(12)

Oversættelse af europæisk patentskrift

Patent-og
Varemerkestyrelsen

(51)	Int.CI.:	C 07 D 207/26 (2006.01)
		C 07 D 215/48 (2006.01)
		C 07 D 217/24 (2006.01)
		C 07 D 263/24 (2006.01)
		C 07 D 403/12 (2006.01)
		C 07 D 413/12 (2006.01)

$C 07 D 207 / 273(2006.01)$	$C 07 D 209 / 52(2006.01)$
$C 07 D 217 / 02(2006.01)$	$C 07 D 217 / 22(2006.01)$
$C 07 D 239 / 86(2006.01)$	$C 07 D 239 / 88(2006.01)$
$C 07 D 401 / 12(2006.01)$	$C 07 D 401 / 14(2006.01)$
$C 07 D 405 / 12(2006.01)$	$C 07 D 405 / 14(2006.01)$

(45) Oversættelsen bekendtgjort den: 2019-04-23
(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: 2019-02-27
(86) Europæisk ansøgning nr.: 15717250.3
(86) Europæisk indleveringsdag: 2015-03-26
(87) Den europæiske ansøgnings publiceringsdag: 2017-02-08
(86) International ansøgning nr.: IB2015052251
(87) Internationalt publikationsnr.: WO2015150995
(30) Prioritet: 2014-04-04 US 201461975473 P
(84) Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
(73) Patenthaver: Pfizer Inc, 235 East 42nd Street, New York, NY 10017, USA
(72) Opfinder: ANDERSON, David Randolph, 32 Fawn Run, Salem, Connecticut 06420, USA

BUNNAGE, Mark Edward, 39 Southfield Circle, Concord, Massachusetts 01742, USA
CURRAN, Kevin Joseph, 18 Grouser Road, Somerset, New Jersey 08873, USA
DEHNHARDT, Christoph Martin, 1803-4400 Buchanan Street, Burnaby, British Columbia V5C 0E3, Canada
GAVRIN, Lori Krim, 306 Clairemont Road, Villanova, Pennsylvania 19085, USA
GOLDBERG, Joel Adam, 2116 Short Street, New Orleans, Louisiana 70118, USA
HAN, Seungil, 286 Deerfield Ridge Drive, Mystic, Connecticut 06355, USA
HEPWORTH, David, 282 Sudbury Road, Concord, Massachusetts 01742, USA
HUANG, Horng-Chih, 1126 Nooning Tree Drive, Chesterfield, Missouri 63017, USA
LEE, Arthur, 7400 Damascus Road, Gaithersburg, Maryland 20882, USA
LEE, Katherine Lin, 167 Adams Avenue, West Newton, Massachusetts 02465, USA LOVERING, Frank Eldridge, 2 Sutton Place, Acton, Massachusetts 01720, USA LOWE, Michael Dennis, 4 Martine Avenue 118, White Plains, New York 10606, USA MATHIAS, John Paul, 1338 Main Street, Concord, Massachusetts 01742, USA PAPAIOANNOU, Nikolaos, 743 East 4th Street, Boston, Massachusetts 02127, USA PATNY, Akshay, 600 Trapelo Road, Unit 11, Waltham, Massachusetts 02452, USA PIERCE, Betsy Susan, 237 Grassy Hill Road, East Lyme, Connecticut 06333, USA SAIAH, Eddine, 19 Kenwood Street, Brookline, Massachusetts 02446, USA STROHBACH, Joseph Walter, 114 Crockett Creek, Wentzville, Missouri 63385, USA TRZUPEK, John David, 55 Station Landing 515, Medford, Massachusetts 02155, USA VARGAS, Richard, 12 Jonathan Lane, Bedford, Massachusetts 01730, USA

WANG, Xiaolun, 13572 Golden Cypress Place, San Diego, California 92130, USA
WRIGHT, Stephen Wayne, 1 Whitman Lane, Old Lyme, Connecticut 06371, USA
ZAPF, Christoph Wolfgang, 48 Kinder Circle, Marlborough, Massachusetts 01752, USA
Fuldmægtig i Danmark: Zacco Denmark A/S, Arne Jacobsens Allé 15, 2300 København S, Danmark
(54) Benævnelse: BICYKLISK-FUSIONEREDE HETEROARYL- ELLER ARYLFORBINDELSER OG ANVENDELSE DERAF SOM IRAK4 INHIBITORER
(56) Fremdragne publikationer:

EP-A1-1 724268
EP-A1-1 777218
EP-A2-0 347932
WO-A1-01/04102
WO-A1-97/31006
US-A- 3673238
ROBERT S. COLEMAN ET AL: "An efficient synthesis of the naphthalene subunits of the protein kinase C inhibitor calphostin C"', THE JOURNAL OF ORGANIC CHEMISTRY, vol. 56, no. 4, 1 February 1991 (1991-02-01), pages 1357-1359, XP055188363, ISSN: 0022-3263, DOI: 10.1021/j000004a006
DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 2008, YU, XINHAI: "Method for preparing 3,5-bis(2,4-diaminophenoxy)-2-naphthoic acid", XP002739596, retrieved from STN Database accession no. 2008:1018912-\& CN 101245022 A (DONGHUA UNIVERSITY, PEOP. REP. CHINA) 20 August 2008 (2008-08-20)
DATABASE REGISTRY [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 8 April 2013 (2013-04-08), Chemical Catalog; Supplier: CiventiChem: XP002739597, Database accession no. 1427393-40-5
L. NATHAN TUMEY ET AL: "Identification and optimization of indolo[2,3-c]quinoline inhibitors of IRAK4", BIOORGANIC \& MEDICINAL CHEMISTRY LETTERS, vol. 24, no. 9, 29 March 2014 (2014-03-29) , pages 20662072, XP055189104, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2014.03.056

DESCRIPTION

FIELD OF THE INVENTION
[0001] This invention pertains to compounds useful for the treatment of autoimmune and inflammatory diseases associated with Interleukin-1 Receptor Associated Kinase (IRAK) and more particularly compounds that modulate the function of IRAK4.

BACKGROUND OF THE INVENTION

[0002] Protein kinases are families of enzymes that catalyze the phosphorylation of specific residues in proteins, broadly classified in tyrosine and serine/threonine kinases. Inappropriate activity arising from dysregulation of certain kinases by a variety of mechanisms is believed to underlie the causes of many diseases, including but not limited to, cancer, cardiovascular diseases, allergies, asthma, respiratory diseases, autoimmune diseases, inflammatory diseases, bone diseases, metabolic disorders, and neurological and neurodegenerative diseases. As such, potent and selective inhibitors of kinases are sought as potential treatments for a variety of human diseases.
[0003] There is considerable interest in targeting the innate immune system in the treatment of autoimmune diseases and sterile inflammation. Receptors of the innate immune system provide the first line of defense against bacterial and viral insults. These receptors recognize bacterial and viral products as well as pro-inflammatory cytokines and thereby initiate a signaling cascade that ultimately results in the up-regulation of inflammatory cytokines such as TNF α, IL6, and interferons. Recently it has become apparent that self-generated ligands such as nucleic acids and products of inflammation such as high-mobility group protein B1 (HMGB1) and Advanced Glycated End-products (AGE) are ligands for Toll-like receptors (TLRs) which are key receptors of the innate immune system (O'Neill 2003, Kanzler et al 2007, Wagner 2006). This demonstrates the role of TLRs in the initiation and perpetuation of inflammation due to autoimmunity.
[0004] Interleukin-1 receptor associated kinase 4 (IRAK4) is a ubiquitously expressed serine/threonine kinase involved in the regulation of innate immunity (Suzuki \& Saito 2006). IRAK4 is responsible for initiating signaling from TLRs and members of the IL-1/18 receptor family. Kinase-inactive knock-ins and targeted deletions of IRAK4 in mice were reported to cause reductions in TLR and IL-1 induced pro-inflammatory cytokines (Kawagoe et al 2007; Fraczek et al. 2008; Kim et al. 2007). IRAK4 kinase-dead knock-in mice have also been shown to be resistant to induced joint inflammation in the antigen-induced-arthritis (AIA) and serum transfer-induced (K/BxN) arthritis models (Koziczak-Holbro 2009). Likewise, humans deficient in IRAK4 also appear to display the inability to respond to challenge by Toll ligands and IL-1 (Hernandez \& Bastian 2006). However, the immunodeficient phenotype of IRAK4-null
individuals is narrowly restricted to challenge by gram positive bacteria, but not gram negative bacteria, viruses or fungi. This gram positive sensitivity also lessens with age, implying redundant or compensating mechanisms for innate immunity in the absence of IRAK4 (Lavine et al 2007).
[0005] These data indicate that inhibitors of IRAK4 kinase activity should have therapeutic value in treating cytokine driven autoimmune diseases while having minimal immunosuppressive side effects. Additional recent studies suggest that targeting IRAK4 may be useful in other inflammatory pathologies such as atherosclerosis and diffuse large B-cell lymphoma (Rekhter et al 2008; Ngo et al 2011). Therefore, inhibitors of IRAK4 kinase activity are potential therapeutics for a wide variety of diseases including but not limited to autoimmunity, inflammation, cardiovascular diseases, cancer, and metabolic diseases. See the following references for additional information: N. Suzuki and T. Saito, Trends in Immunology, 2006, 27, 566. T. Kawagoe, S. Sato, A. Jung, M. Yamamoto, K. Matsui, H. Kato, S. Uematsu, O. Takeuchi and S. Akira, Journal of Experimental Medicine, 2007, 204, 1013. J. Fraczek, T. W. Kim, H. Xiao, J. Yao, Q. Wen, Y. Li, J.-L. Casanova, J. Pryjma and X. Li, Journal of Biological Chemistry, 2008, 283, 31697. T. W. Kim, K. Staschke, K. Bulek, J. Yao, K. Peters, K.H. Oh, Y. Vandenburg, H. Xiao, W. Qian, T. Hamilton, B. Min, G. Sen, R. Gilmour and X. Li, Journal of Experimental Medicine, 2007, 204, 1025. M. Koziczak-Holbro, A. Littlewood-Evans, B. Pollinger, J. Kovarik, J. Dawson, G. Zenke, C. Burkhart, M. Muller and H. Gram, Arthritis \& Rheumatism, 2009, 60, 1661. M. Hernandez and J. F. Bastian, Current Allergy and Asthma Reports, 2006, 6, 468. E. Lavine, R. Somech, J. Y. Zhang, A. Puel, X. Bossuyt, C. Picard, J. L. Casanova and C. M. Roifman, Journal of Allergy and Clinical Immunology, 2007, 120, 948. M. Rekhter, K. Staschke, T. Estridge, P. Rutherford, N. Jackson, D. Gifford-Moore, P. Foxworthy, C. Reidy, X.-d. Huang, M. Kalbfleisch, K. Hui, M.-S. Kuo, R. Gilmour and C. J. Vlahos, Biochemical and Biophysical Research Communications, 2008, 367, 642. O'Neill, L. A. (2003). "Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases." Curr Opin Pharmacol 3(4): 396. Kanzler, H et al. (2007) "Therapeutic targeting of innate immunity with toll-like receptor agonists and antagonists." Nature Medicine 13:552. Wagner, H. (2006) "Endogenous TLR ligands and autoimmunity" Advances in Immunol 91: 159. Ngo, V. N. et al. (2011) "Oncogenically active MyD88 mutations in human lymphoma" Nature 470: 115.

SUMMARY OF THE INVENTION

[0006] The invention provides for the compound 1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide;
or a pharmaceutically acceptable salt of said compound or a tautomer of said compound or said salt.
[0007] The invention also provides for pharmaceutical compositions comprising the compound and combination therapies utilizing the compound and other therapeutic agents. Also disclosed herein are methods of using the compound, methods of preparing the compound and intermediates useful in the preparation of the compound of the invention.
[0008] In particular, the compound of the present invention possess a therapeutic role of inhibiting IRAK4 useful in the area of diseases and/or disorders that include, but are not limited to, cancers, allergic diseases, autoimmune diseases, inflammatory diseases and/or disorders and/or conditions associated with inflammation and pain, proliferative diseases, hematopoietic disorders, hematological malignancies, bone disorders, renal disease, fibrosis diseases and/or disorders, metabolic disorders, muscle diseases and/or disorders, respiratory diseases, pulmonary disorders, genetic development diseases, neurological and neurodegenerative diseases and/or disorders, chronic inflammatory demyelinating neuropathies, cardiovascular, vascular or heart diseases, ophthalmic/ocular diseases, wound repair, infection and viral diseases. Therefore, inhibition of IRAK4 would have the potential for multiple therapeutic indications over a wide range of unmet needs.

DESCRIPTION OF FIGURES

[0009]
Figure 1: Mean change in ear swelling $(\mu \mathrm{m})$ from baseline ear measurements on day 5 . Mice treated with Example 296 (PO BID daily X 5 days) and P40 Ab (IP day 1, 4) had significantly reduced ear swelling on the final day compared to Vehicle (p value and \%).

Figure 2: Figure 2. Delta paw volume in rat collagen-induced arthritis model using Reference Example 26.

DETAILED DESCRIPTION OF THE INVENTION

[0010] The present invention may be understood more readily by reference to the following detailed description of exemplary embodiments of the invention and the examples included therein. There are also disclosed specific methods of synthesis, which may of course vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
[0011] Other features and advantages of this invention will be apparent from this specification and the appendent claims which describe the invention.

Definitions

[0012] Unless otherwise defined herein, scientific and technical terms used in connection with the present invention have the meaning commonly understood by those of ordinary skill in the
art. As used in the specification and the appended claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise.
[0013] The term "about" refers to a relative term denoting an approximation of plus or minus 10% of the nominal value it refers, in one embodiment, to plus or minus 5%, in another embodiment, to plus or minus 2%. For the field of this disclosure, this level of approximation is appropriate unless the value is specifically stated require a tighter range.
[0014] The term "alkyl" refers to a linear or branched saturated hydrocarbon moiety, consisting solely of carbon and hydrogen atoms. In one embodiment from one to six carbon atoms; and in another embodiment from one to four carbon atoms; and in another embodiment one to three carbon atoms. Non-limiting examples of such substituents include methyl, ethyl, propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl, sec-butyl and tert-butyl), pentyl, isoamyl, hexyl and the like. As appropriate, an alkyl may be optionally substituted at each carbon as defined in the claims. Typical substitution includes, but is not limited to, fluoro, chloro, OH , cyano, alkyl (optionally substituted), cycloalkyl and the like.
[0015] In some instances, the number of carbon atoms in a hydrocarbon substituent (i.e., alkyl, cycloalkyl, etc.) is indicated by the prefix " $\mathrm{C}_{\mathrm{x}}-\mathrm{C}_{y}-$ " or " $\mathrm{C}_{\mathrm{x}-\mathrm{y}}$ ", wherein x is the minimum and y is the maximum number of carbon atoms in the substituent. Thus, for example, " $\mathrm{C}_{1}-\mathrm{C}_{6}$-alkyl" or " C_{1-6} alkyl" refers to an alkyl substituent containing from 1 to 6 carbon atoms. Illustrating further, C_{3} - C_{6}-cycloalkyl or C_{3-6}-cycloalkyl refers to saturated cycloalkyl containing from 3 to 6 carbon ring atoms.
[0016] Unless otherwise indicated, "alkylene," by itself or as part of another term, refers to a saturated, branched or straight chain or cyclic hydrocarbon diradical of the stated number of carbon atoms, typically 1-6 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane. Typical alkylene radicals include, but are not limited to methylene ($-\mathrm{CH}_{2}-$), 1,2ethylene ($-\mathrm{CH}_{2} \mathrm{CH}_{2}$-), 2,2-dimethylene, 1,3-propylene ($-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-), 2-methylpropylene, 1,4butylene $\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, and the like; optionally substituted, as appropriate, by 1 to 5 suitable substituents as defined above such as fluoro, chloro, deuteron, cyano, trifluoromethyl, ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy, ($\mathrm{C}_{6}-\mathrm{C}_{10}$)aryloxy, trifluoromethoxy, difluoromethoxy or ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkyl. When the compounds disclosed herein contain a C_{2-6} alkenyl group, the compound may exist as the pure E (entgegen) form, the pure Z (zusammen) form, or any mixture thereof.
[0017] "Alkylidene" or "alkenyl" refers to a divalent group formed from an alkane by removal of two hydrogen atoms from the same carbon atom, the free valencies of which are part of a double bond, optionally substituted as described herein. The term alkylidene also includes "allenes" wherein on carbon atom has double bonds with each of its two adjacent carbon centers, such as, for example, propadiene. As appropriate, an alkenyl may be optionally substituted at each carbon as defined in the claims, optionally substituted, as appropriate, by 1 to 5 suitable substituents as defined above and herein such as fluoro, chloro, deutero, cyano,
trifluoromethyl, $\quad\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkoxy, $\left(\mathrm{C}_{6}-\mathrm{C}_{10}\right)$ aryloxy, trifluoromethoxy, difluoromethoxy or $\left(\mathrm{C}_{1}\right.$ C_{6})alkyl.
[0018] "Alkynyl" refers to an aliphatic hydrocarbon having at least one carbon-carbon triple bond, including straight chain, branched chain or cyclic groups having at least one carboncarbon triple bond, optionally substituted as described herein. Preferably, it is a lower alkynyl having 2 to 6 carbon atoms. For example, as used herein, the term " C_{2-6} alkynyl" is used herein to mean a straight or branched hydrocarbon chain alkynyl radical as defined above having 2 to 6 carbon atoms and one triple bond. As appropriate, an alkynyl may be optionally substituted at each carbon as defined in the claims. Typical substitution includes, but is not limited to, optionally substituted, as appropriate, by 1 to 5 suitable substituents as defined above and herein, such as fluoro, chloro, deutero, cyano, trifluoromethyl, ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy, ($\mathrm{C}_{6}-\mathrm{C}_{10}$)aryloxy, trifluoromethoxy, difluoromethoxy or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl.
[0019] The term "cycloalkyl" refers to a nonaromatic ring containing 3 to 10 carbons that is fully hydrogenated consisting of mono-, bi- or tricyclic rings. Accordingly, a cycloalkyl may be a single ring, which typically contains from 3 to 7 ring atoms. Examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Alternatively, 2 or 3 rings may be fused together, such as bicyclodecanyl and decalinyl. The term "cycloalkyl" also includes bridged bicycloalkyl systems such as, but not limited to, bicyclo[2.2.1]heptane and bicyclo[1.1.1]pentane. The cycloalkyl group may be optionally substituted as described herein, as appropriate, by 1 to 5 suitable substituents as defined above such as fluoro, chloro, deutero, cyano, trifluoromethyl, ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy, $\quad\left(\mathrm{C}_{6}-\mathrm{C}_{10}\right)$ aryloxy, trifluoromethoxy, difluoromethoxy or ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkyl.
[0020] The term "heterocycloalkyl" means a monovalent saturated moiety, consisting of one to three rings, incorporating one, two, three or four heteroatoms (selected from N, O or S) and three to 10 carbon atoms. The heterocycloalkyl may be optionally substituted as defined herein. Examples of heterocycloalkyl moieties include, but are not limited to, optionally substituted piperidinyl, piperazinyl, homopiperazinyl, azepinyl, pyrrolidinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, pyridinyl, pyridazinyl, pyrimidinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinuclidinyl, quinolinyl, isoquinolinyl, benzimidazolyl, thiadiazolylidinyl, benzothiazolidinyl, benzoazolylidinyl, dihydrofuryl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, thiamorpholinyl, thiamorpholinylsulfoxide, thiamorphilinylsulfone, dihydroquinolinyl, tetrahydroquinolinyl, tetrahydrisoquinolinyl, and the like. Heterocycloalkyls may be optionally substituted, as appropriate, by 1 to 5 suitable substituents as defined herein such as fluoro, chloro, deutero, cyano, trifluoromethyl, (C_{1} C_{6})alkoxy, $\left(\mathrm{C}_{6}-\mathrm{C}_{10}\right)$ aryloxy, trifluoromethoxy, difluoromethoxy or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl.
[0021] Unless otherwise indicated, the term "heteroalkyl," by itself or in combination with another term, means, unless otherwise stated, a saturated, straight or branched chain hydrocarbon radical consisting of the stated number of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N and S , and wherein the nitrogen and
sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N and S may be placed at any interior position of the heteroalkyl group. The heteroatom S may be placed at any position of the heteroalkyl group, including the position at which the alkyl group is attached to the remainder of the molecule. Up to two heteroatoms may be consecutive.
[0022] Unless otherwise indicated, the term "heteroalkylene" by itself or as part of another substituent means a divalent group derived from heteroalkyl (as defined above). For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini.
[0023] The term "alkoxy" and "alkyloxy", which may be used interchangeably, refers to a moiety of the formula -OR, wherein R is a straight chain saturated alkyl or branched chain saturated alkyl moiety, as defined herein, bonded through an oxygen atom. The alkoxy group may be optionally substituted as defined herein. Non-limiting examples of such alkoxy groups are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tertiary butoxy, pentoxy and the like.
[0024] The term "aryl" means a carbocyclic aromatic system containing one or two rings wherein such rings may be fused. If the rings are fused, one of the rings must be fully unsaturated and the fused ring(s) may be fully saturated, partially unsaturated or fully unsaturated. The term "fused" means that a second ring is present (i.e., attached or formed) by having two adjacent atoms in common (i.e., shared) with the first ring. The term "fused" is equivalent to the term "condensed". The aryl group may be optionally substituted as defined herein. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indanyl, biphenyl, benzo[b][1,4]oxazin-3(4H)-onyl, 2,3-dihydro-1H indenyl and 1,2,3,4-tetrahydronaphthalenyl. Aryls may be optionally substituted, as appropriate, by 1 to 5 suitable substituents as defined above such as fluoro, chloro, deutero, cyano, trifluoromethyl, ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy, ($\mathrm{C}_{6}-\mathrm{C}_{10}$) aryloxy, trifluoromethoxy, difluoromethoxy or ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkyl.
[0025] The term "heteroaryl" refers to an aromatic ring structure containing from 5 to 6 ring atoms in which at least one of the ring atoms is a heteroatom (i.e., oxygen, nitrogen, or sulfur), with the remaining ring atoms being independently selected from the group consisting of carbon, oxygen, nitrogen, and sulfur. Examples of heteroaryl substituents include 6-membered ring substituents such as pyridyl, pyrazyl, pyrimidinyl, and pyridazinyl; and 5-membered ring substituents such as triazolyl, imidazolyl, furanyl, thiophenyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, 1,2,3-, 1,2,4-, 1,2,5-, or 1,3,4-oxadiazolyl and isothiazolyl. In a group that has a heteroaryl substituent, the ring atom of the heteroaryl substituent that is bound to the group may be one of the heteroatoms, or it may be a ring carbon atom. Similarly, if the heteroaryl substituent is in turn substituted with a group or substituent, the group or substituent may be bound to one of the heteroatoms, or it may be bound to a ring carbon atom. The term "heteroaryl" also includes pyridyl N -oxides and groups containing a pyridine N -oxide ring.
[0026] Further examples include furyl, thienyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl,
pyrazinyl, pyridin-2(1H)-onyl, pyridazin-2(1H)-onyl, pyrimidin-2(1H)-onyl, pyrazin-2(1H)-onyl, imidazo[1,2-a]pyridinyl, pyrazolo[1,5-a]pyridinyl, 5,6,7,8-tetrahydroisoquinolinyl, 5,6,7,8tetrahydroquinolinyl, 6,7-dihydro-5H-cyclopenta[b]pyridinyl, 6,7-dihydro-5Hcyclopenta[c]pyridinyl, 1,4,5,6-tetrahydrocyclopenta[c]pyrazolyl, 2,4,5,6tetrahydrocyclopenta[c]pyrazolyl, 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazolyl, 6,7-dihydro-5H-pyrrolo[1,2-b][1,2,4]triazolyl, 5,6,7,8-tetrahydro-[1,2,4]triazolo[1,5-a]pyridinyl, 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridinyl, 4,5,6,7-tetrahydro-1 H -indazolyl and 4,5,6,7-tetrahydro-2Hindazolyl. The heteroaryl can be optionally substituted, as appropriate, by 1 to 5 suitable substituents as defined herein such as fluoro, chloro, deutero, cyano, trifluoromethyl, $\left(\mathrm{C}_{1}-\right.$ C_{6}) alkoxy, ($\mathrm{C}_{6}-\mathrm{C}_{10}$) aryloxy, trifluoromethoxy, difluoromethoxy or ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkyl.
[0027] Examples of single-ring heteroaryls and heterocycloalkyls include furanyl, dihydrofuranyl, tetrahydrofuranyl, thiophenyl, dihydrothiophenyl, tetrahydrothiophenyl, pyrrolyl, isopyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidinyl, isothiazolidinyl, thiaoxadiazolyl, oxathiazolyl, oxadiazolyl (including oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, or 1,3,4oxadiazolyl), pyranyl (including 1,2-pyranyl or 1,4-pyranyl), dihydropyranyl, pyridinyl, piperidinyl, diazinyl (including pyridazinyl, pyrimidinyl, piperazinyl, triazinyl (including s-triazinyl, as-triazinyl and v-triazinyl), oxazinyl (including $2 \mathrm{H}-1,2$-oxazinyl, $6 \mathrm{H}-1,3$-oxazinyl, or $2 \mathrm{H}-1,4$ oxazinyl), isoxazinyl (including o-isoxazinyl or p-isoxazinyl), oxazolidinyl, isoxazolidinyl, oxathiazinyl (including 1,2,5-oxathiazinyl or 1,2,6-oxathiazinyl), oxadiazinyl (including 2H-1,2,4oxadiazinyl or $2 \mathrm{H}-1,2,5$-oxadiazinyl), and morpholinyl.
[0028] The term "heteroaryl" also includes fused ring systems having one or two rings wherein such rings may be fused, wherein fused is as defined above. It is to be understood that if a carbocyclic or heterocyclic moiety may be bonded or otherwise attached to a designated substrate through differing ring atoms without denoting a specific point of attachment, then all possible points are intended, whether through a carbon atom or, for example, a trivalent nitrogen atom. For example, the term "pyridyl" means 2-, 3- or 4-pyridyl, the term "thienyl" means 2- or 3-thienyl, and so forth.
[0029] In some instances, the number of atoms in a cyclic substituent containing one or more heteroatoms (i.e., heteroaryl or heterocycloalkyl) is indicated by the prefix "x- to y-membered", wherein x is the minimum and y is the maximum number of atoms forming the cyclic moiety of the substituent. Thus, for example, "5- to 6-membered heteroaryl" refers to a heteroaryl containing from 5 to 6 atoms, including one or more heteroatoms, in the cyclic moiety of the heteroaryl. The heteroatoms for this invention are selected from nitrogen, oxygen and sulfur.
[0030] Compounds are disclosed which may contain basic nitrogen atoms (e.g. alkyl amines or heterocycles such as pyridine etc.) which may be converted to N -oxides by treatment with an oxidizing agent (e.g. MCPBA and/or hydrogen peroxides).
[0031] One skilled in the art would appreciate that metabolites may be formed as part of the
natural biochemical process of degrading and eliminating the compounds. For example, some compounds are disclosed which may naturally form an N -oxide, as depicted below in the compound of Formula IIf' or in other areas of the compound of Formula la. Metabolites such as these or others formed as part of the natural biochemical process are disclosed herein.

IIf

IIf
[0032] If substituents are described as "independently" having more than one variable, each instance of a substituent is selected independent of the other from the list of variables available. Each substituent therefore may be identical to or different from the other substituent(s).
[0033] "Patient" or "subject" refers to warm-blooded animals such as, for example, guinea pigs, mice, rats, gerbils, cats, rabbits, dogs, cattle, goats, sheep, horses, monkeys, chimpanzees, and humans.
[0034] The term "pharmaceutically acceptable" means the substance or composition must be compatible, chemically and/or toxicologically, with the other ingredients comprising a formulation, and/or the mammal being treated therewith.
[0035] The term "therapeutically effective amount" means an amount of the compound of the present invention that (i) treats or prevents the particular disease, condition, or disorder, (ii) attenuates, ameliorates, or eliminates one or more symptoms of the particular disease, condition, or disorder, or (iii) prevents or delays the onset of one or more symptoms of the particular disease, condition, or disorder described herein.
[0036] The term "treating", as used herein, unless otherwise indicated, means reversing, alleviating, inhibiting the progress of, delaying the progression of, delaying the onset of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition. The term "treatment", as used herein, unless otherwise indicated, refers to the act of treating as "treating" is defined immediately above. The term "treating" also includes adjuvant and neo-adjuvant treatment of a subject. For the avoidance of doubt, reference herein to "treatment" includes reference to curative, palliative and prophylactic treatment, and to the administration of a medicament for use in such treatment.
[0037] As used herein, the terms "Formula I", "Formula la", "Formula Ila-IIg", "Formula III" and "Formula IIla" may be hereinafter referred to as collectively the "compound of Formula I." Accordingly, the term "compound of Formula I" includes the compounds of Formula Ia, Ila-IIg,

III and III. Such terms are also defined to include all forms of the compound of Formula I, including hydrates, solvates, isomers, crystalline and non-crystalline forms, isomorphs, polymorphs, tautomers and metabolites thereof. For example, the compounds disclosed herein, or pharmaceutically acceptable salts thereof, may exist in unsolvated and solvated forms. When the solvent or water is tightly bound, the complex will have a well-defined stoichiometry independent of humidity. When, however, the solvent or water is weakly bound, as in channel solvates and hygroscopic compounds, the water/solvent content will be dependent on humidity and drying conditions. In such cases, non-stoichiometry will be the norm.
[0038] The compound of the invention and the other compounds disclosed herein have asymmetric carbon atoms. The carbon-carbon bonds of such compounds may be depicted herein using a solid line (-), a solid wedge (
), or a dotted wedge (
...."! 1 II
). The use of a solid line to depict bonds to asymmetric carbon atoms is meant to indicate that all possible stereoisomers (e.g., specific enantiomers, racemic mixtures, etc.) at that carbon atom are included. The use of either a solid or dotted wedge to depict bonds to asymmetric carbon atoms is meant to indicate that only the stereoisomer shown is meant to be included. It is possible that compounds of Formula I may contain more than one asymmetric carbon atom. In those compounds, the use of a solid line to depict bonds to asymmetric carbon atoms is meant to indicate that all possible stereoisomers are meant to be included. For example, unless stated otherwise, it is intended that the compounds of Formula I can exist as enantiomers and diastereomers or as racemates and mixtures thereof. The use of a solid line to depict bonds to one or more asymmetric carbon atoms in a compound of Formula I and the use of a solid or dotted wedge to depict bonds to other asymmetric carbon atoms in the same compound is meant to indicate that a mixture of diastereomers is present.
[0039] Stereoisomers of Formula I include cis and trans isomers, optical isomers such as R and S enantiomers, diastereomers, geometric isomers, rotational isomers, conformational isomers, and tautomers, including compounds exhibiting more than one type of isomerism; and mixtures thereof (such as racemates and diastereomeric pairs). Also included are acid addition or base addition salts wherein the counterion is optically active, for example, D-lactate or L-lysine, or racemic, for example, DL-tartrate or DL-arginine.
[0040] The compound of the invention and the other compounds disclosed herein may exhibit the phenomenon of tautomerism. For example, the compound exemplified by Reference Example 173 may exist in several tautomeric forms, including the pyrrolidin-2-one form, Reference Example 173a, and the 5-hydroxy-3,4-dihydro-2H-pyrrol form, Reference Example 173b. All such tautomeric forms are included within the scope of the compound of the invention. One of ordinary skill in the art would appreciate and recognize that many of the Examples described herein may exhibit tautomerism and are within the scope of the compound of Formula I, la, Ila-IIg, III and IIIa. Tautomers exist as mixtures of a tautomeric set in solution. In solid form, usually one tautomer predominates. Even though one tautomer may be
described, the present invention includes all tautomers of the compound of the invention and salts thereof. Examples of tautomers are described by Reference Examples 173a and 173b.

Reference Example 173a

Reference Example 173b
[0041] When any racemate crystallizes, crystals of two different types are possible. The first type is the racemic compound (true racemate) referred to above wherein one homogeneous form of crystal is produced containing both enantiomers in equimolar amounts. The second type is the racemic mixture or conglomerate wherein two forms of crystal are produced in equimolar amounts each comprising a single enantiomer.
[0042] The compound of this invention may be used in the form of salts derived from inorganic or organic acids. A salt of the compound may be advantageous due to one or more of the salt's physical properties, such as enhanced pharmaceutical stability in differing temperatures and humidities, or a desirable solubility in water or oil. In some instances, a salt of a compound also may be used as an aid in the isolation, purification, and/or resolution of the compound.
[0043] Where a salt is intended to be administered to a patient (as opposed to, for example, being used in an in vitro context), the salt preferably is pharmaceutically acceptable. The term "pharmaceutically acceptable salt" refers to a salt prepared by combining a compound of Formula I with an acid whose anion, or a base whose cation, is generally considered suitable for human consumption. Pharmaceutically acceptable salts are particularly useful as products of the methods disclosed herein because of their greater aqueous solubility relative to the parent compound. For use in medicine, the salts of the compound of this invention are nontoxic "pharmaceutically acceptable salts." Salts encompassed within the term "pharmaceutically acceptable salts" refer to non-toxic salts of the compound of this invention, which are generally prepared by reacting the free base with a suitable organic or inorganic acid.
[0044] Suitable pharmaceutically acceptable acid addition salts of the compound of the present invention when possible include those derived from inorganic acids, such as hydrochloric, hydrobromic, hydrofluoric, boric, fluoroboric, phosphoric, metaphosphoric, nitric, carbonic, sulfonic, and sulfuric acids, and organic acids such as acetic, benzenesulfonic, benzoic, citric, ethanesulfonic, fumaric, gluconic, glycolic, isothionic, lactic, lactobionic, maleic, malic, methanesulfonic, trifluoromethanesulfonic, succinic, toluenesulfonic, tartaric, and trifluoroacetic acids. Suitable organic acids generally include, for example, aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic, and sulfonic classes of organic acids.
[0045] Specific examples of suitable organic acids include acetate, trifluoroacetate, formate, propionate, succinate, glycolate, gluconate, digluconate, lactate, malate, tartrate, citrate, ascorbate, glucuronate, maleate, fumarate, pyruvate, aspartate, glutamate, benzoate, anthranilate, stearate, salicylate, p-hydroxybenzoate, phenylacetate, mandelate, embonate (pamoate), methanesulfonate, ethanesulfonate, benzenesulfonate, pantothenate, toluenesulfonate, 2-hydroxyethanesulfonate, sulfanilate, cyclohexylaminosulfonate, algenate, β-hydroxybutyrate, galactarate, galacturonate, adipate, alginate, butyrate, camphorate, camphorsulfonate, cyclopentanepropionate, dodecylsulfate, glycoheptanoate, glycerophosphate, heptanoate, hexanoate, nicotinate, 2-naphthalesulfonate, oxalate, palmoate, pectinate, 3-phenylpropionate, picrate, pivalate, thiocyanate, and undecanoate.
[0046] Furthermore, where the compound of the invention carries an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g., sodium or potassium salts; alkaline earth metal salts, e.g., calcium or magnesium salts; and salts formed with suitable organic ligands, e.g., quaternary ammonium salts. In another embodiment, base salts are formed from bases which form non-toxic salts, including aluminum, arginine, benzathine, choline, diethylamine, diolamine, glycine, lysine, meglumine, olamine, tromethamine and zinc salts.
[0047] Organic salts may be made from secondary, tertiary or quaternary amine salts, such as tromethamine, diethylamine, N, N-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), and procaine. Basic nitrogen-containing groups may be quaternized with agents such as lower alkyl $\left(C_{1}-C_{6}\right)$ halides (e.g., methyl, ethyl, propyl, and butyl chlorides, bromides, and iodides), dialkyl sulfates (e.g., dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e.g., decyl, lauryl, myristyl, and stearyl chlorides, bromides, and iodides), arylalkyl halides (e.g., benzyl and phenethyl bromides), and others.
[0048] In one embodiment, hemisalts of acids and bases may also be formed, for example, hemisulfate and hemicalcium salts.
[0049] Also disclosed are so-called "prodrugs" of the compound of the invention. Thus, certain derivatives of the compound of the invention that may have little or no pharmacological activity themselves can, when administered into or onto the body, be converted into the compound of the invention having the desired activity, for example, by hydrolytic cleavage. Such derivatives are referred to as "prodrugs." Further information on the use of prodrugs may be found in "Prodrugs as Novel Delivery Systems, Vol. 14, ACS Symposium Series (T. Higuchi and V. Stella) and "Bioreversible Carriers in Drug Design," Pergamon Press, 1987 (ed. E. B. Roche, American Pharmaceutical Association). Prodrugs can, for example, be produced by replacing appropriate functionalities present in the compounds of any of Formula I with certain moieties known to those skilled in the art as "pro-moieties" as described, for example, in "Design of Prodrugs" by H. Bundgaard (Elsevier, 1985).
[0050] Disclosed are isotopically labeled compounds, which are identical to those recited in

Formula I, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into the compound of the present invention include isotopes of hydrogen, carbon, nitrogen, oxygen, sulfur, fluorine and chlorine, such as ${ }^{2} \mathrm{H},{ }^{3} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{C},{ }^{14} \mathrm{C},{ }^{15} \mathrm{~N},{ }^{18} \mathrm{O},{ }^{17} \mathrm{O},{ }^{32} \mathrm{P},{ }^{35} \mathrm{~S},{ }^{18} \mathrm{~F}$, and ${ }^{36} \mathrm{Cl}$, respectively. Also disclosed are compounds disclosed herein, prodrugs thereof, and pharmaceutically acceptable salts of said compounds or of said prodrugs which contain the aforementioned isotopes and/or other isotopes of other atoms. Certain isotopically labeled compounds, for example those into which radioactive isotopes such as ${ }^{3} \mathrm{H}$ and ${ }^{14} \mathrm{C}$ are incorporated, are useful in drug and/or substrate tissue distribution assays. Tritiated, i.e., ${ }^{3} \mathrm{H}$, and carbon-14, i.e., ${ }^{14} \mathrm{C}$, isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium, i.e., ${ }^{2} \mathrm{H}$, can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Compounds disclosed herein may specifically define substitution with deutero or deuterium. The absence of the term deutero, deuteron or deuterium, all of which are used interchangeably, in a substitution group shall not be implied to exclude deutero.
[0051] Isotopically labeled compounds and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the Schemes and/or in the Examples and Preparations below, by substituting a readily available isotopically labeled reagent for a nonisotopically labeled reagent.

Compounds disclosed herein

[0052] Disclosed herein is a compound of Formula la,

la
wherein
X and X^{\prime} are each independently $\mathrm{CR}^{8}, \mathrm{~N}$ or $-\mathrm{N}^{+}-\mathrm{O}^{-} ; \mathrm{Y}$ is independently $\mathrm{N},-\mathrm{N}^{+}-\mathrm{O}^{-}$or CR^{8}; provided that at least one of $\mathrm{X}, \mathrm{X}^{\prime}$ or Y is neither N nor $-\mathrm{N}^{+}-\mathrm{O}^{-}$and that no more than one of X , X^{\prime} or Y is $-\mathrm{N}^{+}-\mathrm{O}^{-}$; or a pharmaceutically acceptable salt of said compound or a tautomer of said compound or said salt.
[0053] Also disclosed heren is a compound of Formula Ila, Ilb, Ilc, Ild, Ile, llf or IIg,

IIa

IId

IIb

Ile

IIC

or
IIf

Ilg
wherein R^{1} is $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl; $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl; $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkynyl; $-\left(\mathrm{CR}^{3 a} \mathrm{R}^{3 \mathrm{~b}}\right)_{\mathrm{m}}-(3$ - to 7-membered cycloalkyl); or $-\left(\mathrm{CR}^{3 a} \mathrm{R}^{3 b}\right)_{m}$-(3- to 7-membered heterocycloalkyl) having one to three heteroatoms; wherein said alkyl, alkenyl, alkynyl, cycloalkyl or heterocycloalkyl is optionally substituted with one to five halogen, deuterium, $-O R^{5},-S^{5},-N R^{11 a} R^{11 b}$, cyano, $C_{1}-C_{6}$ alkyl, $C_{3}-$ C_{6} cycloalkyl or $-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy;
R^{2} is $-\left(C R^{3 a} R^{3 b}\right)_{m}$-(3- to 7-membered cycloalkyl), wherein said cycloalkyl is optionally substituted with one to four R^{4}; $-\left(C R^{3 a} R^{3 b}\right)_{m}-(3-$ to 7 -membered heterocycloalkyl) having one to three heteroatoms, wherein said heterocycloalkyl is optionally substituted at a carbon atom with one to five R^{4} and wherein, if the heteroatom is N, said N is optionally substituted with $R^{4^{\prime}}$; or R^{2} is $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, wherein said alkyl is optionally substituted with NH_{2}, cyano or halogen $R^{3 a}$ and $R^{3 b}$ are each independently hydrogen or $C_{1}-C_{3}$ alkyl; R^{4} for each occurrence is independently and optionally halogen, cyano, $C_{1}-C_{6}$ alkyl, $C_{2^{-}}$ C_{6} alkenyl, oxo, $-O R^{5},-S R^{5},-S(O) R^{9},-S(O)_{2} R^{9},-C(O) R^{10},-\left(C R^{3 a} R^{3 b}\right)_{n}$-(3- to 7- membered cycloalkyl) or -(CR $\left.{ }^{3 a} R^{3 b}\right)_{n}$-(4- to 7- membered heterocycloalkyl) wherein said alkyl, cycloalkyl or heterocycloalkyl is each optionally and independently substituted with one to five deuterium, halogen, $-O R^{5},-S R^{5},-N R^{11 a} R^{11 b}$, cyano, $C_{1}-C_{6}$ alkyl, $C_{3}-C_{6}$ Cycloalkyl, $C_{1}-C_{6}$ alkoxy or $N R^{11 a} R^{11 b}$; or two R^{4} taken together with the respective carbons to which each are bonded form a 3- to 6-membered cycloalkyl or 4- to 6-membered heterocycloalkyl, wherein said
cycloalkyl or heterocycloalkyl is optionally substituted with one to three halogen, deuterium, $O R^{5},-S R^{5},-N R^{11 a} R^{11 \mathrm{~b}}$, cyano or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, wherein the alkyl or alkoxy is optionally substituted with halogen, deuterium, $-O R^{5},-N R^{11 a} R^{11 b}$, or cyano ; and wherein, if a heteroatom on said heterocycloalkyl is N, said N is optionally substituted with R^{4};
$R^{4^{\prime}}$ is independently $C_{1}-C_{6}$ alkyl, $C_{2}-C_{6}$ alkenyl, $-S(O) R^{9},-S(O)_{2} R^{9},-C(O) R^{10}, C(O)\left(\mathrm{CH}_{2}\right)_{t} C N$; wherein said alkyl is optionally substituted with NH_{2}, cyano or halogen- $\left(\mathrm{CR}^{3 a} \mathrm{R}^{3 b}\right)_{\mathrm{n}}-(3-$ to 7 membered cycloalkyl), or $\left(C R^{3 a} R^{3 b}\right)_{n}-(4$ - to 10 - membered heterocycloalkyl), wherein said alkyl, alkenyl, cycloalkyl, or heterocycloalkyl is each optionally and independently substituted with one to five deuterium, halogen, OH , cyano or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy; or R^{4} and $\mathrm{R}^{4^{\prime}}$ taken together with the respective atoms to which each are bonded form a 3- to 6-membered cycloalkyl or 4to 6-membered heterocycloalkyl, wherein said cycloalkyl or heterocycloalkyl is optionally substituted with one to three halogen, deuterium, $-O R^{5},-S R^{5},-N R^{11 a} R^{11 b}$, cyano, $C_{1}-C_{6}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, wherein the alkyl or alkoxy is optionally substituted with halogen, deuterium, $O R^{5},-S R^{5},-N R^{11 a} R^{11 b}$ or cyano;
R^{5} is hydrogen or $C_{1}-C_{6}$ alkyl, wherein said alkyl is optionally substituted with halogen;
R^{6} is $-\mathrm{C}(\mathrm{O}) \mathrm{NHR}^{7}$ or cyano;
R^{7} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
R^{8} is independently hydrogen, halogen, cyano, $-N R^{11 a} R^{11 b}, C_{1}-C_{6}$ alkyl, 5- to 6-membered heteroaryl or 5- to 6- membered aryl, wherein said alkyl or heteroaryl or aryl is optionally substituted with one to three halogen, $-N R^{11 a} \mathrm{R}^{11 \mathrm{~b}}, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl or oxo;
$R^{8 \prime}$ is hydrogen, deuterium, halogen, cyano, $-O R^{5}$ or $N R^{11 a} N R^{11 b}$;
R^{9} is $-\left(C R^{3 a} R^{3 b}\right)_{p}-\left(C_{1}-C_{3}\right.$ alkyl $),-\left(C R^{3 a} R^{3 b}\right)_{p^{-}}\left(4-\right.$ to 6 - membered cycloalkyl), $-\left(C R^{3 a} R^{3 b}\right)_{p^{-}}(4-$ to 6- membered heterocycloalkyl) or $-\left(C^{3 a} R^{3 b}\right)_{p}-\left(C_{5}-C_{g}\right.$ aryl), wherein said alkyl, cycloalkyl, heterocycloalkyl or aryl is each optionally substituted with fluoro or $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
R^{10} is $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, wherein said alkyl is optionally substituted with fluoro or cyano;
$R^{11 a}$ and $R^{11 b}$ are each independently hydrogen or $C_{1}-C_{6}$ alkyl, wherein said alkyl is optionally substituted with OH ;
m is independently 0,1 or 2 ;
n is independently 0 or 1 ;
p is independently 0 or 1 ; and
t is $0,1,2$ or 3 ;
or a pharmaceutically acceptable salt of said compound or a tautomer of said compound or said salt.
[0054] Also disclosed herein is a compound of Formula III

III
wherein
X and X^{\prime} are each independently $C R^{8}$ or $N ; Y$ is independently N or $C R^{8 \prime}$; provided that at least one of X, X^{\prime} or Y is not N;
R^{1} is $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ Cycloalkyl, wherein said alkyl or cycloalkyl is optionally substituted with deuterium, halogen, OH , cyano, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ Cycloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkylthiolyl;
$R^{3 a}$ and $R^{3 b}$ are each independently hydrogen or $C_{1}-C_{3}$ alkyl;
R^{4} for each occurrence (one, two, three, four or five) is independently and optionally halogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl $-O R^{5}$, $-\left(\mathrm{CR}^{3 a} \mathrm{R}^{3 \mathrm{~b}}\right)_{\mathrm{n}}$ (3- to 6 - membered cycloalkyl) or $-\left(\mathrm{CR}^{3 a} \mathrm{R}^{3 b}\right)_{\mathrm{n}}-(4-$ to 6- membered heterocycloalkyl) wherein said alkyl, cycloalkyl or heterocycloalkyl is each optionally and independently substituted with one to five deuterium, halogen, $\mathrm{OH}, \mathrm{CN},-\mathrm{C}(\mathrm{O})$ $\left(\mathrm{CH}_{2}\right)_{\mathrm{t}} \mathrm{CN}$ or $-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy; $-\mathrm{NR}^{11 \mathrm{a}} \mathrm{R}^{11 \mathrm{~b}}$; two R^{4} taken together with the respective carbons to which each are bonded form a cyclopropyl, cyclobutyl or cyclopentyl, wherein said cyclopropyl, cyclobutyl or cyclopentyl is optionally substituted with one to three $\mathrm{F}, \mathrm{Cl}, \mathrm{OH}$, methyl, ethyl, propyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ fluoroalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ difluoroalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ trifluoroalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ hydroxyalkyl, methoxy or ethoxy;
R^{5} is hydrogen or $C_{1}-C_{6}$ alkyl, wherein said alkyl is optionally substituted with fluoro;
R^{8} is independently hydrogen, halogen, cyano, $-N R^{11 a} R^{11 b}, C_{1}-C_{6}$ alkyl, 5- to 6-membered heteroaryl or aryl, wherein said alkyl or heteroaryl or aryl is optionally substituted with one, two or three halogen, $-N R^{11 a} \mathrm{R}^{11 \mathrm{~b}}, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl or oxo;
R^{81} is hydrogen, deuterium, halogen or cyano;
R^{10} is $C_{1}-C_{6}$ alkyl, wherein said alkyl is optionally substituted with fluoro or cyano;
$R^{11 a}$ and $R^{11 b}$ are each independently hydrogen or $C_{1}-C_{6}$ alkyl, wherein said alkyl is optionally substituted with OH ;
n is independently 0 or 1 ; and
t is 1,2 or 3 ;
or a pharmaceutically acceptable salt of said compound or a tautomer of said compound or said salt.
[0055] Also disclosed herein is a compound of Formula Illa,

IIIa
wherein
X and X^{\prime} are each independently $C R^{8}$ or $N ; Y$ is independently N or $C R^{8 \prime}$; provided that at least one of X, X^{\prime} or Y is not N;
R^{1} is $C_{1}-C_{6}$ alkyl, wherein said alkyl is optionally substituted with deuterium, halogen, $O H, C_{1}$ C_{3} alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ Cycloalkyl or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy;
$R^{3 a}$ and $R^{3 b}$ are each independently hydrogen or $C_{1}-C_{3}$ alkyl;
$R^{4 a}$ and $R^{4 b}$ are each independently hydrogen, deuterium, fluoro, $O H,-O R^{5}$, methyl, ethyl, vinyl, cyclopropyl or propyl, optionally substituted with one to five deuterium, fluoro, methoxy or OH ;
$R^{4 c}$ and $R^{4 d}$ for each occurrence are independently and optionally halogen, OH , deuterium, $C_{1}-C_{6}$ alkyl, $C_{2}-C_{6}$ alkenyl, $-O R^{5},-\left(C R^{3 a} R^{3 b}\right)_{n}$ (3- to 6- membered cycloalkyl), or $-\left(C R^{3 a} R^{3 b}\right)_{n}-(4-$ to 6- membered heterocycloalkyl) wherein said alkyl, cycloalkyl and heterocycloalkyl are each optionally and independently substituted with one to five deuterium, halogen, $\mathrm{OH}, \mathrm{cyano}$, or C_{1} C_{6} alkoxy; NH_{2}; or $\mathrm{R}^{4 \mathrm{c}}$ and $\mathrm{R}^{4 d}$ taken together with the carbons to which they are bonded form a 4- to 7-membered heterocycloalkyl or a 3- to 7-membered cycloalkyl, wherein said heterocycloalkyl or cycloalkyl is optionally substituted with one to three fluoro, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl or C_{1} C_{3} fluoroalkyl; or
$R^{4 a}$ and $R^{4 c}$ taken together with the carbon to which they are bonded form a 4- to 7 -membered heterocycloalkyl or a 3 - to 7 -membered cycloalkyl, wherein said heterocycloalkyl or cycloalkyl is optionally substituted with one to three fluoro, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl or $\mathrm{C}_{1}-\mathrm{C}_{3}$ fluoroalkyl;
R^{5} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, wherein said alkyl is optionally substituted with fluoro;
R^{8} is hydrogen, halogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, wherein said alkyl is optionally substituted with halogen; $R^{8^{\prime}}$ is hydrogen, deuterium, halogen or cyano; and n is independently 0 or 1 ;
or a pharmaceutically acceptable salt of said compound or a tautomer of said compound or said salt.
[0056] Also disclosed are Reference Examples 1-295 and 297-379 described in Tables 1 or 3; or a pharmaceutically acceptable salt of said compound or a tautomer of said compound or said salt.
[0057] Also disclosed are the intermediate compounds described in Table 2; or a pharmaceutically acceptable salt of said compound or a tautomer of said compound or said salt
[0058] Also disclosed is a synthetic process and preparation of the intermediate compounds described in Table 2, as detailed in the Schemes and the preparation section described herein. Also disclosed is a synthetic process and preparation of the compounds of Tables 1 or 3, as detailed in the Schemes and the preparation section described herein.

IRAK4 Indications

[0059] The compound of the invention is also useful in treating and/or preventing a disease or condition mediated by or otherwise associated with an IRAK enzyme; there is disclosed a method comprising administering to a subject in need thereof an effective amount of the compound of the invention.
[0060] The disease may be, but not limited to, one of the following classes: auto-immune diseases, inflammatory diseases, allergic diseases, metabolic diseases, infection-based diseases, trauma or tissue-injury based diseases, fibrotic diseases, genetic diseases, diseases driven by over-activity of IL1 pathways, cardiovascular diseases, vascular diseases, heart diseases, neurological diseases, neurodegenerative diseases, respiratory diseases, pulmonary diseases, airways diseases, renal diseases, skin and/ or dermatological diseases, liver diseases, gastrointestinal diseases, oral diseases, pain and sensory diseases, hematopoietic
diseases, joint diseases, muscle diseases, bone diseases, and ophthalmic and/or ocular diseases.
[0061] Specific autoimmune diseases include, but are not limited to: rheumatoid arthritis, osteoarthritis, psoriasis, allergic dermatitis, systemic lupus erythematosus (and resulting complications), Sjögren's syndrome, multiple sclerosis, asthma, glomerular nephritis, irritable bowel syndrome, inflammatory bowel disease, Crohn's disease, ankylosing spondylitis, Behçet's disease, lupus nephritis, scleroderma, systemic scleroderma, type 1 or juvenile on-set diabetes, alopecia universalis, acute disseminated encephalomyelitis, Addison's disease, antiphospholipid antibody syndrome, atrophic gastritis of pernicious anemia, autoimmune alopecia, autoimmune hemolytic anemia, autoimmune hepatitis, autoimmune encephalomyelitis, autoimmune thrombocytopenia, Bullous pemphigoid, Chagas disease, Celiac disease, chronic hepatitis, Cogan's syndrome, dermatomyositis, endometriosis, Goodpasture's syndrome, Graves' disease, Guillain-Barre syndrome, Hashimoto's disease (or Hashimoto's thyroiditis), hemolytic anemia, hidradentitis suppurativa, idiopathic thrombocytopenia purpura, interstitial cystitis, membranous glomerulopathy, morphea, mystenia gravis, narcolepsy, pemphigus, pernicous anemia, polyarteritis nodosa, polymyositis, primary biliary cirrhosis, Reiter's syndrome, schizophrenia, symphathetic opthalmia, systemic sclerosis, temporal arteritis, thyroiditis, vasculitis, vitiglio, vulvodynia, Wegner's granulomatosis, palmoplantar keratoderma, systemic-onset Juvenile Idiopathic Arthritis (SJIA), or an indication listed in a separate category herein.
[0062] Specific inflammatory diseases include, but are not limited to: chronic obstructive pulmonary diseases, airway hyper-responsiveness, cystic fibrosis, acute respiratory distress syndrome, sinusitis, rhinitis, gingivitis, atherosclerosis, chronic prostatitis, glomerular nephritis, ulcerative colitis, uveitis, periodontal disease, or an indication listed in a separate category herein.
[0063] Specific pain conditions include, but are not limited to: inflammatory pain, surgical pain, visceral pain, dental pain, premenstrual pain, central pain, pain due to burns, migraine or cluster headaches, nerve injury, interstitial cystitis, cancer pain, viral, parasitic or bacterial infection, post-traumatic injury, pain associated with irritable bowel syndrome, gout, pain associated with any of the other indications listed within this specification, or an indication listed in a separate category herein.
[0064] Specific respiratory, airway and pulmonary conditions include, but are not limited to: asthma (which may encompass chronic, late, bronchial, allergic, intrinsic, extrinsic or dust), chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, cystic fibrosis, interstitial lung disease, acute lung injury, sarcoidosis, allergic rhinitis, chronic cough, bronchitis, recurrent airway obstruction, emphysema, or bronchospasm, or an indication listed in a separate disease category herein.
[0065] Specific gastrointestinal (GI) disorders include, but are not limited to: Irritable Bowel Syndrome (IBS), Inflammatory Bowel Disease (IBD), biliary colic and other biliary disorders,
renal colic, diarrhea-dominant IBS, pain associated with GI distension, ulcerative colitis, Crohn's Disease, irritable bowel syndrome, Celiac disease, proctitis, eosinophilic gastroenteritis, mastocytosis, or an indication listed in a separate disease category herein.
[0066] Specific allergic diseases include, but are not limited to: anaphylaxis, allergic rhinitis, allergic dermatitis, allergic urticaria, angioedema, allergic asthma, allergic reactions to: food, drugs, insect bites, pollen; or an indication listed in a separate disease category herein.
[0067] Specific infection-based diseases include, but are not limited to: sepsis, septic shock, viral diseases, malaria, Lyme disease, ocular infections, conjunctivitis, Whipple Disease, or an indication listed in a separate disease category herein.
[0068] Specific trauma and tissue injury-based conditions include, but are not limited to: Renal glomerular damage, reperfusion injury (for example to heart, kidney, lung), spinal cord injury, tissue scarring, tissue adhesion, tissue repair, transplant rejection (for examples to heart, lung, bone marrow, cartilage, cornea, kidney, limb, liver, muscle, myoblast, pancreas, pancreatic islet, skin, nerve, small intestine, trachea), hypersensitivities, or an indication listed in a separate disease category herein.
[0069] Specific fibrotic diseases include, but are not limited to: Idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, or an indication listed in a separate disease category herein.
[0070] Specific diseases considered to be driven by over-activity of IL1 pathways include, but are not limited to: Cryopyrin-associated periodic syndromes, myositis, and indications included in the following review article: C. A. Dinarello, A. Simon and J. W. M. van der Meer, Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases, Nat Rev Drug Discov, 2012, 11(8), 633-652, http://dx.doi.org/10.1038/nrd3800 and supplementary information contained therein, or an indication listed in a separate disease category herein.
[0071] Specific ophthalmic/ ocular diseases include, but are not limited to: uveitis, age-related macular degeneration, diabetic macular edema, keratoconjuctivitis, uveitis associated with Behçet's disease, vernal conjunctivitis, ketatitis, lens-induced uveitis, herpetic keratitis, conical keratitis, corneal epithelial dystrophy, ocular pemphigus, Mooren's ulcer, Scleritis, Graves' ophthalmopathy, Vogt-Koyanagi-Harada syndrome, keratoconjunctivitis sicca, phlyctenule, iridocyclitis, sympathetic ophthalmia, allergic conjunctivitis, ocular neovascularization, dry eye syndrome, or an indication listed in a separate disease category herein.
[0072] Specific joint, muscle and bone disorders include, but are not limited to: osteoarthritis, osteoporosis, rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, erosive osteoarthritis of the hand, arthrofibrosis/traumatic knee injury, anterior cruciate knee ligament tear, relapsing polychondritis, recurrent multifocal osteomyelitis, Majeed Syndrome, ankylosing spondylitis, gout of the lumbar spine, antisynthetase syndrome, idiopathic inflammatory myopathies, articular chondrocalcinosis, systemic-onset Juvenile Idiopathic Arthritis (SJIA), gout and pyrophosphate crystal arthritis, or an indication listed in a separate disease category herein.
[0073] Specific skin/ dermatological diseases include, but are not limited to: psoriasis, atopic dermatitis, cutaneous lupus, acne, dermatomyositis, eczema, pruritus, scleroderma, Sweet Syndrome/neutrophilic dermatosis, neutrophilic panniculitis, acrodermatitis (form of pustular psoriasis), or an indication listed in a separate disease category herein.
[0074] Specific renal diseases include, but are not limited to: acute kidney injury (AKI) (sepsisAKI, coronary artery bypass graft-AKI, cardiac surgery-AKI, non-cardiac surgery-AKI, transplant surgery-AKI cisplatin-AKI, contrast/imaging agent induced-AKI), glomerulonephritis, IgA nephropathy, crescentic GN, lupus nephritis, HIV associated nephropathy, membraneous nephropathy, C3 glomerulopathy, Dense deposit disease, ANCA vasculitis, diabetic nephropathy, hemolytic-uremic syndrome, atypical Hemolytic-uremic syndrome, nephrotic syndrome, nephritic syndrome, hypertensive nephrosclerosis, ApoL1 nephropathy, focal segmental glomerulosclerosis, Alport syndrome, Fanconi, syndrome, crystal nephropathy, nephrolithiasis, nephrotic syndrome, renal transplant rejection, amyloidosis, glomerulonephritis in SJIA, or an indication listed in a separate disease category herein.
[0075] Specific genetic diseases include, but are not limited to: Familial Mediterranean fever (FMF), CAPS (FCAS, Muckle-Wells Syndrome, NOMID/CINCA), male hypoinfertility in CAPS, NLRP12 Autoinflammatory Syndrome, or an indication listed in a separate disease category herein.
[0076] Specific hematopoietic diseases include, but are not limited to: hemolytic anemia, or an indication listed in a separate disease category herein.
[0077] Specific liver diseases include, but are not limited to: liver fibrosis, liver cirrhosis, nonalcoholic steatohepatitis (NASH), or an indication listed in a separate disease category herein.
[0078] Specific oral diseases include, but are not limited to: gingivitis, periodontal disease or an indication listed in a separate disease category herein.
[0079] Specific metabolic diseases include, but are not limited to: Type 2 diabetes (and resulting complications), gout and hyperuricemia, metabolic syndrome, insulin resistance, obesity, or an indication listed in a separate disease category herein.
[0080] The compound of the current invention is also useful in the treatment of a proliferative disease selected from a benign or malignant tumor, solid tumor, carcinoma of the brain, kidney, liver, adrenal gland, bladder, breast, stomach, gastric tumors, ovaries, colon, rectum, prostate, pancreas, lung, vagina, cervix, testis, genitourinary tract, esophagus, larynx, skin, bone or thyroid, sarcoma, glioblastomas, neuroblastomas, multiple myeloma, gastrointestinal cancer, especially colon carcinoma or colorectal adenoma, a tumor of the neck and head, an epidermal hyperproliferation, psoriasis, prostate hyperplasia, a neoplasia, a neoplasia of epithelial character, adenoma, adenocarcinoma, keratoacanthoma, epidermoid carcinoma,
large cell carcinoma, nonsmall-cell lung carcinoma, lymphomas, Hodgkins and Non-Hodgkins, a mammary carcinoma, follicular carcinoma, undifferentiated carcinoma, papillary carcinoma, seminoma, melanoma, smoldering of indolent multiple myeloma, or hematological malignancies (including leukemia, diffuse large B-cell lymphoma (DLBCL), ABC DLBCL, chronic lymphocytic leukemia (CLL), chronic lymphocytic lymphoma, primary effusion lymphoma, Burkitt lymphoma/leukemia, acute lymphocytic leukemia, B-cell prolymphocytic leukemia, lymphoplasmacytic lymphoma, Waldenstrom's macroglobulinemia (WM), splenic marginal zone lymphoma, multiple myeloma, plasmacytoma, intravascular large B-cell lymphoma), or an indication listed in a separate disease category herein.
[0081] Cardiovascular conditions include, but are not limited to coronary heart disease, acute coronary syndrome, ischaemic heart disease, first or recurrent myocardial infarction, secondary myocardial infarction, non-ST segment elevation myocardial infarction, or ST segment elevation myocardial infarction, ischemic sudden death, transient ischemic attack, peripheral occlusive arterial disease, angina, atherosclerosis, hypertension, heart failure (such as congestive heart failure), diastolic dysfunction (such as left ventricular diastolic dysfunction, diastolic heart failure, and impaired diastolic filling), systolic dysfunction (such as systolic heart failure with reduced ejection fraction), vasculitis, ANCA vasculitis, post-myocardial infarction cardiac remodeling atrial fibrillation, arrhythmia (ventricular), ischemia, hypertrophic cardiomyopathy, sudden cardiac death, myocardial and vascular fibrosis, impaired arterial compliance, myocardial necrotic lesions, vascular damage, left ventricular hypertrophy, decreased ejection fraction, cardiac lesions, vascular wall hypertrophy, endothelial thickening, fibrinoid necrosis of coronary arteries, adverse remodeling, stroke, and the like, or an indication listed in a separate disease category herein. Also, included are venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis. It is noted that thrombosis includes occlusion (e.g., after a bypass) and reocclusion (e.g., during or after percutaneous transluminal coronary angioplasty).
[0082] Cardiovascular complications of type 2 diabetes are associated with inflammation, accordingly, the compound of the present invention may be used to treat diabetes and diabetic complications such as macrovascular disease, hyperglycemia, metabolic syndrome, impaired glucose tolerance, hyperuricemia, glucosuria, cataracts, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, obesity, dyslipidemia, hypertension, hyperinsulinemia, and insulin resistance syndrome, or an indication listed in a separate disease category herein.
[0083] Linkage of innate immunity and inflammation to disease has been demonstrated in neuroinflammatory and neurodegenerative conditions. Therefore, the compound of the present invention is particularly indicated for use in the treatment of neuroinflammatory and neurodegenerative conditions (i.e., disorders or diseases) in mammals including humans such as multiple sclerosis, migraine; epilepsy; Alzheimer's disease; Parkinson's disease; brain injury;
stroke; cerebrovascular diseases (including cerebral arteriosclerosis, cerebral amyloid angiopathy, hereditary cerebral hemorrhage, and brain hypoxia-ischemia); cognitive disorders (including amnesia, senile dementia, HIV associated dementia, Alzheimer's associated dementia, Huntington's associated dementia, Lewy body dementia, vascular dementia, drug related dementia, delirium, and mild cognitive impairment); mental deficiency (including Down syndrome and fragile X syndrome); sleep disorders (including hypersomnia, circadian rhythm sleep disorder, insomnia, parasomnia, and sleep deprivation) and psychiatric disorders (such as anxiety (including acute stress disorder, generalized anxiety disorder, social anxiety disorder, panic disorder, post-traumatic stress disorder and obsessive-compulsive disorder); factitious disorder (including acute hallucinatory mania); impulse control disorders (including compulsive gambling and intermittent explosive disorder); mood disorders (including bipolar I disorder, bipolar II disorder, mania, mixed affective state, major depression, chronic depression, seasonal depression, psychotic depression, and postpartum depression); psychomotor disorder; psychotic disorders (including schizophrenia, schizoaffective disorder, schizophreniform, and delusional disorder); drug dependence (including narcotic dependence, alcoholism, amphetamine dependence, cocaine addiction, nicotine dependence, and drug withdrawal syndrome); eating disorders (including anorexia, bulimia, binge eating disorder, hyperphagia, and pagophagia); and pediatric psychiatric disorders (including attention deficit disorder, attention deficit/hyperactive disorder, conduct disorder, and autism), myotrophic lateral sclerosis, chronic fatigue syndrome, or an indication listed in a separate disease category herein.
[0084] Typically, the compound of the invention is administered in an amount effective to treat a condition as described herein. The compound of the invention is administered by any suitable route in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. Therapeutically effective doses of the compounds required to treat the progress of the medical condition are readily ascertained by one of ordinary skill in the art using preclinical and clinical approaches familiar to the medicinal arts.
[0085] The compound of the invention may be administered orally. Oral administration may involve swallowing, so that the compound enters the gastrointestinal tract, or buccal or sublingual administration may be employed, by which the compound enters the blood stream directly from the mouth.
[0086] In another embodiment, the compound of the invention may also be administered directly into the blood stream, into muscle, or into an internal organ. Suitable means for parenteral administration include intravenous, intraarterial, intraperitoneal, intrathecal, intraventricular, intraurethral, intrasternal, intracranial, intramuscular and subcutaneous. Suitable devices for parenteral administration include needle (including microneedle) injectors, needle-free injectors and infusion techniques.
[0087] In another embodiment, the compound of the invention may also be administered topically to the skin or mucosa, that is, dermally or transdermally. In another embodiment, the compound of the invention can also be administered intranasally or by inhalation. In another
embodiment, the compound of the invention may be administered rectally or vaginally. In another embodiment, the compound of the invention may also be administered directly to the eye or ear.
[0088] The dosage regimen for the compound and/or compositions containing the compound is based on a variety of factors, including the type, age, weight, sex and medical condition of the patient; the severity of the condition; the route of administration; and the activity of the particular compound employed. Thus the dosage regimen may vary widely. Dosage levels of the order from about 0.01 mg to about 100 mg per kilogram of body weight per day are useful in the treatment of the above-indicated conditions. In one embodiment, the total daily dose of the compound of the invention (administered in single or divided doses) is typically from about 0.01 to about $100 \mathrm{mg} / \mathrm{kg}$. In another embodiment, the total daily dose of the compound of the invention is from about 0.1 to about $50 \mathrm{mg} / \mathrm{kg}$, and in another embodiment, from about 0.5 to about $30 \mathrm{mg} / \mathrm{kg}$ (i.e., mg compound of the invention per kg body weight). In one embodiment, dosing is from 0.01 to $10 \mathrm{mg} / \mathrm{kg} /$ day. In another embodiment, dosing is from 0.1 to 1.0 $\mathrm{mg} / \mathrm{kg} / \mathrm{day}$. Dosage unit compositions may contain such amounts or submultiples thereof to make up the daily dose. In many instances, the administration of the compound will be repeated a plurality of times in a day (typically no greater than 4 times). Multiple doses per day typically may be used to increase the total daily dose, if desired.
[0089] For oral administration, the compositions may be provided in the form of tablets containing from about 0.01 mg to about 500 mg of the active ingredient, or in another embodiment, from about 1 mg to about 100 mg of active ingredient. Intravenously, doses may range from about 0.1 to about $10 \mathrm{mg} / \mathrm{kg} /$ minute during a constant rate infusion.
[0090] Suitable subjects according to the present invention include mammalian subjects. Mammals according to the present invention include, but are not limited to, canine, feline, bovine, caprine, equine, ovine, porcine, rodents, lagomorphs, primates, and the like, and encompass mammals in utero. In one embodiment, humans are suitable subjects. Human subjects may be of either gender and at any stage of development.
[0091] Disclosed herein is the use of the compound of the invention for the preparation of a medicament for the treatment of the conditions recited herein.
[0092] For the treatment of the conditions referred to above, the compound of the invention can be administered as compound per se. Alternatively, pharmaceutically acceptable salts are suitable for medical applications because of their greater aqueous solubility relative to the parent compound.
[0093] In another embodiment, the present invention comprises pharmaceutical compositions. Such pharmaceutical compositions comprise the compound of the invention presented with a pharmaceutically acceptable carrier. The carrier can be a solid, a liquid, or both, and may be formulated with the compound as a unit-dose composition, for example, a tablet, which can contain from 0.05% to 95% by weight of the active compounds. The compound of the invention
may be coupled with suitable polymers as targetable drug carriers. Other pharmacologically active substances can also be present.
[0094] The compound of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The active compound and compositions, for example, may be administered orally, rectally, parenterally, or topically.
[0095] Oral administration of a solid dose form may be, for example, presented in discrete units, such as hard or soft capsules, pills, cachets, lozenges, or tablets, each containing a predetermined amount of at least one compound of the present invention. In another embodiment, the oral administration may be in a powder or granule form. In another embodiment, the oral dose form is sub-lingual, such as, for example, a lozenge. In such solid dosage forms, the compound of the invention is ordinarily combined with one or more adjuvants. Such capsules or tablets may contain a controlled-release formulation. In the case of capsules, tablets, and pills, the dosage forms also may comprise buffering agents or may be prepared with enteric coatings.
[0096] In another embodiment, oral administration may be in a liquid dose form. Liquid dosage forms for oral administration include, for example, pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art (e.g., water). Such compositions also may comprise adjuvants, such as wetting, emulsifying, suspending, flavoring (e.g., sweetening), and/or perfuming agents.
[0097] In another embodiment, the present invention comprises a parenteral dose form. "Parenteral administration" includes, for example, subcutaneous injections, intravenous injections, intraperitoneal injections, intramuscular injections, intrasternal injections, and infusion. Injectable preparations (e.g., sterile injectable aqueous or oleaginous suspensions) may be formulated according to the known art using suitable dispersing, wetting agents, and/or suspending agents.
[0098] In another embodiment, the present invention comprises a topical dose form. "Topical administration" includes, for example, transdermal administration, such as via transdermal patches or iontophoresis devices, intraocular administration, or intranasal or inhalation administration. Compositions for topical administration also include, for example, topical gels, sprays, ointments, and creams. A topical formulation may include a compound that enhances absorption or penetration of the active ingredient through the skin or other affected areas. When the compound of this invention is administered by a transdermal device, administration will be accomplished using a patch either of the reservoir and porous membrane type or of a solid matrix variety. Typical formulations for this purpose include gels, hydrogels, lotions, solutions, creams, ointments, dusting powders, dressings, foams, films, skin patches, wafers, implants, sponges, fibers, bandages and microemulsions. Liposomes may also be used. Typical carriers include alcohol, water, mineral oil, liquid petrolatum, white petrolatum, glycerin, polyethylene glycol and propylene glycol. Penetration enhancers may be incorporated; see, for
example, J. Pharm. Sci., 88(10), 955-958, by Finnin and Morgan (October 1999).
[0099] Formulations suitable for topical administration to the eye include, for example, eye drops wherein the compound of this invention is dissolved or suspended in a suitable carrier. A typical formulation suitable for ocular or aural administration may be in the form of drops of a micronized suspension or solution in isotonic, pH -adjusted, sterile saline. Other formulations suitable for ocular and aural administration include ointments, biodegradable (e.g., absorbable gel sponges, collagen) and non-biodegradable (e.g., silicone) implants, wafers, lenses and particulate or vesicular systems, such as niosomes or liposomes. A polymer such as crosslinked polyacrylic acid, polyvinyl alcohol, hyaluronic acid, a cellulosic polymer, for example, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, or methyl cellulose, or a heteropolysaccharide polymer, for example, gelan gum, may be incorporated together with a preservative, such as benzalkonium chloride. Such formulations may also be delivered by iontophoresis.
[0100] For intranasal administration or administration by inhalation, the active compound of the invention are conveniently delivered in the form of a solution or suspension from a pump spray container that is squeezed or pumped by the patient or as an aerosol spray presentation from a pressurized container or a nebulizer, with the use of a suitable propellant. Formulations suitable for intranasal administration are typically administered in the form of a dry powder (either alone, as a mixture, for example, in a dry blend with lactose, or as a mixed component particle, for example, mixed with phospholipids, such as phosphatidylcholine) from a dry powder inhaler or as an aerosol spray from a pressurized container, pump, spray, atomizer (preferably an atomizer using electrohydrodynamics to produce a fine mist), or nebulizer, with or without the use of a suitable propellant, such as 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3heptafluoropropane. For intranasal use, the powder may comprise a bioadhesive agent, for example, chitosan or cyclodextrin.
[0101] In another embodiment, the present invention comprises a rectal dose form. Such rectal dose form may be in the form of, for example, a suppository. Cocoa butter is a traditional suppository base, but various alternatives may be used as appropriate.
[0102] Other carrier materials and modes of administration known in the pharmaceutical art may also be used. Pharmaceutical compositions of the invention may be prepared by any of the well-known techniques of pharmacy, such as effective formulation and administration procedures. The above considerations in regard to effective formulations and administration procedures are well known in the art and are described in standard textbooks. Formulation of drugs is discussed in, for example, Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pennsylvania, 1975; Liberman et al., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Kibbe et al., Eds., Handbook of Pharmaceutical Excipients (3rd Ed.), American Pharmaceutical Association, Washington, 1999.
[0103] The compound of the present invention can be used, alone or in combination with other therapeutic agents, in the treatment of various conditions or disease states. The compound of
the present invention and other therapeutic agent(s) may be may be administered simultaneously (either in the same dosage form or in separate dosage forms) or sequentially.
[0104] Two or more compounds may be administered simultaneously, concurrently or sequentially. Additionally, simultaneous administration may be carried out by mixing the compounds prior to administration or by administering the compounds at the same point in time but at different anatomic sites or using different routes of administration.
[0105] The phrases "concurrent administration," "co-administration," "simultaneous administration," and "administered simultaneously" mean that the compounds are administered in combination.
[0106] The present invention includes the use of a combination of an IRAK inhibitor compound of the invention and one or more additional pharmaceutically active agent(s). If a combination of active agents is administered, then they may be administered sequentially or simultaneously, in separate dosage forms or combined in a single dosage form. Accordingly, the present invention also includes pharmaceutical compositions comprising an amount of: (a) a first agent comprising a compound of the invention or a pharmaceutically acceptable salt of the compound; (b) a second pharmaceutically active agent; and (c) a pharmaceutically acceptable carrier, vehicle or diluent.
[0107] The compound of the present invention can be administered alone or in combination with one or more additional therapeutic agents. By "administered in combination" or "combination therapy" it is meant that a compound of the present invention and one or more additional therapeutic agents are administered concurrently to the mammal being treated. When administered in combination each component may be administered at the same time or sequentially in any order at different points in time. Thus, each component may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect. Thus, the methods of prevention and treatment described herein include use of combination agents.
[0108] The combination agents are administered to a mammal, including a human, in a therapeutically effective amount. By "therapeutically effective amount" it is meant an amount of a compound of the present invention that, when administered alone or in combination with an additional therapeutic agent to a mammal, is effective to treat the desired disease/condition e.g., inflammatory condition such as systemic lupus erythematosus. See also, T. Koutsokeras and T. Healy, Systemic lupus erythematosus and lupus nephritis, Nat Rev Drug Discov, 2014, 13(3), 173-174, for therapeutic agents useful treating lupus.
[0109] In particular, it is contemplated that the compound of the invention may be administered with the following therapeutic agents:

Non-steroidal anti-inflammatory drugs (NSAIDs), including but not limited to, non-selective COX1/2 inhibitors such as piroxicam, naproxen, flubiprofen, fenoprofen, ketoprofen, ibuprofen,
etodolac (Lodine), mefanamic acid, sulindac, apazone, pyrazolones (such as phenylbutazone), salicylates (such as aspirin); selective COX2 inhibitors such as: celecoxib, rofecoxib, etoricoxib, valdecoxib, meloxicam;

Immunomodulatory and/ or anti-inflammatory agents, including but not limited to, methotrexate, leflunomide, ciclesonide chloroquine, hydroxychloroquine, d-penicillamine, auranofin, sulfasalazine, sodium aurothiomalate, cyclosporine, azathioprine, cromolyn, hydroxycarbamide, retinoids, fumarates (such as monomethyl and dimethyl fumarate), glatiramer acetate, mitoxantrone, teriflunomide, suplatast tosilate, mycophenolate mofetil and cyclophosphamide, laquinimod, voclosporin, PUR-118, AMG 357, AMG 811, BCT197;

Antimalarials, including but not limited to, hydroxychloroquine (Plaquenil) and chloroquine (Aralen), cyclophosphamide (Cytoxan), methotrexate (Rheumatrex), azathioprine (Imuran), mesalamine (Asacol) and sulfasalazine (Azulfidine):

Antibiotics, including but not limited to, Flagyl or ciprofloxacin;
Anti-TNFa agents, including but not limited to, infliximab, adalimumab, certolizumab pegol, golimumab and etanercept;

Anti-CD20 agents, including but not limited to, rituximab, ocrelizumab, ofatumumab and PF05280586;

Antidiarrheals, such as diphenoxylate (Lomotil) and loperamide (Imodium);
Bile acid binding agents, such as cholestyramine, alosetron (Lotronex) and ubiprostone (Amitiza);

Laxatives, such as Milk of Magnesia, polyethylene glycol (MiraLax), Dulcolax, Correctol and Senokot, and anticholinergics or antispasmodics such as dicyclomine (Bentyl);

T lymphocyte activation inhibitors, including but not limited to, abatacept:
Anti-IL1 treatments, including but not limited to, anakinra, rilonacept, canakinumab, gevokizumab, MABp1 and MEDI-8968;

Glucocorticoid receptor modulators that may be dosed orally, by inhalation, by injection, topically, rectally, by ocular delivery, including but not limited to, betamethasone, prednisone, hydrocortisone, prednisolone, flunisolide, triamcinoline acetonide, beclomethasone, dipropionate, budesonide, fluticasone propionate, ciclesonide, mometasone furoate, fluocinonide, desoximetasone, methylprednisolone or PF-04171327;

Aminosalicyic acid derivatives, including but not limited to, sulfasalazine and mesalazine; Anti$\alpha 4$ integrin agents, including but not limited to, natalizumab;
a1- or a2-adrenergic agonist agents including but not limited to: propylhexidrine, phenylephrine, phenylpropanolamine, pseudoephedrine or naphazoline hydrochloride, oxymetazoline hydrochloride, tetrahydrozoline hydrochloride, xylometazoline hydrochloride or
ethylnorepinephrine hydrochloride;
β-adrenergic agonists, including but not limited to, metaproterenol, isoprotenerol, isoprenaline, albuterol, salbutamol, formoterol, salmeterol, terbutaline, orciprenaline, botolterol mesylate, pirbuterol;

Anticholinergic agents, including but not limited to, ipratropium bromide, tiotropium bromide, oxitropium bromide, aclindinium bromide, glycopyrrolate, pirenzipine or telenzepine;

Inhaled long acting beta-agonists, long acting muscarinic antagonists and long acting corticosteroids, including but not limited, to those included in the following reference: Y . Mushtaq, The COPD pipeline, Nat Rev Drug Discov, 2014, 13(4), 253-254. http://dx.doi.org/10.1038/nrd425;

Leukotriene pathway modulators, including but not limited to, 5-LO Inhibitors (such as zileuton), FLAP antagonists (such as veliflapon, fiboflapon), LTD4 antagonists (such as montelukast, zafirlukast or pranlukast;

H1 receptor antagonists, including but not limited to, cetirizine, loratidine, desloratidine, fexofenadine, astemizole, azelastine or chlorpheniramine;

PDE4 inhibitors, including but not limited to, apremilast, roflumilast or AN2728;
Vitamin D receptor modulators, including but not limited to, paricalcitol;
Nrf2 pathway activators, including but not limited to, fumarates, sulfurophane and bardoxolone methyl;

Modulators of the RAR-related orphan receptor (ROR) family, in particular RORg;
Modulator and/ or antagonists of the chemokine receptors, including but not limited to, CCR2 antagonists (such as CCX140, BMS-741672, PF-4634817, CCX-872, NOX-E36), CCR2/5 antagonists (such as PF-4634817), CCR9 (such as vercirnon, CCX507), CCR1 modulators, CCR4 modulators, CCR5 modulators, CCR6 modulators, CXCR6 modulators, CXCR7 modulators) and CXCR2 modulators (such as danirixin, AZD5069);

Prostaglandins, including but not limited to, prostacyclin;
PDE5 inhibitors, including but not limited to, sildenafil, PF-489791, vardenafil and tadalafil;
Endothelin receptor antagonists, including but not limited to, bosentan, ambrisentan, sparsentan, atrasentan, zibotentan and macitentan;

Soluble guanylate cyclase activators, including but not limited to, riociguat;
Interferons, including but not limited to, interferon beta-1a interferon beta-1b;
Sphingosine 1-phosphate receptor modulators, including but not limited to, fingolimod, ponesimod;

Inhibitors of the complement pathway, including but not limited to, C5aR antagonists (such as CCX168, PMX-53, NN8210), C5 inhibitors (such as eculizumab), inhibitors of complement factors B and D, inhibitors of MASP2 (such as OMS-721) and ARC-1905;

Inhibitors of Janus kinases (one of more of JAK1, JAK2, JAK3, TYK2), including but not limited to, decernotinib, cerdulatinib, JTE-052, ruxolitinib, tofacitnib, Baricitinib, Peficitinib, GLPG-0634, INCB-47986, INCB-039110, PF-04965842, XL-019, ABT-494, R-348, GSK-2586184, AC-410, BMS-911543 and PF-06263276;

Inhibitors of other anti-inflammatory or immunomodulatory kinases, including but not limited to, spleen tyrosine kinase (SYK) inhibitors, p38 MAP kinase inhibitors (such as PF-3715455, PH797804, AZD-7624, AKP-001, UR-13870, FX-005, semapimod, pexmetinib, ARRY-797, RV568, dilmapimod, ralimetinib), PI3K inhibitors (such as GSK-2126458, pilaralisib, GSK2269557), PI3Kg and/ or PI3Kd inhibitors (such as CAL-101/GS-1101, duvelisib), JNK inhibitors, ERK1 and/ or 2 inhibitors, IKKb inhibitors, BTK inhibitors, ITK inhibitors, ASK1 inhibitors (such as GS-4997), PKC inhibitors (such as sotrastaurin), TrkA antagonists (such as CT-327), MEK1 inhibitors (such as E6201);

Antioxidants, including but not limited to, myeloperoxidase inhibitors (such as AZD-3241), NOX4 and other NOX enzymes (such as GKT-137831) and N-acetyl cysteine;

Inhibitors of IL5, including but not limited to, mepolizumab, reslizumab and benralizumab;
Inhibitors of IL4, including but not limited to, pascolizumab, altrakincept and pitrakinra;
Inhibitors of IL13, including but not limited to, tralokinumab, anrukinzumab and lebrikizumab;
Anti-IL6 agents, including but not limited to, tocilizumab, olokizumab, siltuximab, PF-4236921 and sirukumab;

Inhibitors/Antagonists of IL17/LL17R, including but not limited to, secukinumab, RG-7624, brodalumab and ixekizumab;

Antagonists of IL12 and/or IL23, including but not limited to, tildrakizumab, guselkumab, MEDI2070 and AMG 139;

Inhibitors of IL33, including but not limited to, AMG 282;
Inhibitors of IL9, including but not limited to, MEDI-528;
Inhibitors of GM-CSF, including but not limited to, MT203;
Anti CD4 agents, including but not limited to, tregalizumab and rigerimod;
CRTH2 antagonists, including but not limited to, AZD-1981;
Inhibitors of B lymphocyte stimulator (BLYS; also known as BAFF), a protein that is often increased in patients with SLE, including but not limited to, belimumab, tabalumab, blisibimod, and atacicept;

CD22-specific monoclonal antibodies, including but not limited to, epratuzumab; Inhibitors of interferon-a, including but not limited to, sifalimumab and rontalizumab; Inhibitor of type I interferon receptors, including but not limited to, MEDI-546; FcyRIIB agonists, including but not limited to, SM-101;

Modified and/or recombinant versions of Heat Shock Protein 10 (Hsp10, also known as Chaperonin 10 or EPF), including but not limited to, INV-103;

Inhibitors of the TNF superfamily receptor 12A (TWEAK receptor), including but not limited to, BIIB-023, enavatuzumab, and RG-7212;

Inhibitors of xanthine oxidase, including but not limited to, allopurinol, benzbromarone, febuxostat, topiroxostat, tisopurine and inositols;

Inhibitors of URAT1 (also known as SLC22A12), including but not limited to, lesinurad, RDEA 3170, UR1102 and levotofispam;

Additional treatments for gout and/ or lowering of uric acid levels, including but not limited to, colchicines, pegloticase, benziodarone, isobrominidione, BCX4208 and arhalofenate;

Inhibitors of toll-like receptors (TLRs), including but not limited to, one or more of TLR7, TLR8, TLR9 (such as IMO-8400, IMO-3100, DV-1179), TLR2 and/ or TLR 4 (such as VB-201, OPN305);

Agonists of TLRs, including but not limited to, TLR7 (such as GSK2245035, AZD8848), TLR9 (such as AZD1419);

Activators SIRT1, including but not limited to, SRT2104;
A3 receptor agonists, including but not limited to, CF101;
Other agents of use of the treatment of psoriasis, including but not limited to, IDP-118, LAS41004, LEO 80185, LEO 90100, PH-10, WBI-1001, CNT01959, BT-061, cimzia, ustekinumab, MK-3222/SCH 900222, ACT-128800, AEB071, alitretinoin, ASP015K, Apo805K1, BMS-582949, FP187, hectoral (doxercalciferol), LEO 22811, Ly3009104 (INCB28050), calcipotriene foam (STF 115469), tofacitinib (CP-690,550), M518101 and CycloPsorb ${ }^{\text {TM }}$;

Antifibrotic agents, including but not limited to: pirfenidone, inhibitors of LOXL2 (such as Simtuzumab), FT-011, modulators of epiregulin and/ or TGFa (such as LY-3016859), modulators of TGFp (such as LY-2382770, fresolimumab);

Prolyl hydroxylase inhibitors, including but not limited to, GSK1278863, FG-2216, ASP-1517/FG-4592, AKB-6548, JTZ-951, BAY-85-3934 and DS-1093;

Inhibitors of granulocyte macrophage colony-stimulating factor, including but not limited to, GSK3196165 (MOR103), PD-0360324 and mavrilimumab;

Inhibitors of MAdCAM and/ or $\alpha 4 \beta 7$ integrin, including but not limited to, PF-00547659 and MEDI7183 (abrilumab);

Inhibitors of connective tissue growth factor (CTGF), including but not limited to, PF-06473871; Inhibitors of cathepsin C, including but not limited to, GSK2793660;

Inhibitors of soluble epoxide hydrolase, including but not limited to, GSK2269557;

Inhibitors of the TNFR1 associated death domain protein, including but not limited to, GSK2862277;

Anti-CD19 agents, including but not limited to, MEDI-551 and AMG 729;

Anti-B7RP1 agents/ inhibitors of ICOS ligand, including but not limited to, MEDI5872 and AMG557;

Inhibitors of thymic stromal lymphoprotein, including but not limited to, AMG157;

Inhibitors of IL2, including but not limited to, daclizumab;
Inhibitors of Leucine rich repeat neuronal protein 6A, including but not limited to, Anti-Lingo (Biogen);

Inhibitors of integrins, including but not limited to, alpha-V/beta-6 (STX-100) and alpha-V/beta3 (VPI-2690B);

Anti-CD40L agents, including but not limited to, CDP-7657;

Modulators of the dopamine D3 receptor, including but not limited to, ABT-614;
Inhibitors and/ or modulators of galectin-3, including but not limited to, GCS-100 and GR-MD02;

Agents for treating diabetic nephropathy, including but not limited to, DA-9801 and ASP-8232;

Agents for treating acute kidney injury, including but not limited to, THR-184, TRC-160334, NX001, EA-230, ABT-719, CMX-2043, BB-3 and MTP-131;

Modulators of inflammasomes, including but not limited to, inhibitors of NLRP3;

Modulators of bromodomains, including but not limited to, BRD4;

Modulators of GPR43; and
Inhibitors of TRP channels, including but not limited to, TRPA1, TRPC3, TRPC5, TRPC6 and TRPC6.
[0110] Additional therapeutic agents include anti-coagulant or coagulation inhibitory agents,
anti-platelet or platelet inhibitory agents, thrombin inhibitors, thrombolytic or fibrinolytic agents, anti-arrhythmic agents, anti-hypertensive agents, calcium channel blockers (L-type and Ttype), cardiac glycosides, diuretics, mineralocorticoid receptor antagonists, NO donating agents such as organonitrates, NO promoting agents such as phosphodiesterase inhibitors, cholesterol/lipid lowering agents and lipid profile therapies, anti-diabetic agents, antidepressants, anti-inflammatory agents (steroidal and non-steroidal), anti-osteoporosis agents, hormone replacement therapies, oral contraceptives, anti-obesity agents, anti-anxiety agents, antiproliferative agents, anti-tumor agents, anti-ulcer and gastroesophageal reflux disease agents, growth hormone and/or growth hormone secretagogues, thyroid mimetics (including thyroid hormone receptor antagonist), anti-infective agents, anti-viral agents, anti-bacterial agents, and anti-fungal agents.
[0111] Agents used in an ICU setting are included, for example, dobutamine, dopamine, epinephrine, nitroglycerin, nitroprusside, etc.
[0112] Combination agents useful for treating vasculitis are included, for example, azathioprine, cyclophosphamide, mycophenolate, mofetil, rituximab, etc.
[0113] In another embodiment, the present invention provides a combination wherein the second agent is at least one agent selected from a factor Xa inhibitor, an anti-coagulant agent, an anti-platelet agent, a thrombin inhibiting agent, a thrombolytic agent, and a fibrinolytic agent. Exemplary factor Xa inhibitors include apixaban and rivaroxaban. Examples of suitable anticoagulants for use in combination with the compound of the present invention include heparins (e.g., unfractioned and low molecular weight heparins such as enoxaparin and dalteparin).
[0114] In another embodiment the second agent is at least one agent selected from warfarin, unfractionated heparin, low molecular weight heparin, synthetic pentasaccharide, hirudin, argatrobanas, aspirin, ibuprofen, naproxen, sulindac, indomethacin, mefenamate, droxicam, diclofenac, sulfinpyrazone, piroxicam, ticlopidine, clopidogrel, tirofiban, eptifibatide, abciximab, melagatran, disulfatohirudin, tissue plasminogen activator, modified tissue plasminogen activator, anistreplase, urokinase, and streptokinase.
[0115] In another embodiment, the agent is at least one anti-platelet agent. Especially preferred anti-platelet agents are aspirin and clopidogrel. The term anti-platelet agents (or platelet inhibitory agents), as used herein, denotes agents that inhibit platelet function, for example by inhibiting the aggregation, adhesion or granular secretion of platelets. Agents include, but are not limited to, the various known non-steroidal anti-inflammatory drugs (NSAIDS) such as aspirin, ibuprofen, naproxen, sulindac, indomethacin, mefenamate, droxicam, diclofenac, sulfinpyrazone, piroxicam, and pharmaceutically acceptable salts or prodrugs thereof. Of the NSAIDS, aspirin (acetylsalicyclic acid or ASA) and COX-2 inhibitors such as celecoxib or piroxicam are preferred. Other suitable platelet inhibitory agents include IIb/IIla antagonists (e.g., tirofiban, eptifibatide, and abciximab), thromboxane-A2-receptor antagonists (e.g., ifetroban), thromboxane-A2-synthetase inhibitors, PDE-III inhibitors (e.g.,

Pletal, dipyridamole), and pharmaceutically acceptable salts or prodrugs thereof.
[0116] The term anti-platelet agents (or platelet inhibitory agents), as used herein, is also intended to include ADP (adenosine diphosphate) receptor antagonists, preferably antagonists of the purinergic receptors $\mathrm{P}_{2} \mathrm{Y}_{1}$ and $\mathrm{P}_{2} \mathrm{Y}_{12}$, with $\mathrm{P}_{2} \mathrm{Y}_{12}$ being even more preferred. Preferred $\mathrm{P}_{2} \mathrm{Y}_{12}$ receptor antagonists include ticagrelor, prasugrel, ticlopidine and clopidogrel, including pharmaceutically acceptable salts or prodrugs thereof. Clopidogrel is an even more preferred agent. Ticlopidine and clopidogrel are also preferred compounds since they are known to be gentle on the gastro-intestinal tract in use.
[0117] The term thrombin inhibitors (or anti-thrombin agents), as used herein, denotes inhibitors of the serine protease thrombin. By inhibiting thrombin, various thrombin-mediated processes, such as thrombin-mediated platelet activation (that is, for example, the aggregation of platelets, and/or the granular secretion of plasminogen activator inhibitor-1 and/or serotonin) and/or fibrin formation are disrupted. A number of thrombin inhibitors are known to one of skill in the art and these inhibitors are contemplated to be used in combination with the present compounds. Such inhibitors include, but are not limited to, boroarginine derivatives, boropeptides, heparins, hirudin, argatroban, and melagatran, including pharmaceutically acceptable salts and prodrugs thereof. Boroarginine derivatives and boropeptides include N acetyl and peptide derivatives of boronic acid, such as C-terminal alpha-aminoboronic acid derivatives of lysine, ornithine, arginine, homoarginine and corresponding isothiouronium analogs thereof. The term hirudin, as used herein, includes suitable derivatives or analogs of hirudin, referred to herein as hirulogs, such as disulfatohirudin. The term thrombolytics or fibrinolytic agents (or thrombolytics or fibrinolytics), as used herein, denote agents that lyse blood clots (thrombi). Such agents include tissue plasminogen activator (natural or recombinant) and modified forms thereof, anistreplase, urokinase, streptokinase, tenecteplase (TNK), lanoteplase (nPA), factor VIIa inhibitors, PAI-1 inhibitors (i.e., inactivators of tissue plasminogen activator inhibitors), alpha2-antiplasmin inhibitors, and anisoylated plasminogen streptokinase activator complex, including pharmaceutically acceptable salts or prodrugs thereof. The term anistreplase, as used herein, refers to anisoylated plasminogen streptokinase activator complex, as described, for example, in EP 028,489, the disclosure of which is hereby incorporated herein by reference herein. The term urokinase, as used herein, is intended to denote both dual and single chain urokinase, the latter also being referred to herein as prourokinase. Examples of suitable anti-arrythmic agents include: Class I agents (such as propafenone); Class II agents (such as metoprolol, atenolol, carvadiol and propranolol); Class III agents (such as sotalol, dofetilide, amiodarone, azimilide and ibutilide); Class IV agents (such as ditiazem and verapamil); K^{+}channel openers such as $\mathrm{I}_{\text {Ach }}$ inhibitors, and $\mathrm{I}_{\mathrm{Kur}}$ inhibitors (e.g., compounds such as those disclosed in WO01/40231).
[0118] The compound of the present invention may be used in combination with antihypertensive agents and such antihypertensive activity is readily determined by those skilled in the art according to standard assays (e.g., blood pressure measurements). Examples of suitable anti-hypertensive agents include: alpha adrenergic blockers; beta adrenergic
blockers; calcium channel blockers (e.g., diltiazem, verapamil, nifedipine and amlodipine); vasodilators (e.g., hydralazine), diruetics (e.g., chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorothiazide, trichloromethiazide, polythiazide, benzthiazide, ethacrynic acid tricrynafen, chlorthalidone, torsemide, furosemide, musolimine, bumetanide, triamtrenene, amiloride, spironolactone); renin inhibitors; ACE inhibitors (e.g., captopril, zofenopril, fosinopril, enalapril, ceranopril, cilazopril, delapril, pentopril, quinapril, ramipril, lisinopril); AT-1 receptor antagonists (e.g., losartan, irbesartan, valsartan); ET receptor antagonists (e.g., sitaxsentan, atrsentan and compounds disclosed in U.S. Patent Nos. 5,612,359 and 6,043,265); Dual ET/All antagonist (e.g., compounds disclosed in WO 00/01389); neutral endopeptidase (NEP) inhibitors; vasopepsidase inhibitors (dual NEP-ACE inhibitors) (e.g., gemopatrilat and nitrates). An exemplary antianginal agent is ivabradine.
[0119] Examples of suitable calcium channel blockers (L-type or T-type) include diltiazem, verapamil, nifedipine and amlodipine and mybefradil. Examples of suitable cardiac glycosides include digitalis and ouabain.
[0120] In one embodiment, the compound of the invention may be co-administered with one or more diuretics. Examples of suitable diuretics include (a) loop diuretics such as furosemide (such as LASIX ${ }^{\text {TM }}$), torsemide (such as DEMADEX ${ }^{\text {TM }}$), bemetanide (such as BUMEX ${ }^{\text {TM }}$), and ethacrynic acid (such as EDECRIN ${ }^{\text {TM }}$); (b) thiazide-type diuretics such as chlorothiazide (such as DIURIL ${ }^{\text {M }}$, ESIDRIX ${ }^{\text {TM }}$ or HYDRODIURIL ${ }^{\text {M }}$), hydrochlorothiazide (such as MICROZIDE ${ }^{\text {M }}$ or ORETIC ${ }^{\top M}$), benzthiazide, hydroflumethiazide (such as SALURON ${ }^{\top M}$), bendroflumethiazide, methychlorthiazide, polythiazide, trichlormethiazide, and indapamide (such as LOZOL ${ }^{\text {TM }}$); (c) phthalimidine-type diuretics such as chlorthalidone (such as HYGROTON ${ }^{\text {TM }}$), and metolazone (such as ZAROXOLYN ${ }^{\text {TM }}$); (d) quinazoline-type diuretics such as quinethazone; and (e) potassium-sparing diuretics such as triamterene (such as DYRENIUM ${ }^{\text {TM }}$), and amiloride (such as MIDAMOR ${ }^{\text {TM }}$ or MODURETIC ${ }^{\text {TM }}$). In another embodiment, the compound of the invention may be co-administered with a loop diuretic. In still another embodiment, the loop diuretic is selected from furosemide and torsemide. In still another embodiment, the compound of the invention may be co-administered with furosemide. In still another embodiment, the compound of the invention may be co-administered with torsemide which may optionally be a controlled or modified release form of torsemide.
[0121] In another embodiment, the compound of the invention may be co-administered with a thiazide-type diuretic. In still another embodiment, the thiazide-type diuretic is selected from the group consisting of chlorothiazide and hydrochlorothiazide. In still another embodiment, the compound of the invention may be co-administered with chlorothiazide. In still another embodiment, the compound of the invention may be co-administered with hydrochlorothiazide. In another embodiment, the compound of the invention may be co-administered with a phthalimidine-type diuretic. In still another embodiment, the phthalimidine-type diuretic is chlorthalidone.
[0122] Examples of suitable combination mineralocorticoid receptor antagonists include
sprionolactone and eplerenone. Examples of suitable combination phosphodiesterase inhibitors include: PDE III inhibitors (such as cilostazol); and PDE V inhibitors (such as sildenafil).
[0123] The compound of the present invention may be used in combination with cholesterol modulating agents (including cholesterol lowering agents) such as a lipase inhibitor, an HMGCoA reductase inhibitor, an HMG-CoA synthase inhibitor, an HMG-CoA reductase gene expression inhibitor, an HMG-CoA synthase gene expression inhibitor, an MTP/Apo B secretion inhibitor, a CETP inhibitor, a bile acid absorption inhibitor, a cholesterol absorption inhibitor, a cholesterol synthesis inhibitor, a squalene synthetase inhibitor, a squalene epoxidase inhibitor, a squalene cyclase inhibitor, a combined squalene epoxidase/squalene cyclase inhibitor, a fibrate, niacin, an ion-exchange resin, an antioxidant, an ACAT inhibitor or a bile acid sequestrant or an agent such as mipomersen..
[0124] Examples of suitable cholesterol/lipid lowering agents and lipid profile therapies include: HMG-CoA reductase inhibitors (e.g., pravastatin, lovastatin, atorvastatin, simvastatin, fluvastatin, NK-104 (a.k.a. itavastatin, or nisvastatin or nisbastatin) and ZD-4522 (a.k.a. rosuvastatin, or atavastatin or visastatin)); squalene synthetase inhibitors; fibrates; bile acid sequestrants (such as questran); ACAT inhibitors; MTP inhibitors; lipooxygenase inhibitors; cholesterol absorption inhibitors; and cholesteryl ester transfer protein inhibitors.
[0125] Anti-inflammatory agents also include sPLA2 and IpPLA2 inhibitors (such as darapladib), 5 LO inhibitors (such as atrelueton) and IL-1 and IL-1r antagonists (such as canakinumab).
[0126] Other atherosclerotic agents include agents that modulate the action of PCSK9, for example, called bococizumab.
[0127] Cardiovascular complications of type 2 diabetes are associated with deleterious levels of MPO, accordingly, the compound of the present invention may be used in combination with anti-diabetic agents, particularly type 2 anti-diabetic agents. Examples of suitable anti-diabetic agents include (e.g. insulins, metfomin, DPPIV inhibitors, GLP-1 agonists, analogues and mimetics, SGLT1 and SGLT2 inhibitors) Suitable anti-diabetic agents include an acetyl-CoA carboxylase- (ACC) inhibitor such as those described in WO2009144554, WO2003072197, WO2009144555 and WO2008065508, a diacylglycerol O-acyltransferase 1 (DGAT-1) inhibitor, such as those described in WO09016462 or WO2010086820, AZD7687 or LCQ908, diacylglycerol O-acyltransferase 2 (DGAT-2) inhibitor, monoacylglycerol O-acyltransferase inhibitors, a phosphodiesterase (PDE)-10 inhibitor, an AMPK activator, a sulfonylurea (e.g., acetohexamide, chlorpropamide, diabinese, glibenclamide, glipizide, glyburide, glimepiride, gliclazide, glipentide, gliquidone, glisolamide, tolazamide, and tolbutamide), a meglitinide, an α amylase inhibitor (e.g., tendamistat, trestatin and AL-3688), an α-glucoside hydrolase inhibitor (e.g., acarbose), an α-glucosidase inhibitor (e.g., adiposine, camiglibose, emiglitate, miglitol, voglibose, pradimicin-Q, and salbostatin), a PPARY agonist (e.g., balaglitazone, ciglitazone, darglitazone, englitazone, isaglitazone, pioglitazone and rosiglitazone), a PPAR α / γ agonist
(e.g., CLX-0940, GW-1536, GW-1929, GW-2433, KRP-297, L-796449, LR-90, MK-0767 and SB-219994), a biguanide (e.g., metformin), a glucagon-like peptide 1 (GLP-1) modulator such as an agonist (e.g., exendin-3 and exendin-4), liraglutide, albiglutide, exenatide (Byetta®), albiglutide, lixisenatide, dulaglutide, semaglutide, NN-9924,TTP-054, a protein tyrosine phosphatase-1B (PTP-1B) inhibitor (e.g., trodusquemine, hyrtiosal extract, and compounds disclosed by Zhang, S., et al., Drug Discovery Today, 12(9/10), 373-381 (2007)), SIRT-1 inhibitor (e.g., resveratrol, GSK2245840 or GSK184072), a dipeptidyl peptidease IV (DPP-IV) inhibitor (e.g., those in WO2005116014, sitagliptin, vildagliptin, alogliptin, dutogliptin, linagliptin and saxagliptin), an insulin secreatagogue, a fatty acid oxidation inhibitor, an A2 antagonist, a c-jun amino-terminal kinase (JNK) inhibitor, glucokinase activators (GKa) such as those described in WO2010103437, WO2010103438, WO2010013161, WO2007122482, TTP-399, TTP-355, TTP-547, AZD1656, ARRY403, MK-0599, TAK-329, AZD5658 or GKM-001, insulin, an insulin mimetic, a glycogen phosphorylase inhibitor (e.g. GSK1362885), a VPAC2 receptor agonist, SGLT2 inhibitors, such as those described in E.C. Chao et al. Nature Reviews Drug Discovery 9, 551-559 (July 2010) including dapagliflozin, canagliflozin, empagliflozin, tofogliflozin (CSG452), ASP-1941, THR1474, TS-071, ISIS388626 and LX4211 as well as those in WO2010023594, a glucagon receptor modulator such as those described in Demong, D.E. et al. Annual Reports in Medicinal Chemistry 2008, 43, 119-137, GPR119 modulators, particularly agonists, such as those described in WO2010140092, WO2010128425, WO2010128414, WO2010106457, Jones, R.M. et al. in Medicinal Chemistry 2009, 44, 149170 (e.g. MBX-2982, GSK1292263, APD597 and PSN821), FGF21 derivatives or analogs such as those described in Kharitonenkov, A. et al. et al., Current Opinion in Investigational Drugs 2009, 10(4)359-364, TGR5 (also termed GPBAR1) receptor modulators, particularly agonists, such as those described in Zhong, M., Current Topics in Medicinal Chemistry, 2010, 10(4), 386-396 and INT777, GPR40 agonists, such as those described in Medina, J.C., Annual Reports in Medicinal Chemistry, 2008, 43, 75-85, including but not limited to TAK-875, GPR120 modulators, particularly agonists, high affinity nicotinic acid receptor (HM74A) activators, and SGLT1 inhibitors, such as GSK1614235. A further representative listing of anti-diabetic agents that can be combined with the compound of the present invention can be found, for example, at page 28 , line 35 through page 30 , line 19 of WO2011005611. Preferred anti-diabetic agents are metformin and DPP-IV inhibitors (e.g., sitagliptin, vildagliptin, alogliptin, dutogliptin, linagliptin and saxagliptin). Other antidiabetic agents could include inhibitors or modulators of carnitine palmitoyl transferase enzymes, inhibitors of fructose 1,6-diphosphatase, inhibitors of aldose reductase, mineralocorticoid receptor inhibitors, inhibitors of TORC2, inhibitors of CCR2 and/or CCR5, inhibitors of PKC isoforms (e.g. PKCa, PKC β, PKCץ), inhibitors of fatty acid synthetase, inhibitors of serine palmitoyl transferase, modulators of GPR81, GPR39, GPR43, GPR41, GPR105, Kv1.3, retinol binding protein 4, glucocorticoid receptor, somatostain receptors (e.g. SSTR1, SSTR2, SSTR3 and SSTR5), inhibitors or modulators of PDHK2 or PDHK4, inhibitors of MAP4K4, modulators of IL1 family including IL1 beta, modulators of RXRalpha. In addition suitable anti-diabetic agents include mechanisms listed by Carpino, P.A., Goodwin, B. Expert Opin. Ther. Pat, 2010, 20(12), 1627-51.
[0128] Those skilled in the art will recognize that the compound of this invention may also be used in conjunction with other cardiovascular or cerebrovascular treatments including PCI ,
stenting, drug eluting stents, stem cell therapy and medical devices such as implanted pacemakers, defibrillators, or cardiac resynchronization therapy.
[0129] The compound of the present invention may be used in combination with neuroinflammatory and neurodegenerative agents in mammals. Examples of additional neuroinflammatory and neurodegenerative agents include antidepressants, antipsychotics, anti-pain agents, anti-Alzheimer's agents, and anti-anxiety agents. Examples of particular classes of antidepressants that can be used in combination with the compound of the invention include norepinephrine reuptake inhibitors, selective serotonin reuptake inhibitors (SSRIs), NK1 receptor antagonists, monoamine oxidase inhibitors (MAOIs), reversible inhibitors of monoamine oxidase (RIMAs), serotonin and noradrenaline reuptake inhibitors (SNRIs), corticotropin releasing factor (CRF) antagonists, and atypical antidepressants. Suitable norepinephrine reuptake inhibitors include tertiary amine tricyclics and secondary amine tricyclics. Examples of suitable tertiary amine tricyclics and secondary amine tricyclics include amitriptyline, clomipramine, doxepin, imipramine, trimipramine, dothiepin, butriptyline, nortriptyline, protriptyline, amoxapine, desipramine and maprotiline. Examples of suitable SSRIs include fluoxetine, fluvoxamine, paroxetine, and sertraline. Examples of monoamine oxidase inhibitors include isocarboxazid, phenelzine, and tranylcyclopramine. Examples of suitable reversible inhibitors of monoamine oxidase include moclobemide. Examples of suitable SNRIs of use in the present invention include venlafaxine. Examples of suitable atypical antidepressants include bupropion, lithium, trazodone and viloxazine. Examples of anti-Alzheimer's agents include NMDA receptor antagonists such as memantine; and cholinesterase inhibitors such as donepezil and galantamine. Examples of suitable classes of anti-anxiety agents that can be used in combination with the compound of the invention include benzodiazepines and serotonin 1A receptor ($5-\mathrm{HT} 1 \mathrm{~A}$) agonists, and CRF antagonists. Suitable benzodiazepines include alprazolam, chlordiazepoxide, clonazepam, chlorazepate, diazepam, lorazepam, oxazepam, and prazepam. Suitable 5-HT1A receptor agonists include buspirone and ipsapirone. Suitable CRF antagonists include verucerfont. Suitable atypical antipsychotics include paliperidone, ziprasidone, risperidone, aripiprazole, olanzapine, and quetiapine. Suitable nicotine acetylcholine agonists include CP-601927 and varenicline. Anti-pain agents include pregabalin, gabapentin, clonidine, neostigmine, baclofen, midazolam, ketamine and ziconotide.
[0130] Also disclosed herein are kits that are suitable for use in performing the methods of treatment described above. In one embodiment, the kit contains a first dosage form comprising the compounds of the present invention and a container for the dosage, in quantities sufficient to carry out the methods disclosed herein.
[0131] In another embodiment, the kit disclosed herein comprises the compound of the invention.
[0132] Also disclosed herein are intermediate compounds useful in the synthesis of the compound of the invention, including salts and/or tautomers thereof.

General Synthetic Schemes

[0133] The compounds of Formula I may be prepared by the methods described below, together with synthetic methods known in the art of organic chemistry, or modifications and transformations that are familiar to those of ordinary skill in the art. The starting materials used herein are commercially available or may be prepared by routine methods known in the art [such as those methods disclosed in standard reference books such as the Compendium of Organic Synthetic Methods, Vol. I-XII (published by Wiley-Interscience)]. Preferred methods include, but are not limited to, those described below.
[0134] During any of the following synthetic sequences it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This can be achieved by means of conventional protecting groups, such as those described in T. W. Greene, Protective Groups in Organic Chemistry, John Wiley \& Sons, 1981; T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Chemistry, John Wiley \& Sons, 1991; and T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Chemistry, John Wiley \& Sons, 1999, which are hereby incorporated by reference.
[0135] Compounds of Formula I, or their pharmaceutically acceptable salts, can be prepared according to the reaction Schemes discussed herein below. Unless otherwise indicated, the substituents in the Schemes are defined as above. Isolation and purification of the products is accomplished by standard procedures, which are known to a chemist of ordinary skill.
[0136] It will be understood by one skilled in the art that the various symbols, superscripts and subscripts used in the schemes, methods and examples are used for convenience of representation and/or to reflect the order in which they are introduced in the schemes, and are not intended to necessarily correspond to the symbols, superscripts or subscripts in the appended claims. Additionally, one skilled in the art will recognize that in many cases, these compounds will be mixtures and enantiomers that may be separated at various stages of the synthetic schemes using conventional techniques, such as, but not limited to, crystallization, normal-phase chromatography, reversed phase chromatography and chiral chromatography, to afford single enantiomers. The schemes are representative of methods useful in synthesizing the compound of the present invention. They are not to constrain the scope of the invention in any way.

Scheme 1

[0137] Scheme 1 illustrates a method for preparing compounds of Formula la. A compound of Formula \mathbf{A}, in which $L v$ is a displaceable leaving group (such as chloro or fluoro, for example) is treated with a compound of Formula B (for example, see Scheme 9, or as commercially available) to furnish a product of Formula la. The reaction is typically carried out in the presence of a suitable base such as cesium carbonate, potassium tert-butoxide, sodium hydride or potassium hexamethyldisilazide in a suitable solvent or solvent mixture, such as THF or dimethylformamide. The compounds of Formula A may be prepared as described in the subsequent schemes. The compounds of formula $\mathrm{R}^{2}-\mathrm{OH}$ may be obtained from commercial vendors, or prepared by methods reported in the chemical literature, or may be prepared as described in the subsequent schemes.
[0138] If desired, further transformations may be effected upon the compound of Formula la. For example, the compound of Formula la wherein $\mathrm{R}^{6}=\mathrm{CN}$ may be subjected to a nitrile hydrolysis reaction to provide a compound of Formula la in which $\mathrm{R}^{6}=\mathrm{CONH}_{2}$. The reaction may be carried out in a variety of ways known to one skilled in the art, for example by the use of acids or bases, optionally in the presence of an oxidant such as hydrogen peroxide, or by using chemical or enzymatic catalysts. In other cases, the compound of Formula la may be further treated with reagents, such as acids, to cleave protecting groups, such as tbutoxycarbonyl groups, and/or with other reagents to derivatize functional groups such as carboxyl, amino, or hydroxyl groups.
Scheme 2

[0139] Scheme 2 illustrates another method for the preparation of compounds of Formula la, particularly suited to those instances in which X and Y in the compound of Formula \mathbf{A} are both carbon. This method provides for the alkylation of a compound of Formula \mathbf{A} with a compound of Formula \mathbf{B} (wherein the $\mathrm{R}^{12} \mathrm{O}$ - group is either hydroxyl or a sulfonate ester such as p toluenesulfonate or methanesulfonate; for example, see Scheme 9, or as commercially available), using methods known to those skilled in the art, to furnish a product of Formula la. For example, this reaction may be carried out by treating a compound of Formula \mathbf{A} with a compound of Formula $B\left(R^{12}=H\right)$ in the presence of triphenylphosphine and an azodicarboxylate ester ("Mitsunobu reaction") in a suitable solvent such as THF. Alternatively, the alkylation of a compound of Formula \mathbf{A} may be effected using a compound of Formula \mathbf{B} ($\mathrm{R}^{12 \mathrm{O}}=\mathrm{TsO}$ or other sulfonate ester) in the presence of a base such as cesium carbonate, in a suitable solvent such as THF or dimethylformamide.
[0140] If desired, further transformations may be effected upon the compound of Formula la. For example, the compound of Formula la wherein $\mathrm{R}^{6}=\mathrm{CN}$ may be subjected to a nitrile
hydrolysis reaction to provide a compound of Formula la in which $\mathrm{R}^{6}=\mathrm{CONH}_{2}$. The reaction may be carried out in variety of ways known to one skilled in the art, for example by the use of acids or bases, optionally in the presence of an oxidant such as hydrogen peroxide, or by using chemical or enzymatic catalysts. In other cases, the compound of Formula la may be further treated with reagents, such as acids, to cleave protecting groups, such as tbutoxycarbonyl groups, and/or with other reagents to derivatize functional groups such as carboxyl, amino, or hydroxyl groups.

Scheme 3

[0141] Scheme 3 illustrates a method for the preparation of compounds of Formula A, wherein $\mathrm{Y}=\mathrm{N}$ and $\mathrm{X}=\mathrm{CH}$, as illustrated above. An acid of Formula $\mathbf{C i}$ is treated with an alkylating agent, for example, iodomethane ($\mathrm{R}^{1}=$ methyl), and a base, such as $\mathrm{K}_{2} \mathrm{CO}_{3}$, in a suitable solvent such as DMF. The resulting ester of Formula $\mathbf{C i i}$ is then reduced to a compound of Formula Ciii by treatment with a suitable reducing agent, such as NaBH_{4}, in a solvent such as THF. The alcohol of Formula Ciii is oxidized to an aldehyde of Formula Civ using methods known to those skilled in the art, such as treatment with pyridinium chlorochromate or manganese dioxide. The isoquinoline ring is formed from the aldehyde of Formula Civ by reaction with an aminoacetaldehyde acetal followed by treatment with boron trifluoride etherate, as described in Synthetic Communications 1999, 29 (9), p. 1617. The resulting isoquinoline of Formula $\mathbf{C v}$ is cyanated, using methods known to those skilled in the art, such as treatment with copper (I) cyanide in a solvent such as DMF or pyridine, to afford a nitrile of Formula Cvi. Oxidation with a suitable oxidizing agent, such as hydrogen peroxide or a peracid such as m-chloroperbenzoic acid or peracetic acid, yields an isoquinoline N -oxide of Formula Cvii. This may be halogenated by methods known to those skilled in the art, frequently by treatment with phosphorus oxychloride with or without an additional solvent, to afford the intermediate of Formula $\mathbf{A}(\mathrm{Lv}=\mathrm{Cl})$.
Srheme 4

[0142] Scheme 4 illustrates a method for the preparation of compounds of Formula \mathbf{A} wherein $\mathrm{Y}=\mathrm{N}$ and $\mathrm{X}=\mathrm{CH}$. An aldehyde of Formula Cviii is treated with an alkylating agent, for example, 2-bromopropane ($\mathrm{R}^{1}=$ isopropyl), and a base such as $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a suitable solvent such as DMF or DMSO. The aldehyde of Formula Cix is then subjected to Knoevenagel condensation with malonic acid, typically in the presence of pyridine and piperidine, to afford an acid of Formula Cx. The acid may be converted to an acyl azide of Formula Cxi by a variety of means known to one skilled in the art, for example by sequential treatment with a chloroformate ester followed by reaction with sodium azide. Upon exposure to heat, the acyl azide may undergo Curtius reaction to ultimately afford a compound of Formula Cxii. The Curtius reaction may be effected in a suitable solvent, for example diphenyl ether, at a temperature typically in excess of $200^{\circ} \mathrm{C}$. The compound of Formula Cxii is cyanated, using methods known to those skilled in the art, such as treatment with zinc cyanide under palladium catalysis, to afford a compound of Formula Cxiii. This may be halogenated by methods known to those skilled in the art, frequently by treatment with phosphorus oxychloride with or without an additional solvent, to afford the intermediate of Formula $\mathbf{A}(Y=N, X=C H, L v=C I)$.

Scheme 5

[0143] Scheme 5 illustrates a method for the preparation of compounds of Formula \mathbf{A} wherein X and $\mathrm{Y}=\mathrm{N}$. An ester of Formula Cxiv is nitrated with nitric acid to afford a compound of Formula Cxv, which may then be reduced to an amine of Formula Cxvi by methods known to those skilled in the art, for example by treatment with tin(II) chloride in acid solution.

Subsequent treatment with formamide or similar reagents may be used to effect formation of a quinazolinone of Formula Cxvii. The resulting quinazolinone of Formula Cxvii is cyanated, using methods known to those skilled in the art, such as treatment with zinc cyanide and a palladium catalyst such as tetra(kis)triphenylphosphine palladium(0), in a solvent such as THF to afford a nitrile of Formula Cxviii. This may be halogenated by methods known to those skilled in the art, frequently by treatment with phosphorus oxychloride with or without an additional solvent, to afford the intermediate of Formula $\mathbf{A}(L v=C I)$.

Scheme 6

[0144] Scheme 6 illustrates a method for the preparation of compounds of Formula A. A nitrobenzoate ester of Formula Cxix is reduced by methods known to those skilled in the art, for example by hydrogen in the presence of a palladium catalyst in a solvent such as ethanol, to an amine of Formula Cxx. This amine is condensed with a malonic acid derivative such as Meldrum's acid in the presence of a trialkyl orthoformate, such as triethyl orthoformate, in a suitable solvent such as ethanol to afford a compound of Formula Cxxi. Thermal cyclization is effected by heating a compound of Formula Cxxi to a temperature typically in excess of 200 ${ }^{\circ} \mathrm{C}$, and typically in a solvent such as diphenyl ether or Dowtherm A , to afford a quinolone of Formula Cxxii, in some cases accompanied by the regioisomer of Formula Cxxiii. Separation of these isomers may be accomplished by selective saponification with an alkali, for example lithium hydroxide, in a solvent such as aqueous THF to afford the desired quinolone of Formula Cxxiv. This compound may be halogenated by methods known to those skilled in the art, frequently by treatment with phosphorus oxychloride with or without an additional solvent. The carboxylic acid may then be converted to the carboxamide by methods known to those skilled in the art; for example, by treatment with an excess of ammonia in a reaction compatible solvent such as 1,4 -dioxane affords the intermediate of Formula \mathbf{A}.
Scheme 7

[0145] Scheme 7 illustrates a method for the preparation of compounds of Formula A wherein X and Y are both carbon. A naphthol of Formula Cxxv may be subjected to Fischer esterification to afford a compound of Formula Cxxvi. The distal hydroxyl group may be masked using a suitable protecting group (PG), for example, by forming a silyl ether using standard conditions known to one skilled in the art, for example with t-butyldiphenylsilyl chloride and imidazole, in a suitable solvent such as 1,2-dichloroethane, to provide a compound of Formula Cxxvii. Alkylation of the proximal hydroxyl group may be carried out with an alcohol $\mathrm{R}^{1}-\mathrm{OH}$ in the presence of triphenylphosphine and an azodicarboxylate ester ("Mitsunobu reaction") in a suitable solvent such as THF to furnish a compound of Formula Cxxviii, which may be saponified by an alkali to afford a compound of Formula Cxxix. Conversion to the primary amide may be accomplished using standard methods known to one skilled in the art, for example by way of conversion to an acyl chloride using a reagent such as oxalyl chloride to afford a compound of Formula Cxxx, which may be converted to the primary amide of Formula A, by methods known to those skilled in the art; for example, by exposure to an excess of ammonia, typically in the presence of a suitable solvent such as THF, water, or a mixture of solvents.
Scheme 8

[0146] Scheme 8 illustrates a method for the preparation of additional compounds of Formula
A. In this method, a compound of Formula \mathbf{A} is dealkylated to remove the R^{1} alkyl group to afford a compound of Formula Ai. Dealkylation may be effected by standard methods known to
one skilled in the art, for example by the use of anhydrous aluminum chloride or boron tribromide in a solvent such as DCM, and may be most advantageously effected when $R^{6}=$ CN . Subsequent alkylation of the OH group may be effected to install a new R^{1} group to afford a new compound of Formula A, using methods known to one skilled in the art, for example by treatment with an alcohol $\mathrm{R}^{1}-\mathrm{OH}$ in the presence of triphenylphosphine and an azodicarboxylate ester ("Mitsunobu reaction") in a suitable solvent such as THF, or by treatment with an alkylating agent such as an alkyl chloride, bromide, or iodide ($\mathrm{R}^{1}-\mathrm{Cl}, \mathrm{R}^{1}-\mathrm{Br}$, or $\mathrm{R}^{1}-1$) and a base such as $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a suitable solvent such as THF or DMF.

Scheme 9

[0147] Scheme 9 illustrates a method for the preparation of certain compounds of Formula B of the type $\mathrm{R}^{2}-\mathrm{OH}$ as employed in Schemes 1 and 2. Compounds of Formula Cxxxi are well known in the chemical literature, particularly those compounds in which R_{a} and R_{b} are both methyl, and in which R_{a} is (substituted)phenyl and R_{b} is H. In this method, the compound of Formula $\mathbf{C x x x i}$ is treated with a suitable base, frequently lithium hexamethyldisilazide or lithium diisopropylamide, in a suitable solvent such as THF, ether, MTBE or 2-methyITHF using conditions well-established in the chemical literature. The mixture may then be treated with an electrophile to install the electrophile E_{1} on the lactam ring. Suitable electrophiles are well known to those skilled in the art and include, but are not limited to, halogenating agents such as electrophilic halogen species, alkylating agents such as alkyl halides, carbonyl compounds such as aldehydes, ketones, or esters, oxidizing agents such as molecular oxygen or sulfonyloxaziridines, aminating agents such as sulfonyl azides, and sulfur containing electrophiles such as disulfides, thiocyanates, sulfinates, and sulfonyl halides. The resulting substituted lactam of Formula Cxxxii may be subjected to this process a second time to install another electrophile on the lactam ring, designated in the scheme by E_{2}. It will be recognized by one skilled in the art that the electrophiles E_{1} and E_{2} may themselves be subjected to further chemical transformations. It will also be recognized that the introduction of the electrophiles E_{1} and E_{2} may generate a mixture of stereoisomers, which may be separated by known methods into discrete stereoisomerically pure compounds. Finally, treatment with an acid is commonly used to remove the aminal protecting group containing R_{a} and R_{b} to afford the $\mathrm{R}^{2}-\mathrm{OH}$ compound of Formula B . It will also be recognized that the electrophiles E_{1} and E_{2} will ultimately afford the substituents R^{4} in the compound of Formula la.

Scheme 10

[0148] Scheme 10 illustrates a method for the preparation of certain compounds of the type R^{2}-OH as employed in Schemes 1 and 2. In this method, the compound of Formula Cxxxi is oxidized to the olefin compound of Formula Cxxxiv using methods that are known in the chemical literature. This is frequently accomplished by the elimination reaction of a sulfoxide or selenoxide, or it may be carried out by treatment with a suitable base such as lithium diisopropylamide and chlorotrimethylsilane followed by oxidation of the resulting silyl ketene aminal with a palladium salt and a carbonate ester of allyl alcohol, in a transformation known to one skilled in the art as the Saegusa - Tsuji oxidation. The olefin of Formula Cxxxiv may be converted to a compound of Formula Cxxxv using methods that are known in the chemical literature, frequently by treatement with an organometallic reagent such as methyllithium $\left(R_{c}=\right.$ methyl) or ethylmagnesium chloride ($\mathrm{R}_{\mathrm{C}}=$ ethyl) in the presence of chlorotrimethylsilane and a copper compound. The compound of Formula Cxxxv may then be treated with an electrophile, designated in Scheme 10 by E_{1}, to install the electrophile E_{1} on the lactam ring as described previously in Scheme 9. Likewise, the resulting compound of Formula Cxxxvi may be subjected to this process a second time to install another electrophile on the lactam ring, designated in Scheme 10 by E_{2}. It will be recognized by one skilled in the art that the electrophiles E_{1} and E_{2}, and the R_{c} group, may themselves be subjected to further chemical transformations. It will also be recognized that the introduction of the R_{c} group and the electrophiles E_{1} and E_{2} may generate a mixture of stereoisomers, which may be separated into discrete stereoisomerically pure compounds. As in Scheme 9, treatment with an acid is commonly used to remove the aminal protecting group containing R_{a} and R_{b} to afford the R^{2} OH compound of Formula B. It will also be recognized that the R_{c} group and the electrophiles E_{1} and E_{2} will ultimately afford the substituents R^{4} in the compound of Formula la.

Scheme 11

[0149] Scheme 11 illustrates a method for the preparation of certain compounds of the type $\mathrm{R}^{2}-\mathrm{OH}$ as employed in Schemes 1 and 2. In this method, the olefin compound of Formula

Cxxxiv is subjected to cyclopropanation using methods that are known in the chemical literature, frequently by treatment with an appropriately substituted sulfonium salt and a suitable base. It will be recognized by one skilled in the art that the R_{d} and R_{e} groups may be subjected to further chemical transformations. It will also be recognized that the introduction of the cyclopropane ring containing the R_{d} and R_{e} groups may generate a mixture of stereoisomers, which may be separated by known methods into discrete stereoisomerically pure compounds. As in Scheme 9, treatment with an acid is commonly used to remove the aminal protecting group containing R_{a} and R_{b} to afford the $R^{2}-O H$ compound of Formula \mathbf{B}. It will also be recognized that the cyclopropane ring containing the R_{d} and R_{e} groups will ultimately afford the substituents R^{4} in the compound of Formula la.

Scheme 12

[0150] Scheme 12 illustrates a method for the preparation of certain compounds of the type R^{2}-OH as employed in Schemes 1 and 2. In this method, the olefin of Formula Cxxxix bearing suitable protecting groups $P G_{1}$ and $P G_{2}$, wherein $P G_{1}$ is, for example, a carbamate such as t butyl carbamate and PG_{2}, for example, is a trialkylsilyl such as TBDMS, may be converted to a compound of Formula CxI using methods that are known in the chemical literature. This is frequently accomplished by treatment with an organometallic reagent such as methyllithium ($R_{C}=$ methyl) or ethylmagnesium chloride ($R_{c}=$ ethyl) in the presence of chlorotrimethylsilane and a copper compound. The compound of Formula $\mathbf{C x I}$ may then be treated with an electrophile (E_{1}), to install the electrophile E_{1} on the lactam ring as described previously in Scheme 9. Likewise, the resulting compound of Formula Cxli may be subjected to this process a second time to install another electrophile (E_{2}). It will be recognized by one skilled in the art that the electrophiles E_{1} and E_{2}, and the R_{c} group, may themselves be subjected to further chemical transformations. It will also be recognized that the introduction of the R_{c} group and the electrophiles E_{1} and E_{2} may generate a mixture of stereoisomers, which may be separated by known methods into discrete stereoisomerically pure compounds. As in Scheme 9, treatment with an acid is commonly used to remove the aminal protecting group containing R_{a} and R_{b} to afford the $\mathrm{R}^{2}-\mathrm{OH}$ compound of Formula \mathbf{B}. It will also be recognized that the R_{c}
group and the electrophiles E_{1} and E_{2} will ultimately afford the substituents R^{4} in the compound of Formula la.

Scheme 13

[0151] Scheme 13 illustrates a method for the preparation of certain compounds of the type $\mathrm{R}^{2}-\mathrm{OH}$ as employed in Schemes 1 and 2. In this method, the compound of Formula Cxxxi is treated with a suitable base, followed by an electrophile $\left(E_{1}\right)$, to install the electrophile E_{1} on the lactam ring, as described previously in Scheme 9. The compound of Formula Cxliii is oxidized to an olefin compound of Formula Cxliv using methods that are known in the chemical literature, as described previously in Scheme 10. The olefin compound of Formula Cxliv is subjected to cyclopropanation, as described previously in Scheme 11. It will be recognized by one skilled in the art that the E_{1}, R_{d} and R_{e} groups may be subjected to further chemical transformations. It will also be recognized that the introduction of the cyclopropane ring containing the E_{1}, R_{d} and R_{e} groups may generate a mixture of stereoisomers, which may be separated by known methods into discrete stereoisomerically pure compounds. As in Scheme 9, treatment with an acid is commonly used to remove the aminal protecting group containing R_{a} and R_{b} to afford the $R^{2}-O H$ compound of Formula B. It will also be recognized that the cyclopropane ring containing the E_{1}, R_{d} and R_{e} groups will ultimately afford the substituents R^{4} in the compound of Formula la.

Scheme 14

[0152] Scheme 14 illustrates a method for the preparation of certain compounds of the type R^{2}-OH as employed in Schemes 1 and 2. In this method, the olefin compound of Formula Cxxxi is converted to a compound of Formula Cxxxv using methods that are known in the chemical literature as described previously in Scheme 10. The compound of Formula Cxxxv is oxidized to an olefin compound of Formula Cxlvi using methods that are known in the chemical literature as described previously in Scheme 10. The olefin compound of Formula Cxxxv is subjected to cyclopropanation as described previously in Scheme 11. It will be recognized by one skilled in the art that the R_{c}, R_{d} and R_{e} groups may be subjected to further chemical transformations. It will also be recognized that the introduction of the cyclopropane ring containing the R_{c}, R_{d} and R_{e} groups may generate a mixture of stereoisomers, which may be separated by known methods into discrete stereoisomerically pure compounds. As in Scheme 9, treatment with an acid is commonly used to remove the aminal protecting group containing R_{a} and R_{b} to afford the $\mathrm{R}^{2}-\mathrm{OH}$ compound of Formula \mathbf{B}. It will also be recognized that the cyclopropane ring containing the R_{c}, R_{d} and R_{e} groups will ultimately afford the substituents R^{4} in the compound of Formula la.

Scheme 15

[0153] Scheme 15 illustrates a method for the preparation of certain compounds of the type R^{2}-OH as employed in Schemes 1 and 2. In this method, the olefin of Formula Cxxxi may be converted to a compound of Formula CxIviii using methods that are known in the chemical literature, frequently by treatment with an olefin reagent such as ethylene or propylene under irradiation by ultraviolet light in a suitable solvent such as acetone. It will be recognized by one skilled in the art that the R_{f}, R_{g}, R_{h} and R_{i} groups may be subjected to further chemical transformations. It will also be recognized that the introduction of the cyclobutane ring containing the $\mathrm{R}_{\mathrm{f}}, \mathrm{R}_{\mathrm{g}}, \mathrm{R}_{\mathrm{h}}$ and R_{i} groups may generate a mixture of stereoisomers, which may be separated by known methods into discrete stereoisomerically pure compounds. As in Scheme 9 , treatment with an acid is commonly used to remove the aminal protecting group containing R_{a} and R_{b} to afford the $R^{2}-O H$ compound of Formula \mathbf{B}. It will also be recognized that the cyclobutane ring containing the R_{f}, R_{g}, R_{h} and R_{i} groups will ultimately afford the substituents R^{4} in the compound of Formula la.

Experimental Procedures and Examples

[0154] The following illustrate the synthesis of various compounds disclosed herein and the compound of the present invention. Additional compounds may be prepared using the methods illustrated in these Examples, either alone or in combination with techniques generally known in the art.
[0155] It will be understood that the intermediate compounds depicted above are not limited to the particular enantiomer shown, but also include all stereoisomers and mixtures thereof. It will also be understood that compounds of Formula la can include intermediates of compounds of Formula la.

Experimental Procedures

[0156] Experiments were generally carried out under inert atmosphere (nitrogen or argon), particularly in cases where oxygen- or moisture-sensitive reagents or intermediates were employed. Commercial solvents and reagents were generally used without further purification, including anhydrous solvents where appropriate (generally Sure-Seal ${ }^{T M}$ products from the Aldrich Chemical Company, Milwaukee, Wisconsin). Products were generally dried under vacuum before being carried on to further reactions or submitted for biological testing. Mass spectrometry data is reported from either liquid chromatography-mass spectrometry (LCMS), atmospheric pressure chemical ionization (APCI) or gas chromatography-mass spectrometry (GCMS) instrumentation. Chemical shifts for nuclear magnetic resonance (NMR) data are expressed in parts per million (ppm, δ) referenced to residual peaks from the deuterated solvents employed.
[0157] For syntheses referencing procedures in other Examples or Methods, reaction conditions (length of reaction and temperature) may vary. In general, reactions were followed by thin layer chromatography and / or liquid chromatography-mass spectrometry, and subjected to work-up when appropriate. It will be recognized by one skilled in the art that purifications may vary between experiments: in general, sorbents, solvents and the solvent ratios used for eluants/gradients were chosen to provide appropriate $R_{f} s$ or retention times. It will also be recognized by one skilled in the art that HPLC purifications may be effected in a variety of ways, including the use of normal stationary phases, reverse stationary phases, chiral stationary phases, and supercritical eluants. The appropriate choices of conditions for chromatographic and HPLC purifications will be discerned by one skilled in the art.
[0158] The following Preparations describe the preparation of certain intermediates used in the Methods and Examples that follow. The following Preparations, Methods and Examples are intended to illustrate particular embodiments of the invention and preparations thereto and are not intended to limit the specification, including the claims, in any manner. Unless noted otherwise, all reactants were obtained commercially.
[0159] Unless indicated otherwise, the following abbreviations have the indicated meanings:

APCl - atmospheric pressure chemical ionization
br. - broad peaks
${ }^{\circ} \mathrm{C}$ - degree Celsius
CDCl_{3} - deuterated chloroform
$\mathrm{CD}_{3} \mathrm{OD}$ - deuterated methanol
d - doublet peak
dd - double doublet peak
$\mathrm{D}_{2} \mathrm{O}$ - deuterium oxide
$d_{m s o}-d_{6}$ - perdeuterated dimethyl sulfoxide
dt - double triplet peak
g - gram(s)
H (e.g., $1 \mathrm{H}, 2 \mathrm{H}$) - hydrogen(s)
hr - hour(s)
LC - liquid chromatography
m-multiplet
M - molarity
mg - milligram(s)
MHz - megahertz
min - minute(s)
mL - milliliter(s)
mmol - millimole(s)
mp - melting point
MS - mass spectrum
NMR - nuclear magnetic resonance
pH - negative logarithm of hydronium ion concentration
psi - pounds per square inch
q-quartet peak
s-singlet peak
t- triplet peak
td - triple doublet peak
$\mu \mathrm{L}$ - microliter
[0160] Unless indicated otherwise, the following chemical formulas and acronyms have the indicated meanings:

AcOH - glacial acetic acid
$\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ - boron trifluoride etherate

BHT-2,6-dit-t-butyl-4-methylphenol
CHCl_{3} - chloroform

DAST - (diethylamino)sulfur trifluoride

DCM - dichloromethane

DMAP - (4-dimethylamino)pyridine

DMF - dimethylformamide

DMSO - dimethylsulfoxide

EDCI - N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride
$\mathrm{Et}_{3} \mathrm{~N}$ - triethylamine

EtOAc - ethyl acetate

EtOH - ethanol

HCl - hydrochloric acid
HNO_{3} - nitric acid
$\mathrm{H}_{2} \mathrm{SO}_{4}$ - sulfuric acid
$\mathrm{H}_{3} \mathrm{PO}_{4}$ - phosphoric acid

LDA - lithium diisopropylamide

MeCN - acetonitrile

MeOH - methanol
MgSO_{4} - anhydrous magnesium sulfate
$\mathrm{K}_{2} \mathrm{CO}_{3}$ - potassium carbonate
$\mathrm{K}_{3} \mathrm{PO}_{4}$ - anhydrous tribasic potassium phosphate

KOH - potassium hydroxide

MTBE - methyl t-butyl ether
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ - sodium carbonate
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ - anhydrous sodium sulfate
NaBH_{4} - sodium borohydride
NaHCO_{3} - sodium bicarbonate

NaOH - sodium hydroxide

NFSI - N-fluoro(bisbenzenesulfonyl)imide, CAS 133745-75-2
$\mathrm{NH}_{4} \mathrm{Cl}$ - ammonium chloride
POCl_{3} - phosphorus oxychloride

TFA - trifluoroacetic acid

THF - tetrahydrofuran

TMSCI - chlorotrimethylsilane

PREPARATIONS

Preparation 1: 1-chloro-7-methoxyisoquinoline-6-carbonitrile (P1)

Step 1. Synthesis of methyl 4-iodo-3-methoxybenzoate (CAS 35387-92-9, C1).

[0161] To a solution of 3-hydroxy-4-iodobenzoic acid (CAS 58123-77-6, C12) (10800 g, 40.9
moles) in DMF (65 L) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($25398 \mathrm{~g}, 184$ moles), followed by the slow addition of dimethyl sulfate ($11352 \mathrm{~g}, 90$ moles). This mixture was heated to about $50^{\circ} \mathrm{C}$ for over night. The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, diluted with EtOAc (50 L) and filtered through a plug of Celite®. The solid was thoroughly washed with EtOAc ($10 \mathrm{~L} \times 3$). The combined EtOAc filtrates were poured into water. After stirring for about 30 min , the EtOAc layer was separated and it was further washed sequentially with water, 1 M NaOH and brine. The EtOAc layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound C1. Yield: 11750 g (98\%).

Step 2. Synthesis of (4-iodo-3-methoxyphenyl)methanol (CAS 244257-61-2, C2).

[0162] To a solution of compound C1 (11750 g, 40.2 moles) in THF (35 L) was added NaBH_{4} ($7645 \mathrm{~g}, 201.09$ moles) and refluxed. While refluxing, $\mathrm{MeOH}(25 \mathrm{~L}$) was slowly added into the reaction mixture at a rate of about 1 L per hour. After completion of the reaction, it was poured into a solution of cold dilute HCl . Once the excess of NaBH_{4} was quenched, the solution was filtered and extracted with EtOAc ($2.5 \mathrm{~L} \times 3$). The combined EtOAc extracts were washed sequentially with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the resulting crude material was treated with MTBE. The resulting solid was filtered and filtrate was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated under reduced pressure to provide the title compound C2. Yield: 9900 g (93\%).

Step 3. Synthesis of 4-iodo-3-methoxybenzaldehyde (CAS 121404-83-9, C3).

[0163] To a solution of compound $\mathbf{C 2}$ ($9900 \mathrm{~g}, 34.5$ moles) in $\mathrm{CHCl}_{3}(186 \mathrm{~L})$, was added manganese dioxide ($18000 \mathrm{~g}, 207$ moles) and the resulting mixture was refluxed for about 16 h . The mixture was cooled to about $25^{\circ} \mathrm{C}$ and filtered through a Celite pad, which was then washed thoroughly with CHCl_{3}. $\mathrm{The}_{\mathrm{CHCl}_{3}}$ was evaporated under reduced pressure to provide the title compound C3. Yield: $9330 \mathrm{~g}(95 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.95$ (s, 1 H), 7.99 (d, 1 H), 7.14 (dd, 1 H), 3.95 (s, 3 H).

Step 3. Synthesis of 6-iodo-7-methoxyisoquinoline (CAS 244257-63-4, C4).

[0164] To a solution of compound C3 ($9300 \mathrm{~g}, 35$ moles) in toluene (60 L) was added amino acetaldehyde dimethyl acetal ($5590 \mathrm{~g}, 53$ moles) and the mixture was refluxed for about 4 h , while removing the liberated water by the use of a Dean - Stark water separator. The reaction mixture was cooled to about $0{ }^{\circ} \mathrm{C}$, after which trifluoroacetic anhydride ($22305 \mathrm{~g}, 106$ moles) followed by $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ ($15080 \mathrm{~g}, 106$ moles) were added, keeping internal temperature below 5
${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 16 h and quenched by pouring into a mixture of ice and ammonium hydroxide. The product was extracted with EtOAc (10 LX 3), and the combined EtOAc extracts were washed sequentially with water and brine. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a dark tan colored residue. This was treated with a mixture of MTBE and hexane ($1: 1 \mathrm{v} / \mathrm{v}, 30 \mathrm{~L}$), followed by $6 \mathrm{M} \mathrm{HCl}(9 \mathrm{~L})$, with stirring. The precipitated solid was filtered and washed with MTBE. The solid was suspended in EtOAc (5 L) and made alkaline with ammonium hydroxide. The EtOAc layer was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford crude compound C4 as a brown solid. HPLC (230 nm) showed it to be about 83% pure.
[0165] The crude material (1000 g) was taken in $\mathrm{AcOH}(2.5 \mathrm{~L})$ and stirred for about 90 min at about $25^{\circ} \mathrm{C}$. The solid was filtered and washed with $\mathrm{AcOH}(500 \mathrm{~mL})$. The filtrate was neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The resulting precipitated solid was filtered, washed with water (4 L), and oven dried at about $70-75^{\circ} \mathrm{C}$ for about 5 h to afford about 780 g of pure C4. Similarly, the remaining crude $\mathbf{C 4}(4 \mathrm{~kg})$ was purified to provide the title compound C4. Yield: $4300 \mathrm{~g}(42 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.15$ (s, 1 H), 8.45 (d, 1 H), 8.35 (s, 1 H), 7.45 (d, 1 H), 7.15 (s, 1 H) 4.00 (s, 3 H).

Step 4. Synthesis of 7-methoxyisoquinoline-6-carbonitrile (C5).

[0166] To a solution of compound C4 (4300 g, 15 moles) in DMSO (39 L) was added copper(I) cyanide ($2954 \mathrm{~g}, 33$ moles) and the mixture was heated to about $120^{\circ} \mathrm{C}$ for about 3 h. The reaction mixture was quenched by pouring into a mixture of ice and ammonium hydroxide (40 L) and filtered. The filtrate was extracted with EtOAc (10 L X 2). While stirring, the solid residue was again treated with ammonium hydroxide solution (10 L) and EtOAc (10 L). After filtration, the precipitated material was repeatedly washed with a mixture of MeOH and $\mathrm{CHCl}_{3}(1: 9, \mathrm{v} / \mathrm{v})$ several times and the combined extracts were washed with brine. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting crude material was triturated with hexane to provide the title compound C5. Yield: 2250 g (87%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.25$ (br. s, 1 H), 8.55 (br. s, 1 H), 8.15 (s, 1 H), 7.60 (d, 1 H), 7.30 (s, 1 H), 4.05 (s, 3 H).

Step 5. Synthesis of 7-methoxyisoquinoline-6-carbonitrile N-oxide (C6).

[0167] To a solution of compound C5 (500 g, 2.7 moles) in DCM (5 L) was slowly added 30\% peracetic acid ($413 \mathrm{~g}, 5.4$ moles, 2 equivalents) at about $40-45{ }^{\circ} \mathrm{C}$ over about 4 h . The resulting mixture was stirred at same temperature for about 16 h . At this stage, 50% of starting material was consumed, and for further conversion another 2 equivalents of peracetic acid was added. The reaction mixture was heated at about $40-45{ }^{\circ} \mathrm{C}$ and monitored by TLC. After
approximately another 8 h , a trace of starting material still remained. An additional 0.5 equivalent of peracetic acid was added and the reaction was continued for about 5 h . The heterogeneous reaction mass was cooled to about $25{ }^{\circ} \mathrm{C}$ and filtered. The resulting solid was washed with water ($2 \mathrm{~L} \times 3$) and subsequently titurated with acetone (2 L). Upon drying, 250 g of compound C6 was obtained.
[0168] The DCM layer resulting from the filtration was washed with saturated aqueous NaHCO_{3} solution (15 L). The resulting aqueous layer was back-extracted with DCM ($1.5 \mathrm{~L} \times 2$) and the combined DCM layers were washed with brine. Upon concentration, 150 g of compound C6 was obtained.
[0169] The acidic water layer from the original filtration was made alkaline with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (5 L) and extracted with DCM (1 LX 2). The DCM layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give 30 g of compound C6. The batches of compound C6 were combined to provide the title compound C6. Yield: $430 \mathrm{~g}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.85$ (br. s., 1 H), $8.05-8.18$ (m, 2 H), 7.71 (d, 1 H), 7.12 (s, 1 H), 4.08 (s, 3 H).

Step 5. Synthesis of 1-chloro-7-methoxyisoquinoline-6-carbonitrile (P1).

[0170] To a suspension of compound C6 (700 g, 3.5 moles) in DCM (14 L) was added phosphoryl chloride ($333.5 \mathrm{~mL}, 3.5$ moles) dropwise over a period of about 1 h . After the addition was completed, the reaction mixture was a homogeneous solution and was stirred at about $25{ }^{\circ} \mathrm{C}$ overnight. After completion of the reaction, the mixture was poured into ice water $(5 \mathrm{~L})$ and the resulting solid was filtered. The solid was washed with saturated aqueous NaHCO_{3} solution (1 L X 2), followed by water. Upon drying, 360 g of compound P1 with 93% HPLC purity was obtained.
[0171] The DCM layer resulting from the filtration was separated. The aqueous layer resulting from the filtration was extracted with DCM (1 L X 2). The combined DCM solutions were washed with saturated aqueous NaHCO_{3} solution, followed sequentially by water and brine. The DCM solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to provide 300 g of compound P1 with 75\% HPLC purity. This material was taken in a mixture of AcOH (900 mL) and EtOAc (1200 mL) mixture, then heated to about $70-75^{\circ} \mathrm{C}$ for about 30 min . The solid was filtered while the mixture was still hot (about $70^{\circ} \mathrm{C}$). The solid was further washed with EtOAc $(300 \mathrm{~mL})$, followed by hexane (350 mL) and dried to afford 200 g of compound P1 with 95% HPLC purity.
[0172] The P1 with 93% HPLC purity ($360 \mathrm{~g}, 93 \%$) was further purified by tituration with a mixture of EtOAc and MTBE (1:1, v/v) and filtered. Upon drying, 300 g of compound P1 was recovered. The batches of P1 were combined to provide the title compound P1. Yield: 500 g

Preparation 2: 1-chloro-7-isopropoxyisoquinoline-6-carbonitrile (P2)

Step 1. Synthesis of 3-bromo-4-isopropoxybenzaldehyde (CAS 191602-84-3, C7).

[0174] A mixture of 3-bromo-4-hydroxybenzaldehyde ($1500 \mathrm{~g}, 7.5 \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1290 \mathrm{~g}$, 9.3 mol) in anhydrous DMSO (15 L) was treated with 2-bromopropane ($1010 \mathrm{~g}, 8.2 \mathrm{~mol}$) and stirred at about $55^{\circ} \mathrm{C}$ for overnight. An additional $200 \mathrm{~g}(1.6 \mathrm{~mol})$ of 2-bromopropane was added and the reaction was continued for approximately an additional 4 h . The reaction was cooled to about $30{ }^{\circ} \mathrm{C}$ and EtOAc (22.5 L) and water (22.5 L) were added. The EtOAc phase was separated and the aqueous phase was back - extracted with EtOAc ($2 \times 7.5 \mathrm{~L}$). The combined EtOAc phases were washed with water ($2 \times 15 \mathrm{~L}$) followed by brine (15 L), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to provide the title compound C7. Yield: $1800 \mathrm{~g}(99 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82$ (s, 1 H), $8.07-8.08$ (d, 1 H), $7.76-7.79$ (d, 1 H), 6.98 (d, 1 H), 4.67-4.74 (m, 1 H), 1.42-1.44 (d, 6 H).

Step 2. Synthesis of (E)-3-(3-bromo-4-isopropoxyphenyl)acrylic acid (CAS 1344851-826, C8).

[0175] Compound C7 (1800 g, 7.4 mol) in anhydrous pyridine (7.56 L) was treated with malonic acid ($1002 \mathrm{~g}, 9.6 \mathrm{mmol}$) and piperidine ($316 \mathrm{~g}, 3.7 \mathrm{mmol}$) and heated to reflux for about 2 h . The solvent was removed by distillation under reduced pressure. This was treated with cold water (37.8 L) and stirred for about 0.5 h , then acidified to adjust pH to about 4.0 with AcOH (about 300 mL). The suspension was vigorously stirred for about 1 hour to break up all solids and then the product was collected by filtration, washed with water (3.6 L) and dried under vacuum to provide the title compound C8. Yield: $2014 \mathrm{~g}(95 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6} б $7.94-7.95(\mathrm{~d}, 1 \mathrm{H}) 7.64-7.67$ (dd, 1 H), 7.48-7.52 (d, 1 H), 7.14-7.16 (d, 1 H), 6.43-6.47 (d, 1 H), 4.71-4.77 (m, 1 H), 1.29-1.31 (d, 6 H).

Step 3. Synthesis of (E)-3-(3-bromo-4-isopropoxyphenyl)acryloyl azide (C9).

[0176] To a stirred solution of compound $\mathbf{C 8}$ ($1000 \mathrm{~g}, 3.5 \mathrm{~mol}$) in acetone (17.5 L), $\mathrm{Et}_{3} \mathrm{~N}$ (355 $\mathrm{g}, 3.5 \mathrm{~mol}$) was added and the mixture was cooled to about $-5^{\circ} \mathrm{C}$. Ethyl chloroformate (495 g , 4.56 mol) was added dropwise, maintaining the temperature at about $-5^{\circ} \mathrm{C}$. After completion of the addition, the mixture was stirred for approximately an additional 1 h at about $-5{ }^{\circ} \mathrm{C}$. A solution of sodium azide ($342 \mathrm{~g}, 5.3 \mathrm{~mol}$) in water (1264 mL) was added slowly at about $-5^{\circ} \mathrm{C}$. After the addition of sodium azide solution was complete, the reaction mixture was slowly warmed to about $25^{\circ} \mathrm{C}$ and stirred for about 0.5 h . The reaction mass was quenched by addition to water (50 L) and stirring for about 30 minutes at about $25^{\circ} \mathrm{C}$. The precipitate was filtered, washed with water (2 L) and dried to provide the title compound C9. Yield: 978 g
 7.16-7.20(d, 1 H), 6.60-6.66(d, 1 H), 4.74-4.82 (m, 1 H), 1.29-1.32 (d, 6 H).

Step 4. Synthesis of 6-bromo-7-isopropoxyisoquinolin-1 (2H)-one (C10).

[0177] To a mixture of diphenyl ether (8 L) and tri n-butyl amine ($328 \mathrm{~g}, 1.77 \mathrm{~mol}$) pre-heated to about $230^{\circ} \mathrm{C}$, compound $\mathbf{C 9}(550 \mathrm{~g}, 1.77 \mathrm{~mol})$ dissolved in diphenyl ether (2.5 L) was added while the temperature was maintained at about $230^{\circ} \mathrm{C}$. After the addition was completed, stirring and heating were continued for about 0.5 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$ and added slowly to hexane (27.5 L). The resulting slurry was cooled to about $0^{\circ} \mathrm{C}$ and stirred for about 0.5 h . The crude precipitate was filtered the precipitate was washed with cold hexane (5.5 L). The wet cake was dried under vacuum to afford 310 g of crude C10.
[0178] This reaction was repeated three more times to afford 1064 g of crude C10. This was dissolved in THF (5.3 L) at reflux and cooled to about $0^{\circ} \mathrm{C}$. The slurry was stirred for about 0.5 h and then filtered and the filter cake was dried under vacuum to afford 574 g of $\mathbf{C 1 0}$. The filtrate was concentrated and purified by chromatography to afford an additional 181 g to provide the title compound C10. Yield: $755 \mathrm{~g}(46 \%)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24$ - 8.26 (d, 1 H), 8.16 (s, 1 H), 7.65 (s, 1 H), $7.55-7.56$ (d, 1 H), 4.85-4.91 (m, 1 H), 1.51-1.52 (d, 6 H).

Step 5. Synthesis of 7-isopropoxy-1-oxo-1,2-dihydroisoquinoline-6-carbonitrile (C11).

[0179] Compound C10 ($490 \mathrm{~g}, 1.74 \mathrm{~mol}$) and zinc cyanide ($265 \mathrm{~g}, 2.25 \mathrm{~mol}$) were added to dry DMF (9.8 L) and stirred well for about 5 min at $25^{\circ} \mathrm{C}$. The reaction mixture was degassed with nitrogen for about 20 minutes, after which tetra(kis)triphenylphosphinepalladium (0) (120 g, 0.104 mol) was added and the reaction mixture was stirred for about 5 min at about $25^{\circ} \mathrm{C}$ before being heated to about $100^{\circ} \mathrm{C}$. The mixture was maintained for about 16 hours at about $100^{\circ} \mathrm{C}$. The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, diluted with EtOAc (4.9 L), and stirred for about 0.5 h . The mixture was filtered through celite, which was washed with EtOAc (1 L).

The combined filtrate was concentrated at at pressure of about 10 torr at about $75^{\circ} \mathrm{C}$. Water (4.9 L) was added to the residue and the mixture was stirred for about 0.5 h . The precipitate was filtered, washed with water (1 L) and dried under vacuum at about $60^{\circ} \mathrm{C}$. The precipitate was stirred for about 0.5 h with MTBE (4.9 L) and filtered. This process was repeated twice more, after which the filter cake was washed with MTBE (0.5 L) and dried under vacuum at about $60{ }^{\circ} \mathrm{C}$ to provide the title compound C11. Yield: $390 \mathrm{~g}(98 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $8.24-8.26(\mathrm{~d}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.56(\mathrm{~d}, 1 \mathrm{H}), 4.85-4.99(\mathrm{~m}, 1 \mathrm{H})$, 1.51-1.52 (d, 6 H).

Step 6. Synthesis of 1-chloro-7-isopropoxyisoauinoline-6-carbonitrile (P2).

[0180] Compound $\mathbf{C 1 1}$ ($390 \mathrm{~g}, 1.7 \mathrm{~mol}$) and $\mathrm{POCl}_{3}(10.97 \mathrm{~kg}, 71.5 \mathrm{~mol})$ were stirred for about 5 min at about $25^{\circ} \mathrm{C}$, then heated to about $100^{\circ} \mathrm{C}$ and maintained at about $100^{\circ} \mathrm{C}$ for about 0.5 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$ and concentrated under reduced pressure at about $60^{\circ} \mathrm{C}$. The residue was quenched with ice (7.8 kg), then neutralized with $25 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ solution (7.8 L) with stirring until the mixture was about $\mathrm{pH}=7$. The solution was extracted with DCM ($3 \times 5 \mathrm{~L}$), and the combined extracts were washed with $10 \% \mathrm{NaHCO}_{3}$ solution $(2 \times 3.9 \mathrm{~L})$. The DCM was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. n Heptane (3.9 L) was added to the residue and the mixture was stirred for about 0.5 h at about $25^{\circ} \mathrm{C}$. The precipitate was filtered and the filter cake was washed with n -heptane (390 mL) and dried under vacuum at about $60^{\circ} \mathrm{C}$ to provide the title compound P2. Yield: 338 g (80%) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) $\delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.29-8.31(\mathrm{~d}, 1 \mathrm{H}), 7.89-7.91(\mathrm{~d}, 1 \mathrm{H}), 7.67(\mathrm{~s}$, $1 \mathrm{H}), 5.02-5.06(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.43(\mathrm{~d}, 6 \mathrm{H})$.

Preparation 3: 4-chloro-6-methoxyquinazoline-7-carbonitrile (P3)

Step 1. Synthesis of 3-hydroxy-4-iodobenzoic acid (CAS 58123-77-6, C12).

[0181] To a stirred solution of 3-hydroxybenzoic acid ($25 \mathrm{~g}, 181 \mathrm{mmol}$) in water (180 mL) were added 1 M aqueous $\mathrm{NaOH}(188 \mathrm{~mL})$ and sodium iodide ($28.1 \mathrm{~g}, 188 \mathrm{mmol}$), followed by slow addition aqueous sodium hypochlorite solution ($0.9 \mathrm{M}, 209 \mathrm{~mL}$). The mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 2 h , then cooled in ice and acidified with concentrated HCl to $\mathrm{pH}=3$. A sufficient quantity of 10% ascorbic acid solution was added to afford a colorless mixture. The remaining precipitate was filtered, washed with water, and dissolved in EtOAc. The EtOAc solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound C12. Yield: $34 \mathrm{~g}(71 \%){ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 12.98$ (br s, 1 H), 10.65 (s, 1 H), 7.78 (dd, 1 H), 7.32 (d, 1 H), 7.11 (dd, 1 H).

Step 2. Synthesis of methyl 4-iodo-3-methoxybenzoate (CAS 35387-92-9, C13).

[0182] To a stirred solution of compound C12 (84 g, 318 mmol) in DMF (300 mL) at about $0^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(177 \mathrm{~g}, 1273 \mathrm{mmol})$ followed by methyl iodide ($79.3 \mathrm{~mL}, 1273 \mathrm{mmol}$). The mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 16 h , then diluted with EtOAc (2 L) and washed with water ($600 \mathrm{~mL} \times 2$), followed by brine ($100 \mathrm{~mL} \times 2$). The EtOAc was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound C13. Yield: $84 \mathrm{~g}(90 \%){ }^{1} \mathrm{H}$ NMR $(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, 1 \mathrm{H}), 7.44(\mathrm{~d}, 1 \mathrm{H}), 7.36(\mathrm{dd}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.

Step 3. Synthesis of methyl 4-iodo-5-methoxy-2-nitrobenzoate (C14).

[0183] A stirred solution of compound $\mathbf{C 1 3}$ ($10 \mathrm{~g}, 38 \mathrm{mmol}$) in $\mathrm{AcOH}(92 \mathrm{~mL})$ was treated with 70% concentrated $\mathrm{HNO}_{3}(11.9 \mathrm{~mL})$ with cooling in an about $25^{\circ} \mathrm{C}$ water bath, after which acetic anhydride (46 mL) was added. The mixture then placed in a pre-heated oil bath at about $70^{\circ} \mathrm{C}$. After about 2 h , the reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, diluted with 1 M NaOH solution (200 mL), and extracted with EtOAc ($200 \mathrm{~mL} \times 2$). The combined extracts were washed with NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography to provide the title compound $\mathbf{C 1 4}$. Yield: $10 \mathrm{~g}(78 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}_{\mathrm{d}}$) $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$.

Step 4. Synthesis of methyl 2-amino-4-iodo-5-methoxybenzoate (C15).

[0184] To a stirred solution of compound C14 (19 g, 56 mmol$)$ in $\mathrm{MeOH}(300 \mathrm{~mL})$ was added a solution of stannous chloride dihydrate ($40.7 \mathrm{~g}, 180 \mathrm{mmol}$) in 120 mL of 6 M HCI . The mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 16 h , then concentrated. The residue was stirred with a saturated aqueous solution of potassium fluoride and extracted twice with EtOAc. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was triturated with a mixture of DCM and hexane to provide the title compound C15. Yield: 14 g

Step 5. Synthesis of 7-iodo-6-methoxyquinazolin-4(3H)-one (C16).

[0185] A stirred solution of compound C15 ($17 \mathrm{~g}, 55 \mathrm{mmol}$) in formamide (170 mL) was heated at about $160^{\circ} \mathrm{C}$ for about 18 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, diluted with water (170 mL), and stirred at about $10^{\circ} \mathrm{C}$ for about 30 minutes. The precipitate was filtered, washed with water followed by diethyl ether, and dried under vacuum to provide the title
compound C15. Yield: $12 \mathrm{~g}(71 \%){ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 8.14$ (s, 1 H), 7.99 (s, 1 H), 7.44 (s, 1 H), 7.16 (br s, 1 H), 3.93 (s, 3 H).

Step 6. Synthesis of 6-methoxy-4-oxo-3,4-dihydroquinazoline-7-carbonitrile (C17).

[0186] A stirred solution of compound C16 (16 g, 53 mmol) in dimethyl acetamide (80 mL) was degassed with argon for about 15 minutes, after which zinc cyanide ($6.22 \mathrm{~g}, 53 \mathrm{mmol}$) was added, followed by TMEDA ($2.38 \mathrm{~mL}, 16 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium(0) $(4.85 \mathrm{~g}, 5.3 \mathrm{mmol})$ and Xantphos ($3.06 \mathrm{~g}, 5.3 \mathrm{mmol}$). The mixture was heated at about $80{ }^{\circ} \mathrm{C}$ for about 5 h under argon, then cooled to about $25^{\circ} \mathrm{C}$, diluted with diethyl ether (1 L), and filtered. The precipitate was dissolved in a mixture of MeOH and DCM (1/4, v/v) and filtered through Celite®. The filtrate was concentrated and the residue was purified by column chromatography to provide the title compound C17. Yield: $5.4 \mathrm{~g}(50 \%){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, dmso-d ${ }_{6}$) $\delta 12.47$ (br. s, 1 H), 8.17 (s, 1 H), 8.09 (s, 1 H), 7.69 (s, 1 H), 4.02 (s, 3 H).

Step 7. Synthesis of 4-chloro-6-methoxyquinazoline-7-carbonitrile (P3).

[0187] A mixture of compound $\mathbf{C 1 7}(10 \mathrm{~g}, 49.8 \mathrm{mmol})$ and $\mathrm{POCl}_{3}(250 \mathrm{~mL})$ was heated at about $100{ }^{\circ} \mathrm{C}$ for about 16 h , then cooled to about $25^{\circ} \mathrm{C}$ and concentrated. The residue was diluted with EtOAc and the ethyla acetate solution was washed with water, saturated aqueous NaHCO_{3} solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography to provide the title compound P3. Yield: $2.8 \mathrm{~g}(27 \%){ }^{1} \mathrm{H}$ NMR (400 MHz, dmso-d ${ }_{6}$) $\delta 9.11$ (s, 1 H), 8.75 (s, 1 H), 7.66 (s, 1 H$), 4.14$ (s, 3 H).

Preparation 4: 4-chloro-6-isopropoxyquinoline-7-carboxamide (P4)

[0188]

Step 1. Synthesis of methyl 2-hydroxy-5-nitrobenzoate (C18).

[0189] Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(150 \mathrm{~mL})$ was added slowly to a solution of 2-hydroxy-5nitrobenzoic acid ($1000 \mathrm{~g}, 5.4 \mathrm{~mol}$) in dry $\mathrm{MeOH}(5 \mathrm{~L})$. After the addition was complete, the
mixture was heated to reflux for about 24 h . After completion of the reaction, the mixture was filtered and the precipitate was reserved. The filtrate was concentrated to afford a solid residue. This residue and the previous precipitate were dissolved in EtOAc and washed with water twice. The EtOAc was then washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to provide the title compound C18. Yield: $900 \mathrm{~g}(84 \%){ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 11.42$ (s, 1 H), $8.80-8.79$ (d, 1 H), $8.31-8.35$ (dd, 1 H), $7.07-7.10$ (d, 1 H$), 4.04$ (s, 3 H).

Step 2. Synthesis of methyl 2-isopropoxy-5-nitrobenzoate (C19).

[0190] Compound C18 (900 g, 4.56 mol), triphenylphosphine ($1.33 \mathrm{~kg}, 5.02 \mathrm{~mol}$) and 2propanol ($3.8 \mathrm{~kg}, 5.02 \mathrm{~mol}$) were dissolved in dry THF (18 L) and cooled to about $5{ }^{\circ} \mathrm{C}$. Di-isopropyl-azodicarboxylate ($1.01 \mathrm{~kg}, 5.02 \mathrm{~mol}$) was added, and the reaction was allowed to warm to about $25^{\circ} \mathrm{C}$ and was stirred overnight. The mixture was concentrated under reduced pressure and the residue treated with EtOAc (5 L). The undissolved solids that remained were removed by filtration, and the filtrate was evaporated. The residue was purified by column chromatography to provide the title compound C19. Yield: $760 \mathrm{~g}(70 \%){ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~d}, 1 \mathrm{H}), 8.29-8.34(\mathrm{dd}, 1 \mathrm{H}), 7.01(\mathrm{~d}, 1 \mathrm{H}), 4.73-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, 1.33 (d, 6 H).

Step 3. Synthesis of methyl 5-amino-2-isopropoxybenzoate (C20).

[0191] A solution of compound C19 ($760 \mathrm{~g}, 3.17 \mathrm{~mol}$) in EtOH (12 L) was treated with palladium on carbon (76 g) and this mixture was stirred for about 1 h at about $25^{\circ} \mathrm{C}$ under an atmosphere of hydrogen at about 50 psig. After completion of the reaction, the mixture was filtered through celite and filter cake was washed with additional EtOH. The filtrate was evaporated to provide the title compound C20. Yield: $600 \mathrm{~g}(60 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso$\left.\mathrm{d}_{6}\right) \delta 6.83-6.85(\mathrm{~d}, 1 \mathrm{H}), 6.76-6.79(\mathrm{dd}, 1 \mathrm{H}), 4.31-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.80-3.60$ (br. s, 2H), 1.29-1.31 (d, 6 H).

Step 4. Synthesis of methyl 5-((12,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)-2-isopropoxybenzoate (C21).

[0192] A mixture of compound $\mathbf{C 2 0}(600 \mathrm{~g}, 2.88 \mathrm{~mol})$, Meldrum's acid ($640 \mathrm{~g}, 3.44 \mathrm{~mol}$), and triethyl orthoformate ($560 \mathrm{~g}, 3.44 \mathrm{~mol}$) in $\mathrm{EtOH}(7 \mathrm{~L})$ was heated at reflux overnight. The mixture was cooled to about $20^{\circ} \mathrm{C}$ and the resulting precipitate was collected by filtration to provide the title compound C21. Yield: $620 \mathrm{~g}(60 \%)^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.07-11.17$ (br. d, 1 H), 8.53-8.58 (d, 1 H), 7.69-7.70 (d, 1 H), 7.29-7.33 (dd, 1 H), 7.02-7.05 (d, 1 H), 4.55-4.62 (m, 1 H), 2.91 (s, 3 H), 1.75 (d, 6 H), $1.38-1.40(\mathrm{~d}, 6 \mathrm{H})$.

Abstract

Step 5. Synthesis of methyl 6-isopropoxy-4-oxo-1,4-dihydroquinoline-7-carboxylate (C22).

Abstract

[0193] Compound C21 (20 g, 55 mmol) was added in portions to pre-heated Dowtherm A (480 mL) at about $240{ }^{\circ} \mathrm{C}$. Heating and stirring at that temperature were continued for approximately an additional 5 minutes after completion of the addition. The mixture was cooled to about $20^{\circ} \mathrm{C}$ and purified by column chromatography to give 6.2 g of a mixture of compound C22 and methyl 6 -isopropoxy-4-oxo-1,4-dihydroquinoline-5-carboxylate. This procedure was repeated 29 times more with same scale to provide a mixture of the title compound $\mathbf{C 2 2}$ and and methyl 6-isopropoxy-4-oxo-1,4-dihydroquinoline-5-carboxylate. Yield: $311 \mathrm{~g} \mathrm{(72} \mathrm{\%)}{ }^{1} \mathrm{H}$ NMR (400 MHz, dmso-d ${ }_{6}$) $\delta 11.90(\mathrm{~s}, 2 \mathrm{H}), 7.94-7.92(\mathrm{~d}, 1 \mathrm{H}), 7.87-7.86$ (d, 1 H$), 7.83$ (s, 1 H), 7.62-7.54 (m, 3 H), 6.01-6.02 (d, 1 H), 5.93-5.91 (d, 1 H), 4.72-4.66 (m, 1 H$), 4.62$ -4.56 (m, 1 H), 3.85 (s, 3 H), 3.76 (s, 3 H), 1.29-1.31 (d, 6 H), 1.20-1.22 (d, 6 H).

Step 6. Synthesis of 6-isopropoxy-4-oxo-1,4-dihydroquinoline-7-carboxylic acid (C23).
[0194] The mixture of compound $\mathbf{C 2 2}$ and and methyl 6-isopropoxy-4-oxo-1,4-dihydroquinoline-5-carboxylate ($311 \mathrm{~g}, 1.19 \mathrm{~mol}$) was added to THF (1.55 L) and water (1.55 L). Lithium hydroxide monohydrate ($199 \mathrm{~g}, 4760 \mathrm{mmol}$) was added and the mixture was stirred at about $25^{\circ} \mathrm{C}$ overnight. The reaction mixture was diluted with water and extracted with EtOAc 4 times until the methyl 6-isopropoxy-4-oxo-1,4-dihydroquinoline-5-carboxylate was absent from the aqueous phase. The aqueous layer was adjusted to about $\mathrm{pH}=1$ by the addition of 1 M HCl and the aqueous layer was extracted with EtOAc twice. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to provide the title compound $\mathbf{C 2 3}$. Yield: $129 \mathrm{~g}(44 \%)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}^{\left.-\mathrm{d}_{6}\right) \delta 11.6-13.0(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.04-8.06(\mathrm{~d}, 1 \mathrm{H}), 7.84}$ (s, 1 H), 7.60 (s, 1 H), 6.20-6.22 (d, 1 H), 4.69-4.73 (m, 1 H), 1.30-1.32 (d, 6 H).

Step 7. Synthesis of 4-chloro-6-isopropoxyquinoline-7-carboxamide (P4).

[0195] A mixture of compound C23 (129 g, 520 mmol) and $\mathrm{POCl}_{3}(2 \mathrm{~L})$ was heated under reflux for about 6 h . The mixture was concentrated under reduced pressure to give a dark oil, which was immediately treated with 10 L of a saturated solution of ammonia gas in dioxane at about $0^{\circ} \mathrm{C}$. The mixture was then stirred at about $25^{\circ} \mathrm{C}$ overnight. The reaction mixture was filtered and the filtrate was concentrated. The residue was diluted with DCM (1 L) and washed with water. The DCM extract was concentrated to obtain a solid residue which was purified by trituration with diethyl ether to provide the title compound P4. Yield: $55 \mathrm{~g}(40 \%){ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) $\delta 8.90$ (s, 1 H), 8.71 - 8.72 (d, 1 H), 7.80 (br. s, 1 H), 7.50 (s, 1 H), 4.90 (m, 1 H), 1.47 (d, 6 H).

Preparation 5: 5-hydroxy-3-methoxy-2-naphthamide (P5)

Step 1. Synthesis of methyl 3.5-dihydroxy-2-naphthoate (C24).
[0196] A solution of 3,5-dihydroxy-2-naphthoic acid ($2.2 \mathrm{~kg}, 10.8 \mathrm{~mol}$) in anhydrous MeOH (16 L) was cooled to below $25^{\circ} \mathrm{C}$, after which thionyl chloride ($2.56 \mathrm{~kg}, 21.5 \mathrm{~mol}$) was then added over a period of about 3 h . After the addition, the mixture was stirred at about $25^{\circ} \mathrm{C}$ overnight. An additional 500 g of thionyl chloride was added slowly and the mixture was stirred for approximately another 16 hours until the reaction was complete. The reaction mixture was concentrated to dryness and the residue was taken up in cold water. The resulting suspension was adjusted to about $\mathrm{pH}=8$ with aqueous NaHCO_{3}. The precipitate was filtered, washed with water ($0.5 \mathrm{~L} \times 3$) and dried under vacuum to provide the title compound C24. Yield: 2.25 kg (96\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}_{\mathrm{d}}$) $\delta 10.19$ (s, 1 H), 10.18 (s, 1 H), 8.37 (s, 1 H), 7.49 (s, 1 H), $7.39-7.42(\mathrm{~d}, 1 \mathrm{H}), 7.14-7.18(\mathrm{t}, 1 \mathrm{H}), 6.88-6.90(\mathrm{~d}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$.

Step 2. Synthesis of methyl 5-((tert-butyldiphenylsilyl)oxy)-3-hydroxy-2-naphthoate (C25).

[0197] To a solution of compound C24 ($500 \mathrm{~g}, 2.3 \mathrm{~mol}$) in 1,2-dichloroethane (7.5 L) was added imidazole ($233 \mathrm{~g}, 3.4 \mathrm{~mol}$). After the addition, the mixture was heated to about $45{ }^{\circ} \mathrm{C}$ and stirred for about 45 minutes before t-butyldiphenylsilyl chloride ($453 \mathrm{~g}, 2.7 \mathrm{~mol}$) was added dropwise. The mixture was then heated to about $65^{\circ} \mathrm{C}$ and held at that temperature for about two hours. Water (3 L) was added to the mixture and the dichloroethane layer was separated. The aqueous phase was extracted with DCM (1 L x 2). The combined DCM extracts were washed with water ($2 \mathrm{~L} \times 2$) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Cold MeOH was added to the residue and stirred for about 10 minutes. The precipitate was filtered, washed with cold MeOH , and dried under vacuum to provide the title compound C25. Yield: 900 g (86%) This process was repeated to prepare additional compound C25. ${ }^{1} \mathrm{H}$ NMR (300 MHz , dmso-d d_{6}) $\delta 10.35$ (s, 1 H), 8.42 (s, 1 H), 7.77 (s, 1 H), $7.69-7.72(\mathrm{t}, 4 \mathrm{H}), 7.52(\mathrm{~m}, 7 \mathrm{H}), 6.90-6.96(\mathrm{t}, 1 \mathrm{H}), 6.37-6.41(\mathrm{~d}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 1.13$ (s, 9 H).

Step 3. Synthesis of methyl 5-((tert-butyldiphenylsilyl)oxy)-3-methoxy-2-naphthoate (C26).

[0198] Triphenylphosphine ($1.15 \mathrm{~kg}, 4.4 \mathrm{~mol}$) was dissolved in THF (13 L) and treated with diisopropylazodicarboxylate ($885 \mathrm{~g}, 4.4 \mathrm{~mol}$) with stirring and cooling to maintain the
temperature below about $25^{\circ} \mathrm{C}$. After the addition was complete, the mixture was stirred for about 10 minutes. Methanol ($876 \mathrm{~mL}, 21.9 \mathrm{~mol}$) was then added into the mixture over a period of about 1 h with cooling to maintain the temperature approximately below $25^{\circ} \mathrm{C}$. Compound $\mathbf{C 2 5}(1.0 \mathrm{~kg}, 2.2 \mathrm{~mol})$ was added into the mixture in portions. The resulting solution was heated to about $80^{\circ} \mathrm{C}$ for about 1 h . The mixture was then cooled to about $25^{\circ} \mathrm{C}$ and concentrated to dryness. The residue was purified by column chromatography, after which it was heated under reflux with a $3 / 1$ mixture of EtOH and petroleum ether for about 1 h to provide the title compound C26. Yield: 500 g (49%) This process was repeated to prepare additional compound C26. ${ }^{1} \mathrm{H}$ NMR (300 MHz , dmso- d_{6}) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.77(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.52$ (m, 7 H), $7.01-7.06$ (t, 1 H), $6.50-6.53(\mathrm{~d}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H})$.

Step 4. Synthesis of 5-hydroxy-3-methoxy-2-naphthoic acid (C27).

[0199] Compound C26 ($1.33 \mathrm{~kg}, 2.8 \mathrm{~mol}$) and lithium hydroxide monohydrate ($475 \mathrm{~g}, 11.3 \mathrm{~mol}$) were added to a mixture of THF (3 L), MeOH (500 mL) and water (3 L). The mixture was stirred at about $25^{\circ} \mathrm{C}$ overnight, after which the mixture was diluted with EtOAc (4 L) and water $(2 \mathrm{~L})$. The aqueous phase was separated and the EtOAc phase was extracted with water (2 Lx 2). The combined aqueous phases were extracted with EtOAc ($2 \mathrm{~L} \times 2$) and then acidified to about $\mathrm{pH}=3$ with concentrated HCl . The precipitate was filtered, washed with water ($1 \mathrm{~L} \times 3$), and dried in vacuum to provide the title compound C27. Yield: $533 \mathrm{~g}(86 \%)$.
[0200] This process was repeated to prepare additional compound C27. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6} ס 12.80 (br. s, 1 H), 10.16 (s, 1 H), 8.12 (s, 1 H), 7.50 (s, 1 H), 7.37 (d, 1 H), 7.15 7.24 (m, 1 H), 6.92 (dd, 1 H), 3.90 (s, 3 H).

Step 5. Synthesis of 5-hydroxy-3-methoxy-2-naphthamide (P5).
[0201] A suspension of compound $\mathbf{C 2 7}(80 \mathrm{~g}, 360 \mathrm{mmol}$) in a mixture of DMF (15 mL) and dry THF (2 L) was treated with oxalyl chloride (64 mL) at about $25^{\circ} \mathrm{C}$. The resulting suspension was stirred for about 1 h , then it was concentrated to dryness and the residue was suspended in 2 L of dry THF and cooled in ice. Concentrated ammonium hydroxide (220 mL) was added over a period of about five to ten minutes. The resulting mixture was then stirred at about 25 ${ }^{\circ} \mathrm{C}$ for approximately another twenty minutes. Saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was added and the THF was evaporated under reduced pressure. Water (1 L) was added and the precipitate was filtered, washed with water, and dried under vacuum. The resulting solid was suspended in EtOAc and heated under reflux for about 2 h . The solid was filtered, washed with EtOAc, and dried to provide the title compound P5. Yield: $51 \mathrm{~g}(65 \%)$ By repetition of these steps a total of 1.0 kg of $\mathbf{P 5}$ was prepared. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{dmso}^{-d_{6}}\right) \delta 10.19(\mathrm{~s}, 1 \mathrm{H}), 8.21$ (s, 1 H), $7.80-7.81$ (br. s, 1 H), $7.60-7.61$ (br. s, 1 H), 7.51 (s, 1 H), $7.38-7.41$ (d, 2 H), 7.19 $-7.20(\mathrm{t}, 1 \mathrm{H}), 6.97-6.99(\mathrm{~d}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$.

Synthesis of 5-hydroxy-3-isopropoxy-2-naphthamide (P6).

[0203] This compound was prepared in the same manner as compound P5, substituting 2propanol for MeOH in the reaction of compound $\mathbf{C 2 5}$ in Step 3, to provide the title compound P6. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 9.00-10.8$ (br. s, 1 H), 8.28 ($\mathrm{s}, 1 \mathrm{H}$), 7.69 ($\mathrm{s}, 1 \mathrm{H}$), 7.61 (s , 1 H), 7.55 (s, 1 H), $7.35-7.37$ (d, 1 H), 7.16-7.20 (t, 1 H), 6.90-6.91 (d, 1 H), 4.80-4.86 (m, 1 H), 1.39-1.41 (d, 1 H).

Preparation 6: 1-chloro-7-ethoxyisoquinoline-6-carbonitrile (P7)

[0205] Step 1. Synthesis of 1-chloro-7-hydroxyisoquinoline-6-carbonitrile (C28). To a stirred solution of compound P2 ($10.0 \mathrm{~g}, 40.6 \mathrm{mmol}$) in 250 mL of DCM was added anhydrous aluminum chloride ($16.3 \mathrm{~g}, 122 \mathrm{mmol}$). The reaction mixture was heated under reflux for about 4 h . The supernatant liquid was was removed by decantation and ice was added to the residue remaining in the flask, which was broken up manually to afford a light yellow suspension. This solid was filtered and washed with water, dried, and was washed with ether to provide the title compound C28. Yield: $8.1 \mathrm{~g}(97 \%)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}^{\mathrm{d}}$) $\delta 11.95$ (s, 1 H), 8.65 (s, 1 H), 8.22 (d, 1 H), 7.84 (d, 1 H), 7.69 (s, 1 H).
[0206] Step 2. Synthesis of 1-chloro-7-ethoxyisoquinoline-6-carbonitrile (P7). To a stirred solution of compound $\mathbf{C 2 8}(9.0 \mathrm{~g}, 44.1 \mathrm{mmol})$ in 190 mL of DMF was added potassium tbutoxide ($6.9 \mathrm{~g}, 61.8 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After about 15 minutes, iodoethane ($8.8 \mathrm{~mL}, 110 \mathrm{mmol}$) was added. The reaction mixture was allowed to warm to about $25^{\circ} \mathrm{C}$ and was stirred for about 4 h . The reaction mixture was diluted with water and the resulting precipitate was filtered and dried. The precipitate was then triturated with a mixture of MeOH and diethyl ether (9/1, v / v) to provide the title compound P7. Yield: $7.6 \mathrm{~g}(83 \%)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}^{\mathrm{d}} \mathrm{d}_{6}$) $\delta 8.72$

[0208] This compound was prepared in the same manner as compound P7, substituting 3-bromoprop-1-yne for iodoethane in the reaction of compound C28 in Step 2, to provide the title compound P8. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 8.78$ (s, 1 H), 8.34 (d, 1 H), 7.93 (d, 1 H), 7.84 (s, 1 H), 5.25 (s, 2 H), 3.79 (s, 1 H).

Synthesis of 1-chloro-7-methoxy-d ${ }_{3}$-isoquinoline-6-carbonitrile (P9).

[0209]

[0210] This compound was prepared in the same manner as compound P7, substituting methyl-d ${ }_{3} 4$-methylbenzenesulfonate for iodoethane in the reaction of compound C28 in Step 2, to provide the title compound P9. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}): $\delta 8.73$ (s, 1 H), 8.31 (d, 1 H), 7.91 (d, 1 H), 7.63 (s, 1 H).

Synthesis of 1-chloro-7-(2-methoxyethoxy)isoquinoline-6-carbonitrile (P10).

[0212] This compound was prepared in the same manner as compound P7, substituting 1-bromo-2-methoxyethane for iodoethane in the reaction of compound C28 in Step 2, to provide the title compound P10. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H})$, 7.56 (d, 1 H), 4.40 (t, 2 H), $3.90(\mathrm{t}, 2 \mathrm{H}$), 3.51 (s, 3 H).

Preparation 7: 1-chloro-7-(cyclopropylmethoxy)isoquinoline-6-carbonitrile (P11)

Step 1. Synthesis of 1-chloro-7-(cyclopropylmethoxy)isoquinoline-6-carbonitrile (P11).

[0214] A solution of triphenylphosphine ($0.78 \mathrm{~g}, 3.0 \mathrm{mmol}$) in THF (8 mL) was treated with diisopropylazodicarboxylate ($0.61 \mathrm{~g}, 3 \mathrm{mmol}$). After about 5 minutes, cyclopropylmethanol ($0.29 \mathrm{~g}, 4.0 \mathrm{mmol}$) was added, followed by compound $\mathbf{C 2 8}(0.41 \mathrm{~g}, 2.0 \mathrm{mmol})$. The mixture was heated for about 1.5 h , then cooled and concentrated. The residue was triturated with MeOH and filtered to provide the title compound $\mathbf{P 1 1 .}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso- $\left.\mathrm{d}_{6}\right) \delta 8.75$ (s, 1 H), 8.31 (d, 1 H), 7.91 (d, 1 H), 7.64 (s, 1 H), 4.20 (d, 1 H), 1.35 (m, 1 H), 0.65 (d, 2 H), 0.46 (d, 2 H).

Synthesis of 1-chloro-7-tert-butoxyisoquinoline-6-carbonitrile (P12).

[0216] This compound was prepared in the same manner as compound P11, substituting 2-methyl-2-ropanol for cyclopropylmethanol in the reaction of compound $\mathbf{C 2 8}$ in Step 1, to provide the title compound P12. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.97$ (s, 1 H), 7.58 (d, 1 H), 1.63 (s, 9 H)

Synthesis of 1-chloro-7-cyclobutoxyisoquinoline-6-carbonitrile (P13).

[0218] This compound was prepared in the same manner as compound P11, substituting cyclobutanol for cyclopropylmethanol in the reaction of compound C28 in Step 1, to provide the title compound P13. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, 1 \mathrm{H}), 7.91$ (d, 1 H), $7.50(\mathrm{~s}, 1 \mathrm{H}), 5.10$ (quin, 1 H), 2.60-2.56(m,2H), 2.26-2.18(m,2H), $1.93-1.83(\mathrm{~m}, 1 \mathrm{H})$, 1.83-1.73(m, 1 H$)$.

Synthesis of 1-chloro-7-(oxetan-3-yloxy)isoquinoline-6-carbonitrile (P14).

[0219]

[0220] This compound was prepared in the same manner as compound P11, substituting oxetan-3-ol for cyclopropylmethanol in the reaction of compound C28 in Step 1, to provide the title compound P14. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}^{-d_{6}}$) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, 1 \mathrm{H}), 7.94(\mathrm{~d}, 1 \mathrm{H})$, $7.27(\mathrm{~s}, 1 \mathrm{H}), 5.63-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{t}, 1 \mathrm{H}), 4.69(\mathrm{~m}, 2 \mathrm{H})$.

Preparation 8: 4-chloro-6-isopropoxyquinoline-7-carbonitrile (P15)

[0221]

Step 1. Synthesis of 4-chloro-6-isopropoxyquinoline-7-carbonitrile (P15)

[0222] Phosphorus oxychloride ($28.2 \mathrm{~mL}, 303 \mathrm{mmol}$) was added drop wise with stirring to a solution of compound P4 ($20 \mathrm{~g}, 75.8 \mathrm{mmol}$), pyridine ($91 \mathrm{~mL}, 1.13 \mathrm{~mol}$) and imidazole (10.3 g , 151.5 mmol) in DCM (300 mL). The mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 30 minutes. The reaction mixture was then cooled in ice and quenched with cold water (100 mL), added slowly enough to maintain the temperature to approximately below $5^{\circ} \mathrm{C}$. Stirring was continued for approximately another 20 minutes with cooling. The mixture was then poured into 1 M HCl $(500 \mathrm{~mL})$ and separated. The aqueous phase was extracted with DCM. The combined DCM extracts were washed with 1 M HCl , water, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound P15. Yield: $12 \mathrm{~g}(64 \%){ }^{1} \mathrm{H}$ NMR: $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 4.85$ (quin, 1 H$), 1.50(\mathrm{~d}, 6 \mathrm{H})$.

Preparation 9: 4-chloro-6-methoxyquinoline-7-carbonitrile (P16)

Step 1. Synthesis of 4-chloro-6-hydroxyquinoline-7-carbonitrile (C29)

[0223] To a stirred solution of compound P15 (12.0 g, 48.6 mmol$)$ in 180 mL of DCM was added anhydrous aluminum chloride ($20.6 \mathrm{~g}, 155 \mathrm{mmol}$). The reaction mixture was heated under reflux overnight. The solvent was evaporated under reduced pressure, and the residue was stirred with $0.1 \mathrm{M} \mathrm{HCl}(400 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 2 h . The remaining solid was filtered, washed with water, MeOH , and dried to provide the title compound C29. Yield: $9.6 \mathrm{~g}(96 \%){ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) $\delta 11.82$ (s, 1 H), 8.74 (d, 1 H); 8.56 (s, 1 H), 7.81 (d, 1 H), 7.60 (s, 1 H).

Step 2. Synthesis of 4-chloro-6-methoxyquinoline-7-carbonitrile (P16)

[0224] To a stirred solution of compound C29 (9.6 g, 46.9 mmol) in DMF (190 mL) was added potassium t-butoxide ($6.8 \mathrm{~g}, 61 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After about 15 minutes, iodomethane (7.3 mL , 117 mmol) was added. The reaction mixture was allowed to warm to about $25^{\circ} \mathrm{C}$ and was stirred for about 2 h . The reaction mixture was diluted with water and the resulting precipitate was filtered and dried. This solid was washed with water, hexane, and dried under vacuum to provide the title compound P15. Yield: $8.1 \mathrm{~g}(79 \%)^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~d}, 1 \mathrm{H})$, 8.41 (s, 1 H), 7.56 (d, 1 H); 7.52 (s, 1 H), 4.09 (s, 3 H).

Synthesis of 4-chloro-6-ethoxyquinoline-7-carbonitrile (P17).

[0226] This compound was prepared in the same manner as compound P16, substituting iodoethane for iodomethane in the reaction of compound C30 in Step 3, to provide the title compound P17. ${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{dmso}_{\mathrm{d}}\right) \delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, 1 \mathrm{H}), 7.89(\mathrm{~d}, 1 \mathrm{H}), 7.62$ ($\mathrm{s}, 1 \mathrm{H}$), 4.38 ($\mathrm{q}, 2 \mathrm{H}$), $1.46(\mathrm{t}, 3 \mathrm{H})$.

Preparation 10: 1-chloro-7-(difluoromethoxy)isoquinoline-6-carbonitrile (P18)

Step 1. Synthesis of 1-chloro-7-(difluoromethoxy)isoquinoline-6-carbonitrile (P18).
[0228] A solution of compound C27 ($164 \mathrm{mg}, 0.8 \mathrm{mmol}$) in DMF (2 mL) was treated with sodium difluoroacetate ($95 \mathrm{mg}, 0.8 \mathrm{mmol}$) and cesium carbonate ($285 \mathrm{mg}, 0.9 \mathrm{mmol}$). The mixture was heated at about $60^{\circ} \mathrm{C}$ for about 1 h . The mixture was diluted with 25 mL of water and 25 mL of EtOAc, and the EtOAc was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography to provide the title compound P18. Yield $133 \mathrm{mg}(65 \%)$. ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{dmso}^{\left.-d_{6}\right) \delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.48}$ (d, 1 H), 8.07 (d, 1 H), 8.02 (dd, 1 H), 7.70 (t, 1 H).

Preparation 11: 6-bromo-1-chloro-7-(trifluoromethoxy)isoquinoline (P19)

[0229]

[0230] Step 1. Synthesis of 6-bromo-1-chloro-7-(trifluoromethoxy)isoquinoline (P19). A suspension of 6-bromo-7-(trifluoromethoxy)isoquinolin-1(2H)-one (CAS 1445564-99-7, 410
$\mathrm{mg}, 1.3 \mathrm{mmol}$) in 6 mL of POCl_{3} was heated under reflux for about 40 minutes. The mixture was cooled in ice and then poured into ice water with vigorous stirring. After the ice had melted, the mixture was extracted with EtOAc (100 mL). The EtOAc was separated and stirred with saturated aqueous NaHCO_{3} solution (100 mL) until no bubbling occured. The EtOAc was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica chromatography to provide the title compound P19. Yield $130 \mathrm{mg}(31 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, 1 \mathrm{H}), 8.24(\mathrm{~d}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H})$.

Preparation 12: 1-Chloro-7-cyclopropoxyisoquinoline-6-carbonitrile (P21)

Step 1. Synthesis of 1-chloro-7-(2-chloroethoxy)isoquinoline-6-carbonitrile (C166).

[0232] A mixture of compound C28 (2.4 g, 11.8 mmol$)$, 2-chloroethanol-1-(4methylbenzenesulfonate) (CAS $80-41-1,5.5 \mathrm{~g}, 23.5 \mathrm{mmol}$), Triton-405 ($6.63 \mathrm{~g}, 11.8 \mathrm{mmol}$) and cesium carbonate ($4.58 \mathrm{~g}, 14.1 \mathrm{mmol}$) in 96 mL of THF was heated for about 8 h at about 65 ${ }^{\circ} \mathrm{C}$. The mixture was diluted with water and extracted with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C166. Yield: 2.0 g (64\%). LCMS: $\mathrm{MH}^{+}=267.0$.

Step 2. Synthesis of 1-chloro-7-(vinyloxy)isoquinoline-6-carbonitrile (C167).

[0233] A solution of compound C166 (1.4 g, 5.3 mmol) in THF (50 mL) was treated with a solution of potassium t-butoxide ($1.2 \mathrm{~g}, 10.6 \mathrm{mmol}$) in 15 mL of THF at about $-20{ }^{\circ} \mathrm{C}$, after which the mixture was warmed to about $25{ }^{\circ} \mathrm{C}$ and stirred for about 1 h Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with EtOAc. The combined EtOAc extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C167. Yield: 1.1 g (90\%). LCMS: $\mathrm{MH}^{+}=230.9$.

Step 3. Synthesis of 1-Chloro-7-cyclopropoxyisoquinoline-6-carbonitrile (P21).

[0234] A solution of compound C167 ($220 \mathrm{mg}, 0.9 \mathrm{mmol}$) in 50 mL of DCM was treated sequentially at about $0{ }^{\circ} \mathrm{C}$ with ethereal diazomethane (150 mL), followed by palladium(II) acetate (25 mg). The mixture was stirred overnight at about $25^{\circ} \mathrm{C}$, then the mixture was filtered and concentrated. The residue was purified by chromatography to provide the title compound P21. Yield: $30 \mathrm{mg}(13 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 8.22-8.21(\mathrm{~d}, 1 \mathrm{H}), 8.09$ (s, 1 H), 7.98 (s, 1 H), $7.51-7.50(\mathrm{~d}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.88(\mathrm{~m}, 4 \mathrm{H})$.

Preparation 13: 3,4-dichloro-6-methoxyquinoline-7-carbonitrile (P22)

[0235]

Step 1. Synthesis of 3-chloro-7-iodo-6-methoxyquinolin-4(1H)-one (C168).

[0236] A solution of 7-iodo-6-methoxyquinolin-4(1H)-one (CAS 1300031-68-8, $2.0 \mathrm{~g}, 6.6$ mmol) and N -chlorosuccinimide ($976 \mathrm{mg}, 7.3 \mathrm{mmol}$) in $\mathrm{AcOH}(20 \mathrm{~mL})$ was heated at about 35 ${ }^{\circ} \mathrm{C}$ for about 18 h . It was filtered and the precipitate was dried to provide the title compound C168. Yield: $1.4 \mathrm{~g}(63 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 12.25$ (br. s, 1 H), 8.35 (s, 1 H), 8.11 (s, 1 H), 7.47 (s, 1 H), 3.91 (s, 3 H).

Step 2. Synthesis of 3,4-dichloro-6-methoxyquinoline-7-carbonitrile (P22).

[0237] A mixture of compound C168 ($2.6 \mathrm{~g}, 7.7 \mathrm{mmol}$) and cuprous cyanide ($1.31 \mathrm{~g}, 15.5$ $\mathrm{mmol})$ in pyridine (26 mL) was heated at about $120^{\circ} \mathrm{C}$ for about 16 h . The mixture was cooled to about $25^{\circ} \mathrm{C}$, filtered, and the filtrate was concentrated. The residue was suspended in toluene and concentrated, then treated with $\mathrm{POCl}_{3}(15 \mathrm{~mL}, 160 \mathrm{mmol})$ and triethylamine hydrochloride ($1.47 \mathrm{~g}, 10.7 \mathrm{mmol}$). The mixture was heated at reflux for about 3 h , then cooled to about $25{ }^{\circ} \mathrm{C}$ and concentrated. The residue was stirred with aqueous NaHCO_{3}. The resulting precipitate was filtered, washed with n-hexane, and dried under vacuum. The dry solid was suspended in a $9 / 1$ ratio of $\mathrm{MeOH} / \mathrm{DCM}$ and solid NaHCO_{3} was added. This mixture was stirred for about 5 h , filtered and the filtrate was concentrated. The residue was triturated with diethyl ether and dried under vacuum to provide the title compound P22. Yield: 1.5 g

Preparation 14: 4-bromo-1-chloro-7-isopropoxyisoquinoline-6-carbonitrile (P23)

Step 1. Synthesis of 7-isopropoxy-1-oxo-1,2-dihydroisoquinoline-6-carbonitrile (C169).
[0239] A solution of compound P2 (10.0 g, 40 mmol) and hydrogen chloride in 1,4-dioxane (4 $\mathrm{M}, 100 \mathrm{~mL})$ in water $(100 \mathrm{~mL})$ was heated in a sealed tube at about $120^{\circ} \mathrm{C}$ for about 18 h . The mixture was cooled to about $25^{\circ} \mathrm{C}$ and diluted with water. The precipitate was filtered, washed with water, and dried to provide the title compound C169. Yield: 7.5 g (81%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, dmso-d 6) $\delta 11.5$ (br. s, 1 H), $8.21(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.16(\mathrm{t}, 1 \mathrm{H}), 6.53-6.56$ (d, 1 H), 4.85-4.93(m, 1 H), 1.35-1.37(d, 6H).

Step 2. Synthesis of 4-bromo-7-isopropoxy-1-oxo-1,2-dihydroisoquinoline-6carbonitrile (C170).

[0240] A solution of N -bromosuccinimide ($14 \mathrm{~g}, 78 \mathrm{mmol}$) in acetonitrile (150 mL) was added drop wise to a suspension of compound $\mathbf{C 1 6 9}(15 \mathrm{~g}, 65 \mathrm{mmol})$ in acetonitrile (1.38 L) at about $25{ }^{\circ} \mathrm{C}$ and stirred for about 24 h to afford a yellow suspension. The reaction mixture was concentrated to half volume. The precipitate was filtered, washed with diethyl ether and dried to provide the title compound C170. Yield: 13.0 g (65%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d) ठ 11.8 (br. s, 1 H), $8.08(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.53(\mathrm{~d}, 1 \mathrm{H}), 4.92-4.98(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.38$ (d, 6 H).

Step 3. Synthesis of 4-bromo-1-chloro-7-isopropoxyisoquinoline-6-carbonitrile (P23).

[0241] A suspension of compound $\mathbf{C 1 7 0 (1 0 . 0 ~ g , ~} 32 \mathrm{mmol}$) in $\mathrm{POCl}_{3}(120 \mathrm{~mL})$ was heated at reflux for about 1.5 h . The mixture was concentrated and the residue was dissolved in DCM. The DCM extract was washed with K 2 CO 3 , brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound P23. Yield: $9 \mathrm{~g}(85 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49$ (s, 1 H), 8.42 (s, 1 H), 7.65 ($\mathrm{s}, 1 \mathrm{H}$), 4.87 4.93 (m, 1 H), 1.52 - 1.53 (d, 6 H).

Preparation 15: 4-hydroxy-6-methoxyisoquinoline-7-carbonitrile (P24)

[0242]

Step 1. Synthesis of ethyl 2-((3-bromo-4-methoxybenzyl)amino)acetate (C173).
[0243] To a solution of glycine ethyl ester hydrochloride ($17 \mathrm{~g}, 126 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(25.2 \mathrm{~g}$, 252 mmol) in DCM (100 mL) and $\mathrm{MeOH}(100 \mathrm{~mL}$) was added sodium triacetoxyborohydride $(53.1 \mathrm{~g}, 252 \mathrm{mmol})$ at about $0^{\circ} \mathrm{C}$. The mixture was stirred for about 30 min before 3 -bromo- 4 methoxybenzaldehyde ($26.8 \mathrm{~g}, 126 \mathrm{mmol}$) was added, then the mixture allowed to warm up to about $25^{\circ} \mathrm{C}$ for about 18 h . Water (200 mL) and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ were added and the mixture was extracted with DCM. The combined DCM extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C173. Yield: $15 \mathrm{~g}(45 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) 7.52 (d, 1 H), 7.26 (dd, 1 H), 7.05 (d, 1 H), 4.08 (q, 2 H), 3.82 (s, 3 H), 3.64 (s, 2 H), 3.27 (s, 2 H), 2.67 (br. s., 1 H), 1.19 (t, 3 H).

Step 2. Synthesis of ethyl 2-(N-(3-bromo-4-methoxybenzyl)-4methylphenylsulfonamido) acetate (C174).
[0244] To a solution of compound C173 (18 g, 60 mmol) and pyridine ($24 \mathrm{~g}, 298 \mathrm{mmol}$) in THF $(400 \mathrm{~mL})$ was added tosyl chloride $(11.4 \mathrm{~g}, 60 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for about 16 h at about $25^{\circ} \mathrm{C}$, then acidified to about pH 3 with concentrated HCl and extracted with DCM ($3 \times 300 \mathrm{~mL}$). The combined DCM extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C174. Yield: $17 \mathrm{~g}(63 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68$ (d, 2 H), 7.26 (d, 2 H), 7.19 (s, 1 H), 7.11 (dd, 1 H), 6.76 (d, 1 H), 4.33 (s, $2 H$), 3.94 ($\mathrm{f}, 2 \mathrm{H}$), 3.83 (s, 2 H), 3.81 (s, 3 H), 2.37 (s, 3 H), $1.08(\mathrm{t}, 3 \mathrm{H})$.
[0245] Step 3. Synthesis of 2-(N-(3-bromo-4-methoxybenzyl)-4methylphenylsulfonamido) acetic acid (C175). To a solution of compound C174 (17 g, 37 mmol) in THF (100 mL) and $\mathrm{MeOH}(100 \mathrm{~mL})$ was added a solution of lithium hydroxide $(1.7 \mathrm{~g}, 74$ $\mathrm{mmol})$ in water (100 mL) at about $25^{\circ} \mathrm{C}$. The mixture was stirred for about 4 h , then the mixture was partially concentrated to remove THF and MeOH . The remaining solution was
acidified to about pH 3 with concentrated HCl and extracted with $\mathrm{DCM}(3 \times 100 \mathrm{~mL}$). The combined DCM extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound C175. Yield: $15 \mathrm{~g}(94 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (d, 2 H), 7.33 (d, 2 H), $7.27(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, 1 \mathrm{H}), 6.83(\mathrm{~d}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 2.43$ (s, 3 H).

Step 4. Synthesis of 7-bromo-6-methoxy-2-tosyl-2,3-dihydroisoquinolin-4(1H)-one (C176).

[0246] To a solution of compound C1175 ($4.27 \mathrm{~g}, 10 \mathrm{mmol}$) in DCM (120 mL) were added 2 drops of DMF followed by oxalyl chloride ($6.3 \mathrm{~g}, 50 \mathrm{mmol}$) at about $25^{\circ} \mathrm{C}$. After about 2 h , the mixture was evaporated. The residue was dissolved in DCM (100 mL) and cooled to about -78 ${ }^{\circ} \mathrm{C}$. Anhydrous aluminum chloride ($3.32 \mathrm{~g}, 25 \mathrm{mmol}$) was added in portions. The mixtue was stirred for about 40 min at about $-78^{\circ} \mathrm{C}$, then stirred for about 2 h at about $0^{\circ} \mathrm{C}$. Water was added, and the DCM was separated washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was triturated with a mixture of $\mathrm{MeOH}(7.5 \mathrm{~mL}$) and EtOAc (7.5 mL). The precipitate was collected by filtration and dried to provide the title compound C176. Yield: $1.9 \mathrm{~g}(46 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63$ (d, 2 H), 7.47 (s, 1 H), 7.31 (s, 1 H), 7.27 (d, 2 H), 4.43 (s, 2 H), 3.99 ($\mathrm{s}, 2 \mathrm{H}$), 3.89 ($\mathrm{s}, 3 \mathrm{H}$), 2.39 ($\mathrm{s}, 3 \mathrm{H}$).

Step 5. Synthesis of 7-bromo-6-methoxyisoquinolin-4-ol (C177).

[0247] A mixture of compound $\mathbf{C 1 7 6}(1.9 \mathrm{~g}, 4.6 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(1.54 \mathrm{~g}, 18.5 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ was heated at reflux for about 2 h , then cooled to about $25^{\circ} \mathrm{C}$ and concentrated. The residue was treated with EtOAc and water. The EtOAc was separated and the aqueous phase was extracted with additional EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C177. Yield: 300 mg (26%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 10.50$ (br. s., 1 H), 8.67 (s, 1 H), 8.39 (s, 1 H), 8.03 (s, 1 H), 7.47 (s, 1 H), 4.01 (s, 3 H).

Step 6. Synthesis of 4-hydroxy-6-methoxyisoquinoline-7-carbonitrile (P24).
[0248] A mixture of compound C177 ($100 \mathrm{mg}, 0.39 \mathrm{mmol}$), zinc cyanide ($231 \mathrm{mg}, 2 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium (0) ($45 \mathrm{mg}, 0.04 \mathrm{mmol}$) in 5 mL of DMF was stirred for about 10 min at about $25^{\circ} \mathrm{C}$, then heated at about $140^{\circ} \mathrm{C}$ for about 6 h . The mixture was cooled, concentrated, the residue was treated with water, and extracted with EtOAc. The EtOAc extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound P24. Yield: 65 mg

Preparation 16: 8-fluoro-5-hydroxy-3-methoxy-2-naphthamide (P25)

Step 1. Synthesis of methyl 5-hydroxy-3-methoxy-2-naphthoate (C178)

[0250] A solution of compound C26 ($40 \mathrm{~g}, 85 \mathrm{mmol}$) in THF (150 mL) was treated with tetra-nbutylammonium fluoride ($31 \mathrm{~g}, 119 \mathrm{mmol}$) and stirred for 30 min at $25^{\circ} \mathrm{C}$. The reaction mixture was neutralized with AcOH before being diluted with water and EtOAc. The EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C178. Yield: $16.50 \mathrm{~g}(89 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, dmso-d ${ }_{6}$) $\delta 10.19(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.42(\mathrm{~d}, 1 \mathrm{H}), 7.19-7.22(\mathrm{t}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$.

Step 2. Synthesis of methyl 8-fluoro-5-hydroxy-3-methoxy-2-naphthoate (C179)

[0251] A solution of SelectFluor ($3.18 \mathrm{~g}, 8.6 \mathrm{mmol}$) in DMF (10 mL) was added slowly to a solution of compound $\mathbf{C 1 7 8}(2.00 \mathrm{~g}, 8.6 \mathrm{mmol})$ in DMF (20 mL) at about $0{ }^{\circ} \mathrm{C}$. After stirring overnight, the mixture was diluted with brine and extracted with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C179. Yield: $90 \mathrm{mg}(4 \%) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}), 6.86(\mathrm{dd}, 1 \mathrm{H}), 6.77(\mathrm{dd}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{19} \mathrm{~F}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-130.68$.

Step 3. Synthesis of 8-fluoro-5-hydroxy-3-methoxy-2-naphthamide (P25)

[0252] A solution of compound C179 ($90 \mathrm{mg}, 0.36 \mathrm{mmol}$) in THF (4 mL) and water (2.5 mL) was treated with lithium hydroxide ($88 \mathrm{mg}, 3.6 \mathrm{mmol}$) at about $20^{\circ} \mathrm{C}$. After stirring overnight, the mixture was acidified with 1 M HCl and concentrated to dryness. The residue was stirred in DCM (5 mL) and treated with oxalyl chloride solution ($2 \mathrm{M}, 0.27 \mathrm{~mL}$) along with a catalytic amount of DMF. After about 1 h at about $20^{\circ} \mathrm{C}$, the mixture was filtered and concentrated to dryness. The residue was taken up in THF (2 mL) and treated with ammonia in dioxane solution ($0.5 \mathrm{M}, 1 \mathrm{~mL}$) at about $20^{\circ} \mathrm{C}$. After about 1 h , the mixture was filtered and concentrated. The residue was purified by chromatography to provide the title compound P25.

Yield $27 \mathrm{mg}(32 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}^{2} \mathrm{~d}_{6}$) $\delta 10.17$ (br. s., 1 H), 8.32 (s, 1 H), 7.81 (br. s., 1 H), 7.66 (br. s., 1 H), 7.53 (s, 1 H), 7.00 (dd, 1 H), 6.82 (dd, 1 H), 3.98 (s, 3 H). ${ }^{19}$ F NMR (400 MHz, dmso-d ${ }_{6}$) $\delta-134.39$.

Preparation 17: (S)-3,3-dimethyl-1,7a-dihydropyrrolo[1,2-c]oxazol-5(3H)-one (P20)

[0253]

[0254] Step 1. Synthesis of (S)-3,3-dimethyl-5-(trimethylsilyloxy)-1,3,7,7a-tetrahydropyrrolo[1,2-cloxazole (C30) A solution of diisopropylamine ($147 \mathrm{~mL}, 1.05 \mathrm{~mol}$) in dry THF (875 mL) was cooled to about $-25^{\circ} \mathrm{C}$ and treated with n-butyllithium (2.5 M in hexanes, $387 \mathrm{~mL}, 970 \mathrm{mmol}$). The mixture was stirred at about $-20^{\circ} \mathrm{C}$ for about 30 minutes, then cooled to about $-70{ }^{\circ} \mathrm{C}$. A solution of (S)-3,3-dimethyltetra-hydropyrrolo[1,2-c]oxazol-5(1H)-one (CAS $99208-71-6,125 \mathrm{~g}, 806 \mathrm{mmol}$) in THF (163 mL) was added, maintaining the temperature approximately below $-60{ }^{\circ} \mathrm{C}$. After the addition was completed, the mixture was stirred for approximately an additional 5 minutes before the addition of TMSCI ($132 \mathrm{~mL}, 1.05 \mathrm{~mol}$) at -60 ${ }^{\circ} \mathrm{C}$. The mixture was then allowed to warm to about $-10^{\circ} \mathrm{C}$ before being concentrated under reduced pressure. The residue was stirred with dry hexanes (1 L) and concentrated, then again stirred with dry hexanes (1 L) and concentrated. The residue was stirred with dry hexanes (1 L), filtered, and concentrated under reduced pressure to provide the title compound C30 which was carried on to Step 2 without further purification. ${ }^{1} \mathrm{H} N M R(400 \mathrm{MHz}$, CDCl_{3}) ठ $4.16(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, 1 \mathrm{H}), 3.75(\mathrm{dd}, 1 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.31$ (dd, 1 H), 1.49 (s, 3 H), $1.36(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H})$.
[0255] Step 2. Synthesis of (S)-3.3-dimethyl-1,7a-dihydropyrrolo[1,2-c]oxazol-5(3H)-one (P20) The crude compound C30 from Step 1 was dissolved in THF (915 mL) and treated with allyl methyl carbonate ($104 \mathrm{~mL}, 911 \mathrm{mmol}$) and palladium(II) acetate ($9.0 \mathrm{~g}, 40 \mathrm{mmol}$). The mixture was heated to about 65 C until gas evolution ceased, and was then heated for approximately an additional 1 h after gas evolution ceased. The mixture was then cooled to about $25^{\circ} \mathrm{C}$ and concentrated under reduced pressure. The residue was purified by column chromatography to provide the title compound P20. Yield: $90 \mathrm{~g}(73 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07$ (dd, 1 H) 6.09 (dd, 1 H) $4.60-4.71(\mathrm{~m}, 1 \mathrm{H}) 4.13(\mathrm{dd}, 1 \mathrm{H}) 3.33(\mathrm{dd}, 1 \mathrm{H}) 1.67(\mathrm{~s}, 3 \mathrm{H}) 1.56(\mathrm{~s}, 3 \mathrm{H})$.

Preparation 18: (5S)-5-(hydroxymethyl)-3-methylpyrrolidin-2-one (L1)

[0257] Step 1. Synthesis of (7aS)-3,3,6-trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C31). To a solution of (S)-3,3-dimethyltetra-hydropyrrolo[1,2-c]oxazol-5(1H)-one (CAS 99208-$71-6,3.0 \mathrm{~g}, 19 \mathrm{mmol}$) in 50 mL of THF was added LDA ($2 \mathrm{M}, 12.1 \mathrm{~mL}, 20 \mathrm{mmol}$) at about -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for about 30 minutes, then iodomethane ($3.03 \mathrm{~g}, 21$ mmol) was added. The reaction mixture was maintained for about 10 minutes at about $-78{ }^{\circ} \mathrm{C}$, then allowed to warm to about $25^{\circ} \mathrm{C}$ for about 1 h . The reaction was quenched by addition to EtOAc (10 mL) and water (10 mL). The EtOAc was separated and the aqueous phase was extracted with additional EtOAc ($50 \mathrm{~mL} \times 2$). The combined EtOAc extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound C31. Yield $3.1 \mathrm{~g}(92 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.11$ ($\mathrm{m}, 2 \mathrm{H}$), $3.42(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{dt}, 1 \mathrm{H}), 2.38(\mathrm{~m}$, 1 H), 1.65 (s, 3 H), 1.46 (s, 3 H), 1.36 (m, 2 H), 1.20 (s, 1.5 H), 1.19 (s, 1.5 H).
[0258] Step 2 Synthesis of (5S)-5-(hydroxymethyl)-3-methylpyrrolidin-2-one (L1). A solution of compound C31 ($58 \mathrm{mg}, 0.34 \mathrm{mmol}$) in $\mathrm{MeOH}(1.1 \mathrm{~mL})$ was treated with 4 -toluenesulfonic acid $(1.4 \mathrm{mg}, 7 \mu \mathrm{~mol})$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for about 4 h , The mixture was concentrated under vacuum to provide the title compound L1. Yield $38 \mathrm{mg}(86 \%){ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.70-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.42(\mathrm{~m}$, 1 H), 1.34-1.46(m, 1 H), 1.23 ($\mathrm{s}, 1.5 \mathrm{H}$), 1.21 (s, 1.5 H).

Synthesis of (5S)-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L2).

[0259]

[0260] This compound was prepared in the same manner as compound L1, substituting NFSI for iodomethane in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.24-5.11(\mathrm{~m}, 1 \mathrm{H})$, $3.83-3.32(\mathrm{~m}$, $3 \mathrm{H})$, 2.68-1.88 (m, 2 H).

Synthesis of (3R,5R)-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L3)

[0261]
ㅇ..

[0262] This compound was prepared in the same manner as compound L1, substituting (R)-3,3-dimethyltetra-hydropyrrolo[1,2-c]oxazol-5(1H)-one (CAS 103630-36-0, Chemical Communications, 2011, 47, 10037-10039) for (S)-3,3-dimethyltetra-hydropyrrolo[1,2-cloxazol-5(1H)-one (CAS 99208-71-6), and NFSI for iodomethane, in Step 1, followed by separation of the diastereomeric products. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.96-5.16(\mathrm{~m}, 1 \mathrm{H})$, 3.64-3.72 (m, 2 H), 3.41-3.49 (m, 1 H), 2.53-2.63(m, 1 H), 1.85-2.02 (m, 1 H).

Synthesis of (5S)-3-ethyl-5-(hydroxymethyl)pyrrolidin-2-one (L4).

[0263]

[0264] This compound was prepared in the same manner as compound L1, substituting bromoethane.for iodomethane in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.03-4.17(\mathrm{~m}, 2 \mathrm{H})$, $3.37-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}), 1.86-1.96(\mathrm{~m}, 1$ H), 1.33-1.44(m, 1 H$), 1.02(\mathrm{t}, 1 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H})$.

Synthesis of (5S)-5-(hydroxymethyl)-3-(methoxymethyl)pyrrolidin-2-one (L5).

[0265]

[0266] This compound was prepared in the same manner as compound L1, substituting chloro(methoxy)methane for iodomethane in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $3.63-3.84$ (m, 2 H), 3.46-3.63 (m, 2H), 3.38 (s, 3 H), 2.64-2.75 (m, 1 H), 2.17-2.39 (m, 2 H), 1.75 2.05 ($\mathrm{m}, 1 \mathrm{H}$).

Synthesis of (3R,5S)-5-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)pyrrolidin-2-one (L11).
[0267]

[0268] This compound was prepared in the same manner as compound L1, substituting acetone.for iodomethane in Step 1. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б 6.27-6.42 (m, 1 H$), 3.62$ $3.77(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H})$.

Synthesis of (5S)-3-((benzyloxy)methyl)-5-(hydroxymethyl)pyrrolidin-2-one (L12).

[0269]

[0270] This compound was prepared in the same manner as compound L1, substituting CAS 3587-60-8 ("benzyloxymethyl chloride") for iodomethane in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $7.27-7.41$ (m, 5 H), 6.58 (br. s., 1 H), 4.46-4.63 (m, 2 H), 3.61-3.85 (m, 4 H), 3.41-3.53 (m, 1 H), 2.66-2.80(m, 1 H$), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H})$.

Synthesis of (3S,5S)-3-hydroxy-5-(hydroxymethyl)pyrrolidin-2-one (L13).

[0271]

[0272] This compound was prepared in the same manner as compound L1, substituting CAS 104372-31-8 for iodomethane in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}-d_{6}$) $\delta 4.41$ (dd, 1 H), 4.07 (dd, 1 H), 3.82-3.93(m, 1 H), 3.34-3.42 (m, 1 H), 2.41-2.49 (m, 1 H), $1.45-1.53(\mathrm{~m}, 1 \mathrm{H})$.
[0273]

[0274] This compound was prepared in the same manner as compound L1, substituting CAS 127184-05-8 for iodomethane in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) $\delta 5.79$ ($\mathrm{d}, 1 \mathrm{H}$), 4.22 4.32 (m, 1 H), 4.16 (td, 1 H), 4.01 (dd, 1 H), $3.32-3.36$ (m, 1 H), 3.17 (d, 1 H), 1.84-1.95 (m, 2 H).

Synthesis of (3S,5S)-5-(hydroxymethyl)-3-(2,2,2-trifluoroethyl)pyrrolidin-2-one (L15) and (3R,5S)-5-(hydroxymethyl)-3-(2,2,2-trifluoroethyl)pyrrolidin-2-one (L16).

[0275]

[0276] These compounds were prepared in the same manner as compound L1, substituting 1,1,1-trifluoro-2-iodoethane, added slowly, for iodomethane in Step 1, followed by separation of the diastereomeric products by silica gel chromatography prior to Step 2. Application of Step 2 to the individual diastereomers provided the title compounds L15 and L16. L15: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.48$ (br. s., 1 H), 3.67-3.79 (m, 2 H), 3.52-3.62 (m, 1 H), 2.74-2.91 (m, 2 H), 2.28 (dd, 1 H), $1.99-2.15(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{L} 16:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.12$ (br. s., 1 H) $3.77-3.86(\mathrm{~m}, 2 \mathrm{H}) 3.43-3.52(\mathrm{~m}, 1 \mathrm{H}) 2.83-2.98(\mathrm{~m}, 1 \mathrm{H}) 2.71-2.82(\mathrm{~m}, 1 \mathrm{H}) 2.45-2.56$ (m, 1 H) 1.99-2.15 (m, 1 H) 1.89 (dd, 1 H) 1.51-1.58(m, 1 H).

Synthesis of (5S)-5-(hydroxymethyl)-3-(4-hydroxytetrahydro-2H-pyran-4-yl)pyrrolidin-2one (L20).

[0277]

[0278] This compound was prepared in the same manner as compound L1, substituting tetrahydro-4H-pyran-4-one (CAS 29943-42-8) for iodomethane in Step 1. 1H NMR (400 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) $\delta 4.30(\mathrm{~d}, 1 \mathrm{H}), 3.60-3.77(\mathrm{~m}, 4 \mathrm{H})$, $3.51-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.34-$ $3.42(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{t}, 1 \mathrm{H}), 2.51(\mathrm{t}, 1 \mathrm{H}), 1.98-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.80$ (ddd, 1 H), 1.58-1.69(m, 1 H), 1.41-1.52(m, 1 H), 1.24 (dd, 1 H).

Synthesis of (5S)-5-(hydroxymethyl)-3-(3-hydroxyoxetan-3-yl)pyrrolidin-2-one (L22).

[0279]

[0280] This compound was prepared in the same manner as compound L1, substituting CAS 6704-31-0 (oxetane-3-one) for iodomethane in Step 1 to provide (6S,7aS)-6-(3-hydroxyoxetan-3-yl)-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C81), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 5.82$ (d, 1 H), 4.70-4.80 (m, 2 H), 4.46 (d, 1 H), 4.36-4.44 (m, 2 H), 3.42 (dd, 1 H), 3.27-3.31 (m, 1 H), 2.80-2.91 (m, 1 H), 1.83-1.98 ($\mathrm{m}, 2 \mathrm{H}$).

Synthesis of (5S)-3-benzyl-5-(hydroxymethyl)pyrrolidin-2-one (L28).

[0281]

[0282] This compound was prepared in the same manner as compound L1, substituting benzyl bromide for iodomethane in Step 1. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.31$ (t, 2 H), $7.24(\mathrm{~m}, 3 \mathrm{H}), 4.74(\mathrm{t}, 1 \mathrm{H}), 3.16(\mathrm{q}, 2 \mathrm{H}), 3.02(\mathrm{dd}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H})$, 1.82 (m, 2 H).

Synthesis of (3R,5S)-3-fluoro-5-(hydroxymethyl)-3-(tetrahydro-2H-pyran-4-yl)pyrrolidin-2-one (L31).

[0284] This compound was prepared in the same manner as compound L1, substituting compound C49 for compound C30 and NFSI for iodomethane in Step 1. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.03(\mathrm{dd}, 1 \mathrm{H}), 3.98(\mathrm{~d}, 1 \mathrm{H}), 3.73(\mathrm{~d}, 1 \mathrm{H}), 3.66-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 1 \mathrm{H})$, $3.47-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.91$ (ddd, 1 H$), 1.80(\mathrm{~d}, 1 \mathrm{H})$, 1.56-1.36(m, 2 H).

Preparation 19: (3S.5S)-3-ethyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L7)

[0285]

Step 1. Synthesis of (7aS)-6-ethyl-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C32).

[0286] To a solution of (S)-3,3-dimethyltetra-hydropyrrolo[1,2-c]oxazol-5(1H)-one (CAS 99208-$71-6,1.0 \mathrm{~g}, 6.4 \mathrm{mmol}$) in 30 mL of THF was added LDA ($2 \mathrm{M}, 4.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$) at about -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for about 30 minutes, then bromoethane ($0.80 \mathrm{~g}, 7.2$ mmol) was added. The reaction mixture was maintained for about 10 minutes at about $-78{ }^{\circ} \mathrm{C}$, then allowed to warm to about $25{ }^{\circ} \mathrm{C}$ for about 25 minutes. The reaction was quenched by addition to EtOAc (10 mL) and water (10 mL). The EtOAc was separated and the aqueous phase was extracted with additional EtOAc ($50 \mathrm{~mL} \times 2$). The combined EtOAc extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound C32. Yield $0.80 \mathrm{~g}(68 \%)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 4.04-4.18(m,2 H), 3.35-3.49(m, 1 $H), 2.71-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.68$ $(\mathrm{s}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, 1 \mathrm{H}), 0.94(\mathrm{t}, 2 \mathrm{H})$.
[0287] Step 2. Synthesis of (6s,7aS)-6-ethyl-6-fluoro-3.3-dimethyltetrahydropyrrolo[1.2-cloxazol-5 (3H)-one (C33) and (6R,7aS)-6-ethyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C34). To a solution of compound C32 (0.80 g, 4.4 mmol) in 5 mL of THF was added LDA ($2 \mathrm{M}, 2.8 \mathrm{~mL}, 5.6 \mathrm{mmol}$) at about $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for
about 30 minutes, then treated with a solution of N -fluoroobis(benzenesulfonyl)imide (NFSI) $(1.65 \mathrm{~g}, 5.3 \mathrm{mmol})$ in 10 mL of THF. The reaction mixture was maintained for about 10 minutes at about $-78{ }^{\circ} \mathrm{C}$, then allowed to warm to about $25{ }^{\circ} \mathrm{C}$ for about 1 h . The reaction was quenched by addition to EtOAc $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The EtOAc was separated and the aqueous phase was extracted with additional EtOAc (50 mL x 2). The combined EtOAc extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was dissolved in DCM (20 mL) and filtered. The filtrate was concentrated and the residue was separated by column chromatography to provide the title compounds C33 (Yield: 180 mg , 20%) and C34 (Yield: $403 \mathrm{mg}, 45 \%$).
[0288] C33: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.17$ (dd, 1 H), $3.84-3.95$ (m, 1 H), 3.47 (dd, 1 H), 2.54 (ddd, 1 H), $1.95-2.11$ (m, 2 H), $1.78-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.07$ (t, 3 H).
[0289] C34: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 4.29-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.17$ (dd, 1 H), 3.34-3.43(m, 1 H), 2.42 (ddd, 1 H), $1.98-2.11$ (m, 1 H), $1.76-1.83$ (m, 1 H), 1.71 (ddd, 1 H), 1.65 (s, 3 H), 1.53 (s, 3 H), 1.01 (t, 3 H).

Step 3: Synthesis of (3S,5S)-3-ethyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L7).

[0290] A solution of compound C33 (180 mg, 0.9 mmol) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was treated with 4toluenesulfonic acid ($23 \mathrm{mg}, 135 \mu \mathrm{~mol}$). The resulting mixture was stirred at about $70{ }^{\circ} \mathrm{C}$ for about 4 h , The mixture was concentrated under vacuum to provide the title compound L7. Yield $150 \mathrm{mg}(100 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.75$ (dd, 1 H), 3.69 (dd, 1 H), 3.56 (dd, 1 H), $2.31-2.44(m, 1 H), 1.96-2.12(m, 2 H), 1.68-1.85(m, 1 H), 1.03(t, 3 H)$.

Synthesis of (S)-3,3-difluoro-5-(hydroxymethyl)pyrrolidin-2-one (L6)

[0291]

[0292] This compound was prepared in the same manner as compound L7, substituting NFSI.for bromoethane in Step 1. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.07-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.92$ (m, 1 H), 2.72-2.83(m, 1 H$), 2.04-2.18(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of (3R,5S)-3-ethyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L8).
[0293]

[0294] This compound was prepared in the same manner as compound L7, substituting compound C34. for compound C33 in Step 3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.90-4.01$ (m, 1 $\mathrm{H}), 3.81$ (dd, 1 H), 3.46 (dd, 1 H), 2.29-2.47 (m, 1 H), 2.00-2.11 (m, 1 H), 1.83-2.00(m, 1 H), 1.64-1.83(m, 1 H$), 1.02(\mathrm{t}, 3 \mathrm{H})$.

Synthesis of (3R,5S)-3-fluoro-5-(hydroxymethyl)-3-methylpyrrolidin-2-one (L9) and (3S,5S)-3-fluoro-5-(hydroxymethyl)-3-methylpyrrolidin-2-one (L10).

[0295]

[0296] These compounds were prepared in the same manner as compounds L7 and L8, substituting iodomethane for bromoethane in Step 1, followed by separation of the diastereomeric products by chromatography prior to Step 2. L9: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 3.77-3.83 (m, 1 H), 3.69-3.77(m, 1H), 3.53-3.62(m, 1H), 2.42-2.60 (m, 2 H), 1.53-1.64 (m, 3 H).
[0297] L10: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 3.73-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.70$ (td, 1 H), $3.55-3.63$ (m, 1 H), 2.26-2.40(m, 1 H$), 2.07-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~d}, 3 \mathrm{H})$.

Synthesis of (3S,5S)-3-((benzyloxy)methyl)-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L17) and (3R,5S)-3-((benzyloxy)methyl)-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L18).
[0298]

[0299] These compounds were prepared in the same manner as compounds L7 and L8, substituting NFSI.for bromoethane in Step 1 and benzyloxymethyl chloride (CAS 3587-60-8) for NFSI in Step 2, followed by separation of the diastereomeric products by chromatography. The individual diastereomers were then subjected to Step 3. L17: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.27-7.42(m, 5H), 6.40-6.55(m, 1 H), 4.60(s, 2H), 3.88-4.00(m, 1H), 3.69-3.85 (m, 3 H), 3.46 (dd, 1 H$), 2.35-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.33(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{L} 18:{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.70 (br. s., 1 H), $7.24-7.39(\mathrm{~m}, 5 \mathrm{H}), 4.52-4.63(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.48$ (br. s., 1 H), 2.61 (d, 1 H), 1.95-2.13(m, 1 H).

Synthesis of (3R,5S)-3-fluoro-5-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)pyrrolidin-2one (L19).

[0300]

[0301] This compound was prepared in the same manner as compound L7, substituting NFSI.for bromoethane in Step 1 and acetone for NFSI in Step 2, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 2.57-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, \mathrm{H}), 1.86-1.83(\mathrm{~m}, 3$ H), 1.32-1.31 (m, 3 H).

Synthesis of (5S)-3-hydroxy-5-(hydroxymethyl)-3-(2,2,2-trifluoroethyl)pyrrolidin-2-one (L21).

[0302]

[0303] This compound was prepared in the same manner as compound L7, substituting 1,1,1-trifluoro-2-iodoethane, added slowly, for bromoethane in Step 1 and CAS 104372-31-8 for NFSI in Step 2. LCMS: $\mathrm{R}_{\mathrm{t}}=1.128 \mathrm{~min}\left(213.7, \mathrm{MH}^{+}\right) ; 1.258\left(213.7, \mathrm{MH}^{+}\right)$.

Synthesis of (5S)-3-fluoro-5-(hydroxymethyl)-3-(2,2,2-trifluoroethyl)pyrrolidin-2-one (L26).

[0304]

[0305] This compound was prepared in the same manner as compound L7, substituting (3R,7aS)-3-(4-methoxyphenyl)tetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (CAS 170885-05-9) for (S)-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(1H)-one (CAS 99208-71-6) and 1,1,1-trifluoro-2-iodoethane, added slowly, for bromoethane in Step 1. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 3.57-3.53 (m, 1 H), 3.46-3.38(m, 2H), 2.93-2.80(m, 1 H), 2.70-2.35 (m, 2 H), 2.27-2.10 (m, 1 H).

Preparation 20: (3S,5S)-3-fluoro-3-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one

 (L23).

Step 1. Synthesis of (7aS)-methyl 3,3-dimethyl-5-oxohexahydropyrrolo[1,2-c]oxazole-6carboxylate (C35).

[0307] To a solution of (S)-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (CAS 99208-$71-6,7.0 \mathrm{~g}, 45 \mathrm{mmol}$) in THF (70 mL) was added LDA ($2.0 \mathrm{M}, 56.4 \mathrm{~mL}, 113 \mathrm{mmol}$) dropwise at about $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for about 30 min before being treated with dimethyl carbonate ($10.2 \mathrm{~g}, 113 \mathrm{mmol}$) in one portion. The mixture was stirred for approximately another 10 min at about $-78{ }^{\circ} \mathrm{C}$ and was then warmed to about $25{ }^{\circ} \mathrm{C}$ and stirred for about 1 h . Saturated aqueous potassium dihydrogen phosphate was added and the mixture was extracted with EtOAc. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C35.

Yield: $6.8 \mathrm{~g}(71 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.43-4.53$ ($\mathrm{m}, 1 \mathrm{H}$, minor diastereomer), 4.16 - 4.25 ($\mathrm{m}, 1 \mathrm{H}$, major diastereomer), 4.08-4.16 (m, 1 H , both diastereomers), 3.85 (dd, 1 H , major diastereomer), 3.81 (s, 3 H , major diastereomer), 3.79 ($\mathrm{s}, 3 \mathrm{H}$, minor diastereomer), 3.64 ($\mathrm{d}, 1 \mathrm{H}$, minor diastereomer), 3.53-3.60 (m, 1 H , major diastereomer), 3.43-3.51 (m, 1 H , minor diastereomer), 2.49-2.57 (m, 1 H , minor diastereomer), 2.34-2.44 (m, 1 H , major diastereomer), 2.22-2.33 (m, 1 H , major diastereomer), 1.98 (dt, 1 Hm minor diastereomer), 1.68 (s, 3 H , minor diastereomer), 1.67 (s, 3 H , major diastereomer), 1.48 (s, 3 H , both diastereomers).

Step 2. Synthesis of (7aS)-methyl 6-fluoro-3,3-dimethyl-5-oxohexahydropyrrolo[1,2-c]oxazole-6-carboxylate (C36).

[0308] A solution of compound C35 ($6.8 \mathrm{~g}, 32 \mathrm{mmol}$) in THF (128 mL) was treated with DBU $(5.8 \mathrm{~g}, 38 \mathrm{mmol})$. The mixture was stirred for about 15 min at about $25^{\circ} \mathrm{C}$, then cooled to about $0{ }^{\circ} \mathrm{C}$ and treated with NFSI ($12.1 \mathrm{~g}, 38 \mathrm{mmol}$). It was kept at about $0^{\circ} \mathrm{C}$ for about 15 min, then warmed to about $25{ }^{\circ} \mathrm{C}$ for about 3 h . The mixture was concentrated, and the residue was diluted with EtOAc and washed with 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was separated and the aqueous layer was extracted with EtOAc. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C36. Yield: $5.0 \mathrm{~g}(68 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.37-4.33$ $(\mathrm{m}, 1 \mathrm{H}), 4.13-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}$, 3 H), 1.46 (s, 3 H).
Step 3. Synthesis of (6R,7aS)-6-fluoro-6-(hydroxymethyl)-3,3-
dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C37) and (6S,7aS)-6-fluoro-6-
(hydroxymethyl)-3,3-dimethyltetrahydro-pyrrolo[1,2-c]oxazol-5(3H)-one (C38).
[0309] A solution of compound C36 ($6.0 \mathrm{~g}, 26 \mathrm{mmol}$) in $\mathrm{EtOH}(100 \mathrm{~mL})$ at about $0^{\circ} \mathrm{C}$ was treated with $\mathrm{NaBH}_{4}(1.7 \mathrm{~g}, 44 \mathrm{mmol})$ added in one portion. The mixture was stirred at about 0 ${ }^{\circ} \mathrm{C}$ for about 1.5 h before being treated with 1 M HCl and then concentrated. The residue was purified by chromatography to provide the title compounds C37 (Yield: $1.8 \mathrm{~g}, 34 \%$) and C38 (Yield: $400 \mathrm{mg}, 8 \%$). C37: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.19$ (dd, 1 H), $3.80-4.06$ (m, 3 H), 3.46-3.54 (m, 1 H), 2.79 (ddd, 1 H), 2.10 (dd, 1 H), 1.97-2.08 (m, 1 H), 1.72 (s, 3 H), 1.50 (s , $3 \mathrm{H}) . \mathrm{C} 38:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.36-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, 1 \mathrm{H}), 3.93-4.04(\mathrm{~m}, 1$ H), 3.78-3.88 (m, 1 H), 3.39-3.49 (m, 1 H), 2.49 (dd, 1 H), 2.40 (ddd, 1 H), 1.97-2.14 (m, 1 H), 1.67 ($\mathrm{s}, 3 \mathrm{H}$), 1.54 (s, 3 H).
Step 4. Synthesis of (6S,7aS)-6-fluoro-6-(fluoromethyl)-3,3- dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C39).
[0310] A solution of compound $\mathbf{C} 37(1.5 \mathrm{~g}, 7.4 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and pyridine $(3.0 \mathrm{~mL}$, 37 mmol) was cooled to about $-78^{\circ} \mathrm{C}$ and treated with DAST ($2.1 \mathrm{~mL}, 16 \mathrm{mmol}$). The mixture was allowed to warm to about $25^{\circ} \mathrm{C}$ and stirred for about 18 h , and then was heated at about $45^{\circ} \mathrm{C}$ for about 2 h . The mixture was cooled to about $-78^{\circ} \mathrm{C}$ and quenched by the addition of MeOH . The mixture was allowed to warm to about $25^{\circ} \mathrm{C}$, stirred for about 30 min and and concentrated. The residue was purified by chromatography to provide the title compound C39. Yield: $450 \mathrm{mg}(30 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.68-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.51(\mathrm{~m}, 1 \mathrm{H})$; $4.19(\mathrm{dd}, 1 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{t}, 1 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 1 \mathrm{H})$, 1.70 (s, 3 H), 1.52 (s, 3 H).

Step 5. Synthesis of (3S,5S)-3-fluoro-3-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2one (L23).

[0311] To a stirred solution of compound C39 ($450 \mathrm{mg}, 2.2 \mathrm{mmol}$) in 50.4 mL of acetonitrile and 5.6 mL of water was added 4-toluenesulfonic acid ($19 \mathrm{mg}, 0.11 \mathrm{mmol}$). The reaction mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 16 h and then heated at about $90^{\circ} \mathrm{C}$ for about 2 h. The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L23. Yield: 260 mg (72\%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.73-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H})$, 3.58 (br s, 1 H), 2.72-2.62 (m, 1 H), 2.16-2.07 (m, 1 H), 2.03-2.00(m, 1 H).

Synthesis of (3R,5S)-3-fluoro-3-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L24).

[0313] This compound was prepared in the same manner as compound L23, substituting C38 for C37 in step 4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.67$ (dd, 1 H), $4.63(\mathrm{~d}, 1 \mathrm{H}), 3.82-3.90(\mathrm{~m}, 1$ H), 3.62 (dd, 1 H), 3.48 (dd, 1 H), 2.27-2.52 (m, 2 H).

Preparation 21: (5S)-5-(hydroxymethyl)-3-methoxypyrrolidin-2-one (L25)

[0314]

[0315] Step 1. Synthesis of (3R,7aS)-6-hydroxy-3-(4-methoxyphenyl)tetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C40). To a solution of (3R,7aS)-3-(4-methoxyphenyl)tetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (CAS 170885-05-9, $1.0 \mathrm{~g}, 4.3 \mathrm{mmol}$) in THF (20 mL) was added LDA ($2.0 \mathrm{M}, 3.0 \mathrm{~mL}$) at about $-78{ }^{\circ} \mathrm{C}$ The mixture was stirred at about $-78{ }^{\circ} \mathrm{C}$ for about 0.5 h , then a solution of (1R)-(-)-10-camphorsulfonyl)oxaziridine (CAS $104372-31-8,1.0 \mathrm{~g}, 4.7 \mathrm{mmol})$ in THF (10 mL) was added dropwise at about $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at about $-78{ }^{\circ} \mathrm{C}$ for about 10 min and then at about $25^{\circ} \mathrm{C}$ for about 1.5 h . 10 mL of EtOAc and 10 mL of water were added the mixture was concentrated. The residue was diluted with water and extracted with EtOAc. The EtOAc extracts were washed with brine, dried over MgSO_{4} filtered and concentrated. The residue was purified by chromatography to provide the title compound C40. Yield: 450 mg (42\%). LCMS: m/z, 250.1 ($\mathrm{M}+1$), retention time: 0.748 min
[0316] Step 2. Synthesis of (3R,7aS)-6-methoxy-3-(4-methoxyphenyl)tetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C41). A mixture of compound C40 (468 mg, 1.8 mmol), silver (I) oxide ($232 \mathrm{mg}, 1.0 \mathrm{mmol}$) and iodomethane ($710 \mathrm{mg}, 5.0 \mathrm{mmol}$) in acetonitrile (20 mL) was stirred about $25^{\circ} \mathrm{C}$ for about 6 h . Additional silver (I) oxide ($464 \mathrm{mg}, 2.0 \mathrm{mmol}$) and iodomethane (710 $\mathrm{mg}, 5.0 \mathrm{mmol}$) were added and after about 18 h , the mixture was filtered and concentrated to provide the title compound C41 which was used without further purification. Yield: 370 mg (75%). LCMS: $\mathrm{m} / \mathrm{z}, 263.9(\mathrm{M}+1)$, retention time: 0.883 min
[0317] Step 3. Synthesis of (5S)-5-(hydroxymethyl)-3-methoxypyrrolidin-2-one (L25). A solution of compound C41 ($430 \mathrm{mg}, 1.6 \mathrm{mmol}$) in AcOH (8 mL) and water (2 mL) was stirred at about $75^{\circ} \mathrm{C}$ for about 30 min . The mixture was concentrated, MeOH was added, and the resulting mixture was again concentrated. The residue was purified by chromatography to provide the title compound L25. Yield: $204 \mathrm{mg}(86 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.19$ (br. $\mathrm{s}, 1 \mathrm{H}) 3.89-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.42(\mathrm{~m}, 1 \mathrm{H})$, 2.30-2.00 (m, 1 H), 1.68-1.64(m, 1 H$)$.

Preparation 22: (S)-6-(hydroxymethyl)-5-azaspiro[2.4]heptan-4-one (L27)

[0319] Step 1. Synthesis of (S)-3',3'-dimethyldihydro-1'H-spiro[cyclopropane-1,6'-pyrrolo[1,2-cloxazoll-5' $\mathbf{5}^{\prime} \mathbf{3}^{\prime} \mathrm{H}$)-one (C42). A solution of (S)-3,3-dimethyltetra-hydropyrrolo[1,2-c]oxazol$5(1 \mathrm{H})$-one (CAS 99208-71-6, $233 \mathrm{mg}, 1.5 \mathrm{mmol}$) in THF (10 mL) was treated with LDA (2.0 M , 1.6 mL) at about - $78{ }^{\circ} \mathrm{C}$. A solution of 1,3,2-dioxathiolane 2,2-dioxide (CAS 1072-53-3, 242 $\mathrm{mg}, 1.9 \mathrm{mmol}$) in THF (10 mL) was added at a rate to maintain the internal temp at about less than $-65^{\circ} \mathrm{C}$. The mixture was stirred at about $-78^{\circ} \mathrm{C}$ for about 10 min then warmed to about $-20^{\circ} \mathrm{C}$. The mixture was stirred for about 45 min and gradually warmed to about $-3^{\circ} \mathrm{C}$ before being re-cooled to about $-78{ }^{\circ} \mathrm{C}$. LDA ($2.0 \mathrm{M}, 1.95 \mathrm{mmol}$) was added and the mixture was stirred for about 10 min at about $-78^{\circ} \mathrm{C}$, then slowly warmed to about $25^{\circ} \mathrm{C}$ and kept for about 8 h . The mixture was treated with half - saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The EtOAc extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, dried over MgSO_{4} filtered and concentrated. The residue was purified by chromatography to provide the title compound C42. Yield: $120 \mathrm{mg}(44 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.29-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.05(\mathrm{~m}, 1$ H), 3.43-3.38(m, 1 H), 2.04-1.99(m, 1 H), 1.94-1.90(m, 1 H), $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$, 1.19-1.14(m, 1 H), 1.25-1.17(m,1 H), 1.16-1.14(m, 1H), 0.95-0.94(m,1 H), 0.93-0.90 ($\mathrm{m}, 1 \mathrm{H}$).
[0320] Step 2. Synthesis of (S)-6-(hydroxymethyl)-5-azaspiro[2.4]heptan-4-one (L27). To a stirred solution of compound C42 ($120 \mathrm{mg}, 0.66 \mathrm{mmol}$) in 4.5 mL of acetonitrile and 0.5 mL of water was added 4 -toluenesulfonic acid ($12 \mathrm{mg}, 0.06 \mathrm{mmol}$). The reaction mixture was heated at about $90{ }^{\circ} \mathrm{C}$ for about 1 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$ and concentrated to provide the title compound $\mathbf{L 2 7}$ which was used in the next step without further purification. Yield: 105 mg . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.82-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.50(\mathrm{~m}, 1$ H), 2.33-2.30(m, 1H), 1.98-1.94(m,1H), 1.04-1.02(m, 2H), 0.81-0.80(m, 2H).

Preparation 23

(3R,5S)-3-fluoro-3-(2-fluoroethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L29)

[0321]

Step 1. Synthesis of (7aS)-6-allyl-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C43).

[0322] To a stirred solution of (S)-3,3-dimethyltetra-hydropyrrolo[1,2-c]oxazol-5(1H)-one (CAS

99208-71-6, $10 \mathrm{~g}, 64.5 \mathrm{mmol}$) in THF (160 mL) at $-78{ }^{\circ} \mathrm{C}$ was added LDA ($2 \mathrm{M}, 40.3 \mathrm{~mL}$) and the mixture was stirred for about 0.5 h . Allyl bromide ($6.2 \mathrm{~mL}, 71 \mathrm{mmol}$) was added and mixture was stirred for about 10 min at about $-78^{\circ} \mathrm{C}$, then allowed to warm to about $25^{\circ} \mathrm{C}$ and stirred for about 1 h . It was quenched with EtOAc-water ($1: 1,60 \mathrm{~mL}$) and separated. The aqueous phase was extracted with EtOAc, and the combined EtOAc extracts dried over Na 2 SO 4 filtered and concentrated. The residue was purified by chromatography to provide the title compound L29. Yield: $8.85 \mathrm{~g}(70 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78-5.71(\mathrm{~m}, 1 \mathrm{H})$, $5.14-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.42$ (m, 1 H), 2.35-2.15 (m, 2 H), 1.95-1.87 (m, 1 H), 1.64 (s, 3 H), 1.44 (s, 3 H).
[0323] Step 2. Synthesis of (6S,7aS)-6-allyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C44a). To a stirred solution of L29 ($5.0 \mathrm{~g}, 25.6 \mathrm{mmol}$) in THF (80 mL) at $-78{ }^{\circ} \mathrm{C}$ was added LDA ($2 \mathrm{M}, 16.0 \mathrm{~mL}$). After about 0.5 h , a solution of NFSI ($8.89 \mathrm{~g}, 28.2$ $\mathrm{mmol})$ in THF (20 mL) was added and the mixture was stirred for about 10 min at about -78 ${ }^{\circ} \mathrm{C}$. Th reaction mixture was warmed to about $25^{\circ} \mathrm{C}$ for about 1 h . The mixture was quenched with EtOAc - water (1:1). The aqueous phase was extracted with EtOAc, and the combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C44a. Yield: 1.9 g (35%). There was also obtained the diastereomer C44b. Yield: $1.1 \mathrm{~g}(20 \%)$. C44a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78$ $5.68(\mathrm{~m}, 1 \mathrm{H})$, $5.19-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dd}, 1 \mathrm{H}), 3.33(\mathrm{t}, 1 \mathrm{H}), 2.72$ $2.65(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$, 1.48 (s, 3 H). C44b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $5.85-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.23(\mathrm{~m}, 2 \mathrm{H})$, 4.14 (dd, 1 H), 3.89-3.81 (m, 1 H), $3.44(\mathrm{t}, 1 \mathrm{H})$, $2.75-2.67(\mathrm{~m}, 1 \mathrm{H})$, $2.62-2.51(\mathrm{~m}, 2 \mathrm{H})$, 2.06-1.95 (m, 1 H), 1.54 (s, 3 H), 1.47 ($\mathrm{s}, 3 \mathrm{H}$).
[0324] Step 3. Synthesis of (6R,7aS)-6-fluoro-6-(2-hydroxyethyl)-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C45). A stream of ozonized oxygen was bubbled through a solution of compound C44a ($500 \mathrm{mg}, 1.4 \mathrm{mmol}$) in DCM (20 mL) at about $-78^{\circ} \mathrm{C}$ for about 15 min . A stream of argon was passed through the mixture for about 15 min , then the mixture was treated with dimethyl sulfide (5 mL) at about $-78{ }^{\circ} \mathrm{C}$ and stirred for about 1 h at about $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was evaporated to dryness and the residue was dissolved in THF (18 mL) and water (2 mL). $\mathrm{NaBH}_{4}(183 \mathrm{mg}, 4.6 \mathrm{mmol})$ was added and the mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 2 h . The mixture was treated with with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated to provide the title compound $\mathbf{C 4 5}$ as a colorless liquid which was carried on without further purification. Yield: $370 \mathrm{mg}(71 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 4.61(\mathrm{t}, 1 \mathrm{H}), 4.11-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.47$ (t, 1 H), 2.74-2.69 (m, 1 H), 2.05-1.91 (m, 3 H), 1.56 (s, 3 H), 1.36 (s, 3 H).
[0325] Step 4. Synthesis of (6R,7aS)-6-fluoro-6-(2-fluoroethyl)-3.3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C46). To a solution of compound C45 (370 $\mathrm{mg}, 1.7 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ was added pyridine ($0.69 \mathrm{~mL}, 8.5 \mathrm{mmol}$) followed by DAST
$(0.4 \mathrm{~mL}, 3.07 \mathrm{mmol})$ at about $-78{ }^{\circ} \mathrm{C}$. The mixture was warmed to about $25^{\circ} \mathrm{C}$ and stirred for about 18 h . The mixture was then cooled to about $-78{ }^{\circ} \mathrm{C}$ and quenched by the slow addition of MeOH . After about 30 min at about $-78^{\circ} \mathrm{C}$, the mixture was warmed to about $25^{\circ} \mathrm{C}$ and stirred for about 30 min before being evaporated to dryness. The residue was purified by chromatography to provide the title compound C46. Yield: $120 \mathrm{mg}(32 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ б 4.80-4.53 (m, 2 H), 4.17-4.14 (m, 1 H), 3.96-3.91 (m, 1 H), $3.46(\mathrm{t}, 1 \mathrm{H}), 2.76$ 2.71 (m, 1 H), 2.34-2.19(m, 2H), 2.09-1.98(m, 1 H), 1.68 (s, 3 H), 1.44 (s, 3 H).

Step 5. Synthesis of (3R,5S)-3-fluoro-3-(2-fluoroethyl)-5-(hydroxymethyl)pyrrolidin-2one (L29).
[0326] To a stirred solution of compound C46 (130 mg, 0.62 mmol) in 5 mL of acetonitrile and 0.5 mL of water was added 4-toluenesulfonic acid ($11 \mathrm{mg}, 0.06 \mathrm{mmol}$). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 1 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L29. Yield: 170 mg (83%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86$ (br. s., 1 H), $4.52-4.96$ (m, 2 H), 3.72-3.90(m, 2H), 3.55-3.72(m, 1H), 2.53-2.73(m, 1H), 2.31-2.51 (m, 1 H), 2.05-2.31 (m, 2 H).

Preparation 24: (3R,5S)-5-(hydroxymethyl)-3-(tetrahydro-2H-pyran-4-yl)pyrrolidin-2-one (L30)

[0327]

[0328] Step 1. Synthesis of (6S.7aS)-6-(4-hydroxytetrahydro-2H-pyran-4-yl)-3.3-dimethyltetrahydro-pyrrolo-1,2-c]oxazol-5(3H)-one (C47). A stirred solution of (S)-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (CAS 99208-71-6, $10.0 \mathrm{~g}, 64 \mathrm{mmol}$) in THF $(200 \mathrm{~mL})$ was cooled to about $-78{ }^{\circ} \mathrm{C}$ and LDA ($2 \mathrm{M}, 80 \mathrm{~mL}, 160 \mathrm{mmol}$) was added. The mixture was stirred at about $-78^{\circ} \mathrm{C}$ for about 30 min before tetrahydro- 4 H -pyran-4-one (CAS 29943-42-8, $15 \mathrm{~mL}, 160 \mathrm{mmol}$) in THF (50 mL) was added. The mixture was allowed to warm to about $25{ }^{\circ} \mathrm{C}$ and stirred for about 2 h before the reaction was quenched with EtOAc-water (1:1). The EtOAc was separated and the aqueous layer was extracted with EtOAc. The combined EtOAc extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C47. Yield: $12 \mathrm{~g}(74 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, dmso- d_{6}) $\delta 4.14$ (m, 1 H), 3.97 - 4.07 (m, 3 H), 3.34 $3.42(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.67(\mathrm{~m}, 10 \mathrm{H})$.
[0329] Step 2. Synthesis of (S)-6-(dihydro-2H-pyran-4(3H)-ylidene)-3.3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C48). Triethylamine ($38 \mathrm{~mL}, 274 \mathrm{mmol}$) was added to a stirred solution of compound $\mathbf{C 4 7}(7.0 \mathrm{~g}, 27 \mathrm{mmol})$ in DCM $(150 \mathrm{~mL})$. The resulting mixture was cooled to about $0^{\circ} \mathrm{C}$ and methanesulfonyl chloride ($10.6 \mathrm{~mL}, 137 \mathrm{mmol}$) was added. The reaction mixture was warmed to about $25^{\circ} \mathrm{C}$ and stirred for about 16 h before being diluted with DCM and water. The DCM was separated and the aqueous layer was extracted with DCM. The combined DCM extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C48. Yield $1.0 \mathrm{~g}(16 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 5.61$ (dd, 1 H), $4.22-4.27$ (m, 1 H), 4.14-4.15 (m, 2 H), 4.05-4.08 (dd, 1 H), 3.79-3.81 (m, 2 H), 3.40-3.45 (m, 1 H), 3.25 (d, 1 H), 2.15-2.20 (m, 2 H), 2.10 (ddd, 1 H), 1.92-2.04 (m, 1 H), 1.65 (s, 3 H), 1.45 (s, 3 H).
[0330] Step 3. Synthesis of (6R,7aS)-3.3-dimethyl-6-(tetrahydro-2H-pyran-4-yl)tetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C49). To a stirred solution of compound C48 (1.1 $\mathrm{g}, 4.6 \mathrm{mmol}$) in EtOAc (50 mL) was added platinum dioxide ($105 \mathrm{mg}, 0.46 \mathrm{mmol}$). The reaction mixture was shaken under about 50 psi of hydrogen at about $25^{\circ} \mathrm{C}$ for about 4 h . The mixture was filtered and the solids were washed with EtOAc. The filtrate was concentrated and the residue was purified by chromatography to provide the title compound C49. Yield 0.75 g (68%) ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 4.14$ (m, 1 H), 4.04-4.07 (dd, 1 H), 3.96-4.00 (m, 2 H), 3.34 $3.42(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.66(\mathrm{~m}, 3$ H), 1.44-1.61 (m, 7 H).
[0331] Step 4. Synthesis of (3R.5S)-5-(hydroxymethyl)-3-(tetrahydro-2H-pyran-4-yl)pyrrolidin-2-one (L30). A solution of compound C49 ($300 \mathrm{mg}, 1.25 \mathrm{mmol}$) in acetonitrile (5 mL) and water $(0.5 \mathrm{~mL})$ was treated with 4 -toluenesulfonic acid ($11.9 \mathrm{mg}, 0.06 \mathrm{mmol}$). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L30. Yield $225 \mathrm{mg}(90 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~d}, 2 \mathrm{H}), 3.65(\mathrm{~m}, 2$ H), 3.47-3.36 (m, 3 H), 3.07 (m, 1 H), 2.48-2.43(m, 1 H), 1.99-2.07 (m, 2 H), 1.82-1.88 ($\mathrm{m}, 1 \mathrm{H}$), 1.63-1.66(m, 1H), 1.41-1.49(m,3H).

Preparation 25: (3R,5S)-3-(3-fluorooxetan-3-yl)-5-(hydroxymethyl)pyrrolidin-2-one (L32)

[0332]

[0333] Step 1. Synthesis of (6R,7aS)-6-(3-fluorooxetan-3-yl)-3,3- dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C50). DAST ($0.41 \mathrm{~mL}, 2.9 \mathrm{mmol}$) was added dropwise to a solution of compound C81 ($0.51 \mathrm{~g}, 2.2 \mathrm{mmol}$) in DCM (20 mL) at about $-78{ }^{\circ} \mathrm{C}$. After about 2 h , the reaction temperature was raised to about $0{ }^{\circ} \mathrm{C}$ and quenched with 50 mL of about pH 7 phosphate buffer and allowed to warm to about $25^{\circ} \mathrm{C}$. The DCM was separated and the aqueous layer was extracted twice with DCM. The combined DCM layers were washed with NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to afford a sample of compound C50 (0.47 g) which was contaminated with an olefinic by-product. To remove this olefin, the sample was dissolved in $\mathrm{EtOH}(15 \mathrm{~mL})$, treated with Pearlman's catalyst (170 mg), and hydrogenated at 40 psi for about 2 h . The mixture was filtered and concentrated. The residue was purified by chromatography to provide the title compound C50. Yield $0.14 \mathrm{~g}(36 \%){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.93-5.09(\mathrm{~m}, 2 \mathrm{H}) 4.74-4.87(\mathrm{~m}, 1 \mathrm{H}) 4.53-4.65(\mathrm{~m}, 1 \mathrm{H}) 4.16-4.25(\mathrm{~m}, 1 \mathrm{H})$ 4.10-4.15 (m, 1 H) 3.52-3.67(m, 1 H) 3.47 (t, 1 H) 2.32 (ddd, 1 H) 1.75 (td, 1 H) 1.65 (s, 3 H) 1.48 (s, 3 H). There was also obtained in Step 1 ($6 \mathrm{~S}, 7 \mathrm{aS}$)-3,3-dimethyl-6-(oxetan-3-yl)tetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C51). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.93$ (dd, 1 H), $4.79(\mathrm{dd}, 1 \mathrm{H}), 4.60-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{t}, 1 \mathrm{H}), 4.13-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.13(\mathrm{~m}, 3 \mathrm{H})$, $3.39-3.47$ (m, 1 H), 3.16-3.35 (m, 2 H), 2.37 (ddd, 1 H), 1.60 (s, 3 H), $1.46-1.56$ (m, 1 H), 1.44 (s, 3 H).

Step 2. Synthesis of (3R,5S)-3-(3-fluorooxetan-3-yl)-5-(hydroxymethyl)pyrrolidin-2-one (L32).

[0334] Compound C50 (130 mg, 0.56 mmol) was dissolved in 18 mL of acetonitrile and 2 mL of water and treated with 4 -toluenesulfonic acid ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$). The resulting mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 18 h , with additional stirring atabout $95^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L32. Yield 68 mg (64%). This was used without further characterization.

Preparation 26: (3R,5S)-3-fluoro-5-(hydroxymethyl)-3-(methoxymethyl)pyrrolidin-2-one (L33)

[0335]

[0336]
Step 1. Synthesis of (6R,7aS)-6-fluoro-6-(methoxymethyl)-3.3-
dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C52). Lithium hexamethyldisilazide (1 M, 1.3 mL) was added to a solution of compound C37 ($180 \mathrm{mg}, 0.89 \mathrm{mmol}$) in THF (6 mL) at about $0^{\circ} \mathrm{C}$. After about 0 minutes, iodomethane ($0.55 \mathrm{~mL}, 8.8 \mathrm{mmol}$) was added. The mixture was allowed to warm to about $25{ }^{\circ} \mathrm{C}$ and was stirred for about 12 h . Additional lithium hexamethyldisilazide and iodomethane were added, and the mixture was stirred for approximately another 12 h . The reaction was then treated with water and EtOAc. The EtOAc was separated, and the aqueous phase was extracted with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C52. Yield: 116 mg (60%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 4.17$ (dd, 1 H), $3.99(\mathrm{dd}, 1 \mathrm{H}), 3.64-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.52(\mathrm{~m}, 4 \mathrm{H}), 2.78$ (ddd, 1 H), 1.94-2.11 (m, 1 H), 1.72 (s, 3 H), 1.49 ($\mathrm{s}, 3 \mathrm{H}$).
[0337] Step 2. Synthesis of (3R,5S)-3-fluoro-5-(hydroxymethyl)-3-(methoxymethyl)pyrrolidin-2one (L33). Compound C52 ($116 \mathrm{mg}, 0.53 \mathrm{mmol}$) was dissolved in 18 mL of acetonitrile and 2 mL of water and treated with 4 -toluenesulfonic acid ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$). The resulting mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 18 h , with additional stirring at about $95^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L33. Yield: 89 mg (94%). This was used without further characterization.

Preparation 27: (3R,5S)-5-(hydroxymethyl)-3-(oxetan-3-yl)pyrrolidin-2-one (L34)

[0338]

Step 1. Synthesis of (3R,5S)-5-(hydroxymethyl)-3-(oxetan-3-yl)pyrrolidin-2-one (L34).

[0339] To a stirred solution of compound C51 ($130 \mathrm{mg}, 0.62 \mathrm{mmol}$) in 8 mL of acetonitrile and 0.5 mL of water was added 4-toluenesulfonic acid ($6 \mathrm{mg}, 0.03 \mathrm{mmol}$). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 6 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L34. Yield: $35 \mathrm{mg}(33 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.04(\mathrm{bs}, 1 \mathrm{H}), 4.91(\mathrm{t}, 1 \mathrm{H}), 4.80(\mathrm{t}, 1$ H), $4.69(\mathrm{t}, 1 \mathrm{H}), 4.46(\mathrm{t}, 1 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.26(\mathrm{~m}, 1 \mathrm{H})$, 2.89-2.96(m, 1 H), 2.33-2.40(m, 2 H).

Preparation 28: (4R,5S)-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L36)

Step 1. Synthesis of (7R,7aS)-3,3,7-trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C53).

[0341] A suspension of cuprous bromide - dimethyl sulfide complex ($11.9 \mathrm{~g}, 57 \mathrm{mmol}$) in ether $(100 \mathrm{~mL})$ was cooled to about $-10{ }^{\circ} \mathrm{C}$ and a solution of methyllithium ($1.6 \mathrm{M}, 71.4 \mathrm{~mL}, 114$ mmol) was added slowly. The mixture was then cooled to about $-73^{\circ} \mathrm{C}$ and $\mathrm{TMSCI}(7.18 \mathrm{~mL}$, 57 mmol) was added slowly. After the addition was complete, the mixture was maintained for about 15 min before compound P20 ($3.50 \mathrm{~g}, 23 \mathrm{mmol}$) in THF (10 mL) was added slowly. The mixture was maintained for approximately another additional 75 min at about $-78{ }^{\circ} \mathrm{C}$ before being allowed to warm to about $0{ }^{\circ} \mathrm{C}$. The mixture was maintained at about $0{ }^{\circ} \mathrm{C}$ for about 45 min before being treated with a mixture of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ammonium hydroxide. The ethereal layer was separated and the aqueous phase was extracted twice with EtOAc. The combined extracts were dried over MgSO_{4} filtered and concentrated. The residue was purified by chromatography to provide the title compound C53. Yield: $2.27 \mathrm{~g}(59 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.32(\mathrm{dt}, 1 \mathrm{H}), 3.89(\mathrm{dd}, 1 \mathrm{H}), 3.66-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, 1 \mathrm{H})$, 2.42-2.56 (m, 1 H), 2.13 (dd, 1 H), 1.65 (s, 3 H), 1.47 (s, 3 H), 1.02 (d, 3 H).

Step 2. Synthesis of (4R,5S)-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L36).

[0342] To a stirred solution of compound C53 (1.00 g, 5.9 mmol$)$ in 18 mL of acetonitrile and 2 mL of water was added 4 -toluenesulfonic acid ($8 \mathrm{mg}, 0.04 \mathrm{mmol}$). The reaction mixture was heated at about $95{ }^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L36. Yield: $0.67 \mathrm{~g}(88 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) б 3.53 - 3.71 (m, 3 H), 2.57-2.74 (m, 1 $\mathrm{H}), 2.36$ (dd, 1 H$), 2.10(\mathrm{dd}, 1 \mathrm{H}), 1.11$ (d, 3 H).

Synthesis of (4S,5S)-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L35).

[0343]

[0344] This compound was prepared in the same manner as compound L36, substituting (S)-tert-butyl 2-(((tert-butyldimethylsilyl)oxy)methyl)-5-oxo-2,5-dihydro-1H-pyrrole-1-carboxylate (CAS 81658-27-7) for P20 in Step 1 to afford (2S,3S)-tert-butyl 2-(((tert-butyldimethylsilyl)oxy)methyl)-3-methyl-5-oxopyrrolidine-1-carboxylate (C78), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.60(\mathrm{dd}, 1 \mathrm{H}), 3.48(\mathrm{dd}, 1 \mathrm{H}), 3.27(\mathrm{~d}, 1 \mathrm{H}), 2.55$ (dd, 1 H), 2.32-2.22 (m, 1 H), 1.95 (dd, 1 H), 1.15 (d, 3 H).

Synthesis of (4S,5S)-4-ethyl-5-(hydroxymethyl)pyrrolidin-2-one (L46).

[0345]

[0346] This compound was prepared in the same manner as compound L36, substituting CAS 170885-07-1 for P20, and ethylmagnesium bromide for methyllithium, in Step 1, to afford (3R,7S,7aS)-7-ethyl-3-(4-methoxyphenyl)tetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C63), which was used in step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 2$ H), 2.49-2.42 (m, 1 H), 2.01-1.92 (m, 2 H), 1.54-1.47 (m, 1 H), 1.39-1.32 (m, 1 H), 0.88 0.84 ($\mathrm{m}, 3 \mathrm{H}$).

Synthesis of (4R,5S)-4-ethyl-5-(hydroxymethyl)pyrrolidin-2-one (L47).

[0347]

[0348] This compound was prepared in the same manner as compound L36, substituting ethylmagnesium bromide for methyllithium in Step 1, to afford (7R,7aS)-7-ethyl-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C54), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.34$ (dt, 1 H), 3.90 (dd, 1 H), 3.72 (dd, 1 H), 2.91 (dd, 1 H), 2.31 (dd, 1 $\mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H})$.

Synthesis of (4S,5S)-5-(hydroxymethyl)-4-vinylpyrrolidin-2-one (L50)

[0349]

[0350] This compound was prepared in the same manner as compound L36, substituting vinylmagnesium bromide for methyllithium in Step 1, to afford (7S,7aS)-3,3-dimethyl-7-vinyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C55), which was used in Step 2.
[0351] ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84$ (br. s., 1 H), 5.88 (ddd, 1 H), 5.18 (d, 1 H), 5.15 (d, 1 H), 3.75 (td, 1 H), 3.63-3.71 (m, 1 H), 3.54-3.63 (m, 1 H), 3.16-3.29 (m, 2 H), 2.33-2.48 ($\mathrm{m}, 2 \mathrm{H}$).

Synthesis of (4R,5S)-5-(hydroxymethyl)-4-vinylpyrrolidin-2-one (L51)

[0352]

[0353] This compound was prepared in the same manner as compound L36, substituting CAS 170885-07-1 for P20, and vinylmagnesium bromide for methyllithium, in Step 1. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.61$ (br. s., 1 H$), 5.74-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.20(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, 1 \mathrm{H}), 3.46-$ 3.62 (m, 2 H), 2.70-2.87 (m, 1 H), 2.56 (dd, 1 H), 2.30 (dd, 2 H).

Synthesis of (4S,5S)-4-cyclopropyl-5-(hydroxymethyl)pyrrolidin-2-one (L58).

[0354]

[0355] This compound was prepared in the same manner as compound L36, substituting cyclopropylmagnesium bromide for methyllithium in Step 1, to afford (7S,7aS)-7-cyclopropyl-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C56), which was used in Step 2. ${ }^{1} \mathrm{H}$

NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 3.80(\mathrm{~d}, 2 \mathrm{H}), 3.64(\mathrm{dt}, 1 \mathrm{H}), 2.23-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.87(\mathrm{~m}, 1$ $\mathrm{H}), 0.89$ (dtd, 1 H$), 0.52(\mathrm{dd}, 2 \mathrm{H}), 0.04-0.23(\mathrm{~m}, 2 \mathrm{H})$.

Synthesis of (4R.5S)-5-(hydroxymethyl)-4-propylpyrrolidin-2-one (L59)

[0356]

[0357] This compound was prepared in the same manner as compound L36, substituting propylmagnesium bromide for methyllithium in Step 1, to afford (7R,7aS)-3,3-dimethyl-7-propyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C57), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) $\delta 7.46$ (br. s, 1 H), $4.63(\mathrm{t}, 1 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.07$ - 2.01 (dd, 1 H), 1.95-1.89 (dd, 1 H), 1.48-1.41 (m, 1 H), 1.39-1.20 (m, 3 H), 0.86 (t, H).

Preparation 29: (3R,4S,5S)-3-fluoro-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L37)

[0358]

[0359] Step 1. Synthesis of (6R,7S,7aS)-6-fluoro-3,3,7-trimethyltetrahydropyrrolo[1,2-c]oxazol$5(3 \mathrm{H})$-one (C58). A solution of compound $\mathbf{C 5 3}(0.93 \mathrm{~g}, 5.5 \mathrm{mmol})$ in THF (22 mL) was cooled to about $-78{ }^{\circ} \mathrm{C}$ and treated with LDA ($2.0 \mathrm{M}, 3.44 \mathrm{~mL}, 6.88 \mathrm{mmol}$). The mixture was maintainedat about $-78^{\circ} \mathrm{C}$ for about 25 min before being treated with NFSI ($2.23 \mathrm{~g}, 6.8 \mathrm{mmol}$) in THF (8 mL). After stirring at about $-78^{\circ} \mathrm{C}$ for another approximate 5 min , the mixture was warmed to about $25^{\circ} \mathrm{C}$ for about 1 h . Ethyl acetate and water were added, and the mixture was concentrated under reduced pressure to remove the THF present. The mixture was extracted twice with EtOAc, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C58. Yield: $0.56 \mathrm{~g}(55 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.58-4.77$ (m, 1 H), 4.54 (dtd, 1 H), 3.96 (dd, 1 H), 3.68 (dd, 1 H), 2.53-2.73 (m, 1 H), 1.66 (s, 3 H), 1.53 (s, 3 H), 1.05 (d, 3 H). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-184.92. There was also obtained ($6 \mathrm{~S}, 7 \mathrm{~S}, 7 \mathrm{aS}$)-6-fluoro-3,3,7-trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C59). Yield: 0.11 g (11\%). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.25(\mathrm{dd}, 1 \mathrm{H}), 3.95-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.86-3.03(\mathrm{~m}, 1 \mathrm{H})$,

Step 2. Synthesis of (3R,4S,5S)-3-fluoro-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L37).

[0360] To a stirred solution of compound C58 (590 mg, 3.1 mmol) in 18 mL of acetonitrile and 2 mL of water was added 4-toluenesulfonic acid ($27 \mathrm{mg}, 0.16 \mathrm{mmol}$). The reaction mixture was heated at about $90{ }^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L37. Yield: $451 \mathrm{mg}(97 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94$ (br. s., 1 H), 4.94 (dd, 1 H), 3.66 $3.77(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{t}, 1 \mathrm{H}), 2.61-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-194.85$.

Synthesis of (3S,4S,5S)-3-fluoro-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L38).

[0361] This compound was prepared in the same manner as compound L37, substituting compound C59 for compound C58 in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.63$ (br. s., 1 H), 4.86 (dd, 1 H), 3.72-3.83 (m, 2H), 3.60-3.68(m, 1 H), 2.67-2.80 (m, 1 H), 1.96 (br. s., 1

Synthesis of (4R,5S)-5-(hydroxymethyl)-3,4-dimethylpyrrolidin-2-one (L48).

[0362]

[0363] This compound was prepared in the same manner as compound L37, substituting iodomethane for NFSI in Step 1, to afford (7R,7aS)-3,3,6,7-tetramethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C60), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) ठ $3.75-3.50$ (m, 3 H), 2.70-2.58(m, 1 H), 2.29-2.15(m, 1 H), 1.21-1.05 (overlapping d, 6 H).

Synthesis of (3S,4S,5S)-4-ethyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L54).

[0364] This compound was prepared in the same manner as compound L37, substituting
compound C54 for compound C53 in Step 1, to afford (6S,7S,7aS)-7-ethyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C61), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59$ (br. s., 1 H), $4.80(\mathrm{dd}, 1 \mathrm{H}), 3.69-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.64(\mathrm{~m}, 1 \mathrm{H})$, 3.48 (br. s, 1 H), $2.27-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{dt}, 1 \mathrm{H}), 1.04(\mathrm{t}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-198.72. There was also obtained in Step 1 (6R,7S,7aS)-7-ethyl-6-fluoro-3,3-dimethyltetrahydro-pyrrolo[1,2-c]oxazol-5(3H)-one (C62). ${ }^{1} \mathrm{H} \quad \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 4.78(\mathrm{dd}, 1 \mathrm{H}), 4.40(\mathrm{dt}, 1 \mathrm{H}), 3.93(\mathrm{dd}, 1 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H}), 2.30-2.46(\mathrm{~m}, 1 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{ddd}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.48(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, 3 \mathrm{H})$.

Synthesis of (3R,4S,5S)-4-ethyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L55).

[0365]

[0366] This compound was prepared in the same manner as compound L37, substituting compound C62 for compound C58 in Step 2. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $\delta 8.05$ (br. s, 1 H), $4.88(\mathrm{dd}, 1 \mathrm{H}), 3.48-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 2$ $\mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-189.64$.

Synthesis of (3R,4R,5S)-4-ethyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L57).

[0367]

[0368] This compound was prepared in the same manner as compound L37, substituting compound C63 for compound C53 in Step 1, to afford (3R,6R,7R,7aS)-7-ethyl-6-fluoro-3-(4-methoxy-phenyl)tetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C64), which was used in Step $2 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\left.\delta 4.92(\mathrm{dd}, 1 \mathrm{H}), 3.83-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.48 \mathrm{~m}, 2 \mathrm{H}\right), 2.17-2.10$ $(\mathrm{m}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, 1 \mathrm{H})$.

Synthesis of (3S,4R,5S)-3-fluoro-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L90).

[0369]

[0370] This compound was prepared in the same manner as compound L37, substituting compound C78 for compound C53 in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82$ (br. s., 1 H), 4.73 (dd, 1 H), 3.87 (dd, 1 H), 3.56 (dd, 1 H), $3.28-3.37$ (m, 1 H), 2.24-2.37 (m, 1 H), 1.21 (d, 3 H).

Synthesis of (3S,4S,5S)-4-cyclopropyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L119).

[0371]

[0372] This compound was prepared in the same manner as compound L37, substituting compound C56 for compound C53 in Step 1, to afford ($6 \mathrm{~S}, 7 \mathrm{~S}, 7 \mathrm{aS}$)-7-cyclopropyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C162), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.85(\mathrm{dd}, 1 \mathrm{H}), 3.94(\mathrm{dd}, 1 \mathrm{H}), 3.70-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.70(\mathrm{~m}, 1 \mathrm{H})$, $1.74-1.94(\mathrm{~m}, 1 \mathrm{H}), 0.78-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.53-0.70(\mathrm{~m}, 2 \mathrm{H}), 0.23-0.37(\mathrm{~m}, 2 \mathrm{H})$. There was also obtained in Step 1 ($6 \mathrm{R}, 7 \mathrm{~S}, 7 \mathrm{aS}$)-7-cyclopropyl-6-fluoro-3,3-dimethyltetrahydro-pyrrolo[1,2-cloxazol-5(3H)-one (C163). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.91(\mathrm{~d}, 1 \mathrm{H}), 4.44-4.57(\mathrm{~m}, 1 \mathrm{H})$, 3.94-4.09 (m, 2 H), 1.70-1.76(m, 1 H), 1.67(s, 3H), 1.54 (s, 3H), 0.55-0.73(m, 3H), 0.29 - 0.38 (m, 1 H), $0.17-0.27$ (m, 1 H)

Synthesis of (3R,4S.5S)-4-cyclopropyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L120).

[0373]

[0374] This compound was prepared in the same manner as compound L37, substituting compound C163 for compound C58 in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.13$ (dd, 1 H), 3.86 (dd, 1 H), $3.58-3.72(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.08$ (dtd, 1 H$), 0.51-0.70(\mathrm{~m}, 2 \mathrm{H})$, 0.37 (dq, 1 H), 0.14-0.26(m, 1 H).

Preparation 30: (4S,5S)-4-ethyl-3,3-difluoro-5-(hydroxymethyl)pyrrolidin-2-one (L40)

[0375]

[0376] Step 1. Synthesis of (7S,7aS)-7-ethyl-6,6-difluoro-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C65). A solution of compound C62 ($0.80 \mathrm{~g}, 4.0 \mathrm{mmol}$) in THF (30 mL) was was treated with LDA ($2 \mathrm{M}, 4.97 \mathrm{~mL}, 9.94 \mathrm{mmol}$) slowly at about $-78{ }^{\circ} \mathrm{C}$. The mixture was kept at about $-78{ }^{\circ} \mathrm{C}$ for about 45 min before the addition of a solution of NFSI ($1.63 \mathrm{~g}, 5.17 \mathrm{mmol}$) in THF (10 mL). The mixture was maintained at about $-78{ }^{\circ} \mathrm{C}$ for about 15 min after the completion of the addition, then was warmed to about $25^{\circ} \mathrm{C}$ for about 2 h . Water and EtOAc were added and the EtOAc was separated. The aqueous phase was extracted with EtOAc, and the combined EtOAc extracts were washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C65. Yield: $350 \mathrm{mg}(40 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $\delta 4.24$ (dd, 1 H), 4.09 (dd, 1 H), 3.57 ($\mathrm{m}, 1$ H), 2.80-2.76(m, 1 H), $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H})$.

Step 2. Synthesis of (4S,5S)-4-ethyl-3,3-difluoro-5-(hydroxymethyl)pyrrolidin-2-one (L40).

[0377] To a stirred solution of compound C65 ($350 \mathrm{mg}, 1.91 \mathrm{mmol}$) in 14 mL of acetonitrile and 1.6 mL of water was added 4 -toluenesulfonic acid ($18 \mathrm{mg}, 0.09 \mathrm{mmol}$). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L40. Yield: $260 \mathrm{mg}(76 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59$ (br. s, 1 H), $3.78-3.75$ (m, 2 H), 3.53-3.51 (m, 1 H), 2.65-2.52 (m 1 H), 1.89 (br. s, 1 H), 1.79-1.69 (m, 1 H), 1.52-1.45 (m, $1 \mathrm{H}), 1.08(\mathrm{t}, 3 \mathrm{H})$.

Synthesis of (4S,5S)-3,3-difluoro-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L39)

[0379] This compound was prepared in the same manner as compound L40, substituting compound C58 for compound C62 in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $3.76-3.48$ (m, 2 H), 3.29-2.71 (m, 1 H), 2.69-2.60(m, 1 H), 1.18-1.06(d, 3H).

Synthesis of (3R,4S,5S)-3-((benzyloxy)methyl)-3-fluoro-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L41)

[0380]

[0381] This compound was prepared in the same manner as compound L40, substituting compound C58 for compound C62, and benzyloxymethyl chloride (CAS 3587-60-8) for NFSI, in Step 1 to afford a (6R,7S,7aS)-6-((benzyloxy)methyl)-6-fluoro-3,3,7-trimethyltetrahydro-pyrrolo[1,2-c]oxazol-5(3H)-one (C66), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.21-7.41$ (m, 5 H), 4.57 (d, 2 H), $3.47-3.86$ (m, 5 H), 2.71-2.93 (m, 1 H), 1.04 (d, 3 H). There was also obtained in Step 1 ($6 \mathrm{~S}, 7 \mathrm{~S}, 7 \mathrm{aS}$)-6-((benzyloxy)methyl)-6-fluoro-3,3,7-trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C67). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28$ $7.40(\mathrm{~m}, 5 \mathrm{H}), 4.68$ (d, 1 H), 4.53 (d, 1 H$), 4.45-4.51$ (m, 1 H$), 3.95$ (dd, 1 H$), 3.88$ (dd, 1 H), 3.59-3.74 (m, 2 H), 2.72-2.85 (m, 1 H), 1.61 (s, 3 H), 1.51 (s, 3 H), 0.99 (d, 3 H)

Synthesis of (3S,4S,5S)-3-((benzyloxy)methyl)-3-fluoro-5-(hydroxymethyl)-4-

 methylpyrrolidin-2-one (L42).[0382]

[0383] This compound was prepared in the same manner as compound L40, substituting
compound C67 for compound C65 in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $7.28-7.45$ ($\mathrm{m}, 5$ H), 6.85 (br. s., 1 H), $4.60(\mathrm{~s}, 2 \mathrm{H}), 3.87-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.86(\mathrm{~m}, 3 \mathrm{H}), 3.44$ (dd, 1 H$)$, 2.32-2.55(m, 1H), 2.20-2.33(m, 1H).

Synthesis of (3R,4S,5S)-3-fluoro-5-(hydroxymethyl)-3,4-dimethylpyrrolidin-2-one (L44)

[0384]

[0385] This compound was prepared in the same manner as compound L40, substituting compound C60 for compound $\mathbf{C 6 2}$ in Step 1, to afford (6R,7S,7aS)-6-fluoro-3,3,6,7-tetramethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C68), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.90-4.78(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.66(\mathrm{~m}, 1 \mathrm{H}), 1.42$ (dd, $3 \mathrm{H})$, (1.04 (d, 3 H). There was also obtained in Step 1 (6S,7S,7aS)-6-fluoro-3,3,6,7-tetramethyltetrahydro-pyrrolo[1,2-c]oxazol-5(3H)-one (C69).

Synthesis of (3S,4S,5S)-3-fluoro-5-(hydroxymethyl)-3,4-dimethylpyrrolidin-2-one (L45)

[0386]

[0387] This compound was prepared in the same manner as compound L40, substituting compound C69 for compound C65 in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) ס $3.59-3.56$ ($\mathrm{m}, 2$ H), 3.46-3.44 (m, 1 H), 2.41-2.22(m, 1H), 1.48-1.39(m, 3H), 1.10-1.01 (m, 3 H).

Preparation 31

[0389] Step 1. Synthesis of (3R,7R,7aS)-3-(4-methoxyphenyl)-7-(2-methylprop-1-en-1-yl)tetrahydro-pyrrolo[1,2-c]oxazol-5(3H)-one (C70). To a solution of cuprous bromide dimethyl sulfide ($6.24 \mathrm{~g}, 30.2 \mathrm{mmol}$) in THF (120 mL) was slowly added 2-methyl-1-propenylmagnesium bromide ($0.5 \mathrm{M}, 12160.5 \mathrm{mmol}$) at about $-15^{\circ} \mathrm{C}$. After about 15 min , the mixture was cooled to about $-78{ }^{\circ} \mathrm{C}$. A solution of CAS 170885-07-1 ($1.4 \mathrm{~g}, 6.0 \mathrm{mmol}$) and TMSCI ($1.3 \mathrm{~g}, 12.1 \mathrm{mmol}$) in THF (25 mL) was added over about 15 min . After about 1 h , aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the mixture and it was allowed to warm to about $25^{\circ} \mathrm{C}$. Ethyl acetate was added and the EtOAc was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C70. Yield: $1.1 \mathrm{~g}(64.0 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $7.30(\mathrm{~d}, 2 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{dt}, 1 \mathrm{H}), 4.13(\mathrm{dd}, 1 \mathrm{H}), 3.87-3.94$ (m, 1 H), 3.74 (s, 3 H), 3.59-3.65 (m, 1 H), 3.15-3.25 (m, 1 H), 2.55-2.65 (m, 1 H), 2.46 2.52 ($\mathrm{s}, 1 \mathrm{H}$), 1.67 (d, 3 H), 1.61 (d, 3 H).
[0390] Step 2. Synthesis of (3R,7S.7aS)-7-(hydroxymethyl)-3-(4-methoxyphenyl)tetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C71). A solution of compound C70 $(1.1 \mathrm{~g}, 3.8 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ was treated with ozone at about $-78^{\circ} \mathrm{C}$. Once excess ozone was present, methyl sulfide (5 mL) was added slowly. The mixture was stirred at about $-78^{\circ} \mathrm{C}$ for about 1 hour before being evaporated to dryness. The residue was dissolved in 9 mL of THF and 1 mL of water and treated with NaBH_{4} ($307 \mathrm{mg}, 7.6 \mathrm{mmol}$). The mixture was stirred for about 2 h at about $25^{\circ} \mathrm{C}$ before being treated with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc. The EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C71. Yield: 460 mg (46%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $7.29(\mathrm{~d}, 2 \mathrm{H}), 6.93(\mathrm{~d}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{t}, 1 \mathrm{H}), 4.15(\mathrm{dd}, 1 \mathrm{H}), 3.89-3.97$ (m, 1 H), 3.75 (s, 3 H), 3.40-3.55 (m, 3 H), 2.39-2.55 (m, 3 H).

Step 3. Synthesis of (4S,5S)-4-((benzyloxy)methyl)-5-(hydroxymethyl)pyrrolidin-2-one (L43).

[0391] A solution of compound C71 ($220 \mathrm{mg}, 0.84 \mathrm{mmol}$) in DMF (4.2 mL) was cooled to about $0{ }^{\circ} \mathrm{C}$ and treated with sodium hydride $(60 \%, 40 \mathrm{mg}, 1.0 \mathrm{mmol})$ followed by (bromomethyl)benzene ($0.11 \mathrm{~mL}, 0.92 \mathrm{mmol}$). The mixture was kept for about 1 h at about 0 ${ }^{\circ} \mathrm{C}$ before being diluted with water. The mixture was extracted with EtOAc. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was subjected to treatment with 4toluenesulfonic acid in acetonitrile and water to provide the title compound L43. Yield: 100 mg
 2 H), 3.35-3.46(m, 3H), 3.26-3.35(m, 2H), 2.33-2.42(m, 1H), 2.24-2.33(m, 1 H), 1.85

Preparation 32: (4S,5S)-4-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L49)

[0392]

[0393] Step 1. Synthesis of (3R.7S.7aS)-7-(fluoromethyl)-3-(4-methoxyphenyl)tetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C72). A solution of compound C71 ($460 \mathrm{mg}, 1.75 \mathrm{mmol}$) and 2,6 -lutidine ($468 \mathrm{mg}, 4.37 \mathrm{mmol}$) in DCM at about $0^{\circ} \mathrm{C}$ was treated with DAST ($563 \mathrm{mg}, 3.5 \mathrm{mmol}$). The mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 5 h before being quenched with saturated aqueous NaHCO_{3} and extracted with DCM. The combined DCM extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C72. Yield: 410 mg (88%). LCMS: m/z, 265.3 $(M+1)$, retention time: 1.602 min .
[0394] Step 2. Synthesis of (4S,5S)-4-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L49). To a stirred solution of compound $\mathbf{C 7 1}(100 \mathrm{mg}, 0.38 \mathrm{mmol})$ in 9 mL of acetonitrile and 1 mL of water was added 4 -toluenesulfonic acid ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$). The reaction mixture was heated at about $90{ }^{\circ} \mathrm{C}$ until the solvent was evaporated. Additional acetonitrile and water were added and the operation was repeated several more times. The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L49. Yield: 50 mg (90%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.53-4.51$ ($\mathrm{m}, 1 \mathrm{H}$), 4.41 $4.40(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.53(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H})$.

Preparation 33: (3S,4S,5S)-4-(fluoromethyl)-5-(hydroxymethyl)-3-methylpyrrolidin-2-one (L52)

[0395]

[0396] Step 1. Synthesis of (3R,7S.7aS)-7-(fluoromethyl)-3-(4-methoxyphenyl)-6-methyltetrahydro-pyrrolo[1,2-c]oxazol-5(3H)-one (C73). To a solution of compound C73 (160 $\mathrm{mg}, 0.61 \mathrm{mmol})$ in THF (3 mL) at about $-78{ }^{\circ} \mathrm{C}$ was added LDA ($2 \mathrm{M}, 0.38 \mathrm{~mL}$). The mixture
was stirred for about 0.5 h before iodomethane ($107 \mathrm{mg}, 0.76 \mathrm{mmol}$) was added. The mixture was maintained for about 10 min at about $-78^{\circ} \mathrm{C}$ before it was warmed to about $25^{\circ} \mathrm{C}$ and stirred for about 1 h . EtOAc and water were added and the mixture was extracted with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C73. Yield: 140 mg (82%). LCMS: m/z, $279(\mathrm{M}+1)$, retention time: 1.244 min
[0397] Step 2. Synthesis of (3S,4S,5S)-4-(fluoromethyl)-5-(hydroxymethyl)-3-methylpyrrolidin-2-one (L52). A solution of compound C73 ($140 \mathrm{mg}, 0.5 \mathrm{mmol}$) in 6.5 mL of AcOH and 3.5 mL of water was heated to about $90^{\circ} \mathrm{C}$ for about 40 min before being evaporated to dryness. The residue was dissolved in 25 mL of MeOH and concentrated. The residue was purified by chromatography to provide the title compound L52. Yield: $70 \mathrm{mg}(87 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) ~ \delta 4.62-4.51(\mathrm{~d}, 2 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.23-$ 2.10 ($\mathrm{m}, 1 \mathrm{H}$), 1.25 ($\mathrm{s}, 3 \mathrm{H}$).

Preparation 34: (3R,4R,5R)-3-fluoro-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L53)

[0398]

[0399] Step 1. Synthesis of (7aR)-3,3-dimethyl-6-(phenylselanyl)tetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C74). LDA ($2 \mathrm{M}, 41.9 \mathrm{~mL}$) was added to a solution of (R)-3,3-dimethyltetra-hydropyrrolo[1,2-c]oxazol-5(1H)-one (CAS 103630-36-0, $10 \mathrm{~g}, 64.4 \mathrm{mmol}$) in THF (130 mL) at about $-78^{\circ} \mathrm{C}$. After about 30 min , diphenyl diselenide ($24.13 \mathrm{~g}, 77.3 \mathrm{mmol}$) in THF (125 mL) was added. The mixture was kept at about $-78^{\circ} \mathrm{C}$ for about 30 min before being warmed to about $25^{\circ} \mathrm{C}$ for about 1 h . Ethyl acetate and water were added, and the mixture was partially concentrated before being extracted with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C74. Yield: $12.0 \mathrm{~g}(60 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)$ б $7.72-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{dd}, 1 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.98-$ $3.92(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{t}, 1 \mathrm{H}), 3.13(\mathrm{t}, 1 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dd}, 2$ H), 1.84-1.75 (m, 1 H), 1.62 and $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.44$ and $1.28(\mathrm{~s}, 3 \mathrm{H})$.

Step 2. Synthesis of (R)-3,3-dimethyl-1,7a-dihydropyrrolo[1,2-c]oxazol-5(3H)-one (C75).

[0400] A solution of compound C74 ($12.0 \mathrm{~g}, 38.7 \mathrm{mmol}$) in DCM (150 mL) and pyridine (6.8 mL) at about $0^{\circ} \mathrm{C}$ was treated with 30% hydrogen peroxide solution ($17.86 \mathrm{~mL}, 128 \mathrm{mmol}$).

The mixture was kept at about $0^{\circ} \mathrm{C}$ for about 30 min before being warmed slowly to about 25 ${ }^{\circ} \mathrm{C}$. After about 3 h , the mixture was diluted with DCM (100 mL) and washed with saturated aqueous NaHCO_{3} solution. The DCM extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C75. Yield: $4.0 \mathrm{~g}(68 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06$ (dd, 1 H), 6.09 (dd, 1 H), 4.66-4.62 (m, 1 H), 4.12 (dd, 1 H), 3.33 (dd, 1 H), 1.67 (s, 3 H), 1.55 (s, 3 H).

Step 3. Synthesis of (7S,7aR)-3,3,7-trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C76).

Abstract

[0401] Methyllithium ($1.6 \mathrm{M}, 34.7 \mathrm{~mL}$) was added to a suspension of cuprous bromide dimethylsulfide complex ($5.7 \mathrm{~g}, 27.8 \mathrm{mmol}$) in diethyl ether (40 mL) at about $-10^{\circ} \mathrm{C}$. After the addition was complete, the solution was cooled to about $-78^{\circ} \mathrm{C}$. After about $10 \mathrm{~min}, \mathrm{TMSCI}$ ($3.5 \mathrm{~mL}, 27.7 \mathrm{mmol}$) was added, followed by a solution of compound C75 ($1.7 \mathrm{~g}, 11.1 \mathrm{mmol}$) in THF (28 mL). The mixture was stirred at about $-78^{\circ} \mathrm{C}$ for about 2 h . then was allowed to warm to about $20^{\circ} \mathrm{C}$ for about 1 h . A mixture of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ammonium hydroxide was added with stirring, after which the mixture was diluted with EtOAc. The EtOAc was separated and the aqueous phase was extracted with EtOAc. The combined EtOAc extracts were washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C76. Yield: $1.75 \mathrm{~g}(93 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.33-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}), 3.71(\mathrm{t}, 1 \mathrm{H}), 2.97(\mathrm{dd}, 1 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H})$, 2.11 (d, 1 H), 1.63 ($\mathrm{s}, 3 \mathrm{H}$), 1.45 ($\mathrm{s}, 3 \mathrm{H}$), 1.01 (d, 3 H).

[0402] Step 4. Synthesis of (6R,7R,7aR)-6-fluoro-3,3,7-trimethyltetrahydropyrrolo[1,2-c]oxazol$5(3 \mathrm{H})$-one (C77). LDA ($1.8 \mathrm{M}, 7.03 \mathrm{~mL}$) was added to a $-78{ }^{\circ} \mathrm{C}$ solution of compound $\mathbf{C 7 6}$ $(1.427 \mathrm{~g}, 8.4 \mathrm{mmol})$ in THF (27 mL). After about 1 h , a solution of NFSI ($3.43 \mathrm{~g}, 10.5 \mathrm{mmol}$) in THF (8 mL) was added. After about 5 min , the mixture was allowed to warm to about $25^{\circ} \mathrm{C}$. After about 3 h , EtOAc and water were added, and the mixture was partially concentrated before being extracted with EtOAc. The combined EtOAc extracts were dried over MgSO4, filtered, and concentrated. The residue was dissolved in DCM and filtered. The filtrate was concentrated and the residue was purified by chromatography to provide the title compound C77. Yield: 282 mg (18%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 5.27$ (dd, 1 H), $3.99-4.08$ (m, 1 H), 3.95 (dd, 1 H), 3.72 (t, 1 H), 2.94 (quind, 1 H), 1.58 (s, 3 H), 1.39 (s, 3 H), 0.90 (dd, 3 H).

Step 5. Synthesis (3R,4R,5R)-3-fluoro-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L53).
[0403] To a stirred solution of compound $\mathbf{C 7 7}$ ($280 \mathrm{mg}, 1.5 \mathrm{mmol}$) in 9 mL of acetonitrile and 1 mL of water was added 4 -toluenesulfonic acid (15 mg 0.07 mmol). The reaction mixture was heated at about $90{ }^{\circ} \mathrm{C}$ for about 1.5 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound

L53. Yield: $169 \mathrm{mg}(77 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 6.56$ (br. s, 1 H), 4.83 (dd, 1 H), 3.52 - 3.67 (m, 2 H), 3.37-3.50 (m, 1 H), 2.83-2.94 (m, 1 H), 2.63-2.80 (m, 1 H), 0.98 (dd, 3 H).

Preparation 35: (3S,4S,5S)-4-ethyl-d $\mathbf{d}_{\underline{5}}$-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L56).

Step 1. Synthesis of (7R,7aS)-7-ethyl-d 5 -3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C79). A solution of perdeuteroethylmagnesium bromide was prepared from $11.06 \mathrm{~g}(97 \mathrm{mmol})$ of ethyl-d5 bromide and magnesium metal ($2.73 \mathrm{~g}, 112 \mathrm{mmol}$) in 80 mL of THF. A portion of this solution (43.5 mL) was added to a suspension of cuprous bromide - dimethyl sulfide complex ($6.78 \mathrm{~g}, 32.6 \mathrm{mmol}$) complex in THF $(40 \mathrm{~mL})$ at about $-10^{\circ} \mathrm{C}$. The mixture was stirred at about- $10{ }^{\circ} \mathrm{C}$ for about 10 min before being cooled to about $-78{ }^{\circ} \mathrm{C}$. Chlorotrimethylsilane $(3.55 \mathrm{~g}, 32.6 \mathrm{mmol})$ was added. After about 15 min , compound $\mathbf{P 2 0}(2.0 \mathrm{~g}, 13.1 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added. The mixture was kept at about $-78{ }^{\circ} \mathrm{C}$ for about 30 min before being warmed to about $25^{\circ} \mathrm{C}$ for about 18 h . A mixture of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ammonium hydroxide was added with stirring, after which the mixture was diluted with EtOAc and filtered. The EtOAc was separated and the aqueous phase was extracted with EtOAc. The combined EtOAc extracts were washed with NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C79. Yield: 850 mg (35%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.34$ (dt, 1 H), 3.90 ($\mathrm{dd}, 1 \mathrm{H}$), $3.68-3.75$ ($\mathrm{m}, 1 \mathrm{H}$), 2.91 (dd, 1 H), 2.31 (dd, 1 H), 2.24 (t, 1 H), 1.65 (s, 3 H), 1.48 (s, $3 H$).
[0405] Step 2. Synthesis of (6S,7S,7aS)-7-ethyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C80). A solution of compound C79 ($512 \mathrm{mg}, 2.7 \mathrm{mmol}$) in 2-methylTHF $(12.5 \mathrm{~mL})$ was treated at about $-78^{\circ} \mathrm{C}$ with lithium hexamethyldisilazide ($1 \mathrm{M}, 3.0 \mathrm{~mL}$) and the mixture was kept for about 45 min at about $-78^{\circ} \mathrm{C}$ before being added into an approximate -78 ${ }^{\circ} \mathrm{C}$ solution of NSFI ($1.12 \mathrm{~g}, 3.54 \mathrm{mmol}$) in 2-methylTHF (12.5 mL). The mixture was kept at about $-78^{\circ} \mathrm{C}$ for about 30 min , then water (10 mL) and EtOAc (10 mL) were added. The EtOAc was separated and the aqueous phase was extracted with EtOAc (10 mL). The combined EtOAc extracts were washed with sodium iodide solution, sodium thiosulfate solution, NaOH solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C80. Yield: 94 mg (17%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta 5.26(\mathrm{dd}, 1 \mathrm{H}), 3.95-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.71(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.58$ (s, 3 H), 1.40 ($\mathrm{s}, 3 \mathrm{H}$).

Step 3. Synthesis of (3S,4S,5S)-4-ethyl-d 5 -3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L56).

[0406] To a stirred solution of compound C80 ($94 \mathrm{mg}, 0.46 \mathrm{mmol}$) in 18 mL of acetonitrile and 2 mL of water was added 4 -toluenesulfonic acid ($4 \mathrm{mg}, 0.02 \mathrm{mmol}$). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 4 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L56. Yield: $51 \mathrm{mg}(67 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 6.76$ (br. s., 1 H), 4.73 (dd, 1 H), 3.57 3.67 (m, 2 H), 3.32-3.42 (m, 1 H), 2.85 (t, 1 H), 2.40 (dt, 1 H).

Preparation 36: (4R,5S)-5-(hydroxymethyl)-4-(methoxymethyl)pyrrolidin-2-one (L60)

[0407]

[0408] Step 1. Synthesis of (7R,7aS)-7-(hydroxymethyl)-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C82). A stream of ozonized oxygen was bubbled through a solution of compound C55 ($1.95 \mathrm{~g}, 10.8 \mathrm{mmol}$) in DCM (49 mL) and $\mathrm{MeOH}(16 \mathrm{~mL})$ at about $-78^{\circ} \mathrm{C}$ for about 2 h . Dimethyl sulfide (10 mL) was added at about $-78{ }^{\circ} \mathrm{C}$, followed $\mathrm{NaBH}_{4}(2.44 \mathrm{~g}, 64.6$ mmol) at the same temperature. After about 30 min , the reaction was warmed to about $0^{\circ} \mathrm{C}$ and stirred for about 2 h . Ethyl acetate was added, and the mixture was washed with water, then brine. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C82. Yield: 1.2 g $(60 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.40-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{dd}, 1 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}), 3.72-$ $3.62(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{dd}, 1 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~d}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$.
[0409] Step 2. Synthesis of (7R,7aS)-7-(methoxymethyl)-3.3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C83). To a stirred solution of compound C55 ($1.4 \mathrm{~g}, 7.5 \mathrm{mmol}$) in THF (40 mL) was added freshly prepared silver(I) oxide ($17.48 \mathrm{~g}, 75.7 \mathrm{mmol}$), followed by iodomethane $(5.37 \mathrm{~g}, 37.8 \mathrm{mmol})$. The mixture was heated at about $70^{\circ} \mathrm{C}$ for about 16 h . The mixture was then cooled to about $25{ }^{\circ} \mathrm{C}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C83. Yield: $1.1 \mathrm{~g}(73 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 4.36-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{dd}, 1 \mathrm{H}), 3.68(\mathrm{dd}, 1 \mathrm{H}), 3.39-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$, 2.93 (dd, 1 H), 2.61-2.53 (m, 1 H), 2.22 (dd, 1 H), 1.62 (s, 3 H), 1.46 (s, 3 H).

Step 3. Synthesis of (4R,5S)-5-(hydroxymethyl)-4-(methoxymethyl)pyrrolidin-2-one (L60).

[0410] To a stirred solution of compound C83 ($200 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 18.8 mL of acetonitrile and 2.1 mL of water was added 4 -toluenesulfonic acid ($9 \mathrm{mg}, 0.05 \mathrm{mmol}$). The reaction mixture was heated to reflux for about 2 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L60. Yield: $150 \mathrm{mg}(93 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 3.49-3.34$ (m, 5 H), 3.32 (s, 3 H), 3.23 (s, 3 H), 2.73-2.60 (m, 1 H), 2.09-1.95 (m, 2 H).

Preparation 37: (4R.5S)-3-fluoro-5-(hydroxymethyl)-4-(methoxymethyl)pyrrolidin-2-one (L61)

[0411] Step 1. Synthesis of (7R,7aS)-6-fluoro-7-(methoxymethyl)-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C84). A solution of compound C83 (250 mg , $1.3 \mathrm{mmol})$ in THF (10 mL) was treated with lithium hexamethyldisilazide ($1 \mathrm{M}, 2.13 \mathrm{~mL}$) at -78 ${ }^{\circ} \mathrm{C}$ and kept for about 30 min before the addition of a solution of NFSI ($436 \mathrm{mg}, 1.4 \mathrm{mmol}$) in THF (10 mL). The mixture was maintained for about 30 min at about $-78^{\circ} \mathrm{C}$ and then was allowed to warm to about $25^{\circ} \mathrm{C}$ for about 1 h . Water and EtOAc were added and the phases were separated. The EtOAc extract EtOAc extracts were washed with sodium iodide solution, sodium thiosulfate solution, NaOH solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C84. Yield: $90 \mathrm{mg}(33 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.88(\mathrm{~d}, 1 \mathrm{H}), 4.51-4.46(\mathrm{~m}, 1 \mathrm{H}), 3.96$ (dd, 1 H), 3.70 (dd, 1 H), 3.49-3.44 (m, 2 H), $3.31(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.46$ (s, 3 H). There was also obtained (7R,7aS)-6,6-difluoro-7-(methoxymethyl)-3,3-dimethyltetrahydro-pyrrolo[1,2-c]oxazol-5(3H)-one (C85). Yield 45 mg (15%). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $4.24-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.08$ (dd, 1 H), 3.79 (dd, 1 H), 3.55 (dd, 1 H), 3.48 (dd, 1 H), 3.30 (s, 3 H), 2.94-2.85 (m, 1 H), 1.65 (s, 3 H), 1.53 (s, 3 H).
[0412] Step 2. Synthesis of (7R,7aS)-6-fluoro-7-(methoxymethyl)-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C86). A solution of compound C84 (125 mg , 0.575 mmol) in THF (10 mL) was treated with potassium hexamethyldisilazide ($1 \mathrm{M}, 0.115 \mathrm{~mL}$) at about $0{ }^{\circ} \mathrm{C}$. After about 5 min , the mixture was allowed to warm to about $25^{\circ} \mathrm{C}$ for about 2 h . Aqueous sodium dihydrogen phosphate was added and the mixture was extracted with EtOAc. The combined EtOAc extracts were washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound C86. Yield: $115 \mathrm{mg}(92 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 5.28$ (dd, 1 H , diastereomer 1), 4.89 (d, 1 H , diastereomer 2), $4.51-4.47(\mathrm{~m}, 1 \mathrm{H}$, diastereomer 2), 4.07-4.01 (m, 2 H , diastereomer 1), 3.96 (dd, 1 H , diastereomer 2), 3.83 3.78 ($\mathrm{m}, 1 \mathrm{H}$, diastereomer 1), 3.70 (dd, 1 H , diastereomer 2), $3.57-3.53(\mathrm{~m}, 1 \mathrm{H}$, diastereomer 1), 3.49-3.44 (m, 2 H , diastereomer 2), 3.47-3.43 (m, 1 H , diastereomer 1), 3.31 (s, 3 H , diastereomer 2), 3.30 (s, 3 H , diastereomer 1), 3.04-3.00 (m, 1 H , diastereomer 1), $2.74-2.63(\mathrm{~m}, 1 \mathrm{H}$, diastereomer 2), $1.67(\mathrm{~s}, 3 \mathrm{H}$, diastereomer 1), 1.63 (s, 3 H , diastereomer 2), 1.49 (s, 3 H , diastereomer 1), 1.46 (s, 3 H , diastereomer 2).
[0413] Step 3. Synthesis of (4R,5S)-3-fluoro-5-(hydroxymethyl)-4-(methoxymethyl)pyrrolidin-2one (L61). To a stirred solution of compound C86 ($130 \mathrm{mg}, 0.6 \mathrm{mmol}$) in 10 mL of acetonitrile and 0.6 mL of water was added 4-toluenesulfonic acid ($6 \mathrm{mg}, 0.03 \mathrm{mmol}$). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about 25 ${ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L61. Yield: $80 \mathrm{mg}(76 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.12$ (dd, 1 H , diastereomer 1), 4.94 (dd, 1 H , diastereomer 2), $3.85-3.54$ ($\mathrm{m}, 10 \mathrm{H}$, diastereomers 1 and 2), 3.42 (s, 3 H , diastereomer 1), 3.37 (s, 3 H , diastereomer 2), 2.95-2.84 (m, 2 H , diastereomers 1 and 2).

Synthesis of (4R,5S)-3,3-difluoro-5-(hydroxymethyl)-4-(methoxymethyl)pyrrolidin-2-one (L63)
[0414]

[0415] This compound was prepared in the same manner as compound L61, substituting compound C85 for compound C86 in Step 3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $3.88-3.81$ ($\mathrm{m}, 2$ H), 3.75-3.71 (m, 1 H), 3.66-3.61 (m, 2 H), 3.39 (s, 3 H), 3.05-2.95 (m, 1 H).

Preparation 38: (3S,4S,5S)-4-ethyl-5-(hydroxymethyl)-3-methoxypyrrolidin-2-one (L66)
[0416]

[0417] Step 1. Synthesis of (7S,7aS)-7-ethyl-6-hydroxy-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C87). A solution of compound C54 ($1.0 \mathrm{~g}, 5.5 \mathrm{mmol}$) in THF (25 mL) was treated with LDA ($3.4 \mathrm{~mL}, 6.8 \mathrm{mmol}$) at about $-78{ }^{\circ} \mathrm{C}$. The mixture was kept for about 20 min and then treated with a solution of (1R)-(-)-(10-camphorsulfonyl)oxaziridine (CAS 104372-31$8,1.50 \mathrm{~g}, 6.5 \mathrm{mmol}$) in THF (5 mL). After about 30 min , the mixture was allowed to warm to about $25{ }^{\circ} \mathrm{C}$ for about 30 min . Methanol (2 mL) was added and the mixture was concentrated. The residue was purified by chromatography to provide the title compound C87. Yield: 800 mg (73%). This was used in the next step without further characterization.
[0418] Step 2. Synthesis of (6S,7S,7aS)-7-ethyl-6-methoxy-3,3-dimethyltetrahydropyrrolo[1,2-
cloxazol-5(3H)-one (C88). To a stirred solution of compound C87 (800 mg, 4.0 mmol) in THF $(50 \mathrm{~mL})$ was added freshly prepared silver(I) oxide ($9.3 \mathrm{~g}, 40.2 \mathrm{mmol}$), followed by iodomethane ($1.25 \mathrm{ml}, 20.1 \mathrm{mmol}$). The mixture was heated at about $75^{\circ} \mathrm{C}$ for about 16 h . The mixture was then cooled to about $25^{\circ} \mathrm{C}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C88. Yield: $180 \mathrm{mg}(21 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.09(\mathrm{~d}, 1 \mathrm{H}), 4.04-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.52$ $-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, 3$ $\mathrm{H})$. There was also obtained ($6 \mathrm{R}, 7 \mathrm{~S}, 7 \mathrm{aS}$)-7-ethyl-6-methoxy-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C89). Yield: 375 mg (44%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.44-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.89(\mathrm{~m}, 1 \mathrm{H})$, $3.66(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 1 \mathrm{H})$, 3.53 (s, 3 H), 2.17-2.12 (m, 1 H), 1.62 (s, 3 H), 1.50-1.41 (m, 1 H), 1.48 (s, 3 H), 1.38-1.30 ($\mathrm{m}, 1 \mathrm{H}$), $0.97(\mathrm{t}, 3 \mathrm{H})$.

Step 3. Synthesis of (3S,4S,5S)-4-ethyl-5-(hydroxymethyl)-3-methoxypyrrolidin-2-one (L66).

[0419] To a stirred solution of compound C88 ($180 \mathrm{mg}, 0.8 \mathrm{mmol}$) in 9 mL of acetonitrile and 1 mL of water was added 4 -toluenesulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$). The reaction mixture was heated at about $90{ }^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L66. Yield: $75 \mathrm{mg}(51 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.09(\mathrm{br}, 1 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.61$ (s, 3 H), 3.57 (d, 1 H), 3.48 (br. s, 1 H), 2.84 (br. s, 1 H), 2.42-2.30 (m, 1 H), $1.64-1.58$ (m, 1 H), 1.47-1.33(m, 1H), $0.97(t, 3 H)$.

Synthesis of (3R,4S,5S)-4-ethyl-5-(hydroxymethyl)-3-methoxypyrrolidin-2-one (L67).

[0420]

[0421] This compound was prepared in the same manner as compound L66, substituting compound C89 for compound C88 in Step 3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.10$ (br. s, 1 H), 3.75-3.70(m, 2 H), 3.63 (s, 3 H), 3.62-3.60 (m, 2 H), 2.35-2.27 (m, 1 H), 2.12 (br. s, 1 H), $1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, 3 \mathrm{H})$.

Synthesis of (3S,4S,5S)-5-(hydroxymethyl)-3-methoxy-4-methylpyrrolidin-2-one (L64).

[0423] This compound was prepared in the same manner as compound L66, substituting compound $\mathbf{C 5 3}$ for compound $\mathbf{C 5 4}$ in Step 1 to afford (7S,7aS)-6-hydroxy-3,3,7-trimethyltetrahydro-pyrrolo[1,2-c]oxazol-5(3H)-one (C90). Application of Step 2 to compound C90 afforded (6S,7S,7aS)-6-methoxy-3,3,7-trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C91) and (6R,7S,7aS)-6-methoxy-3,3,7-trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C92). Application of Step 3 to compound C91 afforded the title compound L64. ${ }^{1}$ H NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) б $3.65-3.62(\mathrm{~m}, 4 \mathrm{H}$), $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.48$ (br. s, 1 H), $2.69-2.64(\mathrm{~m}, 1 \mathrm{H}), 1.01$ (d, 3 H).

Synthesis of (3R,4S,5S)-5-(hydroxymethyl)-3-methoxy-4-methylpyrrolidin-2-one (L65).

[0424]

[0425] This compound was prepared in the same manner as compound L64, substituting compound C92 for compound C91 in Step 3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.37$ (br. s, 1 H), $3.74-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, 1.20 (d, 3 H).

Synthesis of (4S,5S)-3-(benzyloxy)-4-ethyl-5-(hydroxymethyl)pyrrolidin-2-one (L68).

[0426]

[0427] This compound was prepared in the same manner as compound L66, substituting (bromomethyl)benzene for iodomethane in Step 2 and using the resulting mixture of
diastereomers in Step 3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.26$ ($\mathrm{m}, 5 \mathrm{H}$, both diastereomers), 6.27 (br. s, 1 H , both diastereomers), 5.15 (d, 1 H , diastereomer 1), 5.01 (d, 1 H , diastereomer 2), 4.71 ($\mathrm{d}, 1 \mathrm{H}$, both diastereomers), 3.93 ($\mathrm{d}, 1 \mathrm{H}$, diastereomer 1), 3.78 (d, 1 H , diastereomer 2), $3.69-3.60$ (m, 3 H , both diastereomers), $2.40-2.32$ ($\mathrm{m}, 1 \mathrm{H}$, both diastereomers), $1.69-1.63(\mathrm{~m}, 1 \mathrm{H}$, both diastereomers), $1.54-1.40(\mathrm{~m}, 1 \mathrm{H}$, both diastereomers), $0.98(\mathrm{t}, 3 \mathrm{H}$, diastereomer 1), $0.92(\mathrm{t}, 3 \mathrm{H}$, diastereomer 2).

Preparation 39: tert-butyl ((4S,5S)-4-ethyl-5-(hydroxymethyl)-2-oxopyrrolidin-3vl)carbamate (L70)
[0428]

[0429] Step 1. Synthesis of (7S,7aS)-6-azido-7-ethyl-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C93). LDA ($2.0 \mathrm{M}, 1.7 \mathrm{~mL}$) was added to a solution of compound C54 ($500 \mathrm{mg}, 2.7 \mathrm{mmol}$) in THF (20 mL) at about $-78^{\circ} \mathrm{C}$. After about 30 minutes at about $-78^{\circ} \mathrm{C}$, a 10% solution 2,4,6-triisopropylbenzenesulfonyl azide (CAS 36982-84-0, $2.0 \mathrm{~mL}, 0.66 \mathrm{mmol}$) was added. After stirring at about $-78^{\circ} \mathrm{C}$ for about 10 min , the solution was allowed to warm to about $25^{\circ} \mathrm{C}$ for about 1 h . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted with EtOAc. The EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C93. Yield: 500 mg (82%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.43(\mathrm{~d}, 1 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.97(\mathrm{~m}, 1 \mathrm{H})$, 3.70-3.65 (m 1 H), 2.49-2.47 (m, 1 H), 1.65 (s, 3 H), 1.75-1.42 (m, 2 H), 1.47 (s, 3 H), 0.90 (t, 3 H).
[0430] Step 2. Synthesis of (7R,7aS)-6-amino-7-ethyl-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C94). To a solution of compound C93 ($500 \mathrm{mg}, 2.2 \mathrm{mmol}$) in MeOH (30 mL) was added palladium on carbon (100 mg) and the mixture was stirred under a hydrogen atmosphere (1 atm) for about 16 h . The mixture was filtered and the filtrate was concentrated to provide the title compound C94. Yield: 380 mg (86%). This was used in the next step without further characterization.
[0431] Step 3. Synthesis of (4R.5S)-3-amino-4-ethyl-5-(hydroxymethyl)pyrrolidin-2-one (C95). To a stirred solution of compound $\mathbf{C} 94(380 \mathrm{mg}, 1.9 \mathrm{mmol})$ in 27 mL of acetonitrile and 3 mL of water was added 4 -toluenesulfonic acid ($0.40 \mathrm{~g}, 2.3 \mathrm{mmol}$). The reaction mixture was heated at about $90{ }^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$ and concentrated to provide the title compound C95. Yield: $300 \mathrm{mg}(47 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6} ס 7.47 (d, 2 H), 7.11 (d, 2 H), 4.13-4.10 (m, 1 H), 3.71-3.56 (m, 2 H), 3.46-3.43
(m, 1H), 2.07 (s, 3H), 2.06-1.91 (m, 1 H), 1.50-1.47(m, 1H), 1.39-1.35 (m, 1H), $0.92(t$, 3 H).
[0432] Step 4. Synthesis of tert-butyl ((4S,5S)-4-ethyl-5-(hydroxymethyl)-2-oxopyrrolidin-3$\mathrm{vll})$ carbamate (L70). To a solution of compound $\mathbf{C} 95(300 \mathrm{mg}, 1.9 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.78 \mathrm{~mL}$, $5.7 \mathrm{mmol})$ in THF (10 mL) and water (10 mL) was added di-t-butyl dicarbonate $(0.83 \mathrm{~mL}, 3.8$ mmol). The mixture was kept at about $25{ }^{\circ} \mathrm{C}$ for about 16 h . The reaction mixture was concentrated and the residue was purified by chromatography to provide the title compound L70. Yield: 280 mg (ca. 100\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 7.76$ (br. s, 1 H), 6.37 (d, 1 H), $5.44(\mathrm{t}, 1 \mathrm{H}), 4.07-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{br} . \mathrm{m}, 1 \mathrm{H}), 2.36-2.33(\mathrm{~m}, 1 \mathrm{H})$, $1.55-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{t}, 3 \mathrm{H})$.

Preparation 40: (1R,4S,5S,6S)-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]hexan-2one (L74)

[0433] Step 1. Synthesis of (3R,5aR,6S,6aS,6bS)-3-(4-methoxyphenyl)-6-methyltetrahydro1 H -cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C96). To a stirred suspension of ethyldiphenylsulfonium tetrafluoroborate (CAS 893-69-6, $31.36 \mathrm{~g}, 104 \mathrm{mmol}$) in THF (200 mL) was added LDA ($2 \mathrm{M}, 65 \mathrm{~mL}, 130 \mathrm{mmol}$) slowly at about $-78^{\circ} \mathrm{C}$. The reaction mixture was kept at about $-78{ }^{\circ} \mathrm{C}$ for about 1.5 h , at which point a solution of (3R,7aS)-3-(4-methoxyphenyl)-1,7a-dihydropyrrolo[1,2-c]oxazol-5(3H)-one (CAS 170885-07-1, $12.0 \mathrm{~g}, 51.9$ $\mathrm{mmol})$ in THF (90 mL) was added slowly. The reaction mixture was maintained at about $-78^{\circ} \mathrm{C}$ for about 1.5 h and then allowed to warm to about $25^{\circ} \mathrm{C}$. It was stirred for about 1.5 h at about $25{ }^{\circ} \mathrm{C}$ before being quenched with EtOAc and NaHCO_{3} solution. The EtOAc was separated, and the aqueous phase was back extracted with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C96. Yield $6.5 \mathrm{~g}(48 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~d}, 2 \mathrm{H})$, 6.84 (d, 2 H), 6.23 (s, 1 H), 4.14 (dd, 1 H), 3.88 (dd, 1 H), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 3.38 (dd, 1 H), 1.88 $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H})$. There was also obtained $\quad(3 \mathrm{R}, 5 \mathrm{aR}, 6 \mathrm{R}, 6 \mathrm{aS}, 6 \mathrm{bS})$-3-(4-methoxyphenyl)-6-methyltetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C97). Yield: $1.5 \mathrm{~g}(11 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)$: $\delta 7.29(\mathrm{~d}, 2 \mathrm{H}), 6.85(\mathrm{~d}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{t}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{t}, 1 \mathrm{H})$, 3.53 (dd, 1 H), 2.12-2.06 (m, 2 H), 1.61-1.55 (m, 1 H), 1.26 (d, 3 H).
[0434] Step 2. Synthesis of (1R,4S,5S,6S)-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]hexan-2-one (L74). To a stirred solution of compound C96 (1.7 g, 6.6 mmol$)$ in 45 mL of acetonitrile and 5 mL of water was added 4 -toluenesulfonic acid ($64 \mathrm{mg}, 0.33$ mmol). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 45 min . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L74. Yield: $0.83 \mathrm{~g}(90 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) ठ $3.40-3.59$ ($\mathrm{m}, 3 \mathrm{H}$), 1.71 (dd, 1 H), 1.57 ($\mathrm{dt}, 1 \mathrm{H}$), 1.13 (d, 3 H), 1.02 ($\mathrm{dd}, 1 \mathrm{H}$).

Synthesis of (1R,4S,5S,6R)-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]hexan-2-one (L75).

[0435]

[0436] This compound was prepared in the same manner as compound L74, substituting compound C97 for compound C96 in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CD}_{3} \mathrm{CN}$) $\delta 6.12$ (br. s., 1 H), 3.45-3.54 (m, 2 H), 3.35 (br. s, 1 H), 3.26-3.33 (m, 1 H), 1.69-1.80 (m, 2 H), 1.23-1.39 (m, 1 H), 1.02 (d, 3 H).

Synthesis of (1R,4S,5S)-4-(hydroxymethyl)-3-azabicyclo[3.10]hexan-2-one (L72).

[0437]

[0438] This compound was prepared in the same manner as compound L74, substituting (3R,5aR,6aS,6bS)-3-(4-methoxyphenyl)tetrahydro-1 H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol$5(3 \mathrm{H})$-one (CAS 187742-05-8) for compound C96 in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $3.47-3.61$ (m, 3 H), 1.97 (ddd, 1 H), 1.75-1.86 (m, 1 H), 1.19 (td, 1 H), $0.59-0.68(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of (1S,4S,5R)-4-(hydroxymethyl)-6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2-one

 (L73).[0439]

[0440] This compound was prepared in the same manner as compound L74, substituting (1-
methyl)ethyldiphenylsulfonium tetrafluoroborate (CAS 40447-58-3) for CAS 893-69-6 in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04$ (br. s., 1 H), 3.88 (br. s., 1 H), $3.61-3.70(\mathrm{~m}, 1 \mathrm{H}$), 3.48 3.61 (m, 1 H), $3.44(\mathrm{~d}, 1 \mathrm{H}), 1.70(\mathrm{~d}, 1 \mathrm{H}), 1.51(\mathrm{~d}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$.

Synthesis of (1R,4S,5S,6S)-6-ethyl-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L76).

[0441]

[0442] This compound was prepared in the same manner as compound L74, substituting propyldiphenylsulfonium tetrafluoroborate (CAS 14264-05-2) for CAS 893-69-6 in Step 1 to afford (3R,5aR,6S,6aS,6bS)-6-ethyl-3-(4-methoxyphenyl)tetrahydro-1H-cyclopropa[3,4]pyrrolo-[1,2-c]oxazol-5(3H)-one (C98), which was used in Step 2. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) б 6.56 (br. s., 1 H), 3.63-3.69 (m, 1 H), $3.62(\mathrm{~d}, 1 \mathrm{H}), 3.49-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.48$ (br. s, 1 H), 1.63 (ddd, 1 H), 1.55 (ddd, 1 H), $1.29-1.39$ (m, 2 H), 0.99 (t, 3 H), $0.95-1.05$ (m, $1 \mathrm{H})$. There was also obtained in Step 1 (3R,5aR,6R,6aS,6bS)-6-ethyl-3-(4-methoxyphenyl)-tetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C99). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) б $7.30(\mathrm{~d}, 2 \mathrm{H}), 6.88(\mathrm{~d}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{dd}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, 1 \mathrm{H})$, 3.53 (dd, 1 H), 2.14 (d, 2 H), 1.57 - 1.67 (m, 2 H), 1.51 (dd, 1 H), 1.08 (t, 3 H).

Synthesis of (1R,4S,5S,6R)-6-ethyl-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L77).
[0443]

[0444] This compound was prepared in the same manner as compound L74, substituting compound C99 for compound C96 in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99$ (br. s, 1 H), 4.41 (br. s., 1 H), 3.68 (dd, 1 H), 3.57 (dd, 1 H), $3.40-3.48$ (m, 1 H), 1.95 (ddt, 1 H), 1.71 $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, 3 \mathrm{H})$.

azabicyclo[3.1.0]hexan-2-one (L79)

[0445]

[0446] Step 1. Synthesis of (3R,5aS,6S,6aR,6bS)-ethyl 3-(4-methoxyphenyl)-5-oxohexahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazole-6-carboxylate (C100). (Carbethoxymethyl)dimethylIsulfonium bromide (CAS 5187-82-6, $15 \mathrm{~g}, 64.9 \mathrm{mmol}$) was dissolved in $\mathrm{CHCl}_{3}(130 \mathrm{~mL})$. A saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (61 mL) was added slowly with vigorous stirring, followed by aqueous NaOH solution ($50 \%, 5.7 \mathrm{~mL}$). Stirring was continued for about 30 min . The CHCl_{3} layer was separated and the aqueous phase was extracted with additional CHCl_{3}. The combined CHCl_{3} extracts were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and concentrated to afford a clear yellow colored liquid (9.58 g). This was dissolved in DMSO (100 mL). A solution of CAS 170885-07-1 ($6.17 \mathrm{~g}, 26.7 \mathrm{mmol}$) in DMSO (33 mL) was added. The mixture was kept for 3 days at about $25^{\circ} \mathrm{C}$. Ethyl acetate (500 mL) was added and the mixture was washed with brine $(3 \times 200 \mathrm{~mL})$. The combined brine washes were extracted with EtOAc and the combined EtOAc extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C100. Yield: $4.0 \mathrm{~g}(47 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.27(\mathrm{~d}, 2 \mathrm{H}), 6.86(\mathrm{~d}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.19(\mathrm{~m}, 2 \mathrm{H})$, 3.96 (dd, 1 H), 3.79 (s, 3 H), 3.46 (dd, 1 H), 2.61 (dd, 1 H), 2.50 (ddd, 1 H), 2.24 (t, 1 H), 1.27 (t, 3 H). There was also obtained (3R,5aS,6R,6aR,6bS)-ethyl 3-(4-methoxyphenyl)-5-oxohexahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazole-6-carboxylate (C101). Yield: 4.33 g (51%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25$ (d, 2 H), 6.84 (d, 2 H), 6.26 (s, 1 H), 4.20 (dd, 1 H), 4.08-4.15 (m, 1 H), 4.08 ($\mathrm{q}, 2 \mathrm{H}$), 3.78 (s, 3 H), 3.46 (dd, 1 H), 2.37-2.45 (m, 3 H), 1.10 (t, 3 H).
[0447] Step 2. Synthesis of (3R,5aS,6S,6aS,6bS)-6-(hydroxymethyl)-3-(4-methoxyphenyl)tetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-cloxazol-5(3H)-one (C102). Lithium triethylborohydride ($1 \mathrm{M}, 22.1 \mathrm{~mL}$) was slowly added to a solution of compound C100 (1.80 g , $5.7 \mathrm{mmol})$ in THF (5.3 mL) at $-78^{\circ} \mathrm{C}$. The mixture was kept at about $-78^{\circ} \mathrm{C}$ for an additional about 1 h before the slow addition of saturated aqueous NaHCO_{3} solution (4.0 mL). The mixture was allowed to warm to about $0^{\circ} \mathrm{C}$, after which aqueous hydrogen peroxide solution $(30 \%, 3.0 \mathrm{~mL})$ was added dropwise to control the ensuing exothermic reaction. The mixture was then kept for about 20 min at about $0{ }^{\circ} \mathrm{C}$. The THF was evaporated under educed pressure and water (10 mL) was added. The mixture was extracted with DCM and the combined DCM extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C102. Yield: $900 \mathrm{mg}(58 \%) .{ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 7.28 (d, 1 H), 6.86 (d, 2 H), 6.24 (s, 1 H), 4.17 (dd, 1 H), 3.92 (dd, 1 H), 3.79 (s, 3 H), 3.61 (d, 2 H), 3.42 (dd, 1 H), 2.36 (br. s., 1 H), 2.14 (dd, 1 H), $2.00-2.06$ (m, 1 H), 1.73-1.81 (m, 1 H). There was also obtained $400 \mathrm{mg}(25 \%)$ of the aldehyde. C108. In a similar manner, treatment of compound C 101 with lithium triethylborohydride afforded C104. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, 2 \mathrm{H}), 6.87(\mathrm{~d}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.24$ (dd, 1 H$), 3.97$ (dd, 1 H), $3.81-3.88$ (m, 2 H), $3.80(\mathrm{~s}, 3 \mathrm{H}$), 3.53 (dd, 1 H), 2.21-2.32 (m, 2 H), 1.81-1.94 ($\mathrm{m}, 2 \mathrm{H}$).
[0448] Step 3. Synthesis of (3R,5aS,6S,6aR,6bS)-6-(fluoromethyl)-3-(4-methoxyphenyl)tetrahydro-1 H -cyclopropa[3,4]pyrrolo[1,2-cloxazol-5(3H)-one (C103). A solution of compound C102 (200 mg 0.73 mmol) in DCM (3.6 mL) was treated with $\mathrm{Et}_{3} \mathrm{~N}(1.1$ $\mathrm{mL} 7.3 \mathrm{mmol})$ followed by XtalFluor-E (249 mg 1.1 mmol) and triethylamine trihydrofluoride $(0.24 \mathrm{~mL} 1.4 \mathrm{mmol})$ in a polyethylene vial at about $25^{\circ} \mathrm{C}$. The mixture was kept for 3 days at about $25^{\circ} \mathrm{C}$. Three additional experiments were prepared similarly. Aqueous $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ was added to each vial with stiring. After about 20 min , the experiments were poured into aqueous NaHCO_{3} and extracted with DCM. The combined DCM extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C103. Yield: 421 mg (52%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.27$ (d, 2 H), 6.90 (d, 2 H), 6.06 ($\mathrm{s}, 1 \mathrm{H}$), 4.39 (ddd, 1 H), $4.20-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.17$ (dd, 1 H), 3.97 (dd, 1 H), 3.77 (s, 3 H), 3.38 (dd, 1 H), 2.25-2.32 (m, 1 H), 1.99-2.04 (m, 1 H), 1.90 (dt, 1 H).
[0449] Step 4. Synthesis of (1S,4S,5R,6S)-6-(fluoromethyl)-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L79). To a stirred solution of compound C103 ($421 \mathrm{mg}, 1.5$ mmol) in 18 mL of acetonitrile and 2 mL of water was added 4-toluenesulfonic acid (15 mg , 0.08 mmol). The reaction mixture was heated at about $85^{\circ} \mathrm{C}$ for about 1.5 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L79. Yield: $209 \mathrm{mg}(87 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.43$ (ddd, 1 H), 4.31 (ddd, 1 H), $3.51-3.66$ (m, 3 H), 2.04 (ddd, 1 H), 1.93 (m, 1 H), 1.49 (qt, 1 H).

Synthesis of (1S,4S,5R,6R)-6-(fluoromethyl)-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L78).

[0450]

[0451] This compound was prepared in the same manner as compound L79, substituting
compound C101 for compound C100 in Step 2. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.40$ (ddd, 1 H), 4.28 (ddd, 1 H), 3.69 (s, 2 H), 3.53-3.61 (m, 1 H), 1.89 (m, 2 H), 1.45-1.55 (m, 1 H).

Preparation 42: (1R,4S,5S)-6-(2-fluoroethyl)-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L80)

[0452]

[0453] Step 1. Synthesis of (3-fluoropropyl)diphenylsulfonium tetrafluoroborate (C105). A mixture of 1-iodo-3-fluoropropane (CAS 462-40-8, 8.80 g, 46.8 mmol), diphenyl sulfide (23.5 $\mathrm{mL}, 140 \mathrm{mmol})$ and silver(1) tetrafluoroborate ($9.11 \mathrm{~g}, 46.8 \mathrm{mmol}$) in DCM (100 mL) was heated at about $38^{\circ} \mathrm{C}$ for about 19 h . The mixture was diluted with DCM (100 mL), filtered, and the filtrate was concentrated to about 50 mL volume. After filtration, the filtrate was diluted with ethyl ether (100 mL). The white precipitate was separated from the liquid by decantation, and the precipitate was washed with two additional portions of DCM - ethyl ether, then dried under reduced pressure to provide the title compound C105. Yield: $10.0 \mathrm{~g}(53 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.78(\mathrm{~m}, 6 \mathrm{H}), 4.66(\mathrm{dt}, 2 \mathrm{H}), 4.31(\mathrm{t}, 2 \mathrm{H}), 2.21(\mathrm{dtt}$, 2 H).
[0454] Step 2. Synthesis of (3R,5aR,6aS,6bS)-6-(2-fluoroethyl)-3-(4-methoxyphenyl)tetrahydro-1 H -cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C106). A solution of compound C105 ($578 \mathrm{mg}, 1.7 \mathrm{mmol}$) in THF (15 mL) was treated with tertbutyllithium solution ($1.7 \mathrm{M}, 1.32 \mathrm{~mL}$) at about- $78^{\circ} \mathrm{C}$. The mixture was kept for about 30 min at about $-78^{\circ} \mathrm{C}$, then a solution of CAS 170885-07-1 ($200 \mathrm{mg}, 0.87 \mathrm{mmol}$) in THF (5 mL) was added. After about 3 h at about $-78{ }^{\circ} \mathrm{C}$, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C106. Yield: $170 \mathrm{mg}(67 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.27$ (d, 2 H , diastereomer 1), 7.26 (d, 2 H , diastereomer 2), 6.90 (d, 2 H , diastereomer 1), 6.89 (d, 2 H , diastereomer 2), 6.07 (s, 1 H , diastereomer 1), 6.06 (s, 1 H , diastereomer 2), 4.60 ($\mathrm{q}, 2 \mathrm{H}$, diastereomer 1), 4.48 ($\mathrm{q}, 2 \mathrm{H}$, diastereomer 2), 4.24 (dd, 1 H , diastereomer 2), 4.20 (dd, 1 H , diastereomer 1), 4.13 (dd, 1 H , diastereomer 2), 3.92 (dd, 1 H , diastereomer 1), 3.78 (s, 3 H , diastereomer 1), 3.77 (s, 3 H , diastereomer 2), 3.48 (dd, 1 H , diastereomer 1), 3.34 (dd, 1 H , diastereomer 2).
[0455] Step 3. Synthesis of (1R,4S,5S)-6-(2-fluoroethyl)-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L80). To a stirred solution of compound C106 ($250 \mathrm{mg}, 0.86$ mmol) in 6 mL of acetonitrile and 1 mL of water was added 4-toluenesulfonic acid ($8 \mathrm{mg}, 0.04$
$\mathrm{mmol})$. The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 1 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L80. Yield: $140 \mathrm{mg}(94 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 4.39$ $4.64(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.35(\mathrm{~m}, 2 \mathrm{H}), 0.96-1.89(\mathrm{~m}, 3$ H).

Preparation 43: (1S,4S,5S,6S)-4-(hydroxymethyl)-6-(methoxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L81)
[0456]

[0457] Step 1. Synthesis of (3R,5aS,6S,6aS,6bS)-6-(methoxymethyl)-3-(4-methoxyphenyl)tetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C107). To a stirred solution of compound C102 ($400 \mathrm{mg}, 1.46 \mathrm{mmol}$) in THF (10 mL) was added freshly prepared silver (I) oxide ($1.68 \mathrm{~g}, 7.27 \mathrm{mmol}$), followed by iodomethane ($0.46 \mathrm{ml}, 7.27 \mathrm{mmol}$). The mixture was heated at about $60^{\circ} \mathrm{C}$ for about 16 h . The mixture was then cooled to about $25^{\circ} \mathrm{C}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C107. Yield: $180 \mathrm{mg}(43 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, 2 \mathrm{H}), 6.84$ (d, 2 H), 4.15 (dd, 1 H), 3.92 (dd, 1 H), 3.78 (s, 3 H), 3.48 (dd, 1 H), 3.40 (dd, 1 H), 3.33 (s, 3 H), 3.21 (dd, 1 H), 2.13-2.11 (m, 1 H), 1.99-1.97 (m, 1 H), 1.78-1.75 (m, 1 H).
[0458] Step 2. Synthesis of (1S.4S,5S,6S)-4-(hydroxymethyl)-6-(methoxymethyl)-3-azabicyclo[3.1.0]-hexan-2-one (L81). To a stirred solution of compound C107 ($100 \mathrm{mg}, 0.35$ mmol) in 3.6 mL of acetonitrile and 0.4 mL of water was added 4-toluenesulfonic acid (3 mg , 0.02 mmol). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L81. Yield: $45 \mathrm{mg}(76 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.16$ (br. s, 1 H), $3.68(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~m}, 1$ H), $1.82(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of
(1S,4S,5S,6R)-4-(hydroxymethyl)-6-(methoxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L82).
[0459]

[0460] This compound was prepared in the same manner as compound L81, substituting compound C104 for compound C102 in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.42$ (br. s, 1 H), 3.73-3.68(m, 1 H), 3.61-3.57(m, 3 H), 3.42-3.38(m, 1 H), 3.35 (s, 3 H), 3.18 (br. m, 1 H), 2.08-2.04(m, 1H), 1.92-1.88(m, 1H), 1.68-1.62(m, 1H).

Synthesis of
 (1S,4S,5S,6S)-6-((benzyloxy)methyl)-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L85).

[0461]

[0462] This compound was prepared in the same manner as compound L81, substituting (bromomethyl)benzene for iodomethane in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.27$ (m, 5H), 5.67 (br. s, 1 H), 4.49 (dd, 2 H), 3.67-3.54 (m 4 H), 3.30-3.24 (m, 1 H), 1.85-1.76 (br. m, 2 H), 1.37-1.32 (br. m, 1 H).

Synthesis
 of
 (1S,4S,5S,6R)-6-((benzyloxy)methyl)-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L86).

[0463]

[0464] This compound was prepared in the same manner as compound L81, substituting compound C104 for compound C102, and (bromomethyl)benzene for iodomethane, in Step 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.96(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, 1 \mathrm{H}), 4.48(\mathrm{~d}, 1 \mathrm{H})$, $3.73-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.88$ (m, 1 H), 1.72-1.64 (m, 1 H).

Preparation

[0466] Step 1. Synthesis of (3R,5aS,6S,6aS,6bS)-3-(4-methoxyphenyl)-5-oxohexahydro-1H-cyclopropa-[3,4]pyrrolo[1,2-c]oxazole-6-carbaldehyde (C108). A solution of compound C102 ($9.20 \mathrm{~g}, 33 \mathrm{mmol}$) in DCM (167 mL) and water (1 mL) was treated with Dess Martin periodinane ($28.3 \mathrm{~g}, 67 \mathrm{mmol}$) and stirred at about $25^{\circ} \mathrm{C}$ for about 2 h . at which time saturated aqueous NaHCO_{3} solution (200 mL) was added and stirring continued for about 30 min . The DCM was separated and the aqueous phase was extracted with additional DCM. The combined DCM extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C108. Yield: $5.50 \mathrm{~g}(60 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.40$ (d, 1 H), 7.32 (d, 2 H), 6.93 (d, 2 H), 6.17 (s, 1 H), 4.29 (dd, 1 H), 4.12 (dd, 1 H), 3.83 (s, 3 H), 3.53 (dd, 1 H), 2.89 (dd, 1 H), 2.64 (ddd, 1 H), 2.59 (q, 1 H).
[0467] Step 2. Synthesis of (3R,5aS,6S,6aR,6bS)-6-(difluoromethyl)-3-(4-methoxyphenyl)tetrahydro-1 H-cyclopropa[3,4]pyrrolo[1,2-cloxazol-5(3H)-one (C109). A solution of compound C108 ($4.0 \mathrm{~g}, 14.6 \mathrm{mmol}$) in 1,2-dichloroethane (16.3 mL) and pyridine $(24.1 \mathrm{~mL})$, and a solution of DAST ($7.7 \mathrm{~mL}, 58 \mathrm{mmol}$) in 1,2-dichloroethane (33 mL) were prepared. A VaporTec Flow Reactor fitted with 10 mL loops was used for the experiment. A 10 mL portion of the solution of compound $\mathbf{C 1 0 8}$ was added to first loop. A 10 mL portion of the solution of DAST was added to the second loop. Both loops were co-injected into the heating coils at a rate $0.2 \mathrm{~mL} /$ minute at about $90^{\circ} \mathrm{C}$. Upon exiting the reactor coil, the eluate was passed through a calcium carbonate plug. Upon completion of the passage, the eluate was diluted with 50 mL of DCM and washed with saturated aqueous NaHCO_{3}. The DCM was separated and the aqueous phase was extracted with additional DCM. The combined DCM extracts were dried over MgSO_{4}, filtered and concentrated. The experiment was repeated three additional times and the combined residues were purified by chromatography to provide the title compound C109. Yield: $2.39 \mathrm{~g}(55 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, 2 \mathrm{H}), 6.87$ (d, 2 H), 6.27 ($\mathrm{s}, 1 \mathrm{H}$), 5.87 (td, 1 H), 4.25 (dd, 1 H), 3.98 (dd, 1 H), 3.81 (s, 3 H), 3.47 (dd, 1 H), 2.42 (dd, 1 H), 2.30 (dd, 1 H), $1.92-2.02(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-117.50$, -120.09.
[0468] Step 3. Synthesis of (1S,4S,5R,6S)-6-(difluoromethyl)-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L84). To a stirred solution of compound C109 (2.39 g, 8.0 mmol) in 87 mL of acetonitrile and 14 mL of water was added 4-toluenesulfonic acid (80 mg , 0.4 mmol). The reaction mixture was heated at about $85^{\circ} \mathrm{C}$ for about 1 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to
provide the title compound L84. Yield: $1.41 \mathrm{~g}(99 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.74$ (br. s., 1 H), 5.83 (td, 1 H), 3.67-3.76 (m, 2 H), 3.55-3.63 (m, 1 H), 2.03-2.14 (m, 2 H), 1.50-1.61 (m, 1 H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-116.67, -118.70.

Preparation 45: (1R,4S,5S,6S)-6-fluoro-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2one (L83)

[0469]

[0470] Step 1. Synthesis of (3R,5aR,6S,6aS,6bS)-6-fluoro-3-(4-methoxyphenyl)tetrahydro-1H-cyclopropa[3.4]pyrrolo[1,2-c]oxazol-5(3H)-one (C110). A solution of CAS 170885-07-1 (242 $\mathrm{mg} \quad 1.0 \mathrm{mmol}$ and N-[(fluoromethyl)oxidophenyl- λ^{4}-sulfanylidene]-4methylbenzenesulfonamide (CAS 1097193-08-2, $513 \mathrm{mg}, 1.6 \mathrm{mmol}$) in THF (10 mL) was treated with lithium hexamethyldisilazide ($1 \mathrm{M}, 1.3 \mathrm{~mL}$) at about $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at about $-78{ }^{\circ} \mathrm{C}$ for about 10 min , then was allowed to warm to about $25^{\circ} \mathrm{C}$ for about 3 h. Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted twice with EtOAc. The combined EtOAc extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C110. Yield: $192 \mathrm{mg}(70 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) ס $7.22-7.32$ (m, 2 H), 6.85-6.95 (m, 2 H), 6.05 (s, 1 H), 4.88 (dd, 1 H), 4.17 (dd, 1 H), 3.94 (dd, 1 H), 3.77 (s, 3 H), 3.40 (dd, 1 H), 2.61 (ddd, 1 H), 2.38 (dd, 1 H).
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ-201.68.
[0471] Step 2. Synthesis of (1R,4S,5S,6S)-6-fluoro-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L83). To a stirred solution of compound C110 (1.10 g, 4.2 mmol) in 54 mL of acetonitrile and 6 mL of water was added 4 -toluenesulfonic acid (40 mg , 0.21 mmol). The reaction mixture was stirred for about 6 h , then concentrated. The residue was purified by chromatography to provide the title compound L83. Yield: $534 \mathrm{~g}(88 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.72$ (br. s., 1 H), $4.41-4.63(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.55-$ 3.65 ($\mathrm{m}, 1 \mathrm{H}$), 2.33 (dd, 1 H), 2.18 (dd, 1 H). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-205.65$.

Preparation 46: (1R,4S,5S,6R)-6-fluoro-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2one (L87)

[0473] Step 1. Synthesis of 4-methyl- N-[(S)-(fluoromethyl)oxidophenyl- λ^{4} -sulfanylidenelbenzene-sulfonamide (C111). A solution of CAS 170885-07-1 ($330 \mathrm{mg}, 1.4$ mmol) and 4-methyl- $N-\left[(R)\right.$-methyloxidophenyl- λ^{4}-sulfanylidene]benzenesulfonamide (CAS 49620-56-6, $701 \mathrm{mg}, 2.1 \mathrm{mmol}$) in THF (15 mL) was treated with lithium hexamethyldisilazide $(1 \mathrm{M}, 1.9 \mathrm{~mL})$ at about $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at about $-78^{\circ} \mathrm{C}$ for about 10 min , then was allowed to warm to about $25^{\circ} \mathrm{C}$ for about 3 h . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted twice with EtOAc. The combined EtOAc extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C111. Yield: 60 mg (16%). This was used in the next step without further characterization.
[0474] Step 2. Synthesis of (1R,4S,5S,6R)-6-fluoro-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L87). To a stirred solution of compound C111 ($60 \mathrm{mg}, 0.23$ mmol) in 9 mL of acetonitrile and 1 mL of water was added 4-toluenesulfonic acid ($6 \mathrm{mg}, 0.03$ mmol). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L87. Yield: 25 mg (75%). This was used in the next step without further characterization.

Preparation

 47(1R,4S,5S,6S)-6-fluoro-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]hexan-2-one (L88)
[0475]

[0476] Step 1. Synthesis of (3R,5aR,6S,6aS,6bS)-6-fluoro-3-(4-methoxyphenyl)-6-methyltetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C112). A solution of CAS 170885-07-1 ($430 \mathrm{mg}, 1.9 \mathrm{mmol}$) and 4-methyl- $\mathrm{N}-\left[(\mathrm{R})-\left[(1 S)-1\right.\right.$-fluoroethyl]-oxidophenyl- λ^{4} -sulfanylidene]benzene-sulfonamide (CAS 1422176-84-8, $952 \mathrm{mg}, 2.8 \mathrm{mmol}$) in THF (19 mL) was treated with lithium hexamethyldisilazide ($1 \mathrm{M}, 2.4 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred at about $-78{ }^{\circ} \mathrm{C}$ for about 10 min , then was allowed to warm to about $25^{\circ} \mathrm{C}$ for about 3 h . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted twice with EtOAc. The
combined EtOAc extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C112. Yield: $200 \mathrm{mg}(39 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 7.26 (d, 2 H), 6.88 (d, 2 H), 6.24 (s, 1 H), 4.25 (dd, 1 H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.54(\mathrm{~m}, 2 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-157.20$. There was also obtained (3R,5aR,6R,6aS,6bS)-6-fluoro-3-(4-methoxyphenyl)-6-methyltetra-hydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C113). It was used in the next step without further characterization.
[0477] Step 2. Synthesis of (1R,4S,5S,6S)-6-fluoro-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]hexan-2-one (L88). To a stirred solution of compound C112 (211 mg, 0.76 mmol) in 9 mL of acetonitrile and 1 mL of water was added 4-toluenesulfonic acid ($7 \mathrm{mg}, 0.04$ mmol). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L88. Yield: $110 \mathrm{mg}(91 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.20$ (br. s., 1 H), $3.69-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{dd}, 1 \mathrm{H}), 2.11(\mathrm{dd}, 1 \mathrm{H})$, 1.67 (s, 3 H). $\left.{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-161.43$.

Synthesis of
 (1R,4S,5S,6R)-6-fluoro-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]hexan-2-one (L89).

[0478]

[0479] This compound was prepared in the same manner as compound L88, substituting compound C113 for compound C112 in Step 2. It was used in the next step without further characterization.

Preparation 48: (1R,4S,5S)-4-(hydroxymethyl)-1-methyl-3-azabicyclo[3.1.0]hexan-2-one (L91)

[0480]

[0481] Step 1. Synthesis of (3R,5aR,6aS.6bS)-3-(4-methoxyphenyl)-5a-methyltetrahydro-1H-cyclopropa[3,4]-pyrrolo[1,2-c]oxazol-5(3H)-one (C114). LDA ($2 \mathrm{M}, 0.31 \mathrm{~mL}$) was added very slowly to a solution of (3R,5aR,6aS, 6bS)-3-(4-methoxyphenyl)tetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (CAS 187742-05-8, $150 \mathrm{mg}, 0.61 \mathrm{mmol}$) and iodomethane ($0.20 \mathrm{~mL}, 3 \mathrm{mmol}$) in THF (3 mL) at about $-78^{\circ} \mathrm{C}$. After about 1 h , an additional 0.31 mL of LDA and 0.2 mL of iodomethane were added. The mixture was warmed to about $-20^{\circ} \mathrm{C}$ over about 45 min , and allowed to warm to about $25^{\circ} \mathrm{C}$ for about 1.5 h . The mixture was poured into NaHCO_{3} solution and was extracted twice with EtOAc. The combined EtOAc extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C114. Yield: 31 mg (20\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.27$ (d, 2 H), $6.89(\mathrm{~d}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{dd}, 1 \mathrm{H}), 3.81(\mathrm{dd}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3$ H), 3.31 (dd, 1 H), 2.06 (dd, 1 H), $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.08-1.18$ (m, 2 H).
[0482] Step 2. Synthesis of (1R.4S.5S)-4-(hydroxymethyl)-1-methyl-3-azabicyclo[3.1.0]hexan-2-one (L91). To a stirred solution of compound C114 ($41 \mathrm{mg}, 0.16 \mathrm{mmol}$) in 2 mL of acetonitrile and 0.2 mL of water was added 4-toluenesulfonic acid ($2 \mathrm{mg}, 0.008 \mathrm{mmol}$). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 45 min . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L91. Yield: $21 \mathrm{mg}(93 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) ס $3.46-3.55(\mathrm{~m}, 2 \mathrm{H})$, 3.43 (q, 1 H), 1.75 (dd, 1 H), 1.28 (s, 3 H), 0.98 (dd, 1 H), 0.68 (t, 1 H).

Preparation 49

(1S,4S,5R,6S)-1-fluoro-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]hexan-2-one (L92)

[0483]

[0484] Step 1. Synthesis of (3R,7aS)-6-fluoro-3-(4-methoxyphenyl)tetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C115). To a solution of (3R,7aS)-3-(4-methoxyphenyl)tetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (CAS 170885-05-9, $16.0 \mathrm{~g}, 68.59$ $\mathrm{mmol})$ in THF (160 mL) was added LDA ($2 \mathrm{M}, 48 \mathrm{~mL}$) at about $-78^{\circ} \mathrm{C}$, and stirred for about 30 min. A solution of NFSI ($22.68 \mathrm{~g}, 72 \mathrm{mmol}$) in THF (80 mL) was added at about $-78{ }^{\circ} \mathrm{C}$. After about 30 min at about $-78{ }^{\circ} \mathrm{C}$, the mixture was allowed to warm to about $25^{\circ} \mathrm{C}$ for about 30 min. EtOAc and water were added and the phases seprated. The aqueous phase was
extracted with EtOAc. The combined EtOAc extractes were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C115. Yield: $12.4 \mathrm{~g}(72 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ (d, 2 H), 6.88 (d, 2 H), 6.22 (s, 1 H), 5.14 (dd, 1 H), $4.40-4.29$ ($\mathrm{m}, 2 \mathrm{H}$), 3.79 (s, 1 H), 3.46 (dd, 1 H), 2.62 2.51 (m 1 H), 2.23-2.07 (m 1 H).
[0485] Step 2. Synthesis of (3R,7aS)-6-fluoro-3-(4-methoxyphenyl)-6-(phenylselanyl)tetrahydropyrrolo-[1,2-cloxazol-5(3H)-one (C116). To a stirred solution of compound C115 (12.4 g, 49 mmol) in THF (130 mL) was added LDA ($2 \mathrm{M}, 35 \mathrm{~mL}$) at about $-78^{\circ} \mathrm{C}$ and stirred for about 30 min before a solution of diphenyl diselenide ($16.96 \mathrm{~g}, 54 \mathrm{mmol}$) in THF (70 mL) was added. The mixture was kept at about $-78{ }^{\circ} \mathrm{C}$ for about 30 min , then allowed to warm to about $25^{\circ} \mathrm{C}$ for about 30 min . EtOAc and water were added and the phases seprated. The aqueous phase was extracted with EtOAc. The combined EtOAc extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C116. Yield: 13 g (65\%). This was used in the next step without further characterization.
[0486] Step 3. Synthesis of (3R,7aS)-6-fluoro-3-(4-methoxyphenyl)-1,7a-dihydropyrrolo[1,2-cloxazol-5(3H)-one (C117). A solution of compound C116 (13.0 g, 32 mmol) in DCM (260 mL) and pyridine ($5.7 \mathrm{~mL}, 70 \mathrm{mmol}$) was treated with hydrogen peroxide ($30 \%, 11.9 \mathrm{~mL}, 106 \mathrm{mmol}$) at about $0{ }^{\circ} \mathrm{C}$. The mixture was kept at about $0{ }^{\circ} \mathrm{C}$ for about 30 min , and allowed to warm to about $25^{\circ} \mathrm{C}$ for about 2 h before being diluted with DCM and water. The DCM was separated and the aqueous phase was extracted with DCM. The combined DCM extracts were washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C117. Yield: $4.6 \mathrm{~g}(58 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.43$ (d, 2 H), 6.96 (d, 2 H), 6.72 (dd, 1 H), 5.91 (s, 1 H), 4.59 (m, 1 H), 4.36 (dd, 1 $\mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta-137.11$.
[0487] Step 4. Synthesis of (3R,5aS,6S,6aR,6bS)-5a-fluoro-3-(4-methoxyphenyl)-6-methyltetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C118). To a stirred suspension of ethyldiphenylsulfonium tetrafluoroborate (CAS 893-69-6, $5.31 \mathrm{~g}, 17 \mathrm{mmol}$) in DME (62 mL) was added LDA ($2 \mathrm{M}, 8.0 \mathrm{~mL}, 16 \mathrm{mmol}$) slowly at about $-55^{\circ} \mathrm{C}$. The reaction mixture was kept at about $-55^{\circ} \mathrm{C}$ for about 45 min , at which point it was warmed to about -35 ${ }^{\circ} \mathrm{C}$ and a solution of compound $\mathbf{C 1 1 7}(1.99 \mathrm{~g}, 8.0 \mathrm{mmol})$ in DME (20 mL) was added. The reaction mixture was maintained at about $-30^{\circ} \mathrm{C}$ for about 1.5 h , then aqueous NaHCO_{3} and EtOAc were added. The EtOAc was separated and the aqueous phase was extracted with EtOAc. The combined EtOAc extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C118. Yield: 362 mg (16\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.28$ (d, 2 H), 6.90 (d, 2 H$), 6.12$ (s, 1 H$), 4.17$ (dd, 1 H), 3.78 (s, 3 H), 3.66-3.75 (m, 1 H), 3.45 (dd, 1 H), 2.33 (dd, 1 H), 1.64 (d, 1 H), 1.25 (dd, 3 H). There was also obtained (3R,5aS,6R,6aR,6bS)-5a-fluoro-3-(4-methoxyphenyl)-6-methyltetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C119). Yield: 816 mg
(37\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.30(\mathrm{~d}, 2 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}), 6.15$ (s, 1 H), $4.20-4.24$ (m, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{dd}, 1 \mathrm{H}), 2.13-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{dd}, 3 \mathrm{H})$.
[0488] Step 5. Synthesis of (1S,4S,5R,6S)-1-fluoro-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]-hexan-2-one (L92) To a stirred solution of compound C118 (400 mg, 1.4 mmol) in 18 mL of acetonitrile and 2 mL of water was added 4-toluenesulfonic acid (14 mg , 0.07 mmol). The reaction mixture was kept at about $25^{\circ} \mathrm{C}$ for about 12 h , then concentrated and the residue was purified by chromatography to provide the title compound L92. Yield: 181 $\mathrm{mg}(79 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.07$ (br. s., 1 H), 3.66-3.81(m,1 H), 3.54-3.67(m, $1 \mathrm{H}), 3.36-3.50(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, 3 \mathrm{H})$.

Synthesis of (1S,4S,5R,6R)-1-fiuoro-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]hexan-2-one (L93).

[0489]

[0490] This compound was prepared in the same manner as compound L92, substituting compound C119 for compound C118 in Step 5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.63$ (dd, 2 H), 3.28 (dt, 1 H), 2.38 (dd, 1 H), 1.95-2.07 (m, 1 H), 1.07 (dd, 3 H).

Preparation 50: (1R,4S,5S)-4-(hydroxymethyl)-5-methyl-3-azabicyclo[3.1.0]hexan-2-one (L94)

[0491]

[0492] Step 1. Synthesis of (3R,7S.7aS)-3-(4-methoxyphenyl)-7-methyltetrahydropyrrolo[1.2-cloxazol- $5(3 \mathrm{H})$-one (C120). A suspension cuprous bromide - dimethyl sulfide complex (2.24 g , $10.8 \mathrm{mmol})$ in ether $(30 \mathrm{~mL})$ was cooled to about $-10^{\circ} \mathrm{C}$ and a solution of methyllithium (1.6 M , 13.5 mL) was added slowly. The mixture was then cooled to about $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{TMSCI}(1.36$ $\mathrm{mL}, 10.8 \mathrm{mmol}$) was added slowly. After the addition was complete, the mixture was kept for about 15 min before (3R,7aS)-3-(4-methoxyphenyl)-1,7a-dihydropyrrolo[1,2-c]oxazol-5(3H)one (CAS $170885-07-1,1.00 \mathrm{~g}, 4.3 \mathrm{mmol})$ in THF (20 mL) was added slowly. The mixture was
kept an additional about 2 h at about $-78^{\circ} \mathrm{C}$ before being allowed to warm to about $25^{\circ} \mathrm{C}$. The mixture was kept at about $25^{\circ} \mathrm{C}$ for about 1 h before being treated with a mixture of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ammonium hydroxide. The ethereal layer was separated and the aqueous phase was extracted twice with EtOAc. The combined extracts were dried over MgSO_{4} filtered and concentrated. The residue was purified by chromatography to provide the title compound C120. Yield: $457 \mathrm{mg}(43 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ (d, 2 H), $6.89(\mathrm{~d}, 2 \mathrm{H}), 6.31$ (s, 1 H), 4.20 (dd, 1 H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{q}, 1 \mathrm{H}), 3.59(\mathrm{dd}, 1 \mathrm{H}), 2.61-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.55$ (m, 1 H), 2.29-2.42 (m, 1 H), 1.23 (d, 3 H).
[0493] Step 2. Synthesis of (3R,7R,7aS)-3-(4-methoxyphenyl)-7-methyl-6-(phenylselanyl)tetrahydro-pyrrolo[1,2-cloxazol-5(3H)-one (C121). To a stirred solution of compound C120 ($450 \mathrm{mg}, 1.8 \mathrm{mmol}$) in THF (10 mL) was added LDA ($2 \mathrm{M}, 1.18 \mathrm{~mL}$) at about $-78{ }^{\circ} \mathrm{C}$ and stirred for about 30 min before a solution of phenylselenenyl chloride ($462 \mathrm{mg}, 2.4$ mmol) in THF (5 mL) was added. The mixture was kept at about $-78^{\circ} \mathrm{C}$ for about 30 min , then allowed to warm to about $25^{\circ} \mathrm{C}$ for about 2 h . EtOAc and water were added and the phases seprated. The aqueous phase was extracted with EtOAc. The combined EtOAc extractes were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C121. Yield: 343 mg (47%). This was used in the next step without further characterization.
[0494] Step 3. Synthesis of (3R,7aS)-3-(4-methoxyphenyl)-7-methyl-1,7a-dihydropyrrolo[1,2-cloxazol-5(3H)-one (C122). A solution of compound C121 ($343 \mathrm{mg}, 0.85 \mathrm{mmol}$) in DCM (15 mL) and pyridine (0.15 mL) at about $0{ }^{\circ} \mathrm{C}$ was treated with 30% hydrogen peroxide solution $(0.17 \mathrm{~mL}, 2.8 \mathrm{mmol})$. The mixture was kept at about $0^{\circ} \mathrm{C}$ for about 30 min before being warmed slowly to about $25^{\circ} \mathrm{C}$. After about 3 h , the mixture was diluted with DCM (10 mL) and washed with saturated aqueous NaHCO_{3} solution. The DCM extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C122. Yield: 143 mg (68%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44$ (d, 2 H), 6.91 (d, 2 H), 6.18 (s, 1 H), 5.82 (s, 1 H), $4.39-4.49$ (m, 1 H$), 4.21$ (s, 1 H$), 3.82$ (s, 3 H), 3.47 (s, 1 H), 2.09 (d, 3 H).
[0495] Step 4. Synthesis of (3R,5aR,6aS,6bS)-3-(4-methoxyphenyl)-6a-methyltetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C123). Sodium hexamethyldisilazide (1 M, 0.57 mL) was added to a suspension of trimethylsulfoxonium iodide ($128 \mathrm{mg}, 0.57 \mathrm{mmol}$) in DMSO $(2 \mathrm{~mL})$ at about $25^{\circ} \mathrm{C}$. The mixture was kept at about $25^{\circ} \mathrm{C}$ for about 30 min then heated to about $55^{\circ} \mathrm{C}$ for about 30 min . The mixture was cooled to about $25^{\circ} \mathrm{C}$, then a solution of compound C122 ($100 \mathrm{mg}, 0.41 \mathrm{mmol}$) in THF (1 mL) was added. After about 18 h , aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extensively extracted with ethyl ether. The combined ether extracts were washed with water, brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound $\mathbf{C 1 2 3}$. Yield: 55 mg (52%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.24-7.29$ (m, 2 H) 6.86-6.92 (m, 2 H) 6.06 (s, 1 H) 4.11-4.16 (m, 1 H) 3.92 (ddd, 1 H) 3.77 (s, 3 H) 3.50 (dd, 1 H) $1.72-1.77$ (m, 1 H) 1.30 (s, 3
H) $1.19(\mathrm{~s}, 1 \mathrm{H}) 1.17(\mathrm{~d}, 1 \mathrm{H})$.
[0496] Step 5. Synthesis of (1R,4S.5S)-4-(hydroxymethyl)-5-methyl-3-azabicyclo[3.1.0]hexan-2-one (L94). To a stirred solution of compound C123 ($200 \mathrm{mg}, 0.77 \mathrm{mmol}$) in 18 mL of acetonitrile and 2 mL of water was added 4 -toluenesulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$). The reaction mixture was heated at about $95^{\circ} \mathrm{C}$ for about 1 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L94. Yield: $95 \mathrm{mg}(87 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.04$ (br. s., 1 H) 3.81 (dd, 1 H) 3.62-3.68(m, 1 H) 3.57-3.61 (m, 1 H) 2.12 (br. s., 1 H) $1.62-1.68$ (m, 1 H) 1.30 (s, 3 H) 0.99 (dd, 1 H) 0.85-0.89 (m, 1 H).

Synthesis of (1R,4S,5S)-5-ethyl-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L95)

[0497]

[0498] This compound was prepared in the same manner as compound L94, substituting ethylmagnesium chloride for methyllithium in Step 1. It was used in the next step without further characterization.

Preparation 51: (1S,4S,5R)-1-fluoro-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L96)

[0499]

[0500] Step 1. Synthesis of (3R.7R.7aS)-3-phenyl-7-vinyltetrahydropyrrolo[1,2-c]oxazol-5(3H)one (C124). A suspension cuprous bromide - dimethyl sulfide complex ($10.4 \mathrm{~g}, 50 \mathrm{mmol}$) in ether (70 mL) was cooled to about $-10^{\circ} \mathrm{C}$ and a solution of vinylmagnesium bromide ($1 \mathrm{M}, 100$ mL) was added slowly. The mixture was stirred at about $-10^{\circ} \mathrm{C}$ for about 30 min . The mixture was then cooled to about $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{TMSCI}(9.2 \mathrm{~mL}, 73 \mathrm{mmol})$ was added slowly. After the addition was complete, the mixture was kept for about 15 min before ($3 \mathrm{R}, 7 \mathrm{aS}$)-3-phenyl-1,7a-dihydropyrrolo[1,2-c]oxazol-5(3H)-one (CAS 134107-65-6, $6.70 \mathrm{~g}, 33 \mathrm{mmol}$) in THF (70 mL) was added slowly. The mixture was kept an additional about 4 h at about $-78^{\circ} \mathrm{C}$ before being
treated with a mixture of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ammonium hydroxide. The ethereal layer was separated and the aqueous phase was extracted twice with EtOAc. The combined extracts were dried over MgSO_{4} filtered and concentrated. The residue was purified by chromatography to provide the title compound C124. Yield: $5.53 \mathrm{~g}(72 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.42-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.88$ (ddd, 1 H$), 5.12-5.20$ (m, 2 H), 4.19 (dd, 1 H), 3.96 (q, 1 H), 3.71 (dd, 1 H), 2.95 (dq, 1 H$), 2.63-2.81(\mathrm{~m}, 2 \mathrm{H})$.
[0501] Step 2. Synthesis of (3R,7R,7aS)-6-fluoro-3-phenyl-7-vinyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C125). A solution of LDA was generated from n-butyllithium ($2.5 \mathrm{M}, 1.1$ mL) and diisopropylamine ($0.73 \mathrm{~mL}, 5.2 \mathrm{mmol}$) in THF at about $0{ }^{\circ} \mathrm{C}$ for about 1 h . A solution of compound C124 ($1.00 \mathrm{~g}, 4.4 \mathrm{mmol}$) in THF (40 mL) was treated with the LDA solution at about $-78^{\circ} \mathrm{C}$. After about 30 min , a solution of NFSI ($1.70 \mathrm{~g}, 5.2 \mathrm{mmol}$) in THF (5 mL) was added. The mixture was allowed to warm to about $25^{\circ} \mathrm{C}$ for about 16 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted with EtOAc (50 mL). The EtOAc extract was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C125. Yield: $441 \mathrm{mg}(41 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.50(\mathrm{~m}, 5 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{ddd}, 1 \mathrm{H}), 5.31-5.38(\mathrm{~m}, 2 \mathrm{H})$, $5.22(\mathrm{dd}, 1 \mathrm{H}), 4.22-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 2 \mathrm{H}), 2.93-3.08(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$-194.19, -198.01.
[0502] Step 3. Synthesis of (3R,7S,7aS)-6-fluoro-7-(hydroxymethyl)-3-phenyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C126). A stream of ozonized oxygen was bubbled through a solution of compound $\mathbf{C 1 2 5}(440 \mathrm{mg}, 1.8 \mathrm{mmol})$ in DCM (6 mL) and MeOH $(2 \mathrm{~mL})$ at about $-78^{\circ} \mathrm{C}$. After a blue color persisted in the mixture, the mixture was treated with dimethyl sulfide (3 mL) . $\mathrm{NaBH}_{4}(202 \mathrm{mg}, 5.3 \mathrm{mmol})$ was added and the mixture was stirred at about $-78^{\circ} \mathrm{C}$ for about 30 min before being allowed to warm to about $0^{\circ} \mathrm{C}$ for about 30 min . The mixture was treated with with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The EtOAc extract was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C126. Yield: 207 mg (46%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $7.31-7.50(\mathrm{~m}, 5 \mathrm{H}), 6.44$ (s, 1 H), 5.31 (dd, 1 H), 4.36 (dd, 1 H), 4.04 (dt, 1 H), $3.87-3.97$ (m, 2 H), 3.76 (dd, 1 H), 2.49-2.69 (m, 1 H), 1.69 (t, 1 H). ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-193.64$.
[0503] Step 4. Synthesis of (3R,7R,7aS)-7-(bromomethyl)-6-fluoro-3-phenyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C127). A solution of compound C126 (202 $\mathrm{mg}, 0.8 \mathrm{~mL})$ in DCM was treated with pyridine ($0.13 \mathrm{~mL}, 1.6 \mathrm{mmol}$) and carbon tetrabromide ($323 \mathrm{mg}, 1.0 \mathrm{mmol}$). Triphenylphosphine $(258 \mathrm{mg}, 1.0 \mathrm{mmol}$) was slowly added to the mixture. The mixture was kept about 2 h at about $25^{\circ} \mathrm{C}$, then saturated aqueous NaHCO_{3} was added and the mixture was extracted with EtOAc. The combined EtOAc extracts were washed with water, brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C127. Yield: $185 \mathrm{mg}(73 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz ,
[0504] Step 5. Synthesis of (3R,5aS,6aR,6bS)-5a-fluoro-3-phenyltetrahydro-1H-cyclopropa[3,4]pyrrolo-[1,2-c]oxazol-5(3H)-one (C128). A solution of compound C127 (185 mg , $0.59 \mathrm{mmol})$ in THF (10 mL) was treated with lithium hexamethyldisilazide ($1 \mathrm{M}, 0.62 \mathrm{~mL}$) at about $-78{ }^{\circ} \mathrm{C}$. After about 15 min at about $-78^{\circ} \mathrm{C}$, the mixture was allowed to warm to about 0 ${ }^{\circ} \mathrm{C}$ for about 30 min , then an additional portion of lithium hexamethyldisilazide ($1 \mathrm{M}, 0.31 \mathrm{~mL}$) was added. After approximately another 30 min at about $0^{\circ} \mathrm{C}$, The mixture was treated with with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined EtOAc extracts were washed with water, brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C128. Yield: 110 mg (80%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ - 7.44 (m, 5 H), $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.26$ (dd, 1 H), 3.61 3.69 (m, 1 H), $3.53-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{td}, 1 \mathrm{H}), 1.90$ (ddd, 1 H), 1.44 (dt, 1 H). ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-208.58$.
[0505] Step 6. Synthesis of (1S,4S,5R)-1-fluoro-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2one (L96). To a stirred solution of compound C128 (110 mg, 0.47 mmol) in 18 mL of acetonitrile and 2 mL of water was added 4 -toluenesulfonic acid ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$). The reaction mixture was kept at about $25^{\circ} \mathrm{C}$ for about 6 h , then heated at about $60^{\circ} \mathrm{C}$ for about 6 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L96. Yield 53 mg (77%). It was used in the next step without further characterization.

Preparation 52: (1R,4S,5S)-4-(hydroxymethyl)-3-azabicyclo[3.2.0]heptan-2-one (L97)

[0506]

[0507] Step 1. Synthesis of (1S.2S,5R)-tert-butyl 2-(((tert-butyldimethylsilyl)oxy)methyl)-4-oxo-3-azabicyclo[3.2.0]heptane-3-carboxylate (C129). A solution of (S)-tert-butyl 2-(((tert-butyldimethylsilyl)oxy)methyl)-5-oxo-2,5-dihydro-1H-pyrrole-1-carboxylate (CAS 81658-27-7, $1.00 \mathrm{~g}, 3.1 \mathrm{mmol})$ in acetone (330 mL) was saturated with ethylene gas and irradiated with ultraviolet light at about $-20^{\circ} \mathrm{C}$ for about 6 h . A steady flow of ethylene gas was maintained throughout the irradiation. The mixture was then concentrated and the residue was purified by chromatography to provide the title compound C129. Yield: 250 mg (23%). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
CDCl_{3}) $\delta 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{dd}, 1 \mathrm{H}), 3.59(\mathrm{~d}, 1 \mathrm{H}), 3.03(\mathrm{t}, 1 \mathrm{H}), 2.88(\mathrm{q}, 1 \mathrm{H}), 2.49-2.44(\mathrm{~m}$, $1 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~m}, 6 \mathrm{H})$.
[0508] Step 2. Synthesis of (1S.2S,5R)-tert-butyl 2-(hydroxymethyl)-4-oxo-3-azabicyclo[3.2.0]heptane-3-carboxylate (C130). A solution of compound C129 (568 mg, 1.6 mmol) in THF (8 mL) was treated with a solution off tetrabutylammonium fluoride ($1 \mathrm{M}, 3.2 \mathrm{~mL}$) at about $25^{\circ} \mathrm{C}$. After about about 4 h , the mixture was poured into water and extracted with EtOAc. The combined EtOAc extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C130. Yield: 357 mg (93\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.66$ (br. s., 1 H), 3.90-4.01 (m, 1 H), 3.79-3.86 (m, 1 $\mathrm{H}), 3.61(\mathrm{t}, 1 \mathrm{H}), 2.91-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.01-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.

Step 3. Synthesis of (1R,4S,5S)-4-(hydroxymethyl)-3-azabicyclo[3.2.0]heptan-2-one (L97).

[0509] Compound C130 (357 mg, 1.5 mmol) was dissolved in DCM (1 mL) at about $25^{\circ} \mathrm{C}$. A mixture of DCM (1 mL) and TFA (1 mL) was added and the mixture was kept at about $25^{\circ} \mathrm{C}$ for about 2 h . It was then concentrated to dryness to provide the title compound L97. Yield: $211 \mathrm{mg}(100 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.55$ (br. s., 2 H), 4.34 (dd, 1 H), 4.17 (dd, 1 H), $3.82(\mathrm{t}, 1 \mathrm{H}), 3.02-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.48(\mathrm{~m}, 1$ H), 2.02-2.26 (m, 2 H).

Preparation 53: (1S,4S,5R)-1-fluoro-4-(hydroxymethyl)-3-azabicyclo[3.2.0]heptan-2-one (L98)

[0510]

[0511] Step 1. Synthesis of (3R,5aS,7aR,7bS)-5a-fluoro-3-(4-methoxyphenyl)hexahydrocyclo-buta[3.4]pyrrolo[1,2-c]oxazol-5(3H)-one (C131). A solution of compound C117 (300 mg, 1.2 $\mathrm{mmol})$ in acetone (450 mL) was saturated with ethylene gas and irradiated with ultraviolet light at about $-20^{\circ} \mathrm{C}$ for about 6 h . A steady flow of ethylene gas was maintained throughout the irradiation. The mixture was then concentrated and the residue was purified by chromatography to provide the title compound C131. Yield: $170 \mathrm{mg}(51 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{dd}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.74(\mathrm{~m}$, 1 H), 3.32 (dd, 1 H), 3.06-3.01 (m, 1 H), 2.65-2.56 (m, 2 H), 2.49-2.42 (m, 1 H), 1.67-1.62
(m, 1 H).
[0512] Step 2. Synthesis of (1S, 4S,5R)-1-fluoro-4-(hydroxymethyl)-3-azabicyclo[3.2.0]heptan-2-one (L98). To a stirred solution of compound C131 (200 mg, 0.72 mmol) in 9 mL of acetonitrile and 1 mL of water was added 4 -toluenesulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$). The reaction mixture was heated at about $70^{\circ} \mathrm{C}$ for about 1 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L98. Yield: 115 (100\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ (br. s., 1 H), 3.55-3.71 (m, 2 H), 3.39-3.55 (m, 2H), 2.81-3.00(m, 1 H), 2.41-2.60(m, 2 H), $2.18-2.34(\mathrm{~m}, 1 \mathrm{H})$, 1.36-1.53(m, 1 H$)$.

Preparation 54: (土)-(1S,5S)-5-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L100)

[0513]

[0514] Step 1. Synthesis of tert-butyl 1-((benzoyloxy)methyl)-3-azabicyclo[3.1.0]hexane-3carboxylate (C132) A solution of tert-butyl 1-(hydroxymethyl)-3-azabicyclo[3.1.0]hexane-3carboxylate (CAS 161152-76-7, $427 \mathrm{mg}, 2 \mathrm{mmol}$) in DCM (6.4 mL) was treated with benzoic acid ($368 \mathrm{mg}, 3 \mathrm{mmol}$), EDCI hydrochloride ($581 \mathrm{mg}, 3 \mathrm{mmol}$), and DMAP ($49 \mathrm{mg}, 0.4 \mathrm{mmol}$), and heated to about $40^{\circ} \mathrm{C}$ for about 12 h . The mixture was cooled to about $25^{\circ} \mathrm{C}$, diluted with DCM, washed with 1 M HCl and 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The DCM solution was concentrated, and the residue was purified by chromatography to provide the title compound C132, which was used in the next step without further characterization. Yield: $0.57 \mathrm{~g}(90 \%)$.
[0515] Step 2. Synthesis of tert-butyl 1-((benzoyloxy)methyl)-4-oxo-3-azabicyclo[3.1.0]hexane-3-carboxylate (C133) A solution of compound C132 ($0.57 \mathrm{~g}, 1.8 \mathrm{mmol}$) in EtOAc (20 mL) was treated with a solution of sodium periodate $(1.5 \mathrm{~g}, 7.2 \mathrm{mmol})$ in water (20 mL) and ruthenium trichloride (21 mg (50%), 0.054 mmol). The mixture was stirred at about $20{ }^{\circ} \mathrm{C}$ for about 6 h , then treated with 2-propanol (20 mL) and stirred for about 0.5 h . It was then diluted with water and extracted twice with EtOAc. The combined EtOAc extracts extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The residue was purified by chromatography to provide the title compound C133, which was used in the next step without further characterization. Yield: 0.40 g (60\%).
[0516] Step 3. Synthesis of (4-oxo-3-azabicyclo[3.1.0]hexan-1-yl)methyl benzoate (C134) A solution of compound C133 ($0.40 \mathrm{~g}, 0.5 \mathrm{mmol}$) in DCM (2 mL) was treated with TFA (0.5 mL) and stirred at about $25{ }^{\circ} \mathrm{C}$ for about 15 minutes. The mixture was concentrated and the
residue was redissolved in toluene and again concentrated to provide the title compound C134, which was used in the next step without further characterization.
[0517] Step 4. Synthesis of (5-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L100) Compound C134 (presumed 0.4 mmol) in THF (2 mL) was treated with $\mathrm{NaOH}(0.3 \mathrm{~mL}$ of a 2 M aqueous solution, 0.6 mmol) and stirred at about $25^{\circ} \mathrm{C}$ for about 1 h . This solution of compound $\mathbf{L 1 0 0}$ was used in the next step without further characterization.

Preparation 55: (\pm)-3-(hydroxymethyl)octahydro-1H-isoindol-1-one (L101)

[0518]

[0519] Step 1. Synthesis of (\pm)-3-(hydroxymethyl)octahydro-1H-isoindol-1-one (L101). Ethyl 3-oxooctahydro-1H-isoindole-1-carboxylate (CAS $84385-29-5,400 \mathrm{mg}, 1.9 \mathrm{mmol}$) was dissolved in THF (9.5 mL) to which lithium borohydride ($59 \mathrm{mg}, 2.65 \mathrm{mmol}$) was added. The reaction was stirred at about $25^{\circ} \mathrm{C}$ overnight. The mixture was cooled to about $0^{\circ} \mathrm{C}$ and 2 M HCl was added dropwise until gas evolution ceased. The solution was neutralized with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and filtered. The filtrate was concentrated The residue was purified by chromatography to provide the title compound L101. Yield: $0.26 \mathrm{~g}(81 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 4.63(\mathrm{t}, 1 \mathrm{H})$, $3.42-3.50(\mathrm{~m}, 1 \mathrm{H})$, $3.38-3.42(\mathrm{~m}, 2 \mathrm{H})$, 2.35-2.40(m, 1 H$)$, 2.23-2.30(m, 1 H), 1.90-1.98 (m, 1 H), 1.40-1.63 (m, 3H), 1.27-1.40(m, 1 H), 0.84-1.11 (m, 3 H).

Preparation 56: (S)-5-(hydroxymethyl)-5-methylpyrrolidin-2-one (L102)

[0520]

[0521] Step 1. Synthesis of (S)-methyl 2-methyl-5-oxopyrrolidine-2-carboxylate (C135). A solution (S)-1-tert-butyl 2-methyl 2-methyl-5-oxopyrrolidine-1,2-dicarboxylate (CAS 1109790-$91-1,1.2 \mathrm{~g}, 4.7 \mathrm{mmol})$ in DCM was treated with TFA ($0.36 \mathrm{~mL}, 4.7 \mathrm{mmol}$) for about 2 h at about $25^{\circ} \mathrm{C}$. The mixture was concentrated to provide the title compound C135. Yield: 1.2 g (100\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ (br. s., 1 H), 3.80 (s, 3 H), 2.48-2.66 (m, 3 H), 2.02 - 2.15 (m, 1 H), 1.58 (s, 3 H).
[0522] Step 2. Synthesis of (S)-5-(hydroxymethyl)-5-methylpyrrolidin-2-one (L102). A solution of compound C135 ($1.2 \mathrm{~g}, 4.7 \mathrm{mmol}$) in THF (76 mL) was treated with lithium borohydride (218 $\mathrm{mg}, 9.9 \mathrm{mmol}$). The reaction was allowed to proceed overnight, after which the solution was cooled to about $0{ }^{\circ} \mathrm{C}$ and 2 M HCl was added dropwise until gas evolution ceased. The solution was neutralized with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and filtered. The filtrate was concentrated. The residue was purified by chromatography to provide the title compound C136 an oil which crystallized. This was triturated with ether and filtered to provide the title compound L102. Yield: $0.30 \mathrm{~g}(49 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $\delta 7.43$ (br. s., 1 H), 4.83-4.87 (m, 1 H), 3.16-3.24 (m, 2 H), 2.06-2.21 (m, 2 H), 1.96 (ddd, 1 H), 1.59 (ddd, 1 H), 1.09 (s, 3 H).

Preparation 57: 5-(hydroxymethyl)-4-(trifluoromethyl)pyrrolidin-2-one (L104)

[0523]

[0524] Step 1. Synthesis of Diethyl 2-((diphenylmethylene)amino)-3(trifluoromethyl)pentanedioate (C136). A mixture of ethyl 2-((diphenylmethylene)amino)acetate (CAS 69555-14-2, $1.9 \mathrm{~g}, 7 \mathrm{mmol}$), benzyltriethyl $\mathrm{NH}_{4} \mathrm{Cl}(0.3 \mathrm{~g}, 1.3 \mathrm{mmol}), 10 \%$ aqueous NaOH $(10 \mathrm{~mL})$ and DCM $(10 \mathrm{~mL})$ was stirred at about $0^{\circ} \mathrm{C}$ for about 15 min . Following the addition of (E)-ethyl 4,4,4-trifluorobut-2-enoate (CAS 25597-16-4, $1 \mathrm{~mL}, 7 \mathrm{mmol}$) the mixture was stirred vigorously for about 90 min at about $0^{\circ} \mathrm{C}$. The DCM was separated and the aqueous phase was extracted with DCM. The combined DCM extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated to provide the title compound $\mathbf{C 1 3 6}$. Yield: $2.6 \mathrm{~g}(85 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.14$ - 7.20 (m, 2 H), 4.43 (d, 1 H), 4.13-4.25 (overlapping q, 4 H), 3.62-3.74 (m, 1 H), 3.12 (dd, 1 H), 2.81 (dd, 1 H), 1.27 (overlapping t, 6 H).
[0525] Step 2. Synthesis of Ethyl 5-oxo-3-(trifluoromethyl)pyrrolidine-2-carboxylate (C137). A mixture of compound C136 ($2.6 \mathrm{~g}, 6.0 \mathrm{mmol}$), 10% aqueous citric acid ($24 \mathrm{~mL}, 212 \mathrm{mmol}$) and THF (17 mL) was stirred at about $25^{\circ} \mathrm{C}$ for 2 days. The reaction was extracted with EtOAc and the combined EtOAc extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C137. Yield: $1.1 \mathrm{~g}(85 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.72$ (br. s., 1 H), 4.28 (q, 2 H), 3.40 (m, 1 H), 2.70 (dd, 1 H), 2.52 (dd, 1 H), 1.33 (t, 3 H).
[0526] Step 3. Synthesis of 5-(Hydroxymethyl)-4-(trifluoromethyl)pyrrolidin-2-one (L104). To a solution of compound $\mathbf{C 1 3 7}(1.1 \mathrm{~g}, 5.1 \mathrm{mmol})$ in THF (25 mL) was added lithium borohydride
($0.16 \mathrm{~g}, 7.1 \mathrm{mmol}$). The mixture was stirred at about $25^{\circ} \mathrm{C}$ overnight. The mixture was cooled to about $0{ }^{\circ} \mathrm{C}$ and 2 M HCl was added until gas evolution ceased. The mixture was neutralized with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and filtered. The filtrate was concentrated and the residue was purified by chromatography to provide the title compound L104. Yield: $0.44 \mathrm{~g}(47 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) 7.92 (br. s., 1 H , diastereomer 1), 6.89 (d, 1 H , diastereomer 2), $5.35(\mathrm{~m}, 1 \mathrm{H}$, diastereomer 2), 5.07 ($\mathrm{t}, 1 \mathrm{H}$, diastereomer 1), 3.84 ($\mathrm{m}, 1 \mathrm{H}$, diastereomer 2), $3.58(\mathrm{~m}, 1 \mathrm{H}$, diastereomer 1), 3.30-3.46 ($\mathrm{m}, 3 \mathrm{H}$, mixture of 1 H diastereomer 1 and 2 H diastereomer 2), 3.12 (m, 1 H , diastereomer 1), 2.74 (dd, 1 H , diastereomer 2), 2.59 (dd, 1 H , diastereomer 1), 2.42 (dd, 1 H , diastereomer 2), 2.17 (dd, 1 H , diastereomer 1).

Preparation 58: (\pm)-((1R,6S)-3-benzyl-3-azabicyclo[4.1.0]heptan-1-yl)methanol (L105)

[0527]

Step 1. Synthesis of (\pm)-((1R,6S)-3-benzyl-3-azabicyclo[4.1.0]heptan-1-yl)methanol (L105).

[0528] To obtain the desired target material, (1-benzyl-1,2,5,6-tetrahydropyridin-3-yl)methanol (CAS 244267-39-8, $545 \mathrm{mg}, 2.7 \mathrm{mmol}$)) was cyclopropanated as described in Tetrahedron 2003, 59, 6363 to provide the title compound L105. Yield: $252 \mathrm{mg}(43 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d ${ }_{6}$) $\quad 7.13-7.41(\mathrm{~m}, 5 \mathrm{H}), 4.42(\mathrm{t}, 1 \mathrm{H}), 3.32-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.28$ (dd, 1 H$), 3.08$ (dd, 1 H), $2.74(\mathrm{~d}, 1 \mathrm{H}), 2.21-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.70(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.85$ (m, 1 H), 0.39-0.53 (m, 2 H).

Preparation 59: (S)-4-(hydroxymethyl)-1-methylimidazolidin-2-one (L106)

[0529]

Step 1. Synthesis of (S)-1-Benzyl 5-methyl 2-oxoimidazolidine-1,5-dicarboxylate (C138).
[0530] To a suspension of (S)-3-((benzyloxy)carbonyl)-2-oxoimidazolidine-4-carboxylic acid (CAS 59760-01-9, $3.0 \mathrm{~g}, 11.4 \mathrm{mmol}$) in $\mathrm{MeOH}(40 \mathrm{~mL})$ was added thionyl chloride ($0.4 \mathrm{~mL}, 5.7$ mmol) slowly at about $25^{\circ} \mathrm{C}$. The mixture was stirred at about $25^{\circ} \mathrm{C}$ overnight before the volatiles where removed under reduced pressure. The residue was dissolved in DCM and the DCM was washed with saturated aqueous NaHCO_{3}. The DCM was dried over MgSO_{4}, filtered and concentrated to provide the title compound C138. Yield: $2.9 \mathrm{~g}(93 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $7.26-7.45(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{q}, 2 \mathrm{H}), 4.78(\mathrm{dd}, \mathrm{Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.71(\mathrm{~m}$, 1 H), 3.37 (dd, 1 H), 2.71 (s, 3 H).
[0531] Step 2. Synthesis of (S)-1-Benzyl 5-methyl 3-methyl-2-oxoimidazolidine-1,5dicarboxylate (C139). To a solution of compound C138 ($0.96 \mathrm{~g}, 3.5 \mathrm{mmol}$) in DME (17 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.96 \mathrm{~g}, 6.9 \mathrm{mmol})$ followed by iodomethane $(0.87 \mathrm{~mL}, 13.9 \mathrm{mmol})$. The mixture was heated at about $50^{\circ} \mathrm{C}$ for about 19 h . The mixture was then allowed to cool to about $25^{\circ} \mathrm{C}$ and diluted with water. The layers were separated and the aqueous phase was extracted three times with EtOAc. The combined DME and EtOAc extracts were washed with half - saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C139. Yield: $0.75 \mathrm{~g}(74 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $7.31-7.44(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{dd}, 2 \mathrm{H}), 4.78(\mathrm{dd}, 1 \mathrm{H}), 3.67-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.37$ (dd, 1 H), 3.31 (s, 2 H), 2.71 (s, 3 H).
[0532] Step 3. Synthesis of (S)-Benzyl 5-(hydroxymethyl)-3-methyl-2-oxoimidazolidine-1carboxylate ($\mathbf{C 1 4 0}$) $\mathrm{NaBH}_{4}(119 \mathrm{mg}, 3.1 \mathrm{mmol})$ was added slowly to solution of compound C139 ($0.75 \mathrm{~g}, 2.6 \mathrm{mmol}$) in $\mathrm{EtOH}(7 \mathrm{~mL})$ at about $0^{\circ} \mathrm{C}$. The mixture was stirred at about $0^{\circ} \mathrm{C}$ for about 2.5 h , at which time after which an additional 119 mg of NaBH_{4} was added. Stirring was continued at about $0^{\circ} \mathrm{C}$ for approximately an additional 1.5 h . Hydrochloric acid (10\%) was added dropwise to the cooled mixture until the evolution of gas ceased. The mixture was concentrated under reduced pressure and the residue was taken up in EtOAc. The EtOAc extract was washed with saturated aqueous NaHCO_{3}, water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound C140. Yield: 200 mg (30%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 7.24-7.49(\mathrm{~m}, 5 \mathrm{H}), 5.10-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{t}, 1 \mathrm{H}), 4.04-4.19(\mathrm{~m}, 1 \mathrm{H})$, $3.42-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.25$ (dd, 1 H$), 2.71$ (s, 3 H).
[0533] Step 4. Synthesis of (S)-4-(Hydroxymethyl)-1-methylimidazolidin-2-one To a solution of compound C140 ($200 \mathrm{mg}, 0.74 \mathrm{mmol}$) in $\mathrm{MeOH}(19 \mathrm{~mL}$) was added palladium on carbon (25 mg) and the mixture was stirred under a hydrogen atmosphere (1 atm) for about 6 h . The mixture was filtered and the filtrate was concentrated. The residue was purified by chromatography to provide the title compound L106. Yield: $61 \mathrm{mg}(64 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6} ס $3.46-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, 1 \mathrm{H}), 2.59$ ($\mathrm{s}, 3 \mathrm{H}$).

Preparation 60: 1-benzyl-6-hydroxy-1-azaspiro[4.4]nonan-2-one (L107)

[0535] Step 1. Synthesis of 1-benzyl-1H-pyrrol-2(5H)-one (C141). A mixture of 2,5-dimethoxy-2,5-dihydrofuran ($12.2 \mathrm{~mL}, 100 \mathrm{mmol}$), N -benzylamine ($10.9 \mathrm{~mL}, 100 \mathrm{mmol}$), conc. HCl (12.5 $\mathrm{mL}, 150 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$ was stirred for about 5 h at about $25^{\circ} \mathrm{C}$. The mixture was neutralized with solid NaHCO_{3} and extracted with EtOAc. The EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C141. Yield: $5.0 \mathrm{~g}(29 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.38(\mathrm{~m}, 5 \mathrm{H})$, 6.33-6.36 (m, 1 H), 5.29-5.32 (m, 1 H), 4.65 (s, 2 H), $3.14-3.15(\mathrm{~m}, 2 \mathrm{H})$.
[0536] Step 2. Synthesis of 1-benzyl-2-((tert-butyldimethylsilyl)oxy)-1H-pyrrole (C142). To a solution of compound C141 ($2.0 \mathrm{~g}, 12 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(3.3 \mathrm{~mL}, 23 \mathrm{mmol})$ in anhydrous DCM $(20 \mathrm{~mL})$ was added t -butyldimethylsilyl triflate ($2.4 \mathrm{~mL}, 12 \mathrm{mmol}$) at about $25^{\circ} \mathrm{C}$. After about 5 h the reaction mixture was diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was separated and extracted with EtOAc. The combined EtOAc extracts were washed with saturated aqueous NaHCO_{3} and concentrated. The residue was purified by chromatography to provide the title compound C142. Yield: 2.0 g (61%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10-7.15$ (m, 4 H), 6.90 6.93 (m, 1 H), 6.03-6.04 (m, 1 H), 5.78-5.80 (m, 1 H), 5.07-5.09 (m, 1 H), 4.76 (s, 2 H), 0.073 (s, 9 H), 0.00 (s, 6 H).
[0537] Step 3. Synthesis of 1-benzyl-5-(1-hydroxycyclobutyl)-1H-pyrrol-2(5H)-one (C143). To a solution of compound C142 ($500 \mathrm{mg}, 1.7 \mathrm{mmol}$) in DCM (12 mL) at $25^{\circ} \mathrm{C}$ was added 3 A molecular sieves and cyclobutanone ($0.21 \mathrm{~mL}, 2.8 \mathrm{mmol}$). The resulting mixture was stirred for about 15 min at about $25^{\circ} \mathrm{C}$ and was then cooled to about $-78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}(0.32 \mathrm{~mL}, 370$ $\mathrm{mg}, 2.6 \mathrm{mmol}$) was added dropwise. The mixture was stirred at about $-78{ }^{\circ} \mathrm{C}$ for about 2 h then warmed to about $0{ }^{\circ} \mathrm{C}$ and quenched with $\mathrm{H}_{2} \mathrm{O}$. The DCM was separated, washed with saturated aqueous NaHCO_{3}, and the aqueous phase was extracted with DCM. The DCM extracts were washed with satd. NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C143. Yield: 300 mg (71%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.90-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.23-6.25(\mathrm{~m}$, 1 H), $5.00(\mathrm{~d}, 1 \mathrm{H}), 4.27(\mathrm{~d}, 1 \mathrm{H}), 4.05-4.06(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.04(\mathrm{~m}, 2$ H), $1.82-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 1 \mathrm{H})$.
[0538] Step 4. Synthesis of 1-benzyl-1-azaspiro[4.4]nonane-2,6-dione (C144). To a solution of
compound $\mathbf{C 1 4 3}$ ($300 \mathrm{mg}, 1.2 \mathrm{mmol}$) in $\mathrm{DCM}\left(20 \mathrm{~mL}\right.$) at $0^{\circ} \mathrm{C}$ was added concentrated HCl $(0.2 \mathrm{~mL}, 2.2 \mathrm{mmol})$. The mixture was stirred at about $0{ }^{\circ} \mathrm{C}$ for about 5 h and concentrated to afford compound $\mathbf{C 1 4 4}$ which was used without purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta ~ 7.06$ - $7.30(\mathrm{~m}, 5 \mathrm{H}), 4.75(\mathrm{~d}, 1 \mathrm{H}), 3.90(\mathrm{~d}, 1 \mathrm{H}), 2.37-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.99$ $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.83(\mathrm{~m}, 3 \mathrm{H})$.
[0539] Step 5. Synthesis of 1-benzyl-6-hydroxy-1-azaspiro[4.4]nonan-2-one (L107). NaBH_{4} ($38 \mathrm{mg}, 0.93 \mathrm{mmol}$) was added to a solution of compound $\mathbf{C 1 4 4}$ ($150 \mathrm{mg}, 0.62 \mathrm{mmol}$) in MeOH $(4 \mathrm{~mL})$. The mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 20 min before being diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined EtOAc extracts were washed with water, brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound L107 as a mixture of diastereomers. Yield: 105 mg (70\%). It was used in the next step without further characterization.

Preparation 61: (S)-4-(hydroxymethyl)imidazolidin-2-one (L108)

[0540]

[0541] Step 1. Synthesis of methyl (4S)-2-oxoimidazolidine-4-carboxylate (C145). A suspension of 1-benzyl 5-methyl (5S)-2-oxoimidazolidine-1,5-dicarboxylate (CAS 168399-08-4, $325 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(33 \mathrm{mg})$ in $\mathrm{MeOH}(4.7 \mathrm{~mL})$ was shaken under a hydrogen atmosphere at about $25^{\circ} \mathrm{C}$ for about 5.5 h . The mixture was filtered and concentrated to afford the title compound C145. Yield: 163 mg (97%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 6.73$ (s, 1 H), $6.34(\mathrm{~s}, 1 \mathrm{H}), 4.25$ (ddd, 1 H), 3.52-3.65(m,2H), $3.32(2,3 \mathrm{H})$.
[0542] Step 2. Synthesis of (4S)-4-(hydroxymethyl)imidazolidin-2-one (L108). Sodium borohydride ($56 \mathrm{mg}, 1.4 \mathrm{mmol}$) was added to a solution of compound C145 (160 mg, 1.1 mmol) at about $0^{\circ} \mathrm{C}$. The mixture was stirred at about $0^{\circ} \mathrm{C}$ for about 3 h , and then $10 \% \mathrm{HCl}$ solution was added dropwise until gas evolution ceased. The mixture was concentrated and the residue was diluted with EtOAc. The EtOAc was washed with saturated aqueous NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide the title compound L108. Yield: 360 mg (a mixture of desired product and salts). This was used in the next step without purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}_{\mathrm{d}}$) $\delta 3.53-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.23-$ 3.30 (m, 1 H), 3.04 (dd, 1 H).

Preparation 62: (3S,3aR,6aS)-5-benzyl-3-(hydroxymethyl)hexahydropyrrolo[3,4-c]pyrrol-1(2H)-one (L109)

[0543]

[0544] Step 1. Synthesis of (5aS,8aR,8bS)-7-benzyl-3,3-dimethylhexahydro-1Hpyrrolo[$\left.3^{\prime}, 4^{\prime}: 3,4\right]$-pyrrolo[1,2-c]oxazol-5 (3H)-one (C146). A solution of compound P20 (100 mg, $0.65 \mathrm{mmol})$ in DCM (5 mL) and N -(methoxymethyl)-N-[(trimethylsilyl)methyl]benzenemethanamine (CAS 93102-05-7, $232 \mathrm{mg}, 0.98 \mathrm{mmol}$) was treated with TFA (0.01 mL , 0.13 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was kept at about $25^{\circ} \mathrm{C}$ for about 16 h , then heated at about $40^{\circ} \mathrm{C}$ for about 4 h , before an additional 232 mg of CAS 93102-05-7 was added. Heating was continued for about 16 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$, neutralized with $\mathrm{Et}_{3} \mathrm{~N}(18 \mu \mathrm{~L}, 0.13 \mathrm{mmol})$, and concentrated. The residue was purified by chromatography to provide the title compound C146. Yield: 110 mg (59\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 7.16-$ 7.41 (m, 5 H), 3.98 (dd, 1 H), 3.78-3.87 (m, 1 H), 3.59-3.68(m, 1 H), 3.48-3.58(m, 1 H$)$, $3.35(\mathrm{dd}, 1 \mathrm{H}), 3.10(\mathrm{t}, 1 \mathrm{H}), 2.95(\mathrm{~d}, 1 \mathrm{H}), 2.79(\mathrm{~d}, 1 \mathrm{H}), 2.56-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{t}, 1 \mathrm{H}), 2.18$ (dd, 1 H$), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$.
[0545] Step 2. Synthesis of (3S,3aR,6aS)-5-benzyl-3-(hydroxymethyl)hexahydropyrrolo[3,4-clpyrrol-1 (2H)-one (L109). To a stirred solution of compound C5146 (110 mg, 0.38 mmol) in 6 mL of acetonitrile and 0.6 mL of water was added TFA ($36 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$). The reaction mixture was heated at about $60^{\circ} \mathrm{C}$ for about 2 h . The reaction mixture was cooled to about 25 ${ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L109. Yield: $60 \mathrm{mg}(64 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.20-7.37$ (m, 5 H), 3.61 (s, 2 H), 3.46-3.55(m, 2H), 3.39-3.45(m, 1H), 2.92-3.02(m, 2 H$), 2.66-2.78(\mathrm{~m}, 2 \mathrm{H})$, 2.57 (dd, 1 H), 2.45-2.53(m, 1 H).

Preparation 63: 2-((5S)-5-(hydroxymethyl)-2-oxopyrrolidin-3-yl)acetonitrile (L110)

[0546]

[0547] Step1: Synthesis of (5S)-tert-butyl 5-(((tert-butoxycarbonyl)oxy)methyl)-3-(cyanomethyl)-2-oxopyrrolidine-1-carboxylate (C147). LDA solution (2 $\mathrm{M}, 2.4 \mathrm{~mL}$) was added to a solution of (S)-tert-butyl 2-(((tert-butoxycarbonyl)-oxy)methyl)-5-oxopyrrolidine-1-
carboxylate (CAS $360782-62-3,1.0 \mathrm{~g}, 3.2 \mathrm{mmol}$) in THF (20 mL) at about $-78{ }^{\circ} \mathrm{C}$. After about 30 min , bromoacetonitrile ($0.22 \mathrm{~mL}, 3.2 \mathrm{mmol}$) was added. The mixture was stirred at about $-78{ }^{\circ} \mathrm{C}$ for about 20 min , and then saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined EtOAc extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C147. Yield: $0.86 \mathrm{~g}(77 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ~$ б $4.50(\mathrm{dd}, 1 \mathrm{H}), 4.36-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.88$ (dd, 1 H), $2.60(\mathrm{dd}, 1 \mathrm{H}), 2.41(\mathrm{dd}, 1 \mathrm{H}), 2.06-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.62(\mathrm{~m}, 18 \mathrm{H})$.

Step 2. Synthesis of 2-((5S)-5-(hydroxymethyl)-2-oxopyrrolidin-3-yl)acetonitrile (L110).

[0548] Concentrated $\mathrm{HCl}(2 \mathrm{~mL})$ was added to a solution of compound C 147 (500 $\mathrm{mg}, 1.4$ mmol) in $\mathrm{MeOH}(5 \mathrm{~mL})$ and DCM (5 mL). The mixture was stirred at about $25^{\circ} \mathrm{C}$ overnight, then concentrated provide the title compound L110. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) ठ $3.76-3.67$ $(\mathrm{m}, 1 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.24(\mathrm{~m}, 1 \mathrm{H})$, 2.12-2.05 (m, 1 H$)$.

Preparation 64: (1S,3aS,6aR)-di-tert-butyl 1-(hydroxymethyl)-3-oxotetrahydropyrrolo[3,4-c]pyrrole-2,5(1H,3H)-dicarboxylate (L111)

[0549]

[0550] Step 1. Synthesis of (1S,3aS,6aR)-tert-butyl 5-benzyl-1-(((tert-butyldimethylsilyl)oxy)methyl)-3-oxohexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (C148). A solution of (S)-tert-butyl 2-(((tert-butyldimethylsilyl)oxy)methyl)-5-oxo-2,5-dihydro-1H-pyrrole-1-carboxylate (CAS 81658-27-7, $3.0 \mathrm{~g}, \quad 9.2 \mathrm{mmol}$) and N -(methoxymethyl)- N -[(trimethylsilyl)methyl]-benzenemethanamine (CAS 93102-05-7, $3.27 \mathrm{~g}, 13.8$) in DCM (80 mL) was treated with TFA ($208 \mathrm{mg}, 1.84 \mathrm{mmol}$) at about $25{ }^{\circ} \mathrm{C}$ and kept for about 18 h . Triethylamine ($0.26 \mathrm{~mL}, 1.84 \mathrm{mmol}$) was added and mixture was concentrated. The residue was purified by chromatography to provide the title compound C148. Yield: $2.6 \mathrm{~g}(61 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, dmso-d d_{6}) $\mathbf{~ 7 . 2 7 - 7 . 3 4 (m , 2 H) , 7 . 1 9 - 7 . 2 7 (m , 3 H) , 3 . 8 7 - 3 . 9 1 (m , 1 H) , ~}$ $3.84(\mathrm{dd}, 1 \mathrm{H}), 3.65(\mathrm{~d}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 2.90-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.65$ $2.73(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H})$
[0551] Step 2: Synthesis of (1S,3aS,6aR)-di-tert-butyl 1-(((tert-butyldimethylsilyl)oxy)methyl)-3-oxotetrahydropyrrolo[3,4-c]pyrrole-2,5(1H,3H)-dicarboxylate (C149). To a solution of compound C148 ($2.2 \mathrm{~g}, 4.8 \mathrm{mmol}$) and di-t-butyl dicarbonate ($3.1 \mathrm{~g}, 14.4 \mathrm{mmol}$) in $\mathrm{MeOH}(150$ mL) was added palladium on carbon (200 mg) and the mixture was stirred under a hydrogen atmosphere (1 atm) for about 18 h . The mixture was filtered and the filtrate was concentrated. The residue was purified by chromatography to provide the title compound C149. Yield: 1.12 g (49\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) б 3.99-4.10 (m, 2 H), 3.68-3.88 (m, 4 H), 3.45-3.55 (m, 1 H), 3.11 (dd, 1 H), $2.87-2.99(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3$ H), 0.06 (s, 3 H).
[0552] Step 3. Synthesis of (1S.3aS.6aR)-di-tert-butyl 1-(hydroxymethyl)-3-oxotetrahydropyrrolo[3,4-c]pyrrole-2,5(1H,3H)-dicarboxylate (L111). A solution of compound C149 ($1.22 \mathrm{~g}, 2.6 \mathrm{mmol}$) in THF (100 mL) was treated with tetrabutylammonium fluoride (1 M , 3.9 mL) at about $25^{\circ} \mathrm{C}$. After about 2 h , the mixture was concentrated. The residue was purified by chromatography to provide the title compound L111. Yield: 600 mg (65%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.18$ (dd, 1 H), 4.05 (dd, 1 H), $3.69-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.69(\mathrm{~m}, 1 \mathrm{H})$, 3.47 (dd, 1 H), 3.21 (dd, 1 H), 3.08-3.17 (m, 1 H), 2.87-2.99 (m, 1 H), 1.46 (s, 9 H), 1.46 (s, 9 H)

Preparation 65: (4R,5S)-4-(hydroxymethyl)-5-methyloxazolidin-2-one (L112)

[0553]

[0554] Step 1. Synthesis of (4R,5S)-4-(hydroxymethyl)-5-methyloxazolidin-2-one (L112). To a mixture of (4S,5S)-methyl 5-methyl-2-oxooxazolidine-4-carboxylate (CAS 182267-22-7, 165 $\mathrm{mg}, 1.0 \mathrm{mmol})$ in EtOH (6 mL) at about $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(43 \mathrm{mg}, 1.1 \mathrm{mmol})$. After gas evolution ceased, the mixture was stirred at about $25{ }^{\circ} \mathrm{C}$ for about 4 h . The mixture was recooled to about $0{ }^{\circ} \mathrm{C}$ and additional NaBH_{4} ($35 \mathrm{mg}, 0.9 \mathrm{mmol}$) was added. The mixture was warmed to about $25^{\circ} \mathrm{C}$ and after about 2 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was stirred overnight. The mixture was filtered and the solids were washed with EtOH. The filtrate was concentrated and the residue was purified by chromatography to provide the title compound L112. Yield: $97 \mathrm{mg}(72 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.72$ (s, 1 H), 4.72 4.88 (m, 1 H), 3.99 (br. s., 1 H), 3.74-3.86 (m, 1 H), 3.54-3.73 (m, 2 H), 1.38 (d, 3 H).

Preparation 66: (1S,4S,5R)-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L113)

[0555]

[0556] Step 1. Synthesis of (5aS,6aR,6bS)-3.3-dimethyltetrahydro-1H-cyclopropa[3,4]pyrrolo[1,2-c]oxazol-5(3H)-one (C150). A solution of compound P20 (1.0 g, 6.5 $\mathrm{mmol})$ in DCM (40 mL) was cooled to $0^{\circ} \mathrm{C}$ and a solution of diazomethane (prepared from 6.7 g of N -methyl-N-nitrosurea in 65 mL of diethyl ether) was added. Palladium acetate (72 mg , 0.32 mmol) was added in portions at about $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to about 25 ${ }^{\circ} \mathrm{C}$ for about 16 h . The mixture was filtered and a second portion of diazomethane and palladium acetate were added and stirred over night. The addition of diazomethane and palladium acetate were repeated twice more. The mixture was filtered and the filtrate was concentrated. The residue was purified by HPLC to the title compound C150. Yield: 100 mg (9\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.47-3.57(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.81(\mathrm{~m}$, $1 H), 1.12-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.58-0.63(\mathrm{~m}, 1 \mathrm{H})$.

Step 2. Synthesis of (1S,4S,5R)-4-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-2-one (L113).

[0557] To a stirred solution of compound C150 (95 mg, 0.57 mmol) in 5 mL of acetonitrile and 1 mL of water was added 4-toluenesulfonic acid ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$). The reaction mixture was heated at about $90{ }^{\circ} \mathrm{C}$ for about 1 h . The reaction mixture was cooled to about $25{ }^{\circ} \mathrm{C}$, concentrated, and the residue was purified by chromatography to provide the title compound L113. Yield: $35 \mathrm{mg}(33 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) ठ 4.61 (br. s, 1 H), 3.95 (d, 1 H), 3.65 (dd, 1 H), $3.51(\mathrm{dd}, 1 \mathrm{H}), 3.34(\mathrm{dt}, 1 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 1 \mathrm{H}), 0.98-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.78-0.83$ (m, 1 H).

Preparation 67: (1S,2S,5R)-tert-butyl 6,6-dichloro-2-(hydroxymethyl)-4-ox0-3-azabicyclo[3.1.0]hexane-3-carboxylate (L114)

[0558]

[0559] Step 1. Synthesis of (1S.2S,5R)-tert-butyl 2-(((tert-butyldimethylsilyl)oxy)methyl)-6,6-
dichloro-3-azabicyclo[3.1.0]hexane-3-carboxylate (C151). To a stirred solution of (S)-tert-butyl 2-(((tert-butyldimethylsilyl)oxy)methyl)-2,5-dihydro-1H-pyrrole-1-carboxylate (CAS 247200-49$3,5.0 \mathrm{~g}, 16 \mathrm{mmol})$ and benzyltriethyl $\mathrm{NH}_{4} \mathrm{Cl}(0.73 \mathrm{~g}, 3.2 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ was added $50 \% \mathrm{NaOH}$ solution (100 mL). The mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 16 h , then diluted with DCM and separated. The aqueous phase was extracted twice with additional DCM. The combined DCM extracts were washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C151. Yield: $3.6 \mathrm{~g}(57 \%)$ as colorless liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.90-4.09(\mathrm{~m}, 1 \mathrm{H})$, 3.81-3.89 (m, 1 H), 3.73-3.81 (m, 1H), 3.61-3.73(m, 1H), 3.57 (dd, 1 H$), 2.28-2.39(\mathrm{~m}, 1$ H), 2.22-2.29(m, 1 H), 1.43 (d, $9 H$), $0.90(\mathrm{~d}, 9 \mathrm{H}), 0.03-0.10(\mathrm{~m}, 6 \mathrm{H})$
[0560] Step 2. Synthesis of (1S,2S,5R)-tert-butyl 2-(((tert-butyldimethylsilyl)oxy)methyl)-6,6-dichloro-4-oxo-3-azabicyclo[3.1.0]hexane-3-carboxylate (C152). Sodium periodate (654 mg , $3.0 \mathrm{mmol})$ was dissolved in water $(6.5 \mathrm{~mL})$ and a catalytic amount of hydrated ruthenium dioxide was added. After stirring for 5 min , a solution of compound $\mathbf{C 1 5 1}$ ($400 \mathrm{mg}, 1.0 \mathrm{mmol}$) in EtOAc (6.5 mL) was added. The resulting mixture was stirred vigorously overnight. The phases were separated and the EtOAc phase was washed with sodium bisulfate solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C152. Yield: $290 \mathrm{mg}(70 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.16$ $4.21(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.91(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, 1 \mathrm{H}), 2.56(\mathrm{~d}, 1 \mathrm{H}), 1.51(\mathrm{~s}$, $9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$.
[0561] Step 3. Synthesis of (1S,2S,5R)-tert-butyl 6,6-dichloro-2-(hydroxymethyl)-4-oxo-3-azabicyclo-[3.1.0]hexane-3-carboxylate (L114). Compound C152 (290 mg, 0.7 mmol) in THF $(8 \mathrm{~mL})$ was treated with tetrabutylammonium fluoride ($1 \mathrm{M}, 1.4 \mathrm{~mL}$) at about $25{ }^{\circ} \mathrm{C}$. The mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 4 h , then water was added and the mixture was extracted twice with EtOAc (15 mL each). The combined EtOAc extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound L114. Yield: $124 \mathrm{mg}(59 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 5.57$ (br. s., 1 H), 4.19-4.27(m, 1 H), 4.08-4.15(m, 1 H), $3.90(\mathrm{t}, 1 \mathrm{H}$), $2.81(\mathrm{~d}, 1$ $\mathrm{H}), 2.55(\mathrm{~d}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.

Preparation 68: (S)-5-((S)-1-hydroxyethyl)pyrrolidin-2-one (L115)

[0562]

[0563] Step 1. Synthesis of (S)-5-((S)-1-hydroxyethyl)pyrrolidin-2-one (L115). A mixture of (S)-5-((S)-1-hydroxyethyl)-1-(9-phenyl-9H-fluoren-9-yl)pyrrolidin-2-one (CAS 191406-21-0, $750 \mathrm{mg}, 2.0 \mathrm{mmol}$) and palladium on carbon (350 mg) in $\mathrm{MeOH}(36 \mathrm{~mL})$ and EtOAc (36 mL) was hydrogenated at about 40 psi for about 30 h at about $25^{\circ} \mathrm{C}$. The mixture was filtered and the filtrate was concentrated. The residue was purified by chromatography to provide the title compound L115. Yield: $220 \mathrm{mg}(84 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d6) $\delta 7.51$ (br. $\mathrm{s}, 1 \mathrm{H}$), 4.66 (d, 1 H), 3.41-3.45(m, 1 H), 3.31-3.36(m, 1H), 2.08-2.13(m, 2 H), 1.93-2.05 (m, 1 H), 1.62-1.70(m, 1 H), 0.98 (d, 3 H).

Preparation 69: (4S,5S)-4-(2-fluoroethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L116)

[0564] Step 1. Synthesis of (7R,7aS)-7-(2-hydroxyethyl)-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C153). Cyclohexene ($4.3 \mathrm{~mL}, 42 \mathrm{mmol}$) was added to a solution of borane in THF ($1 \mathrm{M}, 21.1 \mathrm{~mL}$) at about $0^{\circ} \mathrm{C}$. After 30 min , the mixture was warmed to about $25^{\circ} \mathrm{C}$ and stirred approximately 30 min longer. After cooling to about $0^{\circ} \mathrm{C}$, a solution of compound $\mathbf{C 5 5}$ $(2.55 \mathrm{~g}, 14.1 \mathrm{mmol})$ in DCM $(70 \mathrm{~mL})$ was added dropwise over about 15 min . After about 90 minutes at $0^{\circ} \mathrm{C}$, water (40 mL) was added and the mixture was stirred for approximately 30 min at about $0^{\circ} \mathrm{C}$. The mixture was partially concentrated to remove about 50 mL of DCM and THF (20 mL) was added. Sodium perborate tetrahydrate ($8.93 \mathrm{~g}, 56 \mathrm{mmol}$) was added and the mixture was stirred overnight while being allowed to warm to about $20^{\circ} \mathrm{C}$. The phases were separated and the aqueous phase was extracted 5 times with DCM and 3 times with MTBE. The combined DCM and MTBE extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C153. Yield: 2.04 g (73\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.38$ (dt, 1 H), 3.91 (dd, 1 H), 3.68-3.77 (m, 2 H), 3.60 3.68 (m, 1 H), 2.94 (dd, 1 H), 2.53-2.65 (m, 1 H), 2.34 (dd, 1 H), 1.71-1.82 (m, 1 H), 1.65 (s, 3 H), 1.51-1.62 (m, 2 H), 1.48 (s, 3 H).
[0565] Step 2. Synthesis of (7S,7aS)-7-(2-fluoroethyl)-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C154). To a solution of compound C153 (1.43 g, 7.2 mmol) in DCM (36 mL) at about $0^{\circ} \mathrm{C}$ were added 2,6 -lutidine ($2.09 \mathrm{~mL}, 17.9 \mathrm{mmol}$), DAST ($1.75 \mathrm{~mL}, 14.4 \mathrm{mmol}$), and triethylamine trihydrofluoride $(1.16 \mathrm{~mL}, 7.2 \mathrm{mmol})$. The mixture was stirred overnight while warming to about $20^{\circ} \mathrm{C}$, then was added dropwise into saturated aqueous NaHCO_{3}. The mixture was extracted 4 times with DCM. The combined DCM extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C154. Yield: $1.06 \mathrm{~g}(73 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) б $4.55-4.52(\mathrm{~m}, 1 \mathrm{H})$, 4.47-4.40 (m, 2 H), 3.92 (dd, 1 H), 3.78-3.73 (m, 1 H), 2.99 (dd, 1 H), 2.66-2.58 (m, 1 H), $2.36(\mathrm{dd}, 1 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-221.50$.
[0566] Step 3. Synthesis of 4S,5S)-4-(2-fluoroethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L116). To a stirred solution of compound C154 ($130 \mathrm{mg}, 0.65 \mathrm{mmol}$) in 6.5 mL of acetonitrile and 1.3
mL of water was added TFA ($5 \mathrm{uL}, 0.07 \mathrm{mmol}$). The reaction mixture was heated at about 90 ${ }^{\circ} \mathrm{C}$ for about 1 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, concentrated, then twice redissolved in acetonitrile and water and concentrated to provide the title compound L116.
Yield: $90 \mathrm{mg}(86 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.63-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.37(\mathrm{~m}, 1 \mathrm{H})$, 3.70-3.57 (m, 3H), 2.72 (m, 1H), 2.38-2.18(m, 2H), 2.14-1.95(m, 1H), 1.95-1.73 (m, 1 H). ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta-220.91$.

Preparation 70: (4R,5S)-4-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L117)

[0567]

[0568] Step 1. Synthesis of (7R,7aS)-7-(1,2-dihydroxyethyl)-3,3-dimethyltetrahydropyrrolo[1.2-cloxazol-5(3H)-one (C155). To a solution of compound C55 ($1.50 \mathrm{~g}, 8.3 \mathrm{mmol}$) in acetone (30 mL) and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added N -methylmorpholine- N -oxide ($1.38 \mathrm{~g}, 11.8 \mathrm{mmol}$) followed by osmium tetroxide ($31 \mathrm{mg}, 0.12 \mathrm{mmol}$) at about $25^{\circ} \mathrm{C}$. The mixture was stirred at about $25^{\circ} \mathrm{C}$ for about 3 h , then concentrated. The residue was purified by chromatography to provide the title compound C155 as a mixture of two diastereomers. Yield: 1.47 g (82\%).
[0569] Step 2. Synthesis of (7R,7aS)-7-(hydroxymethyl)-3.3-dimethyltetrahydropyrrolo[1.2-cloxazol-5(3H)-one (C156). To a solution of compound C155 (2.00 g, 9.3 mmol) in MeCN (50 $\mathrm{mL})$ was added water (5 mL) followed by sodium periodate $(2.19 \mathrm{~g}, 10.2 \mathrm{mmol})$ at about $25^{\circ} \mathrm{C}$. The mixture was stirred at about $25{ }^{\circ} \mathrm{C}$ for 1 h , then cooled to about $0{ }^{\circ} \mathrm{C}$ and treated with NaBH_{4} ($538 \mathrm{mg}, 13.9 \mathrm{mmol}$) and stirred for about 1 h . The mixture was filtered, concentrated, and the residue was taken up in DCM and filtered. The filtrate was concentrated to provide the title compound C156. Yield: 1.69 g (98%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.43$ (td, 1 H), 3.98 $3.84(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{dd}, 1 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$.
[0570] Step 3. Synthesis of (7R,7aS)-7-(fluoromethyl)-3,3-dimethyltetrahydropyrrolo[1,2-cloxazol-5(3H)-one (C157). To a solution of compound C156 (1.70 g, 9.3 mmol) in DCM (20 mL) at about $0^{\circ} \mathrm{C}$ were added 2,6-lutidine ($2.7 \mathrm{~mL}, 23 \mathrm{mmol}$), DAST ($2.3 \mathrm{~mL}, 18.6 \mathrm{mmol}$), and triethylamine trihydrofluoride $(1.5 \mathrm{~mL}, 9.3 \mathrm{mmol})$. The mixture was stirred at about $25{ }^{\circ} \mathrm{C}$ for about 18 h . The reaction was quenched with saturated aqueous NaHCO_{3} and extracted with DCM. The combined DCM extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C157. Yield: 800 mg (46\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 4.34-4.63(\mathrm{~m}, 3 \mathrm{H}), 4.01(\mathrm{dd}, 1 \mathrm{H}), 3.79-3.87(\mathrm{~m}, 1 \mathrm{H})$,
3.03 (ddd, 1 H), 2.72-2.85 (m, 1 H), 2.26 (dd, 1 H), 1.67 (s, 3 H), 1.51 (s, 3 H). ${ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-218.27$.
[0571] Step 4. Synthesis of (4R,5S)-4-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L117). To a stirred solution of compound $\mathbf{C 1 5 7 (8 7 ~ m g , ~} 0.46 \mathrm{mmol})$ in 4 mL of acetonitrile and 1 mL of water was added TFA ($0.1 \mathrm{~mL}, 1.4 \mathrm{mmol}$). The reaction mixture was heated at about $90^{\circ} \mathrm{C}$ for about 1 h . The reaction mixture was cooled to about $25^{\circ} \mathrm{C}$, filtered, concentrated, then redissolved in MeOH and toluene and concentrated. The residue was dissolved in MeOH and toluene and concentrated several more times to provide the title compound L117. Yield: $57 \mathrm{mg}(83 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.47$ - 4.75 (m, 2 H), 3.73-3.82 (m, 1 H), 3.58 3.73 (m, 2 H), 2.96 (td, 1 H), 2.31 (qd, 2 H$) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta-222.48$.

Preparation 71: (3S,4R,5S)-3-fluoro-4-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L118)

[0572] Step 1. Synthesis of (6S,7R,7aS)-6-fluoro-7-(fluoromethyl)-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C158). A solution of compound C157 (730 $\mathrm{mg}, 3.9 \mathrm{mmol})$ in THF (20 mL) was slowly treated with LDA ($2 \mathrm{M}, 2.9 \mathrm{~mL}$) at $-78{ }^{\circ} \mathrm{C}$. After 30 min at $-78{ }^{\circ} \mathrm{C}$, a pre-cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of NFSI ($1.97 \mathrm{~g}, 6.2 \mathrm{mmol}$) in THF (20 mL) was added via cannula. Immediately after the complete addition of NFSI, the reaction was quenched with water at $-78{ }^{\circ} \mathrm{C}$ and allowed to warm to $25^{\circ} \mathrm{C}$. The solution was diluted with additional water (15 mL) and extracted with MTBE (50 mL). The aqueous phase was again extracted with MTBE (50 mL) and the combined MTBE extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C158. Yield: 120 mg (15\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.36$ (dd, 1 H), 4.78 - 4.65 (m, 1 H), 4.65-4.53(m, 1 H$), 4.17-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.08(\mathrm{~m}, 1 \mathrm{H})$, $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-202.40,-228.51$. There was also obtained (6R,7R,7aS)-6-fluoro-7-(fluoromethyl)-3,3-dimethyltetrahydropyrrolo-[1,2-c]oxazol$5(3 \mathrm{H})$-one (C159). Yield: $540 \mathrm{mg}(68 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.95$ (dd, 1 H), 4.65 (d, 1 H), 4.50-4.58(m, 2H), 4.04 (ddd, 1 H), 3.75 (ddd, 1 H), 2.76-2.96(m, 1 H), $1.65(\mathrm{~s}, 3 \mathrm{H})$, $\left.1.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376MHz,CDCl}_{3}\right) \delta-187.58,-223.88$.
[0573] Step 2. Epimerization of (6R,7R,7aS)-6-fluoro-7-(fluoromethyl)-3,3-dimethyltetrahydropyrrolo-[1,2-c]oxazol-5(3H)-one (C159). LDA ($2 \mathrm{M}, 0.89 \mathrm{~mL}$) was added to a solution of compound C159 ($240 \mathrm{mg}, 1.2 \mathrm{mmol}$) in toluene (3 mL) at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , after which a $-78^{\circ} \mathrm{C}$ solution of BHT ($517 \mathrm{mg}, 2.3 \mathrm{mmol}$) in toluene (6 mL) was added. Immediately after the addition of BHT, water (2 mL) was added and the mixture was allowed to warm to $20^{\circ} \mathrm{C}$. EtOAc was added and the aqueous phase was extracted again with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide compound C158. Yield: 113 mg (47\%).
[0574] Step 3. Synthesis of (3S,4R,5S)-3-fluoro-4-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L118). To a stirred solution of compound C158 ($370 \mathrm{mg}, 1.8 \mathrm{mmol}$) in 12 mL of acetonitrile and 3 mL of water was added silica bound 4-toluenesulfonic acid ($132 \mathrm{mg}, 0.09$ $\mathrm{mmol})$. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to $25^{\circ} \mathrm{C}$ and concentrated to provide the title compound L118. Yield: $250 \mathrm{mg}(84 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.03(\mathrm{dd}, 1 \mathrm{H}), 4.81-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.61(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.77(\mathrm{~m}$, 1 H), 3.69 (dd, 1 H), 3.61 ($\mathrm{dd}, 1 \mathrm{H}$), $3.15-2.94(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ -203.74, -227.31.

Preparation 72: (3S,4S,5S)-3-fluoro-4-(2-fluoroethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L121)

[0575] Step 1. Synthesis of (6S.7S.7aS)-6-fluoro-7-(2-fluoroethyl)-3.3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C160). A solution of compound C154 (1.01 $\mathrm{g}, 5.0 \mathrm{mmol})$ in THF (25 mL) was slowly treated with LDA ($2 \mathrm{M}, 3.8 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$. After 30 min at $-78^{\circ} \mathrm{C}$, a pre-cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\mathrm{NFSI}(2.58 \mathrm{~g}, 8.0 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ was added via cannula. After 20 min , the reaction was quenched with water (4 mL) at $-78^{\circ} \mathrm{C}$ and allowed to warm to $25{ }^{\circ} \mathrm{C}$. The solution was diluted with additional water (25 mL) and extracted with MTBE (25 mL). The aqueous phase was extracted 3 times with MTBE (20 mL each) and the combined MTBE extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C160. Yield: $350 \mathrm{mg}(32 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.29(\mathrm{dd}, 1 \mathrm{H}), 4.48-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.51$ (ddd, 1 H$), 4.11$ (dt, 1 H$), 3.99-$ $4.06(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.79(\mathrm{~m}, 1 \mathrm{H})$, 2.98-3.08(m,1H), 1.75-2.07(m,2H), $1.68(\mathrm{~s}, 3 \mathrm{H})$, 1.49 (s, 3 H). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-198.87,-219.80$. There was also obtained (6R,7S,7aS)-6-fluoro-7-(2-fluoroethyl)-3,3-dimethyltetrahydropyrrolo-[1,2-c]oxazol-5(3H)-one (C161). Yield: $516 \mathrm{mg}(47 \%) . .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.83$ (dd, 1 H), 4.58-4.64 (m, 1 H), 4.44-4.53 (m, 2 H), 3.99 (dd, 1 H), 3.57 (dd, 1 H), 2.64-2.79 (m, 1 H), 1.72-2.01 (m, 2 H), 1.65 (s, 3 H), 1.51 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-185.95, -219.45.
[0576] Step 2. Epimerization of (6R.7S.7aS)-6-fluoro-7-(2-fluoroethyl)-3.3-dimethyltetrahydropyrrolo-[1,2-c]oxazol- $5(3 \mathrm{H})$-one (C161). LDA ($2 \mathrm{M}, 0.34 \mathrm{~mL}$) was added to a solution of compound C161 ($100 \mathrm{mg}, 0.46 \mathrm{mmol}$) in toluene (2 mL) at about $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , after which a about $-78^{\circ} \mathrm{C}$ solution of BHT ($201 \mathrm{mg}, 0.91 \mathrm{mmol}$) in toluene (4 mL) was added. Immediately after the addition of BHT, water (4 mL) was added and the mixture was allowed to warm to about $20^{\circ} \mathrm{C}$. MTBE was added and the phases were separated. The MTBE extract was dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide compound $\mathbf{C 1 6 0}$. Yield: 36 mg (36\%).
[0577] Step 3. Synthesis of (3S,4S,5S)-3-fluoro-4-(2-fluoroethyl)-5-(hydroxymethyl)pyrrolidin-

2-one (L121). To a stirred solution of compound C160 ($460 \mathrm{mg}, 0.39 \mathrm{mmol}$) in 21 mL of acetonitrile and 5 mL of water was added TFA ($8 \mathrm{uL}, 0.1 \mathrm{mmol}$). The reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to $25^{\circ} \mathrm{C}$, concentrated, then twice redissolved in acetonitrile and water and concentrated. The residue was triturated with CHCl_{3} to provide the title compound L121. Yield: $270 \mathrm{mg}(72 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.86$ $(\mathrm{dd}, 1 \mathrm{H}), 4.62-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.57(\mathrm{~m}, 1 \mathrm{H})$, $2.78(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.10(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta-194.88,-217.30$.

Preparation 73: ($\mathbf{+}$)-(3R,4R)-tert-butyl 3-(hydroxymethyl)-4-(trifluoromethyl)pyrrolidine-1carboxylate (L122)

[0579] Step 1. Synthesis of (\pm)-(3R,4R)-ethyl 1-benzyl-4-(trifluoromethyl)pyrrolidine-3carboxylate (C164). To a solution of ethyl (E)-4,4,4-trifluorocrotonate (CAS 25597-16-4, 6.0 g, 36 mmol) and TFA ($0.55 \mathrm{~mL}, 7 \mathrm{mmol}$) in DCM (60 mL) at about $0{ }^{\circ} \mathrm{C}$ was added N -(methoxymethyl)-N-[(trimethylsilyl)methyl]-benzenemethanamine (CAS 93102-05-7, 16.85 g, 71 mmol) over a period of about 20 minutes. The reaction mixture was then heated at reflux for 16 h . It was diluted with $\mathrm{DCM}(100 \mathrm{~mL})$, washed with saturated aqueous NaHCO_{3} solution $(2 \times 100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The DCM extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C164. Yield: 10.5 g (99\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d6) ס $7.23-7.34(\mathrm{~m}, 5 \mathrm{H}$), 4.07-4.15 (m, 2 H), $3.64(d, 1 H), 3.54(d, 1 H), 3.35-3.41(m, 1 H), 3.12(q, 1 H), 2.81(t, 2$ H), 2.69-2.73 (m, 1H), 2.55-2.59 (m, 1 H$), 1.17(\mathrm{t}, 3 \mathrm{H})$.
[0580] Step 2. Synthesis of (\pm)-(3R,4R)-1-tert-butyl 3-ethyl 4-(trifluoromethyl)pyrrolidine-1,3dicarboxylate (C165). To a solution of compound $\mathbf{C 1 6 4}$ ($2.0 \mathrm{~g}, 6.6 \mathrm{mmol}$) and dit-t-butyl dicarbonate ($2.3 \mathrm{~mL}, 9.97 \mathrm{mmol}$) in $\mathrm{EtOH}(30 \mathrm{~mL})$ was added palladium hydroxide on carbon $(600 \mathrm{mg})$ and the mixture was stirred under a hydrogen atmosphere (1 atm) for about 16 h . The mixture was filtered and the filtrate was concentrated. The residue was purified by chromatography to provide the title compound C165. Yield: 1.8 g (87%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d ${ }_{6}$) $\delta 4.13(q, 2 H), 3.60-3.68(m, 2 H), 3.43-3.59(m, 2 H), 3.25-3.39(m, 2 H), 1.39$ (s, 9 H$), 1.19(\mathrm{t}, 1 \mathrm{H})$.
[0581] Step 3. Synthesis of (\pm)-(3R,4R)-tert-butyl 3-(hydroxymethyl)-4-
(trifluoromethyl)pyrrolidine-1-carboxylate (L122). A solution of compound $\mathbf{C 1 6 5}$ (1.8 g, 5.8 mmol) in THF (20 mL) was cooled to about $0^{\circ} \mathrm{C}$ and lithium borohydride ($630 \mathrm{mg}, 29 \mathrm{mmol}$) was added in portions. The mixture was heated under reflux for about 16 hours. It was then cooled to about $25{ }^{\circ} \mathrm{C}$ and diluted with EtOAc (50 mL). The EtOAc extract was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound L122. Yield: $1.3 \mathrm{~g}(83 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, dmso-d ${ }_{6}$) $\delta 4.95(\mathrm{t}, 1 \mathrm{H}), 3.55(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.33-3.46(\mathrm{~m}, 4 \mathrm{H}), 3.14-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.02$ (br. s, 1 H), 2.44 (br. s, 1 H), 1.39 (s, 9 H).

Preparation 74: (3S,4S,5S)-3,4-d 2 -4-ethyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L123)

[0582]

[0583] Step 1. Synthesis of (S)-7-ethyl-6-fluoro-3.3-dimethyl-1,7a-dihydropyrrolo[1,2-c]oxazol-5(3H)-one (C172). A solution of compound C62 (2.00 g, 9.9 mmol) and diphenyl diselenide $(3.32 \mathrm{~g}, 10.4 \mathrm{mmol})$ in THF (40 mL) was treated with lithium hexamethyldisilazide ($1 \mathrm{M}, 10.4$ mL) at about $0{ }^{\circ} \mathrm{C}$. The mixture was kept at about $0{ }^{\circ} \mathrm{C}$ for about 30 min , then was warmed to about $25^{\circ} \mathrm{C}$ for about 3 h . Water and EtOAc were added and the phases were separated. The aqueous phase was extracted with EtOAc, and the combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was dissolved in DCM (100 mL) and pyridine ($5.1 \mathrm{~mL}, 63 \mathrm{mmol}$) and was treated with hydrogen peroxide ($30 \%, 4.8 \mathrm{~mL}, 47 \mathrm{mmol}$) at about 0 ${ }^{\circ} \mathrm{C}$. The mixture was stirred at about $0{ }^{\circ} \mathrm{C}$ for about 30 min , then allowed to warm to about 25 ${ }^{\circ} \mathrm{C}$ for about 2 h . The mixture was washed with saturated aqueous $\mathrm{NaHCO}_{3}, 1 \mathrm{M} \mathrm{NaOH}$ (twice), water, and brine. The DCM extract was dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography to provide the title compound C172. Yield: 1.56 g (55\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.36(\mathrm{dt}, 1 \mathrm{H}), 4.21(\mathrm{dd}, 1 \mathrm{H}), 3.27-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.31$ $2.50(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, 3 \mathrm{H})$.
[0584] Step 2. Synthesis of (3S,4S,5S)-3,4-d \mathbf{d}_{2}-4-ethyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2one (L123). A solution of compound $\mathbf{C 1 7 2}$ ($1.20 \mathrm{~g}, 6.0 \mathrm{mmol}$) in ethanol- $\mathrm{d}_{1}(50 \mathrm{~mL})$ was treated with a rhodium on carbon catalyst $(5 \mathrm{mg})$ and stirred under a deuterium atmosphere at a pressure of 1 atmosphere and a temperature of about $20^{\circ} \mathrm{C}$ for about 2 h . The mixture was filtered and concentrated. The residue was purified by chromatography to provide the title compound L123. Yield: $250 \mathrm{mg}(25 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02$ (br. s., 1 H), 3.72 $3.82(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{t}, 1 \mathrm{H}), 1.59-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.57(\mathrm{~m}, 1 \mathrm{H})$,

$1.06(\mathrm{t}, 3 \mathrm{H})$.

Preparation 75: (3R,4R,5S)-3-fluoro-4-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L124)

[0585] Step 1. Synthesis of (3R,4R,5S)-3-fluoro-4-(fluoromethyl)-5-(hydroxymethyl)pyrrolidin-2-one (L124). To a stirred solution of compound C159 ($70 \mathrm{mg}, 0.34 \mathrm{mmol}$) in 4 mL of acetonitrile and 1 mL of water was added TFA ($3 \mathrm{uL}, 0.03 \mathrm{mmol}$). The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to $25^{\circ} \mathrm{C}$ and concentrated to provide the title compound L124. Yield: $69 \mathrm{mg}(100 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.07$ (dd, 1 H) 4.89-4.80 (m, 3H), 4.79-4.67 (m, 1H), 3.76 (td, 1H), 3.67-3.58(m, 2H), 3.13-2.92 (m, 1 H). ${ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-193.07, -226.18.

Preparation 76: 4-(hydroxymethyl)-5-azaspiro[2.4]heptan-6-one (L125)

[0587] Step 1. Synthesis of ethyl 2-cyclopropylideneacetate (C180). To a stirred solution of 1-ethoxy-1-[(trimethylsilyl)oxy]-cyclopropane (CAS 27374-25-0, $10 \mathrm{~g}, 57 \mathrm{mmol}$) in toluene (50 mL) was added (carbethoxymethylene)triphenylphosphorane (CAS 1099-45-2, $26 \mathrm{~g}, 74 \mathrm{mmol}$) followed by benzoic acid ($0.91 \mathrm{~g}, 7.5 \mathrm{mmol}$) at about $25^{\circ} \mathrm{C}$. The mixture was heated overnight at about $90^{\circ} \mathrm{C}$, then cooled and concentrated. The residue was purified by chromatography to provide the title compound $\mathbf{C 1 8 0}$. Yield: $3.2 \mathrm{~g} \mathrm{(44} \mathrm{\%)}.{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.22$ (s, 1 $\mathrm{H}), 4.14(\mathrm{q}, 2 \mathrm{H}), 1.40-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}), 1.20-1.24(\mathrm{~m}, 2 \mathrm{H})$.
[0588] Step 2. Synthesis of ethyl 2-(1-(nitromethyl)cyclopropyl)acetate (C181). A solution of compound C180 ($2.3 \mathrm{~g}, 18 \mathrm{mmol}$), nitromethane ($4.90 \mathrm{~mL}, 91 \mathrm{mmol}$) and DBU ($2.73 \mathrm{~mL}, 18$ mmol) in $\mathrm{MeCN}(50 \mathrm{~mL})$ was heated overnight at about $60^{\circ} \mathrm{C}$. The mixture was cooled, diluted with EtOAc, and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The EtOAc was separated and the aqueous phase was extracted with EtOAc. The combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide the title compound C181. Yield: $1.7 \mathrm{~g}(50 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.41$ (s, 2 $\mathrm{H}), 4.15(\mathrm{q}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H}), 0.80-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.74(\mathrm{~m}, 2 \mathrm{H})$.
[0589] Step 3. Synthesis of ethyl 2-(1-(2-hydroxy-1-nitroethyl)cyclopropyl)acetate (C182). A
solution of compound C181 ($2.5 \mathrm{~g}, 13 \mathrm{mmol}$), paraformaldehyde ($0.802 \mathrm{~g}, 26 \mathrm{mmol}$) and potassium fluoride ($78 \mathrm{mg}, 1.3 \mathrm{mmol}$) in 2-propanol (30 mL) was stirred for about 36 h at about $25^{\circ} \mathrm{C}$ and then concentrated. The residue was purified by chromatography to provide the title compound C182. Yield $1.1 \mathrm{~g}(38 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.14(\mathrm{q}, 2 \mathrm{H}), 4.03-4.10(\mathrm{~m}$, 2 H), 3.92-3.96(m, 1 H), 3.16-3.20(m, 1 H$), 2.86(\mathrm{~d}, 1 \mathrm{H}), 2.23(\mathrm{~d}, 1 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}), 0.90-$ $0.99(\mathrm{~m}, 2 \mathrm{H}), 0.79-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.68(\mathrm{~m}, 1 \mathrm{H})$.
[0590] Step 4. Synthesis of 4-(hydroxymethyl)-5-azaspiro[2.4]heptan-6-one (L125) To a solution of compound C182 ($600 \mathrm{mg}, 2.7 \mathrm{mmol}$) in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added platinum dioxide $(60 \mathrm{mg})$ and the mixture was stirred under a hydrogen atmosphere (1 atm) for about 20 h at about $25^{\circ} \mathrm{C}$. The mixture was filtered and the filtrate was heated at about $80^{\circ} \mathrm{C}$ for about 24 h , then concentrated. The residue was purified by chromatography to provide the title compound L125. Yield: $220 \mathrm{mg}(56 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}^{-d_{6}}$) $\delta 7.70$ (br. s., 1 H), 4.66 (t, 1 H), $3.25-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{t}, 1 \mathrm{H}), 2.39(\mathrm{~d}, 1 \mathrm{H}), 1.89(\mathrm{~d}, 1 \mathrm{H}), 0.73-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.40-0.61$ ($\mathrm{m}, 3 \mathrm{H}$).

Preparation 76: 1-\{[(2R,3R,4S)-3-ethyl-4-fluoro-3-hydroxy-5-oxopyrrolidin-2-yll]methoxy\}-7-methoxyisoquinoline-6-carboxamide

[0591]

[0592] Step 1. Sterile medium was prepared using deionized water containing dextrose (10 $\mathrm{g} / \mathrm{L})$, glycerol ($20 \mathrm{~g} / \mathrm{L}$), Difco Yeast Extract ($5 \mathrm{~g} / \mathrm{L}$), Nutrisoy flour ($5 \mathrm{~g} / \mathrm{L}$), $\mathrm{NaCl}(5 \mathrm{~g} / \mathrm{L}), \mathrm{K}_{2} \mathrm{HPO}_{4}$ ($5 \mathrm{~g} / \mathrm{L}$), P2000 ($1 \mathrm{ml} / \mathrm{L}$), pH adjusted to 7.0 prior to autoclaving to sterilize.
[0593] Step 2. Streptomyces spectabilis ATCC 27465 was grown in 25 mL of this medium which had been added to each of three sterile Nalgene flasks (250 mL , baffled, vented closures) on a $2^{\prime \prime}$ throw rotary shaker at $30^{\circ} \mathrm{C}, 210 \mathrm{rpm}$, for two days. The contents of each flask were aseptically transferred to each of three sterile 2L Nalgene flasks (baffled, vented closures) containing 400 mL of the same sterile medium then incubated as above. After two days, 16 mL of a solution of 1 -\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide in DMSO ($5 \mathrm{mg} / \mathrm{mL}$) was added to each flask. Incubation continued as above; flasks were aseptically sampled every 24 hours. After three days, contents of the flasks were combined and extracted twice with an equal volume of ethyl acetate. The
organic phases were combined, dried with anhydrous sodium sulfate then concentrated under vacuum to yield 3.7 g of brown oil.
[0594] Step 3. High performance liquid preparative chromatography using a 0.1% trifluoroacetic acid in water with acetonitrile gradient on a Phenomenex Luna phenyl-hexyl column was utilized to isolate compounds from the above preparation. Time based fraction collection was used to collect all peaks of interest. Each sample was dried and tested by LCMS to confirm retention time identification and the parent ion of $\mathrm{m} / \mathrm{z}=378$ daltons. 1-\{[(2R,3R,4S)-3-ethyl-4-fluoro-3-hydroxy-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline6 -carboxamide (Reference Example 196): ${ }^{1} \mathrm{H}$ NMR (600 MHz , dmso- d_{6}) $\delta 8.85$ (s, 1 H), 8.17 (s, 1H), 7.91 (d, 1H), 7.85 (br. s, 1H), 7.71 (s, 2H), 7.45 (d, 1H), 4.58 (dd, 1H), 4.48 (d, 1H), $4.30(\mathrm{dd}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{dd}, 1 \mathrm{H}), 1.72(\mathrm{q}, 2 \mathrm{H}), 1.01(\mathrm{t}, 3 \mathrm{H})$.
[0595] The following two examples were also prepared:
1-\{[(3S,4S)-3-ethyl-4-fluoro-2-hydroxy-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide (Reference Example 197), as a mixture of diastereomers: Major diastereomer: ${ }^{1} \mathrm{H}$ NMR (600 MHz , dmso-d d_{6}) 9.25 (s, 1H), 8.18 (s, 1H), 7.92 (d, 1H), 7.6 (s, 1H), 7.72 (s, 1 H), 7.6 ($\mathrm{s}, 1 \mathrm{H}$), $7.54(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{dd}, 1 \mathrm{H}), 4.5(\mathrm{dd}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}$, 1H), 0.99 (t, 3H). Minor diastereomer ${ }^{1} \mathrm{H}$ NMR (600 MHz , dmso- d_{6}) $\delta 9.18$ ($\mathrm{s}, 1 \mathrm{H}$), 8.16 (s , $1 \mathrm{H}), 7.91$ (d, 1H), 7.83 (s, 1H), 7.71 (s, 1H), 7.69 (s, 1H), 7.44 (s, 1H), 5.14 (dd, 1H), 4.5 (dd, $2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, 3 \mathrm{H})$.

1-\{[(2S,3R,4S)-4-fluoro-3-(1-hydroxyethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide (Reference Example 198): ${ }^{1} \mathrm{H}$ NMR (600 MHz , dmso- d_{6}) δ 9.0 (s, 1H), 8.17 (s, 1H), 7.91 (d, J 1H), 7.86 (br s, 1H), 7.76 (s, 1H), 7.71 (bs, 1H), 7.44 (d, $1 \mathrm{H}), 4.94(\mathrm{~d}, 1 \mathrm{H}), 4.83(\mathrm{dd}, 1 \mathrm{H}), 4.60(\mathrm{dd}, 1 \mathrm{H}), 4.26(\mathrm{dd}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H})$, $3.916(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, 3 \mathrm{H})$.

METHODS

[0596] The Methods set forth hereinbelow are intended only to exemplify various aspects and embodiments of the invention, and are not intended to limit the scope of the claimed invention in any way. It will be apparent to one skilled in the art that the Methods described below may be modified in various ways, for example by changing reaction solvents or volumes, by substituting similar reagents to those described, or by substituting similar catalysts to those described.

Method 1

[0597] A reactant B such as tert-butyl 4-(hydroxymethyl)piperidine-1-carboxylate (CAS 123855-51-6, commercially available, $28 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved in 0.5 mL of DMSO and a reactant A such as 1-chloro-7-isopropoxyisoquinoline-6-carbonitrile (P2) (0.2 M in DMSO, $0.5 \mathrm{~mL}, 0.10 \mathrm{mmol}$) was added. The mixture was then treated with potassium tertbutoxide (1 M in THF, $0.13 \mathrm{~mL}, 0.13 \mathrm{mmol}$). The reaction mixture was heated at about $50^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$ for about 2 to 16 hours until the reaction was judged to be complete. The mixture was then cooled to about $25^{\circ} \mathrm{C}$ and filtered and the filtrate was concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.
Method 2

[0598] To a solution of a reactant B such as (3S,5S)-3-fluoro-5-(hydroxymethyl)-3-methyl-pyrrolidin-2-one (L10) ($314 \mathrm{mg}, 2.1 \mathrm{mmol}$) in 15 mL of DMF was added sodium hydride (60% in mineral oil, $342 \mathrm{mg}, 8.6 \mathrm{mmol}$) at about $25^{\circ} \mathrm{C}$ and the mixture was stirred for about 15 minutes. A reactant A such as 1-chloro-7-methoxyisoquinoline-6-carbonitrile (P1) ($513 \mathrm{mg}, 2.3$ mmol) was added and stirring was continued for about 16 h . The reaction was quenched with EtOAc and water at about $0^{\circ} \mathrm{C}$. The mixture was extracted with EtOAc and the EtOAc was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 3

[0599] A reactant B such as (3R,4S,5S)-5-(hydroxymethyl)-3-methoxy-4-methylpyrrolidin-2one (L65) ($105 \mathrm{mg}, 0.66 \mathrm{mmol}$) and a reactant \mathbf{A} such as 1 -chloro- 7 -methoxyisoquinoline-6carbonitrile (P1) ($120 \mathrm{mg}, 0.55 \mathrm{mmol}$) were stirred in DMF (15 mL) at about $25^{\circ} \mathrm{C}$. A solution of potassium hexamethyldisilazide (1 M in THF, 1.37 mL) was added dropwise to the reaction mixture. After the addition of potassium hexamethyldisilazide was complete, the reaction was stirred for approximately an additional 50 minutes. The reaction mixture was then poured into a mixture of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and EtOAc with vigorous stirring. The EtOAc was separated, washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.
Method 4

[0600] A reactant B such as tert-butyl 4-hydroxypiperidine-1-carboxylate (CAS 109384-19-2, commercially available, $50 \mathrm{mg}, 0.2 \mathrm{mmol}$), a reactant \mathbf{A} such as 4 -chloro-6-isopropoxy-quinoline-7-carboxamide (P4) ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$), and cesium carbonate ($300 \mathrm{mg}, 0.9 \mathrm{mmol}$) were combined in a small microwave vessel and diluted with 1 mL of DMSO. The vessel was capped and heated in a microwave reactor at about $150^{\circ} \mathrm{C}$ for about 15 minutes. The reaction mixture was then diluted with EtOAc and water and the phases were separated. The aqueous phase was extracted three times with EtOAc and the combined EtOAc extracts were dried and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC. Potassium carbonate may be used in place of cesium carbonate in some instances.

Method 5

[0601] Triphenylphosphine ($1.59 \mathrm{~g}, 5.9 \mathrm{mmol}$) was added to a suspension of a reactant B such as (4R,5S)-5-(hydroxymethyl)-4-methylpyrrolidin-2-one (L36) ($393 \mathrm{mg}, 2 \mathrm{mmol}$) and a reactant A such as 5-hydroxy-3-methoxy-2-naphthamide (P5) ($430 \mathrm{mg}, 2 \mathrm{mmol}$) in 10 mL of THF. Diisopropyl azodicarboxylate ($0.84 \mathrm{~g}, 3.9 \mathrm{mmol}$) was added dropwise. The mixture was stirred
at about $20^{\circ} \mathrm{C}$ for 6 days and then concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.
Method 6

[0602] A solution of a reactant B such as (5S)-5-(hydroxymethyl)-3-methoxypyrrolidin-2-one (L25) ($264 \mathrm{mg}, 2 \mathrm{mmol}$) in 15 mL of DCM was treated with p-toluenesulfonyl chloride (760 mg , 4 mmol) and DMAP ($512 \mathrm{mg}, 4 \mathrm{mmol}$). The reaction mixture was stirred for about 12 h at about $25{ }^{\circ} \mathrm{C}$. The mixture was washed with water (15 mL). The DCM was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography to give 312 $\mathrm{mg}(52 \%)$ of the intermediate p -toluenesulfonate ester of L 25 .
[0603] To a solution of the intermediate p-toluenesulfonate ester of L25 prepared above (166 $\mathrm{mg}, 0.55 \mathrm{mmol}$) in dry DMF (5 mL) was added cesium carbonate ($357 \mathrm{mg}, 1.1 \mathrm{mmol}$) and and a reactant A such as 5 -hydroxy-3-methoxy-2-naphthamide (P5) ($132 \mathrm{mg}, 0.6 \mathrm{mmol}$). The mixture was stirred for about 2 h at about $65^{\circ} \mathrm{C}$. The DMF was evaporated, and the residue was stirred with EtOAc and the mixture was filtered. The filter cake was washed with water (5 $m L \times 2$). The filter cake was dried under vacuum, treated with EtOAc and filtered. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 7

[0604] A solution of a reactant such as tert-butyl 4-(((6-cyano-7-isopropoxyisoquinolin-1-yl)oxy)methyl)-piperidine-1-carboxylate ($42 \mathrm{mg}, 0.10 \mathrm{mmol}$) in DMSO (1 mL) was treated with powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(41 \mathrm{mg}, 0.30 \mathrm{mmol})$ followed by 30% hydrogen peroxide solution (0.2 mL , 1.8 mmol). The mixture was heated at about $40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ for about about 15 minutes to 16 hours until the reaction was judged to be complete. The mixture was then cooled to about 25 ${ }^{\circ} \mathrm{C}$ and filtered and the filtrate was concentrated. The residue may be used directly for
subsequent work, or it may be purified by chromatography or HPLC. Sodium hydroxide or potassium hydroxide may be substituted for $\mathrm{K}_{2} \mathrm{CO}_{3}$ in some cases

Method 8

[0605] A solution of a reactant such as 1-(((2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl)methoxy)-7-methoxyisoquinoline-6-carbonitrile ($200 \mathrm{mg}, 0.5 \mathrm{mmol}$) in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(1.5 \mathrm{~mL})$ was warmed to about $55^{\circ} \mathrm{C}$ for about two hours, then cooled to about $20^{\circ} \mathrm{C}$. The reaction mixture was added dropwise with vigorous stirring to 7.3 mL of ice cold concentrated ammonium hydroxide with cooling in ice. The precipitated solid was filtered and washed with water, heptane, ether, and dried under vacuum. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 9

[0606] A solution of a reactant such as 1-(((2S,4R)-4-((benzyloxy)methyl)-4-fluoro-5-oxopyrrolidin-2-yl)methoxy)-7-isopropoxyisoquinoline-6-carboxamide ($20 \mathrm{mg}, 0.44 \mathrm{mmol}$) in $\mathrm{MeOH}(0.46 \mathrm{~mL})$ was treated with a palladium on carbon catalyst (5 mg) and stirred under a hydrogen atmosphere at a pressure of about 1 to 5 atmospheres and a temperature of about $20^{\circ} \mathrm{C}$ to $65{ }^{\circ} \mathrm{C}$. The mixture was then cooled to about $20^{\circ} \mathrm{C}$ and filtered and the filtrate was concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 10

[0607] A solution of a reactant such as tert-butyl 4-(((6-carbamoyl-7-isopropoxyisoquinolin-1-yl)oxy)methyl)piperidine-1-carboxylate ($44 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 1.0 to 2.0 mL of a suitable solvent such as DCM was treated with either TFA (0.10 mL) or hydrogen chloride (4 M in dioxane, 0.4 mL). The reaction mixture was was heated at about $30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ for about 1 to 4 hours until the reaction was judged to be complete. The mixture was then cooled to about $25^{\circ} \mathrm{C}$ and concentrated under vacuum and purified using by chromatography or HPLC.

Method 11

[0608] A solution of a reactant such as 7-isopropoxy-1-(piperidin-4-ylmethoxy)isoquinoline-6carboxamide ($41 \mathrm{mg}, 0.12 \mathrm{mmol}$) in DMF (1.0 mL) was treated with cyanoacetic acid (11 mg , $0.12 \mathrm{mmol})$, followed by HATU ($47 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(35 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$. The reaction mixture was was heated at about $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ for about 4 to 16 hours until the reaction was judged to be complete. The mixture was then cooled to about $25^{\circ} \mathrm{C}$ and concentrated under vacuum and purified by chromatography or HPLC.
Method 12

[0609] A solution of a reactant such as 1-(((2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl)methoxy)-7-methoxyisoquinoline-6-carboxamide ($500 \mathrm{mg}, 1.4 \mathrm{mmol}$) in DMF (15 mL) was treated with SelectFluor® ($511 \mathrm{mg}, 1.4 \mathrm{mmol}$) and heated at about $55^{\circ} \mathrm{C}$ for about 24 h . The mixture was concentrated, xylene was added, and the mixture was concentrated again. The concentration with xylene was repeated twice more, and the residue was stirred with EtOAc.

The precipitated solid was filtered and washed with EtOAc, and the EtOAc filtrates were combined, concentrated, and treated with EtOAc and water. The EtOAc was separated, concentrated under vacuum and purified by chromatography or HPLC.

Method 13

[0610] A solution of a reactant such as (S)-methyl 3-methoxy-5-((5-oxopyrrolidin-2-yl)methoxy)-2-naphthoate ($366 \mathrm{mg}, 1.1 \mathrm{mmol}$) in THF (25 mL) and water (25 mL) was treated with lithium hydroxide ($272 \mathrm{mg}, 11.1 \mathrm{mmol}$). The resulting mixture was stirred at about $25{ }^{\circ} \mathrm{C}$ for about 1 hour, then the mixture was partially concentrated under vacuum to remove the THF. The remaining solution was acidified with 10% aqueous citric acid, and the resulting precipitate was collected by filtration, washed with water and dried. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.
Method 14

[0611] A solution of a reactant such as (S)-methyl 3-methoxy-5-((5-oxopyrrolidin-2$y l) m e t h o x y)$-2-naphthoate ($385 \mathrm{mg}, 1.2 \mathrm{mmol}$) in THF (25 mL) was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.26 \mathrm{~mL}$, 1.8 mmol) and heated under reflux. The mixture was cooled to about $25^{\circ} \mathrm{C}$, then BOP reagent (CAS 56602-33-6, $709 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added. The mixture was stirred for about 25 min until almost all of the BOP reagent had dissolved, then ammonium hydroxide ($15 \mathrm{M}, 1.5 \mathrm{~mL}$) was added. After about 45 min , the mixture was filtered and the filtrate was concentrated. The residue was treated with water, and the resulting precipitate was collected by filtration, washed with water and dried. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 15

[0612] A solution of a reactant such as (S)-7-isopropoxy-1-((5-oxopyrrolidin-2-yl)methoxy)-isoquinoline-6-carbonitrile ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$) in acetonitrile (6.1 mL) was with N bromosuccinimide ($55 \mathrm{mg}, 0.3 \mathrm{mmol}$) was heated at about $60^{\circ} \mathrm{C}$ for about 1.5 h . An additional portion of N -bromosuccinimide (30 mg 0.14 mmol) was added. After about 30 min , the mixture was cooled to about $25^{\circ} \mathrm{C}$ and diluted with 10 mL of EtOAc. The EtOAc extract was washed with saturated aqueous sodium thiosulfate (10 mL). The aqueous phase was back-extracted with EtOAc (10 mL), and the combined EtOAc extracts were washed with saturated aqueous sodium thiosulfate (15 mL), brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 16

[0613] A solution of a reactant such as (S)-4-bromo-7-isopropoxy-1-((5-oxopyrrolidin-2-yl)methoxy)isoquinoline-6-carbonitrile ($54 \mathrm{mg}, 0.1 \mathrm{mmol}$), palladium bis(triphenylphosphine)dichloride ($19 \mathrm{mg}, 0.03 \mathrm{mmol}$), potassium methyltrifluoroborate ($25 \mathrm{mg}, 0.2 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(55 \mathrm{mg}, 0.4 \mathrm{mmol})$ in acetonitrile (0.75 mL) and water (0.5 mL) was heated in a microwave reactor at about $125{ }^{\circ} \mathrm{C}$ for about 30 min . The mixture was diluted with EtOAc (10 mL) and washed brine. The aqueous phase was back-extracted with EtOAc (10 mL) and the combined EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 17

[0614] A solution of a reactant such as 7-isopropoxy-1-(((3aS,6R,6aR)-1-methoxy-2-
oxooctahydrocyclopenta[b]pyrrol-6-yl)oxy)isoquinoline-6-carboxamide ($42 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 3.25 mL of acetonitrile and 0.25 mL of water was treated with molybdenum hexacarbonyl (34 $\mathrm{mg}, 0.13 \mathrm{mmol}$). The reaction was heated at reflux for about 18 h . The mixture cooled to about $25^{\circ} \mathrm{C}$, diluted with MeOH , filtered and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 18

[0615] A solution of a reactant such as (\pm)-1-((1R,6S)-3-azabicyclo[4.1.0]heptan-1-ylmethoxy)-7-isopropoxyisoquinoline-6-carboxamide ($54 \mathrm{mg}, 0.15 \mathrm{mmol}$) and di-t-butyl dicarbonate ($37 \mathrm{mg}, 0.17 \mathrm{mmol}$) in THF (2 mL) and water (2 mL) was stirred for about 45 min at about $25^{\circ} \mathrm{C}$, then diluted with EtOAc and water. The EtOAc was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 19

[0616] A solution of a reactant such as (S)-7-isopropoxy-1-((5-oxopyrrolidin-2-yl)methoxy)-isoquinoline- 6 -carboxamide ($272 \mathrm{mg}, 0.80 \mathrm{mmol}$) in 1,4 -dioxane (20 mL) was treated with 5 mL of cold $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The mixture was heated at about $55^{\circ} \mathrm{C}$ for about 24 h , then cooled to about $25{ }^{\circ} \mathrm{C}$ and allowed to remain for about 18 h . The dioxane was separated and the aqueous phase was neutralized to about pH 5 with K 2 CO 3 , then extracted repeatedly with EtOAc. The combined dioxane and EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 20

[0617] A solution of a reactant such as (S)-5-(((6-bromo-7-(trifluoromethoxy)isoquinolin-1-yl)oxy)methyl)pyrrolidin-2-one ($78 \mathrm{mg}, 0.19 \mathrm{mmol}$) and zinc cyanide ($46 \mathrm{mg}, 0.38 \mathrm{mmol}$) in DMF (2.5 mL) was treated with tetrakis(triphenylphosphine)palladium (0) ($45 \mathrm{mg}, 0.04 \mathrm{mmol}$). The mixture was heated for about 20 min at about $150^{\circ} \mathrm{C}$, then diluted with ice water (35 mL) and filtered. The precipitate was dissolved in DCM, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 21

[0618] A solution of a reactant such as $1-(((1 \mathrm{~S}, 3 \mathrm{aS}, 6 \mathrm{aR})-5$-benzyl-3-oxooctahydropyrrolo[3,4-c]pyrrol-1-yl)methoxy)-7-isopropoxyisoquinoline-6-carboxamide ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$), aqueous formaldehyde solution $(37 \%, 6 \mathrm{~mL})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was treated with a palladium on carbon catalyst (5 mg) and stirred under a hydrogen atmosphere at a pressure of 1 atmosphere and a temperature of about $20^{\circ} \mathrm{C}$ for about 2 h . The mixture was filtered and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

Method 22

[0619] A solution of a reactant such as (S)-4-bromo-7-isopropoxy-1-((5-oxopyrrolidin-2-yl)methoxy)isoquinoline-6-carbonitrile ($1.0 \mathrm{~g}, 2.4 \mathrm{mmol}$) in 1,4-dioxane (20 mL) was treated with freshly dried potassium acetate ($729 \mathrm{mg}, 7.4 \mathrm{mmol}$), bis(pinacolato diboron) ($880 \mathrm{mg}, 3.5$ $\mathrm{mmol})$, and tetrakis(triphenylphosphine)palladium (0) ($143 \mathrm{mg}, 0.12 \mathrm{mmol}$). The mixture was
heated at about $100^{\circ} \mathrm{C}$ for about 16 h . The mixture was cooled to about $25^{\circ} \mathrm{C}$, filtered, and concentrated. The residue may be used directly for subsequent work, or it may be purified by chromatography or HPLC.

EXAMPLES

1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide

Step 1. Synthesis of (7R,7aS)-7-ethyl-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)one (C54).

[0620] A suspension of copper bromide dimethyl sulfide complex ($833 \mathrm{~g}, 4.05 \mathrm{~mol}$) in diethyl ether (6 L) was cooled to about -20 to $-30^{\circ} \mathrm{C}$, and ethylmagnesium bromide solution (2 M in THF, $4.05 \mathrm{~L}, 8$ moles) was added over about 1 hour allowing the temperature to rise to about $-3^{\circ} \mathrm{C}$. After stirring for about 10 min the slurry was cooled to about $-70^{\circ} \mathrm{C}$, and $\mathrm{TMSCI}(382$ $\mathrm{mL}, 3.04 \mathrm{~mol}$) was added drop wise over about 1 h . After about 50 min , compound P20 (310 g , 2.02 mol) in 500 mL of MTBE was added to the mixture drop wise over about 2 hours. The temperature was maintained at about -72 to $-68{ }^{\circ} \mathrm{C}$ during the addition. The reaction mixture was stirred at about $-72{ }^{\circ} \mathrm{C}$ for about 4 hours, after which time it was warmed up to about -40 ${ }^{\circ} \mathrm{C}$ over about 16 hours. The reaction mixture was quenched with half-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~L})$. After a phase separation, the solvent phase was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The reaction was performed six times in total and the combined crude products were purified by silica chromatography to provide the title compound C54. Yield $1.4 \mathrm{~kg}\left(63 \%\right.$, based on 12.1 mol of P20). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.34$ ($\mathrm{dt}, 1$ H), 3.90 (dd, 1 H), 3.72 (dd, 1 H), 2.91 (dd, 1 H), 2.31 (dd, 1 H), 2.25 (m, 1 H), 1.65 (s, 3 H), $1.52(\mathrm{~d}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H})$.

Step 2. Synthesis of ($6 \mathrm{~S}, 7 \mathrm{~S}, 7 \mathrm{aS}$)-7-ethyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C61)

[0621] A solution of diisopropylamine ($184 \mathrm{~mL}, 1.31 \mathrm{~mol}$) in THF (1.65 L) was cooled to about -20 to- $30^{\circ} \mathrm{C}$ and treated with n-butyllithium solution (2.5 M in hexanes, $491 \mathrm{~mL}, 1.23 \mathrm{~mol}$) over about 10 minutes, allowing the temperature to rise to about $-20^{\circ} \mathrm{C}$. After stirring for about 10 minutes, the solution was cooled to about $-70^{\circ} \mathrm{C}$, and a solution of compound $\mathbf{C 5 4}$ (235 g , 1.17 mol) in THF (588 mL) was added drop wise over about 30 minutes. The temperature was maintained at about -70 to $-60^{\circ} \mathrm{C}$ during the addition, and after stirring for about 30 minutes at this temperature, a solution of NFSI ($387 \mathrm{~g}, 1.23 \mathrm{~mol}$) in 1.2 L THF was added over about 80
minutes at about -70 to $-72{ }^{\circ} \mathrm{C}$. After stirring for about 1 h at about -70 to $-60^{\circ} \mathrm{C}$, the reaction was allowed to warm to about $20^{\circ} \mathrm{C}$ overnight. The precipitated solids were filtered and washed with THF (1 L). The filtrate was concentrated to an oily residue. This entire reaction was conducted three times at this scale and once using 500 g of compound C61. The combined crude products were purified by silica chromatography to provide the title compound C61. Yield: $350 \mathrm{~g}\left(27 \%\right.$ based on 6.6 mol of C54). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23$ (dd, 1 H), 3.97-4.11(m, 2 H), 3.68-3.77(m, 1 H), 2.62-2.76(m, 1 H), 1.69-1.79(m, 1 H), $1.68(\mathrm{~s}, 3$ $\mathrm{H}), 1.45-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.42(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -199.61. There was also obtained (6R,7S,7aS)-7-ethyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one C62. Yield: 700 g (54% from 6.6 mol of C54). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 4.78$ (dd, 1 H), 4.40 (dt, 1 H), 3.93 (dd, 1 H), 3.56 (dd, 1 H), 2.30-2.46 (m, 1 H), $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{ddd}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.48(\mathrm{~m}, 1 \mathrm{H}), 0.97$ (t, 3 H). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ-185.41.
[0622] Step 3. Epimerization of (6R,7S,7aS)-7-ethyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one (C62). To a solution of diisopropylamine $(310 \mathrm{~g}, 3.07 \mathrm{~mol})$ in toluene (4 L) was added n -butyllithium ($2.5 \mathrm{M}, 1.22 \mathrm{~L}, 3.05 \mathrm{~mol}$) dropwise at $-30^{\circ} \mathrm{C}$. The mixture was maintained at $-30^{\circ} \mathrm{C}$ for an additional 30 min , then was added dropwise to a solution of compound $\mathbf{C 6 2}(556 \mathrm{~g}, 2.77 \mathrm{~mol})$ in toluene (2 L) at $-78^{\circ} \mathrm{C}$ over 2 h . After the addition was complete, the mixture was kept at $-78{ }^{\circ} \mathrm{C}$ for 30 min more before a solution of BHT ($1.26 \mathrm{~kg}, 5.73 \mathrm{~mol}$) in toluene (5 L) was added dropwise over 3 h , keeping the internal temperature below $-65^{\circ} \mathrm{C}$. After the addition was complete, the mixture was kept at $-78^{\circ} \mathrm{C}$ for 30 min . The mixture was warmed to $25^{\circ} \mathrm{C}$, water was added, and the toluene was separated. The aqueous layer was extracted with DCM twice, the combined toluene and DCM extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by chromatography to provide compound C61. Yield: 250 g (45\%). There was also recovered compound C62. Yield: 150 g (27%).

Step 4. Synthesis of ($3 \mathrm{~S}, 4 \mathrm{~S}, 5 \mathrm{~S}$)-4-ethyl-3-fluoro-5-(hydroxymethyl)pyrrolidin-2-one (L54).

[0623]

[0624] A solution of compound C61 (90 g, 0.45 mol$)$ in acetonitrile (450 mL) and water (45 mL) was treated with TFA ($6.8 \mathrm{~mL}, 90 \mathrm{mmol}$). The mixture was warmed to about $65^{\circ} \mathrm{C}$ over about 1 h , and held at that temperature for about 3 h . The mixture was then cooled and about 350 mL of solvent was distilled by rotary evaporation. The residue was diluted with acetonitrile (400
mL) and evaporated to dryness. Isopropyl acetate (250 mL) was added to the residue and the mixture was concentrated again. The residue was diluted with heptane (200 mL) and crystallization was induced by seeding. The precipitate was filtered in two crops to provide the title compound L54. Yield: $46 \mathrm{~g}(64 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59$ (br. s., 1 H), 4.80 (dd, 1 H), 3.69-3.83(m, 2 H), 3.52-3.64(m, 1 H), 3.48 (br. s, 1 H), 2.27-2.52 (m, 1 H), 1.57 $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{dt}, 1 \mathrm{H}), 1.04(\mathrm{t}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-198.72.

Step 5. Synthesis of 1-(((2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl)methoxy)-7 methoxyisoquinoline-6-carbonitrile (C171).

[0625]

[0626] A mixture of compound L54 ($8.00 \mathrm{~g}, 49.6 \mathrm{mmol}$) and compound P1 ($9.87 \mathrm{~g}, 45.1 \mathrm{mmol}$) were stirred in DMF (83 mL) and cooled to about $-10{ }^{\circ} \mathrm{C}$. A solution of potassium hexamethyldisilazide (1 M in $\mathrm{THF}, 99 \mathrm{~mL}, 99 \mathrm{mmol}$) was added to the reaction mixture over about 45 minutes, maintaining the internal reaction temperature at about about $-10^{\circ} \mathrm{C}$. After the addition of potassium hexamethyldisilazide was complete, the reaction was stirred at about $-10^{\circ} \mathrm{C}$ for approximately an additional 30 minutes. A solution of 24.9 g of sodium dihydrogen phosphate in 250 mL of water was prepared. The reaction mixture was then poured into 220 mL of this aqueous sodium dihydrogen phosphate solution and 250 mL of EtOAc with vigorous stirring. The reaction flask was rinsed with the remaining 30 mL of the aqueous sodium dihydrogen phosphate solution and the rinse was added to the EtOAc mixture. The EtOAc was separated. The aqueous mixture was extracted three times with EtOAc. The combined EtOAc extracts were dried over MgSO_{4}, filtered and concentrated. Xylene was added to the residue and the mixture was concentrated. Addition of xylene and subsequent evaporation was carried out two more times to provide the title compound C171. Yield: $15.37 \mathrm{~g}(90 \%) .{ }^{1} \mathrm{H}$ NMR $(400$ $\mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) $\delta 8.89$ (s, 1 H), 8.50 (s, 1 H), 7.98 (d, 1 H), 7.80 (s, 1 H), 7.41 (d, 1 H), 4.90 (dd, 1 H), 4.56 (dd, 1 H), 4.24 (dd, 1 H), 4.09 (dt, 1 H), 4.03 (s, 3 H), 2.62 (m, 1 H), 1.58 (m, 2 H), $1.02(\mathrm{t}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{dmso}^{-d_{6}}$) δ-199.18.

Step 6. Synthesis of 1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide (Example 296).

[0627] A mixture of compound C171 ($15.37 \mathrm{~g}, 44.7 \mathrm{mmol}$) and methanesulfonic acid (218 mL , 3.36 mol) was heated at about $60^{\circ} \mathrm{C}$ with stirring for about 26 hours. The mixture was then cooled to about $25^{\circ} \mathrm{C}$ and slowly added to 1 kg of crushed ice with stirring. During the addition, 150 g of additional ice was added so as to ensure that, at the conclusion of the addition, there was still ice remaining in the mixture. Ethyl acetate (1 L) was added. Ammonium hydroxide $(274 \mathrm{~mL})$ was then added slowly to the stirring biphasic mixture, along with with another 750 g of ice, until the pH of the mixture rose to about 8 . The mixture was then warmed to about $30^{\circ} \mathrm{C}$ to dissolve all of the solids present. The EtOAc was separated and the aqueous phase was extracted with EtOAc ($4 \times 100 \mathrm{~mL}$). The combined EtOAc extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated to provide the title compound. Yield 14.72 g (91\%). Recrystallization from EtOH afforded an analytically pure sample, mp $286{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{dmso}^{2} \mathrm{~d}_{6}\right) \delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}), 7.84$ (br. s., 1 H), 7.74 (s, 1 H), 7.69 (br. s., 1 H), 7.43 (d, 1 H), 4.91 (dd, 1 H), 4.54 (dd, 1 H), 4.26 (dd, 1 H), 4.09 (br. s., 1 H), $3.97(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (H decoupled, 376 MHz , dmso-d ${ }_{6}$) δ-199.26.
[0628] The following Reference Examples 1-295 and 297-379, were prepared similarly using the methods described above. The reactants A were prepared as described in this specification. The reactants B were either known compounds that were commercially available, or known compounds that were prepared as described in the cited references, or compounds prepared as described in this specification. For those examples characterized by HPLC retention time, the following HPLC conditions were used:

Method PF-AB01	Method PF-AB10	Method PF-CD05
Column Xbridge C18	Column Xbridge C18	Column Xbridge C18
$2.1 \times 50 \mathrm{~mm} 5 \mu \mathrm{~m}$	$2.1 \times 50 \mathrm{~mm} 5 \mu \mathrm{~m}$	$2.1 \times 50 \mathrm{~mm} 5 \mu \mathrm{~m}$
Temperature $50{ }^{\circ} \mathrm{C}$	Temperature $50{ }^{\circ} \mathrm{C}$	Temperature $50{ }^{\circ} \mathrm{C}$
Mobile Phase A 0.0375\% TFA in water	Mobile Phase A 0.0375\% TFA in water	Mobile Phase A 0.05\% $\mathrm{NH}_{4} \mathrm{OH}$ in water
Mobile Phase B 0.01875\%	Mobile Phase B 0.01875\%	Mobile Phase B 100\%
TFA in acetonitrile	TFA in acetonitrile	acetonitrile
Gradient - Initial 1\% B	Gradient - Initial 10\% B	Gradient - Initial 5\% B
Time 0.00 mins 1\% B	Time 0.00 mins 10\% B	Time 0.00 mins 5\% B
Time 0.60 mins 5\% B	Time 0.50 mins 10\% B	Time 0.50 mins 5\% B
Time 4.00 mins 100\% B	Time 4.00 mins 100\% B	Time 3.40 mins 100\% B
Time 4.30 mins 1\% B	Time 4.30 mins 10\% B	Time 4.20 mins 100\% B
Time 4.70 mins 1\% B	Time 4.70 mins 10\% B	Time 4.21 mins 5\% B
Flow rate $0.8 \mathrm{ml} / \mathrm{min}$	Flow rate $0.8 \mathrm{ml} / \mathrm{min}$	Time 4.70 mins 5\% B
Injection volume $2 \mu \mathrm{l}$	Injection volume $2 \mu \mathrm{l}$	Flow rate $0.8 \mathrm{ml} / \mathrm{min}$
		Injection volume $2 \mu \mathrm{l}$

Method PF-AB01	Method PF-AB10	Method PF-CDO5
Agilent 1200 HPLC/1956	Agilent 1200 HPLC/1956	Agilent 1200 HPLC/1956
MSD/SEDEX 75 ELSD	MSD/SEDEX 75 ELSD	MSD/SEDEX 75 ELSD
Ionization Mode API-ES	lonization Mode API-ES	Ionization Mode API-ES
Polarity - Positive	Polarity - Positive	Polarity - Positive

Table 1 (Example 296 is the compound of the invention; Examples 1-295 and 297-379 are Reference Examples)

Ex.	Structure	$\begin{gathered} \text { Reactant } \\ \text { A } \end{gathered}$	Reactant B	Source	Meth- ods	M ${ }^{+}$	Characterization
1		P4	$\begin{gathered} 95849 \\ -02-8 \end{gathered}$	commercial	1	316	$R \mathrm{t}=1.752 \mathrm{~min}$; method $\mathrm{PF}-\mathrm{AB01}$
2		P4	$\begin{gathered} 140695 \\ -84-7 \end{gathered}$	commercial	4, 10	344	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.95(\mathrm{~d}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.81$ (s, 1 H$), 7.52(\mathrm{~d}, 1 \mathrm{H}), 5.08(\mathrm{dt}, 1 \mathrm{H}), 4.55-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.43$ $4.55(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, 1 \mathrm{H}), 2.95-3.10$ (m, 2 H), 2.64 (td, 1 H), 2.00-2.20(m, 2H), 1.82-2.00(m, 1 H). 1.54-1.69 (m, 1H). $1.51(\mathrm{~d}, 6 \mathrm{H})$
3		P4	$\begin{gathered} 140695- \\ 85-8 \end{gathered}$	commercial	4, 10	344	$1 \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.59(\mathrm{~d}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.89$ $(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, 1 \mathrm{H}), 4.91(\mathrm{dt}, 1 \mathrm{H}), 4.18-4.26$ $(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.13$ $(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.08$ $(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, 6$ $\mathrm{H}), 1.36-1.47(\mathrm{~m}, 1 \mathrm{H})$
4		P4	$\begin{gathered} 123855- \\ 51-6 \end{gathered}$	commercial	4, 10	344	'H NMR $\left(600 \mathrm{MHz}\right.$, dmso-d $\left.\mathrm{d}_{6}\right) \delta$ $8.59-8.60(\mathrm{~d}, 1 \mathrm{H}), 8.26-8.32(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.68$ (br. s., 1 H$), 6.98-6.99(\mathrm{~d}, 1 \mathrm{H}), 4.81-4.85(\mathrm{dt}, 1 \mathrm{H}), 4.55(\mathrm{br}$. s., 1 H$), 3.53-3.55(\mathrm{~d}, 2 \mathrm{H}), 3.41$ (br.t., 2 H$), 2.78-2.82(\mathrm{t}, 2$ $\mathrm{H}), 1.88-1.90(\mathrm{~d}, 2 \mathrm{H}), 1.65($ br. s., 1 H$), 1.48-1.55(\mathrm{~m}, 2 \mathrm{H})$, $1.45-1.46(\mathrm{~d}, 6 \mathrm{H})$

method PF-AB10	5		P4	$\begin{gathered} 419572- \\ 18-2 \end{gathered}$	Ref. 1	1, 10	342	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso- $\left.\mathrm{d}_{\mathrm{o}}\right) \delta$ $\begin{gathered} 8.60(\mathrm{~d}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{c} \\ 1 \mathrm{H}), 4.80(\text { quin, } 1 \mathrm{H}), 4.20(\mathrm{~d}, 2 \mathrm{H}), 2.87(\mathrm{~d}, 2 \mathrm{H}), 2.67(\mathrm{~d}, 2 \mathrm{H} \\ 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, 6 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$
method PF-AB01	6		P4	$\begin{gathered} 6246- \\ 06-6 \end{gathered}$	commercial	1	317	$\mathrm{Rt}=2.039$ min; method PF-AB01
method PF-AB01	7		P4	$\begin{gathered} 3637- \\ 61-4 \end{gathered}$	commercial	1	329	$\mathrm{Rt}=2.528$ min; method PF-AB10
method PF-AB01	8		P4	$\begin{gathered} 7515- \\ 29-9 \end{gathered}$	commercial	1	329	$\mathrm{Rt}=2.488$ min; method PF-AB10

Rt=2.533 min; method PF-AB10

N/	$\underset{\text { j }}{ }$	ल	¢
-	\leftharpoondown	-	Γ
$\overline{0}$ 0 0 0 0 0 0			. $\overline{0}$ 0 0 0 0 0 0
	$\begin{array}{cc} \dot{1} \\ \stackrel{0}{\circ} \\ \hline \text { è } \end{array}$	$\frac{\text { 内 }}{\underset{\sim}{\sim}}$	
-	-	-	-
$\stackrel{m}{\sim}$	\pm	\underline{n}	\bullet

i	Ref 2	1	3	

家

	P2	$\begin{gathered} 130658- \\ 13-8 \end{gathered}$	Ref. 3	1,7, 10	356	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) δ 9.07 (br. s., 2 H), 8.21 ($\mathrm{s}, 1 \mathrm{H}$), 7.90 (d, 1 H), 7.73 (br. s., 2 H), $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 5.55(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{dt}, 2 \mathrm{H}), 3.50$ (d, 1 H$), 3.22(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, 1$ H), 1.87 (m, 1 H), 1.67 (br s., 1 H$), 1.39$ (m, 4 H$)$
	P4	$\begin{gathered} 130658- \\ 13-8 \end{gathered}$	Ref. 3	1, 10	356	$\mathrm{Rt}=2.363$ min; method PF-CD05
	P4	$\begin{gathered} 199174- \\ 24-8 \end{gathered}$	commercial	$\begin{gathered} 1.10 \\ 11 \end{gathered}$	397	'H NMR (400 MHz , dmso-d d_{f}) 8.67 (d, 1 H), 8.23 (s, 1 H), 7.72 (br. s, 2 H), 7.51 (d. 1 H), 7.02 ($\mathrm{s}, 1 \mathrm{H}$), 4.88 (quin, 1 H), $4.23-$ $4.32(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, 2 \mathrm{H}), 3.38-3.78(\mathrm{~m}, 4 \mathrm{H}), 2.79-2.93$ $(\mathrm{m}, 1 \mathrm{H}), 2.12-2.23(\mathrm{~m}, 1 \mathrm{H}) ; 1.80-2.11(\mathrm{~m} 1 \mathrm{H}), 1.41(\mathrm{~d}, 6$ H)

(
26
thod PF-AB01

$\stackrel{0}{0}$	¢	+
$\stackrel{ }{-}$	$\stackrel{ }{-}$	$\stackrel{\sim}{\sim}$
$\begin{aligned} & 6 \\ & \stackrel{6}{0} \\ & \stackrel{y}{4} \end{aligned}$		
$\stackrel{\dot{N}}{\underset{N}{N}} \stackrel{\text { N }}{N}$	$\frac{\stackrel{i}{n}}{\underset{\sim}{N}} \underset{\sim}{H}$	$\begin{aligned} & \dot{\infty} \\ & \underset{\sim}{m} \\ & \stackrel{i}{N} \end{aligned}$
N	N	ก
\%	앙	\bar{m}

$\begin{aligned} & \text { I NMR (} 500 \mathrm{MHz} \text {, dmso-d }) \text {) } 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}) \text {, } \\ & 37(\mathrm{~d}, 1 \mathrm{H}), 7.76(\mathrm{br} . \mathrm{s} .1 \mathrm{H}), 7.70(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}) \text {, } \\ & 11(\mathrm{~d}, 1 \mathrm{H}), 4.90(\mathrm{dtt}, 1 \mathrm{H}), 4.46(\mathrm{dd}, 1 \mathrm{H}), 4.31(\mathrm{dd}, 1 \mathrm{H}), 3.98 \\ & 1.08(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.36(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.40 \\ & \text { (d, } 3 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}) \end{aligned}$

志	\%	$\stackrel{0}{0}$
$\stackrel{\sim}{\sim}$	$\stackrel{ }{-}$	
		$\begin{aligned} & 0 \\ & \stackrel{0}{\stackrel{\rightharpoonup}{\mathscr{L}}} \end{aligned}$
		容
ก	ก	ฐ
N	m	¢

commercial	1,7	346	$\mathrm{Rt}=2.319$ min; method PF-AB01
sommercial	1,7	345	
Rt $=2.874$ min: method PF-AB01			
sommercial $1,7,10$	346		

$\stackrel{\dot{N}}{\stackrel{N}{N}} \text { N }$	寺	$\begin{array}{ll} \stackrel{\circ}{0} \\ \stackrel{0}{\circ} \\ \stackrel{\circ}{N} \end{array}$
N	N	N
$\stackrel{\sim}{m}$	0	$\stackrel{\sim}{m}$

(2)

41		P2	$\begin{gathered} 83435- \\ 58-9 \end{gathered}$	commercial	1.7. 10	330	$\mathrm{Rt}=2.132$ min; method PF-AB01
42		P2	$\begin{gathered} 419572- \\ 18-2 \end{gathered}$	Ref. 8	1,7,10	342	$\mathrm{Rt}=2.211$ min: method PF-AB01
43		P2	157634-00-9	commercial	1,7, 10	344	$\mathrm{Rt}=2.227$ min; method PF-AB01

\%	¢	\%
$\stackrel{\sim}{-}$	$\hat{\sim}$	$\begin{aligned} & 0 \\ & \end{aligned}$
$\begin{aligned} & \text { 僉 } \\ & \text { 仿 } \end{aligned}$		N
ก	ก	ก
\%	8	$\%$

	-	¢

$\stackrel{̣}{e}$	[ल్ल
$\begin{aligned} & \text { 은 } \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{2} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \end{aligned}$
	\bar{W} $\stackrel{0}{0}$ $\stackrel{0}{0}$ \underline{E} 0	
N	N	N
*	-	9

$\mathrm{Rt}=1.824$ min; method PF-AB01
$\mathrm{Rt}=1.805 \mathrm{~min} ;$ method PF-AB01
$\mathrm{Rt}=1.963 \mathrm{~min} ;$ method PF-AB01

Imercial	1,10	346		
Imercial	1,10	362		
Rt $=1.812$ min; method PF-AB01 $=1.887$ min; method PF-AB01				
10	1,10	358		

${ }_{8}$	${ }_{5}^{\circ}$	\propto
容号	$\begin{aligned} & \text { o户⿵ } \\ & \stackrel{\text { ® }}{6} \end{aligned}$	商
व	d	d
$\%$	岕	8

\％	¢	\％	ষ
\bigcirc	\bigcirc	\bigcirc	－
$\begin{aligned} & \dot{\overleftarrow{O}} \mathbf{\circ} \\ & \stackrel{̣}{N} \end{aligned}$			
¢	I	व	व
＇，	$\stackrel{\text { I }}{\text { T }}$		

$\%$	5	¢	\%

	P4	$\left\|\begin{array}{c} 142253- \\ 56-3 \end{array}\right\|$	commercial	$\begin{gathered} 1,10 \\ 11 \end{gathered}$	383	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) $\delta 8.66$ ($\left.\mathrm{d}, 1 \mathrm{H}\right), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (br. s., 2 H), $7.49(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}), 4.81(\mathrm{dt}, 1 \mathrm{H}), 4.37-$ $4.47(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, 1 \mathrm{H}), 4.09(\mathrm{t}, 1 \mathrm{H})$, 3.93 (dd, 1 H), 3.80 (d, 2 H), 3.19 (td, 1 H), $1.40(\mathrm{~d}, 2 \mathrm{H}), 1.37$ (d, 3 H)
	P2	$\begin{gathered} 83435- \\ 58-9 \end{gathered}$	commercial	$\begin{gathered} 1,7,10 \\ 11 \end{gathered}$	397	$\mathrm{Rt}=2.637$ min; method PF-AB01
	P2	$\begin{gathered} 123855- \\ 51-6 \end{gathered}$	commercial	$\begin{gathered} 1,7,10 \\ 11 \end{gathered}$	411	$\mathrm{Rt}=2.666$ min; method PF-AB01

ิ/	$\frac{m}{7}$	$\bar{\square}$
$\stackrel{\circ}{\stackrel{1}{\sim}} \stackrel{ }{\sim}$	$\because=$	$\stackrel{\circ}{\stackrel{ }{\approx}=}$
a	ก	\%
$\%$	\pm	\because

$-A B 01$
$-A B 01$
AB01

ิ-ले	$\bar{\sim}$	$\stackrel{\sim}{\sim}$
$\stackrel{\circ}{\mathrm{N}}=$	$\stackrel{0}{i}=$	
		$\begin{aligned} & \underset{\mathscr{W}}{N} \\ & \underset{\sim}{*} \end{aligned}$
$\begin{aligned} & \dot{+} \\ & \stackrel{N}{N} \\ & \stackrel{\circ}{\sigma} \\ & \underset{\sim}{N} \end{aligned}$		$\stackrel{\stackrel{N}{N}}{\underset{\sim}{N}} \stackrel{i}{N}$
N	N	N
\bigcirc	$\hat{\dagger}$	∞

m	¢్ల	N
$\stackrel{\circ}{N}=$	$\stackrel{\circ}{\mathrm{N}}=$	$\stackrel{\circ}{\square}=$
		$\begin{aligned} & \stackrel{\varrho}{4} \\ & \underset{\sim}{\pi} \end{aligned}$
$\begin{aligned} & \text { ※ٌ } \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\infty} \\ & \underset{\sim}{\sim} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{\infty}{\circ} \mathrm{m} \\ & \underset{\sim}{\mathrm{~m}} \end{aligned}$
ก	ก	ロ
9		N

14	1, 7, 10	342	'H NMR (400 MHz , dmso-d6) $\delta 8.21$ (s, 1 H), 7.91 (d, 1 H$), 7.73$ (br. s, 2 H), 7.57 (s, 1 H), 7.47 (d, 1 H), 5.49 (d, 1 H), 4.90 ($\mathrm{dt}, 1$ H), 3.01-3.12(m, 1 H), $2.92(\mathrm{dd}, 1 \mathrm{H}), 2.73-2.80(\mathrm{~m}, 1 \mathrm{H})$, $2.64-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.23(\mathrm{~m}, 1 \mathrm{H})$, $2.00-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 1 \mathrm{H})$, 1.38 (d, 6 H)
rcial ${ }^{1}$	$\left\lvert\, \begin{gathered} 1,7,10 \\ 11 \end{gathered}\right.$	383	$\mathrm{Rt}=2.518$ min; method PF-AB01
15	$\begin{gathered} 1,7,10 \\ 11 \end{gathered}$	409	$\mathrm{Rt}=2.615$ min; method PF-AB01

$\stackrel{\text { ¢ }}{\substack{0 \\ N \\ \underset{\sim}{*} \\ \hline}}$	产容	岕
a	ก	a
N	$\mathfrak{\sim}$	A

P2	$\begin{gathered} 135065- \\ 76-8 \end{gathered}$	mmercial ${ }^{1}$	$\begin{gathered} 1,7,10 \\ 11 \end{gathered}$	413	$\mathrm{Rt}=2.541$ min；method PF－AB01
P2	$\begin{gathered} 614730- \\ 97-1 \end{gathered}$	mercial ${ }^{1}$	$\begin{gathered} 1,7,10 \\ 11 \end{gathered}$	429	Rt $=2.726$ min；method PF－AB01
P2	$\begin{gathered} 161152- \\ 76-7 \end{gathered}$	Ref． 7	$\begin{gathered} 1,7,10 \\ 11 \end{gathered}$	409	$\mathrm{Rt}=2.68$ min；method PF－AB01

\because	\because	N

Chiral	P2	$\begin{gathered} 135065- \\ 71-3 \end{gathered}$	commercial	$\left\lvert\, \begin{gathered} 1,7,10 \\ 11 \end{gathered}\right.$	413	$R \mathrm{t}=2.542 \mathrm{~min}$; method PF-AB01
	P2	$\begin{array}{\|c\|} 130658 \\ 13-8 \end{array}$	Ref. 13	$\begin{gathered} 1,7,10 \\ 11 \end{gathered}$	423	$R \mathrm{t}=2.754$ min; method PF-AB01

Rt=2.861 min; method PF-AB01

P4
б

	P4	$\begin{gathered} 140695- \\ 84-7 \end{gathered}$	commercial	$\begin{gathered} 1,10 \\ 11 \end{gathered}$	411	$R \mathrm{t}=2.221$ min; method PF-AB01
	P4	$\begin{gathered} 161152- \\ 76-7 \end{gathered}$	Ref. 7	$\begin{gathered} 1,10 \\ 11 \end{gathered}$	409	$R \mathrm{t}=2.136$ min; method PF-AB01
	P4	$\begin{gathered} 614730- \\ 97-1 \end{gathered}$	commercial	$\begin{gathered} 1,10 \\ 11 \end{gathered}$	429	$R \mathrm{t}=2.211$ min; method PF-AB01

99		P4	$\begin{gathered} 157634- \\ 00-9 \end{gathered}$	commercial	$\begin{gathered} 1.10 \\ 1.1 \end{gathered}$	411	$\mathrm{Rt}=2.163$ min; method PF-AB01
100		P4	$\begin{gathered} 123855- \\ 51-6 \end{gathered}$	commercial	$\begin{gathered} 1.10 \\ 11 \end{gathered}$	411	$\mathrm{Rt}=2.159$ min; method PF-AB01
101		$\mathrm{P}{ }^{\mathrm{P}}$	$\begin{gathered} 198835- \\ 07-3 \end{gathered}$	Ref. 15	1,7, 10	342	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.8$ H), 7.72 (br. s., 2 H), 7.60 (s, 1 H$), 7.38(\mathrm{~d}, 1 \mathrm{H})$, 1 H), 4.86 (dt, 1 H), 3.39 (br. s., 1 H), 3.25 (d, 1 f $1 \mathrm{H}), 2.68-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.24(\mathrm{~m}, 1 \mathrm{H}), 1$ $1 \mathrm{H}), 1.50-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, 6 \mathrm{H}), 1.26-$

$\begin{aligned} & \text { z, dmso-d } \left.\mathrm{d}_{6}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.73 \\ & 2(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.77- \\ & 24(\mathrm{~d}, 1 \mathrm{H}), 2.81(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.69(\mathrm{dd}, 1 \mathrm{H}), \\ & \mathrm{l} .49-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, 6 \mathrm{H}), 1.29-1.39 \\ & (\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1(\mathrm{~d}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, 1 \mathrm{H}), 6.12(\mathrm{br}$. $1 \mathrm{H}), 4.68$ (dd, 1 H), 4.43 (dd, 1 H), 4.22 (dd, (m, 3 H), 1.95-2.09 (m, 1H), 1.49 (dd, 6 H)
$\left.\mathrm{tz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.95$ (br. s, 1 H), 9 (br. s. 1 H), 767 (br. s., 1 H), 7.59 (s, 1 H), 34 (quin, 1 H) , 4.44-4.47(m, 1 H), 4.43(d, 1), $4.28(\mathrm{dd}, 1 \mathrm{H}), 4.21$ (dq, 1 H$), 1.36(\mathrm{~d}, 3 \mathrm{H})$, 1.34 (d, 3 H)

$\begin{array}{r} 15 \\ 6,7 \end{array}$	358	${ }^{1} \mathrm{H}$ NMR (500 MHz dmso-d d_{6}) 8.21 (s, 1 H), 8.09 (br. s, 1 H), 7.76 (br. s., 2 H), 7.71 (s, 1 H), 7.67 (s, 1 H), 4.92 (dt, 1 H), 4.42 (dd, 1 H), 4.28 (dd, 1 H), 3.98-4.05 (m, 1 H), 2.44 ($\mathrm{s}, 3$ H), 2.15-2.35(m, 3H), 1.87-1.94(m, 1H), $1.40(\mathrm{~d}, 3 \mathrm{H}), 1.38$ (d, 3 H)	102		P2	$\begin{gathered} 198835- \\ 07-3 \end{gathered}$	Ref. 14	1, 7, 10	342	1 H NMR (400 MH (br. s., 2 H$), 7.6$ $4.93(\mathrm{~m}, 1 \mathrm{H}), 3$. 2.18 (ddd, 1 H$),$
1, 7	358	${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, dmso- $\left.\mathrm{d}_{6}\right) 88.19$ (s, 1 H$), 7.88$ (dd, 1 H$)$, $7.74(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.70(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H})$, $4.89(\mathrm{dt}, 1 \mathrm{H}), 4.40(\mathrm{~d}, 2 \mathrm{H}), 3.78-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.23$ $(\mathrm{~m}, 3 \mathrm{H}), 1.91-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.73$	103		P2	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	1	326	$\begin{gathered} 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.92 \\ \mathrm{~s} ., 1 \mathrm{H}), 4.83(\mathrm{dt}, \\ 1 \mathrm{H}), 2.34-2.55 \end{gathered}$
I, 7	358	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{8}) $\delta 8.21$ (s, 1 H), 7.88 (d, 1 H), 7.74 (br. s, 1 H), 7.71 (br. s, 1 H), 7.69 (s, 1 H), 7.42 (d, 1 H), 4.85 $5.00(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.89-$ $4.04(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.48(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.09-$ $1.13(\mathrm{~m}, 3 \mathrm{H})$	104		P2	$\begin{gathered} 132682- \\ 23-6 \end{gathered}$	Ref. 17	1,7	346	${ }^{1} \mathrm{H}$ NMR (500 Mr $7.84(\mathrm{~d}, 1 \mathrm{H}), 7.6$ $7.39(\mathrm{~d}, 1 \mathrm{H}), 4.8$ $\mathrm{H}), 4.35(\mathrm{dd}, 1 \mathrm{H}$

$\cdots=$	-	-
	$\begin{aligned} & \overline{\widetilde{0}} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{y}{6} \\ & \stackrel{0}{8} \\ & \hline \end{aligned}$	
$\stackrel{\sim}{\sim}$		Ξ
N	N	N
$\stackrel{\square}{\bullet}$	$\stackrel{\circ}{-}$	-

ग2	$\begin{gathered} 207405- \\ 59-2 \end{gathered}$	commercial	1, 7, 10, chiral HPLC	342	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso- d_{6}) $\delta 8.18$ ($\left.\mathrm{s}, 1 \mathrm{H}\right), 7.88(\mathrm{~d}, 1 \mathrm{H})$, 7.71 (br. s, 2 H), 7.53 (s, 1 H), 7.39 (d, 1 H$), 5.13-5.19$ (m, 1 H), 4.85 (dt, 1 H), 3.60 (br. s, 1 H), 2.73-2.79(m, 1 H$), 2.51-$ $2.55(\mathrm{~m}, 2 \mathrm{H}), 1.99$ (ddd, 1 H$), 1.73-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.68$ ($\mathrm{m}, 1 \mathrm{H}$), $1.45-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{dd}, 6 \mathrm{H})$
ग2	$\begin{gathered} 207405- \\ 59-2 \end{gathered}$	commercial	$1,7,10$ chiral HPLC	342	H NMR (400 MHz , dmso- d_{6}) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.71$ (br. s., 2 H), $7.52(\mathrm{~s}, 1 \mathrm{H}), 7.37$ (d, 1 H$), 5.07-5.11(\mathrm{~m}, 1 \mathrm{H})$, 4.85 (dt, 1 H), 3.45 (br. s, 1 H), 2.66-2.73(m, 1 H), 2.42-2.46 (m, 2 H), 1.95 (ddd, 1 H$), 1.67-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.64(\mathrm{~m}, 1$ H), 1.40-1.45 (m, 1 H), 1.38 (dd, 6 H)
ग2	$\begin{gathered} 156088- \\ 46-9 \end{gathered}$	Ref. 18	1,7	372	H NMR (500 MHz dmso- d_{6}) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (d, 1 H), 7.74 (br. s., 1 H), 7.71 (br. s., 1 H), 7.69 (s, 1 H), 7.41 (d, 1 H), 4.92 (dt, 1 H), 4.57 (dd, 1 H), 4.21 (dd, 1 H), 3.91 $4.06(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{dd}, 1 \mathrm{H}), 1.74(\mathrm{dd}, 1 \mathrm{H}), 1.39(\mathrm{t}, 6 \mathrm{H}), 1.11$ (s, 3 H), 1.09 ($\mathrm{s}, 3 \mathrm{H}$)

(2)

	P2	$\begin{gathered} 54320-89- \\ 4 \end{gathered}$	commercial	1,7	344	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso-d}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}) .7 .88(\mathrm{~d}, 1 \mathrm{H}), 7.72$ (br. s., 2 H), $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H}), 4.87$ (dt, $1 \mathrm{H}), 4.49$ (dd, 1 H), 4.41 (dd, 1 H), 3.50 (dd, 1 H), 3.19 (dd, 1 $\mathrm{H}), 2.88-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.42$ (dd, 1 H$), 2.13$ (dd, 1 H$), 1.39$ (d, $3 \mathrm{H})$, 1.38 (d, 3 H)
	P2	L2		1,7	362	${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso-d d_{6}) 88.74 (br. s, 1 H), 8.19 (s, 1 H), 7.88 (d, 1 H), 7.74 (br. s.; 1 H), 7.71 (br. s., 1 H), 7.57 ($\mathrm{s}, 1 \mathrm{H}$), 7.43 (d, 1 H$), 5.28(\mathrm{dt}, 1 \mathrm{H}), 4.91(\mathrm{dt}, 1 \mathrm{H}), 4.47(\mathrm{dd}, 1 \mathrm{H}), 4.34$ (dd, 1 H$), 4.08-4.19(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d} .3$ H), $1.38(\mathrm{~d}, 3 \mathrm{H})$
	P2	$\llcorner 4$		1,7	372	H NMR (500 MHz , dmso-d) 88.19 (d, 1 H). 8.16 (s, 1 H , diastereomer 1), 8.07 ($\mathrm{s}, 1 \mathrm{H}$, diastereomer 2), 7.88 ($\mathrm{d}, 1 \mathrm{H}$), 7.74 (br. s., 1 H), 7.71 (br. s., 1 H), 7.68 (s, 1 H , diastereomer 1), 7.61 (s, 1 H, diastereomer 2), 7.41 (d, 1 H), 4.90 (dt, 1 H), 4.57 (dd, 1 H , diastereomer 1), 4.46 (dd, 1 H , diastereomer 2), 4.32 (dd, 1 H , diastereomer 1), 4.20 ($\mathrm{dd}, 1 \mathrm{H}$ diastereomer 2), $3.97(\mathrm{td}, 1 \mathrm{H}), 1.88-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.39$ (td, 6 H), 1.24-1.37(m, 2H), 0.92 (td, 3 H)

E	$\stackrel{\sim}{\sim}$	$\stackrel{m}{\sim}$

		$\stackrel{\infty}{\sim}$ 쿧 言全全 $\begin{array}{cc}\hat{E} & \hat{I} \\ N & \hat{I} \\ N\end{array}$
（\％）	\％	¢
\bigcirc	6	$\stackrel{ }{-}$
		$\frac{\pi}{4}$
仓̀	$\stackrel{\infty}{\infty} \underset{\underset{\Gamma}{\infty}}{\stackrel{N}{N}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \stackrel{\sim}{0} \\ & \stackrel{\sim}{6} \\ & \hline \end{aligned}$
\because	\bigcirc	N
$\stackrel{ \pm}{ \pm}$	$\stackrel{i n}{\sim}$	$\frac{0}{7}$

1 H）， 7.73 1 H）． 4.87 1）， $3.35-$ 3．07－3．17		
$\begin{aligned} & \mathrm{r} . \mathrm{s}, 1 \mathrm{H}), \\ & 9(\mathrm{~s}, 1 \mathrm{H}), \\ & 1 \mathrm{H}), 3.92 \\ & (\mathrm{~d}, 1 \mathrm{H}), \\ & \mathrm{s} ., 2 \mathrm{H}) \end{aligned}$		
$\begin{gathered} 2(\mathrm{~s}, 1 \mathrm{H}), \\ 1 \mathrm{H}), 4.80 \\ 1 \mathrm{H}), 3.82 \\ (\mathrm{~m}, 2 \mathrm{H}) \end{gathered}$		

117		P2	$\begin{gathered} 138108- \\ 72-2 \end{gathered}$	commercial	1, 7, 10	330	$\begin{aligned} & \text { H NMR (} \left.500 \mathrm{MHz} \text {, dmso- } \mathrm{d}_{6}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \\ & \text { (br. s., } 1 \mathrm{H}), 7.71(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \\ & \text { (quin, } 1 \mathrm{H}), 4.48-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.48(\mathrm{~m}, 1 \mathrm{f} \\ & 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.19-3.27(\mathrm{~m}, 1 \mathrm{H}), \\ & (\mathrm{m}, 1 \mathrm{H}), 2.89(\mathrm{dt}, 1 \mathrm{H}), 2.11-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.78-- \\ & \mathrm{H}), 1.39(\mathrm{~d}, 6 \mathrm{H}) \end{aligned}$
118		P2	L101	Ref. 20	1,7	398	${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso-d d_{6}) 88.20 ($\mathrm{s}, 1 \mathrm{H}$), 8.03 (t 7.90 (d, 1 H), 7.74 (br. s., 1 H), 7.71 (br. s., 1 H), 7.6 7.42 (d, 1 H), 4.93 (dt, 1 H), 4.60 (dd, 1 H), 4.40 (dd, - 4.06 ($\mathrm{m}, 1 \mathrm{H}$), 1.98 (d, 1 H), 1.62 (br. s., 2 H), 1.51 $1.40(\mathrm{t}, 6 \mathrm{H}), 1.22(\mathrm{~d}, 2 \mathrm{H}), 1.10(\mathrm{~d}, 2 \mathrm{H}), 1.01$ (br.
119		P2	$\begin{gathered} 161511- \\ 85-9 \end{gathered}$	commercial	1, 7, 10	316	${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$ dmso-d $) \delta 8.93(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.2:$ $7.93(\mathrm{~d}, 1 \mathrm{H}), 7.70(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}$, $-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.13-3.57(\mathrm{~m}$, $-3.95(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.23-1.30 ।$

$\begin{aligned} & \left.\mathrm{mso}-\mathrm{d}_{\mathrm{f}}\right) 88.16(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.88 \\ & 1 \mathrm{H}), 7.70(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 2 \\ & 4.42(\mathrm{dd}, 1 \mathrm{H}), 4.37(\mathrm{dd}, 1 \mathrm{H}), 3.97-4.07 \\ & (\mathrm{~m}, 6 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{q}, 1 \\ & \mathrm{l}), 1.67-1.80(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
dmso-d ${ }^{6}$ ô $8.16(\mathrm{~s}, 1 \mathrm{H}), 8.13$ (br, s, 1 H), r. s., 1 H), 7.69 (br. s., 1 H), $7.63(\mathrm{~s}, 1 \mathrm{H})$, Id, 1 H), $4.29(\mathrm{dd}, 1 \mathrm{H}), 4.01-4.08(\mathrm{~m}, 1$.14-2.37(m, 3H), 1.84-1.96(m, 1H)
mso-d d_{6}) $8.17(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.88$ 1 H), 7.70 (br. $\mathrm{s}, 1 \mathrm{H}$), 7.62 (s, 1 H), 7.41 H), 4.26-4.35(m, 2H), 4.18-4.25(m, 1 2.12-2.38(m, 3H), 1.84-1.94(m, 1H), 1.44 (t, 3 H)

\%	$\frac{\varrho}{m}$	¢్లె
$\stackrel{\sim}{-}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{-}$
$\stackrel{\infty}{\stackrel{\infty}{\sim}} \underset{\sim}{\sim}$	$\stackrel{\stackrel{\sim}{\sim}}{\stackrel{N}{\sim}} \underset{\sim}{\circ}$	$\stackrel{\text { N゙ }}{\stackrel{\sim}{c}} \underset{\sim}{\circ}$
$\stackrel{m}{2}$	¿	ñ
꾼	$\stackrel{\text { N}}{ }$	N

370	${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) 88.21 (s, 1 H$), 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.73$ (br. s., 2 H), $7.52(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 4.84(\mathrm{dt}, 1 \mathrm{H}), 4.38-$ $4.50(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~d}, 1 \mathrm{H}) 3.02(\mathrm{dd}, 1 \mathrm{H})$, $2.62-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.55-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, 6 \mathrm{H})$
358	${ }^{1} \mathrm{H}$ NMR (500 MHz dmso-d) $\delta 8.19$ (s, 1 H), 8.07 (br. s, 1 H), 7.88 (d, 1 H), 7.73 (br. s., 1 H), 7.71 (br. s., 1 H), 7.61 (s, 1 H), 7.41 (d, 1 H), 4.89 (quin, 1 H), 4.45 (dd, 1 H), 4.33 (dd, 1 H), 3.91-4.00(m, 1H), 2.54-2.59(m, 1H), 2.15-2.27(m, 1 H$)$, 1.88 (dt, 1 H), 1.39 (t, 6 H), 1.09 (d, 3 H)
358	${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{br}, \mathrm{s}, 1 \mathrm{H})$, 7.85 (d, 1 H), 7.71 (br. s., 1 H), 7.68 (br. s., 1 H), 7.65 (s, 1 H), $7.38(\mathrm{~d}, 1 \mathrm{H}), 4.88$ (quin, 1 H$), 4.53(\mathrm{dd}, 1 \mathrm{H}), 4.18$ (dd, 1 H), $3.88-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.49(\mathrm{~m}, 1 \mathrm{H})$, $1.31-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~d}, 3 \mathrm{H})$

$\begin{aligned} & \overline{=} \\ & = \end{aligned}$	べ	$\stackrel{\text { N }}{\text { ¢ }}$
㐫	Ξ	Ξ
N	n	ก
ก	N	N

L102	Ref． 22	1，7	358	${ }^{1} \mathrm{H}$ NMR（ 500 MHz ，dmso－ d_{6} ） $88.21(\mathrm{~s}, 1 \mathrm{H}), 7.55-8.12(\mathrm{~m}, 5$ H）， 7.42 （d， 1 H$), 4.91$（dt， 1 H$), 4.24-4.42$（m， 2 H ），2．35－2．47 $(\mathrm{m}, 1 \mathrm{H}), 2.23-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.97$ （ $\mathrm{m}, 1 \mathrm{H}$ ）
L5		1，7	388	See Ref． 36.
L6		1，7	380	${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，dmso－ d_{6} ）$\delta 9.28$（br．s．， 1 H ）， 8.19 （s， 1 H ）， 7.89 （d， 1 H ）， 7.72 （br．s．， 1 H ）， 7.70 （br．s．， 1 H ）， 7.62 （s， 1 H ）， 7.44 （d， 1 H）， 4.83 （dt， 1 H）， 4.57 （dd， 1 H） 4.35 （dd， 1 H）， 4.15 － $4.26(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.71(\mathrm{~m}, 1 \mathrm{H}), 1.39$ （ $\mathrm{t}, 6 \mathrm{H}$ ）

N

	P18	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	1,7	352	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $\delta 8.10$ (s, 1 H), 8.07 (br. s, 1 H), $8.04(\mathrm{~d}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H}), 7.75$ (br. s., 1 H), $7.50(\mathrm{~d}, 1 \mathrm{H}), 7.31$ $(\mathrm{t}, 1 \mathrm{H}), 4.52(\mathrm{dd}, 1 \mathrm{H}), 4.30(\mathrm{dd}, 1 \mathrm{H}), 4.00-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.14$ $-2.34(m, 3 H), 1.85-1.96(m, 1 H)$
	P2	$\begin{gathered} 1192180- \\ 58-7 \end{gathered}$	Ref. 23	1.7, 17	370	${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, dmso-d $\left.\mathrm{d}_{\mathrm{e}}\right) 88.19(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.98(\mathrm{~m}, 2$ H), 7.72 (d, 2 H), 7.41 (d, 1 H$), 5.34$ (br. s. 1 H$), 4.85$ (dt; 1 H), $4.05(\mathrm{~d}, 1 \mathrm{H}), 2.95-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.01$ $2.25(\mathrm{~m}, 2 \mathrm{H}), 1.82-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.39$ (d, 6 H)
	P2	L7		1,7	390	${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) 88.77(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (d. 1 H), $7.64-7.79$ (m. 3 H), 4.89 (dt. 1 H$), 4.58$ (dd, 1 H), 4.26 (dd, 1 H), 3.93-4.05(m, 1 H$), 2.10-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.99$ (m, 1 H), 1.61-1.80(m, 1H), 1.32-1.44(m, 6H), 0.89-1.01 ($\mathrm{m}, 3 \mathrm{H}$)

$\begin{gathered} \text { 1), } 7.88 \\ -5.00 \\ 1 \mathrm{H}) \\ 1.19- \\ 1.38- \end{gathered}$	132		P2	L8	1,7	390	$\left\lvert\, \begin{gathered} { }_{\mathrm{H}}^{\mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.89}(\mathrm{~d}, 1 \mathrm{H}), 7.72(\mathrm{~d}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 4.81-5.02 \\ (\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{dd}, 1 \mathrm{H}), 4.26(\mathrm{dd}, 1 \mathrm{H}), 4.10-4.21(\mathrm{~m}, 1 \mathrm{H}) \\ 2.31-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.86-2.03(\mathrm{~m}, 1 \mathrm{H}), \\ 1.58-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.44(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}\right.$	129	$\begin{gathered} \text { Chiral } \\ \mathrm{F}_{2} \\ \vdots \\ \mathrm{H}_{2} \mathrm{~N}^{2} \end{gathered}$
$\begin{aligned} & 9(\mathrm{~d}, 1 \\ & 3(\mathrm{dd}, 1 \\ & 1.75 \\ & .38- \end{aligned}$	133	Chiral	P2	L9	1,7	376	$\left\lvert\, \begin{gathered} { }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{\mathrm{e}}\right) 88.85(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.58 \\ -7.81(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 4.92(\mathrm{quin}, 1 \mathrm{H}), 4.57(\mathrm{dd}, 1 \mathrm{H}), \\ 4.29(\mathrm{dd}, 1 \mathrm{H}), 4.15(\mathrm{dd}, 1 \mathrm{H}), 2.38-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.28 \\ (\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, 6 \mathrm{H}) \end{gathered}\right.$	130	
$\begin{aligned} & \text { 1) } 7.89 \\ & -4.97 \\ & \text { I (m, } 1 \\ & 3(m, 6 \end{aligned}$	134		P2	L10	1,7	376	$\begin{gathered} { }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{\mathrm{6}}\right) \delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.61 \\ -7.82(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 4.90(\mathrm{dt}, 1 \mathrm{H}), 4.57(\mathrm{dd}, 1 \mathrm{H}), 4.28 \\ (\mathrm{dd}, 1 \mathrm{H}), 3.95-4.09(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.37 \\ (\mathrm{~m}, 1 \mathrm{H}), 1.44-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{t}, 6 \mathrm{H}) \end{gathered}$	131	Chira

135		P2	L4	1, 7, chiral HPLC	372	$\begin{gathered} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{\mathrm{B}}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{f} \\ (\mathrm{d}, 1 \mathrm{H}), 7.72(\mathrm{~d}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, 1 \mathrm{H}), 4.80 \\ (\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{dd}, 1 \mathrm{H}), 4.32(\mathrm{dd}, 1 \mathrm{H}), 3.82-4.03(\mathrm{~m}, \\ 2.33-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.96-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, 1 \mathrm{H}), \\ 1.35(\mathrm{~m}, 1 \mathrm{H}) 1.38-1.41(\mathrm{~m}, 3 \mathrm{H}), 151-1.82(\mathrm{~m}, 1 \mathrm{H}), \\ 1.41(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}) \end{gathered}$
136	Chiral	P2	L4	1, 7, chiral HPLC	372	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso- d_{o}) $\delta 8.12-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.8$ H), $7.63-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, 1 \mathrm{H}), 4.91(\mathrm{dt}, 1 \mathrm{H}), 4.5 \varepsilon$ H), 4.20 (dd, 1 H), 3.98 (dd, 1 H), 2.26-2.46 (m, 2 H), (ddd, 1 H$), 1.47-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.35(\mathrm{~m}, 1 \mathrm{H}), 1$ $1.41(\mathrm{~m}, 6 \mathrm{H}), 0.87-0.99(\mathrm{~m}, 3 \mathrm{H})$
137		P2	L11	1,7	402	$\begin{aligned} & \text { H NMR }\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) 88.24(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{f} \\ & \text { (d, } 1 \mathrm{H}), 7.73(\mathrm{~d}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, 1 \mathrm{H}), 4.84 \\ & (\mathrm{~m}, 1 \mathrm{H}), 4.41-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{dd}, 1 \mathrm{H}), 3.90-4.01 \\ & \mathrm{H}), 2.18-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.4 \varepsilon \\ & \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$

${ }^{1}-\mathrm{d}_{6}$) $88.20(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, 2 \mathrm{H}), 7.52$ 1), 4.87 (dt, 1 H$), 4.40(\mathrm{~d}, 2 \mathrm{H}), 3.14-$ $3(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ $1.65(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.45(\mathrm{~m}, 6 \mathrm{H})$
${ }^{1}$-d d_{f}) $8.20(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.74$ 42 (d, 1 H), 4.79-4.95 (m, 1 H), 4.52- ., 1 H), 3.20-3.38(m, 2 H), 2.51 (s, 1 1.40 (d, 6 H), 1.04 (dd, 1 H), 0.86 (t, 1 H)
${ }^{\prime}-\mathrm{d}_{6}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.74$ 42 (d. 1 H), 4.79-4.92 (m, 1 H), 4.55- , 2H) 3.23-3.36(m, 2H), 2.48-2.53 $1 \mathrm{H}), 1.40(\mathrm{~d}, 6 \mathrm{H}), 1.03$ (dd, 1 H$), 0.86$ (t, 1 H)

a

	P2	$\begin{gathered} 39531-65- \\ 7 \end{gathered}$	Ref. 26	1,7	374	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso- d_{6}) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.88$ $(\mathrm{d}, 1 \mathrm{H}), 7.72(\mathrm{~d}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}), 5.03(\mathrm{t}, 1 \mathrm{H})$, $4.91(\mathrm{dt}, 1 \mathrm{H}), 4.38-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.54-$ $3.56(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.85-$ $2.12(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.50(\mathrm{~m}, 6 \mathrm{H})$
	P2	L12		2,7,9	374	${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$ d dmso-d $) \mathrm{\delta} 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.10$ (br. s, 1 H$)$, $7.87(\mathrm{~d}, 1 \mathrm{H}), 7.75(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.61$ (br. s, 1 H$),$ $7.40(\mathrm{~d}, 1 \mathrm{H}), 4.90-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.29-$ $4.36(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dd}, 1 \mathrm{H}), 3.96-4.02(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.63$ $(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{t}, 6 \mathrm{H})$
	P2	$\begin{gathered} 203982- \\ 57-4 \end{gathered}$	Ref. 27	2, 7,9	359	${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso-d d_{6}) $88.20(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.89$ (d, 1 H), 7.74 (br. s., 1 H), 7.72 (br. s., 1 H), 7.65 (s, 1 H), 7.42 (d, 1 H), 4.92 (dt, 1 H), 4.58 (dd, 1 H), 4.32 (dd, 1 H$), 3.58$ $3.65(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.50(\mathrm{~m}, 1 \mathrm{H}), 1.97$ (dd, 1 H$), 1.36-1.44$ ($\mathrm{m}, 7 \mathrm{H}$)

153		P2	$\begin{gathered} 39531-65- \\ 7 \end{gathered}$	Ref. 26	$\begin{gathered} 1,7 \\ \text { HPLC } \end{gathered}$	374	$\begin{aligned} & \begin{array}{l} 1 \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) 88.19(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7 \\ (\mathrm{~d}, 1 \mathrm{H}), 7.68-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}), 5 . \\ (\mathrm{t}, 1 \mathrm{H}), 4.91(\mathrm{dt}, 1 \mathrm{H}), 4.40-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.39(\mathrm{~m}, 1 \\ 3.49-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.13(\mathrm{~m}, 1 \mathrm{l} \\ 1.90-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.44(\mathrm{~m}, 6 \mathrm{H}) \end{array} \end{aligned}$
154		P2	$\begin{gathered} 39531-65- \\ 7 \end{gathered}$	Ref. 26	$\begin{gathered} 1,7, \\ \text { HPLC } \end{gathered}$	374	${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, dmso- $\left.\mathrm{d}_{\mathrm{f}}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7$ $(\mathrm{d}, 1 \mathrm{H}), 7.70-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}), 5.11(\mathrm{t}, 1 \mathrm{H}), 4$. (dt, 1 H$), 4.40-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.49-3$. (m, 2H), 2.24-2.41(m, 2H), 2.02-2.13(m, 1H), 1.90-2. (m, 1H). 1.32-1.44(m, 6H)
155		P2	L104		$\begin{gathered} 1,7, \\ \text { HPLC } \end{gathered}$	412	$\begin{aligned} & 1 \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7 \\ & (\mathrm{~d}, 1 \mathrm{H}), 7.73(\mathrm{~d}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, 1 \mathrm{H}), 4.87(\mathrm{dt}, \\ & \mathrm{H}), 4.48(\mathrm{dd}, 2 \mathrm{H}), 4.07-4.20(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{dd}, 1 \mathrm{H}), 2.34(\\ & 1 \mathrm{H}), 1.42(\mathrm{~d}, 6 \mathrm{H}) \end{aligned}$

i) $88.08-8.24(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, 1$
i(s, 1 H$), 7.39(\mathrm{~d}, 1 \mathrm{H}), 5.29(\mathrm{dd}, 1$
1), $3.73-3.93(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.30$
$\mathrm{n}, 1 \mathrm{H}), 1.31-1.46(\mathrm{~m}, 9 \mathrm{H})$
i) $88.18(\mathrm{~s}, 1 \mathrm{H}), 7.93-8.03(\mathrm{~m}, 1$
H), $7.39(\mathrm{~d}, 1 \mathrm{H}), 5.38(\mathrm{dd}, 1 \mathrm{H})$,
1, 1 H$), 3.42-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.04-$
1.30-1.48(m, 9 H$)$
3; method PF-AB01
0; method PF-AB01

$R t=\min 2.160 ;$ method PF-AB01 ${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso- d_{6}) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, 1 \mathrm{H}), 7.74$	156		P2	$\begin{gathered} 1315057- \\ 77-2 \end{gathered}$	Ref. 28	$\begin{gathered} 1,7 \\ \text { HPLC } \end{gathered}$	358	$\begin{array}{r} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{dmso}^{-\mathrm{d}_{\epsilon}}\right. \\ \mathrm{H}), 7.64-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.5 \mathrm{f} \\ \mathrm{H}), 4.83(\mathrm{dt}, 1 \mathrm{H}), 4.14(\mathrm{t}, 1 \mathrm{f} \\ (\mathrm{m}, 3 \mathrm{H}), 1.74-1.93(\mathrm{t} \end{array}$
$\left.\begin{array}{\|c} \text { (br. s., } 1 \mathrm{H}), 7.72(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}), 4.88 \\ \text { (dt, } 1 \mathrm{H}), 4.48(\mathrm{~d}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}), 3.64(\mathrm{~d}, 1 \mathrm{H}), 3.31(\mathrm{~d}, 1 \\ \mathrm{H}), 2.90-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.22(\mathrm{~m}, 1 \\ \mathrm{H}), 1.79-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, 6 \mathrm{H}), 1.30-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.99 \\ \text { (dd, } 1 \mathrm{H}), 0.86(\mathrm{t}, 1 \mathrm{H}) \end{array} \right\rvert\,$	157		P2	$\begin{gathered} 1315057 \\ 77-2 \end{gathered}$	Ref. 28	$\begin{gathered} 1,7 \\ \text { HPLC } \end{gathered}$	358	${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso-d $\begin{array}{r} \mathrm{H}), 7.89(\mathrm{~d}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \\ 4.90(\mathrm{dt}, 1 \mathrm{H}), 3.81-3.95(\mathrm{~m} \\ 2.38(\mathrm{~m}, 4 \mathrm{H}), \end{array}$
$\begin{array}{\|} 7.41(\mathrm{~d}, 1 \mathrm{H}), 4.88(\mathrm{dt}, 1 \mathrm{H}), 4.49(\mathrm{~d}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}), 3.64(\mathrm{~d}, \\ 1 \mathrm{H}), 3.31(\mathrm{~d}, 1 \mathrm{H}), 2.90-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.85(\mathrm{~m}, 1 \mathrm{H}), \\ 2.07-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, 6 \mathrm{H}), 1.30- \\ 1.38(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{dd}, 1 \mathrm{H}), 0.85(\mathrm{t}, 1 \mathrm{H}) \end{array}$	158		P2	$\begin{gathered} 714971- \\ 28-5 \end{gathered}$	commercial		346	$\mathrm{Rt}=\min 2.15{ }^{\text {c }}$
H NMR (500 MHz , dmso-d d_{8}) $88.90(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.89$ (d, 1 H$), 7.59-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 4.95(\mathrm{dt}, 1 \mathrm{H}), 4.57$ (dd, 1 H), 4.27 (dd, 1 H), 4.07-4.22(m, 1 H$), 3.69-3.72(\mathrm{~m}, 1$ H), $3.35(\mathrm{~d}, 1 \mathrm{H}), 2.29-2.54(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.48(\mathrm{~m}, 6 \mathrm{H})$	159		P2	$\begin{gathered} 170491- \\ 63-1 \end{gathered}$	commercial		330	$\mathrm{Rt}=\boldsymbol{\operatorname { m i n }} \mathbf{2 . 2 0}$

8	2, 7,9	392	H NMR (500 MHz , dmso-d d_{6}) $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.89$ (d, 1 H), 7.74 (br. s., 3 H), 7.43 (d, 1 H), 4.88 (dt, 1 H), 4.59 (dd , 1 H), 4.29 (dd, 1 H$), 4.00$ (br. s., 1 H$), 3.57-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.77$ (ddd, 1 H$), 2.05-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{t}, 6 \mathrm{H})$	160		P2	$\begin{gathered} 215917- \\ 99-0 \end{gathered}$	commercial		346
2	$\begin{aligned} & 2,7,9,9 \\ & \text { HPLC } \end{aligned}$	374	${ }^{1} \mathrm{H}$ NMR (400 MHz dmso-d d_{6}) 88.22 (s, 1 H), 8.19 ($\mathrm{s}, 1 \mathrm{H}$), 7.88 (d, 1 H), 7.73 (br. s., 1 H), 7.71 (s, 1 H), 7.70 (br. s., 1 H), 7.41 (d, 1 H), $4.95(\mathrm{dt}, 1 \mathrm{H}), 4.71(\mathrm{t}, 1 \mathrm{H}), 4.54(\mathrm{dd}, 1 \mathrm{H}), 4.23(\mathrm{dd}, 1$ H), 3.95-4.04(m, 1H), 3.55-3.63(m, 2H), 2.27-2.38(m, 1	161		P2	L105		$\begin{gathered} 1.7,9, \\ 18 \\ \text { HPLC, } \\ 10 \end{gathered}$	356
2	$\begin{aligned} & 2,7,9, \\ & \text { HPLC } \end{aligned}$	374	H$), 1.78-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{dd}, 6 \mathrm{H})$ ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{\mathrm{f}}\right) 88.19(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.88$ $(\mathrm{~d}, 1 \mathrm{H}), 7.73(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.71(\mathrm{br}, \mathrm{s} ., 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.42$ $(\mathrm{~d}, 1 \mathrm{H}), 4.90(\mathrm{dt}, 1 \mathrm{H}), 4.70(\mathrm{t}, 1 \mathrm{H}), 4.46(\mathrm{dd}, 1 \mathrm{H}), 4.32(\mathrm{dd}, 1$$\|$	162		P2	L105		$\begin{gathered} 1,7,9 \\ 18 \\ \text { HPLC, } \\ 10 \end{gathered}$	356
			$\begin{gathered} \text { H), } 3.91-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{t}, 2 \mathrm{H}), 2.24(\mathrm{dt}, 1 \mathrm{H}), 1.96-2.10 \\ (\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{t}, 6 \mathrm{H}) \end{gathered}$	163		P2	L17		2,7,9	392

コ

- NMR (500 MHz dmso-d d_{6}) 88.20 (s, 1 H), 7.90 (d, 1 H), 7.72 br. s, 2 H), 7.46 (s, 1 H), 7.43 (d, 1 H), 4.80 (dt, 1 H), 4.72 (dd, $1 \mathrm{H}) .4 .49$ (dd, 1 H$), 3.88-4.14(\mathrm{~m}, 1 \mathrm{H}), 2.81$ (s, 3 H), $2.35-$ $2.47(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.86-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.41$ (d, 6 H)	177		P1	L10		2,7	348	$\begin{aligned} & { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \text { dmso- } \mathrm{d}_{8}\right) \delta 9 \\ & -8.10(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{~s}, 2 \mathrm{H}), 7.1 \\ & (\mathrm{~m}, 1 \mathrm{H}), 4.43-4.47(\mathrm{~m}, 1 \mathrm{H}), 4 \\ & \mathrm{H}), 2.64-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.42-i \end{aligned}$
H NMR (400400 MHz , dmso- d_{6}) $\delta 8.13-8.25(\mathrm{~m}, 2 \mathrm{H})$, $7.83-$ $7.97(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.42$ $\mathrm{dd}, 1 \mathrm{H}), 4.78-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.40$ $\mathrm{n}, 1 \mathrm{H}), 3.94(\mathrm{~d}, 1 \mathrm{H}), 3.65(\mathrm{~d}, 3 \mathrm{H}), 2.53-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.10-$?. $42(\mathrm{~m}, 2 \mathrm{H}), 1.84-2.10(\mathrm{~m} .2 \mathrm{H}), 1.58-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.33-$ $1.46(\mathrm{~m}, 6 \mathrm{H}), 1.17-1.33(\mathrm{~m}, 1 \mathrm{H})$	178		P19	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	1, 20, 7	370	$\begin{array}{r} { }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{dmso}^{2} \mathrm{~d}_{6}\right) \mathrm{\delta}: \\ \mathrm{H}), 8.12(\mathrm{~d}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), \\ 4.30(\mathrm{dd}, 1 \mathrm{H}), 3.94-4.12(\mathrm{~m}, 1 \\ 1.99(\mathrm{~m} \end{array}$
$\begin{aligned} & \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.88(\mathrm{~m}, 2 \mathrm{H}) \\ & \mathrm{\prime} .34-7.35(\mathrm{~d}, 1 \mathrm{H}), 5.00-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.67(\mathrm{~m}, 1 \mathrm{H}) \\ & .46-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.67(\mathrm{~m}, 1 \mathrm{H}), \\ & ? .69-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.27(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	179		P2	L14		$\begin{gathered} 1,7, \\ \text { HPLC } \end{gathered}$	360	${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta$ $7.88(\mathrm{~d}, 1 \mathrm{H}), 7.73(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, 1 \mathrm{H}), 4.89(\mathrm{dt}, 1 \mathrm{H}), 4.4 \mathrm{f}$ $(\mathrm{t}, 1 \mathrm{H}), 3.94-4.04(\mathrm{~m}, 1 \mathrm{H}), 2$ $1.40(\mathrm{dc}$

¢	年	等
$\stackrel{ }{-}$	$\stackrel{\sim}{\sim}$	No
$\begin{aligned} & \text { è } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		
	ัิ	$\overline{\text { ¢ }}$
N	ก	ก
¢	$\stackrel{\square}{\stackrel{-}{0}}$	®

2,7	394	H NMR (400 MHz , dmso-d d_{6}) $\delta 9.32$ ($\mathrm{s}, 1 \mathrm{H}$), $8.24(\mathrm{~s}, 1 \mathrm{H}), 7.95$ - $7.94(\mathrm{~d}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~d}, 1 \mathrm{H})$, 4.87-4.85(m, 1 H), 4.61-4.58(m, 1 H), 4.42-4.41(m, 1H), $4.20(\mathrm{~s}, 1 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.43(\mathrm{~d}, 6 \mathrm{H}), 1.23-$ 1.21 (d, 3 H).
2,7, HPLC	442	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 88.24 (s, 1 H$), 7.78-7.80(\mathrm{~d}, 1$ H), 7.67 (s, 1 H), $7.24-7.26$ (d, 1 H$), 4.86-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.57$ $-4.6(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.33(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.33-$ $2.47(m, 2 H), 2.13-2.19(m, 1 H), 1.37-1.39(m, 6 H)$.
7, 2	359	${ }^{1} H$ NMR (500 MHz , dmso- d_{b}) $\delta 8.18$ ($\mathrm{s}, 1 \mathrm{H}$), 7.87 ($\mathrm{d}, 1 \mathrm{H}$), 7.76 (br. s, 1 H), 7.68 (br. s, 1 H), 7.62 (s, 1 H), 7.41 (d, 1 H), 4.91 (dt, 1 H$), 4.45$ (dd, 1 H$), 4.32$ (dd, 1 H), 4.03 (dd, 1 H$), 3.47-$ $3.58(\mathrm{~m}, 1 \mathrm{H}) 3.28$ (dd, 1 H$), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.45(\mathrm{~m}, 6 \mathrm{H})$

(s)

(1)

189		P1	L38		3,7	348	H NMR (400 MHz , dmso- d_{6}) $8.78(\mathrm{~s}, 1 \mathrm{H}), 8.61-8.90(\mathrm{~m}, 1$ H), 8.12-8.13(m, 1H), $7.92(\mathrm{~d}, 1 \mathrm{H}), 7.85$ (br. s. 1 H$), 7.71$ (br. s., 2 H), 7.45 (d, 1 H), $4.78-5.13$ (m, 1 H), 4.58 (dd, 1 H), 4.30 (dd, 1 H), $4.03-4.11$ ($\mathrm{m}, 1 \mathrm{H}$), 3.99 (s, 3 H), 2.75-3.03 ($\mathrm{m}, 1 \mathrm{H}$), $1.11(\mathrm{dd}, 3 \mathrm{H})$
190		P2	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	$\begin{gathered} 1,7,15 \\ 20 \end{gathered}$	369	${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso-d $\mathrm{d}_{6} \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.13-8.25(\mathrm{~m}, 2$ H), $7.80-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{dt}, 1 \mathrm{H}), 4.59(\mathrm{dd}, 1$ H), 4.41 (dd, 1 H$), 4.07$ (d, 1 H$), 2.14-2.39(\mathrm{~m}, 4 \mathrm{H}), 1.79-$ 2.00 (m, 1 H), 1.42 (dd, 6 H$)$
191		P2	$\begin{gathered} 644971- \\ 22-2 \end{gathered}$	commercial	1, 7, 10	330	$\mathrm{Rt}=2.175$ min; method PF-AB01

192		P2	L22	2, 7	416	${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, dmso-d d_{6}) $8.31(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.22(\mathrm{~m}, 1$ H), $7.88(\mathrm{~d}, 1 \mathrm{H}), 7.66-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}) 5.96(\mathrm{~s}, 1$ H), 4.98 (dt, 1 H$), 4.84(\mathrm{~d}, 1 \mathrm{H}), 4.40-4.62(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{dd}$, H), $4.00(\mathrm{dd}, 1 \mathrm{H}), 2.96-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.43(\mathrm{~m}, 1 \mathrm{H})$, 1.65-1.83(m, 1 H), 1.31-1.46(m, 6H)
193		P2	L22	2,7	416	H NMR (500 MHz , dmso-d d_{6}) $88.21(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.90$ (d, 1 H$), 7.73(\mathrm{~d}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H})$ $4.93(\mathrm{dt}, 1 \mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}), 4.54(\mathrm{~d}, 1 \mathrm{H}), 4.40-4.52(\mathrm{~m}, 3 \mathrm{H})$, 4.32 (dd, 1 H$), 3.96$ (d, 1 H), 3.11 (t, 1 H), 2.01-2.24(m, 2 H), 1.40 (dd, 6 H)
194		P5	L10	$\begin{gathered} 5,13 \\ 14 \end{gathered}$	347	H NMR (500 MHz , dmso-d d_{8}) 88.75 (s, 1 H), 8.29 (s, 1 H), 7.79 (br. s., 1 H), 7.69 (s, 1 H), 7.62 (br. s., 1 H), 7.54 (d, 1 H), 7.31 $\begin{gathered} (\mathrm{t}, 1 \mathrm{H}), 7.01(\mathrm{~d}, 1 \mathrm{H}), 4.16-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.93-4.09(\mathrm{~m}, 5 \mathrm{H}), \\ 2.23-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.59(\mathrm{~m}, 3 \mathrm{H}) \end{gathered}$

IMR (600 MHz , dmso-d6) $\delta 9.0(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.91$ 11 H), 7.86 (br s, 1 H), 7.76 (s, 1 H), 7.71 (bs, 1 H), 7.44 (d, $4.94(\mathrm{~d}, 1 \mathrm{H}), 4.83(\mathrm{dd}, 1 \mathrm{H}), 4.60(\mathrm{dd}, 1 \mathrm{H}), 4.26(\mathrm{dd}, 1 \mathrm{H})$, $(\mathrm{m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.916(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 1.23$ (d. 3 H).
IMR (500 MHz , dmso-d d_{6}) $\delta 8.01-8.25(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~d}, 1$ '. 86 (br. s., 1 H), 7.74 (br. s., 1 H), 7.44 (d, 1 H), 7.14 (s, 1 5.52 (quin, 1 H), $4.91-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{dd}, 1 \mathrm{H}), 4.65$ $1 \mathrm{H}), 4.38-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{dd}, 1 \mathrm{H}), 3.94-4.13(\mathrm{~m}, 1$ H), 2.10-2.41(m, 3 H), 1.84-2.00(m, 1 H)
MR ($500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) $\delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.93$ $\begin{gathered} 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 7.44(\mathrm{~d}, 1 \mathrm{H}), 4.32- \\ (\mathrm{m}, 2 \mathrm{H}), 3.95-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.39(\mathrm{~m}, 3 \mathrm{H}), 1.89- \\ 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) \end{gathered}$

遜我全哥	䢒全全完	さ ゼす
$\stackrel{\sim}{\infty}$	\％	\％
	$\stackrel{ }{-}$	$\stackrel{\sim}{-}$
	哭	¢ ¢ ¢
	古	ก
$\stackrel{\otimes}{\square}$	용	일

2，7	408	${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，dmso－de） $89.32(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.94$ $-7.96(\mathrm{~d}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.50(\mathrm{~d}, 1 \mathrm{H})$ ， 4．85－4．87（m，1 H），4．59－4．61（m，1 H），4．40－4．43（m， 1 H$)$ ． $4.20(\mathrm{~s}, 1 \mathrm{H}), 3.04-3.09(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.44(\mathrm{~d}, 6 \mathrm{H}), 1.22$－ 1.23 （ $\mathrm{m}, 3 \mathrm{H}$ ）
7.1	345	${ }^{1} \mathrm{H}$ NMR（ 500 MHz dmso－d ）$\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.63$ $-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 4.95$ （dt， 1 H$), 4.45(\mathrm{dd}, 1 \mathrm{H}), 4.33(\mathrm{dd}, 1 \mathrm{H}), 4.11(\mathrm{dq}, 1 \mathrm{H}), 3.56(\mathrm{t}, 1$ H）， 3.25 （dd， 1 H ），1．32－1．44（m， 6 H ）
2，7	348	${ }^{1} \mathrm{H}$ NMR（ 400 MHz dmso－ d_{6} ）$\dot{8} 8.71$（ $\mathrm{s}, 1 \mathrm{H}$ ）， 8.17 （s， 1 H ）， 7.91 （d， 1 H）， 7.85 （br．s．， 1 H）， 7.70 （br．s．， 1 H ）， 7.65 （s， 1 H ）， 7.45 （d， 1 H ），4．75－4．99（m， 1 H$), 4.66$（dd， 1 H ）， 4.35 （dd， 1 H ）， 3.97 （s， 3 H ）， 3.62 （dt， 1 H ），2．27－2．46（m， 1 H ）， 1.28 （d． 3 H ）

J7		P5	L18		5,9	363	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d8) $\delta 8.75$ (br. s, 1 H), 8.48 (br. s, 1 H), 8.28 (s, 1 H), 7.78 (br. s, 1 H), 7.68 (s, 1 H). 7.62 (br. s., 1 H), $7.54(\mathrm{~d}, 1 \mathrm{H}), 7.32(\mathrm{t}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}), 4.23(\mathrm{dd}, 1 \mathrm{H})$, 3.99-4.11(m, 2 H), 3.97(s, 3H), 3.59-3.71(m, 2H), 2.72$2.88(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.28(\mathrm{~m}, 1 \mathrm{H})$	204	
38		P1	L41		2, 7,9	378	$\begin{gathered} { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.79 \\ -7.97(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 5.25(\mathrm{br} . \mathrm{s} ., \\ 1 \mathrm{H}), 4.57(\mathrm{dd}, 1 \mathrm{H}), 4.27(\mathrm{dd}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.80 \\ (\mathrm{~m}, 2 \mathrm{H}), 2.80-3.04(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	205	
39		P3	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	2,7	317	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d $\left.\mathrm{d}_{6}\right) 88.71$ (s, 1 H), 8.22 (br. s, 1 H), 8.03 (s, 1 H), 7.91 (br. s., 1 H), 7.76 (br. s., 1 H), 7.62 (s, 1 H), $\begin{gathered} 4.62(\mathrm{dd}, 1 \mathrm{H}), 4.31-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.00 \\ (\mathrm{~s}, 3 \mathrm{H}), 2.14-2.37(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.94(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	206	

210		P1	L42	2, 7, 9	378	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}_{\mathrm{d}}$) 89.01 ($\mathrm{s}, 1 \mathrm{H}$), 8.16 (s, 1 H), 7.90 (d, 1 H) 7.85 (br. s., 1 H), 7.70 (br. s., 1 H). 7.71 (s, 2 H). 7.43 (d, 1 H), 5.36 (br s., 1 H), 4.63 (dd, 1 H$), 4.34-4.50(\mathrm{~m}, 1 \mathrm{H})$, 4.07-4.24(m, 1 H$), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, 2 \mathrm{H}), 2.77-3.04(\mathrm{~m}$, $1 \mathrm{H}), 1.21$ ($\mathrm{d}, 3 \mathrm{H}$)
211		P1	L36	2, 7	330	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$ dmso-d $\left.\mathrm{d}_{6}\right) 88.15$ (s, 1 H$), 8.03(\mathrm{~s}, 1 \mathrm{H})$, $7.90-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H})$, $7.42-7.44(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.49(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.91-$ $3.94(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.06-$ $2.12(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.08(\mathrm{~m}, 3 \mathrm{H})$.
212		P2	$\llcorner 43$	1,7,9	374	${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso-d d_{6}) $\delta 8.14-8.31(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1$ H), 7.83-7.98(m, 1H), 7.63-7.82(m, 3 H$), 7.42(\mathrm{~d}, 1 \mathrm{H}), 4.83$ $-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{dd}, 1 \mathrm{H}), 4.34$ (dd, 1 H), 3.82 (br. s. 1 H), 3.47 (br. s., 2 H), 2.32-2.47(m, 2 H), 2.03 (dd, 1 H), 1.35 1.46 ($\mathrm{m}, 6 \mathrm{H}$)

$\begin{aligned} & , 1 \mathrm{H}), 8.18-8.19(\mathrm{~d}, 1 \\ & 57-7.59(\mathrm{~d}, 1 \mathrm{H}), 7.41- \\ & \text { ' }-4.47(\mathrm{~m}, 2 \mathrm{H}), 3.80- \\ & 3-3.16(\mathrm{~m}, 3 \mathrm{H}), 2.73- \\ & 1.37-1.41(\mathrm{~m}, 6 \mathrm{H}) \end{aligned}$
$\begin{aligned} & 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.83 \\ & 43(\mathrm{~d}, 1 \mathrm{H}), 4.52(\mathrm{dd}, 1 \\ & 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, 2 \\ & 12(\mathrm{dd}, 1 \mathrm{H}) \end{aligned}$
$\begin{aligned} & 1 \mathrm{H}), 7.91-7.92(\mathrm{~d}, 1 \\ & 63-4.86(\mathrm{~m}, 3 \mathrm{H}), 4.44 \\ & 08(\mathrm{~s}, 3 \mathrm{H}), 2.89-3.00 \\ & \mathrm{I}, 1 \mathrm{H}) . \end{aligned}$

\%	¢	¢
$\stackrel{\dot{N}}{\underset{\sim}{N}}$	$\begin{aligned} & \text { on } \\ & \mathrm{N} \\ & \stackrel{1}{2} \end{aligned}$	\hat{N}
$\stackrel{8}{\square}$	$\stackrel{?}{د}$	$\underset{\sim}{3}$
N	$\bar{\square}$	$\bar{\square}$
$\stackrel{\mathrm{m}}{\mathrm{~N}}$	$\stackrel{ \pm}{\mathbf{N}}$	$\stackrel{i n}{N}$

$\begin{gathered} \left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.51(\mathrm{~m}, 2 \mathrm{H}), \\ 3 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}), 4.16-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, 4 \mathrm{H}), \\ .94(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, 1 \mathrm{H}), 2.27(\mathrm{dd}, 1 \mathrm{H}), 1.08-1.16 \\ (\mathrm{~m}, 3 \mathrm{H}) \end{gathered}$
$\begin{aligned} & \left(500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.79 \\ & \mathrm{H}), 7.63(\mathrm{br}, \mathrm{~s} ., 1 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.33 \\ & 7.07(\mathrm{~d}, 1 \mathrm{H}), 5.01-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{dd}, 1 \mathrm{H}), 4.01 \\ & (\mathrm{~d}, 4 \mathrm{H}), 2.68-2.88(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, 3 \mathrm{H}) \end{aligned}$
$\left(500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.90$), 7.73 (d, 2 H), 7.58 (s, 1 H), 7.43 (d, 1 H), 4.87 (dt, 1 $-4.55(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.80(\mathrm{~m}, 1$ (dd, 1H), 2.09 (dd, 1 H), 1.31-1.47 (m, 6H), 1.09 (d; $3 \mathrm{H})$

(

	5	365	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso-d $\left.\mathrm{d}_{6}\right) \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.84$ (br. s., 1 H), 7.72 (br. $\mathrm{s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{dd}, 1 \mathrm{H}), 7.01$ (dd, 1 H), 5.08 (dd, 1 H), 4.28 (dd, 1 H$), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.92$ $4.08(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, 3 \mathrm{H})$
31	$\begin{gathered} 1,7, \\ \text { HPLC } \end{gathered}$	344	${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, dmso-d $\left.\mathrm{d}_{6}\right) \delta 8.17$ (s, 1 H$) .8 .06$ (s, 1 H$), 7.92$ (d, 1 H), 7.85 (br. s., 1 H), 7.70 (br. s., 1 H), 7.61 (s, 1 H), 7.44 (d, 1 H), $4.47-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{dd}, 1 \mathrm{H}), 3.61(\mathrm{t}, 1 \mathrm{H}), 2.27$ (d, 1 H), $2.04(\mathrm{~d}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$
31	$\begin{gathered} 1,7, \\ \text { HPLC } \end{gathered}$	344	${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, dmso- d_{6}) i $8.17(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, 1 \mathrm{H}), 7.85(\mathrm{br} . \mathrm{s} .1 \mathrm{H}), 7.70(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, 1 \mathrm{H}), 4.47-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{dd}, 1 \mathrm{H}), 3.61(\mathrm{t}, 1 \mathrm{H})$, $2.27(\mathrm{~d}, 1 \mathrm{H}), 2.04(\mathrm{~d}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$

	P2	$\begin{gathered} 194421- \\ 58-4 \end{gathered}$	Ref. 31	$\begin{array}{\|c} 1,7, \\ \text { HPLC } \end{array}$	372	'H NMR (500 MHz, dmso-d $)^{2} \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$, $7.89(\mathrm{~d}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}$, $1 \mathrm{H}), 4.77-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.54(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.64(\mathrm{~m}$, $1 \mathrm{H}), 2.24(\mathrm{~d}, 1 \mathrm{H}), 2.03(\mathrm{~d}, 1 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}), 1.40(\mathrm{~d}, 3 \mathrm{H})$, $1.21(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$	220		P25	L37	
ミN	P1	L110		$\begin{gathered} 7,2 \\ \text { HPLC } \end{gathered}$	355	${ }^{1} \mathrm{H}$ NMR (500 MHz dmso-d d) $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H})$, 7.91 (d, 1 H), 7.85 (br. s., 1 H), 7.70 (br. s., 1 H), 7.67 (s. 1 H), $7.44(\mathrm{~d}, 1 \mathrm{H}), 4.63(\mathrm{dd}, 1 \mathrm{H}), 4.24(\mathrm{dd}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.99$ $(\mathrm{s}, 3 \mathrm{H}), 2.67-2.84(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.74(\mathrm{~m}, 1 \mathrm{H})$	221		P1	$\begin{gathered} 194421- \\ 58-4 \end{gathered}$	Ref.
ミN	P1	L110		$\begin{array}{\|c} 7,2, \\ \text { HPLC } \end{array}$	355	${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{\mathrm{E}}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}) 8.17(\mathrm{~s}, 1 \mathrm{H})$, 7.91 (d, 1 H$), 7.85$ (br. s., 1 H), 7.70 (br. s., 1 H), 7.60 (s, 1 H), 7.44 (d, 1 H$), 4.49$ (dd, 1 H$), 4.37$ (dd, 1 H$), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.99$ $(\mathrm{s}, 3 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.12$ ($\mathrm{m}, 1 \mathrm{H}$)	222		P1	$\begin{gathered} 194421- \\ 58-4 \end{gathered}$	Ref.

Nิ	N	$\stackrel{10}{\text { N }}$

	P2	L111		2, 7, 10	385	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{8}) $\delta 9.51$ (s, 1 H), $\delta 9.24$ ($\mathrm{s}, 1 \mathrm{H}$), $\begin{gathered} \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.88(\mathrm{~d}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 2 \mathrm{H}), \\ \delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.43(\mathrm{~d}, 1 \mathrm{H}), 4.91-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.48 \\ -4.47(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.37 \\ -3.25(\mathrm{~m}, 3 \mathrm{H}), 3.20-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 1 \mathrm{H}), 1.41 \\ -1.35(\mathrm{~m}, 6 \mathrm{H}) \end{gathered}$
	P1	$\begin{gathered} 127913- \\ 30-8 \end{gathered}$	Ref. 32	2,7	332	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $\delta 8.07$ ($\mathrm{s}, 1 \mathrm{H}$), 7.93 ($\mathrm{s}, 1 \mathrm{H}$), $7.77-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.35(\mathrm{~d}$, $1 \mathrm{H}), 4.49-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.34(\mathrm{~m}$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.75(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.30(\mathrm{~d}, 3 \mathrm{H})$
	P5	$\begin{gathered} 127913- \\ 30-8 \end{gathered}$	Ref. 32	6	331	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 8.29$ (s, 1 H$), 7.99$ (s, 1 H), 7.79 (br. s, 1 H), 7.64 (br. s, 1 H), 7.61 (s, 1 H), 7.54 (d, 1 H), 7.32 (t, $1 \mathrm{H}), 7.01$ (d, 1 H), 4.63 (quin, 1 H), 4.19 (d, 2 H). 3.85 (m, 1 H), $1.43(\mathrm{~d}, 1 \mathrm{H})$

$\begin{gathered} \left.0 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) 88.17(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, 1 \mathrm{H}), 7.84 \\ 70(\mathrm{bs}, 1 \mathrm{H}), 7.67(\mathrm{bs}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, 1 \\ \mathrm{n}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}) \\ 3.45(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	232		P5	L25		$\begin{gathered} 6, \\ \text { HPLC } \end{gathered}$	345	$\begin{gathered} { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{dmso}_{\mathrm{d}}^{6}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{l} \\ 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.54(\mathrm{~m} \\ (\mathrm{m}, 1 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.15(\mathrm{l} \\ (\mathrm{m}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.41- \\ -2.13(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$
$\begin{aligned} & \left.0 \mathrm{MHz} \text {, dmso-d } \mathrm{d}_{6}\right) 88.16(\mathrm{~s}, 1 \mathrm{H}) 7.91(\mathrm{~d}, 1 \mathrm{H}), 7.89 \\ & 4(\text { (br. s. } 1 \mathrm{H}), 7.70 \text { (br. s., } 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.44 \\ & 7 \text { (quin, } 1 \mathrm{H}), 4.42-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.18(\mathrm{~m}, 1 \\ & \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, 3 \mathrm{H}) \end{aligned}$	233		P5	$\begin{gathered} 15546- \\ 08-4 \end{gathered}$	Ref. 17	6	317	$\begin{array}{r} { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \text { dmso- } \mathrm{d}_{6}\right) \delta 8.29(\mathrm{~m}, 1 \\ 7.80(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.53-7 \\ 7.02(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.52(\mathrm{~s}, 1 \mathrm{H}), 4.36-4 . \\ 1 \mathrm{H}), 4.17-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.98 \end{array}$
400 MHz , dmso- d_{6}) 88.83 (s, 1 H); $8.17(\mathrm{~s}, 1 \mathrm{H})$, (m, 2H) $7.63-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.46(\mathrm{~m}, 1 \mathrm{H})$, (m, 1H) $4.32-4.37(m, 1 H), 4.01-4.16(m, 1 H)$, 1), $2.51(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.09-1.11$ (m, 3 H)	234		P5	L112		5	331	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.45(\mathrm{~s}, 1 \mathrm{H})$ (d, 1 H), 7.32 (t, 1 H), 7.00 (d, 1 H), 4.97-: (dd, 1H), 4.23(dd, 1 H), 4.14-4.20(m, 1 1.51 (d, 3 H)

	4,7	362	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso-d $\left.\mathrm{d}_{6}\right) \delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H})$, $7.85-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.44(\mathrm{~m}, 1 \mathrm{H})$, $4.56-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.06(\mathrm{~m}, 1 \mathrm{H})$, $3.99(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.15$ $(\mathrm{~m}, 3 \mathrm{H})$	235		P1	$\begin{gathered} 97859- \\ 49-9 \end{gathered}$	Ref. 11	3,7	318	$\begin{aligned} & 1 \mathrm{H} \text { NMR }(40 \\ & \text { (bs, } 1 \mathrm{H}), 7 . \\ & \mathrm{H}), 5.06(\mathrm{n} \end{aligned}$
al	2,7	332	$\left\lvert\, \begin{gathered} { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.19(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.93(\mathrm{~m}, 2 \\ \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.48(\mathrm{~m}, 2 \mathrm{H}), 5.00-5.02(\mathrm{~m}, 1 \mathrm{H}), \\ 4.58-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.52- \\ 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}\right.$	236		P1	L112		3,7	332	$\begin{aligned} & 1 \mathrm{H} \text { NMR }(40 \\ & (\mathrm{s}, 1 \mathrm{H}), 7.8 \\ & (\mathrm{~d}, 1 \mathrm{H}), 4.8 \end{aligned}$
	6	415	$\left\lvert\, \begin{gathered} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.82(\mathrm{~m}, 1 \mathrm{H}), \\ 7.44-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.80(\mathrm{~m}, 1 \mathrm{H}), \\ 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.03-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), \\ 2.70-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.63(\mathrm{~m}, 2 \mathrm{H}) \end{gathered}\right.$	237		P1	L44		4,7	362	$\begin{array}{r} { }^{1} \mathrm{H} \text { NM (c } \\ 7.85-7.931 \\ 4.55-4.59 \\ 4.00(\mathrm{~s} .3 \mathrm{l} \end{array}$

P5	L26		6	415	$\left.\begin{gathered} \text { 'H NMR }\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 88.34(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.40 \\ -7.42(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.95(\mathrm{~m}, 1 \mathrm{H}), 4.09 \\ -4.21(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.23-3.03(\mathrm{~m}, 4 \mathrm{H}) \end{gathered} \right\rvert\,$	238		P1	L45	
P1	L1		2, 7. HPLC	330	$\left\|\begin{array}{c} { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) 88.17-8.21(\mathrm{~m}, 2 \mathrm{H}) 7.90-7.91 \\ (\mathrm{~m}, 2 \mathrm{H}), 7.68-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.44(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.60 \\ (\mathrm{~m}, 1 \mathrm{H}), 4.18-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 4 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), \\ 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.13(\mathrm{~d}, 3 \mathrm{H}) \end{array}\right\|$	239		P1	$\begin{gathered} 1315020- \\ 11-1 \end{gathered}$	commerci
P1	L1		$2,7$ HPLC	330	${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.23(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.80(\mathrm{~m}, 1$ $\mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.47(\mathrm{~m}, 2 \mathrm{H})$, $4.04-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.27$ $(\mathrm{m}, 1 \mathrm{H}), 1.94-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.14(\mathrm{~d}, 3 \mathrm{H})$	240		P5	L26	

$\underset{N}{\sim}$

$\begin{aligned} & , 8.76(\mathrm{~s}, 1 \mathrm{H}) \\ & 2 \mathrm{H}), 7.09(\mathrm{~d}, 1 \\ & 1.02-4.19(\mathrm{~m}, 2 \\ & 19(\mathrm{~d}, 3 \mathrm{H}) \end{aligned}$	247		P1	L48	$\begin{aligned} & 2,7 \\ & \text { HPLC } \end{aligned}$	344	$\begin{gathered} { }^{4} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.80(\mathrm{~m}, 1 \\ \mathrm{H}) .7 .64(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.54(\mathrm{~m}, 1 \mathrm{H}), \\ 4.39-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.59- \\ 2.78(\mathrm{~m}, 2 \mathrm{H}), 1.05-1.07(\mathrm{~m}, 3 \mathrm{H}), 0.93-0.95(\mathrm{~m}, 3 \mathrm{H}) \end{gathered}$	244
$\begin{gathered} 13(\mathrm{~s}, 1 \mathrm{H}) 7.90 \\ 58(\mathrm{~s}, 1 \mathrm{H}) 7.42 \\ (\mathrm{H}) 4.40-4.46 \\ \mathrm{H}) 3.32-3.41 \\ (\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	248		P1	L48	$\begin{aligned} & 2,7, \\ & \text { HPLC } \end{aligned}$	344	$\begin{gathered} { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.81(\mathrm{~m}, 1 \\ \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.53(\mathrm{~m}, 2 \mathrm{H}), \\ 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.89-3.91(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.10- \\ 1.13(\mathrm{~m}, 6 \mathrm{H}) \end{gathered}$	245
$\begin{aligned} & 35(\mathrm{~s}, 1 \mathrm{H}), 8.09 \\ & 1(\mathrm{~s}, 1 \mathrm{H}), 7.63 \\ & 43-4.48(\mathrm{~m}, 1 \\ & \mathrm{n}, 1 \mathrm{H}), 2.19- \end{aligned}$	249		P1	L49	2,7	348	$\begin{gathered} { }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \\ 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, 1 \mathrm{H}), 4.62- \\ 4.66(\mathrm{~m}, 3 \mathrm{H}), 4.51-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.11 \\ (\mathrm{~s}, 3 \mathrm{H}), 2.83-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.32 \\ (\mathrm{~m}, 1 \mathrm{H}) . \end{gathered}$	246

Hzz dmso- d_{6}) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.36-8.38(\mathrm{~m}, 1$ (m, 2 H) , 7.92 (br. s, 1 H$), 7.77-7.79(\mathrm{~m}, 1 \mathrm{H})$, $1 \mathrm{H}), 5.42-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.71(\mathrm{~m}, 1 \mathrm{H})$, H), $4.35(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.20(\mathrm{~m}, 3 \mathrm{H}), 2.53-$ $2.62(\mathrm{~m}, 2 \mathrm{H})$	250		P16	L38	3, 7	348	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 10.18$ (s, 1 H) 8.63 (d, 1 H), 7.81 (br. s., 1 H), $7.60-7.71$ (m. H), $4.99(\mathrm{~d}, 1 \mathrm{H}), 4.86(\mathrm{~d}, 1 \mathrm{H}), 4.30(\mathrm{dd}, 1 \mathrm{H})$, H), $3.96(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.99(\mathrm{~m}, 1 \mathrm{H}), 1 . \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{5} \mathrm{OD}\right) \delta$ $.89(\mathrm{~d}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}), 4.66-$ $\mathrm{t} .58-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.08$ $4.07(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.40$ $(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, 3 \mathrm{H})$	251		P1	L50	3,7	342	${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$ dmso-d d_{6}) 8.16 (s, 1 H$) 8$. (d, 1 H) 7.83 (br. s., 1 H$) 7.67-7.71$ (m, 1 H$) 7$. (d, 1 H) $5.94\left(\mathrm{ddd}_{1} 1 \mathrm{H}\right) 5.20(\mathrm{~d}, 1 \mathrm{H}) 5.11$ (d, (m, 1 H) 4:30-4.38(m, 1H) 4.01-4.09(m, 1 (m, 1H) 2.37-2.47(m, 1H) 2.27-2.36
$\begin{gathered} \left.\mathrm{Hz}, \mathrm{CD}_{3} \mathrm{OD}\right) 88.36(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}), 7.74 \\ 1 \mathrm{H}), 4.55-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{dd}, 1 \mathrm{H}), 4.20 \\ 4.11(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.19 \\ (\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	252		P1	L2	$\begin{gathered} 2,7, \\ \text { HPLC } \end{gathered}$	334	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta 8.90$ ($\mathrm{s}, 1 \mathrm{H}$) 8: (d, 1 H), 8.05 (br, s, 1 H), 7.90 (br, s, 1 H), 7.8 (d, 1 H$), 5.25-5.42$ (m, 1 H), 4.77 (dd, 1 H$), 4$. $\mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 2.85-3.00(\mathrm{r}$ 2.32 ($\mathrm{m}, 1 \mathrm{H}$)

3,7	362	$\begin{array}{\|} { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{dmso}^{2}\right) 88.92(\mathrm{~d}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.92 \\ (\mathrm{~d}, 1 \mathrm{H}), 7.87(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.73(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.46 \\ (\mathrm{~d}, 1 \mathrm{H}), 4.63(\mathrm{dd}, 1 \mathrm{H}), 4.22-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.22(\mathrm{~m}, 1 \\ \mathrm{H}), 2.39-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.26(\mathrm{~m}, 1 \mathrm{H}), 195(\mathrm{ddd}, 1 \mathrm{H}), \\ 1.62-1.82(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, 3 \mathrm{H}) \end{array}$	253		P1	L2		$\begin{gathered} 2,7, \\ \text { HPLC } \end{gathered}$	334	$\begin{aligned} & { }^{1} \mathrm{H} \text { NMR }(400 \mathrm{M} \\ & \mathrm{H}), 8.06-8.12 \\ & 7.65-7.66(\mathrm{~m}, \\ & 4.50-4.55(\mathrm{~m}, 1 \end{aligned}$
3,7	362	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso-d $\left.\mathrm{d}_{8}\right) 88.82$ (s, 1 H$) 8.18$ (s, 1 H$), 7.92$ (dd 1 H), 7.86 (br. s., 1 H), 7.72 (s, 2 H), 7.45 (d, 1 H), 4.60 (dd, $1 \mathrm{H}), 4.27$ (dd, 1 H$), 3.90-4.09(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{td}, 1 \mathrm{H}), 2.12$ - 2.27 (m, 1 H$), 1.92$ (td, 1 H$), 1.66-1.81$ (m, 1 H$), 0.97$ (t, 3 H)	254		P1	L52		$\begin{gathered} 2,7 \\ \text { HPLC } \end{gathered}$	362	$\begin{aligned} & 8.32(\mathrm{~s}, 1 \mathrm{H}), 7 \\ & 4.73(\mathrm{~m}, 2 \mathrm{H}), 2 \\ & (\mathrm{~s}, 3 \mathrm{H}), 4.01- \end{aligned}$
3,7	406	${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, dmso- d_{6}) $\delta 8.11-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, 1$ H) 7.81 (br. s., 1 H), 7.65 (br. s., 1 H). 7.58 (s, 1 H), 7.41 (d, 1 H), 7.16-7.32 (m, 5H), 4.46 (dd, 1 H$), 4.28(\mathrm{dd}, 1 \mathrm{H}), 3.93-$ 4.01 (m, 3 H), 3.86-3.93 (m, 1 H), 3.07 (dd, 1 H), 2.83 (dd, 1 H), 2.61 (dd, 1 H), 1.99 (dd, 2 H)	255		P1	$\begin{gathered} 66673- \\ 40-3 \end{gathered}$	commercial	3,7	316	$\begin{aligned} & \text { 'H NMR (} 400 \mathrm{M} \\ & \text { (s, } 1 \mathrm{H}), 7.38(\mathrm{~d} \\ & -4.31(\mathrm{~m}, 1 \mathrm{H}) . \end{aligned}$

P16	L7		3,7	362	$\begin{aligned} & { }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.63(\mathrm{~d}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.80 \\ & \mathrm{is}, 1 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}), 4.42(\mathrm{dd}, 1 \mathrm{H}), 4.28(\mathrm{dd}, 1 \mathrm{H}), 4.19(\mathrm{dt}, 1 \\ & \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.00 \\ & -2.14(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{t}, 3 \mathrm{H}) \end{aligned}$	256		P1	L8	
P16	L8		3,7	362	${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.62(\mathrm{~d}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.68$ (s, 1 H), 7.06 (d, 1 H), $4.32-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{dd}, 1 \mathrm{H}), 4.08$ (s, 3 H), 2.53 - 2.68 (m, 1 H), 2.21-2.36(m, 1 H), 2.09 (ddd, 1 H), 1.74-1.90(m, 1 H), $1.07(\mathrm{t}, 3 \mathrm{H})$	257		P1	L7	
P1	L24		3,7	366	$\left.\begin{array}{\|c} { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.92 \\ (\mathrm{~d}, 1 \mathrm{H}), 7.86(\mathrm{br}, \mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{br}, \mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.46 \\ (\mathrm{~d}, 1 \mathrm{H}), 4.78-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.36 \\ (\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.49(\mathrm{~m}, 1 \mathrm{H}) \end{array} \right\rvert\,$	258		P1	L28	

\%	$\stackrel{\circ}{\circ}$	$\bar{\sim}$

3

dmso-d $) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}), 7.86$
$1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, 1$
$4.36(\mathrm{dd}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.94(\mathrm{~m}$,
$\mathrm{m}, 1 \mathrm{H}), 1.59(\mathrm{~d}, 1 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}), 0.98-$
$1.06(\mathrm{~m}, 1 \mathrm{H})$

380	${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, dmso-d ${ }_{3}$) $\delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.59-8.65(\mathrm{~m}, 1$ H), 8.17-8.22 (m, 1H), 7.79 (br. s., 1 H), 7.65 (s, 1 H), 7.61 (br. s., 1 H), $7.00-7.05$ (m, 1 H), $4.60-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.30-$ $4.39(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.20(\mathrm{~m}, 3 \mathrm{H}), 3.94-4.00(\mathrm{~m}, 3 \mathrm{H}), 2.61-$ $2.73(\mathrm{~m}, 1 \mathrm{H})$ 2.13-2.36(m,3H)
334	```'H NMR (400 MHz, dmso-d8) के.77 (s, 1 H), 8.18 (s, 1 H), 7.92 (d, 1 H),7.86 (br. s., 1 H), 7.70 (s, 2 H), 7.45 (d, 1 H), 5.16 (ddd, 1 H), 4.61 (dd, 1 H), 4.28 (dd, 1 H), 4.04 (br. s., 1 H), 3.98 (s, 3 H), 2.65-2.84(m, 1H), 1.98-2.18(m,1 H)```
380	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{o}) 8.95 (s, 1 H), 8.18 (s, 1 H), 7.92 (d, 1 H), 7.86 (br. s., 1 H), 7.72 (s, 2 H), 7.45 (d, 1 H), $4.70-$ $4.85(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.28$ (dd, 1 H$), 4.02-4.13$ ($\mathrm{m}, 1 \mathrm{H}$), $3.99(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.41(\mathrm{~m}, 3 \mathrm{H})$

	L35		3.7	330	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso-d $\left.\mathrm{d}_{6}\right) \delta 8.18$ ($\left.\mathrm{s}, 1 \mathrm{H}\right), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.93$ (d, 1 H) 7.85 (br. s., 1 H), 7.71 (br. s., 1 H), 7.60 (s, 1 H), 7.45 (d, 1 H$), 4.39-4.55(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.91-3.97(\mathrm{~m}, 1 \mathrm{H})$, $2.65-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{dd}, 1 \mathrm{H}), 2.11(\mathrm{dd}, 1 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H})$	274		P16	L29	3,
	L10		3,7	362	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $\delta 8.79$ (s, 1 H), 8.17 ($\mathrm{s}, 1 \mathrm{H}$), 7.89 (d, 1 H), 7.78 (br. s., 1 H), 7.69 (s, 2 H), 7.43 (d, 1 H), 4.60 (dd, $1 \mathrm{H}), 4.21-4.31(\mathrm{~m}, 3 \mathrm{H}), 3.99-4.00(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.33$ $(\mathrm{m}, 2 \mathrm{H}), 1.43-1.52(\mathrm{~m}, 6 \mathrm{H})$	275		P1	L3	3 ,
'	L38		3,7	362	${ }^{1} \mathrm{H}$ NMR (600 MHz , dmso-d d_{8}) 8.96 (d, 1 H$) 8.78$ (s, 1 H$) 8.30$ (s, 1 H) 7.84 (br. s., 1 H) 7.82 (br. s., 1 H) 7.76 (s, 1 H) 7.48 (d, 1 H) 4.92 (dd, 1 H) 4.51 (dd, 1 H) 4.29-4.36 (m, 2 H) 4.23 $4.29(\mathrm{~m}, 1 \mathrm{H}) 4.10-4.15(\mathrm{~m}, 1 \mathrm{H}) 2.85-2.95(\mathrm{~m}, 1 \mathrm{H}) 1.45(\mathrm{t}, 3$ H) 1.10 (dd, 3 H)	276		P1	L29	3

元

	P17	L72	$\begin{array}{\|c} 3,7, \\ \text { HPLG } \end{array}$	342	${ }^{1} \mathrm{H}$ NMR (600 MHz , dmso-d d_{f}) 8.98 (br. s., 1 H), 8.47 (d, 1 H), 8.32 (s. 1 H), 8.16 (s, 1 H), 6.79 (d, 1 H), 5.08 (br. s., 2 H), 4.37 (q, 2 H), 4.10 (br. s., 1 H), 3.83 (dd, 1 H), 3.69 (dd, 1 H), $1.80-$ $1.88(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{t}, 3 \mathrm{H}), 1.26(\mathrm{td}, 1 \mathrm{H})$, 1.05-1.11 (m, 1H)
	P21	L38	3,7	374	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d $\mathrm{d}_{\epsilon} \delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.06$ (s, 1 H), 7.93 (d, 1 H), 7.66 (br. $\mathrm{s} ., 2 \mathrm{H}$), 7.44 (d, 1 H), 4.99 (dd, $1 \mathrm{H}), 4.50(\mathrm{dd}, 1 \mathrm{H}), 4.42$ (dd, 1 H$), 3.96-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.78-$ $2.98(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{dd}, 3 \mathrm{H}), 0.89-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.89$ $(\mathrm{m}, 1 \mathrm{H}), 0.69-0.80(\mathrm{~m}, 1 \mathrm{H})$
	P7	L72	3.7	342	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{\epsilon}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, 1 \mathrm{H}), 7.80$ (br. s., 1 H), 7.73 (br. s., 1 H), 7.63 (s, 2 H), 7.44 (d, 1 H$), 4.49$ (dd, 1 H), 4.39 (dd, 1 H$), 4.18-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{t}, 1 \mathrm{H})$, 1.94-2.05 (m, 1H), 1.77 (br. s., 1 H), 1.47 (t, 3 H), 1.10 (td, 1 H), $0.60(\mathrm{q}, 1 \mathrm{H})$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { H), } 7.89 \\
\& \text { H), } 7.42 \\
\& \text { 1, } 4 \text { H). } \\
\& \text { 1) } 1.93- \\
\& \text { j(dq, } 1
\end{aligned}
\] \& 283 \& \& P7 \& L38 \& 3,7 \& 361 \& \begin{tabular}{l}
\({ }^{1} \mathrm{H}\) NMR (400 MHz dmso-d d) \(\delta 8.77\) (\(\mathrm{s}, 1 \mathrm{H}\)), \(8.18(\mathrm{~s}, 1 \mathrm{H}), 7.91\) (d, 1 H), 7.79 (br. s., 1 H), 7.72 (\(\mathrm{s}, 2 \mathrm{H}\)), 7.44 (d, 1 H), 4.95 (dd, 1 H), 4.58 (dd, 1 H), \(4.18-4.37\) (\(\mathrm{m}, 3 \mathrm{H}\)), 4.05 (br. s., 1 H), 2.78 \\
\(-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{t}, 3 \mathrm{H}), 1.05-1.16(\mathrm{~m}, 3 \mathrm{H})\)
\end{tabular} \& 280 \& \[
\begin{gathered}
\text { Chire } \\
\\
\hline
\end{gathered}
\] \\
\hline \[
\begin{aligned}
\& 1 \mathrm{H}), \\
\& (\mathrm{s}, 1 \mathrm{H}) . \\
\& \text {). } 2.59
\end{aligned}
\] \& 284 \& Chiral \& P1 \& L31 \& 3, 7 \& 417 \& \({ }^{1} \mathrm{H}\) NMR (\(\left.400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{\epsilon}\right) \delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.90\) (d, 1 H), 7.84 (br. s., 1 H), 7.70 (s, 2 H), 7.43 (d, 1 H), 4.57 (dd, \(1 \mathrm{H}), 4.25\) (dd, 1 H\(), 3.87-3.96(\mathrm{~m}, 6 \mathrm{H}), 2.62-2.68(\mathrm{~m}, 1 \mathrm{H})\), \(2.07-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~d}, 1 \mathrm{H}), 1.33-1.43(\mathrm{~m}, 3 \mathrm{H})\) \& 281 \& Cl

$\mathrm{H}_{2} \mathrm{~N}$,

\hline $$
\begin{aligned}
& H), 7.92 \\
& H), 7.45 \\
& , 4.03- \\
& (d, 3 H)
\end{aligned}
$$ \& 285 \& \& P1 \& L75 \& 3,7 \& 341 \& ${ }^{1} \mathrm{H}$ NMR (400 MHz dmso- d_{e}) 88.18 ($\mathrm{s}, 1 \mathrm{H}$), $7.92(\mathrm{~d}, 1 \mathrm{H}), 7.86$ (br. s., 1 H), 7.83 (s, 1 H), 7.71 (br. s., 1 H), 7.66 (s, 1 H) 7.45 (d, 1 H), 4.56 (dd, 1 H), 4.40 (dd, 1 H), 4.01 ($\mathrm{s}, 3 \mathrm{H}$), 3.74 (br. s., 1 H), 1.83-1.98(m, 2H), 1.31-1.42(m,1H), 1.06 (d, 3 H) \& 282 \& $\mathrm{H}_{2} \mathrm{~N}$,

\hline
\end{tabular}

${ }^{1} \mathrm{H}$ NMR (600 MHz , dmso- d_{6}) $\delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.90$ (d, 1 H) 7.80 (br. s., 1 H), 7.69 (s, 1 H), 7.63 (br. s., 1 H), 7.43 (d, 1 H) 4.59 (dd, 1 H), 4.29 (dd, 1 H), 4.03 (d, 1 H), 3.97 (s, 3 H), 3.63 (s, 1 H), 3.61 (d, 1 H), $3.35(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.77(\mathrm{~m}, 1$ H), $2.14-2.25(\mathrm{~m}, 1 \mathrm{H})$	289		P1	L20		3,7	415	${ }^{1} \mathrm{H}$ NMR (400 MHz , dm: (d, 1 H), 7.86 (br. s., 1 (d, 1 H) $4.66(\mathrm{~s}, 1 \mathrm{H})$, H), 3.97 (br. s., 1 H), 3 ! 1 H), 1.93-2.04(m, 2
$\begin{aligned} & { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{\mathrm{d}}\right) \delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~d}, 1 \mathrm{H}), 8.20 \\ & (\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}), \\ & 4.63-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.27(\mathrm{~m}, 4 \mathrm{H}), \\ & 2.72-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{t}, 3 \mathrm{H}) \end{aligned}$	290		P1	L32		3,7	369	${ }^{1} \mathrm{H}$ NMR (400 MHz , dm (d, 1 H), 7.86 (br. s., 1 + H) 5.31-5.46 (m, 2 ト 4.27 (dd, 1 H), 4.15 (d,
$379 \|$'H NMR ($\left.400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.90$ $(\mathrm{~d}, 1 \mathrm{H}), 7.78(\mathrm{br}, \mathrm{s} ., 1 \mathrm{H}), 7.71(\mathrm{br} . \mathrm{s} .1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.44$ $(\mathrm{~d}, 1 \mathrm{H}), 4.69-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.31$ $(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 2.70-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.28(\mathrm{~m}$, $1 \mathrm{H}), 1.44(\mathrm{t}, 3 \mathrm{H})$	291		P17	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	3,7	329	H NMR (400 MHz , dm: (s, 1 H), 7.77 (br. s., 1 (d, 1 H), $4.28-4.37$ (m (m, 1 H), 4.03-4.10 (n

L94	3.7	341	H NMR (400 MHz dmso- d_{E}) $\delta 8.23$ ($\mathrm{s}, 1 \mathrm{H}$), 7.98 (d, 1 H), 7.90 (br. s., 1 H), 7.75 (br. s., 1 H), 7.66 (s, 1 H), $7.47-7.54$ (m, 2 H), 4.56 (dd, 2 H), 4.05 (s, 3 H), 3.93 (br. s., 1 H), 1.69 (dd, 1 H), $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{dd}, 1 \mathrm{H}), 0.84(\mathrm{t}, 1 \mathrm{H})$
L54	3.8	361	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $\delta 8.87$ ($\mathrm{s}, 1 \mathrm{H}$), 8.17 ($\mathrm{s}, 1 \mathrm{H}$), 7.91 (d, 1 H), 7.85 (br. s., 1 H), 7.75 (s, 1 H), 7.70 (br. s., 1 H), 7.44 (d, 1 H), 4.92 (dd, 1 H), 4.55 (dd, 1 H$), 4.27$ (dd, 1 H), 4.10 (br. s., 1 H), 3.98 (s, 3 H), 2.55-2.73(m, 1 H$), 1.52-1.72(\mathrm{~m}, 2 \mathrm{H})$ $1.03(\mathrm{t}, 3 \mathrm{H})$
L91	3,7	341	H NMR ($600 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{\mathrm{c}}$) $\delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}), 7.8$ (br. s., 1 H), 7.64 (br. s., 1 H), 7.61 (s, 1 H), 7.55 (s, 1 H$), 7.42$ (d, 1 H), 4.43 (d, 2 H), $3.99(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{t}, 1 \mathrm{H}), 1.82$ (dd, 1 H), $1.23(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{dd}, 1 \mathrm{H}), 0.66(\mathrm{t}, 1 \mathrm{H})$

$\overline{\mathrm{a}}$	-	$\overline{\mathrm{a}}$
$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\mathrm{N}}$	$\underset{\sim}{N}$

$\stackrel{\otimes}{\sim}$	$\stackrel{\text { ® }}{ }$	－

301		P1	L77		3，7	355	${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 88.65(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, 1 \mathrm{H}), 7.80$ （br．s．， 1 H ）， 7.62 （s， 1 H ）， $7.32(\mathrm{~d}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.12$（br． s．， 1 H ）， 4.69 （dd， 1 H ）， 4.55 （dd， 1 H$), 4.12$（ $\mathrm{s}, 3 \mathrm{H}), 3.96(\mathrm{~d}, 1$ H），2．04－2．11（m，1H），1．95－2．02（m，1H），1．49－1．60（m， 2 H），1．33－1．43（m， 1 H$), 1.13(\mathrm{t}, 3 \mathrm{H})$
302		P1	$\begin{gathered} 128726- \\ 47-6 \end{gathered}$	commercial	3，7	329	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$ ，dmso－ $\left.\mathrm{d}_{6}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}), 7.84$ （br．s．， 1 H ）， $7.66-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H})$ ， $\begin{gathered} 4.41(\mathrm{~d}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{t}, 2 \mathrm{H}) \text {, } \\ 1.81-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.76(\mathrm{~m}, 2 \mathrm{H}) \end{gathered}$
303		P1	L78．		3，7	359	${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，dmso－ d_{6} ）$\delta 8.19$（s， 1 H ）， 7.92 （d， 1 H ）， 7.86 （br．s．， 1 H ）， 7.78 （s， 1 H ）， 7.72 （br．s．， 1 H ）， 7.62 （s， 1 H ）， 7.45 （d， 1 H ），4．38－4．52（m，3H）， 4.31 （ddd， 1 H ）， 4.01 （ $\mathrm{s}, 3 \mathrm{H}$ ）， 3.97 （br．s．， 1 H）， 2.10 （br．s．， 1 H）， 1.95 （d， 1 H）， 1.49 （d 1 H）

$\stackrel{\text { 品妥全全 }}{ }$	$\stackrel{\circ}{\text { ® F }} \ddagger$	

$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}), 7.86 \\ & 7.71(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{~d}, 1 \mathrm{H}), 4.63- \\ & \mathrm{n}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.15(\mathrm{~m}, \\ & 0.97(\mathrm{td}, 1 \mathrm{H}), 0.85-0.90(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
$\left.\mathrm{t}_{6}\right) \delta 8.18(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}), 7.8$ H), $7.55(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 4.36$ 99 (s, 3 H), 3.78 (t, 1 H), 2.94-3.02 H), 2.27-2.46(m. 2 H), 2.00-2.11 1.87-1.97(m, 1 H)
d_{6}) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.01$ (br. s., 1 H$)$ $1 \mathrm{H}), 7.70$ (br, s., 1 H$), 7.61(\mathrm{~s}, 1 \mathrm{H})$,), $4.40(\mathrm{dd}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.73$ m, 1 H), 1.27-1.35(m, 1H), 1.21 26 (m, 3 H)

$\left.{ }_{6}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}), 7.86$
$7.71(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{~d}, 1 \mathrm{H}), 4.63-$
$\mathrm{n}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.15(\mathrm{~m}$,
($\mathrm{H} \mathrm{L}^{\prime} \mathrm{w}$) 060-580'($\mathrm{H} \mathrm{L}^{\prime} \mathrm{pl}$) $\angle 6^{\circ} 0$

${ }_{6}$) $\delta 8.18(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}), 7.84$ $\mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 4.36$ $99(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{t}, 1 \mathrm{H}), 2.94-3.02$ H), 2.27-2.46(m. 2 H$), 2.00-2.11$ $1.87-1.97(\mathrm{~m}, 1 \mathrm{H})$
1 H), 7.70 (br. s., 1 H), $7.61(\mathrm{~s}, 1 \mathrm{H})$,
), $4.40(\mathrm{dd}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.73-$ m, 1H), 1.27-1.35(m, 1 H), 1.21 26 (m, 3 H)

304		P1	L79	3,7	359	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{8}) 88.19 (s, 1 H), 7.92 (d, 1 H), (br. s., 1 H), 7.77 (s, 1 H), 7.71 (br. s., 1 H), 7.62 ($\mathrm{s}, 1 \mathrm{H}$), (d, 1 H), 4.38-4.53(m, 3H), 4.31 (ddd, 1 H), 4.01 ($\mathrm{s}, 3$ $3.94-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.97(\mathrm{~m} \text {, }$ $1.50(\mathrm{td}, 1 \mathrm{H})$
305		P1	L58	3,7	355	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) 88.14 (s, 1 H), $8.04(\mathrm{~s}, 1 \mathrm{H})$, (d, 1 H), 7.82 (br. s., 1 H), 7.68 (br. s., 1 H), 7.59 (s, 1 H), (d, 1 H), 4.52-4.64(m, 2H), 3.94-3.99(m, 4H), 2.19- $(\mathrm{m}, 2 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.83\left(\mathrm{~m}_{1} 1 \mathrm{H}\right), 0.36-$ $(\mathrm{m}, 2 \mathrm{H}), 0.09-0.25(\mathrm{~m}, 2 \mathrm{H})$
306		P1	L80	3, 7	373	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $88.10(\mathrm{~s}, 1 \mathrm{H}), 7.84$ (d, 1 H), (s, 1 H) 7.78 (br. s., 1 H), 7.63 (br. s., 1 H), 7.57 (s, 1 H), (d, 1 H), 4.52-4.58(m, 1 H), 4.48 (dd, 1 H), 4.40-4.45 (H). 4.32 (dd. 1 H$), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}, 1 \mathrm{H}), 1.87-1.97$ (H), 1.54-1.81 (m, 2H), 1.27-1.39 (m, 1 H)

$; 9 \quad$${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H})$, $7.91(\mathrm{~d}, 1 \mathrm{H}), 7.80(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.64(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, 1 \mathrm{H}), 4.62(\mathrm{dd}, 1 \mathrm{H}), 4.42(\mathrm{dd}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.64$ (dd, 1 H$), 2.53-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{dd}, 3$ $\mathrm{H})$	307		P1	L113	3,7	327	$\begin{aligned} & \mathrm{H} \text { NMR }(400 \mathrm{MHz} \text { dmso-c } \\ & \text { (br. s., } 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}) \\ & 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.29(\mathrm{r} \\ & 1 \mathrm{H}), 1.75-1.82(\mathrm{~m}, 1 \mathrm{H}) . \end{aligned}$
${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d) c 8.49 (s, 1 H), 8.19 (s, 1 H), 7.93 (d, 1 H$), 7.85$ (br. s., 1 H), $7.68-7.74$ (br. s., 1 H), 7.62 (s. 1 H), 7.47 (d, 1 H), 4.65 (dd, 1 H), 4.49 (dd, 1 H), $4.02-4.08$ (m, 1 H) $4.01(\mathrm{~s}, 3 \mathrm{H}), 3.01-3.11(\mathrm{~m}, 2 \mathrm{H})$	308		P1	L97	3,7	341	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-c (br. s., 1 H), 7.70 (br. s., 1 (dd, 1 H), 4.29 (dd, 1 H), 3 . (m, 1H), 2.87-2.94 (m, 1 (m, 1 H)
$; 8$${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \hat{1} 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, $7.91(\mathrm{~d}, 1 \mathrm{H}), 7.84(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.70(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, 1 \mathrm{H}), 4.44(\mathrm{~d}, 2 \mathrm{H}), 3.93-3.98(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.65$ $(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{dd}, 1 \mathrm{H}), 2.15(\mathrm{dd}, 1 \mathrm{H}), 1.48-1.58(\mathrm{~m}, 1 \mathrm{H})$, $1.27-1.44(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H})$	309		P1	L92	3, 7	359	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso7.92 (d, 1 H), 7.84 (br. s., 1 7.45 (d, 1 H), 4.53 (dd, 1 H 3.82 (m, 1 H), 2.19-2.28 (

-81	3,7	372	H NMR (400 MHz dmso- d_{g}) $\delta 8.17$ ($\mathrm{s}, 1 \mathrm{H}$), 7.90 (d, 1 H$), 7.84$ (br. s., 1 H), $7.64-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H})$, 4.46 (dd, 1 H), 4.38 (dd, 1 H), 3.99 (s, 3 H), $3.89-3.95$ (m, 1 H), 3.25 (s. 3 H), $1.90-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H}), 1.73-1.78$ (m, 1H). 1.21-1.31 (m, 2H)	310		P1	L93	3,7	35
. 82	3,7	372	${ }^{1} \mathrm{H}$ NMR (400 MHz dmso-d d_{6}) 88.17 (s, 1 H), 7.91 (d, 2 H), 7.85 (br. s., 1 H), 7.71 (br. s., 1 H), 7.63 (s, 1 H), 7.44 (d, 1 H), 4.53 (dd, 1 H), 4.37 (dd, 1 H), 3.99 (s, 3 H), $3.77-3.85$ (m, 1 H), $3.44(\mathrm{~d}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.04(\mathrm{~m}$, 1 H), 1.58 (quin, 1 H)	311		P1	L114	3,7	35
. 83	3,7	346	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) 88.19 (s, 1 H), 7.94 (br. s., 1 H), 7.92 (d, 1 H$), 7.85$ (br. s., 1 H), 7.71 (br s., 1 H), 7.63 (s, 1 H), $7.46(\mathrm{~d}, 1 \mathrm{H}), 4.81(\mathrm{~d}, 1 \mathrm{H}), 4.38-4.51(\mathrm{~m}, 2 \mathrm{H}), 3.99-4.06(\mathrm{~m}$, 4 H), 2.34-2.50(m, 2 H)	312		P1	L59	3,7	35

313
3

| 19 |
| :--- | :--- | :--- |

	$\begin{gathered} { }^{1} \mathrm{H} \text { NMR }(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}) \text {) } 8.64(\mathrm{~d}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.9 \\ \text { (br. s., } 1 \mathrm{H}), 7.82(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.66(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), \\ 7.03(\mathrm{~d}, 1 \mathrm{H}), 4.27(\mathrm{~d}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, 1 \mathrm{H}), 2.22(\mathrm{~m} \\ 1 \mathrm{H}), 1.27-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	
\%-¢	$\stackrel{\text { O- }}{ }$	¢
$\stackrel{\mathrm{N}}{\mathrm{m}}$	$\hat{\mathrm{m}}$	$\hat{\sim}$
$\stackrel{\infty}{3}$	N8	$\stackrel{\infty}{9}$
$\bar{\square}$	$\stackrel{0}{2}$	$\stackrel{\bullet}{2}$
N	$\underset{\sim}{N}$	~

i) $88.65(\mathrm{~d}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H})$, $1 \mathrm{H}) .7 .66$ (br. s., 1 H), 7.53 (s, 1 $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, 1 \mathrm{H}), 2.56$ ddd, 1 H), 1.09 (dt, 1 H)
$\begin{aligned} & 8.64(\mathrm{~d}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.83 \\ & 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.05 \\ & .16-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), \\ & 14(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.86(\mathrm{~m}, 1 \mathrm{H}), \\ &) .0 .62(\mathrm{q}, 1 \mathrm{H}) \end{aligned}$
$\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 72 (s, 1 H), 7.35 (d, 1 H), 4.47 -04-4.08(m, 1H), $3.54(\mathrm{~d}, 1 \mathrm{H})$, 1 H), 2.04-2.10(m, 1 H), 1.93 33-1.41(m, 1 H)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $8.33(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}), 4.52-$ $4.66(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 3.99-4.08(\mathrm{~m}, 1 \mathrm{H}) 3.82(\mathrm{dd}, 1 \mathrm{H})$, 3.61 (dd, 1H), 2.20-2.30(m, 1 H), 2.18(d, 1 H$)$, 1.66-1.78 (m, 1 H)	325		P16:	L96	3,7	346	1H NMR (400 MHz , dmso- d_{ϵ} 8.01 (br. s., 1 H), 7.82 (br. s., H), $7.04(\mathrm{~d}, 1 \mathrm{H}), 4.30(\mathrm{~d}, 2 \mathrm{H})$, $-2.65(\mathrm{~m}, 1 \mathrm{H}), 1.80(1$
1 H NMR (400 MHz , dmso-d d_{6}) 8.21 ($\mathrm{s}, 1 \mathrm{H}$), 8.16 (s, 1 H), 7.90 (d, 1 H), 7.84 (br. s., 1 H), 7.69 (br. s., 1 H), 7.64 (s, 1 H), 7.43 (d, 1 H), 5.98 (ddd 1 H), 5.19 (d, 1 H), 5.08 (d, 1 H), 4.55 (dd, 1 H), 4.35 (dd, 1 H) $3.99(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{td}, 1 \mathrm{H}), 2.93(\mathrm{dt}, 1$ H), $2.47(\mathrm{~d}, 1 \mathrm{H}), 2.18(\mathrm{dd}, 1 \mathrm{H})$	326		P16	L72	3,7	328	H NMR (400 MHz , dmso- d_{6}) δ (br. s., 1 H), 7.67 (br. s., 1 H), (d, 1 H), 4.25-4.33(m, 1 H), 4 $3.88-3.95(\mathrm{~m} .1 \mathrm{H}), 1.91-2.0$ 1.11 ($\mathrm{td}, 1 \mathrm{H}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso-d $\left.\mathrm{d}_{6}\right) \delta 8.24$ (br. s., 1 H$), 8.17$ (s, 1 H$)$, 7.90 (d, 1 H). 7.83 (br. s., 1 H), 7.69 ($\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}$), 7.59 (s, 1 H), $7.42(\mathrm{~d}, 1 \mathrm{H}), 4.33-4.43(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, 1 \mathrm{H})$, $2.65(\mathrm{~d}, 1 \mathrm{H}), 2.03(\mathrm{~d}, 1 \mathrm{H}), 0.79-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.79(\mathrm{~m}$, 1 H), 0.54-0.70(m, 2 H)	327		P1	L85	3,7,9	358	${ }^{1} \mathrm{H}$ NMR $(400$ $8.33(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, 1 \mathrm{H}), 7$. $4.63(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 4$. 3.44-3.50(m, 1 H), 3.12(d, (br. s., 1 H), 1.3

3

339		P10	L54	3,7	406	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}$) $\delta 8.87$ (br. s, 1 H$), 8.27(\mathrm{~s}, 1 \mathrm{H})$, 7.91 (d, 1 H), 7.83 (br. s., 1 H), 7.77 (s, 2 H), 7.45 (d, 1 H$), 4.90$ (dd; 1 H), 4.55 (dd, 1 H$), 4.35-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H})$, $4.23(\mathrm{dd}, 1 \mathrm{H}), 4.04-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{t}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, 2.61-2.69(m, 1H), 1.53-1.66(m, 2 H), 1.02 (t. 3 H)	336	
340		P1	L60	3,7	360	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{dmso}^{2} \mathrm{~d}_{\epsilon}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.92$ (d, 1 H) , 7.85 (br. s., 1 H), 7.71 (br. s., 1 H), 7.58 (s, 1 H), 7.44 (d, 1 H$), 4.39-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.00-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, $3.41-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}$, $2 \mathrm{H})$	337	
341		P3	L54	3, 7	363	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$ dmso- $\left.\mathrm{d}_{\epsilon}\right) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.03$ (s, 1 H), 7.89 (br. s., 1 H), 7.74 (br. s., 1 H), 7.68 (s, 1 H), 4.90 (dd, 1 H$), 4.66$ (dd, 1 H$), 4.32$ (dd, 1 H$), 4.04-4.19(\mathrm{~m}, 1 \mathrm{H})$, $3.97(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}$. 3 H)	338	Chiral

33 (br: s., 1 H) 8.16 (s, 1 H), ${ }^{2} 0($ br. s., 1 H$), 7.60(\mathrm{~s}, 1 \mathrm{H})$, d, 1H), 4.09-4.26(m, 1H), 1.53-1.79(m, 2H), 1.04 (t,	342		P1	L66:	3,7	374	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.82$ (s, 1 H), 7.34 (d, 1 H), 4.68 (dd, 1 H$), 4.35-4.48$ ($\mathrm{m}, 1 \mathrm{H}$), 4.12 - 4.19 (m, 1 H), 4.10 (s, 3 H), 3.66 (d, 1 H$), 3.57$ (s, 3 H$), 2.45$ $2.59(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{t}$, 3 H)
$\begin{aligned} & 78(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), \\ & 39(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), \\ & \mathrm{dd}, 1 \mathrm{H}), 4.34(\mathrm{dd}, 1 \mathrm{H}), 3.99 \\ & 1-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.59 \\ & (\mathrm{t}, 3 \mathrm{H}) \end{aligned}$	343		P1	L67	3,7	374	${ }^{\mathrm{H}} \mathrm{H}$ NMR (400 MHz , dmso-d) 88.23 ($\mathrm{s}, 1 \mathrm{H}$), 8.18 ($\mathrm{s}, 1 \mathrm{H}$), 7.91 (d, 1 H), 7.84 (br. s., 1 H), 7.70 (br. s., 1 H), 7.51 (s, 1 H), 7.45 (d, 1H), 4.32-4.52(m, 2H), $3.99(\mathrm{~s}, 3 \mathrm{H}), 3.95$ (br. s., 1 H), 3.86 (d, 1 H), 3.55 (s, 3 H), 2.22-2.37(m, 1H), 1.47-1.65(m, $2 \mathrm{H}), 0.98(\mathrm{t}, 3 \mathrm{H})$
$\begin{aligned} & 33 \text { (br. s., } 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), \\ & 0(\text { br. s., } 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), \\ & 4.31-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.19- \\ & 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.71(\mathrm{~m}, \\ & 7-3.26(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	344		P1	L56	3,7	367	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d) 88.85 ($\mathrm{s}: 1 \mathrm{H}$), 8.15 (s, 1 H), 7.90 (d, 1 H), 7.83 (br. s., 1 H), 7.73 (s, 1 H), 7.69 (br. s., 1 H), 7.43 (d, 1 H$), 4.90(\mathrm{dd}, 1 \mathrm{H}), 4.54(\mathrm{dd}, 1 \mathrm{H}), 4.25(\mathrm{dd}, 1 \mathrm{H}), 4.04-$ 4.13 (m, 1 H), 3.97 (s, 3 H), 2.59 (ddd, 1 H)

345		P1	L40	3,7	380	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{dmso}^{2} \mathrm{~d}_{5}\right) \delta 9$. 7.91 (d, 1 H), 7.84 (br. s., 1 H), 7.7 $7.45(\mathrm{~d}, 1 \mathrm{H}), 4.53(\mathrm{~d}, 1 \mathrm{H}), 4.33($ $3.94(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.98(\mathrm{~m}, 1 \mathrm{H})$, $3 \mathrm{H})$
346		P1	L57	3, 7	362	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{dmso}-\mathrm{d}_{6}\right) \delta 8$. 7.90 (d, 1 H), 7.84 (br. s., 1 H), $7 . \mathrm{f}$ 7.44 (d, 1 H), 5.17 (dd, 1 H), 4.57 ((s, 3 H), 3.75-3.84(m, 1 H), 1.5s (m, 1 H), 1.00
347		P1	L63	3,7	396	$\begin{array}{r} 1 \mathrm{H} \text { NMR }\left(400 \mathrm{MHz} \text {, dmso-d } \mathrm{d}_{6}\right) \delta 9 .! \\ 7.92(\mathrm{~d}, 1 \mathrm{H}), 7.83(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.7 \\ 7.46(\mathrm{~d}, 1 \mathrm{H}), 4.51-4.59(\mathrm{~m}, 1 \mathrm{H}) \\ 4.29(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.71- \\ 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.1 \end{array}$

NMR ($400 \mathrm{MHz}, \mathrm{dmso}_{\mathrm{d}}$) $88.86(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.91$ $1 \mathrm{H}), 7.84$ (br. s., 1 H), 7.72 (s, 1 H), 7.70 (br. s., 1 H), 7.44 1, 1 H$), 4.95(\mathrm{dd}, 1 \mathrm{H}), 4.55(\mathrm{dd}, 1 \mathrm{H}), 4.25-4.35(\mathrm{~m}, 1 \mathrm{H})$,)7-4.18(m, 1H). 3.96(s, 3H), 3.62-3.73(m, 1H), 3.51$3.62(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.00-3.14(\mathrm{~m}, 1 \mathrm{H})$
NMR (400 MHz dmso-d) $\delta 8.47$ (s. 1 H), 8.16 (s, 1 H), 7.90 $1 \mathrm{H}), 7.85$ (br. s., 1 H$), 7.70(\mathrm{~s}, 2 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 4.56$ (dd $\mathrm{H}), 4.21-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.98(\mathrm{~m}, 1 \mathrm{H})$, $70(\mathrm{~d}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.81(\mathrm{~m}, 1 \mathrm{H}), 0.98$ (d, 3 H)
NMR (400 MHz , dmso- $\mathrm{d}_{\mathrm{\epsilon}}$) $\delta 8.23$ (s, 1 H), 8.17 (s, 1 H), 7.92 1 H), 7.84 (br. s., 1 H), 7.70 (br. s., 1 H), 7.52 (s, 1 H), 7.45 $1 \mathrm{H}), 4.39-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.91(\mathrm{~m}, 1 \mathrm{H})$ 83 (d, 1 H), 3.55 ($\mathrm{s}, 3 \mathrm{H}$), 2.55-2.64 (m, 1 H), 1.15 (d, 3 H)

(

357		P1	L71	3, 7, 10	359	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dmso-d d_{6}) $\delta 8.93$ (s, 1 H), 8.45 (br. s., 2 H), 8.19 (s, 1 H), 7.92 (d, 1 H), 7.85 (br. s., 1 H), 7.73 (br. s., 1 H), $7.49(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, 1 \mathrm{H}), 4.46-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.22(\mathrm{~m}$ $1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.47(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, 3 \mathrm{H})$
358		P2	L54	3,7	390	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{dmso}^{2} \mathrm{~d}_{\mathrm{f}}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (d, 1 H) $7.74(\mathrm{~s}, 1 \mathrm{H}), 7.72$ (br. s., 1 H), 7.70 (br, s., 1 H), 7.41 (d, 1 H), 4.88 (dt, 1 H), 4.90 (dd, 1 H$), 4.52$ (dd, 1 H$), 4.27(\mathrm{dd}$, $1 \mathrm{H}), 4.01-4.11(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.68(\mathrm{~m}$, $2 \mathrm{H}), 1.38(\mathrm{t}, 6 \mathrm{H}), 1.01(\mathrm{t}, 3 \mathrm{H})$
359		P7	L54	3,7	376	${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$ dmso-d) 88.85 (s, 1 H), 8.16 (s, 1 H), 7.89 (d, 1 H) , 7.77 (br. s., 1 H), 7.72 (s, 1 H), 7.70 (br. s., 1 H), 7.42 (d, 1 H), 4.90 (dd, 1 H$), 4.54$ (dd, 1 H$), 4.15-4.33(\mathrm{~m}, 3 \mathrm{H})$, $4.02-4.13(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.71(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.44(\mathrm{t}, 3 \mathrm{H}), 1.02(\mathrm{t}, 3 \mathrm{H})$

$\begin{aligned} & \mathrm{d}, 1 \mathrm{H}), 7.94 \text { (br. s, } 1 \mathrm{H}) \text {, } \\ & 1 \mathrm{H}), 7.46(\mathrm{~d}, 1 \mathrm{H}), 4.51 \\ & 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.89-3.92 \\ & 2.21(\mathrm{~m} 2 \mathrm{H}), 1.59-1.64 \\ & \text { I), } 0.91(\mathrm{t}, 3 \mathrm{H}) . \end{aligned}$	360		P1	L54	$\begin{gathered} 3,7,12 \\ \text { HPLC } \end{gathered}$	380	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{dmso}_{\mathrm{d}}$) $\delta 886$ ($\mathrm{s}, 1 \mathrm{H}$), $8.20(\mathrm{~s}, 1 \mathrm{H}), 7.92$ (br. s., 1 H), 7.90 (d, 1 H), 7.80 (br. s, 1 H), 7.78 (d, 1 H), 4.92 (dd, 1 H), 4.54 (dd, 1 H), 4.25 (dd, 1 H$), 4.15$ (dd, 1 H$), 4.01$ (s, $3 \mathrm{H}), 2.54-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, 3 \mathrm{H})$
$\left.\mathrm{z}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ H), 4.43-4.58(m, 2 H$)$, H), 1.71 (d, 1 H), 1.17 (d, i, 1 H)	361		P1	L54	$\begin{gathered} 3,7,12, \\ \text { HPLC } \end{gathered}$	380	${ }^{1}$ H NMR (400 MHz , dmso-de) 88.65 (s, 1 H), 7.98 (d, 1 H), 7.93 (br. s., 1 H), 7.89 (s, 1 H), 7.76 (br. s., 1 H), 7.47 (dd, 1 H), 4.85 (dd, 1 H), 4.53 (dd, 1 H), 4.42 (dd, 1 H$), 4.03-4.12$ (m, 1 H), $3.97(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}$, $3 \mathrm{H})$
$\begin{aligned} & \left.\mathrm{z}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \\ & (\mathrm{H}), 4.45-4.57(\mathrm{~m}, 2 \mathrm{H}), \\ & \mathrm{H}), 1.68-1.76(\mathrm{~m}, 1 \mathrm{H}), \\ & 6(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	362		P1	L47	$\begin{gathered} 3,7,12, \\ \text { HPLC } \end{gathered}$	362	${ }^{1} \mathrm{H}$ NMR (400 MHz dmso-d d_{5}) $\delta 8.19$ (s, 1 H), 8.05 (br. s. 1 H), $7.90(\mathrm{~m}, 2 \mathrm{H}), 7.80$ (br. s. 1 H), 7.60 (s, 1 H), $4.38-4.45$ ($\mathrm{m}, 2$ H), $4.00(\mathrm{~s}, 3 \mathrm{H}), 3.94-3.96(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.45(\mathrm{~m}, 1 \mathrm{H})$, $2.24-2.33(\mathrm{~m} 1 \mathrm{H}), 2.09-2.16(\mathrm{~m} 1 \mathrm{H}), 1.55-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.33-1.41$ (m, 1 H), 0.93 (t, 3 H).

363		P1	L47	$\begin{aligned} & 3,7,12, \\ & \text { HPLC } \end{aligned}$	362	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) 7.98 (7.89 (s, 1 H), 7.77 (br, s, 1 H), 7.70 (s $-4.55(\mathrm{dd}, 1 \mathrm{H}), 4.41-4.45(\mathrm{dd}, 1 \mathrm{H})$, $(\mathrm{m}, 1 \mathrm{H}), 2.43-2.45(\mathrm{~m} 1 \mathrm{H}), 2.17-2$ (m 1 H), 1.38-1.44 ($\mathrm{m}, 1 \mathrm{H}$
364		P1	L74	$\begin{gathered} 3,7,12, \\ \text { HPLC } \end{gathered}$	360	${ }^{1} \mathrm{H}$ NMR (400 MH $\begin{array}{r} 8.47(\mathrm{~s}, 1 \mathrm{H}) 7.76(\mathrm{~d}, 1 \mathrm{H}), 7.71(\mathrm{~d}, 1 \\ 4.11(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{t}, 1 \mathrm{H}), 1.87(\mathrm{dd}, 1 \\ 3 \mathrm{H}), 1.07-1.15(\mathrm{~m} \end{array}$
365		P1	L74	$\begin{gathered} 3,7,12, \\ \text { HPLC } \end{gathered}$	360	${ }^{1} \mathrm{H}$ NMR (400 MH 8.02 ($\mathrm{s}, 1 \mathrm{H}$), 7.95 (d, 1 H), 7.36 (dd, 1 4.09 ($\mathrm{s}, 3 \mathrm{H}$), 4.02 (t, 1 H), 1.91 (dd, 1 $1.18(\mathrm{~d}, 3 \mathrm{H}), 1.08-1.1$

¢	$\stackrel{\circ}{0}$	憨
$\stackrel{\mathrm{N}}{\mathrm{N}}$	$\stackrel{\sim}{m}$	$\hat{\mathrm{m}}$
$\stackrel{\text { N }}{ }$	$\stackrel{\infty}{\beth}$	$\stackrel{\approx}{\Xi}$
п	「	■
\%	¢	\%

	3.7	374	${ }^{\dagger} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, dmso-de) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.92$ (d, 1 H), 7.83 (br. s., 1 H), 7.70 (br. s., 1 H), 7.52 (s, 1 H), 7.45 (d, 1 H$), 5.23$ (dd, 1 H), 4.51-4.66(m, 2 H$), 4.06$ (dt, 1 H$), 3.98$ $(\mathrm{s}, 3 \mathrm{H}), 1.96-2.14(\mathrm{~m}, 1 \mathrm{H}), 0.81-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.46-0.57$ $(\mathrm{m}, 2 \mathrm{H}), 0.21-0.34(\mathrm{~m}, 2 \mathrm{H})$
	3.7	380	$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{dmso-d}\right) \delta 8.85(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, 1 \mathrm{H}), 7.83(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H})$, $7.43(\mathrm{~d}, 1 \mathrm{H}), 4.92(\mathrm{dd}, 1 \mathrm{H}), 4.62-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.60$ $(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{dd}, 1 \mathrm{H}), 4.09-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.77$ $-2.96(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.08(\mathrm{~m}, 2 \mathrm{H})$.
mercial	$\begin{gathered} 3,22, \\ 16(\text { Reff. } \\ 37) \end{gathered}$	424	${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.79$ $(\mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{dt}, 1 \mathrm{H}), 4.59(\mathrm{dd}, 1$ $\mathrm{H}), 4.52(\mathrm{dd}, 1 \mathrm{H}), 4.19-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.36-$ $2.58(\mathrm{~m}, 3 \mathrm{H}), 2.06-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{t}, 6 \mathrm{H})$

(

	P23	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	$\left\|\begin{array}{c} 3,22 \\ 16 \text { (Ref. } \\ 38 \text {) } \end{array}\right\|$	438	${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.77$ ($\mathrm{s}, 1 \mathrm{H}$), $7.28(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{dt}, 1 \mathrm{H}) .4 .59(\mathrm{dd}, 1 \mathrm{H}), 4.52(\mathrm{dd}, 1$ $\text { H), 4.19-4.27(m, 1H), 3.73(s, } 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.58$ $(\mathrm{m}, 3 \mathrm{H}), 2.07-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{t}, 6 \mathrm{H}) .$
	P23	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	$\left\lvert\, \begin{gathered} 3,22, \\ 16 \text { (Ref. } \\ 39) \end{gathered}\right.$	424	$\begin{array}{\|} { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CD}_{\mathrm{s}} \mathrm{OD}\right) \delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.78 \\ (\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{dt}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{dd}, 1 \\ \mathrm{H}), 4.18-4.28(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.06 \\ -2.17(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{t}, 6 \mathrm{H}) \end{array}$
i^{-D}	P1	L123		3,7	364	${ }^{\prime} \mathrm{H}$ NMR (600 MHz , dmso-d d_{6}) $\delta 8.79$ (br. s., 1 H), 8.16 (s, 1 H), $7.90(\mathrm{~d}, 1 \mathrm{H}), 7.80$ (br. s., 1 H$), 7.74$ (s, 1 H$), 7.63$ (br. s., 1 H), 7.42 (d, 1 H), 4.55 (dd, 1 H), 4.27 (dd, 1 H), $4.04-4.12$ ($\mathrm{m}, 1$ H), 3.97 (s, 3 H), $1.54-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, 3 \mathrm{H})$

	P1	L124		3,7	366	${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso-d d_{6}) $\delta 8.81$ ($\mathrm{s}, 1 \mathrm{H}$), 8.65 (d, 1 H), 8.20 (s, 1 H) 7.83 (br. s. 1 H), 7.68 (br. s., 1 H), 7.46 (s, 1 H), 7.05 (d, 1 H), 5.33 (dd, 1 H) 4.86 (dd, 1 H), 4.74 (dd, 1 H), 4.39 - $4.27(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.06(\mathrm{~m}, 1 \mathrm{H})$
	P23	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	$\left.\begin{array}{\|c\|} \hline 3,22 \\ 16(\operatorname{Ref} \\ 40) \end{array} \right\rvert\,$		${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, 1 \mathrm{H}), 8.49$ $(\mathrm{s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, 1 \mathrm{H}), 5.00(\mathrm{dt}, 1 \mathrm{H}), 4.62-4.69$ $(\mathrm{m}, 1 \mathrm{H}), 4.53-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.31(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3$ H), 2.38-2.58(m, 3H), 2.07-2.19(m, 1H), $1.51(\mathrm{t}, 6 \mathrm{H})$
	P23	$\begin{gathered} 17342- \\ 08-4 \end{gathered}$	commercial	$\begin{array}{\|c\|} \hline 3,22 \\ 16(\operatorname{Ref} \\ 41) \end{array}$		${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 2 \mathrm{H}), 8.67$ $(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{dt}, 1 \mathrm{H}), 4.62-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.51-$ $4.62(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.32(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.04-$ $2.21(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{t}, 6 \mathrm{H})$

$\stackrel{n}{\kappa}$	$\stackrel{\infty}{\text { ¢ }}$
$\begin{aligned} & \underset{\sim}{\mathcal{W}} \\ & \underset{\sim}{N} \underset{\sim}{\mathcal{F}} \end{aligned}$	
N゙	N
N	N
$\stackrel{\infty}{\kappa}$	$\stackrel{\otimes}{\infty}$

Table 1 References and Notes

1. Organic Process Research and Development, 2011, 15, 1052-1062.
2. European Journal of Organic Chemistry 2005, 1354-1366.
3. Prepared as described in US patent application US 2012/95040 A1.
4. Organic \& Biomolecular Chemistry, 2005, 3, 603-611.

[^0]5. Hrepared as aescrided in vvru patent appication vvu zuUrizo4us AZ
6. Prepared as described in US patent application US 2013/79324 A1.
7. Korean Journal of Medicinal Chemistry, 1994, 4, 119-125.
8. Organic Process Research and Development, 2011, 15, 1052 - 1062.
9. Journal of Organic Chemistry, 1987, 52, 5247-5254.
10. Prepared as described in US patent application US 2007/0265272 A1.
11. Tetrahedron: Asymmetry 1995, 6, 1181-1190.
12. Bioorganic and Medicinal Chemistry Letters 2010, 20, 4749-4752.
13. Prepared as described in US patent application US 2012/95040 A1.
14. Bioorganic and Medicinal Chemistry Letters 2011, 21, 3290-3296.
15. Tetrahedron 2012, 68, 1286 - 1298.
16. Prepared as described in World patent application WO 2013/042006 A1.
17. Tetrahedron: Asymmetry 2004, 15, 1659-1665.
18. Tetrahedron: Asymmetry, 2002, 13, 647-658.
19. Prepared as described in World patent application WO 2008/128919 A2.
20. Journal of Medicinal Chemistry 1987, 30, 992-998.
21. Journal of the Chemical Society, Perkin Transactions 1, 2002, 1076-1082.
22. Prepared as described in US patent application US 2010/197654 A1.
23. Journal of the American Chemical Society 2010, 132, 1188-1189.
24. Prostaglandins 1979, 17, 223-226.
25. Organic Letters, 1999, 1, 2105-2107.
26. Tetrahedron, 2007, 63, 10587-10595.
27. Tetrahedron Letters, 1998, 39, $857-860$.
28. Prepared as described in European patent application EP 438311 A2.
29. Journal of the American Chemical Society 1999, 121, 10478-10486.
30. Journal of Medicinal Chemistry 1991, 34, $887-900$.
31. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry 1997, 2111-2122.
32. Tetrahedron Letters 1989, 30, 6637-6640.
33. Archiv der Pharmazie 1964, 297, 632 - 638.
34. Canadian Journal of Chemistry 1956, 34, 815-820.
35. Journal of Organic Chemistry, 1997, 62, 4770-4779.
36. ${ }^{1} \mathrm{H}$ NMR (500 MHz, dmso- d_{6}) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}$, diastereomer 1), $8.18-8.22(\mathrm{~m}, 1 \mathrm{H}$, both diastereomers), 8.16 ($\mathrm{s}, 1 \mathrm{H}$, diastereomer 2), $7.87-7.91$ (d, 1 H , both diastereomers), 7.74 (br. s., 1 H , both diastereomers), 7.71 (s, 1 H , both diastereomers), 7.62 (br. s, 1 H , both diastereomers), 7.42 ($\mathrm{d}, 1 \mathrm{H}$, both diastereomers), 4.92-5.01 ($\mathrm{m}, 1 \mathrm{H}$, diastereomer 1), 4.86 - 4.93 (m, 1 H , diastereomer 2), 4.56 (dd, 1 H , diastereomer 1), $4.44-4.51$ (m, 1 H , diastereomer 2), 4.31-4.38 (m, 1 H , diastereomer 1), 4.22 (dd, 1 H , diastereomer 2), 3.93 $4.05(\mathrm{~m}, 1 \mathrm{H}$, both diastereomers), $3.48-3.54(\mathrm{~m}, 2 \mathrm{H}$, both diastereomers), 3.27 (s, 3 H , diastereomer 1), $3.26(\mathrm{~s}, 3 \mathrm{H}$, diastereomer 2), 2.69-2.80(m,1 H, diastereomer 1), 2.61$2.68(\mathrm{~m}, 1 \mathrm{H}$, diastereomer 2), $2.33-2.43(\mathrm{~m}, 1 \mathrm{H}$, diastereomer 1$), 2.21(\mathrm{dt}, 1 \mathrm{H}$, diastereomer 2), 2.06 - $2.15(\mathrm{~m}, 1 \mathrm{H}$, diastereomer 1), 1.76 ($\mathrm{dt}, 1 \mathrm{H}$, diastereomer 2), 1.35 $1.45(\mathrm{~m}, 6 \mathrm{H}$, both diastereomers)
37. 4-Bromo-1-methyl-1H-imidazole was used as the Suzuki coupling partner in the step of

Method 16.
38. 4-Bromo-1,2-dimethyl-1H-imidazole was used as the Suzuki coupling partner in the step of Method 16.
39. Tert-butyl 4-bromo-2-methyl-1H-imidazole-1-carboxylate was used as the Suzuki coupling partner in the step of Method 16.
40. 2-Bromo-4-methylpyrimidine was used as the Suzuki coupling partner in the step of Method 16.
41. 2-Bromo-5-chloropyrimidine was used as the Suzuki coupling partner in the step of Method 16.
42. 6-Bromopyridin- $2(1 \mathrm{H})$-one was used as the Suzuki coupling partner in the step of Method 16.
43. 4-Bromo-2-methylpyrimidine was used as the Suzuki coupling partner in the step of Method 16.
[0629] Table 2 names some of the specific intermediates unique to this work. As described in Scheme 1, compounds such as P1, P16 or P3, P5, or P25, which may be prepared, respectively, from C5, C29 and C17, C25 and C179 may undergo nucleophilic aromatic substitution reactions with alcohols to afford products of the general structure la (See Scheme 1). As described in Scheme 2, compounds such as P5 or P25, which may be prepared, respectively, from C25 and C179, may undergo reactions such as alkylation or Mitsunobu reaction to afford products of the general structure la (See Scheme 2). As described in Scheme 10, α, β-unsaturated lactams such as (S)-3,3-dimethyl-1,7a-dihydropyrrolo[1,2-c]oxazol-5(3H)-one (P20) may be treated with an organometallic reagent such as an alkyllithium or alkyl Grignard reagent in the presence of chlorotrimethylsilane and a copper compound. Some examples in the literature include reaction of benzylidene-protected lactams with alkyl or vinyl cuprate reagents to afford addition of an alkyl or vinyl group anti to the existing stereocenter. For example, see: N. Okamoto et al., Tetrahedron A symmetry 2001, 12(9), 1353-1358; S. Hara et al., Tetrahedron 2004, 60(37), 8031-8035; A. Endo and S. Danishefsky, J. Am. Chem. Soc. 2005, 127 (23), 8298-8299. In the chemistry described herein using the acetonide derivative $\mathbf{P 2 0}$, conjugate addition generally occurs in an unprecedented manner to afford a product with the new substituent syn to the existing stereocenter. Representative conjugate addition products include C53, C54, C55, and C56. Such lactams may undergo further elaboration, for example, to provide fluoro derivatives such as C53, C59, C61, and C62, or oxygenated derivatives such as C54.
Table 2

Intermediate	Structure	Name
C28		1-chloro-7-hydroxyisoquinoline-6-carbonitrile
P1		1-chloro-7-methoxyisoquinoline-6-carbonitrile
C29		4-chloro-6-hydroxyquinoline-7-carbonitrile
P16		4-chloro-6-methoxyquinoline-7-carbonitrile
C17		6-methoxy-4-oxo-3,4-dihydroquinazoline-7carbonitrile
P3		4-chloro-6-methoxyquinazoline-7-carbonitrile
C25		methyl 5-((tert-butyldiphenylsilyl)oxy)-3-hyd roxy-2-naphthoate
P5		5-hyd roxy-3-m ethoxy-2-naphtham ide
C179		methyl 8-fluoro-5-hydroxy-3-methoxy-2naphthoate
	$1 \mathrm{OH}^{\mathrm{OH}}$	

Intermediate	Structure	Name
P25		8-fluoro-5-hydroxy-3-methoxy-2-naphthamide
C53		(7R,7aS)-3,3,7- trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one
C54		(7R,7aS)-7-ethyl-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)one
C55		(7S,7aS)-3,3-dimethyl-7- vinyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one
C56		(7S,7aS)-7-cyclopropyl-3,3- dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H) one
C58		(6R,7S,7aS)-6-fluoro-3,3,7-trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one
C59		(6S,7S,7aS)-6-fluoro-3,3,7- trimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-one
C61		(6S,7S,7aS)-7-ethyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)one
C62		(6R,7S,7aS)-7-ethyl-6-fluoro-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)one
C54		(7S,7aS)-7-ethyl-6-hydroxy-3,3-dimethyltetrahydropyrrolo[1,2-c]oxazol-5(3H)-

Intermediate	Structure	Name
		one
L38		(3S,4S,5S)-3-fluoro-5-(hydroxymethyl)-4-methylpyrrolidin-2-one
L47		(4R,5S)-4-ethyl-5-(hydroxymethyl)pyrrolidin-
L74		(1R,4S,5S,6S)-4-(hydroxymethyl)-6-methyl-3-azabicyclo[3.1.0]hexan-2-one
L54		(3S,4S,5S)-4-ethyl-3-fluoro-5-(hyd roxymethyl)pyrrolidin-2-one
L61		(4R,5S)-3-fluoro-5-(hydroxymethyl)-4-(methoxymethyl)pyrrolidin-2-one
L68		(4S,5S)-3-(benzyloxy)-4-ethyl-5-(hyd roxymethyl)pyrrolidin-2-one
L116		(4S,5S)-4-(2-fluoroethyl)-5-(hyd roxymethyl)pyrrolidin-2-one
L118		(3S,4R,5S)-3-fluoro-4-(fluoromethyl)-5-(hyd roxymethyl)pyrrolidin-2-one
L121		(3S,4S,5S)-3-fluoro-4-(2-fluoroethyl)-5-(hyd roxymethyl)pyrrolidin-2-one

Intermediate	Structure	Name
L124		(3R,4R,5S)-3-fluoro-4-(fluoromethyl)-5-(hyd roxymethyl)pyrrolidin-2-one

Biological Activity:

[0630] IRAK4 enzymatic DELFIA assay, Protocol A. This is an in vitro assay to measure IRAK4 enzymatic activity utilizing the DELFIA (Dissociation-Enhanced Lanthanide Fluorescent Immunoassay, Perkin-Elmer) platform, with the human IRAK4 FL (Full Length) construct to characterize IRAK4 inhibitor and control compounds at 0.6 mM ATP $\left(\mathrm{K}_{\mathrm{M}}\right)$. The final amount of enzyme in the assay is 0.1 nM IRAK4 FL, final concentration of substrate is 50 nM , and final concentration of DMSO is 2.5%.
[0631] The test compound was solubilized in DMSO to a stock concentration of 30 mM . The dose response plates were prepared with a 4 mM primary compound concentration, and then diluted in DMSO in a four-fold series for a total of 11 data points. Compounds were prepared as a 40-fold multiple of the final in-assay concentration.
[0632] To begin the assay, $19 \mu \mathrm{~L}$ of reaction mixture containing 20 mM HEPES $\mathrm{pH}=7.5,5 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 0.0025 \%$ Brij-35, $600 \mu \mathrm{M}$ ATP, 0.21 nM Full-length phosphorylated recombinant human IRAK4 (GenBank ID AF445802) were aliquoted into Ultra-Clear Polypropylene, 384-well, UBottom Plates (Corning Life Sciences). $1 \mu \mathrm{~L}$ of test compound from the dose-response plate was added to the reaction mixture and incubated for 20 minutes at room temperature. Then 20 $\mu \mathrm{L}$ of 20 mM HEPES $\mathrm{pH}=7.5,5 \mathrm{mM} \mathrm{MgCl} 2,0.0025 \%$ Brij-35, $600 \mu \mathrm{M}$ ATP, and 100 nM ERMbiotinylated peptide (AGAGRDKYKTLRQIR) was added to start the reaction. The reaction was incubated for 60 minutes at room temperature and stopped by the addition of $20 \mu \mathrm{~L} 0.3 \mathrm{M}$ EDTA.
[0633] $50 \mu \mathrm{~L}$ of the reaction mixture was transferred to a streptavidin coated detection plate (DELFIA streptavidin coated plates, 384-well, white plates, Perkin-Elmer Life Sciences) and incubated for 30 minutes at room temperature. The plates were washed $4 x$ with $75 \mu \mathrm{~L}$ per well of PBS containing 0.05% Tween-20. Plates were then incubated with $50 \mu \mathrm{~L}$ per well of antibody cocktail of Anti-pERM antibody at $0.125 \mu \mathrm{~g} / \mathrm{mL}$ (Cell Signaling Technology), plus Anti-Rabbit IgG EuN1 at $0.25 \mathrm{ug} / \mathrm{ml}$ (Perkin-Elmer Life Sciences) in a solution of $10 \mathrm{mM} \mathrm{MOPS} \mathrm{pH=7.5}$, $150 \mathrm{mM} \mathrm{NaCl}, 0.05 \%$ Tween-20, $0.02 \% \mathrm{NaN}_{3}, 1 \% \mathrm{BSA}, 0.1 \%$ Gelatin for 45 minutes. The plates were washed $4 x$ with $50 \mu \mathrm{~L}$ per well of PBS containing 0.05% Tween- 20 . Then $50 \mu \mathrm{~L}$ per well of DELFIA Enhancement Solution (Perkin-Elmer Life Sciences) were added to the plate and then read on an EnVision Model 2103 using a 340 nm excitation wavelength and a 665 nm emission wavelength for detection.
[0634] IRAK4 enzymatic DELFIA assay, Protocol B. This is an in vitro assay to measure IRAK4 enzymatic activity utilizing the DELFIA (Dissociation-Enhanced Lanthanide Fluorescent Immunoassay, Perkin-Elmer) platform, with the human IRAK4 kinase domain (aa 154-460) construct to characterize IRAK4 inhibitor and control compounds at 0.6 mM ATP $\left(K_{M}\right)$. The final amount of enzyme in the assay is 114 pM IRAK4 kinase domain, final concentration of substrate is 200 nM , and final concentration of DMSO is 5%.
[0635] The test compound was solubilized in DMSO to a stock concentration of 30 mM . The dose response plates were prepared with a 2 mM primary compound concentration, and then diluted in DMSO in a four-fold series for a total of 10 data points. Compounds were prepared as a 20 -fold multiple of the final in-assay concentration
[0636] To begin the assay, $45 \mu \mathrm{~L}$ of reaction mixture containing 20 mM HEPES $\mathrm{pH}=7.5,5 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 0.0025 \%$ Brij-35, $600 \mu \mathrm{M}$ ATP, 228 pM phosphorylated recombinant human IRAK4 kinase domain (aa 154-460; GenBank ID AF445802) were aliquoted into Ultra-Clear Polypropylene, 96 -well, U-Bottom Plates (Corning Life Sciences). $5 \mu \mathrm{~L}$ of test compound from the dose-response plate was added to the reaction mixture and incubated for 15 minutes at room temperature. Then $50 \mu \mathrm{~L}$ of 20 mM HEPES $\mathrm{pH}=7.5,5 \mathrm{mM} \mathrm{MgCl} 2,0.0025 \%$ Brij- 35,600 $\mu \mathrm{M}$ ATP, and 400 nM ERM-biotinylated peptide (AGAGRDKYKTLRQIR) were added to start the reaction. The reaction was incubated for 90 minutes at room temperature and stopped by the addition of $25 \mu \mathrm{~L} 0.5 \mathrm{M}$ EDTA.
[0637] $100 \mu \mathrm{~L}$ of the reaction mixture was transferred to a streptavidin coated detection plate (EvenCoat Streptavidin Coated Plates, 96-Well, R\&D Systems) and incubated for 30 minutes at room temperature. The plates were washed 4 times with $100 \mu \mathrm{~L}$ per well of PBS containing 0.05% Tween-20. Plates were then incubated with $50 \mu \mathrm{~L}$ per well of antibody cocktail of AntipERM antibody (Cell Signaling Technology) diluted 1:5000, plus Anti-Rabbit IgG EuN1 at 0.242 $\mu \mathrm{g} / \mathrm{ml}$ (Perkin-Elmer Life Sciences) in a solution of 10 mM MOPS pH=7.5, $150 \mathrm{mM} \mathrm{NaCl}, 0.05 \%$ Tween-20, $0.02 \% \mathrm{NaN}_{3}, 1 \% \mathrm{BSA}, 0.1 \%$ Gelatin for 45 minutes. The plates were washed 4 x with $100 \mu \mathrm{~L}$ per well of PBS containing 0.05% Tween-20. Then $100 \mu \mathrm{~L}$ per well of DELFIA Enhancement Solution were added to the plate and then read on an EnVision Model 2103 using a 340 nm excitation wavelength and a 665 nm emission detection.
[0638] R848 induced TNF a in human PBMC assay. This protocol is for R848-induced TNFa production by human peripheral blood mononuclear cells (PBMCs). R848 is a synthetic agonist for the endosomal Toll-like receptors TLR7 and TLR8, which signal through interleukin-1 receptor-associated kinase 4 (IRAK4). The assay is used to assess cell-based potency of small molecule inhibitors of IRAK4 in the absence of serum.
[0639] Peripheral blood mononuclear cells (PBMC) were purified from fresh human blood by separation on a Histopaque-1077 cushion using ACCUSPIN-System-Histopaque -1077 system (Sigma Aldrich). Briefly, 30 mL of human blood were added to an ACCUSPIN tube containing

15 mL of Histopaque-1077 and spun for 20 minutes at 1200 xg at room temperature in an Eppendorf 5804R swinging-bucket centrifuge with low brake. The PBMCs in the interphase layer were collected and washed with PBS via centrifugation multiple times until the supernatant is clear. The purified PBMCs were re-suspended in RPMI (Roswell Park Memorial Institute) media (Sigma-Aldrich).
[0640] For the assay, a compound dilution plate containing a top concentration of 4 mM compound in DMSO was serially diluted 4 -fold for 11 times. 250 nL of the compound dilution plate was spotted into a 384-well, flat bottom with lid, TC-treated, black with clear bottom, sterile, polystyrene plate (Corning Life Sciences). 100,000 PBMCs in $50 \mu \mathrm{~L}$ of RPMI containing $5.5 \mu \mathrm{M}$ R848 are added to each well of the 384 well plate and allowed to incubate for 3 hours at $37^{\circ} \mathrm{C}$.
[0641] Plates were briefly spun at 1200xg Eppendorf 5804R swinging-bucket centrifuge for 5 minutes and $15 \mu \mathrm{~L}$ of the supernatant from each well is transferred to the corresponding well of a Human TNFa 384-Well Tissue Culture MSD Kit (Mesoscale Discovery). $10 \mu \mathrm{~L}$ of anti-TNFa antibody labeled with MSD SULFO-TAG at $50 \mu \mathrm{~g} / \mathrm{mL}$ was added to each well and allowed to incubate overnight at $4^{\circ} \mathrm{C}$. The plates were then washed with $1 \times$ PBS containing 0.05% Tween 20 after which $35 \mu \mathrm{~L}$ of MSD read buffer T (Mesoscale Discovery) was added to each well. The plates were then imaged on an MSD Sector Imager 6000.
TABLE 3. Biological Activity (Example 296 is the compound of the invention; Exs 1-295 and 297-379 are Reference Exs)

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
1		2913		4-(azetidin-3-ylmethoxy)-6-(propan-2-yloxy)quinoline-7-carboxamide
2		4497		4-[(3S)-piperidin-3-ylmethoxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
3		2239		4-[(3R)-piperidin-3-ylmethoxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
4		913		4-(piperidin-4-ylmethoxy)-6-(propan-2-yloxy)quinoline-7-carboxamide
5		323		4-[(1R,5S,6r)-3-azabicyclo[3.1.0]hex-6-ylmethoxy]-6-(propan-2-yloxy)quinoline-7carboxamide
6		618		4-(oxetan-3-ylmethoxy)-6-(propan-2-yloxy)quinoline-7-carboxamide
7		170		4-(cyclopentylmethoxy)-6-(propan-2-yloxy)quinoline-7-carboxamide
				4-(1-cyclobutylethoxy)-6-(propan-2-

Ex. \#	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	$\begin{aligned} & \text { R848- } \\ & \text { induced } \\ & \text { TNFa } \\ & \text { PBMC } \\ & \text { IC50 } \\ & \text { nM) } \end{aligned}$	IUPAC NAME
8		834		yloxy)quinoline-7-carboxamide
9		598		4-(cyclobutylmethoxy)-6-(propan-2-yloxy)quinoline-7-carboxamide
10		752		6-(propan-2-yloxy)-4-(tetrahydrofuran-3-ylmethoxy)quinoline-7-carboxamide
11		3234		6-(propan-2-yloxy)-4-(tetrahydrofuran-2-ylmethoxy)quinoline-7-carboxamide
12		1042		4-[(3-methyloxetan-3-yl)methoxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
13		383		4-[(1-methylcyclobutyl)methoxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
14		231		4-[(2R)-bicyclo[2.2.1]hept-2-yloxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
15		2969		6-(propan-2-yloxy)-4-[(2R)-tetrahydrofuran-2-ylmethoxy]quinoline-7-carboxamide
16		\| 386		4-(bicyclo[2.2.1]hept-2-yloxy)-6-(propan-2-yloxy)quinoline-7-carboxamide
17		476		6-(propan-2-yloxy)-4-(tricyclo[2.2.1.0~2,6~]hept-3-yloxy)quinoline-7-carboxamide
18		507		4-(1,3-dioxolan-4-ylmethoxy)-6-(propan-2-yloxy)quinoline-7-carboxamide
19		354		4-[(1S,2R)-bicyclo[2.2.1]hept-2-yloxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
20		102		1-[(3aR,6aS)-octahydrocyclopenta[c]pyrrol-4-yloxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
21		83		4-[(3aR,6aS)-octahydrocyclopenta[c]pyrrol-4-yloxy]-6-(propan-2-yloxy)quinoline-7carboxamide
22		45		4-\{[(3S)-1-(cyanoacetyl)pyrrolidin-3-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7carboxamide
23	656			4-\{[(3R)-1-(cyanoacetyl)pyrrolidin-3-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7carboxamide
24		1492		7-(propan-2-yloxy)-1-(tetrahydrofuran-3-ylmethoxy)isoquinoline-6-carboxamide

Ex. $\#$	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
25		1130		7-(propan-2-yloxy)-1-(tetrahydro-2H-pyran-2-ylmethoxy)isoqu inoline-6-carboxamide
26	4.6		133	1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
27		2483		1-[(1,1-dioxido-1,2-thiazinan-3- yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
28		1320		1-[(3S)-piperidin-3-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
29		76		1-[(3-methyl-2-oxo-1,3-oxazolidin-4-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
30		2445		7-(propan-2-yloxy)-1-[(2R)-tetrahydrofuran-2-ylmethoxy]isoquinoline-6-carboxamide
31		2616		1-\{[(2S)-1-methylpyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
32	840			1-\{[(2R)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
33		2862		1-[(1-acetylpiperidin-4-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
34		483		1-\{[(3R,4R)-4-methoxypyrrolidin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
35		16		1-[(2-oxo-1,3-oxazolidin-5-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
36		735		7-(propan-2-yloxy)-1-(tetrahydro-2H-pyran-4-ylmethoxy)isoquinoline-6-carboxamide
37		3516		1-[(2S)-morpholin-2-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
38		4640		1-[(4-fluoropiperidin-4-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
39		386		1-(morpholin-2-ylmethoxy)-7-(propan-2-yloxy)isoquinoline-6-carboxamide
40		109		1-[(1S,5S)-3-azabicyclo[3.1.0]hex-1-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
				7-(propan-2-yloxy)-1-[(2R)-pyrrolidin-2-

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
41		2351		ylmethoxy]isoquinoline-6-carboxamide
42		219		1-[(1R,5S,6r)-3-azabicyclo[3.1.0]hex-6-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
43		3323		1-(piperidin-2-ylmethoxy)-7-(propan-2-yloxy)isoquinoline-6-carboxamide
44		4265		1-[(4-methylmorpholin-2-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
45		1922		1-[(1-methylpiperidin-3-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
46		237		7-(propan-2-yloxy)-1-\{[(3R,4R)-4-(trifluoromethyl)pyrrolidin-3- yl]methoxy\}isoquinoline-6-carboxamide
47		2786		1-[(2R)-morpholin-2-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
48		366		1-[(3R)-piperid in-3-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
49		451		7-(propan-2-yloxy)-1-[(3S)-pyrrolidin-3-ylmethoxy]isoquinoline-6-carboxamide
50		701		6-(propan-2-yloxy)-4-[(3S)-pyrrolidin-3-ylmethoxy]quinoline-7-carboxamide
51		2412		4-[(2S)-morpholin-2-ylmethoxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
52		4236		4-(7-azaspiro[3.5]non-1-yloxy)-6-(propan-2-yloxy)quinoline-7-carboxamide
53		2380		4-[(2R)-morpholin-2-ylmethoxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
54		2435		4-[(4-fluoropiperidin-4-yl)methoxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
55		264		4-\{(3R,4R)-3,4-dimethylpyrrolidin-3-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7carboxamide
56		1489		4-[(4-methylpiperidin-4-yl)methoxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
57		5.8		4-\{[(5R)-2-oxo-1,3-oxazolidin-5-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7carboxamide

Ex. \#	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
58		144		4-[(3-methylpiperidin-3-yl)methoxy]-6-(propan-2-yloxy)quinoline-7-carboxamide
59		243		4-(piperidin-3-ylmethoxy)-6-(propan-2-yloxy)quinoline-7-carboxamide
60	8.9			4-\{[1-(cyanoacetyl)azetidin-3-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
61		249		1-\{[(2R)-1-(cyanoacetyl)pyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
62		1286		1-\{[1-(cyanoacetyl)piperidin-4-yl]methoxy $\}$-7-(propan-2-yloxy)isoquinoline-6-carboxamide
63		252		1-\{[(2S)-1-(cyanoacetyl)pyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
64		641		1-\{[(3R)-4-(cyanoacetyl)morpholin-3-yl]methoxy\}-7-(propan-2-yloxy)isoq u i noli ne-6-carboxam ide
65		563		1-(\{1- [(cyanoacetyl)amino]cyclopentyl\}methoxy)-7-(propan-2-yloxy)isoquinoline-6-carboxamide
66		255		1-\{[(3S)-1-(cyanoacetyl)pyrrolidin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
67		1730		1-\{[(3R)-1-(cyanoacetyl)piperidin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
68		320		1-\{[(1 R,5R,6R)-3-(cyanoacetyl)-3-azabicyclo[3.2.1]oct-6-yl]oxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
69	29			1-\{[1-(cyanoacetyl)azetidin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
70		423		1-\{[(3R)-1-(cyanoacetyl)pyrrolidin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
71		153		$4-\{[(3 \mathrm{aR}, 6 \mathrm{aS})-2-$ (cyanoacetyl)octahydrocyclopenta[c]pyrrol-4-yl]oxy\}-6-(propan-2-yloxy)quinoline-7carboxamide
				1-[(1S,4R)-2-azabicyclo[2.2.1]hept-6-

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
72		2625		yloxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
73		1161		1-\{[(2S)-1-(cyanoacetyl)azetidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
74		43		$1-\{[(1 S, 4 \mathrm{~S}, 5 \mathrm{~S})$-2-(cyanoacetyl)-2-azabicyclo[2.2.1]hept-5-yl]oxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxam ide
75		4039		1-\{[(2S)-4-(cyanoacetyl)morpholin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
76		1721		1-\{[1-(cyanoacetyl)-4-fluoropiperidin-4-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
77		468		1-\{[(1S,5S)-3-(cyanoacetyl)-3-azabicyclo[3.1.0]hex-1-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
78		4743		1-\{[(2R)-4-(cyanoacetyl)morpholin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
79		457		1-\{[(3aR,4S,6aS)-2- (cyanoacetyl)octahydrocyclopenta[c]pyrrol- 4-yl]oxy\}-7-(propan-2-yloxy)isoquinoline-6- carboxamide
80		333		1-\{[(3R,4R)-1-(cyanoacetyl)-4-ethylpyrrolidin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
81		479		1-\{[(1S,5S,6S)-3-(cyanoacetyl)-3-azabicyclo[3.2.1]oct-6-yl]oxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
82		969		1-\{[1-(cyanoacetyl)-3-methylpyrrolidin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
83		175		1-\{[(3S)-4-(cyanoacetyl)morpholin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
84		534		1-\{[(3R,4R)-1-(cyanoacetyl)-4-methoxypyrrolidin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
85		610		1-\{[(3R,4R)-1-(cyanoacetyl)-4-methylpyrrolidin-3-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
86		216		1-\{[1-(cyanoacetyl)-4-methylpiperidin-4-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
87		2621		4-\{[(1R,5S,6r)-3-(cyanoacetyl)-3-azabicyclo[3.1.0]hex-6-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
88		292		4-\{[(3R,4R)-1-(cyanoacetyl)-4-methylpyrrolidin-3-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
89		395		4-\{[(1R,5R,6R)-3-(cyanoacetyl)-3-azabicyclo[3.2.1]oct-6-yl]oxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
90		438		4-\{[(1S,5S)-3-(cyanoacetyl)-3-azabicyclo[3.1.0]hex-1-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
91		489		4-\{[1-(cyanoacetyl)-4-methylpiperidin-4-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7carboxamide
92		473		4-\{[(1S,5S,6S)-3-(cyanoacetyl)-3-azabicyclo[3.2.1]oct-6-yl]oxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
93		1520		4-\{[(3S)-1-(cyanoacetyl)piperidin-3-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7carboxamide
94		526		4-\{[(1S,5S)-3-(cyanoacetyl)-3-azabicyclo[3.1.0]hex-1-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
95		3167		4-\{[1-(cyanoacetyl)-4-fluoropiperidin-4-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7carboxamide
96		301		4-\{[(3R,4R)-1-(cyanoacetyl)-4-methoxypyrrolidin-3-yl] methoxy\}-6-(propan-2-yloxy)q u inoli ne-7-carboxam ide
97		2741		4-\{[(3R)-1-(cyanoacetyl)piperidin-3-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7carboxamide

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
98		575		4-\{(2S)-4-(cyanoacetyl)morpholin-2-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7carboxamide
99		524		4-\{[1-(cyanoacetyl)piperidin-2-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
100		482		4-\{[1-(cyanoacetyl)piperidin-4-yl]methoxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
101		1177		1-[(1S,4S,5S)-2-azabicyclo[2.2.1]hept-5-yloxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
02		217		1-[(1R,4R,5R)-2-azabicyclo[2.2.1]hept-5-yloxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
03	575		2741	1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carbonitrile
04	6.6		1796	1-\{((4R)-2-oxo-1,3-oxazolidin-4-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
05	84			4-methyl-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
06	51		472	1-\{[(2S)-6-oxopiperidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
107		16		1-\{[(2S)-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
108		1867		1-[(1S,4R,6R)-2-azabicyclo[2.2.1]hept-6-yloxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
109		1909		1-[(1S,4R,6S)-2-azabicyclo[2.2.1] hept-6-yloxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
110	418		1167	1-\{[(2S)-4,4-dimethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
111		196		1-[(5-oxopyrrolidin-3-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
				1-\{[(2S)-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-

$\underset{\#}{\text { Ex. }}$	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
112	1		50	6-carboxamide
113			53	1-\{[(2S)-4-ethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline6 -carboxamide
114	0.7		33	$5-\{[(28)-5$-oxopyrrolidin-2-yl]methoxy\}-3-(propan-2-yloxy)naphthalene-2-carboxamide
115		61		3-(propan-2-yloxy)-5-[(3R)-pyrrolidin-3-ylmethoxy]naphthalene-2-carboxamide
116	146			1-[(5-oxomorpholin-3-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
117		136		7-(propan-2-yloxy)-1-[(3R)-pyrrolidin-3-ylmethoxy]isoquinoline-6-carboxamide
118	162			1-[(3-oxooctahydro- 1 H -isoindol-1-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
119		1429		1-[(2S)-azetidin-2-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
120	1141			7-(cyclobutyloxy)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6-carboxamide
121	7.6		347	7-methoxy-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6-carboxamide
122	24		672	7-ethoxy-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6-carboxamide
123	747			1-[(3aR,6aR)-hexahydrocyclopenta[c]pyrrol-3a(1H)-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
124	7.8		175	1-\{[(2S,4R)-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
125	40		685	1-\{[(2S,4S)-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
126	42			1-\{[(2S)-2-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
127	65		682	1-\{((2S)-4-(methoxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide

${ }_{\#}^{E x}$	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
128	0.3		27	1-\{[(2S)-4,4-difluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline6 -carboxamide
129	231			7-(difluoromethoxy)-1-\{((2S)-5-oxopyrrolidin- 2-yl]methoxy\};soquinoline-6-carboxamide
130		417		1-\{[(3aS,6R,6aR)-2- oxooctahydrocyclopenta[b]pyrrol-6-yl]oxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
131	0.6		29	1-\{[(2S,4S)-4-ethyl-4-fluoro-5-oxopyrrolidin- 2-yl]methoxy\}-7-(propan-2yloxy) isoquinoline-6-carboxamide
132	188		1180	1-\{[(2S,4R)-4-ethyl-4-fluoro-5-oxopyrrolidin- 2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
133	175			1-\{((2S,4R)-4-fluoro-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
134	1		36	1-\{[(2S,4S)-4-fluoro-4-methyl-5-oxopyrrolidin-2-yl] methoxy\}-7-(propan-2yloxy) isoquinoline-6-carboxamide
135	1.2		32	1-\{(2S,4S)-4-ethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
136	7.8		184	1-\{(2S,4R)-4-ethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline6 -carboxamide
137	98			1-\{[(2S,4R)-4-(2-hydroxypropan-2-yl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
138		1037		1-[(2-oxopiperidin-4-y))methoxy]-7-(propan- 2-yloxy)isoquinoline-6-carboxamide
139		256		1-[(1S,5S)-3-azabicyclo[3.1.0]hex-1-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
140		84		1-[(1R,5R)-3-azabicyclo[3.1.0]hex-1-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6carboxamide
				1-\{[(2S,3S)-3-methyl-5-oxopyrrolidin-2-yllmethoxy\}-7-(propan-2-yloxy)isoquinoline-

$\underset{\#}{\mathrm{Ex}}$	IRAK4 DELFIA Protoco A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
141	70		294	6-carboxamide
142	1222			1-[(6-oxopiperidin-3-y))methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
143	2542			1-[(1,1-dioxido-1,2-thiazolidin-3-yl)methoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
144	1.4		141	1-\{((2S,4R)-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline6 -carboxamide
145	0.4		41	1-\{[(2S,4S)-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
146	0.2		15	1-\{[(2S)-4,4-difluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
147	59		1161	1-\{[2-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
148		24		1-\{[(2S)-4-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
149	105			1-\{[(2S,3S)-3-amino-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
150	41		864	1-\{(2S,4S)-4-hydroxy-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
151	1.2		25	1-\{[(2S,4S)-5-0xo-4-(2,2,2-trifluoroethyl)pyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
152	6.7		139	1-\{[(2S,4R)-5-oxo-4-(2,2,2-trifluoroethyl)pyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
153	1480			1-\{((2S)-2-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
154	17			1-\{[(2R)-2-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
155	267			$1-\{[(2 S, 3 S)-5-0 \times 0-3-$ (trifluoromethyl)pyrrolidin-2-yl]methoxy\}-7- (propan-2-yloxy)isoquinoline-6-carboxamide
156	4097			1-\{(1R)-1-[(2S)-5-oxopyrrolidin-2-yl]ethoxy\}-7-(propan-2-yloxy)isoquinoline-6carboxamide
157	152			1-\{(1S)-1-[(2S)-5-oxopyrrolidin-2-yl]ethoxy\}-7-(propan-2-yloxy)isoquinoline-6carboxamide
158		1443		1-[(3R)-morpholin-3-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
159		3377		7-(propan-2-yloxy)-1-(pyrrolidin-2-ylmethoxy)isoquinoline-6-carboxamide
160		151		1-[(3S)-morpholin-3-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6-carboxamide
161		88		1-[(1R,6S)-3-azabicyclo[4.1.0]hept-1-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6 carboxamide
162		35		1-[(1S,6R)-3-azabicyclo[4.1.0]hept-1-ylmethoxy]-7-(propan-2-yloxy)isoquinoline-6 carboxamide
163	1396		7449	1-\{[(2S,4S)-4-fluoro-4-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
164	1.7		116	1-\{[(2S,4R)-4-fluoro-4-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
165	541			1-\{[(2S,4R)-4-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
166	4.3		389	1-\{[(2S,4S)-4-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
167		19		1-\{((3aR,4R,6aR)-2,2-dimethyl-6-oxotetrahydro-3aH-[1,3]dioxolo[4,5-c]pyrrol-4-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
				4-fluoro-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
168	6.6		1456	6-carboxamide
169	890			1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxylic acid
170	0.8		41	1-\{[(2S,3S,4R)-4-fluoro-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
171	101			1-\{[(2S,4R)-4-fluoro-4-(2-hydroxypropan-2-yl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
173	1.3		37	3-methoxy-5-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}naphthalene-2-carboxamide
174	3.1		126	1-\{[(1S,2S,5R)-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
175		101		1-\{[(1S,5S)-4-oxo-3-azabicyclo[3.1.0]hex-1-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
176	695			8-fluoro-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
177	3.8		43	1-\{[(2S,4S)-4-fluoro-4-methyl-5- oxopyrrolidin-2-yl]methoxy\}-7- methoxyisoquinoline-6-carboxamide
178	1689			1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(trifluoromethoxy)isoquinoline-6carboxamide
179	1.2		199	1-\{[(2S,4R)-4-hydroxy-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
180	1786		2555	1-\{[(2S)-1-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
181	5.7		503	1-\{[(2S)-4-(4-hydroxytetrahydro-2H-pyran-4-yl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
182	1048			1-\{[(2S,4R)-4-hydroxy-5-oxo-4-(2,2,2-trifluoroethyl)pyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848 induced TNFa PBMC IC50 (nM)	IUPAC NAME
183	0.2		10	1-\{[(2S,3S)-4,4-difluoro-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
184		60		1-\{[(2S,4S)-4-hydroxy-5-0xo-4-(2,2,2-trifluoroethyl)pyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
185	116			1-\{[(4S)-1-methyl-2-oxoimidazolidin-4-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
186	303			1-\{[(5S,6R)-2-oxo-1-azaspiro[4.4]non-6-yl]oxy\}-7-(propan-2-yloxy)isoquinoline-6carboxamide
187	1.1		40	1-\{[(2S,3S,4S)-4-fluoro-3-methyl-5 oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
188	1.9		30	1-\{(2S,3S,4R)-4-fluoro-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
189	0.3		12	1-\{(2S,3S,4S)-4-fluoro-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
190	294			4-cyano-1-\{(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
191		252		7-(propan-2-yloxy)-1-(pyrrolidin-3-ylmethoxy)isoquinoline-6-carboxamide
192	284			1-\{[(2S,4R)-4-(3-hydroxyoxetan-3-yl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
193	238			1-\{[(2S,4S)-4-(3-hydroxyoxetan-3-yl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
194	1		5.2	5-\{(2S,4S)-4-fluoro-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}-3-methoxynaphthalene-2-carboxamide
195	3402			4-(aminomethyl)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
				1-\{[(2R,3R,4S)-3-ethyl-4-fluoro-3-hydroxy-5

Ex. \#	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
196			11	oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
197			71	1-\{[(3S,4S)-3-ethyl-4-fluoro-2-hydroxy-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
198			715	1-\{[(2S,3R,4S)-4-fluoro-3-(1-hydroxyethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7- methoxyisoquinoline-6-carboxamide
199	2904			7-(oxetan-3-yloxy)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6-carboxamide
200	697			7-tert-butoxy-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6-carboxamide
201	0.4		1	1-\{[(2S,3S)-3-ethyl-4,4-difluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
202	85		922	1-\{[(4S)-2-oxoimidazolidin-4-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
203	3.5		47	$\begin{aligned} & \text { 1-\{[(2S,3R,4S)-4-fluoro-3-methyl-5- } \\ & \text { oxopyrrolidin-2-yl]methoxy\}-7- } \\ & \text { methoxyisoquinoline-6-carboxamide } \end{aligned}$
204	2064			7-(cyclopropylmethoxy)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
205	3.6		380	1-\{[(2S,4R)-4-fluoro-4-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
206	216		4570	6-methoxy-4-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-7-carboxamide
207			41	5-\{[(2S,4R)-4-fluoro-4-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-3-methoxynaphthalene-2-carboxamide
208	1.1		87	1-\{[(2S,3S,4R)-4-fluoro-4-(hydroxymethyl)-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
209	251		9309	6-m ethoxy-4-\{[(2S)-5-oxopyrrolid in-2-yl]methoxy\}quinazoline-7-carboxamide
1210	3467			$\begin{gathered} 1-\{[(2 S, 3 S, 4 \mathrm{~S})-4 \text {-fluoro-4-(hydroxymethyl)-3- } \\ \text { methyl-5-oxopyrrolidin-2-yl]methoxy\}-7- } \\ \text { methoxyisoquinoline-6-carboxamide } \end{gathered}$

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
211	2.7		52	7-methoxy-1-\{[(2S,3R)-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
212	150			1-\{[(2S,3S)-3-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
213	1416			1-\{[(1S,3aS,6aR)-5-methyl-3-oxooctahydropyrrolo[3,4-c]pyrrol-1-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
214	215			1-\{[(2S,3S)-3-(hydroxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
215	1.7		35	1-\{((2S,4S)-4-fluoro-4-(fluoromethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
216	0.4		27	3-methoxy-5-\{[(2S,3R)-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}naphthalene-2carboxamide
218	0.3		11	$\begin{aligned} & \text { 5-\{[(2S,3S,4S)-4-fluoro-3-methyl-5- } \\ & \text { oxopyrrolidin-2-yl]methoxy\}-3- } \\ & \text { methoxynaphthalene-2-carboxamide } \end{aligned}$
219	1.7		65	1-\{[(2S,3R)-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
220	0.9		14	8-fluoro-5-\{(2S,3S,4S)-4-fluoro-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}-3-methoxynaphthalene-2-carboxamide
221	54			1-\{[(2S)-3,3-dimethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
222		1870		1-\{[(2R)-3,3-dimethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
223		15		1-\{[(2R)-3,3-dimethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
				1-\{[(2S,4R)-4-(cyanomethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-

Ex. $\#$	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
224	1173			carboxamide
225	3.4		155	1-\{[(2S,4S)-4-(cyanomethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
226	222			1-\{[(1S,3aS,6aR)-3-oxooctahydropyrrolo[3,4-c]pyrrol-1-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
227	19		749	7-methoxy-1-\{[(4R,5R)-5-methyl-2-oxo-1,3-oxazolidin-4-yl]methoxy\}isoquinoline-6carboxamide
228	4.2		118	3-methoxy-5-\{[(4R,5R)-5-methyl-2-oxo-1,3-oxazolidin-4-yl]methoxy\}naphthalene-2carboxamide
229	3514		6298	7-methoxy-1-\{[(4S)-2-oxo-1,3-oxazolidin-4-yl]methoxy\}isoquinoline-6-carboxamide
230	7		199	7-methoxy-1-\{[(4R)-2-oxo-1,3-oxazolidin-4-yl]methoxy\}isoquinoline-6-carboxamide
231	67		509	3-methoxy-5-\{((2S,4S)-4-methoxy-5-oxopyrrolidin-2-yl]methoxy\}naphthalene-2carboxamide
232	20		261	3-methoxy-5-\{[(2S,4R)-4-methoxy-5-oxopyrrolidin-2-yl]methoxy\}naphthalene-2carboxamide
233	0.3		47	3-methoxy-5-\{[(4R)-2-oxo-1,3-oxazolidin-4-yl]methoxy\}naphthalene-2-carboxamide
234	1.9		45	3-methoxy-5-\{[(4R,5S)-5-methyl-2-oxo-1,3-oxazolidin-4-yl]methoxy\}naphthalene-2carboxamide
235	97		1092	7-methoxy-1-\{[(5R)-2-oxo-1,3-oxazolidin-5-yl]methoxy\}isoquinoline-6-carboxamide
236	8.4		125	7-methoxy-1-\{[(4R,5S)-5-methyl-2-oxo-1,3-oxazolidin-4-yl]methoxy\}isoquinoline-6carboxamide
237	295		1076	1-\{[(2S,3S,4R)-4-fluoro-3,4-dimethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
1238	3.7		45	1-\{[(2S,3S,4S)-4-fluoro-3,4-dimethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
239	1182			7-methoxy-1-\{[(5R)-3-methyl-2-oxo-1,3-oxazolidin-5-yl]methoxy\}isoquinoline-6carboxamide
240	2.3		24	5-\{(2S,4R)-4-fluoro-5-oxo-4-(2,2,2-trifluoroethyl)pyrrolidin-2-yl]methoxy\}-3-methoxynaphthalene-2-carboxamide
241	161		5765	5-\{[(2S,4S)-4-fluoro-5-oxo-4-(2,2,2-trifluoroethyl)pyrrolidin-2-yl]methoxy\}-3-methoxynaphthalene-2-carboxamide
242	263		7248	7-methoxy-1-\{[(2S,4S)-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
243	205		713	7-methoxy-1-\{[(2S,4R)-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
244	4.7		64	1-\{[(2S,3S)-3-ethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
245	29		529	7-methoxy-1-\{[(6S)-4-oxo-5-azaspiro[2.4]hept-6-yl]methoxy\}isoquinoline-6-carboxamide
246	0.5		9	1-\{[(2S,3R)-3-ethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
247	29		2836	1-\{[(2S,3R,4S)-3,4-dimethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
248	3.7		87	1-\{((2S,3R,4R)-3,4-dimethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
249	20		764	1-\{[(2S,3S)-3-(fluoromethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
250	0.6		144	$\begin{aligned} & \text { 4-\{[(2S,3S,4S)-4-fluoro-3-methyl-5- } \\ & \text { oxopyrrolidin-2-yl]methoxy\}-6- } \\ & \text { methoxyquinoline-7-carboxamide } \end{aligned}$
251	3.4		72	1-\{[(2S,3S)-3-ethenyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
252	0.9		40	1-\{[(2S,4S)-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
253	2.6		122	1-\{[(2S,4R)-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
254	2951			1-\{[(2S,3S,4S)-3-(fluoromethyl)-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
255	1683		11527	7-methoxy-1-\{[(2R)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6-carboxamide
256	2000		5617	1-\{[(2S,4R)-4-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
257	6.8		60	1-\{(2S,4S)-4-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
258	141		2933	1-\{[(2S)-4-benzyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
259	3.1		120	4-\{[(2S,4S)-4-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-6-methoxyquinoline-7carboxamide
260	202		6275	4-\{[(2S,4R)-4-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-6-methoxyquinoline-7carboxamide
261	671			1-\{((2S,4R)-4-fluoro-4-(fluoromethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
262	4.7		1604	6-methoxy-4-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}quinoline-7-carboxamide
263	80		496	1-\{[(1R,2S,5S)-6,6-dimethyl-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
264	4.8		115	7-methoxy-1-\{[(1S,2S,5R)-4-oxo-3-azabicyclo[3.1.0]hex-2- yl]methoxy)isoquinoline-6-carboxamide
265	1539			7-methoxy-1-[(3-methyl-5-oxomorpholin-3-yl)methoxy]isoquinoline-6-carboxamide

$\frac{\mathrm{Ex}}{\mathrm{Ex} .}$	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
266	74		394	7-methoxy-1-[(4-methyl-2-oxo-1,3-oxazolidin-4-yl)methoxy]isoquinoline-6carboxamide
267	15		158	7-methoxy-1-\{[(2S,4S)-5-oxo-4-(2,2,2-trifluoroethyl)pyrrolidin-2-yl]methoxy\}isoquinoline-6-carboxamide
268	1.4		175	4-\{[(2S,4S)-4-fluoro-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}-6-methoxyquinoline-7-carboxamide
269	0.6		104	4-\{($2 \mathrm{~S}, 4 \mathrm{~S})$-4-fluoro-4-methyl-5-oxopyrrolidin-2-y)]methoxy\}-6-(propan-2-yloxy)quinoline-7-carboxamide
270	290			7-methoxy-1-\{($2 \mathrm{~S}, 4 \mathrm{R})-5$-oxo-4-(2,2,2-trifluoroethyl)pyrrolidin-2- yl]methoxy\}isoquinoline-6-carboxamide
271	2.4		52	7-methoxy-1-\{[(1S,2S,5R)-6-methyl-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}isoquinoline-6-carboxamide
272	432		2470	1-\{[(2S,3S,4S)-4-fluoro-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carbonitrile
73	4365		1586	1-(cyclopentylmethoxy)-7- methoxyisoquinoline-6-carboxamide
274	2.2		748	4-\{[(2S,4R)-4-fluoro-4-(2-fluoroethyl)-5-oxopyrrolidin-2-yl]methoxy\}-6-methoxyquinoline-7-carboxamide
275	119		5137	1-\{[(2R,4R)-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
276	4.1		107	1-\{[(2S,4R)-4-fluoro-4-(2-fluoroethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
277	289		4420	7-methoxy-1-\{[(2R,3S)-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
278	8.5		299	7-ethoxy-1-\{[(2S,4S)-4-fluoro-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
				6-ethoxy-4-\{[(2S,3S,4S)-4-fluoro-3-methyl-5-

Ex. \#	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
279	1.2		212	oxopyrrolidin-2-yl]methoxy\}quinoline-7carboxamide
280	3789			$\begin{gathered} \text { 6-ethoxy-4-\{[(1S,2S,5R)-4-oxo-3- } \\ \text { azabicyclo[3.1.0] hex-2- } \\ \text { yl]methoxy\}quinoline-7-carboxamide } \end{gathered}$
281	11		127	$\begin{aligned} & \text { 7-(cyclopropyloxy)-1-\{[(2S,3S,4S)-4-fluoro-3- } \\ & \text { methyl-5-oxopyrrolidin-2- } \\ & \text { yl]methoxy\}isoquinoline-6-carboxamide } \end{aligned}$
282	11		191	7-ethoxy-1-\{[(1S,2S,5R)-4-oxo-3- azabicyclo[3.1.0]hex-2- yl]methoxy\}isoquinoline-6-carboxamide
283	1		27	7-ethoxy-1-\{((2S,3S,4S)-4-fluoro-3-methyl-5 oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
284	18		320	1-\{[(2S,4R)-4-fluoro-5-oxo-4-(tetrahydro-2H-pyran-4-yl)pyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
285	153		1056	7-methoxy-1-(((1 R,2S,5R,6R)-6-methyl-4-oxo-3-azabicyclo[3.1.0]hexan-2- yl)methoxy)isoquinoline-6-carboxamide
286	137		7025	7-methoxy-1-\{[(2S,4S)-5-oxo-4-(tetrahydro- 2H-pyran-4-yl)pyrrolidin-2- yl]methoxy\}isoquinoline-6-carboxamide
287	7.7		2302	6-ethoxy-4-\{[(2S,4S)-4-fluoro-4-methyl-5-oxopyrrolidin-2-yl]methoxy\}quinoline-7carboxamide
288	34		1809	1-\{[(2R,3R,4R)-4-fluoro-3-methyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
289	562		6271	1-\{[(2S,4S)-4-(4-hydroxytetrahydro-2H-pyran-4-yl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
290	1200			7-methoxy-1-\{[(2S)-4-(oxetan-3-ylidene)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
291	32			6-ethoxy-4-\{(2S)-5-oxopyrrolidin-2-yl]methoxy\}quinoline-7-carboxamide
				1-\{((2S,4R)-4-fluoro-4-(methoxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-

${ }_{\#}^{E x}$	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
292	78		3136	methoxyisoquinoline-6-carboxamide
293	1.1		462	6-ethoxy-4-\{($2 S, 4 S$)-4-fluoro-4-(fluoromethyl)-5-oxopyrrolidin-2-yl]methoxy\}quinoline-7-carboxamide
294	3.3		24	7-ethoxy-1-\{[(2S,4S)-4-fluoro-4- (fluoromethyl)-5-oxopyrrolidin-2- yl]methoxy\}isoquinoline-6-carboxamide
295	7.3		67	7-methoxy-1-\{[(1S,2S,5R)-1-methyl-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}isoquinoline-6-carboxamide
296	0.2		2.4	1-\{((2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
297	365		7125	7-methoxy-1-\{[(1S,2S,5R)-5-methyl-4-oxo-3- azabicyclo[3.1.0]hex-2- yl]methoxy\}soquinoline-6-carboxamide
298	1243			7-methoxy-1-\{[(2S,4S)-4-(oxetan-3-yl)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
299	4.3		49	1-\{[(1S,2S,5R)-1-ethyl-4-oxo-3azabicyclo[3.1.0] hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
300	75		931	1-\{[(1S,2S,5R)-6-ethyl-4-oxo-3azabicyclo[3.1.0] hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
301	338		4047	1-(((1 R,2S,5R,6R)-6-ethyl-4-oxo-3-azabicyclo[3.1.0]hexan-2-yl)methoxy)-7-methoxyisoquinoline-6-carboxamide
302	28		1275	7-methoxy-1-\{[(2S)-6-oxopiperidin-2-yl]methoxy\}isoquinoline-6-carboxamide
303	127		6047	1-(((1S,2S,5S,6R)-6-(fluoromethyl)-4-oxo-3-azabicyclo[3.1.0]hexan-2-yl)methoxy)-7-methoxyisoquinoline-6-carboxamide
304	1.3		35	1-\{[(1R,2S,5S)-6-(fluoromethyl)-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
305	2		57	1-\{(2S,3S)-3-cyclopropyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide

Ex. \#	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
306	155		4058	1-(((1R,2S,5R,6R)-6-(2-fluoroethyl)-4-oxo-3-azabicyclo[3.1.0]hexan-2-yl)methoxy)-7-methoxyisoquinoline-6-carboxamide
307	2060			7-methoxy-1-\{[(1R,2S,5S)-4-oxo-3-azabicyclo[3.1.0]hex-2- yl]methoxy\}isoquinoline-6-carboxamide
308	9.8		134	7-methoxy-1-\{[(1S,2S,5R)-4-oxo-3-azabicyclo[3.2.0]hept-2- yl]methoxy\}isoquinoline-6-carboxamide
309	0.6		17	1-\{[(1R,2S,5S)-5-fluoro-6-methyl-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
310	10		380	1-(((1S,2S,5S,6R)-5-fluoro-6-methyl-4-oxo-3-azabicyclo[3.1.0]hexan-2-yl)methoxy)-7-methoxyisoquinoline-6-carboxamide
311	229		1083	1-\{[(1S,2S,5R)-6,6-dichloro-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
312	1.3		26	7-methoxy-1-\{((2S,3R)-5-oxo-3-propylpyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
313	210		1593	7-methoxy-1-\{[(1S,2S,5S)-6-(methoxymethyl)-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}isoquinoline-6-carboxamide
314	1980		8356	7-methoxy-1-\{[(1S,2S,5S)-6- (methoxymethyl)-4-oxo-3- azabicyclo[3.1.0]hex-2- yl]methoxy\}isoquinoline-6-carboxamide
315	1.5		45	1-\{[(1S,2S,5R)-6-fluoro-4-0xo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
316	129		464	4-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-6-methoxyquinoline-7-carboxamide
317	0.6		22	1-\{[(1R,2S,5S)-5-fluoro-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
				1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-

$\underset{\#}{\mathrm{Ex} .}$	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
318	1938		17188	(prop-2-yn-1-yloxy)isoquinoline-6- carboxamide
319	1948		10990	1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propadienyloxy)isoquinoline-6-carboxamide
320	0.8		11	1-\{[(1R,2S,5S)-6-(difluoromethyl)-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
321	4188			3-chloro-6-methoxy-4-\{[(1S,2S,5R)-6-methyl-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}quinoline-7-carboxamide
322	6.1		26	1-\{[(1R,2S,5S)-5-fluoro-4-oxo-3-azabicyclo[3.2.0]hept-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
323	0.2		30	4-\{[(1R,2S,5S)-5-fluoro-6-methyl-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-6-methoxyquinoline-7-carboxamide
324	0.6		$\underline{277}$	4-\{[(1S,2S,5R)-6-fluoro-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-6-methoxyquinoline-7-carboxamide
325	0.4		87	4-\{[(1R,2S,5S)-5-fluoro-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-6-methoxyquinoline-7-carboxamide
326	1.2		1196	6-methoxy-4-\{[(1S,2S,5R)-4-oxo-3 azabicyclo[3.1.0]hex-2-yl]methoxy\}quinoline-7-carboxamide
327	20		3307	1-\{[(1S,2S,5S)-6-(hydroxymethyl)-4-0xo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
328	93			1-\{[(1S,2S,5S)-6-(hydroxymethyl)-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
329	13		252	1-\{((2S,3R)-3-ethenyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
330	14		134	7-methoxy-1-y[I(4S)-6-oxo-5-azaspiro[2.4]hept-4-ylmethoxysisoquinoline- 6 -carboxamide
				4-\{[(1R,2S,5S)-6-(fluoromethyl)-4-0xo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-6-

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
333	0.3		182	methoxyquinoline-7-carboxamide
334	4.2		1771	1-(((1R,2S,5R,6R)-6-fluoro-4-oxo-3-azabicyclo[3.1.0]hexan-2-yl)methoxy)-7-methoxyisoquinoline-6-carboxamide
335	4		746	1-\{((1S,2S,5R)-6-fluoro-6-methyl-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
336	0.3		674	1-\{[(1S,2S,5R)-6-fluoro-6-methyl-4-oxo-3-azabicyclo[3.1.0]hex-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
337	0.1		6.5	1-\{(2S,3S,4R)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
338	0.2		3	1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-[(trideutero)methyloxy]isoquinoline-6carboxamide
339	90		269	1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-(2-methoxyethoxy)isoquinoline-6-carboxamide
340	12		456	7-methoxy-1-\{[(2S,3R)-3-(methoxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
341	0.3		16	4-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-6-methoxyquinazoline-7-carboxamide
342	1003		2382	1-\{[(2S,3S,4S)-3-ethyl-4-methoxy-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
343	41		408	1-\{[(2S,3S,4R)-3-ethyl-4-methoxy-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
344	0.2		0.5	1-\{[(2S,3S,4S)-3-(pentadeutero)ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
345	0.2		1.6	1-\{[(2S,3S)-3-ethyl-4,4-difluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
				1-\{[(2S,3R,4R)-3-ethyl-4-fluoro-5-

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848- induced TNFa PBMC IC50 (nM)	IUPAC NAME
346	6.1		150	oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
347	0.6		27	1-\{[(2S,3R)-4,4-difluoro-3- (methoxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
348	0.7		42	1-\{[(2S,3R,4S)-4-fluoro-3- (methoxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
349	2962		9461	7-methoxy-1-\{[(2S,3S,4S)-4-methoxy-3-methyl-5-oxopyrrolidin-2- yl]methoxy\}isoquinoline-6-carboxamide
350	58		568	7 -methoxy-1-\{[(2S,3S,4R)-4-methoxy-3-methyl-5-oxopyrrolidin-2- yl]methoxy\}isoquinoline-6-carboxamide
351	6.3		213	1-\{[(2S,3R,4R)-4-fluoro-3- (methoxymethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
352	3.3		557	$1-\{[(2 S, 3 S, 4 S)-3$-ethyl-4-hydroxymumum $-5-$ oxopyrrolidin-2-yll]methoxy\}-7- methoxyisoquinoline-6-carboxamide
353	0.5		20	1-\{[(2S,3S,4R)-3-ethyl-4-hydroxy-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
354	2887			7-methoxy-1-\{(1S)-1-[(2S)-5-oxopyrrolidin-2-yl]ethoxy\}isoquinoline-6-carboxamide
355	1.7		33	1-\{[(2S,3S)-3-(2-fluoroethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
356	115		594	1-\{[(2S,3R,4S)-4-amino-3-ethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
357	30		588	1-\{[(2S,3R,4R)-4-amino-3-ethyl-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
				1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-

$\underset{\#}{\mathrm{Ex}}$	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
358	0.4		1.3	yloxy)isoquinoline-6-carboxamide
359	0.4		3.9	7-ethoxy-1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}isoquinoline-6carboxamide
360	0.1		3.9	1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-4-fluoro-7-methoxyisoquinoline-6-carboxamide
361	4.8		27	1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-8-fluoro-7-methoxyisoquinoline-6-carboxamide
362	1.1		28	1-\{[(2S,3R)-3-ethyl-5-oxopyrrolidin-2-yl]methoxy\}-4-fluoro-7-methoxyisoquinoline-6-carboxamide
363	11		110	1-\{[(2S,3R)-3-ethyl-5-oxopyrrolidin-2-yl]methoxy\}-8-fluoro-7-methoxyisoquinoline-6-carboxamide
364	16		145	4-fluoro-7-methoxy-1-\{[(1S,2S,5R)-6-methyl- 4-oxo-3-azabicyclo[3.1.0]hex-2- yllmethoxy\}isoquinoline-6-carboxamide
365	187		724	8-fluoro-7-methoxy-1-\{[(1S,2S,5R)-6-methyl- 4-oxo-3-azabicyclo[3.1.0]hex-2- yl]methoxy\}isoquinoline-6-carboxamide
366	6.1		91	1-\{[(2S,3R)-3-(fluoromethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6carboxamide
367	0.4		14	1-\{[(2S,3R,4S)-4-fluoro-3-(fluoromethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
368	0.3		10	1-\{[(2S,3S,4S)-3-cyclopropyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
369	3.7		45	1-\{[(2S,3S,4R)-3-cyclopropyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
370	0.1		3.7	1-\{[(2S,3S,4S)-4-fluoro-3-(2-fluoroethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
				4-(1-methyl-1 H-imidazol-4-yl)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-

Ex.	IRAK4 DELFIA Protocol A IC50 (nM)	IRAK4 DELFIA Protocol B IC50 (nM)	R848induced TNFa PBMC IC50 (nM)	IUPAC NAME
371	7		604	yloxy)isoquinoline-6-carboxamide
372	11		649	4-(1,2-dimethyl-1H-imidazol-4-yl)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
373	35		6162	4-(2-methyl-1H-imidazol-4-yl)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
374	0.1		1.2	1-\{[(2S,3S,4S)-3-ethyl-4-fluoro-5-oxo(3,4-bisdeutero)pyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
375	0.3			1-\{[(2S,3R,4R)-4-fluoro-3-(fluoromethyl)-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinoline-6-carboxamide
376	740			4-(4-methylpyrimidin-2-yl)-1-\{((2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
377	72			4-(5-chloropyrimidin-2-yl)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
378	59			4-(6-oxo-1,6-dihydropyridin-2-yl)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide
379	503			4-(2-methylpyrimidin-4-yl)-1-\{[(2S)-5-oxopyrrolidin-2-yl]methoxy\}-7-(propan-2-yloxy)isoquinoline-6-carboxamide

In vivo mouse LPS/D-gal Challenge Model.

[0642] Efficacy of IRAK4 compounds disclosed herein was also evaluated in an in vivo mouse model of endotoxin induced (Lipopolysaccharide(LPS)) inflammation. See: S. Copeland, H.W. Warren, S.F. Lowry, S.E. Calvano, and D. Remick, Clin. Diagn. Lab. Immnol. 2005, 12(1), 6067. An exemplary protocol for this in vivo model follows.
[0643] Female C57/BL6 mice, 8 to 10 weeks old, are orally administered either vehicle or formulated IRAK-4 compound 1 hour prior to the challenge. Vehicle or IRAK4 compound is administered by oral gavage at a volume of $10 \mathrm{~mL} / \mathrm{kg}$. One hour post oral delivery of vehicle or
compound, the animals are challenged with an intraperitoneal injection (IP) of a solution containing $1 \mu \mathrm{~g} / \mathrm{mL}$ LPS and $80 \mathrm{mg} / \mathrm{mL}$ D-gal. Each mouse is injected with $200 \mu \mathrm{~L}$ of the solution, for a final challenge dose of 100 ng LPS and 8 mg D-gal. Ninety minutes post LPS/Dgal challenge, animals are euthanized and blood collected. Blood is allowed to clot at room temperature and serum is separated by centrifugation and stored at $-80^{\circ} \mathrm{C}$ for analysis. Serum TNF and IL-6 are measured by Meso Scale Discovery (MSD) multiplex platform.
[0644] The groups consisted of $\mathrm{N}=10$ animals/group. Naive animals and vehicle control groups were run with each study. Mean cytokine data was plotted and students T-test was performed to calculate significance (t-test, $p<0.05$ vs. vehicle) of IRAK4 treated group vs. vehicle treated group. Percent inhibition of cytokine induction was calculated for IRAK4 treated group vs. vehicle treated group.
[0645] Table 4 contains data from multiple studies with columns for Compound, Dose in $\mathrm{mg} / \mathrm{kg}$ (mpk) and \% inhibition of serum TNF. In cases where doses of certain compounds were repeated in multiple experiments, the average percent inhibition of TNF and standard deviation is shown in the table.
Table 4 \% Inhibition of TNF in mouse LPS model with various Reference Ex IRAK4 inhibitors.

Compound	Dose (mpk)	\% inhib TNF
Example 26	100	$78(\pm 23)$
	30	$41(\pm 17)$
	10	$27(\pm 19)$
Example 173	100	98
	30	55
Example 189	30	40
Example 194	30	76

Imiquimod Induced Mouse Model of Skin Inflammation.

[0646] Efficacy of IRAK4 inhibitors disclosed herein was also evaluated in an in vivo mouse model imiquimod induced skin inflammation inflammation (L. van der Fits, S. Mourits, J. S.A. Voerman, M. Kant, L. Boon, J.D. Laman, F. Cornelissen, A.-M. Mus, E. Florencia, E.P. Prens, and E. Luberts, J. Immunol. 2009, 182, 5836-5845). An exemplary protocol for this in vivo model follows.
[0647] Female Balb/C mice, 12-14 weeks old, received a daily topical dose of commercially available imiquimod cream (5\%) on the shaved back and the left ear for 3 consecutive days. This translated into a daily dose of 1.56 mg of the active compound. This dosing regimen was optimized to achieve robust skin inflammation in mice as measured by increased ear thickness. Vehicle or IRAK4 compounds are administered by oral gavage, twice daily (AM and PM) for 5
consecutive days. Ear thickness were measured daily, 1 hour post AM oral administration of compound or vehicle and prior to application of imiquimod. An exemplary protocol for this in vivo model follows.

- On Day 1, mice were pre-treated with vehicle or IRAK4 inhibitor by oral gavage at a volume of $10 \mathrm{~mL} / \mathrm{kg}$. Oral dosing of compound or vehicle continued twice daily (BID) for 5 consecutive days.
- One hour post vehicle or compound delivery, baseline ear thickness was measured in triplicate using a micrometer (Mitutoyo) prior to the application of imiquimod. Ear thickness was measured each day in this manner and then the imiquimod cream was applied to back skin and left ear on Days 1, 2 and 3.
- On Day 5 of the study, mice were given the AM dose of vehicle or IRAK4 inhibitor. One hour after oral delivery, ears were measured and animals were euthanized. The left ear was collected; snap frozen and stored at $-80^{\circ} \mathrm{C}$ for analysis.
- Data were presented as mean change in ear thickness (microns) from baseline measurement.
- Positive control compound for the model was two IP injections of anti-P40 antibody at a dose of $400 \mu \mathrm{~g} /$ mouse given on Days 1 and 4 .
[0648] In vivo rat collagen-induced arthritis model. Efficacy of IRAK4 compounds disclosed herein was also evaluated in a rat in vivo model of rheumatoid arthritis (M. Hegen, J.C. Keith, Jr, M. Collins, C. L. Nickerson-Nutter, Ann. Rheum. Dis. 2008, 67, 1505-1515). An exemplary protocol for this in vivo model follows.
[0649] Female Lewis rats, approximately 7 weeks old, were immunized with an emulsion of type II collagen (CII) and incomplete Freund's adjuvant (IFA) on day 0 and received a boost of CII/IFA on day 7 . Hind paw volume increase was taken by plethysmograph. Animals were randomly enrolled into treatment groups based on the development of disease. Beginning on day 11 post immunization, rats were enrolled into random treatment groups based on an increase in a single hind paw volume compared to day 7 post immunization baseline measurements.
[0650] The groups consisted of: (1) a naive control group, (2) a vehicle control group, (3) a group dosed orally with a p38 inhibitor, (4) a positive control, at $30 \mathrm{mg} / \mathrm{kg}$ once a day, (5) a group dosed orally with Reference Example 26 at $100 \mathrm{mg} / \mathrm{kg}$ twice a day, (6) a group dosed orally with Reference Example 26 at $30 \mathrm{mg} / \mathrm{kg}$ twice a day, and (7) a group dosed orally with Reference Example 26 at $10 \mathrm{mg} / \mathrm{kg}$ twice a day.
[0651] Ten rats were enrolled per treatment group with the exception of the naive control group, which contained two rats. Day 0 was designated as the first treatment day, and paw measurements are taken daily by plethysmograph. The rats were weighed on a daily basis.
[0652] IRAK4 inhibitors are efficacious in the Lewis rat model of collagen-induced arthritis.

Results of the study are presented in Figure 2 which demonstrates the average paw volume increase of the groups dosed orally. In particular, therapeutic treatment BID daily with Reference Example 26 for 8 days reduced the hind paw swelling in CIA rats significantly (t-test, $\mathrm{p}<0.05$ vs. vehicle) in the following groups:

Reference Example 26	$100 \mathrm{mg} / \mathrm{kg}$ PO, BID	Day 1 - Day 8 (end)
Reference Example 26	$30 \mathrm{mg} / \mathrm{kg}$ PO, BID	Day 2 - Day 8
BIRB796	$30 \mathrm{mg} / \mathrm{kg} \mathrm{PO}, ~ Q D$	Day 1 - Day 8

[0653] Animals treated with Reference Example 26 at $10 \mathrm{mg} / \mathrm{kg}$ PO, BID showed a transiently significant reduction in hind paw swelling only on Day 5 and Day 6 post treatment.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EPO28489a[017]
- WOO140231a [01171
- U55612359A [01181
- US6043265A [0118]
- WO0001389A [01181
- WO2009144554A [0127]
- WO2003072197A 001271
- WO2009144555A ro1271
- WO2008065508A [01271
- WO090164628 [0127]
- WO2010086820A 001271
- WO2005116014A [0127]
- WO2010103437a rot271
- W02010103438A [0127]
- WO2010013161A [0127]
- WO2007122482A 01271
- WO2010023594A [01271
- WO2010140092A rot27]
-W02010128425A G1271
- WO2010128414A 00127]
- W02010106457A @127
- WO2011005611A [01275

Non-patent literature cited in the description

- N. SUZUKIT. SAITOTrends in Immunology, 2006, vol. 27, 566-
- T. KAWAGOES. SATOA. JUNGM. YAMAMOTOK. MATSUIH. KATOS. UEMATSUO. TAKEUCHIS. AKIRAJournal of Experimental Medicine, 2007, vol. 204, 1013- 00005
- J. FRACZEKT. W. KIMH. XIAOJ. YAOQ. WENY. LIJ.-L. CASANOVAJ. PRYJMAX. LIJournal of Biological Chemistry, 2008, vol. 283, 31697- 0005$\}$
- T. W. KIMK. STASCHKEK. BULEKJ. YAOK. PETERSK.-H. OHY. VANDENBURGH. XIAOW. QIANT. HAMILTONJournal of Experimental Medicine, 2007, vol. 204, 1025-10055
- M. KOZICZAK-HOLBROA. LITTLEWOOD-EVANSB. POLLINGERJ. KOVARIKJ. DAWSONG. ZENKEC. BURKHARTM. MULLERH. GRAMArthritis \& Rheumatism, 2009, vol. 60, 1661- [0005]
- M. HERNANDEZJ. F. BASTIANCurrent Allergy and Asthma Reports, 2006, vol. 6, 468- 190@5\}
- E. LAVINER. SOMECHJ. Y. ZHANGA. PUELX. BOSSUYTC. PICARDJ. L. CASANOVAC. M. ROIFMANJournal of Allergy and Clinical Immunology, 2007, vol. 120, 948-100055
- M. REKHTERK. STASCHKET. ESTRIDGEP. RUTHERFORDN. JACKSOND. GIFFORDMOOREP. FOXWORTHYC. REIDYX.-D. HUANGM. KALBFLEISCHBiochemical and Biophysical Research Communications, 2008, vol. 367, 642- 10005$\}$
- O'NEILL, L. A.Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseasesCurr Opin Pharmacol, 2003, vol. 3, 4396- 0005
- KANZLER, H et al.Therapeutic targeting of innate immunity with toll-like receptor agonists and antagonistsNature Medicine, 2007, vol. 13, 552- 0005
- WAGNER, H.Endogenous TLR ligands and autoimmunityAdvances in Immunol, 2006, vol. 91, 159- 10005$\}$
- NGO, V. N. et al.Oncogenically active MyD88 mutations in human lymphomaNature, 2011, vol. 470, 115- \{0005\}
- T. HIGUCHIV. STELLAProdrugs as Novel Delivery SystemsACS Symposium Series, vol. 14, OOAS\}
- Bioreversible Carriers in Drug DesignAmerican Pharmaceutical Association19870000 £0049]
- H. BUNDGAARDDesign of ProdrugsElsevier19850000 00049$\}$
- C. A. DINARELLOA. SIMONJ. W. M. VAN DER MEERTreating inflammation by blocking
interleukin－1 in a broad spectrum of diseasesNat Rev Drug Discov，2012，vol．11，8633－ 652 10070
－FINNINMORGANJ．Pharm．Sci．，1999，vol．88，10955－958［10098］
－HOOVER，JOHN E．Remington＇s Pharmaceutical SciencesMack Publishing Co． 19750000 乡0102l
－Pharmaceutical Dosage FormsMarcel Decker19800000 g＠y
－Handbook of Pharmaceutical ExcipientsAmerican Pharmaceutical Association19990000 §0102
－T．KOUTSOKERAST．HEALYSystemic lupus erythematosus and lupus nephritisNat Rev Drug Discov，2014，vol．13，3173－174＠108\}
－Y．MUSHTAQThe COPD pipelineNat Rev Drug Discov，2014，vol．13，4253－254 101093
－E．C．CHAO et al．Nature Reviews Drug Discovery，2010，vol．9，551－559 亿0127］
－DEMONG，D．E．et al．Annual Reports in Medicinal Chemistry，2008，vol．43，119－ 137 10127\}
－JONES，R．M．et al．Medicinal Chemistry，2009，vol．44，149－170
－KHARITONENKOV，A．et al．Current Opinion in Investigational Drugs，2009，vol．10， 4359－364［0127\}
－ZHONG，M．Current Topics in Medicinal Chemistry，2010，vol．10，4386－396 \}0\{27]
－MEDINA，J．C．Annual Reports in Medicinal Chemistry，2008，vol．43，75－85 10127］
－CARPINO，P．A．GOODWIN，B．Expert Opin．Ther．Pat，2010，vol．20，121627－51［0127］
－Compendium of Organic Synthetic MethodsWiley－Intersciencevol．I－XII，§＠\｛3］
－T．W．GREENEProtective Groups in Organic ChemistryJohn Wiley \＆ Sons19810000 \｛0\｛34］
－T．W．GREENEP．G．M．WUTSProtective Groups in Organic ChemistryJohn Wiley \＆ Sons19910000 gob 3 4l
－T．W．GREENEP．G．M．WUTSProtective Groups in Organic ChemistryJohn Wiley \＆ Sons19990000 0 01341
－Synthetic Communications，1999，vol．29，91617－101511
－CHEMICAL ABSTRACTS，133745－75－2［1180］
－CHEMICAL ABSTRACTS，58123－77－6 亿1611
－CHEMICAL ABSTRACTS，1445564－99－7［0230\}
－CHEMICAL ABSTRACTS，80－41－1 10232\}
－CHEMICAL ABSTRACTS，1300031－68－8［023छ\}
－CHEMICAL ABSTRACTS 99208－71－

－CHEMICAL ABSTRACTS，103630－36－0 10262 \｛0399\}
－Chemical Communications，2011，vol．47，10037－10039 302821
－CHEMICAL ABSTRACTS，3587－60－8 102701 102991 103811
－CHEMICAL ABSTRACTS，104372－31－8 \｛0272\} \{0303\} \{0315\} [0417\}
－CHEMICAL ABSTRACTS，127184－05－8 10274
－CHEMICAL ABSTRACTS，29943－42－8［8278］33288
－CHEMICAL ABSTRACTS，6704－31－0 502801
－CHEMICAL ABSTRACTS，170885－05－9［0305\} \{0315\} \{0484\}
－CHEMICAL ABSTRACTS，1072－53－3 \｛03\｛2］
- CHEMICAL ABSTRACTS, 81658-27-7 [0344] [0507] [0550]
- CHEMICAL ABSTRACTS, 170885-07-

- CHEMICAL ABSTRACTS, 36982-84-0 @A291
- CHEMICAL ABSTRACTS, 893-69-6 [0433 10440 [0442 [0487]
- CHEMICAL ABSTRACTS, 187742-05-8 10938 1098 多

- CHEMICAL ABSTRACTS, 5187-82-6 \{04A6]
- CHEMICAL ABSTRACTS, 462-40-8 [0453\}
- CHEMICAL ABSTRACTS, 1097193-08-2 10470
- CHEMICAL ABSTRACTS, 49620-56-6 [04738

- CHEMICAL ABSTRACTS, 134107-65-6 10500
- CHEMICAL ABSTRACTS, 161152-76-7 [up $\{4\}$
- CHEMICAL ABSTRACTS, 84385-29-5 05191
- CHEMICAL ABSTRACTS, 1109790-91-1 [0521]
- CHEMICAL ABSTRACTS, 69555-14-2 @ 0524
- CHEMICAL ABSTRACTS, 25597-16-4 @524] @05791
- CHEMICAL ABSTRACTS, 244267-39-8 9528$\}$
- Tetrahedron, 2003, vol. 59, 6363-105281
- CHEMICAL ABSTRACTS, 59760-01-9 [05308
- CHEMICAL ABSTRACTS, 168399-08-4 [054\}\}

- CHEMICAL ABSTRACTS, 360782-62-3 @ 954$\}$
- CHEMICAL ABSTRACTS, 182267-22-7 10554
- CHEMICAL ABSTRACTS, 247200-49-3 10559\}
- CHEMICAL ABSTRACTS, 191406-21-0 [5563\}
- CHEMICAL ABSTRACTS, 27374-25-0 @587]
- CHEMICAL ABSTRACTS, 1099-45-2 \{0587l
- CHEMICAL ABSTRACTS, 123855-51-6 [0597\}
- CHEMICAL ABSTRACTS, 109384-19-2 10800
- CHEMICAL ABSTRACTS, 56602-33-6, 709 Ggbly
- N. OKAMOTO et al.Tetrahedron A symmetry, 2001, vol. 12, 91353-1358 [0629\}
- S. HARA et al.Tetrahedron, 2004, vol. 60, 378031-8035 [0629y
- A. ENDOS. DANISHEFSKYJ. Am. Chem. Soc., 2005, vol. 127, 238298-8299 @@299
- S. COPELANDH.W. WARRENS.F. LOWRYS.E. CALVANOD. REMICKClin. Diagn. Lab. Immnol., 2005, vol. 12, 160-67 10642\}
- L. VAN DER FITSS. MOURITSJ. S.A. VOERMANM. KANTL. BOONJ.D. LAMANF. CORNELISSENA.-M. MUSE. FLORENCIAE.P. PRENSJ. Immunol., 2009, vol. 182, 5836-5845 @®\{E!
- M. HEGENJ.C. KEITHJR, M. COLLINSC. L. NICKERSON-NUTTERAnn. Rheum. Dis., 2008, vol. 67, 1505-1515 亿0648]

Patentkrav

1. Forbindelse 1-\{[(2S,3S,4S)-3-ethyl-4-fluor-5-oxopyrrolidin-2-yl]methoxy\}-7-methoxyisoquinolin-6-carboxamid; eller et farmaceutisk acceptabelt salt af forbindelsen eller en tautomer af forbindelsen eller saltet.
2. Forbindelse ifølge krav 1 til anvendelse ifølge krav 3, hvor sygdommen eller tilstanden er systemisk lupus erythematosus (SLE) eller lupus nefritis.
3. Forbindelse ifølge krav 1 til anvendelse ifølge krav 2 , hvor sygdommen eller tilstanden er en leversygdom.
4. Forbindelse ifølge krav 1 til anvendelse ifølge krav 6, hvor leversygdommen er non-alkoholisk steatohepatitis (NASH).
5. Farmaceutisk sammensætning, omfattende forbindelsen ifølge krav 1 eller et farmaceutisk acceptabelt salt deraf eller en tautomer af forbindelsen eller saltet og et farmaceutisk acceptabelt vehikel, fortyndingsmiddel eller bærer.
6. Farmaceutisk kombination omfattende en terapeutisk virksom mængde af en sammensætning omfattende:
en første forbindelse, hvor den første forbindelse er forbindelsen ifølge krav 1 eller et farmaceutisk acceptabelt salt deraf;
en anden forbindelse, hvor den anden forbindelse er udvalgt fra gruppen bestående af en corticosteroid, hydroxychloroquin, cyclophosphamid, azathioprin, mycophenolatmofetil, methotrexat, janus-kinase-inhibitor, statin, calcipotrien, angiotensin-konverterende enzym-inhibitor og angiotensin-receptorblokkere; og
og en eventuel farmaceutisk acceptabel bærer, excipiens eller fortyndingsmidler.
7. Farmaceutisk kombination ifølge krav 9, hvor den anden forbindelse er en janus-kinase-inhibitor.
8. Farmaceutisk kombination ifølge krav 10, hvor janus-kinase-inhibitoren er udvalgt blandt ruxolitinib, baricitinib, tofacitinib, decernotinib, cerdulatinib, JTE052, peficitinib, GLPG-0634, INCB-47986, INCB-039110, PF-04965842, XL019, ABT-494, R-348, GSK-2586184, AC-410, BMS-911543 og PF-06263276.
9. Farmaceutisk kombination ifølge krav 11, hvor janus-kinase-inhibitoren er tofacitinib.
10. Forbindelse ifølge krav 1 , som er 11-\{[(2S,3S,4S)-3-ethyl-4-fluor-5-oxopyr-rolidin-2-yl]methoxy\}-7-methoxyisoquinolin-6-carboxamid eller en tautomer af forbindelsen.
11. Forbindelse ifølge krav 13 i form af et krystallinsk faststof med et smeltepunkt på $286{ }^{\circ} \mathrm{C}$.
12. Forbindelse ifølge et af kravene 1,13 eller 14 , til anvendelse som et medikament.

DRAWINGS

FIG. 1

Final Day of Study

FIG. 2

[^0]: - nmn

