PERSONAL CEREAL DISPENSER

Applicant: Jose L. MARTINEZ, Tampa, FL (US)

Inventor: Jose L. MARTINEZ, Tampa, FL (US)

Appl. No.: 14/078,192

Filed: Nov. 12, 2013

Related U.S. Application Data

Provisional application No. 61/725,321, filed on Nov. 12, 2012.

Publication Classification

Int. Cl.
A47F 1/035 (2006.01)

ABSTRACT

A cereal dispenser includes a base, a container, and an actuation mechanism. The base supports the dispenser, provides a cradle for receiving a food receptacle, and a trigger for interacting with the actuation mechanism. The container includes a lateral surface formed around an interior volume and a dispensing mechanism with a chute, an outlet, and a portioning mechanism. The dispensing mechanism is activated by the trigger by means of the actuation mechanism. The dispensing mechanism allows cereal to flow from the interior volume through the chute, and out of the outlet. The portioning mechanism controls how much cereal is dispensed each time the trigger is engaged, ensuring a consistent volume of cereal deposited in the food receptacle. The amount of cereal in the container is indicated by measurement markings on a transparent section of the lateral surface.
PERSONAL CEREAL DISPENSER

[0001] The current application claims a priority to the U.S. Provisional Patent application Ser. No. 61/725,321 filed on Nov. 12, 2012.

FIELD OF THE INVENTION

[0002] The present invention relates generally to a dry food personal apparatus. Specifically, the present invention is a personal apparatus that stores and dispenses cereal into a bowl at the user’s direction. The present invention includes a container that dispenses cereal through a dispensing mechanism before depositing the dispensed cereal into a food receptacle.

BACKGROUND OF THE INVENTION

[0003] Cereal is a healthy and popular option of breakfast food. Many brands and types of cereal are available in non-re-sealable bags that make it difficult to maintain freshness of the cereal. Freshness is highly important as cereal easily becomes stale and unappealing to consume. Because cereal is often consumed with milk, the cereal can quickly become soggy if not consumed within a short time period once in milk or unappealing to consume as well if too large a quantity is poured with the milk. Additionally, once the cereal has been poured in larger amounts than really wanted by the consumer, the remaining becomes waste, disposing both, milk and cereal. The present invention seeks to address the aforementioned issues of maintaining cereal freshness, avoiding sogginess with cereal poured with milk and also avoiding cereal disposal by serving the appropriate portion.

[0004] The present invention is a personal apparatus featuring a container that both stores cereal and maintains the freshness of the cereal. The personal apparatus is capable of dispensing the cereal within the container at the direction of the user. The present invention features a container that is capable of storing cereal and sealing it from the exterior environment. The container is attached to a base that holds the container and a receptacle such as a bowl in place. A chute is used to deposit the cereal into a food receptacle after it has been dispensed from the container. The dispensing mechanism is activated by the user engaging a trigger present on the base of the personal apparatus. The cereal is dispensed every time the trigger is engaged in, letting a portion of cereal slide down towards the bowl. Additional cereal may be added to the container by opening a sealing lid on the top surface of the container.

[0005] The container of the present invention is capable of storing cereal while simultaneously maintaining the cereal’s freshness by sealing it from the exterior environment. Additionally, the dispensing mechanism allows the user to control the amount of cereal that is dispensed into his or her bowl. This allows soggy cereal to be avoided as cereal may be dispensed in smaller amounts.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a front view of the present invention.
[0007] FIG. 2 is a rear view of the present invention.
[0008] FIG. 3 is a left view of the present invention.
[0009] FIG. 4 is a right view of the present invention.
[0010] FIG. 5 is a perspective view of the present invention, with the bowl omitted for ease of disclosure.

[0011] FIG. 6A is a perspective view of the dispensing mechanism of the present invention, with the rest of the container and base omitted for ease of disclosure.
[0012] FIG. 6B is a cutaway perspective view of the dispensing mechanism and chute of the present invention, with the rest of the container and base omitted for ease of disclosure.
[0013] FIG. 7 is a diagram representing the electrical and electronic connections of the present invention.
[0014] FIG. 8 is a diagram representing the engagement of the trigger and actuation mechanism to other components of the present invention.

DETAIL DESCRIPTIONS OF THE INVENTION

[0015] All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.

[0016] The present invention is a personal food dispensing apparatus, specifically created to enhance the breakfast experience of pouring cereals. While the term cereal is used through this application, any type of similar granular foodstuff or even liquid can be used with the present invention. The present invention comprises a base 1, a container 2, and an actuation mechanism 3, with the container 2 being connected atop the base 1. The base 1 comprises a cradle 11, an indent 12, and a trigger 13, while the container 2 comprises an interior volume 21, a lateral surface 22, a lid 23, and a dispensing mechanism 24. The dispensing mechanism 24 is positioned below the interior volume 21, allowing cereal stored in the interior volume 21 to be dispensed, preferably into a waiting food receptacle 4 such as a cereal bowl. The dispensing mechanism 24 is utilized by engaging the trigger 13, which is operatively coupled to the dispensing mechanism 24 as shown in FIG. 8.

[0017] The base 1, visible in FIG. 1-FIG. 5, serves as a support for the container 2 in addition to providing a partial enclosure for securing the food receptacle 4. The partial enclosure is provided by the cradle 11, which comprises a central section 111, a first arm 112, and a second arm 113 as pictured in FIG. 5. The first arm 112 is adjacently connected to one side of the central section 111, while the second arm 113 is adjacently connected to a second side of the central section 111 opposite the first arm 112. Depicted in FIG. 1, FIG. 3, and FIG. 4, a receiving area is formed between the central section 111, the first arm 112, and the second arm 113, intended for the food receptacle 4. Subsequently, the food receptacle 4 is positioned adjacent to the central section 111 and between the first arm 112 and the second arm 113. The first arm 112 and the second arm 113 are preferably curved to better match the hemispherical contour of the commonly used cereal bowl. The indent 12 is positioned on the side of the base 1, adjacent to the first leg opposite the central section 111. In the preferred embodiment a single indent 12 is provided for right-handed users, but in other embodiments the indent 12 can be positioned for left-handed users, and potentially two indents 12 can be provided as part of a “one size fits all” solution. The indent 12 forms an ergonomic recess in the base 1, and makes activating the trigger 13 easier and more comfortable for a user. The trigger 13 is positioned adjacent to the indent 12 and, by means of the actuation mechanism 3, allows the dispensing mechanism 24 of the container 2 to be activated. In alternative embodiments where two indents 12 are provided, a second trigger 13 can also be provided, with one trigger 13 for each indent 12.
The container 2, visible in FIG. 1-FIG. 5, is used to store the cereal as well as dispense the cereal upon request. The interior volume 21, which is delineated by the lateral surface 22, serves to store the cereal. The interior volume 21 can be accessed and refilled through a top opening. During regular use, the interior volume 21 is covered by the lid 23, which is positioned atop the interior volume 21 opposite the base 4. In order to make the lid 23 easy to open and close, the lid 23 is hingedly connected to a top edge of the lateral surface 22. As a result, gaining access to the interior volume 21 is a simple as flipping the lid 23 open. Providing an exit for the cereal stored within the interior volume 21 is the dispensing mechanism 24. The dispensing mechanism 24 comprises a chute 241 and an outlet 242. The chute 241 provides a pathway for cereal, terminating at the outlet 242. Preferably, the chute 241 is inclined, i.e. diagonal, in reference to the container 2. Providing an inclined chute 241 minimizes normal force and the resulting friction, such that cereal is better able to slide and less likely to become stuck in the chute 241. The outlet 242 is positioned below the interior volume 21 and above the cereal bowl, such that the force of gravity is sufficient to draw cereal from the interior volume 21 through the chute 241 and exiting the outlet 242. In this manner the chute 241 provides fluid communication between the interior volume 21 and the outlet 242, useful not only for dispensing of cereals but a number of other foodstuffs and even liquids. Potentially, in order to prevent cereal from being poured when the present invention is not in use, the dispensing mechanism 24 can comprise an outlet cover, useful to prevent insects or debris from entering the interior volume through the outlet. This outlet cover, which is preferably removable and made from a soft plastic, rubber, or similar material, is selectively positioned over the outlet 242, in either a closed configuration or an open configuration. In the open configuration, the outlet cover does not block cereal from flowing through the outlet 242, allowing the present invention to be used to dispense cereal. In the closed configuration, the outlet cover closes off the outlet 242 for when the present invention is not being actively used. To ensure that the cereal does not get stuck in the interior volume 21, the floor of the container 2 is funnel shaped, ensuring that cereal continues to fall towards the chute 241 rather than clumping and becoming stuck on the sides of the floor adjacent to the chute 241.

In the preferred embodiment, the dispensing mechanism 24 further comprises a portioning mechanism 244. The portioning mechanism 244 is used to control how much cereal is poured each time the dispensing mechanism 24 is activated by the trigger 13. By means of the dispensing mechanism 24 a user of the present invention can ensure the same amount of cereal is poured each time, providing an element of consistency. The portioning mechanism 244 ensures that the ideal amount of cereal is poured, which can be beneficial when mixing the cereal with other ingredients such as milk. By knowing how much cereal has been poured, a corresponding amount of milk can be added to the cereal bowl to ensure a user’s ideal ratio of milk to cereal and avoiding soggy cereal. The portioning mechanism 244 also assists in people are tracking calories for health purposes, as the serving dispensed each time will be the same and thus nutritional information can easily be calculated for the given portion size.

Different embodiments of the present invention can implement the portioning mechanism 244 in different ways. For example, in the preferred embodiment the portioning mechanism 244 is provided by means of a wheel 2441 which is axially aligned with the chute 241. The wheel comprises a well 2442, the outside of which is defined by an annular wall 2443 of the wheel 2441. The inner section of the wheel 2442 is bisected by an interior wall 2444 which is connected to the annular wall 2443 across the wheel 2441. The interior wall 2444 forms a first section and second section in the well 2442. The bottom of the well 2442 is open, such that cereal can pass through the well 2442 unless a barrier is provided. Corresponding to the well, the chute 241 comprises a first barrier plate 2445 that is positioned below the well 2442. This allows cereal to accumulate in the well 2442, but prevents the cereal from falling through the chute 241 due to the first barrier plate 2445. A second barrier plate 2446 is positioned above opposite the first barrier plate 2445, on the other side of the interior wall 2444. The second barrier plate 2446 is positioned above the wheel 2441, where it prevents cereal from falling into the well 2442 during the subsequently described dispensing process. Essentially, the first barrier plate 2445 is positioned below the first section of the well 2442 while the second barrier plate 2446 is positioned above the second section of the well 2442. When the trigger 13 is engaged, the actuation mechanism 3 rotates the wheel 180 degrees. As the wheel 2441 rotates, the first section of the well 2442 moves out of alignment with the first barrier plate 2445, allowing the cereal in the first section of the well 2442 to fall through the open section of the chute 241. The second barrier plate 2446 prevents the first section of the well 2442 from being refilled while the open section of the chute 241, which would result in an additional and uncontrolled amount of cereal being dispensed. As a result, a consistent amount of cereal equal to the volume of half the well 2442 is dispensed each time the trigger 13 is engaged. Half of the well 2442 is emptied and half the well 2442 is refilled with every half rotation of the wheel 2441. Thus, this wheel 2441 acts as the portioning mechanism 244 in the preferred embodiment, as illustrated in FIG. 6A and FIG. 6B.

In another embodiment the portioning mechanism 244 comprises a spring-loaded valve. This spring-loaded valve traverses perpendicularly through the chute 241, forming a barrier that prevents the cereal from flowing towards the outlet 242. Engaging the trigger 13, which is operatively coupled to the spring-loaded valve by the actuation mechanism 3, causes the spring-loaded valve to retract, subsequently allowing cereal to flow through the chute 241. Once retracted, the spring-loaded valve attempts to return to equilibrium, with the spring-loaded valve traversing back into the chute 241. As a result, the chute 241 is only temporarily unobstructed until the spring-loaded valve returns to equilibrium, dependent upon the spring constant of the spring-loaded valve. Thanks to the spring constant, the amount of time the chute 241 is left open remains the same each time the trigger 13 is activated. Thus the spring-loaded valve acts as the portioning mechanism 244 in one embodiment.

Potentially, a portion adjusting interface is provided for the portioning mechanism 244, which allows a user to increase or decrease the amount of cereal poured based on personal preference. For example, returning to the embodiment utilizing a spring-loaded valve 2441 as the portioning mechanism 244, the portion adjusting interface allows the equilibrium position of the spring-loaded valve 2441 to be changed. This is accomplished by compressing or extending the spring-loaded valve 2441, which correspondingly increases or decreases the amount of time the chute 241 is left open until the valve 2441 returns to the equilibrium position.
As the amount of time the chute 241 is unobstructed increases or decreases, the amount of cereal dispense also increases or decreases. Thus, the portion adjusting interface provides an element of adaptability to the present invention, as demonstrated described here in conjunction with the embodiment utilizing the spring-loaded valve 2441.

1. The lateral surface 22 of the container 2 comprises at least one transparent section 221 and a plurality of measurement markings 222, both of which are visible in FIG. 3-FIG. 5. These components aid a user in quickly identifying the volume of cereal remaining in the interior volume 21. The transparent section 221 allows a person to see inside the container 2, providing a visual indication of the amount of cereal. In order to provide a more accurate estimate of how much cereal remains, the plurality of measurement markings 222 are systematically positioned on the transparent section 221, with each of the measurement markings 222 indicating a volume of cereal. For example, measurement markings 222 may be provided at quarter-cup, half-cup, or single cup increments. Potentially, the measurement markings 222 may be provided for different unit standards, such as cups and liters. There is also the possibility of providing additional transparent sections 221, such that the contents of the interior volume 21 are visible from any angle, instead of only being visible from one side of the container 2.

2. To enhance the cereal dispensing experience, the present invention comprises a power source 5, a chipset 6, and at least one speaker 7, as represented in FIG. 7. The power source 5 and chipsets 6 are provided to operate the speaker 7, with the power source 5 and chipsets 6 being housed in the base 1. The power source 5 is electrically connected to the speaker 7 and chipsets 6, supplying the necessary energy for their operation. The chipsets 6 is electronically connected to the speaker 7, allowing the chipset 6 to operate the speaker 7. The speaker 7 itself is housed and mounted within the container 2. In order to allow sound from the speaker 7 to exit the container 2, the lateral surface 22 comprises at least one grated section 223 which the speaker 7 is positioned adjacent to. The speaker 7 enhances the cereal dispensing experience by playing a song, message, or any other pleasing aural clip. Such noises are especially enjoyed by children, as it appeals to their sense of sound. The speaker 7 is actuated, along with the dispensing mechanism 24, by the trigger 13. Additionally, the speaker 7 is only active during the dispensing process, remaining quiet when the present invention is not in use. Potentially, additional grated sections 223 and speakers 7 could be provided to increase the volume of sounds produced, positioned opposite each other around the lateral surface 22.

3. Potentially, a display screen 8 can be mounted onto the front face of the lateral surface 22 of the container 2, above the central section 111 of the base 1, which is also represented in FIG. 7. Similar to the speaker 7, the display screen 8 is electrically connected to the power source 5 and electronically connected to the chipsets 6. The display screen 8 can simply be used to provide information, such as date, time, or even the amount of cereal left in the container 2, as measured by a weight sensor. An interface can also be provided for the display screen 8, either through a physical interface mounted on the base 1 adjacent to the display screen 8 or by making the display screen 8 a capacitive touch screen. The interface can be used to control other components of the present invention, such as changing the music played by the speaker 7.

4. Different embodiments of the present invention can utilize different variants of the described actuation mechanism 3. For example, in one embodiment the actuation mechanism 3 comprises a transmitter and a receiver, each of which is electrically connected to the power source 5. Engaging the trigger 13 causes the transmitter to send a signal to the receiver. The receiver then activates the dispensing mechanism 24 by opening the chute 241, whether by opening the outlet cover or retracting the spring-loaded valve 2441, each of which has been described earlier.

5. The actuation mechanism 3 does not need to be electrical, and in one embodiment it comprises a lever system. In this embodiment a lever arm connects the trigger 13 with the dispensing mechanism 24, such that engaging the trigger 13 causes the lever to pull on the dispensing mechanism 24 and open the chute 241. In this manner a non-electrical actuation mechanism 3 can be provided. A non-electrical actuation mechanism 3 is beneficial compared to an electrical actuation mechanism 3 as it reduces cost, complexity, and power requirements.

6. As envisioned by the inventor, the present invention, with one of its principal target audience being children, could potentially be made in versions that will feature the images of cartoon characters, animals, or public figures popular with a young demographic, provided the appropriate licenses can be secured by the manufacturer. Expanding upon the herein describe components, the present invention may be visually enhanced with aesthetically pleasing markings and accessories oriented towards the aforementioned target demographic. These visual enhancements increase the appeal of the present invention in the eyes of children, for whom a number of themes and designs could be provided. For example, the present invention may be decorated to look like an animal or a character from popular children’s media. These enhancements, along with the speaker 7, make the present invention more enjoyable for children and increase marketing potential.

7. Overall, the present invention provides an entertaining, simple, and effective personal apparatus for dispensing foodstuff such as cereal into an appropriate receptacle, in addition to storing cereal and sealing the cereal from the exterior environment. This allows the cereal to maintain freshness to a greater degree than a non-re-sealable plastic bag would allow.

8. Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.

What is claimed is:

1. A personal food dispensing apparatus comprises:
 - a base;
 - a container;
 - an actuation mechanism;
 - the base comprises a cradle, an indenter, and a trigger;
 - the container comprises an interior volume, a lateral surface, a lid, and a dispensing mechanism;
 - the dispensing mechanism comprises a chute and an outlet;
 - the container being connected to the base;
 - the dispensing mechanism being positioned below the interior volume;
 - the outlet being positioned above the cradle;
 - the interior volume being in fluid communication with the outlet through the chute, wherein cereal is dispensed from the container, through the chute, and out of the outlet; and
the trigger being operatively coupled to the dispensing mechanism by the actuation mechanism.

2. The personal food dispensing apparatus as claimed in claim 1 comprises:
 - the cradle comprises a central section, a first arm, and a second arm;
 - the first arm being adjacent to the central section;
 - the second arm being adjacent to the central section opposite the first arm;
 - the indent being positioned adjacent to the first leg opposite the central section; and
 - the trigger being positioned adjacent to the indent.

3. The personal food dispensing apparatus as claimed in claim 2 comprises:
 - a food receptacle;
 - the food receptacle being positioned adjacent to the central section; and
 - the food receptacle being positioned between the first arm and the second arm.

4. The personal food dispensing apparatus as claimed in claim 1 comprises:
 - the dispensing mechanism further comprises a portioning mechanism, wherein the portioning mechanism controls how much cereal is poured out of the dispensing mechanism.

5. The personal food dispensing apparatus as claimed in claim 4 comprises:
 - the portioning mechanism comprises a wheel;
 - the chute comprises a first barrier plate and a second barrier plate;
 - the wheel comprises an annular wall, a well, and an interior wall;
 - the wheel being axially connected to the chute;
 - the well being delineated by the annular wall;
 - the interior wall bisecting the well;
 - the interior wall being connected across the well to the annular wall;
 - the first barrier plate being positioned in the chute below the wheel;
 - the second barrier plate being positioned in the chute above the wheel;
 - the first barrier plate being adjacent to the interior wall opposite the second barrier plate; and
 - the trigger being operatively coupled to the wheel by the actuation mechanism.

6. The personal food dispensing apparatus as claimed in claim 1 comprises:
 - the lateral surface comprises an at least one transparent section and a plurality of measurement markings;
 - the interior volume being delineated by the lateral surface;
 - the lid being positioned adjacent to the lateral surface opposite the dispensing mechanism; and
 - the plurality of measurement markings being systematically positioned on the at least one transparent section, wherein the plurality of measurement markings indicate the volume of contents stored in the interior volume.

7. The personal food dispensing apparatus as claimed in claim 1 comprises:
 - a power source; and
 - the power source being housed within the base.

8. The personal food dispensing apparatus as claimed in claim 7 comprises:
 - a chipset;
 - an at least one speaker;
 - the lateral surface comprises an at least one grated section;
 - the chipset being electronically connected to the at least one speaker;
 - the power source being electrically connected to the chipset and the at least one speaker; and
 - the at least one speaker being housed and mounted within the container adjacent to the at least one grated section.

9. The personal food dispensing apparatus as claimed in claim 7 comprises:
 - a chipset;
 - a display screen;
 - the chipset being electronically connected to the display screen;
 - the power source being electrically connected to the chipset and the display screen; and
 - the display screen being mounted onto the lateral surface.

10. A personal food dispensing apparatus comprises:
 - a base;
 - a container;
 - an actuation mechanism;
 - a power source;
 - the base comprises a cradle, an indent, and a trigger;
 - the container comprises an interior volume, a lateral surface, a lid, and a dispensing mechanism;
 - the lateral surface comprises at least one transparent section and a plurality of measurement markings;
 - the dispensing mechanism comprises a chute, an outlet, and a portioning mechanism, wherein the portioning mechanism controls how much cereal is poured out of the dispensing mechanism;
 - the container being connected atop the base;
 - the interior volume being delineated by the lateral surface;
 - the dispensing mechanism being positioned below the interior volume;
 - the outlet being positioned above the cradle;
 - the interior volume being in fluid communication with the outlet through the chute, wherein cereal is dispensed from the container, through the chute, and out of the outlet;
 - the trigger being operatively coupled to the dispensing mechanism by the actuation mechanism; and
 - the power source being housed within the base.

11. The personal food dispensing apparatus as claimed in claim 10 comprises:
 - a food receptacle;
 - the cradle comprises a central section, a first arm, and a second arm;
 - the first arm being adjacent to the central section;
 - the second arm being adjacent to the central section opposite the first arm;
 - the indent being positioned adjacent to the first leg opposite the central section;
 - the trigger being positioned adjacent to the indent;
 - the food receptacle being positioned adjacent to the central section; and
 - the food receptacle being positioned between the first arm and the second arm.

12. The personal food dispensing apparatus as claimed in claim 10 comprises:
the portioning mechanism comprises a wheel; the chute comprises a first barrier plate and a second barrier plate; the wheel comprises an annular wall, a well, and an interior wall; the wheel being axially connected interior to the chute; the well being delineated by the annular wall; the interior wall bisecting the well; the interior wall being connected across the well to the annular wall; the first barrier plate being positioned in the chute below the wheel; the second barrier plate being positioned in the chute above the wheel; the first barrier plate being positioned adjacent to the interior wall opposite the second barrier plate; and the trigger being operatively coupled to the wheel by the actuation mechanism.

13. The personal food dispensing apparatus as claimed in claim 10 comprises: the lid being positioned adjacent to the lateral surface opposite the dispensing mechanism; and the plurality of measurement markings being systematically positioned on the at least one transparent section, wherein the plurality of measurement markings indicate the volume of contents stored in the interior volume.

14. The personal food dispensing apparatus as claimed in claim 10 comprises: a chipset; a speaker; a display screen; the lateral surface comprises an at least one grated section; the chipset being electronically connected to the display screen and the speaker; the power source being electrically connected to the chipset, the speaker, and the display screen; the speaker being housed and mounted within the container adjacent to the at least one grated section; and the display screen being mounted onto the lateral surface.

15. A personal food dispensing apparatus comprises: a base; a container; an actuation mechanism; a power source; the base comprises a cradle, an indent, and a trigger; the cradle comprises a central section, a first arm, and a second arm; the container comprises an interior volume, a lateral surface, a lid, and a dispensing mechanism; the lateral surface comprises an at least one transparent section and a plurality of measurement markings; the dispensing mechanism comprises a chute, an outlet, and a portioning mechanism, wherein the portioning mechanism controls how much cereal is poured out of the dispensing mechanism; the container being connected atop the base; the interior volume being delineated by the lateral surface; the dispensing mechanism being positioned below the interior volume; the first arm being adjacentely connected to the central section; the second arm being adjacentely connected to the central section opposite the first arm; the outlet being positioned above the cradle; the interior volume being in fluid communication with the outlet through the chute, wherein cereal is dispensed from the container, through the chute, and out of the outlet; the trigger being operatively coupled to the dispensing mechanism by the actuation mechanism; the power source being housed within the base; and the plurality of measurement markings being systematically positioned on the at least one transparent section, wherein the plurality of measurement markings indicate the volume of contents stored in the interior volume.

16. The personal food dispensing apparatus as claimed in claim 15 comprises: a food receptacle; the indent being positioned adjacent to the first leg opposite the central section; the trigger being positioned adjacent to the indent; the food receptacle being positioned adjacent to the central section; the food receptacle being positioned between the first arm and the second arm; and the lid being positioned adjacent to the lateral surface opposite the dispensing mechanism.

17. The personal food dispensing apparatus as claimed in claim 15 comprises: the portioning mechanism comprises a wheel; the chute comprises a first barrier plate and a second barrier plate; the wheel comprises an annular wall, a well, and an interior wall; the wheel being axially connected interior to the chute; the well being delineated by the annular wall; the interior wall bisecting the well; the interior wall being connected across the well to the annular wall; the first barrier plate being positioned in the chute below the wheel; the second barrier plate being positioned in the chute above the wheel; the first barrier plate being positioned adjacent to the interior wall opposite the second barrier plate; and the trigger being operatively coupled to the wheel by the actuation mechanism.

18. The personal food dispensing apparatus as claimed in claim 15 comprises: a chipset; a speaker; a display screen; the lateral surface comprises an at least one grated section; the chipset being electronically connected to the display screen and the speaker; the power source being electrically connected to the chipset, the speaker, and the display screen; the speaker being housed and mounted within the container adjacent to the at least one grated section; and the display screen being mounted onto the lateral surface.