitive sensor 530, 540, for example, when touched by a finger 550 during the acquisition of one packet. In non-touching embodiments, entering the detection space will influence the signals received at one or more electrodes. According to some embodiments, sensor electrodes 530, 15 540 may be part of a matrix of electrodes. The capacitive sensor 530, 540 is coupled with an evaluation circuit comprising, for example, a multiplexer 505, sample and hold circuit S_s , 510, an analog-to-digital converter 520 and a processing unit 570. In case of a single sensor, multiplexer 505 is of course not needed unless the ADC 520 is used to sample other analog signals. The transmitting electrode 530 or a selected transmitting electrode from a matrix is 20 connected to a source generating a stimulus tx and the receive electrode 540 or one of the receiving electrodes from a matrix is selected from which a signal rx is fed, for example, by an analog multiplexer 505 to a sample and hold circuit with switch S_s and sample capacitor 510. The stimulus can be a series of pulses, wherein, for example, each pulse varies between ground and a supply voltage. A duty cycle of 50% may be used for a sequence of pulses. However, 25 other duty cycles may apply. According to one embodiment, the pulses may be synchronized with the charging/discharging switches Sp, Sn as will be explained in more detail below.

The sampled signal is then converted by an analog-to digital converter 520 into a digital value which is fed to a processing unit 570 for further processing. In this embodiment, a finger 550 touches the cover material 560 above the electrodes 530, 540 and behaves also as a source 30 of noise (V_{noise}) which will influence the received voltage (V_{rx}). However, other arrangement, for example with exposed electrodes are possible. Applications using the same

principles for three-dimensional position detection will be discussed below. According to some embodiments, the receiving electrode 540 can also be momentarily connected to Vdd or to Gnd by switches Sn, Sp to generate a pair of sample values as will be explained below in more detail.

5 Figure 6 shows a timing diagram of various signals of one embodiment which may for example use the arrangement shown in Fig. 5. Fig. 6 shows one embodiment of a switching sequence and acquisition process. In each sampling cycle, first, the receiving electrode 540 is momentarily connected to ground by switch Sn and signal Sn being high, while the sample and hold is tracking when signal Ss is high. When Sn is disconnected after signal Sn returns to low,
10 a positive stimulus tx is applied on the emitting electrode 530, causing Vrx to rise. In addition to the voltage change caused by the stimulus tx, Vrx also changes -so long Sp or Sn switches are off- due to variation of the potential of the finger with respect to the ground. The sample and hold blocks the signal when signal Ss goes low, and a first or odd sample is acquired and converted. Then, while tx is still high and after the falling edge of Ss, switch Sp is closed for a
15 short period by a positive pulse of signal Sp. Signal Ss then returns high, placing track and hold circuit again in tracking mode. Shortly thereafter, the stimulus tx returns to ground and thereafter, with the falling edge of Ss, a second or even sample is acquired. In this example values comprised between 0 and 4095. An arbitrary pivot value at 2048 is used to refer the amplitude of the samples. Fig. 6 shows that the signal acquired is alternately switched between
20 ground and Vdd and altered from these starting points by the stimulus rx and the noise Vnoise. Thus, by charging the receiving electrode 540 alternately to ground or Vdd, an odd and an even sample is acquired. Depending on whether the noise signal is rising or falling between the falling edge of either Sn or Sp and falling edge of Ss, its contribution is either added or subtracted from the voltage signal Vrx as shown in Fig. 6.

25 Figure 7 shows the signals acquired according to the timing diagram of figure 6 after demodulation. The measurement samples are demodulated in this example by replacing the odd samples by new values equal to 2048-value, and the even samples by new values equal to +value-2048. This demodulation operation corrects the fact that the stimulus tx applied on transmitting electrode 530 alternates positive and negative edges. Finally, this figure illustrates
30 how the samples near the beginning and end of the packet are mathematically multiplied by a smaller weight compared to samples in the middle of the packet as shown with the result after weighting in the bottom curve of Fig. 7.

The demodulation process is specific to the way of applying the stimulus tx. Other sampling schemes may apply. However, it shows that despite a change of the sign of some samples, their importance, or weight, still follows a gradually increasing and then decreasing importance.

5 Figure 8 shows an experimental comparison of noise level recorded without using the principles of the various embodiments (dashed stroke), and using the principles of the various embodiments (solid stroke). As can be seen the noise floor is significantly improved.

As discussed with respect to Fig. 1 and Fig. 5, the principles of the various embodiments can be applied to various capacitance measurement methods such as self and mutual 10 capacitance measurements as used in many touch sensor application. Fig. 9 shows an example of a measurement sensor arrangement that can be used in a non-touching sensor application. Here a substrate 900 may comprise a transmitting electrode 920 and a plurality, here four, receiving electrodes 910a, b, c, d. While Fig. 9 shows a frame-like support structure 900 that can be for example arranged around a display, keyboard, or trackpad, other shapes and forms 15 for the substrate may apply. The transmitting electrode 920 may cover the entire backside of the substrate 900 and the receiving electrodes 910a, b, c, d may be arranged on the top side. Such an arrangement can be provided by a double sided printed circuit board wherein the electrodes are formed by the copper layers. However, a single-sided printed circuit board may also be used, wherein the transmitting electrode may simply surround the receiving electrodes. 20 All electrodes may be coupled with a gesture detection controller 940 which detects predefined gestures and touches and generates commands that are fed to a main processing system 930.

Fig. 10 shows another embodiment of a similar system 1000 combined with a touch pad 1020. Here the electrodes A, B, C, and D surround the touchpad 1020 which may be similar to the embodiment shown in Fig. 1. The touchpad 1020 may be coupled with a touch 25 controller 1010 whereas the electrodes A, B, C, D may be coupled with a 3D-gesture controller 1030. A transmission electrode (not shown) may be arranged below the sensor arrangement 1000 and coupled with the 3D-gesture controller 1030.

The signals received from the various electrodes 910a, b, c, d of Fig. 9 or electrodes A, B, C, D of Fig. 10 may be received and converted in parallel or using a time-multiplexing scheme within the respective controller. However, the same various principles for evaluating sequential samples as discussed above also apply to these non-touching capacitive electrode
5 sensor arrangements.

CLAIMS

1. A method for providing capacitive sensor detection with at least one capacitive sensor comprising a transmitting electrode and a receiving electrode, the method comprising:
generating a stimulus at the transmitting electrode,
5 receiving a signal from the receiving electrode and generating data packets, each packet comprising a plurality of samples;
weighting the plurality of samples by providing less gain at a beginning and end of each packet with respect to a center of each packet; and
integrating the weighted samples to generate an output signal for each packet.

10

2. The method according to claim 1, wherein a stimulus comprises a sequence of pulses.

15

3. The method according to claim 2, wherein each pulse alternates between ground and a supply voltage.

20

4. The method according to one of the preceding claims, wherein a gain distribution is symmetrical with respect to the center of each packet and a gain distribution curve is selected from a group of gain curves consisting of a Gaussian curve, a Hamming window, a Hanning window, and a Blackman window.

5. The method according to one of the preceding claims, wherein weighting is performed by applying gain to the analog signals received from the columns or rows.

25

6. The method according to one of the preceding claims, wherein weighting is performed by applying gain to the digital signals during post processing of each packet.

7. The method according to one of the preceding claims, wherein the capacitive sensor is a touch sensor.

30

8. The method according to claim 7, wherein a plurality of touch sensors are arranged in a matrix comprising columns and rows and packets of samples are sampled in parallel from each column or row.

5 9. The method according to claim 7, wherein a plurality of touch sensors are arranged in a matrix comprising columns and rows and packets of samples of different columns/rows are sampled sequentially using multiplexing.

10. 10. The method according to claim 7, wherein a plurality of touch sensors are formed by horizontal and vertical electrodes arranged in a matrix.

11. 11. The method according to claim 7, wherein a plurality of touch sensors are arranged in a matrix and wherein horizontal and vertical electrodes of the matrix are arranged in different layers.

15

12. 12. The method according to one of the preceding claims, wherein four receiving electrodes are associated with the transmitting electrode and form a three-dimensional position detection sensor.

20

13. 13. The method according to claim 12, wherein the four receiving electrodes are arranged in a frame-like fashion.

14. 14. The method according to claim 12 or 13, wherein the four receiving electrodes surround a display or a touchpad sensor.

25

15. A sensor arrangement with at least one capacitive sensor comprising:
a transmitting electrode configured to receive a stimulus,
a receiving electrode capacitively coupled with the transmitting electrode and
configured to receive a signal from the transmitting electrode, and
5 an evaluation circuit coupled with the receiving electrode and configured to generate
data packets, each packet comprising a plurality of samples, wherein the plurality of samples
are weighted by providing less gain at a beginning and end of each packet with respect to a
center of each packet, and wherein the evaluating circuit is further configured to integrate the
weighted samples to generate an output signal for each packet.

10

16. The sensor arrangement according to claim 15, wherein a packet of the stimulus
comprises a sequence of pulses.

15

17. The sensor arrangement according to claim 16, wherein each pulse alternates
between ground and a supply voltage.

20

18. The sensor arrangement according to one of claims 15 - 17, wherein a gain
distribution is symmetrical with respect to the center of each packet and a gain distribution
curve is selected from a group of gain curves consisting of a Gaussian curve, a Hamming
window, a Hanning window, and a Blackman window.

19. The sensor arrangement according to one of claims 15 - 18, wherein gain is
applied to the analog signals received from the receiving electrode.

25

20. The sensor arrangement according to one of claims 15 - 19, wherein gain is
applied to the digital signals during post processing of each packet.

30

21. The sensor arrangement according to one of claims 15 - 20, wherein a plurality
of touch sensors are arranged in a matrix comprising columns and rows and packets of samples
are sampled in parallel from each column or row.

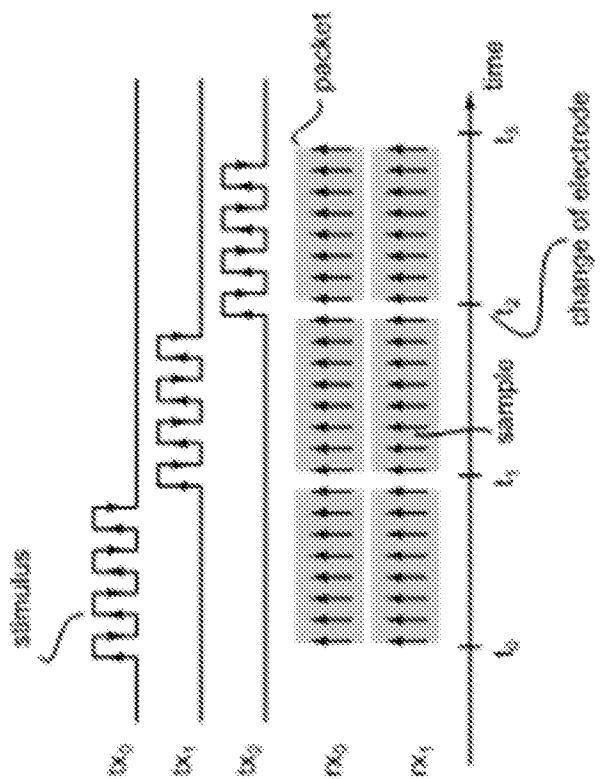
22. The sensor arrangement according to one of claims 15 - 21, wherein the
capacitive sensor is a touch sensor.

23. The sensor arrangement according to claim 22, wherein a plurality of touch sensors are arranged in a matrix comprising columns and rows and packets of samples of different columns/rows are sampled sequentially using multiplexing.

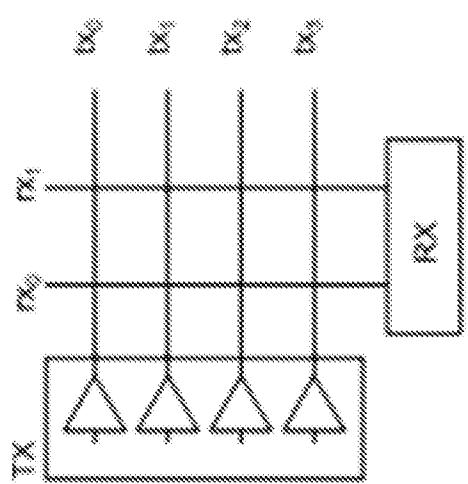
5

24. The sensor arrangement according to claim 22, wherein a plurality of touch sensors are formed by horizontal and vertical electrodes arranged in a matrix.

25. The sensor arrangement according to claim 22, comprising a plurality of touch sensors are arranged in a matrix and wherein horizontal and vertical electrodes of the matrix are arranged in different layers.


26. The sensor arrangement according to one of claims 15 - 25, wherein four receiving electrodes are associated with the transmitting electrode and form a three-dimensional position detection sensor.

15


27. The sensor arrangement according to claim 26, wherein the four receiving electrodes are arranged in a frame-like fashion.

28. The sensor arrangement according to claim 26 or claim 27, wherein the four receiving electrodes surround a display or a touchpad sensor.

1/8

Figure 2

Figure 1

2/8

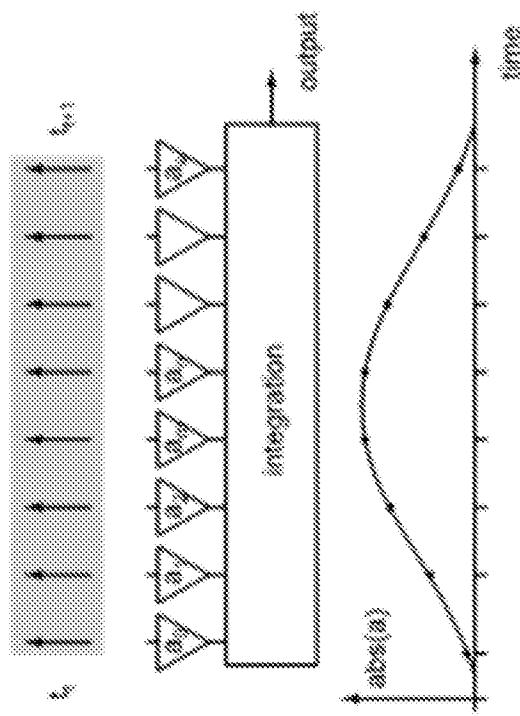


Figure 4

Figure 4

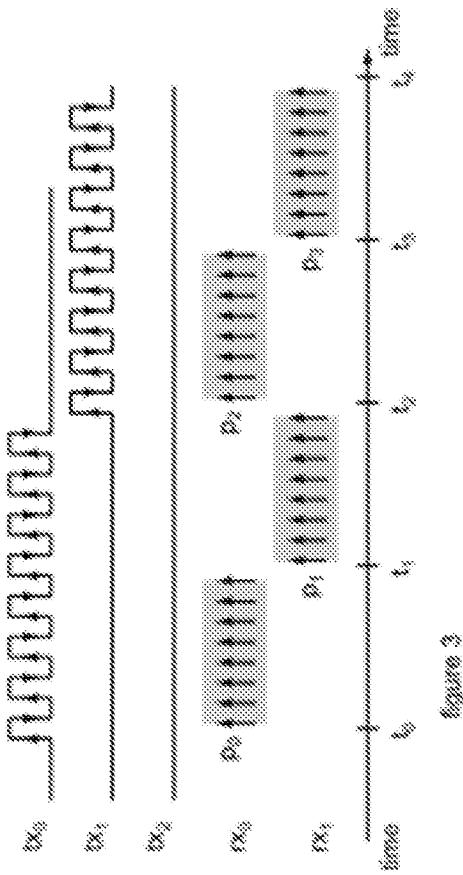


Figure 3

Figure 3

3/8

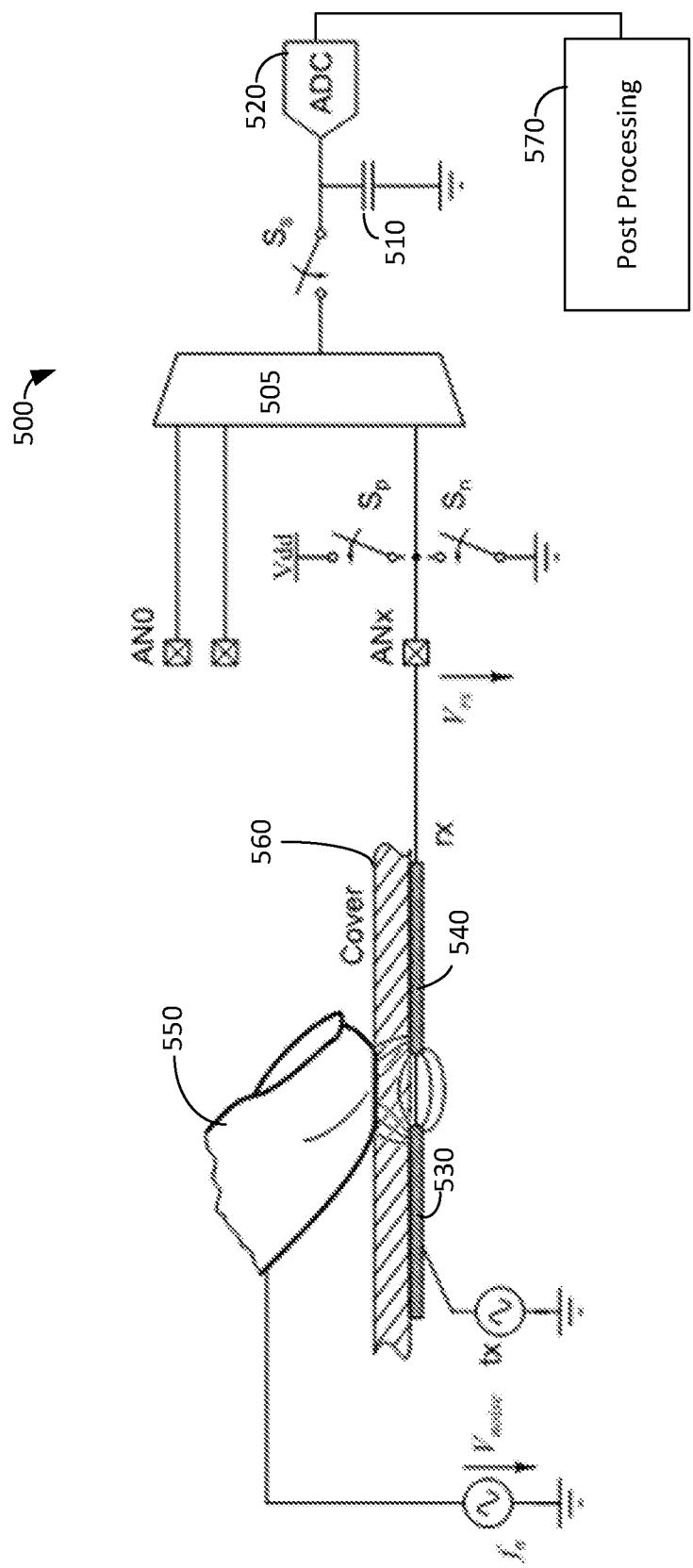


Figure 5

4/8

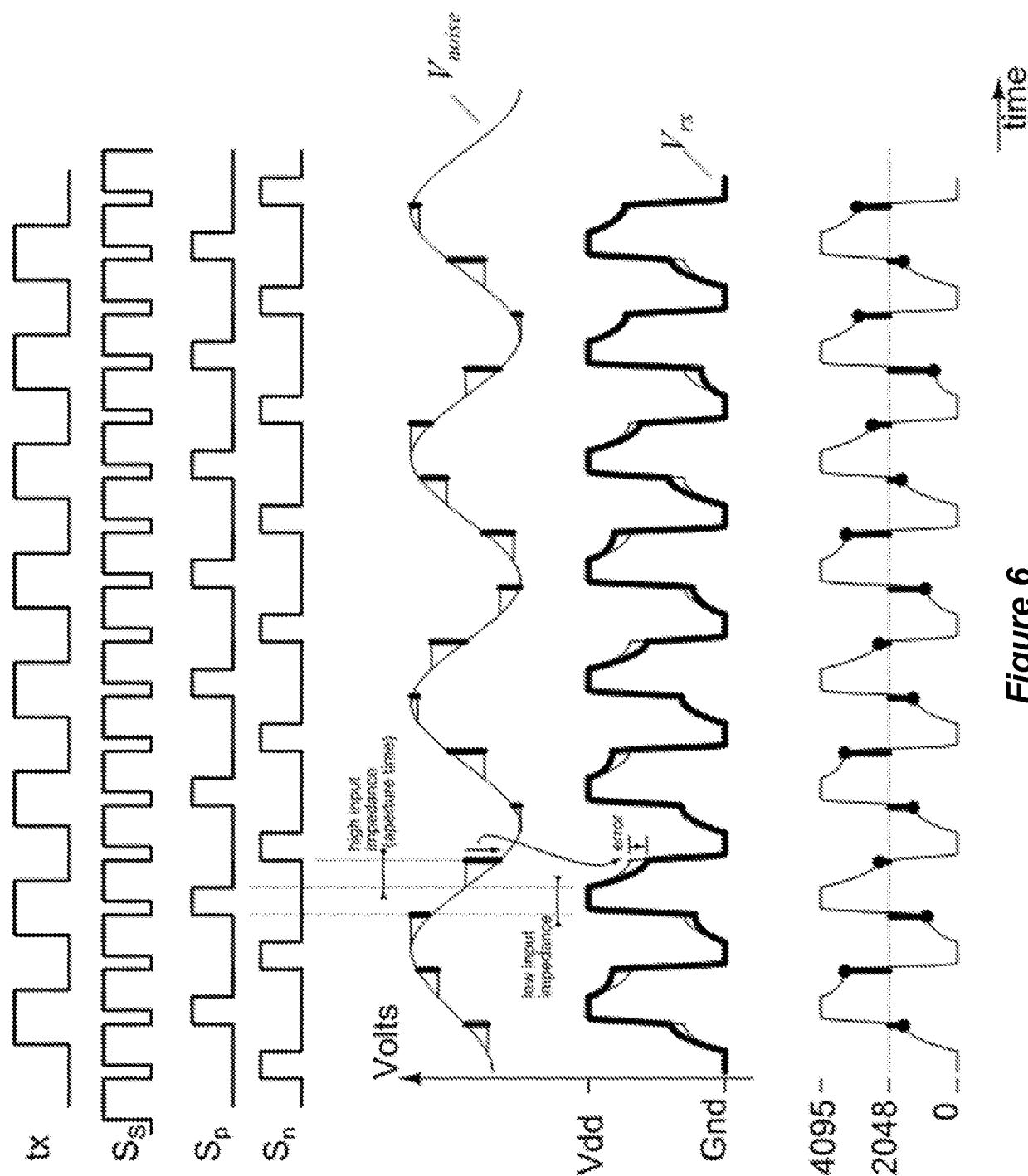
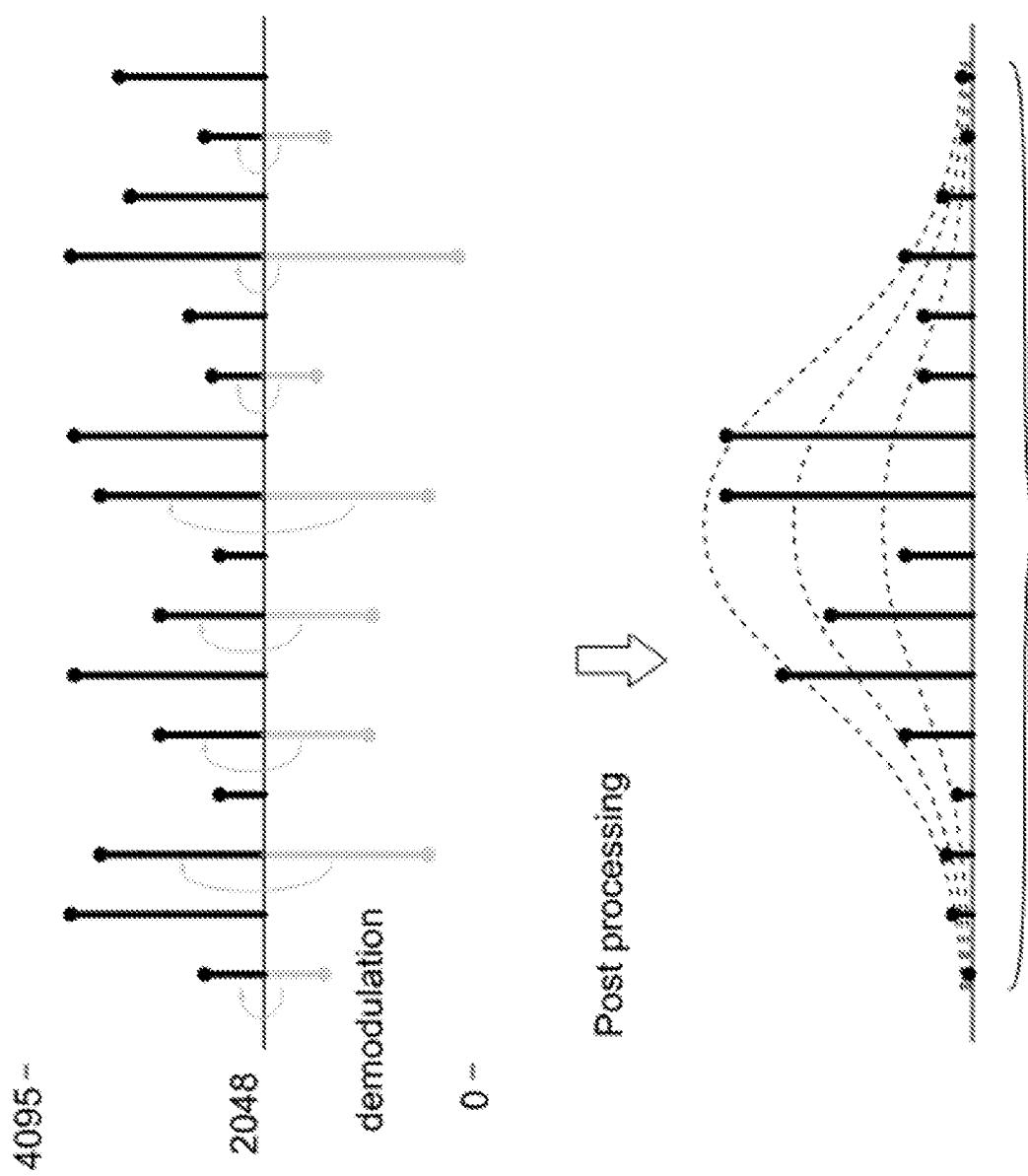
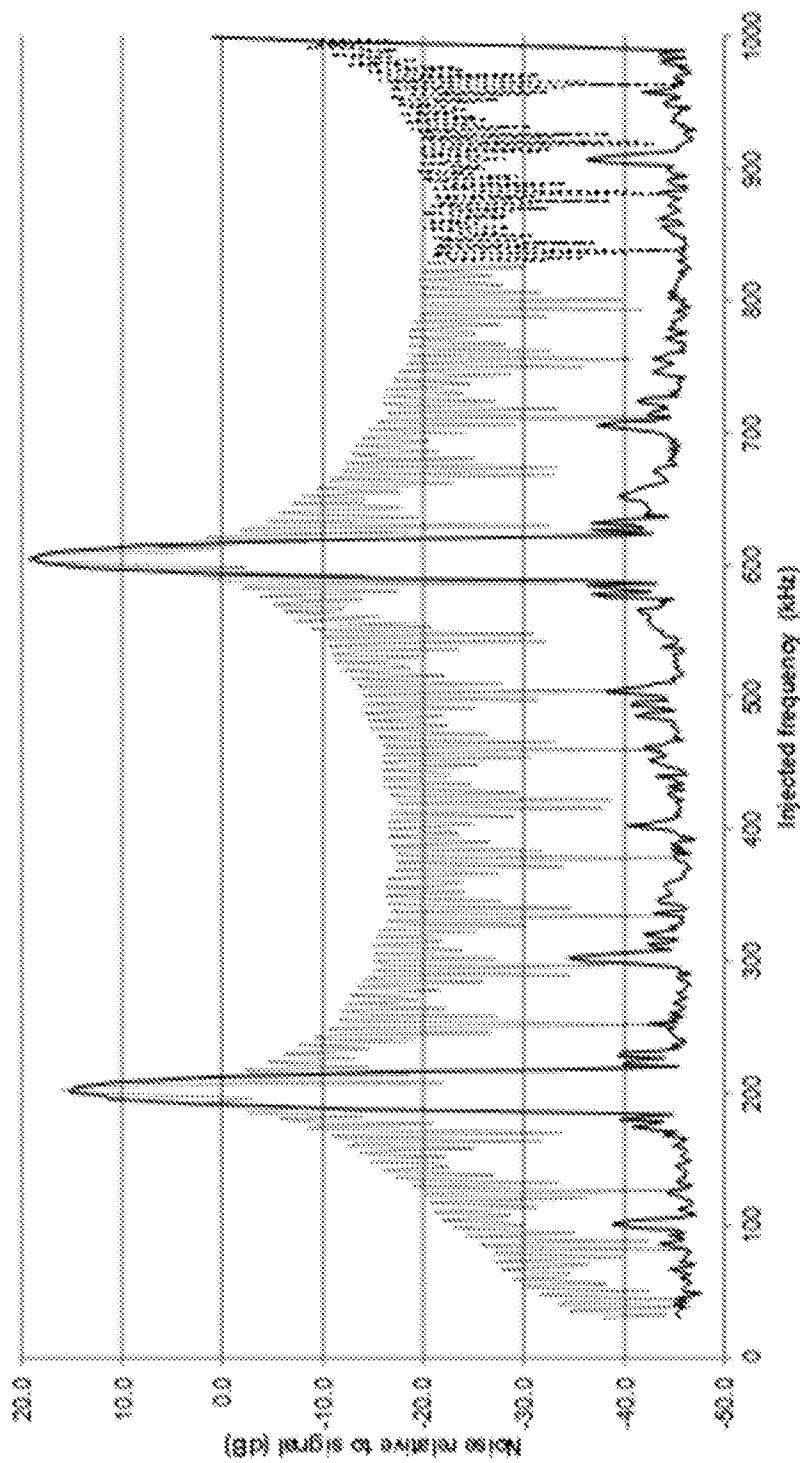
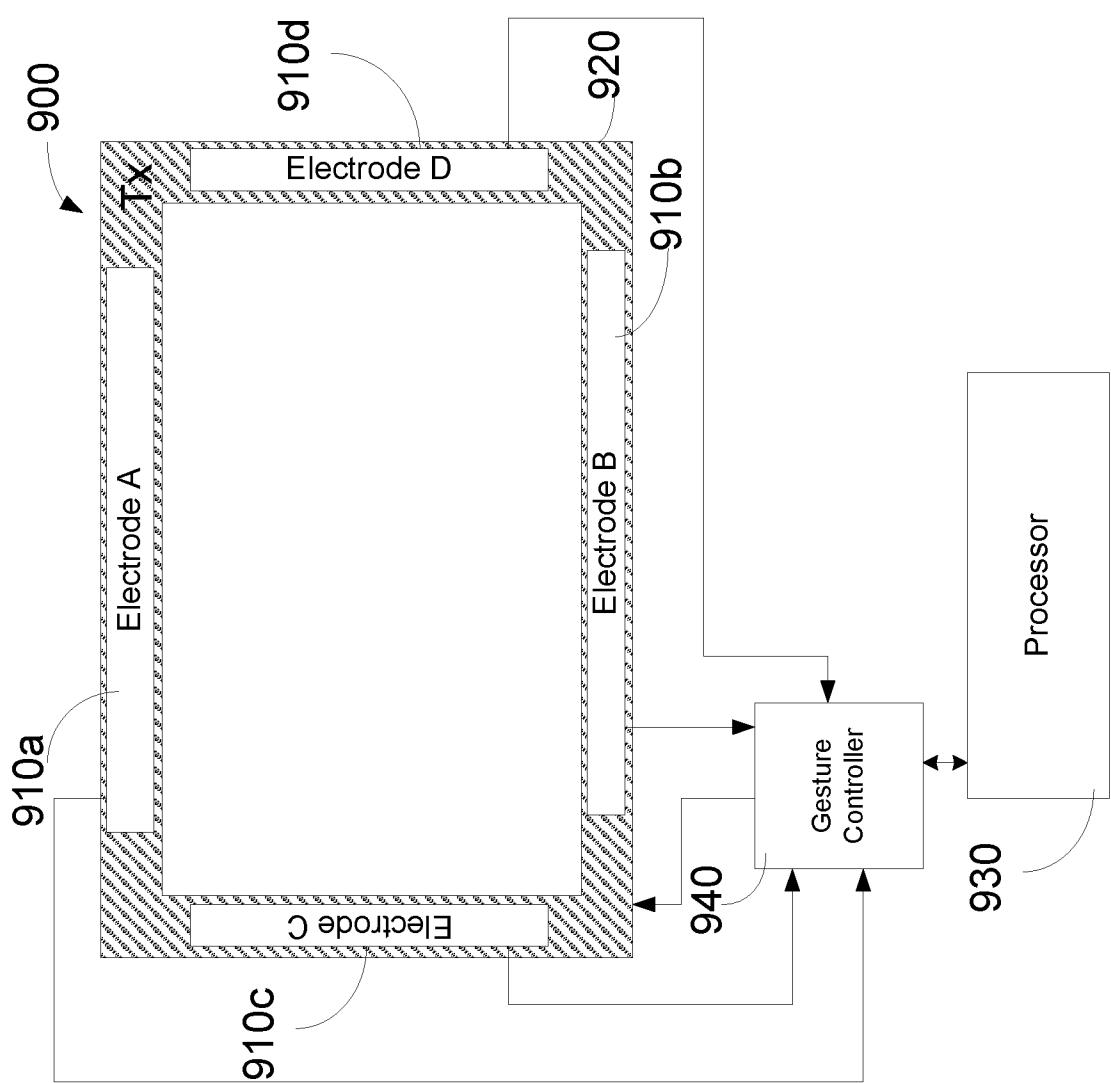


Figure 6

5/8

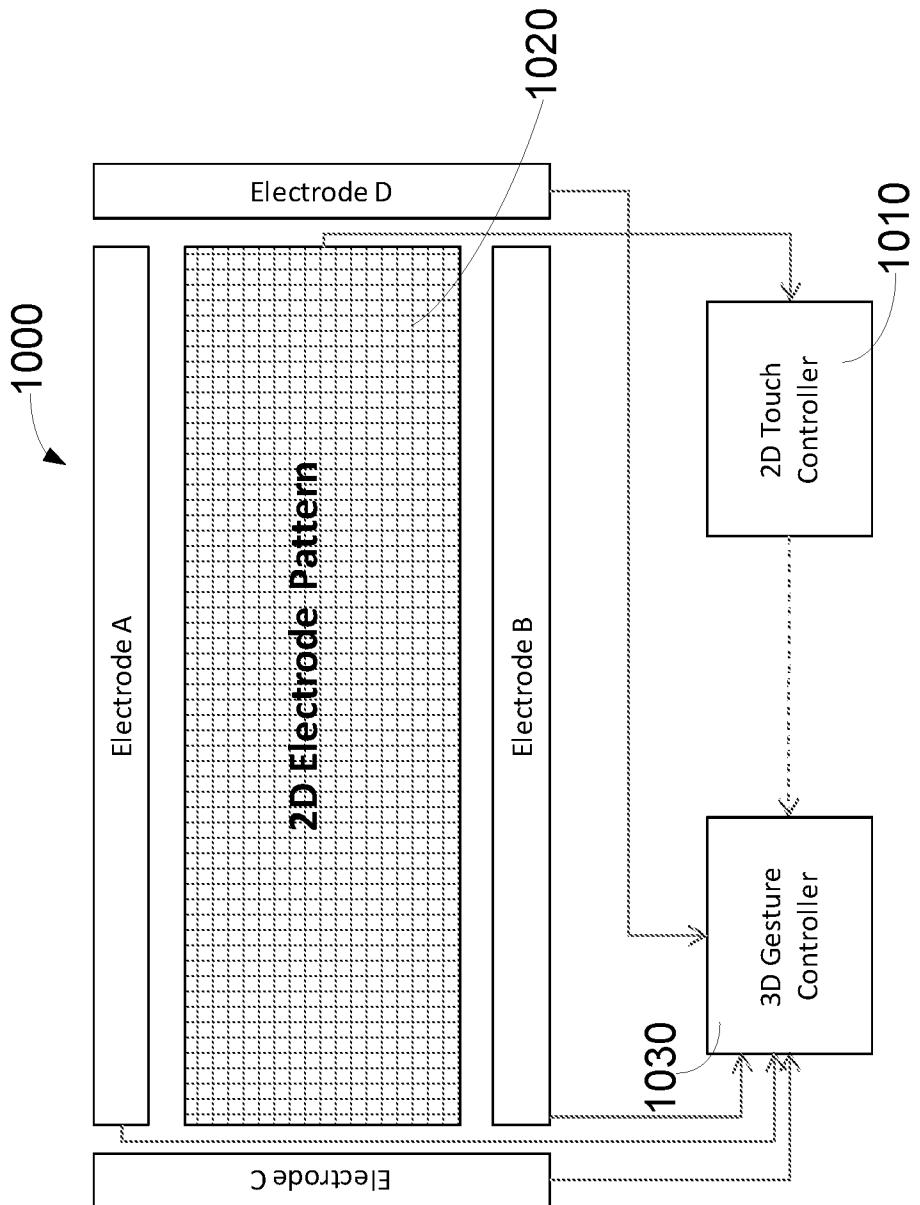

Figure 7

Figure 8

Figure 9

Figure 10

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2016/055905

A. CLASSIFICATION OF SUBJECT MATTER
INV. H03K17/955 G06F3/041 G06F3/044 H03K17/96
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H03K G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2013/120309 A1 (MO LIANGHUA [CN]) 16 May 2013 (2013-05-16) the whole document figures 1,3,8,9 -----	1-28
A	US 2014/240256 A1 (KIM KI-DUK [KR] ET AL) 28 August 2014 (2014-08-28) the whole document -----	1-28
A	US 2014/375595 A1 (LIN CHANG-HUI [TW] ET AL) 25 December 2014 (2014-12-25) the whole document -----	1-28
A	US 2012/313890 A1 (MOHINDRA RISHI [US]) 13 December 2012 (2012-12-13) the whole document ----- ----- -/-	1-28

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
10 January 2017	19/01/2017
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Jepsen, John

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2016/055905

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2014/111443 A1 (GUO DIANBO [SG] ET AL) 24 April 2014 (2014-04-24) the whole document -----	1-28
A	US 2012/062498 A1 (WEAVER BILLY L [US] ET AL) 15 March 2012 (2012-03-15) the whole document -----	1-28
A	US 2012/287081 A1 (AKAI AKIHITO [JP] ET AL) 15 November 2012 (2012-11-15) the whole document -----	1-28

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/US2016/055905

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 2013120309	A1 16-05-2013	CN 102495701 A TW 201322096 A US 2013120309 A1			13-06-2012 01-06-2013 16-05-2013
US 2014240256	A1 28-08-2014	CN 104007874 A DE 102014102148 A1 KR 20140108364 A TW 201433955 A US 2014240256 A1			27-08-2014 28-08-2014 11-09-2014 01-09-2014 28-08-2014
US 2014375595	A1 25-12-2014	NONE			
US 2012313890	A1 13-12-2012	CN 102866798 A US 2012313890 A1 US 2016147370 A1			09-01-2013 13-12-2012 26-05-2016
US 2014111443	A1 24-04-2014	NONE			
US 2012062498	A1 15-03-2012	CN 103080877 A EP 2614424 A2 KR 20140003403 A US 2012062498 A1 WO 2012033620 A2			01-05-2013 17-07-2013 09-01-2014 15-03-2012 15-03-2012
US 2012287081	A1 15-11-2012	CN 102778986 A JP 5885232 B2 JP 2012234474 A US 2012287081 A1			14-11-2012 15-03-2016 29-11-2012 15-11-2012