wo 2018/067823 A1 | 0K 00000 R0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
12 April 2018 (12.04.2018)

(10) International Publication Number

WO 2018/067823 Al

WIPO I PCT

(51) International Patent Classification: fornia 92121-1714 (US). KARCZEWICZ, Marta; 5775
HO4N 19/52 (2014.01) HO04N 19/537 (2014.01) Morehouse Drive, San Diego, California 92121-1714 (US).
(21) Imternational Application Number: (74) Agent: VREDEVELD, Albert, W.; Shumaker & Sieffert,
PCT/US2017/055350 P.A., 1625 Radio Drive, Suite 300, Woodbury, Minnesota
(22) International Filing Date: 23125 (US).

05 October 2017 (05.10.2017) (81) Designated States (unless otherwise indicated, for every
.1e . . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA,CH,CL,CN,CO, CR,CU, CZ,DE, DJ, DK, DM, DO,
30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
30) 6;/‘25%19"“"" 05 October 2016 (05.102016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KF, KG, KH, KN, KP,
15/725.052 04 omber 2017 (04'10'2017) Us KR, KW, KZ, LA LG, LK, LR, LS, LU, LY, MA, MD, ME,
; ctober 2017 (04.10.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
ATTN: International IP Administration, 5775 Morehouse SC, 8D, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

Drive, San Diego, California 92121-1714 (US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors: CHEN, Yi-Wen; 5775 Morchouse Drive, San (84) Designated States (unless otherwise indicated, for every

Diego, California 92121-1714 (US). CHIEN, Wei-Jung;
5775 Morehouse Drive, San Diego, California 92121-1714
(US). ZHANG, Li; 5775 Morehouse Drive, San Diego,
California 92121-1714 (US). SUN, Yu-Chen; 5775 More-
house Drive, San Diego, California 92121-1714 (US).
CHEN, Jianle; 5775 Morehouse Drive, San Diego, Cali-

kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: MOTION VECTOR PREDICTION FOR AFFINE MOTION MODELS IN VIDEO CODING

FIG. 18

1800

SELECT SOURCE AFFINE BLOCK |

EXTRAPOLATE MOTION VECTORS
OF CONTROL POINTS OF SQURCE
AFFINE BLOCK TO DETERMINE
MOTION VECTOR PREDICTORS
FOR CONTROL POINTS OF
CURRENT BLOCK

804

INSERT, INTQ AFFINE MVP SET
CANDIDATE LIST, AFFINE MVP
SET THAT INCLUDES MOTION
VECTOR PREDICTORS FOR
CONTROL POINTS OF CURRENT
BLOCK

i

806

DETERMINE, BASED ON INDEX
SIGNALED IN BITSTREAM,
SELECTED AFFINE MVP SETIN
AFFINE MVP SET CANDIDATE LIST

i

1808

OBTAIN MVDS FROM BITSTREAM

DETERMINE, BASED ON MOTION
VECTOR PREDICTORS IN
SELECTED AFFINE MVP SET AND
MVDS, MOTION VECTORS OF
CONTROL POINTS OF CURRENT
BLOCK

810

i

812

GENERATE, BASED ON MOTION
VECTORS OF CONTROL POINTS
OF CURRENT BLOCK, A
PREDICTIVE BLOCK

1

814

RECONSTRUCT CURRENT BLOCK
BASED ON RESIDUAL DATA AND
PREDICTIVE BLOCK

(57) Abstract: A video decoder selects a source affine block. The source affine block
is an aftine-coded block that spatially neighbors a current block. Additionally, the video
decoder extrapolates motion vectors of control points of the source affine block to de-
termine motion vector predictors for control points of the current block. The video de-
coder inserts, into an atfine motion vector predictor (MVP) set candidate list, an aftine
MVP set that includes the motion vector predictors for the control points of the current
block. The video decoder also determines, based on an index signaled in a bitstream, a
selected affine MVP set in the affine MVP set candidate list. The video decoder obtains,
from the bitstream, motion vector differences (MVDs) that indicate differences between
motion vectors of the control points of the current block and motion vector predictors
in the selected affine MVP set.

[Continued on next page]

WO 2018/067823 A1 { NI 10PN AR

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2018/067823 PCT/US2017/055350

MOTION VECTOR PREDICTION FOR AFFINE MOTION MODELS IN
VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Patent Application
62/404,719, filed October 5, 2016, the entire content of which is incorporated herein by

reference.

TECHNICAL FIELD

[0002] This disclosure relates to devices, systems, and methods for video coding.

BACKGROUND
[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the ITU-T H.265,
High Efficiency Video Coding (HEVC) standard, and extensions of such standards. The
video devices may transmit, receive, encode, decode, and/or store digital video
information more efficiently by implementing such video compression techniques.
[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I)
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in

other reference pictures. Spatial or temporal prediction results in a predictive block for

WO 2018/067823 PCT/US2017/055350

a block to be coded. Residual data represents pixel differences between the original
block to be coded and the predictive block. An inter-coded block is encoded according
to a motion vector that points to a block of reference samples forming the predictive
block, and the residual data indicating the difference between the coded block and the
predictive block. An intra-coded block is encoded according to an intra-coding mode
and the residual data. For further compression, the residual data may be transformed
from the pixel domain to a transform domain, resulting in residual transform

coefficients, which then may be quantized.

SUMMARY
[0005] In general, this disclosure describes techniques related to motion vector
prediction and motion vector reconstruction for affine motion prediction mode. The
techniques may be applied to any of the existing video codecs, such as HEVC (High
Efficiency Video Coding) or may be an efficient coding tool in any future video coding
standards.
[0006] In one example, this disclosure describes a method of decoding video data, the
method comprising: selecting a source affine block, the source affine block being an
affine-coded block that spatially neighbors a current block; extrapolating motion vectors
of control points of the source affine block to determine motion vector predictors for
control points of the current block; inserting, into an affine motion vector predictor
(MVP) set candidate list, an affine MVP set that includes the motion vector predictors
for the control points of the current block; determining, based on an index signaled in a
bitstream, a selected affine MVP set in the affine MVP set candidate list; obtaining,
from the bitstream, motion vector differences (MVDs) that indicate differences between
motion vectors of the control points of the current block and motion vector predictors in
the selected affine MVP set; and determining, based on the motion vector predictors
included in the selected affine MVP set and the MVDs, motion vectors of the control
points of the current block; generating, based on the motion vectors of the control points
of the current block, a predictive block; and reconstructing the current block based on
residual data and the predictive block.
[0007] In another example, this disclosure describes a method of encoding video data,
the method comprising: selecting a source affine block, the source affine block being an
affine-coded block that spatially neighbors a current block; extrapolating motion vectors

of control points of the source affine block to determine motion vector predictors for

WO 2018/067823 PCT/US2017/055350

control points of the current block; inserting, into an affine motion vector predictor
(MVP) set candidate list, an affine MVP set that includes the motion vector predictors
for the control points of the current block; selecting an affine MVP set in the affine
MVP set candidate list; signaling, in a bitstream, motion vector differences (MVDs) that
indicate differences between motion vectors of the control points of the current block
and motion vector predictors in the selected affine MVP set; and signaling, in the
bitstream, an index indicating a position in the affine MVP set candidate list of the
selected affine MVP set.

[0008] In another example, this disclosure describes a device for decoding video data,
the device comprising: a memory configured to store the video data; and one or more
processing circuits configured to: select a source affine block, the source affine block
being an affine-coded block that spatially neighbors a current block; extrapolate motion
vectors of control points of the source affine block to determine motion vector
predictors for control points of the current block; insert, into an affine motion vector
predictor (MVP) set candidate list, an affine MVP set that includes the motion vector
predictors for the control points of the current block; determine, based on an index
signaled in a bitstream, a selected affine MVP set in the affine MVP set candidate list;
obtain, from the bitstream, motion vector differences (MVDs) that indicate differences
between motion vectors of the control points of the current block and motion vector
predictors in the selected affine MVP set; and determine, based on the motion vector
predictors included in the selected affine MVP set and the MVDs, motion vectors of the
control points of the current block; generate, based on the motion vectors of the control
points of the current block, a predictive block; and reconstruct the current block based
on residual data and the predictive block.

[0009] In another example, this disclosure describes a device for encoding video data,
the device comprising: a memory configured to store the video data; and one or more
processing circuits configured to: select a source affine block, the source affine block
being an affine-coded block that spatially neighbors a current block; extrapolate motion
vectors of control points of the source affine block to determine motion vector
predictors for control points of the current block; insert, into an affine motion vector
predictor (MVP) set candidate list, an affine MVP set that includes the motion vector
predictors for the control points of the current block; select an affine MVP set in the
affine MVP set candidate list; signal, in a bitstream, motion vector differences (MVDs)

that indicate differences between motion vectors of the control points of the current

WO 2018/067823 PCT/US2017/055350

block and motion vector predictors in the selected affine MVP set; and signal, in the
bitstream, an index indicating a position in the affine MVP set candidate list of the
selected affine MVP set.

[0010] In another example, this disclosure describes a device for decoding video data,
the device comprising: means for selecting a source affine block, the source affine block
being an affine-coded block that spatially neighbors a current block; means for
extrapolating motion vectors of control points of the source affine block to determine
motion vector predictors for control points of the current block; means for inserting, into
an affine motion vector predictor (MVP) set candidate list, an affine MVP set that
includes the motion vector predictors for the control points of the current block; means
for determining, based on an index signaled in a bitstream, a selected affine MVP set in
the affine MVP set candidate list; means for obtaining, from the bitstream, motion
vector differences (MVDs) that indicate differences between motion vectors of the
control points of the current block and motion vector predictors in the selected affine
MVP set; means for determining, based on the motion vector predictors included in the
selected affine MVP set and the MVDs, motion vectors of the control points of the
current block; means for generating, based on the motion vectors of the control points of
the current block, a predictive block; and means for reconstructing the current block
based on residual data and the predictive block.

[0011] In another example, this disclosure describes a device for encoding video data,
the device comprising: means for selecting a source affine block, the source affine block
being an affine-coded block that spatially neighbors a current block; means for
extrapolating motion vectors of control points of the source affine block to determine
motion vector predictors for control points of the current block; means for inserting, into
an affine motion vector predictor (MVP) set candidate list, an affine MVP set that
includes the motion vector predictors for the control points of the current block; means
for selecting an affine MVP set in the affine MVP set candidate list; means for
signaling, in a bitstream, motion vector differences (MVDs) that indicate differences
between motion vectors of the control points of the current block and motion vector
predictors in the selected affine MVP set; and means for signaling, in the bitstream, an
index indicating a position in the affine MVP set candidate list of the selected affine
MVP set.

[0012] In another example, this disclosure describes a computer-readable storage

medium storing instructions that, when executed, cause one or more processing circuits

WO 2018/067823 PCT/US2017/055350

of a device for video decoding to: select a source affine block, the source affine block
being an affine-coded block that spatially neighbors a current block; extrapolate motion
vectors of control points of the source affine block to determine motion vector
predictors for control points of the current block; insert, into an affine motion vector
predictor (MVP) set candidate list, an affine MVP set that includes the motion vector
predictors for the control points of the current block; determine, based on an index
signaled in a bitstream, a selected affine MVP set in the affine MVP set candidate list;
obtain, from the bitstream, motion vector differences (MVDs) that indicate differences
between motion vectors of the control points of the current block and motion vector
predictors in the selected affine MVP set; determine, based on the motion vector
predictors included in the selected affine MVP set and the MVDs, motion vectors of the
control points of the current block; generate, based on the motion vectors of the control
points of the current block, a predictive block; and reconstruct the current block based
on residual data and the predictive block.

[0013] In another example, this disclosure describes a computer-readable storage
medium storing instructions that, when executed, cause one or more processing circuits
of a device for encoding video data to: select a source affine block, the source affine
block being an affine-coded block that spatially neighbors a current block; extrapolate
motion vectors of control points of the source affine block to determine motion vector
predictors for control points of the current block; insert, into an affine motion vector
predictor (MVP) set candidate list, an affine MVP set that includes the motion vector
predictors for the control points of the current block; select an affine MVP set in the
affine MVP set candidate list; signal, in a bitstream, motion vector differences (MVDs)
that indicate differences between motion vectors of the control points of the current
block and motion vector predictors in the selected affine MVP set; and signal, in the
bitstream, an index indicating a position in the affine MVP set candidate list of the
selected affine MVP set.

[0014] The details of one or more aspects of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the techniques described in this disclosure will be apparent from the

description, drawings, and claims.

WO 2018/067823 PCT/US2017/055350

BRIEF DESCRIPTION OF DRAWINGS
[0015] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize one or more techniques described in this disclosure.
[0016] FIG. 2A illustrates spatial neighboring motion vector (MV) candidates for merge
mode.
[0017] FIG. 2B illustrates spatial neighboring MV candidates for Advanced Motion
Vector Prediction (AMVP) mode.
[0018] FIG. 3A is a conceptual diagram illustrating an example technique for deriving a
temporal motion vector predictor (TMVP) candidate.
[0019] FIG. 3B illustrates motion vector scaling.
[0020] FIG. 4 illustrates a simplified affine motion model for a current block.
[0021] FIG. 5 illustrates an affine motion vector field (MVF) per sub-block.
[0022] FIG. 6A is a block diagram illustrating a current block and neighboring blocks
as used in the AF_INTER mode.
[0023] FIG. 6B is illustrates an example aftfine MVP set candidate list used in a 4-
parameter affine motion model.
[0024] FIG. 7A shows neighboring blocks used when coding a current block in
AF MERGE mode.
[0025] FIG. 7B illustrates candidates for AF MERGE.
[0026] FIG. 8A illustrates example blocks used in a 6-parameter affine motion model.
[0027] FIG. 8B illustrates an example affine MVP set candidate list used in a 6-
parameter affine motion model.
[0028] FIG. 9 illustrates an example affine MVP set candidate list that includes an
extrapolated MVP set, in accordance with a technique of this disclosure.
[0029] FIG. 10 illustrates sub-block motion prediction or parameter prediction, in
accordance with a technique of this disclosure, where the affine motion of each sub-
block of a current block can be predicted or directly inherited from the extrapolated
motion of its own neighbor blocks.
[0030] FIG. 11A illustrates an example affine MVP set candidate list for a 4-parameter
affine motion model, in accordance with a technique of this disclosure.
[0031] FIG. 11B illustrates an example affine MVP set candidate list for a 6-parameter
affine motion model, in accordance with a technique of this disclosure.
[0032] FIG. 12 is a block diagram illustrating an example video encoder that may

implement one or more techniques described in this disclosure.

WO 2018/067823 PCT/US2017/055350

[0033] FIG. 13 is a block diagram illustrating an example video decoder that may
implement one or more techniques described in this disclosure.

[0034] FIG. 14A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure.

[0035] FIG. 14B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure.

[0036] FIG. 15A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure.

[0037] FIG. 15B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure.

[0038] FIG. 16A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure.

[0039] FIG. 16B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure.

[0040] FIG. 17 is a flowchart illustrating an example operation for encoding video data,
in accordance with a technique of this disclosure.

[0041] FIG. 18 is a flowchart illustrating an example operation for decoding video data,
in accordance with a technique of this disclosure.

[0042] FIG. 19A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure.

[0043] FIG. 19B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure.

[0044] FIG. 20A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure.

[0045] FIG. 20B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure.

[0046] FIG. 21A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure.

[0047] FIG. 21B is a flowchart illustrating an example operation for decoding video

data, in accordance with a technique of this disclosure.

DETAILED DESCRIPTION
[0048] The use of affine motion models has been proposed to provide further

compression of video data. An affine motion model for a block expresses rotation of

WO 2018/067823 PCT/US2017/055350

the block in a series of pictures. An affine motion model of a block can be determined
based on motion vectors of control points of the block. In some implementations, the
control points of the block are the top-left and top-right corners of the block. In some
implementations, the control points of the block further include the bottom-left corner of
the block. A video coder (i.e., a video encoder or a video decoder) may calculate
motion vectors of sub-blocks of the block based on the motion vectors of the control
points of the block.

[0049] Two primary techniques have been proposed for signaling the motion vectors of
the control points of a block. The first technique is the affine inter mode. The second
technique is the affine merge mode. In the affine inter mode, a video encoder generates
an affine motion vector predictor (MVP) set candidate list for a current block. The
affine MVP set candidate list is a list of affine MVP sets. Each affine MVP set is a set
of MVPs corresponding to different control points of the current block. The video
encoder signals an index that identifies to a video decoder a selected affine MVP set in
the affine MVP set candidate list. Additionally, the video encoder signals a motion
vector difference (MVD) for each of the control points of the current block. The motion
vector of a control point may be equal to the MVD for the control point plus the motion
vector predictor for control point in the selected affine MVP set. The video encoder
also signals a reference index that identifies a reference picture which the video decoder
is use with the current block. The video decoder generates the same affine MVP set
candidate list and uses the signaled index to determine the selected affine MVP set. The
video decoder may add the MVDs to motion vectors of the selected affine MVP set to
determine the motion vector of the control points of the current block.

[0050] In the affine merge mode, a video encoder and a video decoder identify the same
affine source block for a current block. The affine source block may be an affine-coded
block that spatially neighbors the current block. The video encoder and video decoder
extrapolate the motion vectors of the control points of the current block from the motion
vectors of the control points of the affine source block. For instance, the video encoder
and the video decoder may construct an affine motion model that describes motion
vectors of locations within the current block. The affine motion model is defined by a
set of affine parameters. The video encoder and the video decoder may determine the
affine parameters based on the motion vectors of the control points of the current block.

The video encoder and the video decoder may determine the motion vectors of the

WO 2018/067823 PCT/US2017/055350

control points of the current block based on motion vectors of control points of the
affine source block.

[0051] In accordance with one example technique of this disclosure, when generating
an affine MVP set candidate list in the affine inter mode, a video encoder may include,
in the affine MVP set candidate list for a current block, an affine MVP set that specifies
extrapolated motion vectors of the control points of an affine source block. In this
example, the video encoder may signal an index into the affine MVP set candidate list,
MVDs for each control point of the current block, and a reference index. A video
decoder may generate the same affine MVP set candidate list for the current block.
Additionally, the video decoder uses the index into the affine MVP set candidate list to
identify a selected affine MVP candidate set. The video decoder may then use the
MVDs and motion vector predictors of the selected affine MVP candidate set to
determine motion vectors of the control points of the current block. Furthermore, the
video decoder may use the motion vectors and the reference picture indicated by the
reference index to generate a predictive block for the current block. The video decoder
may use the predictive block for the current block to reconstruct the current block.
Inclusion of the affine MVP set specifying extrapolated motion vectors of the control
points of the affine source block in the affine MVP set candidate list of the current block
may increase coding efficiency.

[0052] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques of this disclosure. As shown in FIG. 1, system 10
includes a source device 12 that provides encoded video data to be decoded at a later
time by a destination device 14. In particular, source device 12 provides the video data
to destination device 14 via a computer-readable medium 16. Source device 12 and
destination device 14 may comprise any of a wide range of devices, including desktop
computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone
handsets such as so-called “smart” phones, tablet computers, televisions, cameras,
display devices, digital media players, video gaming consoles, video streaming device,
or the like. In some cases, source device 12 and destination device 14 may be equipped
for wireless communication. Thus, source device 12 and destination device 14 may be
wireless communication devices. Source device 12 is an example video encoding
device (i.e., a device for encoding video data). Destination device 14 is an example

video decoding device (i.e., a device for decoding video data).

WO 2018/067823 PCT/US2017/055350
10

[0053] In the example of FIG. 1, source device 12 includes a video source 18, storage
media 19 configured to store video data, a video encoder 20, and an output interface 22.
Destination device 14 includes an input interface 26, a storage media 28 configured to
store encoded video data, a video decoder 30, and display device 32. In other examples,
source device 12 and destination device 14 include other components or arrangements.
For example, source device 12 may receive video data from an external video source,
such as an external camera. Likewise, destination device 14 may interface with an
external display device, rather than including an integrated display device.

[0054] The illustrated system 10 of FIG. 1 is merely one example. Techniques for
processing video data may be performed by any digital video encoding and/or decoding
device. Although generally the techniques of this disclosure are performed by a video
encoding device, the techniques may also be performed by a video encoder/decoder,
typically referred to as a “CODEC.” Source device 12 and destination device 14 are
merely examples of such coding devices in which source device 12 generates coded
video data for transmission to destination device 14. In some examples, source device
12 and destination device 14 may operate in a substantially symmetrical manner such
that each of source device 12 and destination device 14 include video encoding and
decoding components. Hence, system 10 may support one-way or two-way video
transmission between source device 12 and destination device 14, e.g., for video
streaming, video playback, video broadcasting, or video telephony.

[0055] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video data from a video content provider. As a further
alternative, video source 18 may generate computer graphics-based data as the source
video, or a combination of live video, archived video, and computer-generated video.
Source device 12 may comprise one or more data storage media (e.g., storage media 19)
configured to store the video data. The techniques described in this disclosure may be
applicable to video coding in general, and may be applied to wireless and/or wired
applications. In each case, the captured, pre-captured, or computer-generated video may
be encoded by video encoder 20. Output interface 22 may output the encoded video
information to a computer-readable medium 16.

[0056] Output interface 22 may comprise various types of components or devices. For
example, output interface 22 may comprise a wireless transmitter, a modem, a wired

networking component (e.g., an Ethernet card), or another physical component. In

WO 2018/067823 PCT/US2017/055350
11

examples where output interface 22 comprises a wireless receiver, output interface 22
may be configured to receive data, such as the bitstream, modulated according to a
cellular communication standard, such as 4G, 4G-LTE, LTE Advanced, 5G, and the like.
In some examples where output interface 22 comprises a wireless receiver, output
interface 22 may be configured to receive data, such as the bitstream, modulated
according to other wireless standards, such as an IEEE 802.11 specification, an IEEE
802.15 specification (e.g., ZigBee ™), a Bluetooth ™ standard, and the like. In some
examples, circuitry of output interface 22 may be integrated into circuitry of video
encoder 20 and/or other components of source device 12. For example, video encoder
20 and output interface 22 may be parts of a system on a chip (SoC). The SoC may also
include other components, such as a general purpose microprocessor, a graphics
processing unit, and so on.

[0057] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In some examples, computer-readable medium 16 comprises a
communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate
communication from source device 12 to destination device 14. Destination device 14
may comprise one or more data storage media configured to store encoded video data
and decoded video data.

[0058] In some examples, encoded data may be output from output interface 22 to a
storage device. Similarly, encoded data may be accessed from the storage device by
input interface. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage

media for storing encoded video data. In a further example, the storage device may

WO 2018/067823 PCT/US2017/055350
12

correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[0059] The techniques may be applied to video coding in support of any of a variety of
multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, wired transmissions, satellite television transmissions, Internet streaming
video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding of digital video stored on a
data storage medium, or other applications or combinations of the above examples. In
some examples, system 10 may be configured to support one-way or two-way video
transmission to support applications such as video streaming, video playback, video
broadcasting, and/or video telephony.

[0060] Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission, or storage media (that is, non-transitory
storage media), such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a
computing device of a medium production facility, such as a disc stamping facility, may
receive encoded video data from source device 12 and produce a disc containing the
encoded video data. Therefore, computer-readable medium 16 may be understood to
include one or more computer-readable media of various forms, in various examples.
[0061] Input interface 26 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include

syntax information defined by video encoder 20 of video encoder 20, which is also used

WO 2018/067823 PCT/US2017/055350
13

by video decoder 30, that includes syntax elements that describe characteristics and/or
processing of blocks and other coded units, e.g., groups of pictures (GOPs). Input
interface 26 may comprise various types of components or devices. For example, input
interface 26 may comprise a wireless receiver, a modem, a wired networking component
(e.g., an Ethernet card), or another physical component. In examples where input
interface 26 comprises a wireless receiver, input interface 26 may be configured to
receive data, such as the bitstream, modulated according to a cellular communication
standard, such as 4G, 4G-LTE, LTE Advanced, 5G, and the like. In some examples
where input interface 26 comprises a wireless receiver, input interface 26 may be
configured to receive data, such as the bitstream, modulated according to other wireless
standards, such as an IEEE 802.11 specification, an IEEE 802.15 specification (e.g.,
ZigBee ™) a Bluetooth ™ standard, and the like. In some examples, circuitry of input
interface 26 may be integrated into circuitry of video decoder 30 and/or other
components of destination device 14. For example, video decoder 30 and input
interface 26 may be parts of a SoC. The SoC may also include other components, such
as a general purpose microprocessor, a graphics processing unit, and so on.

[0062] Storage media 28 may be configured to store encoded video data, such as
encoded video data (e.g., a bitstream) received by input interface 26. Display device 32
displays the decoded video data to a user, and may comprise any of a variety of display
devices such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma
display, an organic light emitting diode (OLED) display, or another type of display
device.

[0063] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0064] In some examples, video encoder 20 and video decoder 30 may operate

according to a video coding standard such as an existing or future standard. Example

WO 2018/067823 PCT/US2017/055350
14

video coding standards include, but are not limited to, ITU-T H.261, ISO/IEC MPEG-1
Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4
Visual and ITU-T H.264 (also known as ISO/IEC MPEG-4 AVC), including its
Scalable Video Coding (SVC) and Multi-View Video Coding (MVC) extensions. In
addition, a new video coding standard, namely High Efficiency Video Coding (HEVC)
or ITU-T H.265, including its range and screen content coding extensions, 3D video
coding (3D-HEVC) and multiview extensions (MV-HEVC) and scalable extension
(SHVC), has recently been developed by the Joint Collaboration Team on Video
Coding (JCT-VC) as well as Joint Collaboration Team on 3D Video Coding Extension
Development (JCT-3V) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Motion Picture Experts Group (MPEG). An HEVC draft specification, and referred to
as HEVC WD hereinafter, is available from Wang et al., “High Efficiency Video
Coding (HEVC) Defect Report,” Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 14® Meeting, Vienna, AT, 25
July — 2 August 2013, document JCTVC-N1003_v1, available from http://phenix.int-
evry fr/jct/doc_end user/documents/14 Vienna/wgl 1/JCTVC-N1003-vl.zip. HEVC is
also published as Recommendation ITU-T H.265, Series H: Audiovisual and

Multimedia Systems, Infrastructure of audiovisual services — Coding of moving video,
High efficiency video coding, December 2016.

[0065] ITU-T VCEG (Q6/16) and ISO/IEC MPEG (JTC 1/SC 29/WG 11) are now
studying the potential need for standardization of future video coding technology with a
compression capability that significantly exceeds that of the current HEVC standard
(including its current extensions and near-term extensions for screen content coding and
high-dynamic-range coding). The groups are working together on this exploration
activity in a joint collaboration effort known as the Joint Video Exploration Team
(JVET) to evaluate compression technology designs proposed by their experts in this
area. The JVET first met during 19-21 October 2015. The latest version of reference
software, 1.e., Joint Exploration Model 3 (JEM 3) could be downloaded from:
https://jvet.hhi.fraunhofer.de/svn/svn_ HMJEMSoftware/tags/HM-16.6-JEM-3.0/. J.
Chen, E. Alshina, G. J. Sullivan, J.-R. Ohm, J. Boyce, “Algorithm Description of Joint
Exploration Test Model 37, JVET-C1001, May 2016 (hereinafter, “JVET-C10017)
includes an algorithm description of Joint Exploration Test Model 3 (JEM3.0).

[0066] In HEVC and other video coding specifications, video data includes a series of

pictures. Pictures may also be referred to as “frames.” A picture may include one or

WO 2018/067823 PCT/US2017/055350
15

more sample arrays. Each respective sample array of a picture may comprise an array
of samples for a respective color component. In HEVC, a picture may include three
sample arrays, denoted Si, Scv, and Scr. Si is a two-dimensional array (i.e., a block) of
luma samples. Scv is a two-dimensional array of Cb chroma samples. Scris a two-
dimensional array of Cr chroma samples. In other instances, a picture may be
monochrome and may only include an array of luma samples.

[0067] As part of encoding video data, video encoder 20 may encode pictures of the
video data. In other words, video encoder 20 may generate encoded representations of
the pictures of the video data. An encoded representation of a picture may be referred to
herein as a “coded picture” or an “encoded picture.”

[0068] To generate an encoded representation of a picture, video encoder 20 may
encode blocks of the picture. Video encoder 20 may include, in a bitstream, an encoded
representation of the video block. For example, to generate an encoded representation
of a picture, video encoder 20 may partition each sample array of the picture into coding
tree blocks (CTBs) and encode the CTBs. A CTB may be an NxN block of samples in a
sample array of a picture. In the HEVC main profile, the size of a CTB can range from
16x16 to 64x64, although technically 8x8 CTB sizes can be supported.

[0069] A coding tree unit (CTU) of a picture may comprise one or more CTBs and may
comprise syntax structures used to encode the samples of the one or more CTBs. For
instance, each a CTU may comprise a CTB of luma samples, two corresponding CTBs
of chroma samples, and syntax structures used to encode the samples of the CTBs. In
monochrome pictures or pictures having three separate color planes, a CTU may
comprise a single CTB and syntax structures used to encode the samples of the CTB. A
CTU may also be referred to as a “tree block” or a “largest coding unit” (LCU). In this
disclosure, a “syntax structure” may be defined as zero or more syntax elements present
together in a bitstream in a specified order. In some codecs, an encoded picture is an
encoded representation containing all CTUs of the picture.

[0070] To encode a CTU of a picture, video encoder 20 may partition the CTBs of the
CTU into one or more coding blocks. A coding block is an NxN block of samples. In
some codecs, to encode a CTU of a picture, video encoder 20 may recursively perform
quad-tree partitioning on the coding tree blocks of a CTU to partition the CTBs into
coding blocks, hence the name “coding tree units.” A coding unit (CU) may comprise
one or more coding blocks and syntax structures used to encode samples of the one or

more coding blocks. For example, a CU may comprise a coding block of luma samples

WO 2018/067823 PCT/US2017/055350
16

and two corresponding coding blocks of chroma samples of a picture that has a luma
sample array, a Cb sample array, and a Cr sample array, and syntax structures used to
encode the samples of the coding blocks. In monochrome pictures or pictures having
three separate color planes, a CU may comprise a single coding block and syntax
structures used to code the samples of the coding block.

[0071] Furthermore, video encoder 20 may encode CUs of a picture of the video data.
In some codecs, as part of encoding a CU, video encoder 20 may partition a coding
block of the CU into one or more prediction blocks. A prediction block is a rectangular
(i.e., square or non-square) block of samples on which the same prediction is applied. A
prediction unit (PU) of a CU may comprise one or more prediction blocks of a CU and
syntax structures used to predict the one or more prediction blocks. For example, a PU
may comprise a prediction block of luma samples, two corresponding prediction blocks
of chroma samples, and syntax structures used to predict the prediction blocks. In
monochrome pictures or pictures having three separate color planes, a PU may comprise
a single prediction block and syntax structures used to predict the prediction block.
[0072] Video encoder 20 may generate a predictive block (e.g., a luma, Cb, and Cr
predictive block) for a prediction block (e.g., luma, Cb, and Cr prediction block) of a
CU. Video encoder 20 may use intra prediction or inter prediction to generate a
predictive block. If video encoder 20 uses intra prediction to generate a predictive
block, video encoder 20 may generate the predictive block based on decoded samples of
the picture that includes the CU. If video encoder 20 uses inter prediction to generate a
predictive block of a CU of a current picture, video encoder 20 may generate the
predictive block of the CU based on decoded samples of a reference picture (i.e., a
picture other than the current picture).

[0073] In HEVC and particular other codecs, video encoder 20 encodes a CU using
only one prediction mode (i.e., intra prediction or inter prediction). Thus, in HEVC and
particular other codecs, video encoder 20 may generate predictive blocks of a CU using
intra prediction or video encoder 20 may generate predictive blocks of the CU using
inter prediction. When video encoder 20 uses inter prediction to encode a CU, video
encoder 20 may partition the CU into 2 or 4 PUs, or one PU corresponds to the entire
CU. When two PUs are present in one CU, the two PUs can be half size rectangles or
two rectangle sizes with ¥4 or % size of the CU. In HEVC, there are eight partition
modes for a CU coded with inter prediction mode, i.e., PART 2Nx2N, PART 2NxN,
PART Nx2N, PART NxN, PART 2NxnU, PART 2NxnD, PART nLx2N and

WO 2018/067823 PCT/US2017/055350
17

PART nRx2N. When a CU is intra predicted, 2Nx2N and NxN are the only
permissible PU shapes, and within each PU a single intra prediction mode is coded
(while chroma prediction mode is signalled at CU level).

[0074] Video encoder 20 may generate one or more residual blocks for the CU. For
instance, video encoder 20 may generate a luma residual block for the CU. Each sample
in the CU’s luma residual block indicates a difference between a luma sample in one of
the CU’s predictive luma blocks and a corresponding sample in the CU’s original luma
coding block. In addition, video encoder 20 may generate a Cb residual block for the
CU. Each sample in the Cb residual block of a CU may indicate a difference between a
Cb sample in one of the CU’s predictive Cb blocks and a corresponding sample in the
CU’s original Cb coding block. Video encoder 20 may also generate a Cr residual
block for the CU. Each sample in the CU’s Cr residual block may indicate a difference
between a Cr sample in one of the CU’s predictive Cr blocks and a corresponding
sample in the CU’s original Cr coding block.

[0075] Furthermore, video encoder 20 may decompose the residual blocks of a CU into
one or more transform blocks. For instance, video encoder 20 may use quad-tree
partitioning to decompose the residual blocks of a CU into one or more transform
blocks. A transform block is a rectangular (e.g., square or non-square) block of samples
on which the same transform is applied. A transform unit (TU) of a CU may comprise
one or more transform blocks. For example, a TU may comprise a transform block of
luma samples, two corresponding transform blocks of chroma samples, and syntax
structures used to transform the transform block samples. Thus, each TU of a CU may
have a luma transform block, a Cb transform block, and a Cr transform block. The luma
transform block of the TU may be a sub-block of the CU’s luma residual block. The Cb
transform block may be a sub-block of the CU’s Cb residual block. The Cr transform
block may be a sub-block of the CU’s Cr residual block. In monochrome pictures or
pictures having three separate color planes, a TU may comprise a single transform block
and syntax structures used to transform the samples of the transform block.

[0076] Video encoder 20 may apply one or more transforms a transform block of a TU
to generate a coefficient block for the TU. A coefficient block may be a two-
dimensional array of transform coefficients. A transform coefficient may be a scalar
quantity. In some examples, the one or more transforms convert the transform block
from a pixel domain to a frequency domain. Thus, in such examples, a transform

coefficient may be a scalar quantity considered to be in a frequency domain. A

WO 2018/067823 PCT/US2017/055350
18

transform coefficient level is an integer quantity representing a value associated with a
particular 2-dimensional frequency index in a decoding process prior to scaling for
computation of a transform coefficient value.

[0077] In some examples, video encoder 20 skips application of the transforms to the
transform block. In such examples, video encoder 20 may treat residual sample values
may be treated in the same way as transform coefficients. Thus, in examples where
video encoder 20 skips application of the transforms, the following discussion of
transform coefficients and coefficient blocks may be applicable to transform blocks of
residual samples.

[0078] After generating a coefficient block, video encoder 20 may quantize the
coefficient block. Quantization generally refers to a process in which transform
coefticients are quantized to possibly reduce the amount of data used to represent the
transform coefticients, providing further compression. In some examples, video
encoder 20 skips quantization. After video encoder 20 quantizes a coefficient block,
video encoder 20 may generate syntax elements indicating the quantized transform
coefficients. Video encoder 20 may entropy encode one or more of the syntax elements
indicating the quantized transform coefficients. For example, video encoder 20 may
perform Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax elements
indicating the quantized transform coefficients. Thus, an encoded block (e.g., an
encoded CU) may include the entropy encoded syntax elements indicating the quantized
transform coefficients.

[0079] Video encoder 20 may output a bitstream that includes encoded video data. In
other words, video encoder 20 may output a bitstream that includes an encoded
representation of video data. For example, the bitstream may comprise a sequence of
bits that forms a representation of encoded pictures of the video data and associated
data. In some examples, a representation of a coded picture may include encoded
representations of blocks.

[0080] The bitstream may comprise a sequence of network abstraction layer (NAL)
units. A NAL unit is a syntax structure containing an indication of the type of data in
the NAL unit and bytes containing that data in the form of a raw byte sequence payload
(RBSP) interspersed as necessary with emulation prevention bits. Each of the NAL
units may include a NAL unit header and encapsulates a RBSP. The NAL unit header
may include a syntax element indicating a NAL unit type code. The NAL unit type
code specified by the NAL unit header of a NAL unit indicates the type of the NAL

WO 2018/067823 PCT/US2017/055350
19

unit. A RBSP may be a syntax structure containing an integer number of bytes that is
encapsulated within a NAL unit. In some instances, an RBSP includes zero bits.
[0081] Video decoder 30 may receive a bitstream generated by video encoder 20. As
noted above, the bitstream may comprise an encoded representation of video data.
Video decoder 30 may decode the bitstream to reconstruct pictures of the video data.
As part of decoding the bitstream, video decoder 30 may parse the bitstream to obtain
syntax elements from the bitstream. Video decoder 30 may reconstruct pictures of the
video data based at least in part on the syntax elements obtained from the bitstream.
The process to reconstruct pictures of the video data may be generally reciprocal to the
process performed by video encoder 20 to encode the pictures. For instance, video
decoder 30 may use inter prediction or intra prediction to generate one or more
predictive blocks for each PU of the current CU may use motion vectors of PUs to
determine predictive blocks for the PUs of a current CU. In addition, video decoder 30
may inverse quantize coefficient blocks of TUs of the current CU. Video decoder 30
may perform inverse transforms on the coefficient blocks to reconstruct transform
blocks of the TUs of the current CU. In some examples, video decoder 30 may
reconstruct the coding blocks of the current CU by adding the samples of the predictive
blocks for PUs of the current CU to corresponding decoded samples of the transform
blocks of the TUs of the current CU. By reconstructing the coding blocks for each CU
of a picture, video decoder 30 may reconstruct the picture.

[0082] A slice of a picture may include an integer number of CTUs of the picture. The
CTUs of a slice may be ordered consecutively in a scan order, such as a raster scan
order. In HEVC, a slice is defined as an integer number of CTUs contained in one
independent slice segment and all subsequent dependent slice segments (if any) that
precede the next independent slice segment (if any) within the same access unit.
Furthermore, in HEVC, a slice segment is defined as an integer number of coding tree
units ordered consecutively in the tile scan and contained in a single NAL unit. A tile
scan is a specific sequential ordering of CTBs partitioning a picture in which the CTBs
are ordered consecutively in CTB raster scan in a tile, whereas tiles in a picture are
ordered consecutively in a raster scan of the tiles of the picture. A tile is a rectangular
region of CTBs within a particular tile column and a particular tile row in a picture. A
slice segment header is a part of a coded slice segment containing the data elements
pertaining to the first or all coding tree units represented in the slice segment. The term

“slice header” applies to a slice segment header of the independent slice segment that is

WO 2018/067823 PCT/US2017/055350
20

a current slice segment or the most recent independent slice segment that precedes a
current dependent slice segment in decoding order.

[0083] As briefly mentioned above, in HEVC, the largest coding unit in a slice is called
a coding tree block (CTB) or coding tree unit (CTU). A CTB contains a quad-tree the
nodes of which are coding units. The size of a CTB can be ranges from 16x16 to 64x64
in the HEVC main profile (although technically 8x8 CTB sizes can be supported). A
coding unit (CU) could be the same size of a CTB although and as small as 8x8. Each
coding unit is coded with one mode. When a CU is inter coded, the CU may be further
partitioned into 2 or 4 prediction units (PUs) or become just one PU when further
partition does not apply. When two PUs are present in one CU, the PUs can be half size
rectangles or two rectangle size with V4 or % size of the CU. When the CU is inter
coded, one set of motion information is present for each PU. In addition, each PU is
coded with a unique inter-prediction mode to derive the set of motion information. In
some video coding standards, there a CU is not divided into multiple PUs. Hence, in
such video coding standards, there is no distinction between a PU and a CU. Therefore,
when techniques of this disclosure are applied in such standards, discussion of PUs may
be applicable to CUs.

[0084] A video coder may perform uni-directional inter prediction or bi-directional inter
prediction for a current block (e.g., a CU or PU). When performing uni-directional inter
prediction for the current block, the video coder uses a motion vector to determine a
location in a reference picture. The video coder may then generate a predictive block
for the current block. The predictive block may comprise a block of samples in the
reference picture at the location indicated by the motion vector, or a block of samples
interpolated from samples of the reference picture. When performing bi-directional
inter prediction, the video coder may perform this process with a second reference
picture and a second motion vector, thereby generating a second predictive block for the
current block. In bi-directional inter prediction, the predictive blocks generated from
single reference pictures may be referred to herein as preliminary predictive blocks.
Furthermore, in bi-directional inter prediction, the video coder may generate, based on
the two preliminary blocks, a final predictive block for the current block. In some
examples, the video coder may generate the final predictive block such that each sample
in the final predictive block is a weighted average of corresponding samples in the

preliminary predictive blocks.

WO 2018/067823 PCT/US2017/055350
21

[0085] To support inter prediction in a picture, a video coder generates two reference
picture lists for the picture. The picture’s reference picture lists include reference
pictures that are available for use in performing inter prediction of blocks in the picture.
The two reference picture lists are commonly referred to as List 0 and List 1. In one
example, each reference picture in the picture’s List O occurs prior to the picture in
output order. In this example, each reference picture in the picture’s List 1 occurs after
the picture in output order. Hence, use of a reference picture in List 0 may be
considered a first inter prediction direction and use of a reference picture in List 1 may
be considered a second inter prediction direction. Video encoder 20 and video decoder
30 generate the picture’s List O with reference pictures in the same order. Likewise,
video encoder 20 and video decoder 30 generate the picture’s List 1 with reference
pictures in the same order. Thus, video encoder 20 may indicate to video decoder 30 a
reference picture in a reference picture list by signaling a reference index that indicates
a location in the reference picture list of the reference picture.

[0086] The HEVC standard provides multiple inter prediction modes, including merge
mode and advanced motion vector prediction (AMVP) mode. In merge mode, video
encoder 20 and video decoder 30 generate matching merge motion vector (MV)
candidate lists for a PU. The merge MV candidate list for the PU includes one or more
merge candidates, which may also be referred to as motion vector predictors (MVPs).
In HEVC, the merge MV candidate list contains up to 5 merge candidates. Each
respective merge candidate in the merge MV candidate list specifies one or more motion
vector(s) and one or more reference index(es). For example, a merge candidate may
specify a List O motion vector and/or a List 1 motion vector, and may specify a List 0
reference index and/or a List 1 reference index. A List O motion vector is a motion
vector that indicates a location in a reference picture in List 0. A List 1 motion vector is
a motion vector that indicates a location in a reference picture in List 1. Video encoder
20 may signal a merge index that indicates a location in the merge MV candidate list of
a selected merge candidate for the PU. Video decoder 30 may use the merge index to
identify the selected merge candidate. Video decoder 30 may then use the motion
vectors and reference indexes of the selected merge candidate as the motion vectors and
reference indexes of the PU.

[0087] In AMVP mode, video encoder 20 generates a List 0 AMVP candidate list
and/or a List 1 AMVP candidate list for a PU, either of which may be referred to as an
AMVP candidate list. Video decoder 30 generates AMVP candidate lists matching the

WO 2018/067823 PCT/US2017/055350
22

AMYVP candidate lists generated by video encoder 20. In HEVC, an AMVP candidate
list contains two AMVP candidates. Each respective AMVP candidate in a List O
AMVP candidate list specifies a respective List 0 motion vector. Each respective
AMVP candidate in a List 1 AMVP candidate list specifies a respective List 1 motion
vector. In the AMVP mode, if the PU is uni-directionally inter predicted from List O or
bi-directionally inter predicted, video encoder 20 signals a List 0 MVP index, a List O
reference index, and a List O motion vector difference (MVD). The List 0 MVP index
specifies a location of a selected AMVP candidate in the List 0 AMVP candidate list.
The List O reference index specifies a location of a selected List O reference picture.
The List 0 MVD specifies a difference between a List O motion vector of the PU and the
List 0 motion vector specified by the selected AMVP candidate in the List 0 AMVP
candidate list. Accordingly, video decoder 30 may use the List 0 MVP index and the
List 0 MVD to determine the List O motion vector of the PU. Video decoder 30 may
then determine a preliminary or final predictive block for the PU comprising samples
corresponding to a location in the selected List O reference picture identified by the List
0 motion vector of the PU. Video encoder 20 may signal similar syntax elements for
List 1 and video decoder 30 may use the syntax elements for List 1 in a similar way.
[0088] As can be seen above, a merge candidate corresponds to a full set of motion
information while an AMVP candidate contains just one motion vector for a specific
prediction direction. The candidates for both merge mode and AMVP mode may be
derived similarly from the same spatial and temporal neighboring blocks.

[0089] Spatial MV candidates are derived from the neighboring blocks shown in FIG.
2A and FIG. 2B, for a specific PU (PUo), although the methods generating the
candidates from the blocks differ for merge and AMVP modes. FIG. 2A illustrates
spatial neighboring MV candidates for merge mode. In merge mode, up to four spatial
MV candidates can be derived with the order shown in FIG. 2A with numbers, and the
order is the following: left (0), above (1), above right (2), below left (3), and above left
(4).

[0090] FIG. 2B illustrates spatial neighboring MV candidates for AMVP mode. In
AMVP mode, the neighboring blocks are divided into two groups: a left group
consisting of the block 0 and 1, and an above group consisting of the blocks 2, 3, and 4
as shown in FIG. 2B. For each group, the potential candidate in a neighboring block
referring to the same reference picture as that indicated by the signaled reference index

has the highest priority to be chosen to form a final candidate of the group. For

WO 2018/067823 PCT/US2017/055350
23

example, as part of generating a List 0 AMVP candidate list, the video coder checks
whether block 0 is predicted from List O and, if so, whether a List O reference picture of
block 0 is the same as the current PU’s List O reference picture. If block 0 is predicted
from List 0 and the block 0’s List O reference picture is the same as the current PU’s
List O reference picture, the video coder includes block 0’s List 0 motion vector in the
List 0 AMVP candidate list. If not, the video coder checks whether block 0 is predicted
from List 1 and, if so, whether block 0’s List 1 reference picture is the same as the
current PU’s List O reference picture. If block 0 is predicted from List O and block 0’s
List 1 reference picture is the same as the current PU’s List O reference picture, the
video coder includes block 0’s List 1 motion vector in the List 0 AMVP candidate list.
If block 0’s List 1 reference picture is not the same as the current PU’s List O reference
picture, the video coder repeats this process with block 1 instead of block 0.

[0091] However, if block 1 is not predicted from List 1 or block 1’s List 1 reference
picture is not the same as the current PU’s List O reference picture, the video coder
determines whether block 0 is predicted from List O and, if so, determines whether
block 0’s List O reference picture and the current PU’s List O reference picture are both
long-term reference pictures or both short-term reference pictures. If block 0’s List O
reference picture and the current PU’s List O reference picture are both long-term
reference pictures or block 0’s List O reference picture and the current PU’s List O
reference picture are both short-term reference pictures, the video coder may scale block
0’s List 0 motion vector based on a temporal difference between block 0’s List O
reference picture and the current PU’s List O reference picture. The video coder
includes the scaled List O motion vector into the List 0 AMVP candidate list. If block
0’s List O reference picture is a long-term reference picture and the current PU’s List O
reference picture is a short-term reference picture, or vice versa, the video coder
determines whether block 0 is predicted from List 1 and, if so, determines whether
block 0’s List 1 reference picture and the current PU’s List O reference picture are both
long-term reference pictures or both short-term reference pictures. If block 0’s List 1
reference picture and the current PU’s List O reference picture are both long-term
reference pictures or block 0’s List 1 reference picture and the current PU’s List 0
reference picture are both short-term reference pictures, the video coder may scale block
0’s List 1 motion vector based on a temporal difference between block 0’s List 1
reference picture and the current PU’s List O reference picture. The video coder

includes the scaled List O motion vector into the List 0 AMVP candidate list. If block

WO 2018/067823 PCT/US2017/055350
24

0’s List 1 reference picture is a long-term reference picture and the current PU’s List O
reference picture is a short-term reference picture, or vice versa, the video coder repeats
this process with block 1 instead of block 0.

[0092] The video coder may perform a similar process for blocks 2, 3, and 4 to include
a second candidate in the current PU’s List 0 AMVP candidate list. Additionally, the
video coder may repeat this entire process, swapping references to List O with List 1 and
reference to List 1 with List 0, to generate the current PU’s List | AMVP candidate list.
[0093] Thus, in AVMP mode, the neighboring blocks are divided into two groups: left
group consisting of the block 0 and 1, and above group consisting of the blocks 2, 3, and
4 as shown in FIG. 2B. For each group, the potential candidate in a neighboring block
referring to the same reference picture as that indicated by the signaled reference index
has the highest priority to be chosen to form a final candidate of the group. It is
possible that all neighboring blocks do not contain a motion vector pointing to the same
reference picture. Therefore, if such a candidate cannot be found, the first available
candidate may be scaled to form the final candidate; thus the temporal distance
differences can be compensated.

[0094] A video coder may include a temporal motion vector predictor (TMVP)
candidate, if enabled and available, into a merge MV candidate list after spatial motion
vector candidates or an AMVP candidate list. For instance, in the case of AMVP, the
video coder may include the TMVP candidate in the AMVP candidate list if the spatial
neighboring blocks are unavailable (e.g., because the spatial neighboring blocks are
outside a picture, slice, or tile boundary, because the spatial neighboring blocks are intra
predicted, etc.). In merge mode, a TMVP candidate may specify List O and/or List 1
motion vectors of a temporal neighbor block. The reference indexes for the TMVP
candidate in the merge mode are always set to 0. In AMVP mode, a TMVP candidate
specifies either a List 0 motion vector of a temporal neighbor block or a List 1 motion
vector of the temporal neighbor block. The temporal neighbor block is a block in a
reference picture. The process of motion vector derivation for a TMVP candidate may
be the same for both merge and AMVP modes.

[0095] FIG. 3A is a conceptual diagram illustrating an example technique for deriving a
TMVP candidate. As shown in FIG. 3A, a primary block location for TMVP candidate
derivation is a bottom-right block 300 outside of the collocated PU. The temporal
neighboring block from which the video coder derives the TMVP candidate is
collocated with bottom-right block 300. In the example of FIG. 3A, bottom-right block

WO 2018/067823 PCT/US2017/055350
25

300 1s marked as block “T” to denote “temporal.” The video coder uses bottom-right
block 300 instead of above or left blocks in order to compensate for the bias to the
above and left blocks used to generate spatial neighboring candidates. If bottom-right
block 300 is located outside of the current CTB row or motion information is not
available (e.g., because a temporal reference block collocated with bottom-right block
300 1s intra predicted), bottom-right block 300 is substituted with a center block 302 of
the PU.

[0096] A motion vector for a TMVP candidate is derived from the co-located PU of a
so-called “co-located picture.” The co-located picture may be indicated in a slice level
(e.g., using a collocated ref idx syntax element). The motion vector for the co-located
PU is called a collocated MV. Similar to temporal direct mode in H.264/AVC, to derive
the TMVP candidate motion vector, the co-located MV may be scaled to compensate
the temporal distance differences, as shown in FIG. 3B. Particularly, in FIG. 3B, when
coding a current block 320 of a current picture 322, a video coder determines a
collocated block 323 in a collocated picture 324. A motion vector 326 of collocated
block 323 (i.e., a collocated motion vector) indicates a location in a collocated reference
picture 328. The video coder generates a TMVP 330 by scaling motion vector 326
based on a difference between a collocated temporal distance and a current temporal
distance. The collocated temporal distance is a temporal distance between collocated
picture 324 and collocated reference picture 328. The current temporal distance is a
temporal distance between current picture 322 and a current reference picture 332.
[0097] As noted above, a video coder may scale a motion vector. When scaling a
motion vector, it is assumed that the value of a motion vector is proportional to the
distance of pictures in the presentation time. A motion vector associates two pictures,
the reference picture, and the picture containing the motion vector (namely, the
containing picture). When a motion vector is used to predict the other motion vector,
the distance of the containing picture and the reference picture is calculated based on
Picture Order Count (POC) values of the reference picture and the containing picture.
[0098] For a motion vector to be predicted, both its associated containing picture and
reference picture may be different. Therefore, a new distance (based on POC) is
calculated. The motion vector is scaled based on these two POC distances. For a
spatial neighboring candidate, the containing pictures for the two motion vectors are the
same, while the reference pictures are different. In HEVC, motion vector scaling

applies to both TMVP and AMVP for spatial and temporal neighboring candidates.

WO 2018/067823 PCT/US2017/055350
26

[0099] Furthermore, in some implementations, if a MV candidate list (e.g., a merge MV
candidate list or an AMVP candidate list) is not complete, a video coder may generate
and insert artificial motion vector candidates at the end of the MV candidate list until
the MV candidate list has the required number of candidates. In merge mode, there are
two types of artificial MV candidates: combined candidates derived only for B-slices
and zero candidates. A combined candidate specifies a combination of a List 0 motion
vector from one merge candidate and a List 1 motion vector for a different merge
candidate. Zero candidates are used for motion vector prediction only if the first type
(i.e., combined candidates) does not provide enough artificial candidates. A zero
candidate is a candidate that specifies a MV whose horizontal and vertical components
are each equal to O.

[0100] For each pair of candidates that are already in the candidate list and have
necessary motion information, bi-directional combined motion vector candidates are
derived by a combination of the motion vector of the first candidate referring to a
picture in the list 0 and the motion vector of a second candidate referring to a picture in
the list 1.

[0101] Additionally, a video coder may apply a pruning process for candidate insertion.
Candidates from different blocks may happen to be the same, which may decrease the
efficiency of a merge/AMVP candidate list. A pruning process is applied to solve this
problem. It compares one candidate against the others in the current candidate list to
avoid inserting identical candidate in certain extent. To reduce the complexity, only
limited numbers of pruning process is applied instead of comparing each potential one
with all the other existing ones.

[0102] In HEVC, only a translation motion model is applied for motion compensation
prediction (MCP). However, in the real world, there are many kinds of motions, e.g.
zoom in/out, rotation, perspective motions and the other irregular motions. In JEM, a
simplified affine transform motion compensation prediction is applied to improve the
coding efficiency. If a block follows an affine motion model, an MV of position (x, y)
in the block can be determined by the following affine motion model:

v. =ax+by+c
{ (M

v, =dxtey+ f

WO 2018/067823 PCT/US2017/055350
27

In equation (1), vxis a horizontal component of a motion vector for position (X, y)
within the block, and vy is a vertical component of the motion vector for position (X, y)
within the block. In equation (1), a, b, ¢, d, e, and f are parameters. Note that in the
affine motion model, different positions within the block have different motion vectors.
[0103] In JEM3.0, the affine motion model is simplified to a 4-parameters affine motion
model by assuming a=e and b=-d. Thus, equation (1) may be simplified as shown in
equation (1'), below:

v =ex+-dy+c '
{ (1)

v,=dx+ey+f

The 4-parameter affine motion model may be represented by a motion vector of a top-
left control point (Vo) and a motion vector of a top-right control point (V1). FIG. 4
illustrates a simplified affine motion model for a current block 400. As shown in FIG.
4, an affine motion field of the block is described by two control point motion vectors
Vp and V. V, is a control point motion vector for a top-left control point 402 of current
block 400. V; is a control point motion vector for a top-right control point 404 of
current block 400.

[0104] The motion vector field (MVF) of a block is described by the following

equation:

")

= (Vie = Vo) Yo v, _VOy)y+V0x
v v @)
L = (Vly _VOy)x+ (le _VOx)

YtV
W y

In equation (2), vx is a horizontal component of a motion vector for a position (x, y) in a
block; vy is a vertical component of the motion vector for the position (X, y) in the
block; (vor, voy) is a motion vector of the top-left corner control point (e.g., top-left
control point 402); (vix, v1y) 1s a motion vector of the top-right corner control point (e.g.,
top-right control point 404); and w is a width of the block. Thus, a video coder may use
equation (2) to “extrapolate” motion vectors for positions (X, y) based on motion vectors

of control points of the block.

WO 2018/067823 PCT/US2017/055350
28

[0105] To further simplify the motion compensation prediction, block-based affine
transform prediction is applied. Thus, rather than deriving motion vectors for each
location in a block, a video coder may derive motion vectors for sub-blocks of the
block. In JEM, the sub-blocks are 4x4 blocks. To derive a motion vector of a sub-
block, the video coder may calculate the motion vector of a center sample of the sub-
block according to equation (2). The video coder may then round the calculated motion
vector to 1/16 fraction accuracy. The rounded motion vector may be referred to herein
as a high-accuracy motion vector. Then, the video coder may apply motion
compensation interpolation filters to generate predictions (i.e., predictive blocks) of
each of the sub-blocks with derived motion vectors.

[0106] FIG. 5 illustrates an example affine motion vector field (MVF) per sub-block.
As shown in the example of FIG. 5, a current block 500 has a top-left control point 502
and a top-right control point 504. A video coder may calculate, based on a motion
vector 506 for top-left control point 502 and a motion vector 508 for top-right control
point 504, motion vectors for sub-blocks of current block 500. FIG. 5 shows the motion
vectors of the sub-blocks as small arrows.

[0107] After MCP, the high-accuracy motion vector of each sub-block is rounded and
saved as the same accuracy as the normal motion vector. In some examples, the
rounding of the high-accuracy motion vector is only performed when the precision of
the stored motion vectors is less then the high-accuracy motion vectors.

[0108] There are two affine motion modes in JEM: AF INTER mode and AF. MERGE
mode. In JEM, the AF_INTER mode can be applied for CUs with both width and
height larger than 8. An affine flag is signaled at the CU level in the bitstream to
indicate whether AF_INTER mode is used. Inthe AF_INTER mode, video encoder 20
signals a List O reference index and/or a List 1 reference index for the current block to
indicate a List O reference picture and/or a List 1 reference picture.

[0109] In the AF INTER mode, video encoder 20 and video decoder 30 each construct
one or more candidate lists (i.e., affine MVP set candidate lists) for a current block. For
instance, video encoder 20 and video decoder 30 may each construct a List O affine
MVP set candidate list and/or a List 1 atffine MVP set candidate list. Each of the affine
MVP set candidate lists includes a respective set of affine MVP sets. In a 4-parameter
affine motion model, an affine MVP set in a List O affine MVP set candidate list

specifies two List O motion vectors (i.e., a motion vector pair). In a 4-parameter affine

WO 2018/067823 PCT/US2017/055350
29

motion model, an affine MVP set in a List 1 affine MVP set candidate list specifies two
List 1 motion vectors.

[0110] Initially, a video coder (e.g., video encoder 20 or video decoder 30) attempts to
fill an affine MVP set candidate list with motion vector pairs of the type

{(vo, v Vo = {Va, VB, Vc}, vy = {vp VE}} using neighbor blocks. FIG. 6A is a block
diagram illustrating a current block 600 and neighboring blocks as used in the

AF _INTER mode. As shown in FIG. 6A, Vo is selected from the motion vectors of
blocks A, B or C. The motion vector from the neighbor block is scaled according to the
reference list and a relationship among the POC of the reference for the neighbor block,
the POC of the reference for the current CU, and the POC of the current CU. For
example, suppose the video coder selects a List 0 motion vector of a neighbor block
(e.g., block A, B, or C) as Vo. In this example, the List O motion vector of the neighbor
block indicates a position in the neighbor block’s reference picture (i.e., the reference
for the neighbor block). Furthermore, in this example, video encoder 20 may select and
signal a List O reference index indicating a reference picture for the current CU (i.e., the
reference for the current CU). If the neighbor block’s reference picture is not the same
as the reference picture for the current CU, the video coder may scale the neighbor
block’s List 0 motion vector based on a difference between a reference temporal
distance and a current temporal distance. The reference temporal distance is a temporal
distance between the POC of the neighbor block’s reference picture and a POC of the
current CU. The current temporal distance is a temporal distance between the POC of
the current CU and a POC of the reference picture for the current CU. The video coder
may perform a similar process for a List 1 motion vector. The approach to select v,
from neighbor blocks D and E is similar.

[0111] If the number of candidates in the candidate list is smaller than 2, the candidate
list is padded by motion vector pairs composed by duplicating each of the AMVP
candidates {AMVPO, AMVPO} and {AMVP1, AMVP1}. In other words, a video coder
may generate two AMVP candidates in the manner described above. The two AMVP
candidates are denoted AMVPO and AMVP1. The video coder then includes, in
candidate list 620 of FIG. 6B, a first affine motion vector predictor candidate that
specifies AMVPO as a motion vector for a first control point and specifies AMVPO as a
motion vector for a second control point. If the number of candidates in the candidate
list is still smaller than 2 after including the first affine MVP candidate in candidate list
620, the video coder includes a second affine MVP candidate in candidate list 620,

WO 2018/067823 PCT/US2017/055350
30

where the second affine MVP candidate specifies AMVP1 as the motion vector for the
first control point and specifies AMVPI as the motion vector for the second control
point.

[0112] When candidate list 620 is larger than 2, the video coder firstly sorts the
candidates in candidate list 620 according to the consistency of the neighboring motion
vectors (similarity of the two motion vectors in a pair candidate). The video coder only
keeps the first two candidates, as shown in FIG. 6B with the line label “Size=2". Video
encoder 20 may use a rate-distortion cost check to determine which motion vector set
candidate is selected as the control point motion vector prediction (CPMVP) of the
current CU. Video encoder 20 may signal in the bitstream an index indicating the
position of the CPMVP in candidate list 620. Video decoder 30 may obtain the index
from the bitstream and use the index to determine which of the candidates in candidate
list 620 is the CPMVP. After the CPMVP of the current affine CU is determined, affine
motion estimation is applied and the control point motion vector (CPMV) is found.
Video encoder 20 signals in the bitstream a difference between the CPMV and the
CPMVP. In other words, video encoder 20 signals a motion vector difference (MVD)
in the bitstream.

[0113] Moreover, in both HEVC and JEM, an inter-picture prediction syntax element,
inter_pred idc, signals whether List O, List 1, or both are used for a block (e.g., a CU or
PU). For each MVP obtained from one reference picture list, the corresponding
reference picture is signaled by an index to the reference picture list, ref idx 10/1, and
the MV(_x; y) is represented by an index to the MVP, mvp 10/1 flag, and its MV
difference (MVD). The MVD syntax is also signaled in the bitstream so that the MV
can be reconstructed at the decoder side. In other words, if a block is uni-directionally
predicted from List O or bi-directionally predicted, video encoder 20 signals a ref idx 10
flag to indicate a location of a reference picture in List O, signals a mvp 10 flag to
indicate a location in a List 0 AMVP candidate list of a selected motion vector
predictor, and signals a List 0 MVD. If a block is uni-directionally predicted from List
1 or bi-directionally predicted, video encoder 20 signals a ref idx 11 flag to indicate a
location of a reference picture in List 1, signals a mvp 11 flag to indicate a location in a
List 1 AMVP candidate list of a selected motion vector predictor, and signals a List 1
MVD.

[0114] In addition, video encoder 20 may signal a flag (e.g.,mvd 11 zero flag)

in a slice header. The flag indicates whether the MVD for the second reference picture

WO 2018/067823 PCT/US2017/055350
31

list (e.g., List 1) is equal to zero and therefore not signaled in the bitstream. Not
signaling the MVD for the second reference picture list may further improve the coding
efficiency in some circumstances.

[0115] When a CU is coded in AF. MERGE mode, a video coder assigns to the CU the
affine motion model of a block coded with affine mode from the valid neighbor
reconstructed blocks occurring first in the visiting order: A>B>C->D—2>E. FIG. 7A
shows neighboring blocks used when coding a current block 700 in AF. MERGE mode.
A visiting order (i.e., a selection order) for the neighboring blocks is from left, above,
above-right, left-bottom to above-left as shown in FIG. 7A. For example, if
neighboring block B is the first neighboring block in the order A>B>C—>D->E that is
coded using in affine mode, the video coder may use the affine motion model of
neighboring block B as the affine motion model of the current block. For instance, in
this example, for X=0 and/or X=1, the video coder may extrapolate the List X motion
vector of a top-left control point of neighboring block B to generate the List X motion
vector of a top-left control point of current block 700, use a List X reference index of
the top-left control point of neighboring block B as the List X reference index of the
top-left control point of current block 700, extrapolate the List X motion vector of a top-
right control point of neighboring block B to generate the List X motion vector of a top-
right control point of current block 700, and use a List X reference index of the top-right
control point of neighboring block B as the List X reference index of the top-right
control point of current block 700. In this example, the video coder may use equation
(2), above, to extrapolate a motion vector of a control point of neighboring block B to
determine a motion vector of a control point of current block 700, using an (X, y)
position of the control point of current block 700 as x and y in equation (2).

[0116] If the neighbor left-bottom block A is coded in affine mode as shown in FIG.
7B, the motion vectors v, , v and v, of the top-left corner, above-right corner and left-
bottom corner of current block 720 which contains the block A are derived. The motion
vector v of the top-left corner on current block 720 is calculated according to v, , v3
and v,. Secondly, the motion vector v, of the above right of the current CU is
calculated. To be specific, a 6-parameters affine motion model is first constructed by
the motion vectors v, , v and v, as shown in equation (3), below, and the v, and

v, values are then calculated by this 6-parameters affine motion model. That is, when
used with the (x, y) position of the top-left control point of current block 720 (i.e., vy),

vx 1n equation (3) is the x component of the motion vector of ¥, (i.e., vox) and Xy in

WO 2018/067823 PCT/US2017/055350
32

equation (3) is the y component of Vg (i.e., voy). Similarly, when used used with the (x,
y) position of the top-right control point of current block 720 (i.e., V1), vx in equation (3)
is the x component of the motion vector of V7 (i.e., vix) and Xy in equation (3) is the y

component of V7 (i.e., viy).

V.. —V Vv, —V
") :(3x 2x)x+(4x 2x)y+v2x

’ w h 3)
_ (V3y _VZy) x4 (v4y _VZy)y—‘,—V

2
Y W h Y

[0117] After the CPMYV of the current CU’s v, and v, are derived, according to the
simplified affine motion model of equation (1), the motion vector field of the current
CU is generated. To identify whether the current CU is coded with AF. MERGE mode,
an affine flag is signalled in the bit stream when there is at least one neighbor block is
coded in affine mode.
[0118] In addition to the 4-parameter affine motion model in JEM, an affine motion
model with 6-parameter is described in JVET-C0062. In 6-parameter affine model,
there is no constraint on the scaling factors between horizontal and vertical directions.
Three corner motion vectors are used to represent the 6-parameter model.
[0119] FIG. 8A illustrates example blocks used in a 6-parameter affine motion model.
FIG. 8B illustrates an example affine MVP set candidate list 820 used in a 6-parameter
affine motion model. The following six equations describe the horizontal (x) and
vertical (y) components of the motion vectors at the three corners (Vo, V1, and V2, as
illustrated in FIG. 8A):

VO x=c
{VO_ y=1f
{Vl_x =axwidth+c

B . 4)
1 y=dxwidth+ f

V2 x=bxheight+c
{VZ_y =exheight+ f
By solving equations (4), the 6-parameter affine model can be determined by
substituting the solutions into equation (1).
[0120] Similar to the 4-parameter AF_INTER mode, a candidate list with motion vector
set {(VO, v, V2)|Vo = {Va, VB, V) vy = {VpVE}L vV, = {VF,VG}} for the 6-parameter
AF INTER mode is constructed using the neighbor blocks. Thus, in the example of
FIG. 8B, each affine MVP set (i.e., each candidate) in affine MVP set candidate list 820

WO 2018/067823 PCT/US2017/055350
33

includes three motion vectors. In the AF INTER mode, a video coder may generate
two affine MVP set candidate lists of the type shown in FIG. 8B. One of the affine
MVP set candidate lists includes affine MVP sets that specify List 0 motion vectors.
The other affine MVP set candidate list includes affine MVP sets that specify List 1
motion vectors.

[0121] The design of affine motion in HEVC/JEM may have the following problems.
For example, the correlation of the affine motion of List 0 and List 1 are not utilized for
MYV prediction for blocks coded with affine mode. In another example, the correlation
of the affine motion of a current block and a neighbor block are not utilized for MV
prediction for blocks coded with affine mode. In yet another example, the List 1 zero
MVD may harm the performance of affine motion models due to inaccurate MV of the
control points. This disclosure describes techniques that may overcome these problems,
and potentially improve coding efficiency.

[0122] In some examples of this disclosure, the affine motion model is a 6-parameters
motion model as shown in equation (1). In JEM-3.0, the affine motion model for a
block is represented by the motion vectors of the control points (VO, V1). In JVET-
C0062, the affine motion model for a block is represented by the motion vectors of the
control points (VO, V1, V2). However, it may be desirable to represent the affine
motion model by signaling the parameters a, b, c, d, e, f in equation (1) or simplified 4
parameters. The affine motion model can also be further interpreted as equation (5)
where Ox and Oy are the translation offsets, Sx and Sy are the scaling ratio in the x and y

directions and Ox and Oy are the rotation angles.

©)

{vx =s,%cosf, *x—s *8in0 *y+0,
v, =s *sinf *x+s *cosd *y+0,
This disclosure proposes several methods to improve the motion vector predictor
(MVP) or parameter prediction of affine motion prediction. Note that a video coder
may perform the parameter prediction for representation of a, b, ¢, d, e, f in equation (1)
or Ox, Oy, Sx, Sy, Ox and Oy in equation (5).
[0123] The several techniques of this disclosure are listed below.

1) Affine motion vector prediction and affine parameters prediction

between List O and List 1.

WO 2018/067823 PCT/US2017/055350
34

2) Affine motion vector prediction between control points and affine
parameters prediction between sets of parameters.

3) Affine motion vector prediction and affine parameter prediction from
neighbor blocks. The neighbor blocks are not limited to be spatial
neighbor blocks. Rather, in some examples, temporal neighbor blocks
are used.

4) Sub-block Affine Motion Prediction and sub-block affine parameter
prediction, wherein each sub-block may have its own control points
and/or parameters.

5) Refine the additional MVP candidates generation

6) Disable Zero L1 MVD for affine Inter Mode in GPB Slices.

[0124] The techniques of this disclosure may be applied individually. Alternatively,
any combination of the techniques may be applied. This disclosure elaborates more
details of each of the techniques below.

[0125] As mentioned above, one of the shortcomings of the design of affine motion in
HEVC and JEM is that the correlation between the affine motion of ListO and List 1 is
not utilized. In other words, the existing approaches signal affine control points
independently for List O and List 1. Exploiting the correlation between the affine
motion of ListO and List 1 may represent an opportunity to increase coding efficiency.
[0126] Thus, in accordance with a technique of this disclosure, video encoder 20 and
video decoder 30 may use an affine motion model in one inter prediction direction to
improve the signaling of the affine motion model in another inter prediction direction.
An affine motion model in a particular inter prediction direction is an affine motion
model that specifies motion vectors pointing to locations in reference pictures in a
particular reference picture list corresponding to the inter prediction direction.

[0127] For example, to utilize the correlation between the MVs of List 0 and List 1,
video encoder 20 and video decoder 30 may use the MVs of List 0 as a MV predictor
for the MVs of List 1, or vice versa. Video decoder 30 may decide to use List O-to-List
1 MV prediction or List 1-to-List 0 MV prediction according to a prediction direction
indication. The prediction direction indication may be explicitly signaled or implicitly
derived.

[0128] Video decoder 30 may derive an implicit prediction direction indication using
decoded or reconstructed information. In one example, the prediction direction

indication is dependent on the MVPs in the affine MVP set candidate lists (i.e., MVP

WO 2018/067823 PCT/US2017/055350
35

lists) of each prediction direction. If a MVP list of one prediction direction contains
MVPs derived from some less-preferable methods (e.g., a scaled motion vector
predictor, or an MVP derived from a block coded with a local illumination
compensation mode), the affine model from another prediction direction is used to
predict the affine model in the current prediction direction. Alternatively, the prediction
direction indication may depend on how many different MV predictors are in each list.
[0129] In another example, if a MVP list of one prediction direction contains MVPs
derived from some higher-preference methods (e.g., a non-scaled motion vector
predictor, or it is from a block coded with frame rate up-conversion (FRUC) mode), the
affine model from a current prediction direction is used to predict the affine model in
the other prediction direction. In the FRUC mode, motion information of a block is not
signaled, but is derived at the decode side.

[0130] In one example, if there is any low-priority MVP in the MVP set candidate list
for List 1, the Prediction Direction Indication is set as List O-to List 1 and in the MV
prediction process, the MVs of List 0 is used as the MVP for the MVs of List 1.
Otherwise, if there is no low-priority MVP in the MVP set candidate list for List 1, the
Prediction Direction Indication is set as List 1-to List 0 and in MV prediction process,
MVs of List 1 are used as the MVPs for the MVs of List 0.

[0131] After the Prediction Direction Indication is determined, the to-be-replaced MVP
set candidates (with N candidates) are determined according to the decoded or
reconstruction information at the decoder side. In one example, the to-be-replaced
MVP set candidate is the first MVP set candidate containing at least one low-priority
MVPs. In one example, the low-priority may be given for spatial MVPs scaled
according to POC information, padded AMVP MVPs, and temporal MVPs.

[0132] In one example, furthermore, when there is no to-be-replaced MVP set
candidate, the affine Motion Vector Prediction between List O and List 1 is not
performed. In some examples, the number of to-be-replaced MVP set candidates N is
setto 1. In one example, if the Prediction Direction Indication is set as List O-to-List 1
MYV prediction, the MVPs of the to-be-replaced MVP set candidate in List 1 are then
replaced by the scaled MVs of the corresponding control points in List 0, respectively,
or vice versa.

[0133] In another example, if the Prediction Direction Indication is set as List O-to-List

1 MV prediction, only partial MVPs of the to-be-replaced MVP set candidate in List 1

WO 2018/067823 PCT/US2017/055350
36

are replaced by the scaled MVs of the corresponding control points in List0,
respectively, or vice versa. For example, only the first MVP (VO0) is replaced.

[0134] In another example, if the Prediction Direction Indication is set as List O-to-List
1 MV prediction, only the first MVPs (VO0) of the to-be-replaced MVP set candidate in
List 1 is replaced by the scaled MVs of the corresponding control points in ListO
respectively. The second MVP (V1) of the to-be-replaced MVP set candidate in List 1
is replaced by the scaled MVs of the first control points (VO0) in ListO plus the difference
between the MVs of the first and second control points in List0 (V1-VO0). The approach
to replace the third MVPs (V2) for 6-parameter affine model is similar. If the
Prediction Direction Indication is set as List1-to-ListO MV prediction, only the first
MVPs (VO) of the to-be-replaced MVP set candidate in List O is replaced by the scaled
MYVs of the corresponding control points in List 1, respectively. The second MVP (V1)
of the to-be-replaced MVP set candidate in List O is replaced by the scaled MVs of the
first control points (VO) in List 1 plus the difference between the M Vs of the first and
second control points in List 1 (V1-VO0). And the approach to replace the third MVPs
(V2) for 6-parameter affine model is similar.

[0135] In some examples, the MVs of the control points may be used as the MVP
candidate for the M Vs of the other control points. In one example, the MV of the top-
left control point (VO) is used as the MVP candidate for the MV of the top-right control
point (V1). Similarly, under 6-parameters affine motion model, the MV of the top-left
control point (VO) is used as the MVP candidate for the MV of the top-right control
point (V1). Moreover, this motion vector prediction between control points can be
selectively applied. Alternatively, under 6-parameter affine model, the motion vector of
the top-left control point (VO0) is used as predictor of the motion vector of the top-right
control point (V1) (or the bottom-left control point (V2)), and the pair of VO and V1 (or
the pair of VO and V2) is used to derive motion vector predictor for V2 (or V1) by using
a 4-parameter affine motion model. In one example, only the second MVP set
candidate is applied the MV prediction between control points.

[0136] In another example, an affine model can be derived from the motion vector of
one control point and additional signaled model parameters. The signaled parameters
include, but are not limited to, the motion vector differences between control points or
affine rotation degree, and so on. In one example, a motion vector of one of the control

points of the current block, together with the rotational degree, are signaled for a block

WO 2018/067823 PCT/US2017/055350
37

coded as affine motion mode. For each affine block, the affine motion model is
constructed using the motion vector of the control point and the rotational angle.

[0137] In accordance with particular techniques of this disclosure, a video coder may
use neighbor-extrapolated motion vectors as affine motion vector predictors for control
points of a current affine block. For example, for a current inter block, a video coder
may utilize motion models of one or more of the current inter block’s neighboring affine
blocks (e.g., neighboring blocks encoded in AF_INTER mode or AF. MERGE mode),
named source affine blocks, to predict an affine motion model for the current inter block
(i.e., the current affine motion model). For example, the MVPs of the control points of
the current block may be extrapolated from the control points of the neighboring blocks.
For instance, for each respective control point of the current block, the video coder may
use equation (2), above, to extrapolate an MVP for the respective control point of the
current block from the motion vectors of the control points of a source affine block.

The source affine blocks may be one or more spatial neighbor blocks or temporal
neighbor blocks.

[0138] In one example, the source affine block is determined as the first block coded
with affine mode from the valid spatial neighbor blocks based on a predefined visiting
order (e.g., A2B>C>D-E or B2>A->D—->C-E or any other visiting order of the
blocks shown in FIG. 7A).

[0139] In another example, the source affine block is determined as the first block
coded with affine mode from the neighbor blocks according to one or more pre-defined
priority sets based on a pre-defined visiting order (e.g. A2>B—>C—>D->E or
B—>A->D->C-E or any other visiting order as shown in FIG. 7A and FIG. 7B). Those
neighboring affine blocks which do not meet any of the priorities are regarded as not
available.

[0140] In some examples, the source affine block is determined according to a visiting
order first and then a pre-defined priority order. For example, the source affine block
may be determined according to the following order: A (priority 1) = B (priority 1) =2
C (priority 1) = D (priority 1) = E (priority 1) = A (priority 2) = and so on. In this
example, a video coder first checks whether block A is in priority set 1; if not, the video
coder checks whether block B is in priority set 1; if not, the video coder checks whether
block C is in priority set 1; and so on.

[0141] In another example, a video coder may determine the source affine block

according to a pre-defined priority order first and then the visiting order. For example,

WO 2018/067823 PCT/US2017/055350

38

A (priority 1) = A (priority 2) = B (priority 1) = B (priority 2)=> C (priority 1) C

(priority 2) = and so on. Thus, in this example, the video coder first checks whether

block A is in priority set 1; if not, the video coder checks whether block A is in priority

set 2; if not, the video coder checks whether block B is in priority set 1; and so on.

[0142] In various examples, priority sets are defined in different ways. The definitions

of various example priority sets are listed as below. The following definitions of

priority sets may be applied individually. Alternatively, any combination of them may

be applied.

[0143] A first example priority set is defined as below, where smaller numbers

represent higher priority:

1.

A neighboring affine block 1s in priority set 1 if a List X reference picture of the
neighbor affine block is the same reference picture as a List X reference picture
of the current block, where List X is the reference picture list of the current
block currently being evaluated and X is either O or 1.

A neighboring affine block 1s in priority set 2 if a List X reference picture of the
neighbor affine block is the same reference picture as a List Y reference picture
of the current block, where List Y is the reference picture list other than the
reference picture list of the current block currently being evaluated and Y is

either O or 1.

[0144] In another example, a priority set is defined as below:

1.

A neighboring affine block 1s in priority set 1 if a List X reference picture of the
neighbor affine block is different from a List X reference picture of the current
block, where List X is the reference picture list of the current block currently
being evaluated and X is either O or 1.

A neighboring affine block is in priority set 2 if a List Y reference picture of the
neighbor affine block is different from a List Y reference picture if the current
block, where List Y is a reference picture list other than a reference picture list

of the current block currently being evaluated and Y is either O or 1.

[0145] In another example, the priority set is defined as below:

1.

The MV differences of the neighbor affine blocks are within a pre-defined range.

2. The MV differences of the neighbor affine blocks are not within a pre-defined

range.

[0146] In another example, the priority set is defined as below. In this and other

examples, smaller numbers may represent higher priority.

WO 2018/067823 PCT/US2017/055350
39

1. A neighbor affine block is in priority set 1 if the neighboring affine block is
coded in AF_INTER mode.
2. A neighbor affine block is in priority set 2 if the neighboring affine block is
coded in AF. MERGE mode.

[0147] In another example, the priority of a neighboring affine block depends on
whether the neighbor affine block has the same inter prediction direction as the current
affine block. In another example, the priority of a neighboring affine block depends on
the size of the neighbor affine block. For example, the neighboring affine blocks with
larger sizes may have higher priority.
[0148] In one example, the video coder selects, as the source affine block for List X, a
neighbor affine block that has the same List X reference picture as the current block and
occurs first in the following visiting order: B> A>D—>C-E. In this example, if no
neighbor affine block is available (e.g., none of the neighbor affine blocks has the same
List X reference picture as the current block), the video coder may select, as the source
affine block, the neighboring affine block having as its List Y reference picture, the
current block’s List X reference picture and occurs first in the in the following visiting
order: B>A>D—>C->E, where XisOor 1 and Y is (1-X).
[0149] In one example, in case that the bi prediction affine model is used in the current
block, the source affine block for List O and List 1 can be different. In other words, the
video coder may use different source affine blocks when evaluating List 0 and List 1 for
the current block. The above-mentioned source affine block selection process can be
applied individually for each reference picture list.
[0150] After the video coder selects the source affine block, the video coder
extrapolates a set of MV predictors for the control points of the current block using the
MV of the control points of the source affine block. For example, in a 4-parameter
affine motion model, the video coder may extrapolate a List X MV of the first control
point of the current block from a List X MV of the first control point of the source
affine block. Additionally, in this example, the video coder may extrapolate a List X
MYV of the second control point of the current block from a List X MV of the second
control point of the source affine block. In this example, X is either O or 1 and the
resulting pair of extrapolated List X MVs is termed an extrapolated motion vector
predictor (MVP) set and may be denoted {V’o, V’1}. The video coder may use equation
(2) to perform the extrapolation, as described elsewhere in this disclosure. In a 6-

parameter affine motion model, the video coder may also extrapolate a List X MV of

WO 2018/067823 PCT/US2017/055350
40

the third control point of the current block from a List X MV of the third control point
of the source affine block. The extrapolated List X MV of the third control point of the
current block may also be included in a motion vector predictor set and may be denoted
{V’o, V1, V2}.

[0151] The video coder may then insert the extrapolated List X MVP set (e.g., {V’o,
V’1} for a 4-parameter affine motion model or {V’0, V’1, V’2} for a 6-parameter affine
motion model) into a List X affine MVP set candidate list. After the video coder inserts
the extrapolated MVP set into the List X affine MVP set candidate list, the video coder
inserts a conventional affine MVP set candidate into the List X affine MVP set
candidate list. The conventional affine MVP set candidate may be an affine MVP set
candidate generated in accordance with other examples provided in this disclosure. The
video coder may insert the conventional MVP set candidate into the List X affine MVP
set candidate list after or before the extrapolated MVP set. If the current block is bi-
directionally predicted, the video coder may perform a similar process for List Y, where
Y is equal to 1-X.

[0152] FIG. 9 illustrates an example affine MVP set candidate list 900 that includes an
extrapolated MVP set 902, in accordance with a technique of this disclosure. In the
example of FIG. 9, the extrapolated MVP set {V’i, V’j} (902) is inserted into the first
position of affine MVP set candidate list 900 followed by conventional MVP set
candidates. The video coder may construct the remainder of affine MVP set candidate
list 900 in the same manner as candidate list 620 (FIG. 6B) or affine MVP set candidate
list 820 (FIG. 8B).

[0153] In one example, the extrapolation process can be the same as AF MERGE mode
described above using equation (1) or (2), depending on whether a 4-parameter affine
motion model or a 6-parameter affine motion model is used to perform MV
extrapolation. Alternatively, other extrapolation functions may be applied. For
example, a video coder may apply a bilinear function the motion vectors of the control
points of an affine source block to perform the extrapolation process.

[0154] In some examples, the video coder selects a second source affine block in
addition to selecting a source affine block as described above. The video coder may
select the second source affine block by continuing to search for a source affine block
after selecting the first source affine block. The video coder may conduct the search in
accordance with any of the examples described above for selecting the source affine

block. The video coder may extrapolate a second MVP set for the control points of the

WO 2018/067823 PCT/US2017/055350
41

current block using the MVs of the control points of the second source affine block and
may insert the second MVP set as another MVP set candidate in the affine MVP set
candidate list.

[0155] In another example, a video coder selects two or more source affine blocks when
coding a current block. In this example, the video coder derives a set of MV predictors
for the control points of the current block using the MVs of some or the video coder
inserts all control points of the source affine blocks as another MVP set candidate.
[0156] In accordance with a technique of this disclosure, in affine inter mode (i.e.,

AF _INTER) or affine merge mode (i.e., AF_ MERGE), the affine motion of each sub-
block (e.g. 4x4 block) of a current block can be predicted or directly inherited from the
extrapolated motion of its own neighbor blocks. In one example, the neighbor block is
selected as the nearest neighbor affine block for each sub-block. In other words, a
current block may be partitioned into a plurality of equally-sized sub-blocks (e.g., 4x4
sub-blocks). For each respective sub-block of the plurality of sub-blocks, the video
coder may determine a nearest block that was predicted using an affine motion model.
In cases where the respective sub-block is along a border of the current block, the
nearest block that was predicted using an affine motion model may be outside the
current block. For instance, for a top-left sub-block of the current block, the nearest
block that was predicted using an affine motion model may be a block above and left of
the top-left sub-block. Similarly, for a top-right sub-block of the current block, the
nearest block that was predicted using an affine motion model may be a block above the
top-right sub-block or a block above and right of the top-right sub-block. For a sub-
block in the interior of the current block, the nearest block that was predicted using an
affine motion model may be another sub-block of the current block that is above or left
of the sub-block.

[0157] This approach differs from the way that sub-blocks are used in JEM3.0. As
discussed above, in JEM3.0, a video coder calculates the motion vectors of each sub-
block of a current block based only on the motion vectors of the control points at the
top-left and top-right corners of the current block. In contrast, in accordance with this
technique of this disclosure, the motion vectors of the sub-blocks are not calculated
based on the motion vectors of the control points, but rather are predicted or directly
inherited from extrapolated motion of neighbor blocks. This may result in greater
coding efficiency because the motion vectors of the sub-blocks may be taken from

locations closer to the sub-blocks.

WO 2018/067823 PCT/US2017/055350
42

[0158] FIG. 10 illustrates sub-block motion prediction or parameter prediction, in
accordance with a technique of this disclosure, where the affine motion of each sub-
block (e.g. 4x4 block) of a current block 1000 can be predicted or directly inherited
from the extrapolated motion of its own neighbor blocks. As shown in the example of
FIG. 10, the affine motion of a TL sub-block 1002 is predicted using the extrapolated
motion of neighbor block B2 (1004) while the TR sub-block 1006 uses the extrapolated
motion of the neighbor block B1. In another example, the sub-block can also use
extrapolated motion of the temporal neighbor blocks.

[0159] In affine inter mode or affine merge mode, the affine parameters (e.g., a, b, c, d,
e, and fin equations (1) or (4) of each sub-block (e.g. 4x4 block) of a current block can
be predicted or directly inherited from its own neighbor blocks. In one example, the
neighbor block is selected as the nearest neighbor affine block for each sub-block. For
example, as shown in FIG. 10, the affine parameters of TL sub-block 1002 are predicted
using the neighbor block B2 (1004) while the TR sub-block 1006 uses the neighbor
block B1 (1008).

[0160] In the current design of affine motion prediction in JEM3.0, if the size of an
affine MVP set candidate list of a current block is smaller than 2, the video coder pads
the affine MVP set candidate list with one or more affine MVP sets composed by
duplicating each of the AMVP candidates. This disclosure may use the term “AMVP-
derived candidate” to refer to an affine MVP set composed by duplicating AMVP
candidates. However, if the List X motion vector of control point VO (FIG. 6A) and the
List X motion vector of control point V1 are the same in the 4-parameter affine motion
model or List X motion vectors of control points VO, V1 and V2 (FIG. 8A) are the same
in the 6-parameter affine motion model, the calculated MVs for each sub-block of the
current block are identical. When the calculated M Vs for each sub-block of the current
block are identical, the results are the same as conventional motion compensated
prediction. However, arriving at the same motion compensated prediction result using
affine motion prediction may result in less coding efficiency than conventional motion
compensated prediction. Therefore, including in the affine MVP set candidate list an
AMVP-derived candidate that provides the same result as conventional motion
compensated prediction represents a lost opportunity to include in the affine MVP set
candidate list an affine MVP set that may result in better coding efficiency than

conventional motion compensated prediction.

WO 2018/067823 PCT/US2017/055350
43

[0161] Hence, in accordance with a technique of this disclosure, a video coder adds an
offset to one or more MVPs in an AMVP-derived candidate to make sure not all the
MVPs within the AMVP-derived candidate are identical. Including a diversity of affine
MYVP sets in an affine MVP set candidate list may improve the likelihood that use of
one of the affine MVP sets in the affine MVP set candidate list results in greater coding
efficiency.

[0162] FIG. 11A illustrates an example affine MVP set candidate list for a 4-parameter
affine motion model, in accordance with a technique of this disclosure. FIG. 11B
illustrates an example affine MVP set candidate list for a 6-parameter affine motion
model, in accordance with a technique of this disclosure. As shown in the example of
FIG. 11A, under 4-parameter affine motion model, the video coder adds and offset to
the MVP for control point V1. As shown in the example of FIG. 11B, for a 6-parameter
affine motion model, the video coder adds an offset to the MVP for control point V2. In
some examples, the offset is different for AMVP-derived candidates at different
positions in the affine MVP set candidate list. For example, the video coder may use +4
as the offset for the first AMVP-derived candidate and may use -4 as the offset for the
second AMVP-derived candidate.

[0163] In the example of FIG. 11A, a video coder generates a List X candidate list 1100
(i.e., an affine MVP set) for a current block, where X is 0 or 1. To generate candidate
list 1100, the video coder checks potential candidates. Each of the potential candidates
is a combination of a List X motion vector of a block selected from blocks Va, Vs and
Ve (FIG. 6A) and a List X motion vector of a block selected from Vb and Ve (FIG. 6A).
If both blocks in the potential candidate specify a List X motion vector, the video coder
includes the potential candidate as a candidate in candidate list 1100. The video coder
stops adding candidates after candidate list 1100 includes two candidates.

[0164] After checking all of the potential candidates, if there are still fewer than 2
candidates in candidate list 1100, the video coder may add a first AMVP-derived
candidate 1102 to candidate list 1100. The first AMVP-derived candidate 1102
specifies a first AMVP-derived motion vector predictor 1104 and a second AMVP-
derived motion vector predictor 1106. The first AMVP-derived motion vector predictor
1104 is a motion vector predictor for a first control point of the current block. The
second AMVP-derived motion vector predictor 1106 is a motion vector predictor for a
second control point of the current block. The video coder derives the first AMVP-

derived motion vector predictor 1104 in the same manner that the video coder uses to

WO 2018/067823 PCT/US2017/055350
44

derive a first motion vector candidate in AMVP. This disclosure describes a technique
for deriving motion vector candidates in AMVP above. The second AMVP-derived
motion vector predictor 1106 is equal to the first AMVP-derived motion vector
predictor 1104 plus a first offset (i.e., Offseto) to at least one of a horizontal or a vertical
component of the first AMVP-derived motion vector predictor 1104.

[0165] If there are still less than 2 candidates in candidate list 1100 after adding the first
AMYVP-derived candidate 1102 to candidate list 1100, the video coder adds a second
AMVP-derived candidate 1108 to candidate list 1100. The second AMVP-derived
motion candidate 1108 specifies a third AMVP-derived motion vector predictor 1110
and a fourth AMVP-derived motion vector predictor 1112. The video coder derives the
third AMVP-derived motion vector predictor 1110 in the same manner that the video
coder uses to derive a second motion vector candidate in AMVP. The fourth AMVP-
derived motion vector predictor 1112 is the same as the third AMVP-derived motion
vector 1110, except the video coder adds a second offset (i.e., Offset:) to at least one of
a horizontal or a vertical component of the third AMVP-derived motion vector predictor
1110. If there are 2 candidates in candidate list 1100 after adding the first AMVP-
derived candidate 1102 to candidate list 1100, the video coder does not add the second
AMVP-derived candidate 1108 to candidate list 1100. If the current block is bi-
directionally predicted, the video coder may repeat the process described above for
generating candidate list 1100 with respect to List Y motion vectors, where Y is equal to
1-X.

[0166] The example of FIG. 11B shows a similar process, except using a 6-parameter
affine motion model. Thus, to generate candidate list 1120, the video coder checks
potential candidates. Each of the potential candidates is a combination of List X motion
vector of a block selected from blocks Va, Vs and V¢ (FIG. 8A), a List X motion vector
of a block selected from Vp and Ve (FIG. 8A), and a List X motion vector of a block
selected from Vr and Vg (FIG. 8A). After checking each of the combinations, if there
are still less than 2 candidates in candidate list 1120, the video coder may add a first
AMVP-derived candidate 1122 to candidate list 1120. The first AMVP-derived
candidate 1122 specifies a first AMVP-derived motion vector predictor 1124 (denoted
AMVPo in FIG. 11B), a second AMVP-derived motion vector predictor 1126, and a
third AMVP-derived motion vector predictor 1128. The first AMVP-derived motion
vector predictor 1124 is a motion vector predictor for a first control point of the current

block, the second AMVP-derived motion vector predictor 1126 is a motion vector

WO 2018/067823 PCT/US2017/055350
45

predictor for a second control point of the current block, and the third AMVP-derived
motion vector predictor 1128 is a motion vector predictor for a third control point of the
current block. The video coder derives the first AMVP-derived motion vector predictor
1124 in the same manner that the video coder uses to derive a first motion vector
candidate in AMVP. The second AMVP-derived motion vector predictor 1128 is equal
to the first AMVP-derived motion vector predictor 1126. The third AMVP-derived
motion vector predictor 1128 is equal to the first AMVP-derived motion vector
predictor plus a first offset (i.e., Offseto) to at least one of a horizontal or a vertical
component of the first AMVP-derived motion vector 1124,

[0167] If there are still less than 2 candidates in candidate list 1120 after adding the first
AMYVP-derived candidate 1122 to candidate list 1120, the video coder adds a second
AMVP-derived candidate 1130 to candidate list 1120. The second AMVP-derived
motion candidate 1130 specifies a fourth AMVP-derived motion vector predictor 1132
(denoted AMVP1 in FIG. 11B), a fifth AMVP-derived motion vector predictor 1134,
and a sixth AMVP-derived motion vector predictor 1136. The video coder derives the
fourth AMVP-derived motion vector predictor 1132 in the same manner that the video
coder uses to derive a second motion vector candidate in AMVP. The fifth AMVP-
derived motion vector predictor 1134 is the same as the fourth AMVP-derived motion
vector 1132. The sixth AMVP-derived motion vector predictor 1136 is equal to the
third AMVP-derived motion vector predictor 1132 plus a second offset (i.e., Offset1) to
at least one of a horizontal or a vertical component of the third AMVP-derived motion
vector predictor 1132. If there are 2 candidates in candidate list 1120 after adding the
first AMVP-derived candidate 1122 to candidate list 1120, the video coder does not add
the second AMVP-derived candidate 1130 to candidate list 1120. If the current block is
bi-directionally predicted, the video coder may repeat the process described above for
generating candidate list 1120 with respect to List Y, where Y is equal to 1-X.

[0168] In some examples, motion vector prediction from the blocks other than the
neighboring blocks used for MVP derivation in HEVC may be added to the candidate
list. In some examples, a video coder updates a global MVP for affine motion on-the-
fly and the video coder uses the global MVP for affine motion when the size of the
candidate list is smaller than 2. For instance, a video coder may construct a global
affine motion model using the available affine blocks and may update the global affine

motion model whenever the video coder reconstructs an affine block. The video coder

WO 2018/067823 PCT/US2017/055350
46

may then use this global affine motion model to generate a global MVP for the
following affine blocks.

[0169] In HEVC and JEM3.0, a flag in the slice header, mvd 11 zero flag, indicates
whether the MVD for the second reference picture list (e.g., List1) is equal to zero and
therefore not signaled in the bitstream to further improve the coding efficiency. In other
words, a single flag in a slice header of a slice may indicate that all List] MVDs for all
blocks of the slice are equal to 0. Using this flag may increase coding efficiency by
eliminating the need to separately signal List] MVDs equal to 0 for each AMVP or

AF _INTRA coded block of the slice.

[0170] However, in accordance with a technique of this disclosure, mvd 11 zero flag
may be applicable to certain coding modes and for other modes, this flag is ignored
even if the flag indicates the MVD is equal to zero. In one example, this zero MVD
design is disabled for affine motion mode but this zero MVD design is still kept for the
conventional inter mode (AMVP mode). In other words, even if the mvd 11 zero flag
of a slice indicates that all List] MVDs in the slice are equal to 0, video encoder 20 may
still signal List] MVDs for blocks of the slice that are encoded using an affine motion
mode. By still being able to signal List] MVDs for blocks that are encoded using an
affine motion mode despite mvd 11 zero flag indicating List] MVDs are equal to O,
video encoder 20 may be able to avoid signaling List] MVDs for blocks that are not
encoded using the affine motion mode while still being able to signal List] MVDs for
blocks that are encoded using the affine motion mode. This may result in increased
coding efficiency. This disclosure describes example operations in accordance with this
example technique below with reference to FIG. 19A and FIG. 19B.

[0171] FIG. 12 is a block diagram illustrating an example video encoder 20 that may
implement the techniques of this disclosure. FIG. 12 is provided for purposes of
explanation and should not be considered limiting of the techniques as broadly
exemplified and described in this disclosure. The techniques of this disclosure may be
applicable to various coding standards or methods.

[0172] In the example of FIG. 12, video encoder 20 includes a prediction processing
unit 1200, video data memory 1201, a residual generation unit 1202, a transform
processing unit 1204, a quantization unit 1206, an inverse quantization unit 1208, an
inverse transform processing unit 1210, a reconstruction unit 1212, a filter unit 1214, a
decoded picture buffer 1216, and an entropy encoding unit 1218. Prediction processing

unit 1200 includes an inter-prediction processing unit 1220 and an intra-prediction

WO 2018/067823 PCT/US2017/055350
47

processing unit 1222. Inter-prediction processing unit 1220 may include a motion
estimation unit and a motion compensation unit (not shown).

[0173] Video data memory 1201 may be configured to store video data to be encoded
by the components of video encoder 20. The video data stored in video data memory
1201 may be obtained, for example, from video source 18. Decoded picture buffer 1216
may be a reference picture memory that stores reference video data for use in encoding
video data by video encoder 20, e.g., in intra- or inter-coding modes. Video data
memory 1201 and decoded picture buffer 1216 may be formed by any of a variety of
memory devices, such as dynamic random access memory (DRAM), including
synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM), resistive RAM
(RRAM), or other types of memory devices. Video data memory 1201 and decoded
picture buffer 1216 may be provided by the same memory device or separate memory
devices. In various examples, video data memory 1201 may be on-chip with other
components of video encoder 20, or off-chip relative to those components. Video data
memory 1201 may be the same as or part of storage media 19 of FIG. 1.

[0174] Video encoder 20 receives video data. Video encoder 20 may encode each CTU
in a slice of a picture of the video data. Each of the CTUs may be associated with
equally-sized luma coding tree blocks (CTBs) and corresponding CTBs of the picture.
As part of encoding a CTU, prediction processing unit 1200 may perform partitioning to
divide the CTBs of the CTU into progressively-smaller blocks. The smaller blocks may
be coding blocks of CUs. For example, prediction processing unit 1200 may partition a
CTB associated with a CTU according to a tree structure.

[0175] Video encoder 20 may encode CUs of a CTU to generate encoded
representations of the CUs (i.e., coded CUs). As part of encoding a CU, prediction
processing unit 1200 may partition the coding blocks associated with the CU among one
or more PUs of the CU. Thus, each PU may be associated with a luma prediction block
and corresponding chroma prediction blocks. Video encoder 20 and video decoder 30
may support PUs having various sizes. As indicated above, the size of a CU may refer
to the size of the luma coding block of the CU and the size of a PU may refer to the size
of a luma prediction block of the PU. Assuming that the size of a particular CU is
2Nx2N, video encoder 20 and video decoder 30 may support PU sizes of 2Nx2N or
NxN for intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, NxN, or

similar for inter prediction. Video encoder 20 and video decoder 30 may also support

WO 2018/067823 PCT/US2017/055350
48

asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nL.x2N, and nRx2N for inter
prediction.

[0176] Inter-prediction processing unit 1220 may generate predictive data for a PU. As
part of generating the predictive data for a PU, inter-prediction processing unit 1220
performs inter prediction on the PU. The predictive data for the PU may include
predictive blocks of the PU and motion information for the PU. Inter-prediction
processing unit 1220 may perform different operations for a PU of a CU depending on
whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs are intra
predicted. Hence, if the PU is in an I slice, inter-prediction processing unit 1220 does
not perform inter prediction on the PU. Thus, for blocks encoded in I-mode, the
predicted block is formed using spatial prediction from previously-encoded neighboring
blocks within the same frame. If a PU is in a P slice, inter-prediction processing unit
1220 may use uni-directional inter prediction to generate a predictive block of the PU.
If a PU is in a B slice, inter-prediction processing unit 1220 may use uni-directional or
bi-directional inter prediction to generate a predictive block of the PU.

[0177] Inter-prediction processing unit 1220 may apply the techniques for affine motion
models as described elsewhere in this disclosure. For example, inter-prediction
processing unit 1220 may select a source aftine block, where the source affine block
being an affine-coded block that spatially neighbors a current block. In this example,
inter-prediction processing unit 1220 may extrapolate motion vectors of control points
of the source affine block to determine motion vector predictors for control points of the
current block. Furthermore, in this example, inter-prediction processing unit 1220 may
insert, into an affine MVP set candidate list, an affine MVP set that includes the motion
vector predictors for the control points of the current block. In this example, inter-
prediction processing unit 1220 may select an affine MVP set in the affine MVP set
candidate list. Additionally, in this example, inter-prediction processing unit 1220 may
signal, in a bitstream, MVDs that indicate differences between motion vectors of the
control points of the current block and motion vector predictors in the selected affine
MVP set. Inter-prediction processing unit 1220 may also signal, in the bitstream, an
index indicating a position in the affine MVP set candidate list of the selected affine
MVP set.

[0178] Intra-prediction processing unit 1222 may generate predictive data for a PU by
performing intra prediction on the PU. The predictive data for the PU may include

WO 2018/067823 PCT/US2017/055350
49

predictive blocks of the PU and various syntax elements. Intra-prediction processing
unit 1222 may perform intra prediction on PUs in I slices, P slices, and B slices.

[0179] To perform intra prediction on a PU, intra-prediction processing unit 1222 may
use multiple intra prediction modes to generate multiple sets of predictive data for the
PU. Intra-prediction processing unit 1222 may use samples from sample blocks of
neighboring PUs to generate a predictive block for a PU. The neighboring PUs may be
above, above and to the right, above and to the left, or to the left of the PU, assuming a
left-to-right, top-to-bottom encoding order for PUs, CUs, and CTUs. Intra-prediction
processing unit 1222 may use various numbers of intra prediction modes, e.g., 33
directional intra prediction modes. In some examples, the number of intra prediction
modes may depend on the size of the region associated with the PU.

[0180] Prediction processing unit 1200 may select the predictive data for PUs of a CU
from among the predictive data generated by inter-prediction processing unit 1220 for
the PUs or the predictive data generated by intra-prediction processing unit 1222 for the
PUs. In some examples, prediction processing unit 1200 selects the predictive data for
the PUs of the CU based on rate/distortion metrics of the sets of predictive data. The
predictive blocks of the selected predictive data may be referred to herein as the selected
predictive blocks.

[0181] Residual generation unit 1202 may generate, based on the coding blocks (e.g.,
luma, Cb and Cr coding blocks) for a CU and the selected predictive blocks (e.g.,
predictive luma, Cb and Cr blocks) for the PUs of the CU, residual blocks (e.g., luma,
Cb and Cr residual blocks) for the CU. For instance, residual generation unit 1202 may
generate the residual blocks of the CU such that each sample in the residual blocks has a
value equal to a difference between a sample in a coding block of the CU and a
corresponding sample in a corresponding selected predictive block of a PU of the CU.
[0182] Transform processing unit 1204 may perform partition the residual blocks of a
CU into transform blocks of TUs of the CU. For instance, transform processing unit
1204 may perform quad-tree partitioning to partition the residual blocks of the CU into
transform blocks of TUs of the CU. Thus, a TU may be associated with a luma
transform block and two chroma transform blocks. The sizes and positions of the luma
and chroma transform blocks of TUs of a CU may or may not be based on the sizes and
positions of prediction blocks of the PUs of the CU. A quad-tree structure known as a
“residual quad-tree” (RQT) may include nodes associated with each of the regions. The

TUs of a CU may correspond to leaf nodes of the RQT.

WO 2018/067823 PCT/US2017/055350
50

[0183] Transform processing unit 1204 may generate transform coefficient blocks for
each TU of a CU by applying one or more transforms to the transform blocks of the TU.
Transform processing unit 1204 may apply various transforms to a transform block
associated with a TU. For example, transform processing unit 1204 may apply a
discrete cosine transform (DCT), a directional transform, or a conceptually-similar
transform to a transform block. In some examples, transform processing unit 1204 does
not apply transforms to a transform block. In such examples, the transform block may
be treated as a transform coefticient block.

[0184] Quantization unit 1206 may quantize the transform coefficients in a coefficient
block. The quantization process may reduce the bit depth associated with some or all of
the transform coefficients. For example, an n-bit transform coefficient may be rounded
down to an m-bit transform coefficient during quantization, where » is greater than m.
Quantization unit 1206 may quantize a coefficient block associated with a TU of a CU
based on a quantization parameter (QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the coefticient blocks associated
with a CU by adjusting the QP value associated with the CU. Quantization may
introduce loss of information. Thus, quantized transform coefficients may have lower
precision than the original ones.

[0185] Inverse quantization unit 1208 and inverse transform processing unit 1210 may
apply inverse quantization and inverse transforms to a coefficient block, respectively, to
reconstruct a residual block from the coefficient block. Reconstruction unit 1212 may
add the reconstructed residual block to corresponding samples from one or more
predictive blocks generated by prediction processing unit 1200 to produce a
reconstructed transform block associated with a TU. By reconstructing transform
blocks for each TU of a CU in this way, video encoder 20 may reconstruct the coding
blocks of the CU.

[0186] Filter unit 1214 may perform one or more deblocking operations to reduce
blocking artifacts in the coding blocks associated with a CU. Decoded picture buffer
1216 may store the reconstructed coding blocks after filter unit 1214 performs the one
or more deblocking operations on the reconstructed coding blocks. Inter-prediction
processing unit 1220 may use a reference picture that contains the reconstructed coding
blocks to perform inter prediction on PUs of other pictures. In addition, intra-prediction
processing unit 1222 may use reconstructed coding blocks in decoded picture buffer

1216 to perform intra prediction on other PUs in the same picture as the CU.

WO 2018/067823 PCT/US2017/055350
51

[0187] Entropy encoding unit 1218 may receive data from other functional components
of video encoder 20. For example, entropy encoding unit 1218 may receive coefficient
blocks from quantization unit 1206 and may receive syntax elements from prediction
processing unit 1200. Entropy encoding unit 1218 may perform one or more entropy
encoding operations on the data to generate entropy-encoded data. For example,
entropy encoding unit 1218 may perform a CABAC operation, a context-adaptive
variable length coding (CAVLC) operation, a variable-to-variable (V2V) length coding
operation, a syntax-based context-adaptive binary arithmetic coding (SBAC) operation,
a Probability Interval Partitioning Entropy (PIPE) coding operation, an Exponential-
Golomb encoding operation, or another type of entropy encoding operation on the data.
Video encoder 20 may output a bitstream that includes entropy-encoded data generated
by entropy encoding unit 1218. For instance, the bitstream may include data that
represents values of transform coefficients for a CU.

[0188] FIG. 13 is a block diagram illustrating an example video decoder 30 that is
configured to implement the techniques of this disclosure. FIG. 13 is provided for
purposes of explanation and is not limiting on the techniques as broadly exemplified
and described in this disclosure. For purposes of explanation, this disclosure describes
video decoder 30 in the context of HEVC coding. However, the techniques of this
disclosure may be applicable to other coding standards or methods.

[0189] In the example of FIG. 13, video decoder 30 includes an entropy decoding unit
1300, video data memory 1301, a prediction processing unit 1302, an inverse
quantization unit 1304, an inverse transform processing unit 1306, a reconstruction unit
1308, a filter unit 1310, and a decoded picture buffer 1312. Prediction processing unit
1302 includes a motion compensation unit 1314 and an intra-prediction processing unit
1316. In other examples, video decoder 30 may include more, fewer, or different
functional components.

[0190] Video data memory 1301 may store encoded video data, such as an encoded
video bitstream, to be decoded by the components of video decoder 30. The video data
stored in video data memory 1301 may be obtained, for example, from computer-
readable medium 16, e.g., from a local video source, such as a camera, via wired or
wireless network communication of video data, or by accessing physical data storage
media. Video data memory 1301 may form a coded picture buffer (CPB) that stores
encoded video data from an encoded video bitstream. Decoded picture buffer 1312 may

be a reference picture memory that stores reference video data for use in decoding video

WO 2018/067823 PCT/US2017/055350
52

data by video decoder 30, e.g., in intra- or inter-coding modes, or for output. Video data
memory 1301 and decoded picture buffer 1312 may be formed by any of a variety of
memory devices, such as dynamic random access memory (DRAM), including
synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM), resistive RAM
(RRAM), or other types of memory devices. Video data memory 1301 and decoded
picture buffer 1312 may be provided by the same memory device or separate memory
devices. In various examples, video data memory 1301 may be on-chip with other
components of video decoder 30, or off-chip relative to those components. Video data
memory 1301 may be the same as or part of storage media 28 of FIG. 1.

[0191] Video data memory 1301 receives and stores encoded video data (e.g., NAL
units) of a bitstream. Entropy decoding unit 1300 may receive encoded video data (e.g.,
NAL units) from video data memory 1301 and may parse the NAL units to obtain
syntax elements. Entropy decoding unit 1300 may entropy decode entropy-encoded
syntax elements in the NAL units. Prediction processing unit 1302, inverse quantization
unit 1304, inverse transform processing unit 1306, reconstruction unit 1308, and filter
unit 1310 may generate decoded video data based on the syntax elements extracted from
the bitstream. Entropy decoding unit 1300 may perform a process generally reciprocal
to that of entropy encoding unit 1218.

[0192] In addition to obtaining syntax elements from the bitstream, video decoder 30
may perform a reconstruction operation on a CU. To perform the reconstruction
operation on a CU, video decoder 30 may perform a reconstruction operation on each
TU of the CU. By performing the reconstruction operation for each TU of the CU,
video decoder 30 may reconstruct residual blocks of the CU.

[0193] As part of performing a reconstruction operation on a TU of a CU, inverse
quantization unit 1304 may inverse quantize, i.e., de-quantize, coefficient blocks
associated with the TU. After inverse quantization unit 1304 inverse quantizes a
coefficient block, inverse transform processing unit 1306 may apply one or more
inverse transforms to the coefficient block in order to generate a residual block
associated with the TU. For example, inverse transform processing unit 1306 may
apply an inverse DCT, an inverse integer transform, an inverse Karhunen-Loeve
transform (KLT), an inverse rotational transform, an inverse directional transform, or
another inverse transform to the coefficient block.

[0194] Inverse quantization unit 1304 may perform particular techniques of this

disclosure. For example, for at least one respective quantization group of a plurality of

WO 2018/067823 PCT/US2017/055350
53

quantization groups within a CTB of a CTU of a picture of the video data, inverse
quantization unit 1304 may derive, based at least in part on local quantization
information signaled in the bitstream, a respective quantization parameter for the
respective quantization group. Additionally, in this example, inverse quantization unit
1304 may inverse quantize, based on the respective quantization parameter for the
respective quantization group, at least one transform coefficient of a transform block of
a TU of a CU of the CTU. In this example, the respective quantization group is defined
as a group of successive, in coding order, CUs or coding blocks so that boundaries of
the respective quantization group must be boundaries of the CUs or coding blocks and a
size of the respective quantization group is greater than or equal to a threshold. Video
decoder 30 (e.g., inverse transform processing unit 1306, reconstruction unit 1308, and
filter unit 1310) may reconstruct, based on inverse quantized transform coefficients of
the transform block, a coding block of the CU.

[0195] If a PU is encoded using intra prediction, intra-prediction processing unit 1316
may perform intra prediction to generate predictive blocks of the PU. Intra-prediction
processing unit 1316 may use an intra prediction mode to generate the predictive blocks
of the PU based on samples spatially-neighboring blocks. Intra-prediction processing
unit 1316 may determine the intra prediction mode for the PU based on one or more
syntax elements obtained from the bitstream.

[0196] If a PU is encoded using inter prediction, motion compensation unit 1314 may
determine motion information for the PU. Motion compensation unit 1314 may
determine, based on the motion information of the PU, one or more reference blocks.
Motion compensation unit 1314 may generate, based on the one or more reference
blocks, predictive blocks (e.g., predictive luma, Cb and Cr blocks) for the PU.

[0197] Motion compensation unit 1314 may apply the techniques for affine motion
models as described elsewhere in this disclosure. For example, motion compensation
unit 1314 may select a source affine block, where the source affine block is an affine-
coded block that spatially neighbors a current block. In this example, motion
compensation unit 1314 may extrapolate motion vectors of control points of the source
affine block to determine motion vector predictors for control points of the current
block. In this example, motion compensation unit 1314 inserts, into an affine MVP set
candidate list, an affine MVP set that includes the motion vector predictors for the
control points of the current block. Furthermore, motion compensation unit 1314

determines, based on an index signaled in a bitstream, a selected affine MVP set in the

WO 2018/067823 PCT/US2017/055350
54

affine MVP set candidate list. In this example, entropy decoding unit 1300 may obtain,
from the bitstream, MVDs that indicate differences between motion vectors of the
control points of the current block and motion vector predictors in the selected affine
MVP set. Motion compensation unit 1314 may, in this example, determine, based on
the motion vector predictors included in the selected affine MVP set and the MVDs,
motion vectors of the control points of the current block. In this example, motion
compensation unit 1314 may generate, based on the motion vectors of the control points
of the current block, a predictive block.

[0198] Reconstruction unit 1308 may use transform blocks (e.g., luma, Cb and Cr
transform blocks) for TUs of a CU and the predictive blocks (e.g., luma, Cb and Cr
blocks) of the PUs of the CU, i.e., either intra-prediction data or inter-prediction data, as
applicable, to reconstruct the coding blocks (e.g., luma, Cb and Cr coding blocks) for
the CU. For example, reconstruction unit 1308 may add samples of the transform
blocks (e.g., luma, Cb and Cr transform blocks) to corresponding samples of the
predictive blocks (e.g., luma, Cb and Cr predictive blocks) to reconstruct the coding
blocks (e.g., luma, Cb and Cr coding blocks) of the CU.

[0199] Filter unit 1310 may perform a deblocking operation to reduce blocking artifacts
associated with the coding blocks of the CU. Video decoder 30 may store the coding
blocks of the CU in decoded picture bufter 1312. Decoded picture buffer 1312 may
provide reference pictures for subsequent motion compensation, intra prediction, and
presentation on a display device, such as display device 32 of FIG. 1. For instance,
video decoder 30 may perform, based on the blocks in decoded picture buffer 1312,
intra prediction or inter prediction operations for PUs of other CUs.

[0200] FIG. 14A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure. The flowcharts of this
disclosure are provided as examples. Other examples in accordance with techniques of
this disclosure may include more, fewer, or different actions, or actions may be
performed in different orders.

[0201] As described above, in accordance with one or more techniques of this
disclosure, an affine motion model for one inter prediction direction may be used to
improve the signaling of an affine motion model for another inter prediction direction.
FIG. 14A and FIG. 14B show example operations in accordance with such techniques.
[0202] In the example of FIG. 14A, video encoder 20 determines, based on a first

motion vector of a control point of an affine motion model of a current block of the

WO 2018/067823 PCT/US2017/055350
55

video data, a second motion vector of the control point of the affine motion model of the
current block (1400). The first motion vector corresponds to List X (where X is 0 or 1)
and the second motion vector corresponds to List Y (where Y is 1-X). In one example
for determining the second motion vector of the control point, video encoder 20 first
determines the List X motion vector of the control point. Video encoder 20 may
determine the List X motion vector of the control point in accordance with any of the
examples provided in this disclosure. Furthermore, video encoder 20 may perform a
search to determine a List Y motion vector for the control point that provides a best
rate-distortion cost given the List X motion vector for the control point. In this
example, video encoder 20 may signal a motion vector difference indicating a difference
between the List X motion vector for the control point and the List Y motion vector for
the control point.

[0203] In addition, video encoder 20 generates, based on the affine motion model of the
current block, a predictive block (1402). Video encoder 20 may generate the predictive
block in accordance with the examples provided elsewhere in this description. For
example, video encoder 20 may use the List X and List Y motion vector of the control
points of the affine motion model of the current block to determine List X and List Y
motion vectors for sub-blocks of the current block, and may then apply motion
compensation interpolation filters to generate predictive blocks for each of the sub-
blocks, thereby generating the predictive block for the current block.

[0204] In the example of FIG. 14A, video encoder 20 also generates data used for
decoding the current block based on the predictive block (1404). Video encoder 20 may
generate the data used for decoding the current block in accordance with any of the
examples provided elsewhere in this disclosure. For example, video encoder 20 may
generate residual data, apply a transform to the residual data, quantize the transformed
residual data, and apply entropy encoding to syntax elements representing the quantized
transformed residual data, as described elsewhere in this disclosure.

[0205] FIG. 14B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure. In the example of FIG. 14B,
video decoder 30 determines, based on a first motion vector of a control point of an
affine motion model of a current block of the video data, a second motion vector of the
control point of the affine motion model of the current block (1420). The first motion
vector corresponds to a first reference picture list (i.e., List X, where X is 0 or 1). The

second motion vector corresponds to a second, different reference picture list (i.e., List

WO 2018/067823 PCT/US2017/055350
56

Y, where Y is equal to 1-X). In this example, video decoder 30 may determine the List
X motion vector for the control point in accordance with other examples provided in
this disclosure. Furthermore, in this example, to determine the List Y motion vector for
the control point, video decoder 30 may obtain, from the bitstream, a motion vector
difference that indicates a difference between the List X motion vector for the control
point and the List Y motion vector for the control point. In this example, video decoder
30 may add the motion vector difference to the List X motion vector of the control point
to determine the List Y motion vector for the control point.

[0206] Additionally, video decoder 30 generates, based on the affine motion model of
the current block, a predictive block (1422). Video decoder 30 may generate the
predictive block in the same manner as video encoder 20 in FIG. 14A. Video decoder
30 may reconstruct the current block based on residual data and the predictive block
(1424). For example, video decoder 30 may reconstruct the current block at least in part
by adding samples of the residual data to corresponding samples of the predictive block.
[0207] FIG. 15A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure. As discussed above, in
accordance with some techniques of this disclosure, the MVs of control points of a
current block may be used as the MVP candidate for the MVs of other control points of
the current block. FIG. 15A and FIG. 15B show example operations in accordance with
these techniques.

[0208] In the example of FIG. 15A, video encoder 20 determines, based on a motion
vector of a first control point of an affine motion model of a current block of the video
data, a motion vector of a second control point of the affine motion model of the current
block (1500). For example, video encoder 20 may include the motion vector of the first
control point (e.g., a top-left control point) of the affine motion model of the current
block as a candidate in a candidate list used for prediction of the motion vector of the
second control point (e.g., a top-right control point) of the affine motion model of the
current block. Other candidates in the candidate list may include motion vectors of
corresponding control points (e.g., top-left control points) of neighboring aftine-coded
blocks. In this example, video encoder 20 may then select a candidate from the
candidate list (e.g., based on rate-distortion cost). Furthermore, in this example, video
encoder 20 may then use the motion vector of the selected candidate as the motion

vector predictor for the second control point. In some examples, video encoder 20

WO 2018/067823 PCT/US2017/055350
57

signals an MVD indicating a difference between the motion vector of the selected
candidate and the motion vector predictor for the second control point.

[0209] Furthermore, video encoder 20 generates, based on the affine motion model of
the current block, a predictive block (1502). Additionally, video encoder 20 generates
data used for decoding the current block based on the predictive block (1504). Video
encoder 20 may generate the predictive block and generate the data used for decoding
the current block in accordance with examples provided elsewhere in this disclosure.
[0210] FIG. 15B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure. In the example of FIG. 15B,
video decoder 30 determines, based on a motion vector of a first control point of an
affine motion model of a current block of the video data, a motion vector of a second
control point of the affine motion model of the current block (1520). Video decoder 30
may determine the motion vector of the second control point of the affine motion model
of the current block in the same manner as described above with respect to video
encoder 20 in FIG. 15A. To determine the motion vector of the second control point,
video decoder 30 may obtain from a bitstream an index indicating a selected candidate
in a candidate list. The candidate list may include motion vectors of control points,
including a motion vector of the first control point of the current block. In some
examples, video decoder 30 may determine the motion vector of the second control
point by adding a signaled MVD to the motion vector of the selected candidate.

[0211] Additionally, video decoder 30 generates, based on the affine motion model of
the current block, a predictive block (1522). Video decoder 30 reconstructs the block
based on the predictive block (1524). Video decoder 30 may generate the predictive
block and reconstruct the block in accordance with examples provided elsewhere in this
disclosure. For instance, video decoder 30 may reconstruct the block based on the
predictive block and decoded residual data.

[0212] FIG. 16A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure. As discussed above, in
accordance with some techniques of this disclosure, a video coder may use motion
models of one or more neighboring affine blocks of a current block to predict a current
affine motion model. In the example of FIG. 16A, video encoder 20 uses a motion
model of a single neighboring aftine block to predict at least two control points of an
affine motion model for a current block (1600). In addition, video encoder 20

generates, based on the affine motion model of the current block, a predictive block

WO 2018/067823 PCT/US2017/055350
58

(1602). Video encoder 20 then generates data used for decoding the current block based
on the predictive block (1604). Video encoder 20 may generate the data in accordance
with examples provided elsewhere in this disclosure.

[0213] FIG. 16B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure. In the example of FIG. 16B,
video decoder 30 uses a motion model of a single neighboring affine block to predict an
affine motion model for a current block (1620). Furthermore, video decoder 30
generates, based on the affine motion model of the current block, a predictive block
(1622). Video decoder 30 may then reconstruct the current block based on the
predictive block (1624). Video decoder 30 may generate the predictive block and
reconstruct the current block in accordance with any of the examples provided
elsewhere in this disclosure.

[0214] FIG. 17 is a flowchart illustrating an example operation for encoding video data,
in accordance with a technique of this disclosure. FIG. 17 and FIG. 18 are more
detailed flowcharts for the operations outlined in FIG. 16A and FIG. 16B. In the
example of FIG. 17, video encoder 20 selects a source affine block (1700). The source
affine block is an affine-coded block that spatially neighbors a current block. Video
encoder 20 may select the source affine block in various ways. For example, video
encoder 20 may determine that the source affine block is a first-occurring affine-coded
block of the plurality of neighbor blocks visited in a predefined visiting order. In some
examples, video encoder 20 may determine that the source affine block is a first-
occurring available affine-coded block of the plurality of neighbor blocks according to a
plurality of predefined priority sets based on a predefined visiting order. An affine-
coded block is not considered available if the affine-coded block is not in one of the
predefined priority sets. Various examples of priority sets are described elsewhere in
this disclosure.

[0215] Additionally, video encoder 20 may extrapolate motion vectors of control points
of the source affine block to determine motion vector predictors for control points of the
current block (1702). For example, video encoder 20 may construct an affine motion
model defined by the affine parameters determined by the motion vectors of the control
points of the affine source block. Video encoder 20 may then derive the motion vectors
of the control points of the current block (or so called extrapolated) using the
constructed affine motion model. For instance, to extrapolate a motion vector of a

control point of the current block, video encoder 20 may use the motion vectors of the

WO 2018/067823 PCT/US2017/055350
59

constructed affine motion model and the (x, y) position of the control point of the
current block in equation 2 to determine a motion vector of the control point.

[0216] Furthermore, video encoder 20 may insert, into an affine MVP set candidate list,
an affine MVP set that includes the motion vector predictors for the control points of the
current block (1704). In some examples, video encoder 20 may also include a
conventional affine MVP set in the affine MVP set. For instance, in one example, video
encoder 20 may determine a first motion vector predictor as a motion vector of a block
adjacent to the first control point of the current block. In this example, video encoder
20 determines a second motion vector predictor as a motion vector of a block adjacent
to the second control point of the current block (e.g., blocks A, B, or C; or blocks D or E
of FIG. 6A). In this example, video encoder 20 inserts, into the affine MVP set
candidate list, an affine MVP set that includes the first motion vector predictor and the
second motion vector predictor.

[0217] In some examples, video encoder 20 selects a second source affine block. The
second source affine block is a different affine-coded block that spatially neighbors the
current block. In this example, video encoder 20 extrapolates motion vectors of control
points of the second source affine block to determine second motion vector predictors
for the control points of the current block. Furthermore, video encoder 20 inserts a
second affine MVP set into the affine MVP set candidate list. The second affine MVP
set includes the second motion vector predictors for the control points of the current
block.

[0218] Subsequently, video encoder 20 selects an affine MVP set in the affine MVP set
candidate list (1706). Video encoder 20 may select the affine MVP set based on a rate-
distortion analysis of the affine MVP sets in the affine MVP set candidate list.

[0219] Video encoder 20 may signal, in a bitstream, MVDs that indicate differences
between motion vectors of the control points of the current block and motion vector
predictors in the selected affine MVP set (1708). In addition, video encoder 20 may
signal, in the bitstream, an index indicating a position in the affine MVP set candidate
list of the selected affine MVP set (1710).

[0220] FIG. 18 is a flowchart illustrating an example operation for decoding video data,
in accordance with a technique of this disclosure. In the example of FIG. 18, video
decoder 30 selects a source affine block (1800). The source affine block is an affine-

coded block that spatially neighbors a current block. Video decoder 30 may select the

WO 2018/067823 PCT/US2017/055350
60

source affine block in the same way as video encoder 20, as described elsewhere in this
disclosure.

[0221] Additionally, video decoder 30 extrapolates motion vectors of control points of
the source affine block to determine motion vector predictors for control points of the
current block (1802). Video decoder 30 inserts, into an affine MVP set candidate list,
an affine MVP set that includes the motion vector predictors for the control points of the
current block (1804). Video decoder 30 may extrapolate the motion vectors of the
control points and insert the affine MVP set in the same way as video encoder 20, as
described elsewhere in this disclosure. Video decoder 30 may also add the additional
affine MVP sets into the affine MVP set candidate list as described above with respect
to video encoder 20.

[0222] Furthermore, video decoder 30 determines, based on an index signaled in a
bitstream, a selected affine MVP set in the affine MVP set candidate list (1806). Video
decoder 30 obtains, from the bitstream, MVDs that indicate differences between motion
vectors of the control points of the current block and motion vector predictors in the
selected affine MVP set (1808). In addition, video decoder 30 determines, based on the
motion vector predictors included in the selected affine MVP set and the MVDs, motion
vectors of the control points of the current block (1810). For example, video decoder 30
may add the MVDs to corresponding motion vector predictors to determine the motion
vectors of the control points of the current block.

[0223] Video decoder 30 may then generate, based on the motion vectors of the control
points of the current block, a predictive block (1812). Video decoder 30 may
reconstruct the current block based on residual data and the predictive block (1814).
Video decoder 30 may generate the predictive block and reconstruct the current block in
accordance with examples provided elsewhere in this disclosure.

[0224] FIG. 19A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure. As discussed above, in
accordance with some techniques of this disclosure, in affine inter mode or affine merge
mode, the affine parameters of each sub-block (e.g. 4x4 block) of a current block can be
predicted or directly inherited from the sub-block’s own neighbor blocks. FIG. 19A and
FIG. 19B show example operations in accordance with such techniques.

[0225] In the example of FIG. 19A, a current block of the video data is partitioned into
a plurality of sub-blocks. For each respective sub-block of the plurality of sub-blocks,

video encoder 20 uses extrapolated motion of a respective neighboring affine block to

WO 2018/067823 PCT/US2017/055350
61

predict affine motion for the respective sub-block (1900). Video encoder 20 may
extrapolate the motion of the respective neighboring affine block in the same way as
described elsewhere in this disclosure. In some examples, to use the extrapolated
motion of the respective neighboring affine block to predict the affine motion for the
respective sub-block, video encoder 20 predicts the affine motion for the respective sub-
block from the extrapolated motion of the neighboring affine block. In some instances,
the neighboring affine block is another sub-block of the current block. In some
examples, to use the extrapolated motion of the respective neighboring affine block,
video encoder 20 inherits the affine motion for each respective sub-block directly from
the extrapolated motion of the neighboring affine block. In other words, video encoder
20 sets the reference indexes and motion vectors of the control points of the respective
sub-block equal to the motion indexes and extrapolated motion vectors of the control
points of the respective neighboring affine block. For instance, as shown in FIG. 10,
sub-block 1002 may inherit the reference indexes and extrapolated motion vectors of
control points of affine block 1004,

[0226] Additionally, video encoder 20 generates, based on the affine motion for the
sub-blocks, a predictive block (1902). For example, for each respective sub-block of
the plurality of sub-blocks, video encoder 20 may use the affine motion for the
respective sub-block to generate a respective predictive sub-block for the respective
sub-block. In this example, video encoder 20 may use the atfine motion for the
respective sub-block to generate the respective predictive sub-block for the respective
sub-block in the same manner described elsewhere in this disclosure for using affine
motion to generate a predictive block. For instance, video encoder 20 may use equation
(2) to calculate the x-component and y-component of a motion vector for the respective
sub-block. Video encoder 20 may then use the motion vector for the respective sub-
block to determine a preliminary or final predictive block for the respective sub-block.
Furthermore, in this example, video encoder 20 may combine the predictive sub-blocks
to generate the predictive block for the current block.

[0227] Video encoder 20 generates data used for decoding the current block based on
the predictive block (1904). Video encoder 20 may generate the data used for decoding
the current block in accordance with any of the corresponding examples provided
elsewhere in this disclosure.

[0228] FIG. 19B is a flowchart illustrating an example operation for decoding video

data, in accordance with a technique of this disclosure. In the example of FIG. 16B, a

WO 2018/067823 PCT/US2017/055350
62

current block of the video data is partitioned into the plurality of sub-blocks. For each
respective sub-block of the plurality of sub-blocks, video decoder 30 uses extrapolated
motion of a respective neighboring affine block to predict affine motion for the
respective sub-block (1920). Video decoder 30 may predict the affine motion for the
respective sub-block in the same manner as described above with respect to video
encoder 20. In some examples, to use the extrapolated motion of the respective
neighboring affine block, video decoder 30 predicts the affine motion for each
respective sub-block from the extrapolated motion of the neighboring affine block. In
some examples, to use the extrapolated motion of the respective neighboring affine
block, video decoder 30 inherits the affine motion for each respective sub-block directly
from the extrapolated motion of the neighboring affine block.

[0229] Furthermore, video decoder 30 generates, based on the affine motion of the sub-
blocks, a predictive block (1922). Video decoder 30 may generate the predictive block
in the same manner as described above with respect to video encoder 20. Video
decoder 30 reconstructs the block based on the predictive block (1924). For example,
video decoder 30 may reconstruct the current block may adding samples of the
predictive block to corresponding residual samples decoded from a bitstream.

[0230] FIG. 20A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure. As discussed above, in
accordance with some techniques of this disclosure, offsets may be added to the MVPs
to make sure not all the MVPs within one MVP candidate set are identical. FIG. 20A
and FIG. 20B show example operations in accordance with these techniques.

[0231] Particularly, in the example of FIG. 20A, a first motion vector is a motion vector
of a first control point of an affine motion model of a current block. A second motion
vector is a motion vector of a second control point of the affine motion model of the
current block. Based on a total number of candidates in a candidate list of motion
vectors being less than 2 and the first motion vector and the second motion vector being
the same, video encoder 20 adds an offset to a motion vector predictor (2000). As
described elsewhere in this disclosure, the offset may be different for different positions
in the candidate list.

[0232] In addition, video encoder 20 includes the motion vector predictor in the
candidate list (2002). For example, video encoder 20 may include the motion vector
predictor in an array of motion vector predictors. Additionally, video encoder 20 selects

a candidate in the candidate list (2004). Video encoder 20 may select the candidate

WO 2018/067823 PCT/US2017/055350
63

such that the selected candidate results in the best rate-distortion value among the
candidates in the candidate list. Furthermore, video encoder 20 uses the selected
candidate to determine a predictive block (2006). For example, video encoder 20 may
use the motion vectors specified by the selected candidate to identify locations in a
reference picture. In this example, video encoder 20 may determine the predictive block
by applying a rotation to a copy of a block of samples at the identified locations in the
reference picture. In some examples, video encoder 20 may use the selected candidate
to determine a first preliminary predictive block, and also determine a second predictive
block (e.g., based on samples in a reference picture in a different reference picture list).
In this example, video encoder 20 may determine samples in the predictive block as
weighted averages of corresponding samples in the first preliminary predictive block
and the second preliminary predictive block.

[0233] Video encoder 20 may then generate residual data based on samples of the
current block and the predictive block (2008). For example, video encoder 20 may
generate the residual data such that each sample of the residual data indicates a
difference between corresponding samples in the current block and the predictive block.
Additionally, video encoder 20 includes, in a bitstream that comprises an encoded
representation of the video data, an indication of a selected candidate in the candidate
list (2010).

[0234] FIG. 20B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure. In the example of FIG. 18B,
based on a total number of candidates in a candidate list of motion vectors being less
than 2 and a first motion vector and a second motion vector being the same, video
decoder 30 adds an offset to a motion vector predictor (2020). In this example, the first
motion vector is a motion vector of a first control point of an affine motion model of a
current block of the video data. The second motion vector is a motion vector of a
second control point of the affine motion model of the current block.

[0235] Furthermore, in the example of FIG. 20B, video decoder 30 includes the motion
vector predictor in the candidate list (2022). Video decoder 30 may then determine a
selected candidate in the candidate list (2024). Additionally, video decoder 30 may use
the selected candidate to determine a predictive block (2026). Video decoder 30 may
then reconstruct the current block based on the predictive block (2028). In some
examples, video decoder 30 may reconstruct the current block based on the predictive

block and residual data.

WO 2018/067823 PCT/US2017/055350
64

[0236] FIG. 21A is a flowchart illustrating an example operation for encoding video
data, in accordance with a technique of this disclosure. As noted above, in accordance
with a technique of this disclosure, the mvd 11 zero flag may be applicable to certain
coding modes and for other modes, this flag is ignored even if the mvd 11 _zero flag
indicates the MVD is equal to zero. FIG. 21A and FIG. 21B show example operations
in accordance with this technique.

[0237] Specifically, in the example of FIG. 21A, video encoder 20 includes, in a
bitstream, a flag (e.g., mvd 11 zero flag) that indicates whether motion vector
differences for second reference pictures lists (e.g., list 1) are signaled in the bitstream
(2100). Based on motion of a current block of the video data being an affine motion
mode, regardless of the value of the flag, video encoder 20 includes in the bitstream a
MVD (2102). For example, video encoder 20 may include in the bitstream a syntax
element indicating a vertical component of the MVD and a second element indicating a
horizontal component of the MVD.

[0238] Furthermore, video encoder 20 generates, based on the affine motion model of
the current block, a predictive block (2104). Video encoder 20 may generate the
predictive block based on the aftfine motion model of the current block in accordance
with any of the examples provided elsewhere in this disclosure. Video encoder 20 may
then generate data used for decoding the current block based on the predictive block
(2106). For example, video encoder 20 may generate residual data, apply a transform to
the residual data, quantized the transformed residual data, and apply entropy encoding
to syntax elements representing the quantized transformed residual data, as described
elsewhere in this disclosure.

[0239] FIG. 21B is a flowchart illustrating an example operation for decoding video
data, in accordance with a technique of this disclosure. In the example of FIG. 21B,
video decoder 30 obtains, from a bitstream, a flag (e.g., mvd 11 zero flag) that
indicates whether motion vector differences for second reference pictures lists (e.g., list
1) are signaled in the bitstream (2120).

[0240] Additionally, in the example of FIG. 21B, based on motion of a current block of
the video data being an affine motion mode, regardless of the value of the flag, video
decoder 30 obtains from the bitstream a MVD (2122). In other words, video decoder 30
decodes the MVD from the bitstream. In some examples, to obtain the MVD from the
bitstream, video decoder 30 obtains from the bitstream a first syntax element indicating

a vertical component of the MVD and a second syntax element indicating a horizontal

WO 2018/067823 PCT/US2017/055350
65

component of the MVD. Video decoder 30 determines, based on the motion vector
difference, an affine motion model for the current block (2124). Additionally, video
decoder 30 generates, based on the affine motion model of the current block, a
predictive block (2126). Furthermore, video decoder 30 reconstructs the block based
the predictive block (2128). Video decoder 30 may generate the predictive block and
reconstruct the block in accordance with any of the examples provided elsewhere in this
disclosure.

[0241] Certain aspects of this disclosure have been described with respect to extensions
of the HEVC standard for purposes of illustration. However, the techniques described
in this disclosure may be useful for other video coding processes, including other
standard or proprietary video coding processes presently under development or not yet
developed.

[0242] A video coder, as described in this disclosure, may refer to a video encoder or a
video decoder. Similarly, a video coding unit may refer to a video encoder or a video
decoder. Likewise, video coding may refer to video encoding or video decoding, as
applicable. In this disclosure, the phrase “based on” may indicate based only on, based
at least in part on, or based in some way on. This disclosure may use the term “video
unit” or “video block™ or “block” to refer to one or more sample blocks and syntax
structures used to code samples of the one or more blocks of samples. Example types of
video units may include CTUs, CUs, PUs, transform units (TUs), macroblocks,
macroblock partitions, and so on. In some contexts, discussion of PUs may be
interchanged with discussion of macroblocks or macroblock partitions. Example types
of video blocks may include coding tree blocks, coding blocks, and other types of
blocks of video data.

[0243] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially.

[0244] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,

a computer-readable medium and executed by a hardware-based processing unit.

WO 2018/067823 PCT/US2017/055350
66

Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processing circuits to retrieve instructions, code
and/or data structures for implementation of the techniques described in this

disclosure. A computer program product may include a computer-readable medium.
[0245] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0246] Functionality described in this disclosure may be performed by fixed function
and/or programmable processing circuitry. For instance, instructions may be executed
by fixed function and/or programmable processing circuitry. Such processing circuitry
may include one or more processors, such as one or more digital signal processors
(DSPs), general purpose microprocessors, application specific integrated circuits
(ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or

discrete logic circuitry. Accordingly, the term “processor,” as used herein may refer to

WO 2018/067823 PCT/US2017/055350
67

any of the foregoing structure or any other structure suitable for implementation of the
techniques described herein. In addition, in some aspects, the functionality described
herein may be provided within dedicated hardware and/or software modules configured
for encoding and decoding, or incorporated in a combined codec. Also, the techniques
could be fully implemented in one or more circuits or logic elements. Processing
circuits may be coupled to other components in various ways. For example, a
processing circuit may be coupled to other components via an internal device
interconnect, a wired or wireless network connection, or another communication
medium.

[0247] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0248] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2018/067823 PCT/US2017/055350
68

WHAT IS CLAIMED IS:

1. A method of decoding video data, the method comprising:

selecting a source affine block, the source affine block being an affine-coded block that
spatially neighbors a current block;

extrapolating motion vectors of control points of the source affine block to determine
motion vector predictors for control points of the current block;

inserting, into an affine motion vector predictor (MVP) set candidate list, an affine
MVP set that includes the motion vector predictors for the control points of the
current block;

determining, based on an index signaled in a bitstream, a selected affine MVP set in the
affine MVP set candidate list;

obtaining, from the bitstream, motion vector differences (MVDs) that indicate
differences between motion vectors of the control points of the current block and
motion vector predictors in the selected affine MVP set; and

determining, based on the motion vector predictors included in the selected affine MVP
set and the MVDs, motion vectors of the control points of the current block;

generating, based on the motion vectors of the control points of the current block, a
predictive block; and

reconstructing the current block based on residual data and the predictive block.

2. The method of claim 1, wherein the control points of the current block include a
first control point and a second control point, the method further comprising:

determining a first motion vector predictor as a motion vector of a block adjacent to the
first control point of the current block;

determining a second motion vector predictor as a motion vector of a block adjacent to
the second control point of the current block; and

inserting, into the affine MVP set candidate list, an affine MVP set that includes the first

motion vector predictor and the second motion vector predictor.

3. The method of claim 1, wherein the current block is adjacent to a plurality of
neighbor blocks, and selecting the source affine block comprises:
determining that the source affine block is a first-occurring affine-coded block of the

plurality of neighbor blocks visited in a predefined visiting order.

WO 2018/067823 PCT/US2017/055350
69

4. The method of claim 1, wherein the current block is adjacent to a plurality of
neighbor blocks, and selecting the source affine block comprises:

determining that the source affine block is a first-occurring available affine-coded block
of the plurality of neighbor blocks according to a plurality of predefined priority
sets based on a predefined visiting order, wherein an affine-coded block is not
considered available if the affine-coded block is not in one of the predefined

priority sets.

5. The method of claim 4, wherein:
the plurality of predefined priority sets includes a first priority set and a second priority
set, and
the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor
block has a List X reference picture that is the same as a List X reference
picture of the current block, X being 0 or 1; and
the respective neighbor block is in the second priority set if the respective
neighbor block has a List Y reference picture that is the same as the List

X reference picture of the current block, Y being equal to 1-X.

6. The method of claim 4, wherein:
the plurality of predefined priority sets includes a first priority set and a second priority
set, and
the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor
block has a List X reference picture different from a List X reference
picture of the current block, X being 0 or 1; and
the respective neighbor block is in the second priority set if the respective
neighbor block has a List Y reference picture that is different from the

List X reference picture of the current block, Y being equal to 1-X.

WO 2018/067823 PCT/US2017/055350
70

7. The method of claim 4, wherein:

the plurality of predefined priority sets includes a first priority set and a second priority
set, and

the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor

block is coded in an affine inter mode; and

the respective neighbor block is in the second priority set if the respective

neighbor block is coded in an affine merge mode.

8. The method of claim 1, wherein the affine source block is a first affine source
block, the method further comprising:

selecting a second source affine block, the second source affine block being a different
affine-coded block that spatially neighbors the current block;

extrapolating motion vectors of control points of the second source affine block to
determine second motion vector predictors for the control points of the current
block; and

inserting a second affine MVP set into the affine MVP set candidate list, the second
affine MVP set including the second motion vector predictors for the control

points of the current block.

9. A method of encoding video data, the method comprising:

selecting a source affine block, the source affine block being an affine-coded block that
spatially neighbors a current block;

extrapolating motion vectors of control points of the source affine block to determine
motion vector predictors for control points of the current block;

inserting, into an affine motion vector predictor (MVP) set candidate list, an affine
MVP set that includes the motion vector predictors for the control points of the
current block;

selecting an affine MVP set in the affine MVP set candidate list;

signaling, in a bitstream, motion vector differences (MVDs) that indicate differences
between motion vectors of the control points of the current block and motion

vector predictors in the selected affine MVP set; and

WO 2018/067823 PCT/US2017/055350
71

signaling, in the bitstream, an index indicating a position in the affine MVP set

candidate list of the selected affine MVP set.

10. The method of claim 9, wherein the control points of the current block include a
first control point and a second control point, the method further comprising:

determining a first motion vector predictor as a motion vector of a block adjacent to the
first control point of the current block;

determining a second motion vector predictor as a motion vector of a block adjacent to
the second control point of the current block; and

inserting, into the affine MVP set candidate list, an affine MVP set that includes the first

motion vector predictor and the second motion vector predictor.

11. The method of claim 9, wherein the current block is adjacent to a plurality of
neighbor blocks, and selecting the source affine block comprises:
determining that the source affine block is a first-occurring affine-coded block of the

plurality of neighbor blocks visited in a predefined visiting order.

12. The method of claim 9, wherein the current block is adjacent to a plurality of
neighbor blocks, and selecting the source affine block comprises:

determining that the source affine block is a first-occurring available affine-coded block
of the plurality of neighbor blocks according to a plurality of predefined priority
sets based on a predefined visiting order, wherein an affine-coded block is not
considered available if the affine-coded block is not in one of the predefined

priority sets.

13. The method of claim 12, wherein:
the plurality of predefined priority sets includes a first priority set and a second priority
set, and
the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor
block has a List X reference picture that is the same as a List X reference

picture of the current block, X being 0 or 1; and

WO 2018/067823 PCT/US2017/055350
72

the respective neighbor block is in the second priority set if the respective
neighbor block has a List Y reference picture that is the same as the List

X reference picture of the current block, Y being equal to 1-X.

14. The method of claim 12, wherein:
the plurality of predefined priority sets includes a first priority set and a second priority
set, and
the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor
block has a List X reference picture different from a List X reference
picture of the current block, X being 0 or 1; and
the respective neighbor block is in the second priority set if the respective
neighbor block has a List Y reference picture that is different from the

List X reference picture of the current block, Y being equal to 1-X.

15. The method of claim 12, wherein:

the plurality of predefined priority sets includes a first priority set and a second priority
set, and

the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor

block is coded in an affine inter mode; and

the respective neighbor block is in the second priority set if the respective

neighbor block is coded in an affine merge mode.

16. The method of claim 9, wherein the affine source block is a first affine source
block, the method further comprising:

selecting a second source affine block, the second source affine block being a different
affine-coded block that spatially neighbors the current block;

extrapolating motion vectors of control points of the second source affine block to
determine second motion vector predictors for the control points of the current

block; and

WO 2018/067823 PCT/US2017/055350

73

inserting a second affine MVP set into the affine MVP set candidate list, the second

17.

affine MVP set including the second motion vector predictors for the control

points of the current block.

A device for decoding video data, the device comprising:

a memory configured to store the video data; and

one or more processing circuits configured to:

18.

select a source affine block, the source affine block being an affine-coded block
that spatially neighbors a current block;

extrapolate motion vectors of control points of the source affine block to
determine motion vector predictors for control points of the current
block;

insert, into an affine motion vector predictor (MVP) set candidate list, an affine
MVP set that includes the motion vector predictors for the control points
of the current block;

determine, based on an index signaled in a bitstream, a selected affine MVP set
in the affine MVP set candidate list;

obtain, from the bitstream, motion vector differences (MVDs) that indicate
differences between motion vectors of the control points of the current
block and motion vector predictors in the selected affine MVP set; and

determine, based on the motion vector predictors included in the selected affine
MVP set and the MVDs, motion vectors of the control points of the
current block;

generate, based on the motion vectors of the control points of the current block,
a predictive block; and

reconstruct the current block based on residual data and the predictive block.

The device of claim 17, wherein the control points of the current block include a
first control point and a second control point, the one or more processing circuits

further configured to:

determine a first motion vector predictor as a motion vector of a block adjacent to the

first control point of the current block;

determine a second motion vector predictor as a motion vector of a block adjacent to the

second control point of the current block; and

WO 2018/067823 PCT/US2017/055350

74

insert, into the affine MVP set candidate list, an affine MVP set that includes the first

19.

motion vector predictor and the second motion vector predictor.

The device of claim 17, wherein the current block is adjacent to a plurality of
neighbor blocks, and the one or more processing circuits are configured such
that, as part of selecting the source affine block, the one or more processing

circuits:

determine that the source affine block is a first-occurring affine-coded block of the

20.

plurality of neighbor blocks visited in a predefined visiting order.

The device of claim 17, wherein the current block is adjacent to a plurality of
neighbor blocks, and the one or more processing circuits are configured such
that, as part of selecting the source affine block, the one or more processing

circuits:

determine that the source affine block is a first-occurring available affine-coded block

21.

of the plurality of neighbor blocks according to a plurality of predefined priority
sets based on a predefined visiting order, wherein an affine-coded block is not
considered available if the affine-coded block is not in one of the predefined

priority sets.

The device of claim 20, wherein:

the plurality of predefined priority sets includes a first priority set and a second priority

set, and

the first priority set and the second priority set are defined such that, for each respective

neighbor block of the plurality of neighbor blocks:

the respective neighbor block is in the first priority set if the respective neighbor
block has a List X reference picture that is the same as a List X reference
picture of the current block, X being 0 or 1; and

the respective neighbor block is in the second priority set if the respective
neighbor block has a List Y reference picture that is the same as the List

X reference picture of the current block, Y being equal to 1-X.

WO 2018/067823 PCT/US2017/055350
75

22. The device of claim 20, wherein:
the plurality of predefined priority sets includes a first priority set and a second priority
set, and
the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor
block has a List X reference picture different from a List X reference
picture of the current block, X being 0 or 1; and
the respective neighbor block is in the second priority set if the respective
neighbor block has a List Y reference picture that is different from the

List X reference picture of the current block, Y being equal to 1-X.

23. The device of claim 20, wherein:

the plurality of predefined priority sets includes a first priority set and a second priority
set, and

the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor

block is coded in an affine inter mode; and

the respective neighbor block is in the second priority set if the respective

neighbor block is coded in an affine merge mode.

24. The device of claim 17, wherein the affine source block is a first affine source
block, the one or more processing circuits further configured to:

select a second source affine block, the second source affine block being a different
affine-coded block that spatially neighbors the current block;

extrapolate motion vectors of control points of the second source affine block to
determine second motion vector predictors for the control points of the current
block; and

insert a second affine MVP set into the affine MVP set candidate list, the second affine
MYVP set including the second motion vector predictors for the control points of

the current block.

WO 2018/067823 PCT/US2017/055350

25.

76

A device for encoding video data, the device comprising:

a memory configured to store the video data; and

one or more processing circuits configured to:

26.

select a source affine block, the source affine block being an affine-coded block
that spatially neighbors a current block;

extrapolate motion vectors of control points of the source affine block to
determine motion vector predictors for control points of the current
block;

insert, into an affine motion vector predictor (MVP) set candidate list, an affine
MYVP set that includes the motion vector predictors for the control points
of the current block;

select an affine MVP set in the affine MVP set candidate list;

signal, in a bitstream, motion vector differences (MVDs) that indicate
differences between motion vectors of the control points of the current
block and motion vector predictors in the selected affine MVP set; and

signal, in the bitstream, an index indicating a position in the affine MVP set

candidate list of the selected affine MVP set.

The device of claim 25, wherein the control points of the current block include a
first control point and a second control point, the one or more processing circuits

further configured to:

determine a first motion vector predictor as a motion vector of a block adjacent to the

first control point of the current block;

determine a second motion vector predictor as a motion vector of a block adjacent to the

second control point of the current block; and

insert, into the affine MVP set candidate list, an affine MVP set that includes the first

27.

motion vector predictor and the second motion vector predictor.

The device of claim 25, wherein the current block is adjacent to a plurality of
neighbor blocks, and the one or more processing circuits are configured such
that, as part of selecting the source affine block, the one or more processing

circuits:

determine that the source affine block is a first-occurring affine-coded block of the

plurality of neighbor blocks visited in a predefined visiting order.

WO 2018/067823 PCT/US2017/055350
77

28. The device of claim 25, wherein the current block is adjacent to a plurality of
neighbor blocks, and the one or more processing circuits are configured such
that, as part of selecting the source affine block, the one or more processing
circuits:

determine that the source affine block is a first-occurring available affine-coded block
of the plurality of neighbor blocks according to a plurality of predefined priority
sets based on a predefined visiting order, wherein an affine-coded block is not

considered available if the affine-coded block is not in one of the predefined

priority sets.

29. The device of claim 28, wherein:
the plurality of predefined priority sets includes a first priority set and a second priority
set, and
the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor
block has a List X reference picture that is the same as a List X reference
picture of the current block, X being 0 or 1; and
the respective neighbor block is in the second priority set if the respective
neighbor block has a List Y reference picture that is the same as the List

X reference picture of the current block, Y being equal to 1-X.

30. The device of claim 28, wherein:
the plurality of predefined priority sets includes a first priority set and a second priority
set, and
the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor
block has a List X reference picture different from a List X reference
picture of the current block, X being 0 or 1; and
the respective neighbor block is in the second priority set if the respective
neighbor block has a List Y reference picture that is different from the

List X reference picture of the current block, Y being equal to 1-X.

WO 2018/067823 PCT/US2017/055350
78

31. The device of claim 28, wherein:

the plurality of predefined priority sets includes a first priority set and a second priority
set, and

the first priority set and the second priority set are defined such that, for each respective
neighbor block of the plurality of neighbor blocks:
the respective neighbor block is in the first priority set if the respective neighbor

block is coded in an affine inter mode; and

the respective neighbor block is in the second priority set if the respective

neighbor block is coded in an affine merge mode.

32. The device of claim 25, wherein the affine source block is a first affine source
block, the one or more processing circuits further configured to:

select a second source affine block, the second source affine block being a different
affine-coded block that spatially neighbors the current block;

extrapolate motion vectors of control points of the second source affine block to
determine second motion vector predictors for the control points of the current
block; and

insert a second affine MVP set into the affine MVP set candidate list, the second affine
MYVP set including the second motion vector predictors for the control points of

the current block.

33. A device for decoding video data, the device comprising:

means for selecting a source affine block, the source affine block being an affine-coded
block that spatially neighbors a current block;

means for extrapolating motion vectors of control points of the source affine block to
determine motion vector predictors for control points of the current block;

means for inserting, into an affine motion vector predictor (MVP) set candidate list, an
affine MVP set that includes the motion vector predictors for the control points
of the current block;

means for determining, based on an index signaled in a bitstream, a selected aftine MVP

set in the affine MVP set candidate list;

WO 2018/067823 PCT/US2017/055350
79

means for obtaining, from the bitstream, motion vector differences (MVDs) that indicate
differences between motion vectors of the control points of the current block and
motion vector predictors in the selected affine MVP set;

means for determining, based on the motion vector predictors included in the selected
affine MVP set and the MVDs, motion vectors of the control points of the
current block;

means for generating, based on the motion vectors of the control points of the current
block, a predictive block; and

means for reconstructing the current block based on residual data and the predictive

block.

34. A device for encoding video data, the device comprising:

means for selecting a source affine block, the source affine block being an affine-coded
block that spatially neighbors a current block;

means for extrapolating motion vectors of control points of the source affine block to
determine motion vector predictors for control points of the current block;

means for inserting, into an affine motion vector predictor (MVP) set candidate list, an
affine MVP set that includes the motion vector predictors for the control points
of the current block;

means for selecting an affine MVP set in the affine MVP set candidate list;

means for signaling, in a bitstream, motion vector differences (MVDs) that indicate
differences between motion vectors of the control points of the current block and
motion vector predictors in the selected atffine MVP set; and

means for signaling, in the bitstream, an index indicating a position in the affine MVP

set candidate list of the selected affine MVP set.

35. A computer-readable storage medium storing instructions that, when executed,
cause one or more processing circuits of a device for video decoding to:

select a source affine block, the source affine block being an affine-coded block that
spatially neighbors a current block;

extrapolate motion vectors of control points of the source affine block to determine

motion vector predictors for control points of the current block;

WO 2018/067823 PCT/US2017/055350
80

insert, into an affine motion vector predictor (MVP) set candidate list, an affine MVP
set that includes the motion vector predictors for the control points of the current
block;

determine, based on an index signaled in a bitstream, a selected affine MVP set in the
affine MVP set candidate list;

obtain, from the bitstream, motion vector differences (MVDs) that indicate differences
between motion vectors of the control points of the current block and motion
vector predictors in the selected affine MVP set;

determine, based on the motion vector predictors included in the selected affine MVP
set and the MVDs, motion vectors of the control points of the current block;

generate, based on the motion vectors of the control points of the current block, a
predictive block; and

reconstruct the current block based on residual data and the predictive block.

36. A computer-readable storage medium storing instructions that, when executed,
cause one or more processing circuits of a device for encoding video data to:

select a source affine block, the source affine block being an affine-coded block that
spatially neighbors a current block;

extrapolate motion vectors of control points of the source affine block to determine
motion vector predictors for control points of the current block;

insert, into an affine motion vector predictor (MVP) set candidate list, an affine MVP
set that includes the motion vector predictors for the control points of the current
block;

select an affine MVP set in the affine MVP set candidate list;

signal, in a bitstream, motion vector differences (MVDs) that indicate differences
between motion vectors of the control points of the current block and motion
vector predictors in the selected affine MVP set; and

signal, in the bitstream, an index indicating a position in the affine MVP set candidate

list of the selected affine MVP set.

WO 2018/067823 PCT/US2017/055350

17121
/10
SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVICE
18 32
STORAGE MEDIA VIDEO DECODER
19 30
VIDEO
TORAGE
ENCODER STO 38 MEDIA
20 28
OUTPUT 16 INPUT
INTERFACE I R N INTERFACE
22 26

FIG. 1

WO 2018/067823 PCT/US2017/055350

2/ 21
¥ "\
A > 1|2 4 3|2
I PU, /' PU, PU, PU,
! /
| ,’
: /
| //
| /
| /
| /
| //
AW
v /
» 0 1
\J3 0

FIG. 2A FIG. 2B

PCT/US2017/055350

WO 2018/067823

3721

k433
aJnjoid 77¢

CRIESEIEY aJ4nyoid
1U34JINnd juaJ4Jnd

dAWL
0ce

A

aauelsip
[eJodwal UdIIND

eun eED enp ems

0ce

g€ Old —
8c¢
[749 aJnyoid
24no1d EBIETEIES
p=1e30]02 p21e20]02

€ce

AW P31e20][0)

L TAN

QauelsIp
|[esodwa] paled0||od

00s~"|

V¢ OId

\

\

]
4
1

NJ1

| R2lgejieaeun

WO 2018/067823 PCT/US2017/055350
4/ 21

402 404

CURRENT BLOCK
400

FIG. 4

WO 2018/067823 PCT/US2017/055350

5/21

0

502
506

AT T

FIG. 5

PCT/US2017/055350

WO 2018/067823

6/21

g9 Old

029 \

{*dAINV “dAINV} L

{°dAINY “°dAINY} 9

A S

%

pajioS ¢

rA

‘B ‘ap} DA : }

‘CA SN YAY DA {'A “N} 0
39S dAIN duiy xopul

Z=9zIS

V9 "OId

009
M09 LNIJHND

PCT/US2017/055350

WO 2018/067823

7721

a. 'Old
(vA*x)
YA
v A
n\(r A
0cZ (cA%x) (2A2x)
Y0019 LNIHHND

(04°0x)

V. Old

00Z
M09 LNIJHND

PCT/US2017/055350

WO 2018/067823

8721

a8 'Old

{*dAINV ‘*dAINY ‘‘dAINV? €l
{°dAINY “°dAINY “°dAINY?} Zl
A Ll
pajyiog ¢
{°A 9 DA ¢ Z=92IS
A 9N} A . ! .
CASAYAY DA OAAAY | o
19S dAIN duly xapul

0¢8

V8 'Old
3
A | A
‘A |9
a a | v

WO 2018/067823 PCT/US2017/055350

9/21

902 4900
index rAffine MVP set

0 |[*vi V) Vi€ {Va, Ve, Ve}

1 Vi, V, Vi€ {Vo, V
Size=2 : { .,,} i {Vb, Ve}

Sorted

3

4

5

6 \

7 {AMVP,, AMVP,}

8 {AMVP,, AMVP,}

FIG. 9

WO 2018/067823 PCT/US2017/055350
10/ 21
L
: | [
| | [
| | [
[| [
| | [
[| [
TTT T T T T T 1 | : :
| : : Affine block | .
|
| Affine block | I | |
| |
| 1004 I 1008
i B2 [~ i ™~ B1 | BO
L e __ |
TL | -1002 TR [~-1006
A1l
_________________ Current block
AQ 1000

FIG. 10

PCT/US2017/055350

WO 2018/067823

11721

gl ‘Old
9¢ll VSl A CCLL

oct1 -~ {H9sHO+'dANV “dANY ‘‘dANVYY | €}
zzLL Y {99sYO+°dANV °dANY “dANVY | ZI
azLL > m~:\> A 7431 I
€

payi0S
{oA A} DA ¢
A 9N} A . !
CASAYAY DA OAAAY | o

189S dAIN UIY xapul
ozLLY

Z=9zIS

Vil "OIld

chilsa

A 0LLL

20117 {19SHO+'dANY “"dAINV}

e
oLl 90LL” A

pajiog

{©39SHO+'dAINY “°dAINY}

oLl

{3n 90} DA
{°’A ‘8N YAY DA

{'A “A}

=N M < 0 O M~

19S dAIN dullly

ooLL””

xapul

Z=9zIS

PCT/US2017/055350

WO 2018/067823

12/ 21

¢l 'Old

NVv3dLlslig

sicl

LINN
ONIGOON3
AdO¥1NS

80cl
LINN
NOILVZILNVND
JSYUIANI

9ict
¥344ng
FANLOId
a3aood3a

9¢cl
LINN

i

ONISS3O0™d
NOILOIa3¥d

vicl
LINN {31714

-VLNI

(444}

oict
LINN
ONISS300¥d
NHO4SNVIL
JASAUIANI

.. €
SLNINITI XVLNAS

vocl

90¢|
LINN
NOILVZILNVND

LINN
ONISS3O0™d
NHO4SNVIL

c0cl

0c

LINN
ONISS300¥d
NOILOIa3dd
~d3LNI

00cl
LINN ONISS3O0¥d
NOILOIa3¥d

A

¥3AOON3 O3dIA

v1iva o3din

10Cl
AYONIN
viva o3din

PCT/US2017/055350

WO 2018/067823

€l 'Old

-

O3aiA
a3aood3a

13721

Cicl
¥344n9
FANLOId

a3aood3a

oLel
LINN
b-ENN|E]

80¢1

A

90¢l
LINN
ONISS3O0™d
NHO4SNVIL
JASAUIANI

voel
LINN
NOILVZILNVND
JASYUIANI

(113
¥3d003d O3dIA

9icl
LINN
ONISS300¥d
NOILOId3¥d
-VLNI

vicl
LINN
NOILVSN3IdINOD
NOILOW

c0cl
LINN ONISS3O0¥d
NOILOIa3dd

A

00¢l
LINN

ONIaOo23a
AdO¥1NS

q

10CL
AYON3IN
v1iva o3din

NVv3dLslig

O3dIN d3AOON3

PCT/US2017/055350

WO 2018/067823

14/ 21

avi 'Old

MO019 JAILOIdIAId
ANV V1va 1vNnais3y NO a3svd
M09 LNJHHND LONJLSNODIY

\ A4 E

vevl~ *

Y0019 JAILIId3™d NO a3asvd
M09 LNJJ™HND IHL ONIAODd3a
04 d3SN viva 31VHIANTO

Y0074 JAILOIAT™d V ‘NO01d
LN3H™{ND 40 T3AOIN NOILOW
ANI44V NO 4aSvd ‘TLVHIANTD

141 4% *

444 Rl *

Y0074 JAILOIAT™d V ‘ND019
LINIHAND 40 T3AOIN NOILOW
ANId4V NO 4asvd ‘FLVHIANTD

MO019 LNJJHND 40
T3AOIN NOILOW 3NI44V 40 LNIOd
TO™ULNOD 40 ¥OLO3A NOILOW
ANOD3S V MO019 LNIHAND 40
T3AOIN NOILOW 3NI44V 40 LNIOd
TO™ULNOD 40 ¥OLO3A NOILOW
1S¥Id NO aasvg ‘ININY3L3AA

zovL” *

174 4 Rl

MO0719 LNJJHND 40
T3AdOIN NOILOW 3NI44V 40 LNIOd
TO™ULNOD 40 ¥OLO3A NOILOW
ANOD3S V Y0019 LNIHHND 40
T3AdOIN NOILOW 3NI44V 40 LNIOd
TO™ULNOD 40 ¥OLO3A NOILOW
1S¥Id NO aasvdg ‘ININY3L3AA

ooV~

PCT/US2017/055350

WO 2018/067823

15/ 21

asl Old

MO019 JAILOIdIAId
ANV V1va 1vNnais3y NO a3svd
M09 LNJHHND LONJLSNODIY

VSl "Old

1741l *

Y0019 JAILIId3™d NO a3asvd
M09 LNJJ™HND IHL ONIAODd3a
04 d3SN viva 31VHIANTO

Y0074 JAILOIAT™d V ‘NO01d
LN3H™{ND 40 T3AOIN NOILOW
ANI44V NO 4aSvd ‘TLVHIANTD

051~ *

44| Rl *

Y0074 JAILOIAT™d V ‘ND019
LINIHAND 40 T3AOIN NOILOW
ANId4V NO 4asvd ‘FLVHIANTD

MO019 LNJJHND 40
T3AOIN NOILOW 3NI44V 40 LNIOd
TO™ULNOD ANOD3S 40 ¥OLD3IA
NOILOW V ‘M20179 LNIHHND 40
T3AOIN NOILOW 3NI44V 40 LNIOd
TO™ULNOD 1S¥I4d 40 ¥OLO3A
NOILOW NO a3svd ‘ANINY3LIA

41 [+] Rl *

174+ Rl

MO0719 LNJJHND 40
T3AdOIN NOILOW 3NI44V 40 LNIOd
TO™ULNOD ANOD3S 40 ¥OLD3IA
NOILOW V ‘Y2079 LNIYHND 40
T3AdOIN NOILOW 3NI44V 40 LNIOd
TO™ULNOD 1S¥I4d 40 ¥OLO3A
NOILOW NO a3sve ‘ANINYILIA

0051~

PCT/US2017/055350

WO 2018/067823

16 / 21

d91 'Old

MO019 JAILOIdIAId
ANV V1va 1vNnais3y NO a3svd
M09 LNJHHND LONJLSNODIY

V9l "OId

174: 1%l *

Y0019 JAILIId3™d NO a3asvd
M09 LNJJ™HND IHL ONIAODd3a
04 d3SN viva 31VHIANTO

Y0074 JAILOIAT™d V ‘NO01d
LN3H™{ND 40 T3AOIN NOILOW
ANI44V NO 4aSvd ‘TLVHIANTD

091~ *

44| Rl *

Y0074 JAILOIAT™d V ‘ND019
LINIHAND 40 T3AOIN NOILOW
ANId4V NO 4asvd ‘FLVHIANTD

M09
LINIHAND ¥O4 T3AdOIN NOILONW
ANI44V 40 SLNIOd TO¥LNOD
OML 1SV31 1V 101a3¥d
OL1 YMO0719 ANI44V ONIMOGHOIAN
J1ONIS 40 T3Ad0ON NOILOIW 3SN

209~ *

0z9L~

M09
LINIHHND ¥O4 13AON NOILONW
ANI44V 40 SLNIOd TO¥LNOD
OML 1SV31 1V 101a3¥d
OL1 YMO0719 ANI44V ONIMOGHOIAN
J1ONIS 40 T3dOI NOILOW 3SN

0091~

WO 2018/067823

FIG. 17

17121

PCT/US2017/055350

_1700

SELECT SOURCE AFFINE BLOCK

v 1702

EXTRAPOLATE MOTION VECTORS
OF CONTROL POINTS OF SOURCE
AFFINE BLOCK TO DETERMINE
MOTION VECTOR PREDICTORS
FOR CONTROL POINTS OF
CURRENT BLOCK

v _1704

INSERT, INTO AFFINE MVP SET
CANDIDATE LIST, AFFINE MVP
SET THAT INCLUDES MOTION
VECTOR PREDICTORS FOR
CONTROL POINTS OF CURRENT
BLOCK

v _1706

SELECT AFFINE MVP SET IN
AFFINE MVP SET CANDIDATE LIST

v _1708

SIGNAL, IN BITSTREAM, MVDS
THAT INDICATE DIFFERENCES
BETWEEN MOTION VECTORS OF
CONTROL POINTS OF CURRENT
BLOCK AND MOTION VECTOR
PREDICTORS IN SELECTED
AFFINE MVP SET

v _1710

SIGNAL, IN BITSTREAM, INDEX
INDICATING POSITION IN AFFINE
MVP SET CANDIDATE LIST OF
SELECTED MVP SET

WO 2018/067823

FIG. 18

18/ 21

PCT/US2017/055350

_1800

SELECT SOURCE AFFINE BLOCK

v 1802

EXTRAPOLATE MOTION VECTORS
OF CONTROL POINTS OF SOURCE
AFFINE BLOCK TO DETERMINE
MOTION VECTOR PREDICTORS
FOR CONTROL POINTS OF
CURRENT BLOCK

v 1804

INSERT, INTO AFFINE MVP SET
CANDIDATE LIST, AFFINE MVP
SET THAT INCLUDES MOTION
VECTOR PREDICTORS FOR
CONTROL POINTS OF CURRENT
BLOCK

v _1806

DETERMINE, BASED ON INDEX
SIGNALED IN BITSTREAM,
SELECTED AFFINE MVP SET IN
AFFINE MVP SET CANDIDATE LIST

v 1808

OBTAIN MVDS FROM BITSTREAM

v _1810

DETERMINE, BASED ON MOTION
VECTOR PREDICTORS IN
SELECTED AFFINE MVP SET AND
MVDS, MOTION VECTORS OF
CONTROL POINTS OF CURRENT
BLOCK

v 1812

GENERATE, BASED ON MOTION
VECTORS OF CONTROL POINTS
OF CURRENT BLOCK, A
PREDICTIVE BLOCK

v _1814

RECONSTRUCT CURRENT BLOCK
BASED ON RESIDUAL DATA AND
PREDICTIVE BLOCK

PCT/US2017/055350

WO 2018/067823

19/ 21

g6l Old

MO019 JAILOIdIAId
ANV V1va 1vNnais3y NO a3svd
M09 LNJHHND LONJLSNODIY

ve6l

Z I

Y0074 JAILOIAT™d V ‘NO01d
LN3H™{ND 40 T3AOIN NOILOW
ANI44V NO 4aSvd ‘TLVHIANTD

r44:] Rl *

SM0019-ans 40
ALINYENTd 40 ¥O019-9NS HOV3
04 NOILOIW 3NI44V LO1a3dd
OL1 YMO0719 ANI44V ONIMOGHOIAN
40 NOILOW d31Vv10dVdlX3 38N

0c61

”

V6l "OId

Y0019 JAILIId3™d NO a3asvd
M09 LNJJ™HND IHL ONIAODd3a
04 d3SN viva 31VHIANTO

061~ *

Y0074 JAILOIAT™d V ‘ND019
LINIHAND 40 T3AOIN NOILOW
ANId4V NO 4asvd ‘FLVHIANTD

c06

=)

sSM0018-ans 40
ALINYENTd 40 ¥O019-9NS HOV3
04 NOILOIW 3INI44V LO1a3dd
OL1 YMO0719 ANI44V ONIMOGHOIAN
40 NOILOW d31Vv10dVdlX3 38N

0061~

PCT/US2017/055350

WO 2018/067823

20/ 21

a0¢ Old

v0Z Oid

1817 31VvaldNVvD
NI 31VvAIINVYD d310313S 40
NOILVOIANI ‘NVIHLSLIE NI ‘IANTONI

MO019 JAILOIaTAd
ANV Vv1va 1vNnais3y NO a3asvd
M09 LNJHHND LONULSNODIY

0Loz” *

8202~ *

0019 JAILOIA3™d ANV
M09 NIJJHND 40 STTdINVS NO
a3svda viva 1vnais3y 31LVHIN3IO

M09 JAILOIA3™d ANINEFLIA
Ol 31VvAIaNVvD a312313S 3SN

8002~ *

920z~ *

M09 JAILOIA3™d ANINEFLIA
Ol 31VvAIaNvD a312313S 3Sn

1SI17 31VvaAIaNVD NI
31VvAIANVYDO d3.10313S ANINYT1L3A

9002~ *

vzoc” *

1811
31VAIANVD NI 31VvaIdNVD 103138

1SI17 31VvAIANVYD NI J01201a3¥d
JOLO3A NOILOIW 3ANTTONI

7002~ *

220z~ *

1SI17 31VvAIANVYD NI J01201a3¥d
~JO0LO3A NOILOIW 3ANTONI

¥J0L121d3¥d ¥0L103A NOILOW OlL
13S440 aav ‘IWVS FHL ONIZG AW
aNOD3S ANV AN 1S¥I4d ANV € NVHL
SS371 ONIFg SYOLO3A NOILOW
40 1SI7 31VAIdNVD NI S31VAIaNVYD
40 ¥39INNN TvV1OL NO d3Ssvda

200z~ *

0202~

¥J0L121d3¥d ¥OL1LO3A NOILOW Ol
13S440 aav ‘IWVS FHL ONIZG AW
aANOD3S ANV AIN LSYHI4d ANV € NVHL
SS371 ONIFg SYOLO3A NOILOW
40 1SI7 31VAIdNVYD NI S31VAIaNVD
40 ¥39INNN Tv1OL NO a3svda

0002~

PCT/US2017/055350

WO 2018/067823

21/ 21

dai¢ 'Old

MO019 JAILOIdIAId
ANV V1va 1vNnais3y NO a3svd
M09 LNJHHND LONJLSNODIY

8zLz” »

Y0074 JAILOIAT™d V ‘NO01d
LN3H™{ND 40 T3AOIN NOILOW
ANI44V NO 4aSvd ‘TLVHIANTD

9zZLlz” »

M09
LINIHAND ¥O4 T3AdOIN NOILONW
ANI44V ‘FONTHUI4H10 YOLD3AA
NOILOW NO a3svd ‘ANINY3LIA

vere” *

ERNEEEE](e
¥JOLO3A NOILOIW ANVIALSLIg
INO¥4 NIV1gO ‘OV1d 40
ANTVA 40 SSI1AQHVYOIY ‘IA0ON
NOILOI 3ANI44dV NV ONIFE8 M00719
LNIHAND 40 NOILLOW NO d3svdg

ez’ *

NVv3dLslig
NI d3TVYNOIS F8V S1SI7 34NLId
JONIUI43- ANOD3S HO4d
S3ON3™3441d JOLD3IN NOILOW
{3H1IHM S31VOIANI LVHL
OV1d ‘NVIHLSLIE WO¥H ‘NIVLEO

oziz”

viZ Oid

Y0019 JAILIId3™d NO a3asvd
M09 LNJJ™HND IHL ONIAODd3a
04 d3SN viva 31VHIANTO

901z~ »

Y0074 JAILOIAT™d V ‘ND019
LINIHAND 40 T3AOIN NOILOW
ANId4V NO 4asvd ‘FLVHIANTD

1] X2l *

JON3Y3 441 §OLD3A NOILONW
IWVI¥LSLIE NI 3ANTONI ‘OV1d 40
ANTVA 40 SSI1AQHUVYOIY ‘IAON
NOILOW 3ANI44V NV ONIFEg MO0719
LN3HAND 40 NOILOW NO d3svd

0Lz~ »

NVv3dLslig
NI d3TVYNOIS F8V S1SI17 38NLOId
JONIHI43- ANODFS HO4
S3ON3YF441d ¥OLD3A NOILONW
{3H1IHM S31VIIANI LVHL
OV1d ‘NVIHLSLIE NI ‘3aN1ONI

ooLz”

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/055350

INV.
ADD.

A. CLASSIFICATION OF SUBJECT MATTER

HO4N19/52

HO4N19/537

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X,P

WO 2017/200771 A1l (QUALCOMM INC [US])

23 November 2017 (2017-11-23)

the whole document

LI LI ET AL: "An Efficient Four-Parameter
Affine Motion Model for Video Coding",
ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY

1-36

1-36

14853,

21 February 2017 (2017-02-21),
XP080747890,

abstract

paragraph [0III]; figures 1-3,5

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

6 February 2018

Date of mailing of the international search report

13/02/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Giannotti, Pantaleo

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/055350

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

HUAWEI TECHNOLOGIES: "Affine transform
prediction for next generation video
coding",

ITU-T SG16 MEETING; 12-10-2015 -
23-10-2015; GENEVA,,

no. T13-SG16-C-1016,

29 September 2015 (2015-09-29),
XP030100743,

paragraph [0002]; figures 1-5

CHEN J ET AL: "Algorithm description of
Joint Exploration Test Model 2",

2. JVET MEETING; 20-2-2016 - 26-2-2016;
SAN DIEGO; (THE JOINT VIDEO EXPLORATION
TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T
SG.16); URL:
HTTP://PHENIX.INT-EVRY.FR/JVET/,,

no. JVET-B1001, 8 March 2016 (2016-03-08),
XP030150091,

paragraph [2.4.6]; figures 12-15

Z0U F ET AL: "Improved affine motion
prediction",

3. JVET MEETING; 26-5-2016 - 1-6-2016;
GENEVA; (THE JOINT VIDEO EXPLORATION TEAM
OF ISO/IEC JTC1/SC29/WG11l AND ITU-T SG.16
); URL: HTTP://PHENIX.INT-EVRY.FR/JVET/,,
no. JVET-C0062, 17 May 2016 (2016-05-17),
XP030150163,

the whole document

YUWEN HE ET AL: "Efficient coding with
adaptive motion models",

23. PICTURE CODING SYMPOSIUM;23-4-2003 -
25-4-2003; SAINT MALO,,

23 April 2003 (2003-04-23), XP030080026,
paragraph [02.1] - paragraph [02.2]

WO 2011/013253 Al (TOSHIBA KK [JP];
TANIZAWA AKIYUKI [JP]; SHIODERA TAICHIRO
[JP]; CHUJOH) 3 February 2011 (2011-02-03)
abstract

1-36

1-36

1-36

1-36

1-36

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/055350
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2017200771 Al 23-11-2017 US 2017332095 Al 16-11-2017
WO 2017200771 Al 23-11-2017
WO 2011013253 Al 03-02-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - wo-search-report
	Page 105 - wo-search-report
	Page 106 - wo-search-report

