

US 20100042168A1

(19) United States(12) Patent Application Publication

Pasche et al.

(10) Pub. No.: US 2010/0042168 A1 (43) Pub. Date: Feb. 18, 2010

(54) ELECTRONIC SYSTEM FOR INFLUENCING CELLULAR FUNCTIONS IN A WARM-BLOODED MAMMALIAN SUBJECT

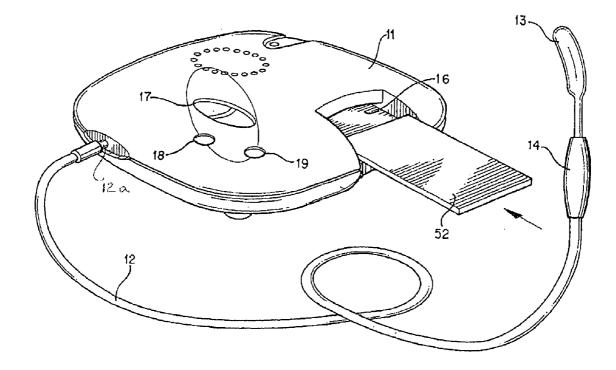
(76) Inventors: Boris Pasche, Chicago, IL (US); Alexandre Barbault, Colmar (FR)

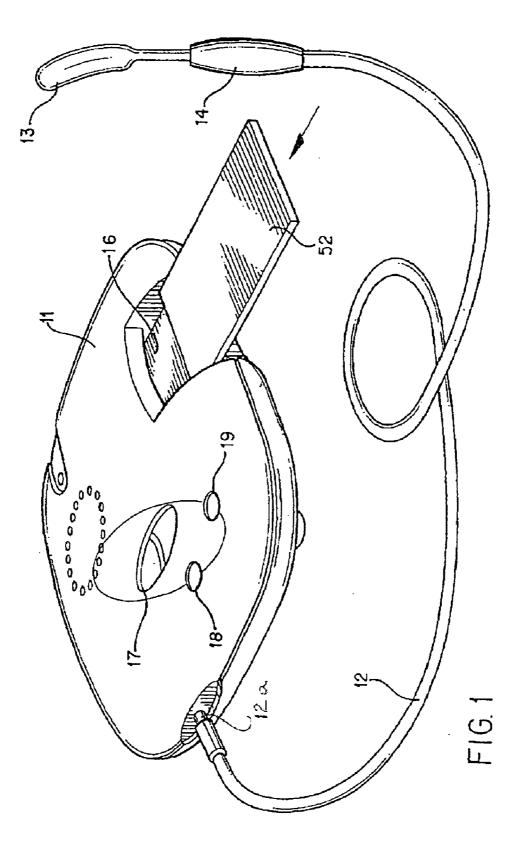
> Correspondence Address: BREINER & BREINER, L.L.C. P.O. BOX 320160 ALEXANDRIA, VA 22320-0160 (US)

- (21) Appl. No.: 12/450,450
- (22) PCT Filed: Mar. 26, 2008
- (86) PCT No.: PCT/EP2008/002379

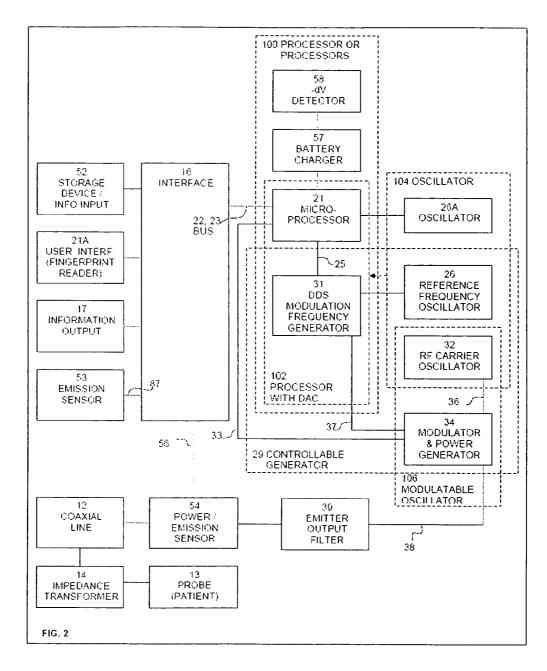
§ 371 (c)(1),	
(2), (4) Date:	Oct. 29, 2009

(30) Foreign Application Priority Data


Mar. 27, 2007 (EP) 07006320.1


Publication Classification

- (51) Int. Cl. *A61N 1/02* (2006.01)


(57) **ABSTRACT**

An electronic system activatable by electrical power is described. The system is useful for influencing cellular functions or malfunctions in a warm-blooded mammalian subject. The system includes one or more controllable low energy HF (High Frequency) carrier signal generator circuits, one or more data processors for receiving control information, one or more amplitude modulation control generators and one or more amplitude modulation frequency control generators. The amplitude modulation frequency of the amplitude modulations to within an accuracy of at least 1000 ppm, most preferably to within about 1 ppm, relative to one or more determined or predetermined reference amplitude modulation frequencies.

FIG. 2 FB, 21.3.7 The dotted lines show different possibilities of embodiments

ELECTRONIC SYSTEM FOR INFLUENCING CELLULAR FUNCTIONS IN A WARM-BLOODED MAMMALIAN SUBJECT

FIELD OF THE INVENTION

[0001] This invention relates to an electronic system for influencing cellular functions in a warm-blooded mammalian subject. More particularly, the invention concerns research findings related to how earlier electronic systems may be modified and programmed to achieve both improved and additional therapeutic effects.

BACKGROUND OF THE INVENTION

[0002] Reference is made to European Patent EP 0 592 851 B1 and corresponding Patents and Patent Applications and to the various publications referred to therein. Since the time of the priority Application filed in the USA on 25 Sep. 1992 (U.S. Ser. No 951,563 now U.S. Pat. No. 5,441,528), a number of further publications related to effects of very low energy electromagnetic fields on patients suffering from insomnia and/or anxiety disorders have taken place:

- [0003] Koziol J A, Erman M, Pasche B, Hajdukovic R, Mitler MM (1993) Assessing a changepoint in a sequence of repeated measurements with application to a low-energy emission therapy sleep study. *J Applied Statistics* 20: 393-400
- [0004] Amato D, Pasche B (1993) An evaluation of the safety of low energy emission therapy. *Compr Ther* 19: 242-247
- [0005] Higgs L, Reite M, Barbault A, Lebet J P, Rossel C, Amato D, Dafni U, Pasche B (1994) Subjective and Objective Relaxation Effects of Low Energy Emission Therapy. *Stress Medicine* 10: 5-13
- [0006] Reite M, Higgs L, Lebet J P, Barbault A, Rossel C, Kuster N, Dafni U, Amato D, Pasche B (1994) Sleep Inducing Effect of Low Energy Emission Therapy. *Bioelectromagnetics* 15: 67-75
- [0007] Lebet J P, Barbault A, Rossel C, Tomic Z, Reite M, Higgs L, Dafni U, Amato D, Pasche B (1996) Electroencephalographic changes following low energy emission therapy. *Ann Biomed Eng* 24: 424-429
- [0008] Pasche B, Erman M, Hayduk R, Mitler M, Reite M, Higgs L, Dafni U, Amato D, Rossel C, Kuster N, Barbault A, Lebet J-P (1996) Effects of Low Energy Emission Therapy in chronic psychophysiological insomnia. *Sleep* 19: 327-336
- [0009] Kelly T L, Kripke D F, Hayduk R, Ryman D, Pasche B, Barbault A (1997) Bright light and LEET effects on circadian rhythms, sleep and cognitive performance. *Stress Medicine* 13: 251-258
- [0010] Pasche B, Barbault A (2003) Low-Energy Emission Therapy: Current Status and Future Directions. In *Bioelectromagnetic Medicine*, Rosch P J, Markov M S (eds) pp 321-327. Marcel Dekker, Inc.: New York, N.Y.

[0011] The above publications are related to an earlier device, system and use thereof described in said EP 0 592 851 B1. The improved electronic system and programmed control thereof in accordance with the present invention, however, has been determined to find therapeutic application not only for influencing cellular functions (or malfunctions) leading to central nervous system (CNS) disorders, but more particularly for influencing other cellular functions (or malfunctions) including directly or indirectly influencing cancerous

cell growth or proliferation thereof in warm-blooded mammalian subjects. The direct or indirect influence on cancerous cell growth may involve but is not necessarily limited to any of prophylactic avoidance of cancerous cell formation, influencing of cell functions such as for example influencing leukocyte cell functions which can lead to inhibition of cancerous cell growth or proliferation thereof, and/or killing of cancerous cells harboured by a warm-blooded mammalian subject.

[0012] Electromagnetic energy generating devices and use of electromagnetic energies for treating living mammalian subjects harbouring cancerous cells described in the literature include: U.S. Pat. No. 5,908,441 issued Jun. 1, 1999 to Bare; James E. and the references cited therein and so-called "NovoCure technology" involving in vivo implantation of electrodes to either side of tumorous growths. This literature however does not contemplate very low energy emissions of electromagnetic energy involving amplitude-modulated high frequency carrier signals as required in terms of the present invention.

[0013] U.S. Pat. No. 5,690,692 issued on Nov. 25, 1997 entitled "Bio-Active Frequency Generator and Method" describes a programmable control which instructs a frequency synthesizer to enable generation of an electrical current at a specific precise frequency signal or at a series of specific precise frequencies signals having a square wave form to within an accuracy of 0.001 Hz. This Patent contemplates amplifying the voltage of the generated signals and applying the signals to a subject at the specific precise frequencies by means of electrodes held by or otherwise connected to the subject (which may be a mammal or a food). Once again, this Patent does not contemplate very low energy emissions involving amplitude-modulated high frequency carrier signals as required in terms of the present invention.

SUMMARY OF THE INVENTION

[0014] In one aspect of the invention, an electronic system is provided which is activatable by electrical power. The system is employed to influence cellular functions or malfunctions in a warm-blooded mammalian subject. The system comprises one or more controllable low energy electromagnetic energy generator circuits for generating one or more high frequency radio frequency RF carrier signals. One or more microprocessors or integrated circuits comprising or communicating with the one or more generator circuits are provided which are also for receiving control information from a source of programmed control information. The one or more generator circuits include one or more amplitude modulation control signal generators for controlling amplitude modulated variations of the one or more high frequency carrier signals. The one or more generator circuits furthermore include one or more programmable amplitude modulation frequency control signal generators for controlling the frequency at which the amplitude modulations are generated. The one or more amplitude modulation frequency control generators are, in terms of an important improvement of the present invention, adapted to accurately control the frequency of the amplitude modulations to within an accuracy of at least 1000 ppm relative to one or more determined or predetermined reference amplitude modulation frequencies selected from within a range of 0.01 Hz to 150 kHz. The system furthermore comprises a connection or coupling position for connection or coupling to or being connected or coupled to an

electrically conductive applicator for applying to the warmblooded mammalian subject the one or more amplitudemodulated low energy emissions at said accurately controlled modulation frequencies.

[0015] As used herein, the term, "accurately controlled" means that the modulated low energy electromagnetic emissions should be modulated to within a resolution of at most about 1 Hz of intended higher frequencies (greater than about 1000 Hz) determined or predetermined modulation frequencies. For example, if one of the one or more determined or predetermined modulation frequencies to be applied to the warm-blooded mammalian subject is about 2000 Hz, the accurate control should lead to such modulated low energy emission being generated at a frequency of between about 1999 and about 2001 Hz. However, and in terms of what has been determined from experiences in treating human subjects harbouring cancerous cells with the aim of arresting proliferation or killing of such cells, it is preferable that the accurate control should lead to a resolution of about 0.5, more preferably about 0.1, yet more preferably about 0.01 and indeed most preferably about 0.001 Hz of the intended determined or predetermined modulation frequency.

[0016] Of importance is the requirement for emissions to be at a very low and safe energy level and result in low levels of absorption, the reason believed to be that physiological exchanges or flow of electrical impulses within warmblooded animals (which are to be affected by application of the emissions of the present invention) are similarly at very low energy levels. In any event, in the region (at or near to the position of contact or close-by induction of the electrically conductive applicator with a subject receiving treatment), the specific absorption rate (SAR) should be and is most preferably substantially less than 1.6 milliW/g weight of living tissue.

[0017] Furthermore of importance to achieve the intended biological therapeutic effect is that the stability of the emissions be maintained during emission, and that such stability should preferably be of the order of 10^{-5} , more preferably 10^{-6} , and most preferably 10^{-7} , stability being determined as the relative deviation of frequency divided by the desired frequency, e.g. 0.01 Hz (deviation)/1,000 Hz (desired freq.) = 10^{-5} .

[0018] As already described in said EP 0 592 851 B1, the system includes a microprocessor (which may more recently be replaced by an integrated circuit) into which control information is loaded from an application storage device. The microprocessor (or now alternatively integrated circuit) then controls the function of the system to produce the desired therapeutic emissions. Also described is the provision in the system of an impedance transformer connected intermediate the emitter of low energy electromagnetic emissions and a probe (here more broadly described as an electrically conductive applicator) for applying the emissions to the patient. The impedance transformer substantially matches the impedance of the patient seen from the emitter circuit with the impedance of the output of the emitter circuit.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. **1** shows an exemplary casing structure for the electronic circuit shown in FIG. **2**, an applicator **13** (exemplified as a probe suitable for being placed in the mouth of a patient) and an interface **16** (which may be replaced by a receiver) for receiving information from a source of informa-

tion **52** such as may be comprised in an information storage device, e.g. of the nature described and illustrated in FIGS. 12 to 17 of EP 0 592 851 B1.

[0020] FIG. **2** is a block diagram of exemplary circuitry which may be comprised in the exemplary casing structure of FIG. **1**. This FIG. **2** differs essentially from FIG. 2 of EP 0 592 851 B1 by comprising a highly accurate modulation frequency generator **31** (named a Digital Direct Synthesizer or DDS), which enables accurate control of modulatable oscillator represented by dotted line block **106**.

[0021] Reference is made to the various Figures of EP 0 592 851 B1 and the detailed description thereof, a number of which are exemplary of components which may be comprised in the circuit of FIG. **2**.

[0022] Thus, FIG. 3 of EP 0 592 851 B1 is a detailed schematic of a modulation signal generator 31, replaced by a DDS modulation frequency generator **31** comprised in the circuit of present FIG. **2**;

[0023] FIG. 4 of EP 0 592 851 B1 is a detailed schematic of a modulation signal buffer and carrier oscillator circuit which may be employed in the circuit of the present FIG. 2;

[0024] FIG. 5 of EP 0 592 851 B1 is a detailed schematic example of an amplitude modulation (AM) and power generator **34** and output filter **39** which could be comprised in the circuit of the present FIG. **2**:

[0025] FIG. 6 of EP 0 592 851 B1 is a detailed schematic example of an impedance transformer **14** which may be comprised in the circuit of the present FIG. **2**;

[0026] FIG. 7 of EP 0 592 851 B1 is a detailed schematic example of an emission sensor **53** which may be comprised in the circuit of the present FIG. **2**;

[0027] FIG. 8 of EP 0 592 851 B1 is a detailed schematic example of an output power sensor circuit **54** which may be employed in the circuit of the present FIG. **2**.

[0028] FIG. 9 of EP 0 592 851 B1 is a detailed schematic example of a display module or information output **17** which may be included in the circuit of the present FIG. **2**.

[0029] FIG. 10 of EP 0 592 851 B1 is a detailed schematic example of a power supply control circuit including battery charger **57** which may be comprised in the circuit of the present FIG. **2**.

[0030] FIGS. 11a-d of EP 0 592 851 B1 are exemplary flow charts of the method of operation of the system of FIGS. 1 and 2.

DETAILED DESCRIPTION

[0031] Referring to FIG. 1, presented is a modulated low energy electromagnetic emission application system 11, in accordance with the present invention. As described in prior U.S. Pat. Nos. 4,649,935 and 4,765,322, such a system has proven to be useful in the practice of Low Energy Emission Therapy (LEET, a trademark of Symtonic S.A. or a successor of this Company), which involves application of emissions of low energy radio frequency (RF) electromagnetic waves to a warm-blooded mammalian subject. The application has proven to be an effective mode of treating a warm-blooded mammalian subject suffering from central nervous system (CNS) disorders such as, for example, generalized anxiety disorders, panic disorders, sleep disorders including insomnia, psychiatric disorders such as depression, obsessive compulsive disorders, disorders resulting from substance abuse, sociopathy, post traumatic stress disorders or other disorders of the central nervous system and combinations thereof.

[0032] The system includes an electrically conductive applicator **12**, **13** for applying one or more electromagnetic emissions to the warm-blooded mammalian subject. One form of applicator may consist of an electrically conductive probe or mouthpiece **13** which is inserted into the mouth of a subject undergoing treatment. Probe **13** is connected to an electromagnetic energy emitter (see also FIG. **2**), through coaxial cable **12** and impedance matching transformer **14**.

[0033] It has previously been considered that an efficient connection of an electrically conductive applicator to a subject could only be achieved by means of a probe which is adapted to be applied to any mucosa of the subject, such as by being located within oral, nasal, optical, urethral, anal, and/or vaginal cavities or surfaces. It has however now been determined that in fact satisfactory application of emissions to a patient can be achieved by simpler physical contact of the electrically conductive applicator with the skin of the patient. Emissions to the patient may, for example be achieved by a conductive, inductive, capacitive or radiated coupling to the patient. An example of a coupling found to be effective involving indirect physical contact with the skin of a patient, is an insulated applicator to be placed over or within an ear of the patient. The emissions thus passed to the patient may be either by capacitive or radiated means or by a combination of both. An important advantage of a device which does not need to be placed in the mouth of a patient is that the patient is able to speak clearly during a time of treatment and can receive treatment during activities of daily living. The treatment is accordingly more user-friendly, can be administered for longer periods of time and can lead to enhanced patient compliance.

[0034] Electronic system **11** also includes a connector or coupler for connection to a programmable device such as a computer or an interface or receiver **16** which is adapted to receive an application storage device **52** such as, for example, magnetic media, semiconductor media, optical media or mechanically encoded media, or programmed emissions programmed with control information employed to control the operation of system **11** so that the desired type of low energy emission therapy is applied to the patient.

[0035] Application storage device 52 can be provided with a microprocessor which, when applied to interface 16, operates to control the function of system 11 to apply the desired low energy emission therapy. Alternatively, application storage device 52 can be provided with a microprocessor which is used in combination with microprocessor 21 within system 11. In such case, the microprocessor within device 52 could assist in the interfacing of storage device 52 with system 11, or could provide security checking functions.

[0036] System **11** may also include a display **17** which can display various indications of the operation of system **11**. In addition, system **11** may include on and off power buttons **18** and **19**, optionally replaced by user interface **21**A (refer to FIG. **2**).

[0037] Referring to FIG. 2, presented is a block diagram of exemplary electronic circuitry of system 11, in accordance with the present invention. A data processor, such as for example, microprocessor or integrated circuit 21, operates as the controller for electronic system 11, and is connected to control the various components of the system 11, for example, through address bus 22, data bus 23 and input/ output lines 25. The block diagram of FIG. 2 is modified as compared to FIG. 2 of EP 0 592 851 B1 by including what is known as a digital direct synthesizer (DDS) 31 which oper-

ates as a accurate and stable modulation frequency generator within the system 11. An exemplary DDS device is available from Analog Devices of Norwood, Mass. 02062-9106, USA, Part No AD9835. The device is a numerically controlled oscillator and modulation capabilities are provided for phase modulation and frequency modulation. As represented by dotted line block 102, entitled "PROCESSOR WITH DAC", the functionality of the DDS may also be combined with microprocessor 21 with digital to analogue converter (DAC). [0038] Microprocessor 21 preferably includes internal storage for the operation of a coded control program, and temporary data. In addition, microprocessor 21 may include input/ output ports and internal timers. Microprocessor 21 may be a microcontroller, for example microcontrollers 8048 or 8051 available from Intel Corporation of Santa Clara, Calif. 95054-1549. USA.

[0039] The timing for microprocessor **21** is provided by system clock oscillator **26**A which may be run at any clock frequency suitable for the particular type of microprocessor used. An exemplary clock frequency is about 8.0 MHz. Oscillator **26**A may be replaced by reference frequency oscillator **26** which secures the stability of the accurate modulation frequency. RF (radio frequency) oscillator **32** may also be employed for this purpose. A combination of oscillators is represented by dotted line block **104**, entitled "OSCILLA-TOR".

[0040] An exemplary operating program for microprocessor **21** is presented in flow chart form with reference to FIGS. 11a-d of EP 0 592 851 B1. In general, microprocessor **21** functions to control controllable electromagnetic energy generator circuit **29** to produce a desired form of modulated low energy electromagnetic emission for application to a subject through applicator or probe **13**.

[0041] Dotted line block 29, entitled CONTROLLABLE GENERATOR, includes DDS modulation frequency generator 31 and carrier signal oscillator 32. Microprocessor 21 operates to activate or deactivate controllable generator circuit 29 through oscillator disable line 33, as described in greater detail in EP 0 592 851 B1. Controllable generator circuit 29 also includes an AM modulator and power generator 34 which operates to amplitude modulate a carrier signal produced by carrier oscillator 32 on carrier signal line 36, with a modulation signal produced by modulation signal generator circuit 31 on modulation signal line 37. The combination of the functionality of the DDS modulation frequency generator 31, with processor 21 with DAC, represented by dotted line block 102, enables output lines 33 and 37 to be combined to produce a single signal. The combination furthermore enables arbitrary or periodic wave forms of any shape to be generated, as similarly described in EP 0 592 851 B1.

[0042] AM modulator and power generator 34 produces an amplitude modulated carrier signal on modulated carrier signal line 38, which is then applied to emitter output filter circuit 39. The filter circuit 39 is connected to probe or applicator 13 via power emission sensor 54, coaxial cable 12 and impedance transformer 14.

[0043] Microprocessor 21 controls DDS modulation signal generator circuit 31 of controllable generator circuit 29 via interface lines 25.

[0044] As is illustrated and described in EU 0 592 851 B1, microprocessor **21** may select a desired waveform stored in a modulation waveform storage device **43** and also controls a waveform address generator **41** to produce on waveform address bus **42** a sequence of addresses which are applied to modulation signal storage device **43** in order to retrieve the selected modulation signal. In the embodiment described in EP 0 592 851 B1, the desired modulation signal is retrieved from modulation signal storage device **43** and applied to modulation signal bus **44** in digital form. Modulation signal bus **44** is applied to wave form generator and DAC **46** which converts the digital modulation signal into analogue form. This analogue modulation signal is then applied to a selective filter **47** which, under control of microprocessor **21**, filters the analogue modulation signal by use of a variable filter network including resistor **48** and capacitors **49** and **51** in order to smooth the wave form produced by DAC **46** on modulation signal line **20**.

[0045] A further embodiment possibility is a combination of PROCESSOR WITH DAC dotted line block **102** with OSCILLATOR dotted line block **104** or with a combination of oscillators **26** and **26**A. With such a combination, the hardware solution described in EP 0 592 851 B1 can be realized internally in the processor **102** with multiple outputs **33** and **37** or a single output combining these signals.

[0046] The above embodiment from EP 0 592 851 B1 is in part replaced by the functionality of the DDS modulation frequency modulator **31**. However, if it is determined that emissions of different wave forms is desirable, it would be desirable to include the modulation signal storage device **43** and wave form generator **46** described in EP 0 592 851 B1. Various modulation signal wave forms may then be stored in modulation signal storage device **43**. Wave forms that have been successfully employed include square wave forms or sinusoidal wave forms. Other possible modulation signal wave forms include rectified sinusoidal, triangular, or other wave forms and combinations of all of the above.

[0047] The particular modulation control information employed by microprocessor 21 to control the operation of controllable generator circuit 29, is stored in application storage device 52. The application storage device is conveniently a computer comprising or being for receiving the information. Alternatively, application storage devices illustrated and described in EP 0 592 851 B1, with reference to FIGS. 12, 13, 14 and 15, may be selected.

[0048] Interface 16 is configured as appropriate for the particular application storage device 52 in use. Interface 16 translates the control information stored in application storage device 52 into a usable form for storage within the memory of microprocessor 21 to enable microprocessor 21 to control controllable generator circuit 29 to produce the desired modulated low energy emission.

[0049] Interface **16** may directly read the information stored on application storage device **52**, or it may read the information through use of various known communication links. For example, radio frequency, microwave, laser, telephone, internet or optical based communications links may be employed to transfer information between interface or receiver **16** and application storage device or computer **52**.

[0050] The system **11** may comprise a user identification device, included in block **21***a* in FIG. **2**. Conveniently, such a device communicates with the one or more data processors or integrated circuits **21** via interface **16**, as shown. The user identification device may be of any type, a finger print reader being an example. Such a reader is for example available from Lenovo, 70563 Stuttgart, Germany, Part No. 73P4774.

[0051] The control information stored in application storage device or computer 52 specifies various controllable parameters of the modulated low energy RF electromagnetic emission to be applied to a subject through applicator or probe **13**. Such controllable parameters include, for example, but are not necessarily limited to, the frequency and amplitude of the carrier, the amplitudes and frequencies and wave forms of the modulation of the carrier, the duration of the emission, the power level of the emission, the duty cycle of the emission (i.e., the ratio of on time to off time of pulsed emissions applied during a treatment), the sequence of application of different modulation frequencies for a particular application, and the total number of treatments and duration of each treatment prescribed for a particular subject, and combinations thereof.

[0052] For example, the carrier signal and modulation signal may be selected to drive the applicator or probe **13** with an amplitude modulated signal in which the carrier signal includes spectral frequency components below about 1 GHz, and preferably between about 1 MHz and about 900 MHz, and in which the modulation signal comprises spectral frequency components between about 0.01 Hz and 150 KHz. The one or more modulation frequencies may be simultaneously emitted or sequenced to form the modulation signal.

[0053] As an additional feature, an electromagnetic emission sensor 53 may be provided to detect the presence of electromagnetic emissions at the frequency of the carrier oscillator 32. Emission sensor 53 provides microprocessor 21 with an indication of whether or not electromagnetic emissions at the desired frequency are present. Microprocessor 21 then takes appropriate action, for example, by displaying an error message on display 17, disabling controllable generator circuit 29, or the like.

[0054] A power sensor **54** is preferably included which detects the amount of power applied to the subject through applicator or probe **13** compared to the amount of power returned or reflected from the subject. This ratio is indicative of the proper use of the system during a therapeutic session. Power sensor **54** applies to microprocessor **21**, through power sensor line **56**, an indication of the amount of power applied to patient through applicator or probe **13** relative to the amount of power reflected from the patient.

[0055] The indication provided on power sense line **56** may be digitalized and employed by microprocessor **21**, for example, to detect and control a level of applied power, and to record on application storage device **52** information related to the actual treatments applied to and received by the patient. Such information may then be used by a physician or other clinician to assess patient treatment compliance and effect. Such treatment information may include, for example: the number of treatments applied for a given time period; the actual time and date of each treatment; the number of attempted treatments; the treatment compliance (i.e., whether the applicator or probe was in place or not during the treatment session); and the cumulative dose of a particular modulation frequency.

[0056] The level of power applied is preferably controlled to cause the specific absorption rate (SAR) of energy absorbed by the patient to be from about 1 microWatt per kilogram of tissue to about 50 Watts per kilogram of tissue. Preferably, the power level is controlled to cause an SAR of from about 100 microWatts per kilogram of tissue to about 10 Watts per kilogram of tissue. Most preferably, the power level is controlled to cause an SAR of from about 1 milliWatt per kilogram of tissue to about 100 milliWatts per kilogram of tissu

tissue. These SARs may be in any tissue of the patient, but are preferably in the tissue of the central nervous system or the diseased tissue.

[0057] System **11** may also include powering circuitry including battery and charger circuit **57** and battery voltage change detector **58**.

[0058] The RF carrier oscillator **32** produces a RF carrier frequency of about 27 MHz. Other embodiments of the invention contemplate RF carrier frequencies of about 48 MHz, about 433 MHz or about 900 MHz. In general, the RF carrier frequency produced by carrier oscillator **32** has spectral frequency components less than about 1 GHz and preferably between about 1 MHz and about 916 MHz. Although the described embodiment contemplates that once set, the carrier oscillator frequency produced by carrier oscillator **32** may be variable and controllable by microprocessor **21** by use of stored or transmitted control information.

[0059] Carrier oscillator 32 produces on carrier signal line 36 a carrier signal which is then modulated by the modulation signal carried on signal line 37.

[0060] Oscillator disable line 33 enables microprocessor 21 to disable the signal from oscillator 32 by applying an appropriate disable signal to oscillator disable line 33.

[0061] The output of the AM modulator and power generator 34 appears on signal line 38. This modulated signal is applied through emitter output filter 39 which substantially reduces or eliminates the carrier harmonics resulting from side effects of the modulator and power generator circuit 34. [0062] The output of the AM modulator and power generator 34 and emitter output filter 39 may be designed to possess a 50 Ohm output impedance to match a 50 Ohm impedance of coaxial cable 12.

[0063] It has been determined through impedance measurements that when a probe 13 is applied within the mouth of a subject, the probe/subject combination exhibits a complex impedance of the order of about 150+j200 Ohms. Impedance transformer 14 serves to match this complex impedance with the 50 Ohm impedance of coaxial cable 12 and therefore the output impedance of the AM modulator 34 and output filter 39. This promotes power transmission, and minimizes reflections.

[0064] The arrangement described above has been optimized for a contact probe with coupling to the mucosa of the mouth. In a further example, a conductive, isolated probe has been used at a frequency around 433 MHz coupling to the outer ear channel. Due to the different probe design in such a frequency band and with this coupling method, the values of matching elements (79 and 81 described in EP 0592 851 B1) would be different or could even be omitted. Applicator or probe **13** may then be regarded as a capacitive coupler or as an antenna matched to the capacitive load.

[0065] As described in EP 0 592 851 B1, with reference to the flow charts of FIGS. 11a-d, microprocessor **21** may operate to analyse the signal appearing on power sense line **56** to determine and control the amount of power applied to the patient, and to assess patient treatment compliance, and possibly to record indicia of the patient treatment compliance on application storage device **52** for later analysis and assessment by a physician or other clinician.

[0066] Exemplary of treatments performed on patients have included brain, bladder, colorectal, kidney, mesothelium, neuroendocrine, liver, lung, breast, ovary, pancreas, prostate and thyroid tumour types. The treatments involved applying an about 27.12 MHz RF signal, amplitude modulated at specifically defined frequencies ranging from about 0.2 to about 23,000 Hz at very high precision and stability. Further Examples of treatment modes (at specific accurately controlled AM frequencies) for specified types of tumours are described in detail below.

[0067] The following are synopses of abstracts for future publications related to uses of electronic devices of the present invention:

А

Example A

A Phase I Study of Therapeutic Amplitude-Modulated Electromagnetic Fields (THERABIONIC) in Advanced Tumors

[0068] Boris Pasche¹, Alexandre Barbault¹, Brad Bottger², Fin Bomholt³, Niels Kuster⁴.

¹ Cabinet Médical de l'Avenue de la Gare 6, CH-1003-Lausanne, Switzerland.
² Danbury Hospital, Danbury, Conn.-06810.

³ SPEAG, Zurich, CH-8004-Zurich, Switzerland

 4 IT'IS Foundation, Swiss Federal Institute of Technology, Zurich, Switzerland.

[0069] Background: In vitro studies suggest that low levels of amplitude-modulated electromagnetic fields may modify cell growth. Specific frequencies have been identified specific frequencies that may block cancer cell growth. A portable and programmable device capable of delivering low levels of amplitude-modulated electromagnetic fields has been developed. The device emits a 27.12 MHz radiofrequency signal, amplitude-modulated at cancer-specific frequencies ranging from 0.2 to 23,000 Hz with high precision. The device is connected to a spoon-like coupler, which is placed in the patient's mouth during treatment.

[0070] Methods: A phase I study was conducted consisting of three daily 40 min treatments. From March 2004 to September 2006, 24 patients with advanced solid tumors were enrolled. The median age was 57.0 ± 12.2 years. 16 patients were female. As of January 2007, 5 patients are still on therapy, 13 patients died of tumor progression, 2 patients are lost to follow-up and one patient withdrew consent. The most common tumor types were breast (7), ovary (5) and pancreas (3). 22 patients had received prior systemic therapy and 16 had documented tumor progression prior to study entry.

[0071] Results: The median duration of therapy was 15.7±19.9 weeks (range: 0.4-72.0 weeks). There were no NCI grade 2, 3 or 4 toxicities. Three patients experienced grade 1 fatigue during and immediately after treatment. 12 patients reported severe pain prior to study entry. Two of them reported significant pain relief with the treatment. Objective response could be assessed in 13 patients, 6 of whom also had elevated tumor markers. 6 additional patients could only be assessed by tumor markers. Among patients with progressive disease at study entry, one had a partial response for >14.4 weeks associated with >50% decrease in CEA, CA 125 and CA 15-3 (previously untreated metastatic breast cancer); one patient had stable disease for 34.6 weeks (add info); one patient had a 50% decrease in CA 19-9 for 12.4 weeks (recurrent pancreatic cancer). Among patients with stable disease at enrollment, four patients maintained stable disease for 17.0, >19.4, 30.4 and >63.4 weeks.

[0072] Conclusions: The treatment is a safe and promising novel treatment modality for advanced cancer. A phase II study and molecular studies are ongoing to confirm those results.

Example B

A Phase II Study of Therapeutic Amplitude-Modulated Electromagnetic Fields (THERABIONIC) in the Treatment of Advanced Hepatocellular Carcinoma (HCC)

[0073] Frederico P Costa ¹, Andre Cosme de Oliveira ¹, Roberto Meirelles Jr ¹, Rodrigo Surjan ¹, Tatiana Zanesco ¹, Maria Cristina Chammas ¹, Alexandre Barbault ², Boris Pasche ².

¹ Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil. ²Cabinet Médical Avenue de la Gare 6, CH-1003-Lausanne, Switzerland

[0074] Background: Phase I data suggest that low levels of electromagnetic fields amplitude-modulated at specific frequencies administered intrabucally with the device of Example A are a safe and potentially effective treatment for advanced cancer. The device emits a 27.12 MHz RF signal, amplitude-modulated with cancer-specific frequencies ranging from 0.2 to 23,000 Hz with high precision. The device is connected to a spoon-like coupler placed in the patient's mouth during treatment. Patients with advanced hepatocellular carcinoma HCC and limited therapeutic options were offered treatment with a combination of HCC-specific frequencies.

[0075] Methods: From October 2005 to October 2006, 38 patients with advanced HCC were recruited in a phase II study. The patients received three daily 40 min treatments until disease progression or death. The median age was 64.0 ± 14.2 years. 32 patients were male and 29 patients had documented progression of disease (POD) prior to study entry.

[0076] Results: As of January 2007, 12 patients are still on therapy, 20 patients died of tumor progression, 2 patients are lost to follow-up and 3 patients withdrew consent. 27 patients are eligible for response. The overall objective response rate as defined by partial response (PR) or stable disease (SD) in patients with documented POD at study entry was 31.6%: 3 PR and 9 SD. The median survival was 20.7 weeks with a median duration of therapy of 17.5 weeks. 13 patients have received therapy for more than six months. The median duration of response is 12.9 weeks. 12 patients reported pain at study entry: 8 of them (66%) experienced decreased pain during treatment. There were no NCI grade 2/3/4 toxicities. One patient developed grade 1 mucositis and grade 1 fatigue.

Patient characteristics (n = 38)			
Cirrhosis	36		
Portal vein thrombosis	9		
Elevated AFP	25		
Extra-hepatic metastases	12		
Previous intrahepatic/systemic therapy	30		
Previous hepatic resection/RFA or	8		
ethanol			
CLIP	0/1:	12	>2: 22
Okuda	I:	14	II/III: 20
Child-Pugh	A:	15	B: 19
MELD	Median:	10	

[0077] Conclusion: In patients with advanced HCC the treatment is a safe and effective novel therapeutic option, which has antitumor effect and provides pain relief in the majority of patients.

[0078] Thus, it is seen that the electronic device of the present invention, comprising means for the accurate control over the frequencies and stability of amplitude modulations of a high frequency carrier signal, provides a safe and promising novel treatment modality for the treatment of patients suffering from various types of advanced forms of cancer.

[0079] Exemplary of above accurately controlled amplitude modulated frequencies controlling the frequency of amplitude modulations of a high frequency carrier signal are set forth below along with the type of cancer or tumour harboured by a subject to be treated.

Example 1

AM Frequencies Employed for Treatment of Breast Cancer (188 Frequencies so Far Included)

[0080]

78.76 Hz	
181.821 Hz	
414.817 Hz	
440.933 Hz	
628.431 Hz	
721.313 Hz	
813.205 Hz	
818.342 Hz	
891.901 Hz	
929.095 Hz	
929.1 Hz	
1021 Hz	
1372.207 Hz	
1372.934 Hz	
1588.721 Hz	
1670.699 Hz	
1821.729 Hz	
1836.219 Hz	
2193.937 Hz	
2221.323 Hz	
2278.312 Hz	
2357.832 Hz	
2381.443 Hz	
2417.323 Hz	
2431.334 Hz	
2450.332 Hz	
2551.313 Hz	
2556.221 Hz	
2621.322 Hz	
2740.191 Hz	
2851.347 Hz	
2885.322 Hz	
2919.273 Hz	
3074.333 Hz	
3115.188 Hz	
3249.529 Hz	
3405.182 Hz	
3432.274 Hz	
3434.693 Hz	
3594.231 Hz	
3647.619 Hz	
3742.957 Hz	
3753.382 Hz	
3830.732 Hz	
3855.823 Hz	
3916.321 Hz	
3935.218 Hz	
3975.383 Hz	
5775.565 112	

-continued

-continued	-continued
3993.437 Hz	8194.19 Hz
4153.192 Hz	8245.801 Hz
4194.968 Hz	8328.322 Hz
4241.321 Hz	8330.534 Hz
4243.393 Hz	8355.987 Hz
4253.432 Hz	8408.121 Hz
4314.444 Hz	
4318.222 Hz 4375.962 Hz	8431.184 Hz
4393.419 Hz	8452.119 Hz
4417.243 Hz	8548.324 Hz
4481.463 Hz	8749.383 Hz
4482.223 Hz	8782.421 Hz
4495.138 Hz	8784.424 Hz
4549.808 Hz	8923.1 Hz
4558.306 Hz	8923.361 Hz
4779.451 Hz	8935.752 Hz
4838.674 Hz	8936.1 Hz
4871.513 Hz	
4895.296 Hz	9012.282 Hz
4962.213 Hz	9012.896 Hz
4969.224 Hz	9060.323 Hz
4979.321 Hz	9072.409 Hz
5027.231 Hz	9131.419 Hz
5059.792 Hz	9199.232 Hz
5118.094 Hz	
5176.287 Hz	9245.927 Hz
5365.222 Hz	9270.322 Hz
5376.392 Hz	9279.193 Hz
5426.323 Hz	9393.946 Hz
5431.542 Hz	10227.242 Hz
5521.621 Hz	10340.509 Hz
5739.422 Hz	10363.313 Hz
5745.218 Hz	
5821.975 Hz	10449.323 Hz
6037.432 Hz	10456.383 Hz
6044.333 Hz	10468.231 Hz
6086.256 Hz	10470.456 Hz
6208.932 Hz	10472.291 Hz
6212.808 Hz	10689.339 Hz
6231.031 Hz	
6280.321 Hz	10832.222 Hz
6329.391 Hz	11525.121 Hz
6476.896 Hz	11541.915 Hz
6497.319 Hz	11812.328 Hz
6504.983 Hz	11812.419 Hz
6651.276 Hz	11840.323 Hz
6757.901 Hz	
6758.321 Hz 6855.286 Hz	11925.089 Hz
	12123.281 Hz
6858.121 Hz 6898.489 Hz	12267.281 Hz
7092.219 Hz	12294.283 Hz
7120.218 Hz	12611.288 Hz
7120.218 Hz	12629.222 Hz
7156.489 Hz	
7208.821 Hz	12633.372 Hz
7282.169 Hz	12648.221 Hz
7376.329 Hz	13315.335 Hz
7488.742 Hz	13331.358 Hz
7541.319 Hz	13735.241 Hz
7577.421 Hz	13826.325 Hz
7621.085 Hz	
7627.207 Hz	13853.232 Hz
7650.939 Hz	13990.123 Hz
7691.212 Hz	14122.942 Hz
7842.184 Hz	14162.332 Hz
7849.231 Hz	14519.232 Hz
7915.423 Hz	14543.128 Hz
7932.482 Hz	
7949.196 Hz	15651.323 Hz
7967.311 Hz	17352.085 Hz
8021.229 Hz	18785.463 Hz
8070.181 Hz	30182.932 Hz
8114.032 Hz	

AM Frequencies Employed for Treatment of Liver Cancer (162 Frequencies so Far Included)

[0081]

423	.321 Hz
	.062 Hz
470	181 Hz
	0.32 Hz
	.932 Hz
	.209 Hz
	.972 Hz
	.924 Hz .311 Hz
	3.22 Hz
	.504 Hz
	402 Hz
1873	.477 Hz
1924	702 Hz
1975	.196 Hz
	.962 Hz
	.419 Hz
	.731 Hz
	.323 Hz
	.393 Hz
	.478 Hz .309 Hz
	.309 Hz .309 Hz
	.309 Hz .222 Hz
	.219 Hz
	.094 Hz
	.328 Hz
2478	.331 Hz
2743	.995 Hz
	.211 Hz
	.951 Hz
	.283 Hz
	.891 Hz
	.542 Hz
	.232 Hz
	012 Hz
	.983 Hz 443 Hz
	.443 Hz .232 Hz
	.232 HZ .942 Hz
	.942 HZ .315 Hz
	.313 Hz .433 Hz
	.321 Hz
	291 Hz
	229 Hz
	296 Hz
3531	.296 Hz
3546	.323 Hz
3572	106 Hz
3576	189 Hz
3669	.513 Hz
3923	.221 Hz
	.932 Hz
	121 Hz
4079	.951 Hz
	.821 Hz
	402 Hz
	.321 Hz
	296 Hz
	.947 Hz
	.219 Hz .188 Hz
	.188 Hz .889 Hz
	.889 Hz .384 Hz
	.984 HZ .941 Hz
	.211 Hz
	218 Hz
	.281 Hz
5124	.084 Hz

-continued
5133.121 Hz 5247.142 Hz
5270.834 Hz 5340.497 Hz
5520.218 Hz 5882.292 Hz 5026 512 Hz
5926.512 Hz 6037.311 Hz 6180.334 Hz
6329.195 Hz 6350.333 Hz
6361.321 Hz 6364.928 Hz
6383.321 Hz 6461.175 Hz
6733.331 Hz 6758.232 Hz
6779.482 Hz 6856.222 Hz
6877.183 Hz 6980.525 Hz
7019.235 Hz 7043.209 Hz
7130.323 Hz 7144.142 Hz
7210.223 Hz 7291.21 Hz
7510.92 Hz 7529.233 Hz
7549.212 Hz 7650.028 Hz
7680.518 Hz 7692.522 Hz 7829.231 Hz
7862.209 Hz 7947.392 Hz
7979.308 Hz 8028.339 Hz
8055.942 Hz 8072.134 Hz
8141.174 Hz 8336.383 Hz
8432.181 Hz 8452.119 Hz
8460.944 Hz 8475.221 Hz
8492.193 Hz 8542.311 Hz 8818.104 Hz
8818.104 Hz 8852.329 Hz 8853.444 Hz
8858.179 Hz 8939.212 Hz
9332.397 Hz 9381.221 Hz
9740.219 Hz 9768.331 Hz
9797.294 Hz 10317.499 Hz
10443.311 Hz 10456.383 Hz
10579.425 Hz 10863.209 Hz
10866.382 Hz 11067.418 Hz
11149.935 Hz 11163.895 Hz 11802.821 Hz
11802.821 Hz 11953.424 Hz 12223.329 Hz
12225.329 Hz 12265.295 Hz 12267.233 Hz
12623.191 Hz 12685.231 Hz
12721.423 Hz 12785.342 Hz

-con	itinu

-continued	-continued
14085.222 Hz	1762.938 Hz
14333.209 Hz	1771.402 Hz
14537.331 Hz	1775.313 Hz
14542.432 Hz	1821.729 Hz
14655.03 Hz	2016.323 Hz
14828.234 Hz	2034.231 Hz
15149.213 Hz	2050.282 Hz
15237.489 Hz	2053.396 Hz
16110.932 Hz	2082.234 Hz
16144.343 Hz	2089.092 Hz
18265.238 Hz	2221.323 Hz
18283.323 Hz	2228.832 Hz
18863.292 Hz	2253.704 Hz
18930.995 Hz	2254.329 Hz
19970.311 Hz	2278.312 Hz
20330.294 Hz	2332.949 Hz
20365.284 Hz	2348.233 Hz
	2381.443 Hz
	2413.193 Hz
	2425.222 Hz
Example 3	2433.321 Hz
Example 5	2420 252 11-

AM Frequencies Employed for Treatment of Ovarian Cancer (273 Frequencies so Far Included)

[0082]

78.76	Hz
181.821	Hz
410.245	Hz
414.817	Hz
436.332	Hz
447.942	Hz
481.191	Hz
489.292	Hz
559.292	Hz
608.321	Hz
655.435	Hz
657.397	Hz
657.483	Hz
664.211	Hz
708.8	Hz
708.822	Hz
734.921	Hz
749.221	Hz
764.232	Hz
778.295	Hz
779.403	Hz
806.021	Hz
806.021	Hz
806.389	Hz
809.313	Hz
824.327	Hz
825.145	Hz
835.129	Hz
839.521	Hz
841.208	Hz
843.312	Hz
956.984	Hz
958.929	Hz
985.313	Hz
1024.208	Hz
1102.635	Hz
1121.329	Hz
1159.738	Hz
1372.207	Hz
1396.498	Hz
1502.181	Hz
1518.208	Hz
1552.123	Hz
1579.212	Hz
1624.802	Hz
1670.699	Hz
1696.403	Hz

1771.402	Hz
1775.313	Hz
1821.729	Hz
2016.323 2034.231	Hz
	Hz
2050.282	Hz
2053.396	Hz
2082.234	Hz
2089.092	Hz
2221.323	Hz
2228.832	Hz II-
2253.704	Hz
2254.329 2278.312	Hz
	Hz
2332.949	Hz
2348.233 2381.443	Hz
	Hz Hz
2413.193 2425.222	Hz
2423.222	
2439.253	Hz Hz
2465.23	Hz
2477.919	Hz
2669.177	Hz
2715.232	Hz
2733.843	Hz
2802.339	Hz
	Hz
2812.321 2831.386	
2835.332	Hz Hz
2855.352	Hz
2877.192	
2885.322	Hz Hz
2885.322	Hz
2894.972	Hz
2973.771	Hz
3080.592	Hz
3157.483	Hz
3161.465	Hz
3223.232	Hz
3238.148	Hz
3249.529	Hz
3262.145	Hz
3314.321	Hz
3361.671	Hz
3366.311	Hz
3523.215	Hz
3527.233	Hz
3542.213	Hz
3590.376	Hz
3629.232	Hz
3632.793	Hz
3636.289	Hz
3637.085	Hz
3669.513	Hz
3770.189	Hz
3858.916	Hz
3919.232	Hz
3957.185	Hz
3975.228	Hz
4061.131	Hz
4072.322	Hz
4169.451	Hz
4174.259	Hz
4241.321	Hz
4243.393	Hz
4261.228	Hz
4279.113	Hz
4309.335	Hz
4314.188	Hz
4318.222	Hz
4328.928	Hz
4380.321	Hz
4394.134	Hz
4412.252	Hz

-continued	-continued
4424.236 Hz	8435.451 Hz
4439.341 Hz	8486.421 Hz
4442.161 Hz	8492.797 Hz
4447.221 Hz	8548.324 Hz
4458.339 Hz	8554.361 Hz
4556.322 Hz 4566.009 Hz	8562.965 Hz 8579.323 Hz
4682.643 Hz	8579.333 Hz
4718.331 Hz	8642.181 Hz
4749.302 Hz	8655.818 Hz
4765.331 Hz	8758.341 Hz
4917.202 Hz	8779.323 Hz
5011.325 Hz	8792.231 Hz
5149.331 Hz	8819.127 Hz
5228.172 Hz	8831.132 Hz
5237.132 Hz	9028.031 Hz
5313.353 Hz	9173.264 Hz
5745.218 Hz	9184.338 Hz
5757.897 Hz	9186.919 Hz
5762.386 Hz	9393.946 Hz
5812.322 Hz	9482.409 Hz 9737.211 Hz
5869.321 Hz 5882.292 Hz	9737.211 Hz 9746.232 Hz
5982.292 HZ 5921.249 Hz	9746.232 Hz 9922.231 Hz
5991.932 Hz	10032.684 Hz
6069.458 Hz	10446.028 Hz
6071.319 Hz	10478.221 Hz
6083.214 Hz	10545.313 Hz
6161.782 Hz	10639.345 Hz
6169.341 Hz	10743.118 Hz
6275.232 Hz	10813.981 Hz
6294.929 Hz	10832.421 Hz
6350.333 Hz	10838.243 Hz
6406.891 Hz	10862.429 Hz
6407.207 Hz	10865.127 Hz
6450.787 Hz	10917.229 Hz
6477.098 Hz	10977.188 Hz
6477.929 Hz	11120.209 Hz
6478.338 Hz	11177.289 Hz
6543.421 Hz	11177.409 Hz
6552.24 Hz 6663.955 Hz	11321.491 Hz 11359.093 Hz
6753.338 Hz	11673.031 Hz
6851.323 Hz	11793.886 Hz
6855.286 Hz	11895.229 Hz
6875.232 Hz	12074.531 Hz
6882.949 Hz	12216.212 Hz
7206.403 Hz	12253.329 Hz
7232.214 Hz	12260.933 Hz
7257.489 Hz	12262.853 Hz
7276.209 Hz	12292.222 Hz
7281.219 Hz	12357.353 Hz
7285.693 Hz	12527.032 Hz
7429.212 Hz 7460.032 Hz	12755.333 Hz 12047 311 Hz
7460.932 Hz 7480.228 Hz	12947.311 Hz 13717.221 Hz
7480.228 HZ 7495.763 Hz	13/1/.221 HZ 13825.295 Hz
7539.432 Hz	13625.255 Hz 13829.195 Hz
7564.185 Hz	14410.949 Hz
7650.028 Hz	14436.201 Hz
7689.728 Hz	14537.218 Hz
7780.294 Hz	14947.184 Hz
8021.921 Hz	15429.139 Hz
8038.961 Hz	15443.309 Hz
8040.322 Hz	15450.183 Hz
8044.233 Hz	16144.343 Hz
8095.313 Hz	17932.432 Hz
8143.491 Hz	17951.395 Hz
8164.332 Hz	17970.122 Hz
8261.121 Hz	18337.222 Hz
8302.285 Hz	18378.321 Hz
8309.752 Hz	18921.415 Hz
8372.532 Hz	18926.951 Hz 18031.327 Hz
8408.121 Hz 8424.229 Hz	18931.327 Hz 114508.332 Hz
8424.229 HZ 8428.313 Hz	117300.332 112
0720.J1J 11Z	

AM Frequencies Employed for Treatment of Prostate
Cancer (183 Frequencies so Far Included)

[0083]

331.3 Hz 331.358 Hz	
403.218 Hz	
461.233 Hz	
522.2 Hz 522.213 Hz	
618.4 Hz	
618.407 Hz	
618.8 Hz 656.295 Hz	
657.394 Hz	
657.397 Hz	
657.4 Hz 657.483 Hz	
659.033 Hz	
694.4 Hz	
694.689 Hz 694.7 Hz	
741.4 Hz	
741.421 Hz	
749.221 Hz	
752.9 Hz 752.933 Hz	
776.194 Hz	
785.219 Hz	
786.332 Hz 793.331 Hz	
809.205 Hz	
819.322 Hz	
844.8 Hz 844.822 Hz	
847.332 Hz	
1083.309 Hz	
1102.635 Hz	
1102.71 Hz 1240.336 Hz	
1372.934 Hz	
1444.288 Hz	
1486.322 Hz 1563.332 Hz	
1505.552 Hz 1591.322 Hz	
1670.699 Hz	
1697.321 Hz	
1743.521 Hz 2031.448 Hz	
2050.282 Hz	
2076.519 Hz	
2156.332 Hz 2229.515 Hz	
2243.121 Hz	
2381.443 Hz	
2440.489 Hz	
2475.912 Hz 2477.919 Hz	
2628.324 Hz	
2669.328 Hz	
2824.832 Hz	
2887.829 Hz 2891.331 Hz	
3081.523 Hz	
3249.529 Hz	
3250.125 Hz	
3251.815 Hz 3264.827 Hz	
3278.329 Hz	
3281.432 Hz	
3348.783 Hz 3519.118 Hz	
3539.962 Hz	

-continued
3551.318 Hz

3556.439 Hz 3572.321 Hz

3670.129 Hz 3681.341 Hz 3686.021 Hz 3753.382 Hz 3774.923 Hz 3867.692 Hz 3909.333 Hz 3916.321 Hz $4031.233 \ \mathrm{Hz}$ 4031.933 Hz 4038.203 Hz 4081.743 Hz 4084.319 Hz 4139.322 Hz 4153.192 Hz 4223.795 Hz 4231.221 Hz 4241.321 Hz $4320.513 \ \mathrm{Hz}$ 4329.152 Hz 4380.321 Hz 4417.312 Hz 4489.452 Hz 4549.808 Hz 4558.306 Hz 4638.293 Hz 4740.322 Hz 4854.318 Hz 4882.322 Hz 4978.822 Hz 5237.152 Hz 5264.222 Hz 5289.195 Hz 5426.323 Hz 5431.542 Hz 5455.593 Hz 6345.332 Hz 6347.433 Hz 6363.284 Hz 6418.331 Hz 6496.231 Hz 6538.295 Hz 6577.421 Hz 6590.328 Hz 6651.276 Hz 6706.431 Hz 6743.322 Hz 6783.282 Hz 6850.197 Hz 6855.286 Hz 6864.896 Hz 6871.943 Hz 6973.393 Hz 6973.393 Hz 7120.932 Hz 7146.509 Hz 7192.505 Hz

 $7251.309 \ \mathrm{Hz}$ 7251.322 Hz $7278.124 \ \mathrm{Hz}$ 7279.335 Hz 7299.119 Hz 7527.229 Hz 7589.925 Hz 7699.193 Hz 7842.184 Hz 8023.32 Hz 8096.939 Hz 8245.801 Hz 8315.291 Hz 8357.305 Hz 8408.121 Hz 8432.209 Hz 8535.238 Hz

-continued	-continued
8552.431 Hz	10586.229 Hz
8585.224 Hz	10634.293 Hz
8935.752 Hz	10687.949 Hz
9015.253 Hz	11421.933 Hz
9018.233 Hz	11523.212 Hz
9068.231 Hz	11561.221 Hz
9137.232 Hz	11846.212 Hz
9156.321 Hz	12631.331 Hz
9351.931 Hz	12693.272 Hz
9393.946 Hz	14411.321 Hz
9694.179 Hz	20178.941 Hz
9984.405 Hz	
10226.223 Hz	
10390.232 Hz	
10514.768 Hz	Example 6
10689.339 Hz	F****
10772.419 Hz	AM Frequencies Employed for Treatment of Thyroid
10818.452 Hz	Cancer (110 Frequencies so Far Included)
11165.239 Hz	Cancer (110 Trequencies so Far included)
11985.353 Hz	[0085]
12209.329 Hz	[0005]
12308.321 Hz	
12583.339 Hz	
13820.329 Hz	
14013.123 Hz	493.442 Hz
14171.434 Hz	517.202 Hz
14681.329 Hz	618.927 Hz
14759.131 Hz	621.321 Hz
14986.794 Hz	648.252 Hz
15930.249 Hz	663.407 Hz
16026.623 Hz	821.202 Hz
17880.954 Hz	874.341 Hz
18247.532 Hz	914.429 Hz
18282.211 Hz	941.311 Hz
18629.328 Hz	983.429 Hz
19469.318 Hz	1587.811 Hz
19766.218 Hz	1723.389 Hz
60317.352 Hz	2179.231 Hz
	2315.888 Hz
	22.41.212.11

AM Frequencies Employed for Treatment of Kidney Cancer (36 Frequencies so Far Included)

[0084]

010.727 112	
621.321 Hz	
648.252 Hz	
821.202 Hz	
874.341 Hz	
914.429 Hz	
941.311 Hz	
983.429 Hz	
1587.811 Hz	
1723.389 Hz	
2179.231 Hz	
21/2.231 112	
2315.888 Hz	
2341.312 Hz	
2445.123 Hz	
2723.302 Hz	
2740.384 Hz	
2749.323 Hz	
2856.253 Hz	
2859.495 Hz	
2886.232 Hz	
3078.275 Hz	
3080.592 Hz	
3198.323 Hz	
3248.321 Hz	
5246.521 HZ	
3271.329 Hz	
3284.192 Hz	
3335.332 Hz	
3434.911 Hz	
3440.212 Hz	
5475.210 HZ	
3475.216 Hz 3509.522 Hz	
3533.328 Hz	
5555.526 112	
3637.085 Hz	
3682.489 Hz	
JU62.469 IIZ	
4154.301 Hz	
4243.393 Hz	
4245.555 112	
4261.228 Hz	
4330.289 Hz	
4340.833 Hz	
4250 222 IT	
4358.333 Hz	
4366.294 Hz	
4366.294 Hz 4426.387 Hz	
4366.294 Hz 4426.387 Hz	
4366.294 Hz 4426.387 Hz 4458.339 Hz	
4366.294 Hz 4426.387 Hz 4458.339 Hz 4479.113 Hz	
4366.294 Hz 4426.387 Hz 4458.339 Hz 4479.113 Hz	
4366.294 Hz 4426.387 Hz 4458.339 Hz 4479.113 Hz 4744.424 Hz	
4366.294 Hz 4426.387 Hz 4458.339 Hz 4479.113 Hz 4744.424 Hz 4865.421 Hz	
4366.294 Hz 4426.387 Hz 4458.339 Hz 4479.113 Hz 4744.424 Hz 4865.421 Hz	
4366.294 Hz 4426.387 Hz 4458.339 Hz 4479.113 Hz 4744.424 Hz	

12

-continued	-continued
5324.123 Hz	2581.101 Hz
5548.879 Hz	2715.232 Hz
5711.283 Hz	3042.012 Hz
5754.332 Hz	3196.194 Hz
6455.131 Hz	3265.323 Hz
6620.132 Hz	3438.109 Hz
6666.839 Hz	3692.319 Hz
6714.189 Hz	3952.308 Hz
6745.333 Hz	5230.227 Hz
6766.281 Hz	6022.942 Hz
6884.432 Hz	6061.711 Hz
7036.122 Hz	6710.899 Hz
7230.838 Hz	6721.912 Hz
7323.209 Hz	7181.784 Hz
7355.378 Hz	7458.209 Hz
7432.143 Hz	8235.21 Hz
7534.221 Hz	8749.232 Hz
7623.184 Hz	9354.812 Hz
7725.339 Hz	12532.729 Hz
7920.879 Hz	13467.209 Hz
8013.953 Hz	13777.9 Hz
8019.912 Hz	14015.241 Hz
8040.231 Hz	18524.419 Hz
8078.955 Hz	
8082.173 Hz	
8147.1 Hz	
8281.259 Hz	Example 8
8309.752 Hz	Example 0
8311.371 Hz	AM Frequencies Employed For Treatment of Colon
8435.094 Hz	
8525.789 Hz	Cancer (100 Frequencies so Far Included)
8744.527 Hz	[0087]
9009.329 Hz	[0007]
9070.809 Hz	
10020.521 Hz	
10039.109 Hz	
10127.279 Hz	78.76 Hz
10134.161 Hz	796.562 Hz
10257.324 Hz	841.541 Hz
10498.339 Hz	842.783 Hz
11537.292 Hz	914.429 Hz
11559.292 Hz	1162.117 Hz
11913.222 Hz	1372.207 Hz
11927.934 Hz	1372.934 Hz
11955.949 Hz	1718.532 Hz
12120.049 Hz	2243.169 Hz
12139.222 Hz	2278.312 Hz
13636.082 Hz	2286.5 Hz
13654.272 Hz	2286.519 Hz
13677.211 Hz	2334.178 Hz
14014.941 Hz	2423.292 Hz
14445.214 Hz	2454.423 Hz
16023.119 Hz	2464.229 Hz
16048.391 Hz	2598.853 Hz
16048.391 Hz 17323.196 Hz	2598.853 Hz 2623.048 Hz
16048.391 Hz 17323.196 Hz 17577.221 Hz	2598.853 Hz 2623.048 Hz 3131.123 Hz
16048.391 Hz 17323.196 Hz 17577.221 Hz 17881.709 Hz	2598.853 Hz 2623.048 Hz 3131.123 Hz 3161.465 Hz
16048.391 Hz 17323.196 Hz 17577.221 Hz	2598.853 Hz 2623.048 Hz 3131.123 Hz 3161.465 Hz 3175.313 Hz
16048.391 Hz 17323.196 Hz 17577.221 Hz 17881.709 Hz	2598.853 Hz 2623.048 Hz 3131.123 Hz 3161.465 Hz 3175.313 Hz 3249.529 Hz
16048.391 Hz 17323.196 Hz 17577.221 Hz 17881.709 Hz	2598.853 Hz 2623.048 Hz 3131.123 Hz 3161.465 Hz 3175.313 Hz 3249.529 Hz 3363.229 Hz
16048.391 Hz 17323.196 Hz 17577.221 Hz 17881.709 Hz 17911.323 Hz	2598.853 Hz 2623.048 Hz 3131.123 Hz 3161.465 Hz 3175.313 Hz 3249.529 Hz 3363.229 Hz 3373.892 Hz
16048.391 Hz 17323.196 Hz 17577.221 Hz 17881.709 Hz	2598.853 Hz 2623.048 Hz 3131.123 Hz 3161.465 Hz 3175.313 Hz 3249.529 Hz 3363.229 Hz

 $3409.179 \ \mathrm{Hz}$

 $3432.274~\mathrm{Hz}$ $3509.522 \ \mathrm{Hz}$ 3531.422 Hz 3533.328 Hz

3766.296 Hz $4040.839 \ \mathrm{Hz}$ 4081.022 Hz 4123.953 Hz

4146.274 Hz 4233.822 Hz 4282.332 Hz

4318.222 Hz 4344.082 Hz

Example 7

AM Frequencies Employed for Treatment of Bladder Cancer (28 Frequencies so Far Included)

[0086]

623.243 Hz 757.084 Hz 870.4 Hz 2454.423 Hz $2480.191~\mathrm{Hz}$

-continued	-continued
4416.221 Hz	436.332 Hz
4481.242 Hz	447.942 Hz
4724.263 Hz	476.127 Hz
4751.319 Hz	559.292 Hz
4755.323 Hz	589.187 Hz
4788.485 Hz	624.218 Hz
5149.331 Hz	727 Hz
5217.402 Hz	734.921 Hz
5386.212 Hz	809.313 Hz
5407.192 Hz	845.309 Hz
5426.323 Hz	870.4 Hz
5496.434 Hz	963.221 Hz
5555.212 Hz	1156.79 Hz
5572.032 Hz	1157 Hz
5634.933 Hz	1179 Hz
5724.231 Hz	1360.133 Hz
5758.378 Hz	1372.207 Hz
5787.342 Hz 5948.897 Hz	1372.934 Hz 1804.126 Hz
5948.897 HZ 5967.448 Hz	1804.120 HZ 1816.221 Hz
5976.825 Hz	1873.477 Hz
6182.322 Hz	1967.211 Hz
6292.379 Hz	1990.482 Hz
6324.493 Hz	2278.312 Hz
6341.248 Hz	2315.921 Hz
6471.322 Hz	2320.315 Hz
6477.218 Hz	2334.178 Hz
6558.342 Hz	2381.443 Hz
6855.286 Hz	2469 Hz
7129.843 Hz	2477.919 Hz
7140.187 Hz	2542.221 Hz
7162.422 Hz	2598.853 Hz
7368.222 Hz	2647.938 Hz
7645.859 Hz	2685.081 Hz
7829.234 Hz	2716.095 Hz
7866.229 Hz	2721.331 Hz
7877.334 Hz	2732.231 Hz
8013.314 Hz 8374.942 Hz	2809.849 Hz 2823.428 Hz
8374.942 HZ 8384.228 Hz	2823.428 Hz 2835.332 Hz
8408.121 Hz	3134.313 Hz
8534.111 Hz	3241.461 Hz
8568.033 Hz	3255.219 Hz
8573.122 Hz	3263.432 Hz
9226.222 Hz	3286.255 Hz
9351.9 Hz	3330.935 Hz
9737.211 Hz	3373.892 Hz
9744.193 Hz	3438.109 Hz
9942.321 Hz	3449.219 Hz
10301.371 Hz	3535.219 Hz
10401.515 Hz	3549.215 Hz
10872.693 Hz	3564.419 Hz
11220.222 Hz 11283.378 Hz	3619.412 Hz
12255.432 Hz	3622.312 Hz 3638.432 Hz
12250.452 HZ 13749.858 Hz	3696.424 Hz
15231.548 Hz	3943.214 Hz
15251.548 HZ 15248.324 Hz	3976.929 Hz
58191.928 Hz	4014.889 Hz
60317.352 Hz	4014.219 Hz
	4044.195 Hz
	4056.384 Hz
	4085.971 Hz
Example 9	4144.592 Hz
Lindipie 3	4153.192 Hz
AM Frequencies Employed for Treatment of Pan-	4161.889 Hz

14

Example 9

AM Frequencies Employed for Treatment of Pan-creas Cancer (166 Frequencies so Far Included)

[0088]

331.3 Hz 331.365 Hz 436.3 Hz

4153.192 Hz 4161.889 Hz 4243.393 Hz 4332.498 Hz 4341.423 Hz 4355.327 Hz 4417.885 Hz 4422.322 Hz 4451.297 Hz 4486.384 Hz 4558.306 Hz 4580 Hz

-continued	-continued
4685.082 Hz	13731.322 Hz
4839.589 Hz	14525.312 Hz
5151.402 Hz	14537.218 Hz
5209.911 Hz	14549.331 Hz
5262.282 Hz	
	14845.453 Hz
5271.312 Hz	14944.989 Hz 15246.315 Hz
5387.73 Hz	
5494.928 Hz	18668.239 Hz
5521.221 Hz	19321.231 Hz
5573.209 Hz	19347.208 Hz
5609.382 Hz	30182.932 Hz
5929.616 Hz	
5948.897 Hz	
5966.112 Hz	
5976.825 Hz	Example 10
6064.197 Hz	
6086.256 Hz	AM Frequencies Employed for Treatment of Lung
6157.253 Hz	Cancer (80 Frequencies so Far Included)
6215.298 Hz	
6333.917 Hz	[0089]
6365.242 Hz	
6558.342 Hz	
6568.278 Hz	
6823.194 Hz	
6853.391 Hz	304.148 Hz
6855.286 Hz	694.7 Hz
7213.204 Hz	694.727 Hz
7228.528 Hz	708.8 Hz
7238.232 Hz	708.841 Hz
7277.921 Hz	1587.811 Hz
7280.422 Hz	1759.318 Hz
7320.494 Hz	1873.477 Hz
7366.412 Hz	2253.704 Hz
7534.221 Hz	2391.312 Hz
7548.713 Hz	2454.232 Hz
7567.127 Hz	2729.929 Hz
7620.851 Hz	2741.261 Hz
7663.209 Hz	2761.312 Hz
7725.203 Hz	2784.491 Hz
7852.233 Hz	2812.443 Hz
7920.879 Hz	2855.218 Hz
7985.122 Hz	2859.495 Hz
8008.323 Hz	3128.822 Hz
8013.312 Hz	3139.297 Hz
8045.484 Hz	3193.212 Hz
8242.332 Hz	3348.783 Hz
8351.622 Hz	3360.971 Hz 3366.311 Hz
8408.121 Hz	3373.892 Hz
8455.894 Hz 8551.231 Hz	3440.212 Hz
8743.321 Hz 8789.631 Hz	3461.322 Hz 3682.489 Hz
8789.031 HZ 8868.809 Hz	3727.231 Hz
9012.241 Hz	3749.882 Hz
9012.241 Hz 9028.994 Hz	3769.942 Hz
9131.232 Hz	4131.235 Hz
9658.296 Hz	4158.393 Hz
9663.495 Hz	4136.393 Hz 4243.393 Hz
9680.737 Hz	4347.733 Hz
9824.442 Hz	4373.411 Hz
9942.321 Hz	4378.321 Hz
10279.122 Hz	4416.221 Hz
10388.49 Hz	4481.242 Hz
10438.495 Hz	4777.521 Hz
10518.311 Hz	4798.422 Hz
10518.511 Hz 10528.239 Hz	4796.422 HZ 4837.241 Hz
10522.259 Hz	4959.842 Hz
10382.095 Hz 10926.111 Hz	4939.842 HZ 5013.321 Hz
10948.411 Hz	5047.523 Hz
10948.411 Hz 10955.558 Hz	5068.322 Hz
11538.193 Hz	5308.322 Hz 5371.922 Hz
11338.195 HZ 11904.741 Hz	5538.432 Hz
12255.229 Hz	5538.452 Hz 5548.879 Hz
12233.229 HZ 12613.341 Hz	5679.309 Hz
12015.341 Hz 12819.942 Hz	5079.509 Hz 5734.143 Hz
12819.942 Hz 13674.482 Hz	5734.145 Hz 5787.342 Hz
150/7.702 112	5767.5 7 2 112

-continued	-continued
6445.309 Hz	9943.972 Hz
6838.434 Hz	12086.394 Hz
6870.955 Hz	
6879.216 Hz	
7079.411 Hz	
7216.288 Hz	Example 12
7376.089 Hz	
7761.289 Hz	AM Frequencies Employed for Treatment of
8082.173 Hz	
8281.259 Hz	Mesothelioma (16 Frequencies so Far Included)
8352.189 Hz	
8442.473 Hz	[0091]
8773.916 Hz	
8935.752 Hz	
9121.223 Hz	
9181.434 Hz	958.929 Hz
9317.913 Hz	1713.913 Hz
9363.896 Hz	1736.782 Hz
9736.919 Hz	2334.178 Hz
9753.321 Hz	2607.193 Hz
10424.908 Hz	3112.974 Hz
10452.913 Hz	3319.945 Hz
10824.609 Hz	3449.219 Hz
11656.329 Hz	3622.312 Hz
12748.919 Hz	5151.402 Hz
15774.291 Hz	5151.402 HZ 5887.022 Hz
15798.333 Hz	5965.922 Hz
16510.321 Hz	6516.793 Hz
	7224.197 Hz
	9471.152 Hz
	14617.393 Hz

AM Frequencies Employed for Treatment of Leiomyosarcoma (36 Frequencies so Far Included)

[0090]

Example 13

AM Frequencies Employed for Treatment of Neuro-Endocrine (30 Frequencies so Far Included)

[0092]

836.923 Hz	
843.181 Hz	
1411.241 Hz	
2073.721 Hz	1766.335 Hz
2381.443 Hz	2408.225 Hz
2711.019 Hz	2441.502 Hz
2911.329 Hz	2647.938 Hz
3232.185 Hz	2741.261 Hz
3518.321 Hz	3020.212 Hz
3544.209 Hz	3128.822 Hz
3569.219 Hz	3238.742 Hz
4233.822 Hz	3296.431 Hz
4241.321 Hz	3348.783 Hz
4266.591 Hz	3360.971 Hz
4337.322 Hz	3440.212 Hz
4424.112 Hz	3533.328 Hz
4436.111 Hz	3666.283 Hz
4485.22 Hz	4079.282 Hz
5545.521 Hz	4243.393 Hz
5577.841 Hz	4426.387 Hz
5631.422 Hz	5245.818 Hz
5696.184 Hz	5536.242 Hz
6472.098 Hz	5548.879 Hz
6558.342 Hz	5739.422 Hz
6651.276 Hz	5849.241 Hz
7168.892 Hz	6291.631 Hz
7406.309 Hz	6406.891 Hz
7452.528 Hz	6780.679 Hz
7649.209 Hz	7151.264 Hz
7808.352 Hz	7482.245 Hz
9040.313 Hz	7575.393 Hz
9074.294 Hz	8359.932 Hz
9189.092 Hz	9073.418 Hz
9484.512 Hz	

AM Frequencies Employed for Treatment of Leukemia and Chronic Lymphoid Cancer (17 Frequencies so Far Included)

[0093]

-continued
2310.912 Hz
2477.919 Hz
2560.843 Hz
3348.783 Hz
3371.216 Hz
3605.432 Hz
3623.198 Hz
3838.281 Hz
3838.48 Hz
5102 Hz
5696.932 Hz
5724.231 Hz
6358.194 Hz
7472.211 Hz
8062.121 Hz
8222.222 Hz

Example 17

AM Frequencies Employed for Treatment of Brain Cancer (57 Frequencies so Far Included)

[0096]

Example 15

AM Frequencies Employed for Treatment of Myeloma, Multiple Cancer (20 Frequencies so Far Included)

[0094]

765.196 Hz
2336.238 Hz
2372.122 Hz
2381.443 Hz
2425.394 Hz
2656.339 Hz
2741.261 Hz
2883.618 Hz
2919.273 Hz
3265.323 Hz
3564.455 Hz
3580.25 Hz
3584.291 Hz
3674.292 Hz
5249.331 Hz
7967.311 Hz
7973.125 Hz
8049.952 Hz
8283.329 Hz
10351.323 Hz

Example 16

AM Frequencies Employed for Treatment of Hodgkin Disease (Lymphoma) (19 Frequencies so Far Included)

[0095]

752.5 Hz 976.3 Hz 1558.223 Hz

1372.934	U.
2318 182	Hz
2510.102	112
2318.182 2381.443	Hz
2425 204	TT
2425.394 2442.423	HZ
2442 422	II.
2442.423	ΠZ
2478.973	Hz
2654.513	Hz
2661.324	
2686 105	U ₂
2686.105 2690.179	112
2690 179	Hz
20201172	
3249.332 3277.509	Hz
2277 500	TT-
3277.309	HZ
3335.279	Hz
5555.212	
3348.783	Hz
3436.211	Hz
3916.321	Hz
5910.521	ΠZ
4031.933	Hz
4086.091 4241.321	Hz
40.44.0.04	
4241.321	Hz
4210 222	II.
4316.222	пz
4318.222 4334.33	Hz
4358.333	Hz
4393.419	Hz
4454.194	U ₂
4515.789	Hz
4619.324	Hz
4723.937	
4723.937	HZ
4853.286	Hz
5289.231	Hz
52051251	
5378.099	Hz
5426 222	TT-
5426.323	пz
5640.981	Hz
6316.211	Hz
6459.203	Hz
6474.332	U-7
0474.552	112
6626.572	Hz
6626.572 6855.286	
6855.286	Hz
6915.886	HZ
6943.386	Hz
7151.264	Hz
7182.922	
7194.897	U-7
7323 209	Hz
,525.207	***
7323.209 7390.343	Hz
7706 221	тт
//96.221	HZ
7796.221 7961.122	H7
8128.942	Hz
51201742	~**

tinued	-cont
109 Hz	8245.3
.281 Hz	8272.2
.154 Hz	8358.
.121 Hz	8408.3
8.82 Hz	9138
.318 Hz	10719.3
.241 Hz	11556.2
.633 Hz	12828.0
962 Hz	14515.9
.765 Hz	14586.

[0097] The above Examples reflect AM frequencies determined by a bio-feedback procedure involving very substantial observations and measurements of physiological responses (at certain well defined AM frequencies) by subjects exposed to low energy electromagnetic emission excitation. In general, it is recommended that all of the listed frequencies be applied in the treatment of subjects suffering from the indicated form of cancer. However, a limited number of the listed frequencies also lead to beneficial effects.

[0098] Of note in respect of the above listed frequencies, in particular those Examples including a large number of frequencies, it has earlier on been determined that beneficial therapeutic effects are achieved by application of some but not all of the frequencies listed. However, following on more extended trials, it has been determined that application to subjects of further frequencies enhance the efficacy of treatment and yields therapeutic effects in patients whose tumours have become resistant to therapy. It is accordingly preferred that all of the determined listed frequencies be applied to the subject. The mechanism of including additional frequencies is attributed to either or both of inter-active synergism between applied frequencies or between cells which have been influenced by the treatment and additive effects of the additional frequencies.

[0099] Of further note is the fact that different patients suffering from the same type of tumour cell growth practically invariably exhibit the above-mentioned physiological responses at the same well defined AM frequencies. Furthermore, AM frequencies which differ only very slightly (less than 0.0001% at higher frequencies) from the frequencies listed, in general elicit no physiological response by subjects exposed to excitation at such very slightly different frequency. In view of these determinations, the electronic system of the present invention may be adapted to screen a subject for physiological responses over a broad range of frequencies to determine the presence or absence tumour cells and, if positive, then to note at which defined frequencies physiological responses are elicited. These frequencies will in general match with the defined frequencies listed in one or other of the Examples above or such further examples as may be developed and hence the nature of the tumour will be known. The electronic system of the invention is therefore a valuable diagnostic tool for diagnosing the presence or absence and identities of types of tumour cell growths or cancers. Furthermore, the electronic system of the invention is of value for predicting whether a patient will benefit from the application of a given series of modulation frequencies. The system therefore possesses a capability of predicting responses to treatment, thereby enhancing the possibility to select optimal modes of treatment.

[0100] The sequence of well defined frequencies are preferably applied sequentially for determined periods of time,

e.g. 3 seconds for each frequency, but several frequencies may also be applied simultaneously. This means that a cycle of application involving 180 frequencies would take nearly 10 minutes time. Advantageous effects may however also arise from applying individual well defined frequencies for differing time periods, e.g. some for 3 seconds, some for 6 seconds, etc. . . .

[0101] Therapeutic dosages to be applied to a subject suffering from the presence of tumour cell growth or cancer are determined by the time of application of the low energy electromagnetic emissions to the subject and will depend on the nature of the cancer and the overall condition of the subject. In general, however, greatest experience has been gained in treating terminally ill subjects expected to survive no longer than about three months and who have agreed to discontinue alternative forms of cancer treatments such as chemo-therapy or radioactive treatment. In these severe cases, lengthy times of treatment are recommended, e.g. 3 times 1 hour daily treatment. However, with the development of alternative forms of application, i.e. other than by means of a mouth probe, continuous application is possible and is likely to enhance compliance and the efficacy of the treatment.

[0102] While the invention has been described with specific embodiments, other alternatives, modifications, and variations will be apparent to those skilled in the art. Accordingly, it will be intended to include all such alternatives, modifications, and variations within the spirit and scope of the appended claims.

1-18. (canceled)

19. An electronic system activatable by electrical power and structured to influence cellular functions or malfunctions in a warm-blooded mammalian subject, said electronic system comprising at least one controllable low energy electromagnetic energy generator circuit for generating one or more high frequency carrier signals, at least one data processor constructed and arranged for communication with the at least one generator circuit and for receiving control information from a source of control information, said at least one generator circuit including at least one amplitude modulation control signal generator for controlling amplitude modulated variations of the one or more high frequency carrier signals, said at least one generator circuit furthermore including at least one programmable amplitude modulation frequency control signal generator for controlling a frequency at which amplitude modulations are generated, the system furthermore comprising a connection position for connection to an electrically conductive applicator for applying to the warmblooded mammalian subject one or more amplitude-modulated low energy emissions at a program-controlled frequency, wherein said at least one programmable amplitude frequency control generator is adapted to accurately control the frequency at which said amplitude modulations are generated to within an accuracy of at least 1000 ppm relative to one or more determined or predetermined reference amplitude modulation frequencies selected from within a range of 0.01 Hz to 70 kHz and wherein said source of control information includes reference amplitude modulation frequency control information which comprises at least a significant proportion (in excess of 50%) of accurately defined reference amplitude modulation frequencies listed in any one of Examples A, B and 1 to 17, or all of said accurately defined frequencies or yet further accurately defined frequencies, or combinations thereof.

20. The system according to claim **19**, wherein the frequency of one or more of the amplitude modulations generated are controllable to within an accuracy of 100 ppm relative to the one or more determined or predetermined reference amplitude modulation frequencies.

21. The system according to claim **20**, wherein the frequency of one or more of the amplitude modulations generated are controllable to within an accuracy of 10 ppm relative to the one or more determined or predetermined reference amplitude modulation frequencies.

22. The system according to claim 21, wherein the frequency of one or more of the amplitude modulations generated are controllable to within an accuracy of about 1 ppm relative to the one or more determined or predetermined reference amplitude modulation frequencies.

23. The system according to claim 19, wherein the one or more amplitude modulated low energy emissions generated are maintained at a stability during emission of at least 10^{-5} .

24. The system according to claim 23, wherein a stability of at least 10^{-6} is maintained.

25. The system according to claim 24, wherein a stability of at least 10^{-7} is maintained.

26. The system according to claim **19**, wherein said at least one controllable generator circuit is controllable by amplitude modulation control signals which lead to various forms of amplitude modulation wave forms being generated.

27. The system according to claim **26**, wherein the amplitude modulation wave forms are selected from sinusoidal, square, triangular or multiple combinations thereof.

28. The system according to claim **26**, wherein the at least one generator circuit is controllable by amplitude modulation control signals which generate a plurality of amplitude modulation wave forms, either sequentially or simultaneously.

29. The system according to claim **19**, wherein the one or more high frequency carrier signals generated by the at least one generator circuit are selected from one or more high frequencies selected from about 27 MHz, 433 MHz and 900 MHz.

30. The system according to claim **19**, wherein the system further comprises one or more interfaces communicating

with the at least one data processor, and wherein the control information is transferable to said one or more interfaces and hence to the at least one data processor to enable command signals responsive to received control information to be communicated to the at least one generator circuit by the at least one data processor.

31. The system according to claim **30**, wherein the control information is transferable over a communication link to the at least one data processor via the one or more interfaces communicating with the at least one data processor.

32. The system according to claim **30**, wherein the control information is stored in an information storage device and wherein the control information is transferable to the at least one data processor via said one or more interfaces communicating with the at least one data processor.

33. The system according to claim **30**, wherein the system further comprises a user identification device communicating with at least one of the at least one data processor to enable the system to be activated for use only by the user.

34. The system according to claim **19**, further comprising a monitor comprising monitoring software for monitoring the amplitude and the amplitude modulation frequency of the amplitude modulated low energy electromagnetic emissions generated by the at least one generator circuit.

35. The system according to claim **19**, wherein the determined or predetermined amplitude modulation frequency control information is determined or predetermined by a biofeedback process involving observations or measurements of physiological reactions by the subject during a time that cellular functions of the subject are excited by exposing the subject to emissions of high frequency carrier signals amplitude modulated at a series of amplitude modulation frequencies.

36. The system according to claim **35**, wherein the determined or predetermined frequencies are employed as a mode to identify a nature of a tumor or cancer harbored by the warm-blooded mammalian subject.

* * * * *