SULFONYL-3-HETEROCYCLYLINDAZOLE DERIVATIVES AS 5-HYDROXYTRYPTAMINE-6 LIGANDS

Inventors: Kevin Liu, West Windsor, NJ (US); Albert Jean Robichaud, Ringoes, NJ (US); Jennifer Rebecca Io, Plainsboro, NJ (US); Hassan Mahmoud Elokdah, North Wales, PA (US)

Correspondence Address:
WYETH
PATENT LAW GROUP
5 GIRALDA FARMS
MADISON, NJ 07940 (US)

Assignee: Wyeth, Madison, NJ (US)

Appl. No.: 12/330,781

Filed: Dec. 9, 2008

Related U.S. Application Data
Division of application No. 11/732,623, filed on Apr. 4, 2007, now Pat. No. 7,482,461.
SULFONYL-3-HETEROCYCLINDAZOLE DERIVATIVES AS 5-HYDROXYTRYPTAMINE-6 LGANDS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of U.S. application Ser. No. 11/732,623, filed Apr. 4, 2007, which claims the benefit of U.S. provisional application No. 60/789,536, filed Apr. 5, 2006, each of which is incorporated herein by reference in their entirety.

BACKGROUND

[0002] Serotonin (5-hydroxytryptamine) (5-HT) receptors play a critical role in many physiological and behavioral functions in humans and animals. These functions are mediated through various 5-HT receptors distributed throughout the body. There are now approximately fifteen different human 5-HT receptor subtypes that have been cloned, many with well-defined roles in humans. One of the most recently identified 5-HT receptor subtypes is the 5-HT6 receptor, first cloned from rat tissue in 1993 (Monsma, F. J.; Shen, Y.; Ward, R. P.; Hamblin, M. W. Molecular Pharmacology 1993, 43, 320-327) and subsequently from human tissue (Kohen, R.; Metealf, M. A.; Khan, N.; Druck, T.; Huebner, K.; Sibley, D. R. Journal of Neurochemistry 1996, 66, 47-56). The receptor is a G-protein coupled receptor (GPCR) positively coupled to adenylate cyclase (Ruot, M.; Traiffort, E.; Arrang, J.-M.; Terdive-Lacouve, L.; Diaz, L.; Leurs, R.; Schwartz, J.-C. Biochemical Biophysical Research Communications 1993, 193, 268-276). The receptor is found almost exclusively in the central nervous system (CNS) areas both in rat and in human. In situ hybridization studies of the 5-HT6 receptor in rat brain using mRNA indicate principal localization in the areas of 5-HT projection including striatum, nucleus accumbens, olfactory tubercle, and hippocampal formation (Ward, R. P.; Hamblin, M. W.; Lachowicz, J. E.; Hoffman, B. J.; Sibley, D. R.; Dorsa, D. M. Neuroscience 1995, 64, 1105-1111).

[0003] There are many potential therapeutic uses for 5-HT6 ligands in humans based on direct effects and on indications from available scientific studies. These studies provided information including the localization of the receptor, the affinity of ligands with known in vivo activity, and results obtained from various animal studies conducted so far (Woolley, M. L.; Marsden, C. A.; Fone, K. C. Current Drug Targets: CNS & Neurological Disorders 2004, 3(1), 59-79).

[0004] One therapeutic use of modulators of 5-HT6 receptor function is in the enhancement of cognition and memory in human diseases such as Alzheimer’s. The high levels of receptor found in important structures in the forebrain, including the caudate/putamen, hippocampus, nucleus accumbens, and cortex indicate a role for the receptor in memory and cognition since these areas are known to play a vital role in memory (Gerard, C.; Martres, M.-P.; Leveque, K.; Miquel, M. C.; Verge, D.; Lanthimy, R.; Douce, E.; Hamon, M.; E Mestikawa, S. Brain Research 1997, 746, 207-219). The ability of known 5-HT6 receptor ligands to enhance cholinergic transmission also supported the cognition use (Bentley, J. C.; Bourssou, A.; Boess, F. G.; Kone, F. C.; Marsden, C. A.; Petit, N.; Sleight, A. J. British Journal of Pharmacology, 1999, 126(7), 1537-1542). Studies have demonstrated that a known 5-HT6 selective antagonist significantly increased glutamate and aspartate levels in the frontal cortex without elevating levels of norepinephrine, dopamine, or 5-HT. This selective elevation of neurochemicals known to be involved in memory and cognition indicates the role 5-HT6 ligands play in cognition (Dawson, L. A.; Nguyen, H. Q.; Li, P. British Journal of Pharmacology, 2000, 130(1), 23-26). Animal studies of memory and learning with a known selective 5-HT6 antagonist found positive effects (Rogers, D. C.; Hatcher, P. D.; Hagan, J. J. Society of Neuroscience, Abstracts 2000, 26, 680). More recent studies have supported this finding in several additional animal models of cognition and memory including in a novel object discrimination model (King, M. V.; Sleight, A. J.; Woolley, M. L.; Topham, I. A.; Marsden, C. A.; Fone, K. C. F. Neuropharmacology 2004, 47(2), 195-204 and Woolley, M. L.; Marsden, C. A.; Sleight, A. J.; Fone, K. C. F. Psychopharmacology, 2003, 170(4), 358-367) and in a water maze model (Rogers, D. C.; Hagan, J. J. Psychopharmacology, 2001, 158(2), 114-119 and Foley, A. G.; Murphy, K. J.; Hirsh, W. D.; Gallagher, H. C.; Hagan, J. J.; Upton, N.; Walsh, F. S.; Regan, C. M. Neuropharmacology 2004, 29(1), 93-100).

[0005] A related therapeutic use for 5-HT6 ligands is the treatment of attention deficit disorders (ADD, also known as Attention Deficit Hyperactivity Disorder or ADHD) in both children and adults. Because 5-HT6 antagonists enhance the activity of the nigrostriatal dopamine pathway and because ADHD has been linked to abnormalities in the caudate (Ernst, M.; Zanetkin, A. J.; Matotkik, J. H.; Jons, P. A.; Cohen, R. M. Journal of Neuroscience 1998, 18(15), 5901-5907), 5-HT6 antagonists attenuate attention deficit disorders.

[0006] Early studies examining the affinity of various CNS ligands with known therapeutic utility or a strong structural resemblance to known drugs implicated 5-HT6 ligands in the treatment of schizophrenia and depression. For example, clozapine (an effective clinical antipsychotic) has high affinity for the 5-HT6 receptor subtype. Also, several clinical antidepressants have high affinity for the receptor as well and act as antagonists at this site (Branche, T. A.; Blackburn, T. P. Annual Reviews in Pharmacology and Toxicology 2000, 40, 319-334).

[0008] Therefore, it is an object of this invention to provide compounds which are useful as therapeutic agents in the treatment of a variety of central nervous system disorders related to or affected by the 5-HT6 receptor.

[0009] It is another object of this invention to provide therapeutic methods and pharmaceutical compositions useful for the treatment of central nervous system disorders related to or affected by the 5-HT6 receptor.

[0010] It is a feature of this invention that the compounds provided may also be used to further study and elucidate the 5-HT6 receptor.

SUMMARY OF THE INVENTION

[0011] The present invention provides a sulfonyl-3-heterocyclylindazole compound of formula I
wherein

R is H, halogen or an optionally substituted alkyl or haloalkyl group;

R is an aryl or heteroaryl group each group optionally substituted or an optionally substituted 8- to 13-membered bicyclic or tricyclic ring system having a N atom at the bridgehead and optionally containing 1, 2 or 3 additional heteroatoms selected from N, O or S;

R is H or an alkyl, cycloalkyl, aryl or heteroaryl group each group optionally substituted;

R and R are each independently H, or an optionally substituted alkyl group;

n is 0 or an integer of 1 or 2; and

R is H or an alkyl, alkenyl, alkynyl or cycloalkyl, group each group optionally substituted; or a stereoisomer thereof or a pharmaceutically acceptable salt thereof.

DETAILED DESCRIPTION OF THE INVENTION

The 5-hydroxytryptamine-6 (5-HT6) receptor has been identified by molecular cloning. Its ability to bind a wide range of therapeutic compounds used in psychiatry, coupled with its intriguing distribution in the brain has stimulated significant interest in new compounds which are capable of interacting with or affecting said receptor. Significant efforts are being made to understand the role of the 5-HT6 receptor in psychiatry, cognitive dysfunction, motor function and control, memory, mood and the like. To that end, compounds which demonstrate a binding affinity for the 5-HT6 receptor are earnestly sought both as an aid in the study of the 5-HT6 receptor and as potential therapeutic agents in the treatment of central nervous system disorders, for example see C. Reavill and D. C. Rogers, Current Opinion in Investigational Drugs, 2001, 2(1):104-109, Pharma Press Ltd and Woolley, M. L.; Marsden, C. A.; Fone, K. C. F. Current Drug Targets: CNS & Neurological Disorders 2004, 3(1), 59-79.

Surprisingly, it has now been found that sulfonyl-3-heterocyclylindazole compounds of formula 1 demonstrate 5-HT6 affinity along with significant sub-type selectivity. Advantageously, said formula 1 compounds are effective therapeutic agents for the treatment of central nervous system (CNS) disorders associated with or affected by the 5-HT6 receptor. Accordingly, the present invention provides a sulfonyl-3-heterocyclylindazole compound of formula 1

wherein

R is H, halogen or an optionally substituted alkyl or haloalkyl group;

R is an aryl or heteroaryl group each group optionally substituted or an optionally substituted 8- to 13-membered bicyclic or tricyclic ring system having a N atom at the bridgehead and optionally containing 1, 2 or 3 additional heteroatoms selected from N, O or S;

R is H or an alkyl, cycloalkyl, aryl or heteroaryl group each group optionally substituted;

R and R are each independently H, or an optionally substituted alkyl group;

n is 0 or an integer of 1 or 2; and

R is H or an alkyl, alkenyl, alkynyl or cycloalkyl, group each group optionally substituted; or a stereoisomer thereof or a pharmaceutically acceptable salt thereof.

Preferred compounds of the invention are those compounds of formula 1 wherein n is 1. Another group of preferred compounds is those formula 1 compounds wherein R is an optionally substituted phenyl or naphthyl group. Also preferred are those formula 1 compounds wherein R, R and R are H.

More preferred compounds of the invention are those compounds of formula 1 wherein n is 1 and R, R, and R are H. Another group of more preferred compounds is those compounds of formula 1 wherein n is 1 and R, R, and R are H or methyl. A further group of more preferred compounds are those compounds of formula 1 wherein R is an optionally substituted phenyl or naphthyl group; n is 1; and R, R, and R are H or methyl.

Among the preferred compounds of the invention are:

- 3-(1-methylpiperidin-4-yl)-5-(1-naphthylsulfonyl)-1H-indazole;
- 3-(1-methylpiperidin-4-yl)-5-(2-naphthylsulfonyl)-1H-indazole;
- 3-(1-methylpiperidin-4-yl)-5-(phenylsulfonyl)-1H-indazole;
- 5-(3-fluorophenyl)sulfonyl]-3-(1-methylpiperidin-4-yl)-1H-indazole;
- 5-(3-chlorophenyl)sulfonyl]-3-(1-methylpiperidin-4-yl)-1H-indazole;
- 5-(4-fluorophenyl)sulfonyl]-3-(1-methylpiperidin-4-yl)-1H-indazole;
- 5-(3-methyphenyl)sulfonyl]-3-(1-methylpiperidin-4-yl)-1H-indazole;
- 3-(1-methylpiperidin-4-yl)-5-[[4-(trifluoromethyl) phenyl]sulfonyl]-1H-indazole;
- 3-(1-methylpiperidin-4-yl)-5-[[4-(trifluoromethoxy)phenyl]sulfonyl]-1H-indazole;
5-(4-(isopropylphenyl)sulfonyl)-3-(1-methylpiperidin-4-yl)-1H-indazole; a stereoisomer thereof; or a pharmaceutically acceptable salt thereof.

An optionally substituted moiety may be substituted with one or more substituents. The substituent groups, which are optionally present, may be one or more of those customarily employed in the development of pharmaceutical compounds or the modification of such compounds to influence their structure/activity, persistence, absorption, stability or other beneficial properties. Specific examples of such substituents include halogen atoms, nitro, cyano, thiocyanato, cyano, hydroxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, amino, alkylamino, dialkylamino, formyl, alkoxy carbonyl, carboxy, alkanoyl, alkylthio, alkylsulphinyl, alkylsulphonyl, carbamoyl, alkylamido, phenyl, phenoxy, benzyl, benzylxoy, heterocyclyl or cycloalkyl groups, preferably halogen atoms or lower alkyl, lower alkoxy, lower haloalkyl or lower haloalkoxy groups. Unless otherwise specified, typically, 1-3 substituents may be present.

The term “halogen”, as used herein, designates fluorine, chlorine, bromine, and iodine.

As used herein, the term “alkyl” includes both \((C_1 - C_{10}) \) straight chain and \((C_3 - C_{15}) \) branched-chain monovalent saturated hydrocarbon moiety. Examples of saturated hydrocarbon alkyl moieties include, but are not limited to, chemical groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, tert-butyl, isobutyl, sec-butyl; higher homologs such as n-pentyl, n-hexyl, and the like. Specifically included within the definition of “alkyl” are those alkyl groups that are optionally substituted. Suitable alkyl substituents include, but are not limited to, CN, OH, halogen, phenyl, carbamoyl, carboxyl, alkoxy or aryloxy.

As used herein, the term “haloalkyl” designates a \(C_{1-n} H_{2n+1} \) group having from one to 2n+1 halogen atoms which may be the same or different. Examples of haloalkyl groups include \(CF_3, CH_2Cl, C_2H_5Br, ClCH_2F_2 \), or the like.

The term “alkenyl”, as used herein, refers to either a \((C_2 - C_{6}) \) straight chain or \((C_3 - C_{10}) \) branched-chain monovalent hydrocarbon moiety containing at least one double bond. Such hydrocarbon alkenyl moieties may be mono or polysaturated, and may exist in the E or Z configurations. The compounds of this invention are meant to include all possible E and Z configurations. Examples of mono or polysaturated hydrocarbon alkenyl moieties include, but are not limited to, chemical groups such as vinyl, 2-propenyl, isopropenyl, crotyl, 2-isopentenyl, butadienyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), or the like.

Similarly, the term “alkynyl”, as used herein, refers to either a \((C_2 - C_{6}) \) straight chain or \((C_3 - C_{10}) \) branched-chain monovalent hydrocarbon moiety containing at least one triple bond. Such hydrocarbon alkynyl moieties may be mono or polysaturated. Examples of mono or polysaturated hydrocarbon alkynyl moieties include, but are not limited to, chemical groups such as 2-propynyl, 3-pentynyl, or the like.

The term “cycloalkyl”, as used herein, refers to a monocyclic, bicyclic, tricyclic, fused, bridged, or spiro monovalent saturated hydrocarbon moiety of 3-10 carbon atoms. Examples of cycloalkyl moieties include, but are not limited to, chemical groups such as cyclopentyl, cyclobutyl, cyclopropyl, cyclohexyl, cycloheptyl, norbornyl, adamantyl, spiro[4.5]decanyl, or the like.

The term “cycloalkylalkyl” as used herein designates a five- to seven-membered cycloalkyl ring system containing 1, 2 or 3 heteroatoms, which may be the same or different, selected from N, O or S and optionally containing one double bond. Exemplary of the cycloalkylalkyl ring systems included in the term as designated herein are the following rings wherein X is NR, O or S and R is H or an optional substituent as defined hereinabove.

The term “aryl”, as used herein, refers to an aromatic carbocyclic moiety of up to 20 carbon atoms, which may be a single ring (monocyclic) or multiple rings (bicyclic, up to three rings) fused together or linked covalently. Examples of aryl moieties include, but are not limited to, phenyl, 1-naphthyl, 2-naphthyl, biphenyl, anthryl, phenanthryl, fluorenyl, indanyl, biphenyl,acenaphthyl, acenaphthphenyl, and the like.

The term “heteroaryl” as used herein designates an aromatic heterocyclic ring system, which may be a single ring (monocyclic) or multiple rings (bicyclic, up to three rings) fused together or linked covalently. Preferably, heteroaryl is a 5- to 6-membered ring. The rings may contain from one to four hetero atoms selected from N, O or S, wherein the nitrogen or sulfur atom is optionally oxidized, or the nitrogen atom is optionally quaternized. Examples of heteroaryl moieties include, but are not limited to, furan, thiophene, pyrrole, pyrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, oxadiazole, triazole, pyridine, pyrimidine, pyrazine, pyridazine, benzimidazole, benzoxazole, benzothiazole, benzofuran, benzothiophene, thianthrene, dibenzofuran, dibenzothiophene, indole, indazole, quinoline, isoquinoline, quinoxaline, purine, or the like.

Exemplary of the 8- to 13-membered bicyclic or tricyclic ring systems having a N atom at the bridgehead and optionally containing 1, 2 or 3 additional heteroatoms selected from N, O or S included in the term as designated herein are the following ring systems wherein W is NR, O or SR; and R' is H or an optional substituent as described hereinbelow:
While shown without respect to stereochemistry, compounds of formula I include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center.

Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention. The compounds of this invention may contain one or more asymmetric centers and may thus give rise to optical isomers and diastereomers. The present invention includes such optical isomers and diastereomers; as well as the racemic and resolved, enantiomerically pure R and S stereoisomers; as well as other mixtures of the R and S stereoisomers and pharmaceutically acceptable salts thereof. Where a stereoisomer is preferred, it may in some embodiments be provided substantially free of the corresponding enantiomer. Thus, an enantiomer substantially free of the corresponding enantiomer refers to a compound that is isolated or separated via separation techniques or prepared free of the corresponding enantiomer. "Substantially free", as used herein, means that the compound is made up of a significantly greater proportion of one stereoisomer, preferably less than about 50%, more preferably less than about 75%, and even more preferably less than about 90%.

Formula I structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structure except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by a 13C— or 15N-enriched carbon are within the scope of this invention.

The compounds of the present invention may be converted to salts, in particular pharmaceutically acceptable salts using art recognized procedures. Suitable salts with bases are, for example, metal salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, thiomorpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower alkylamine, for example ethyl, tertiobutyl-, diethyl-, diisopropyl-, triethyl-, tributyl- or dimethylpropylamine, or a mono-, di-, or trihydroxy lower alkylamine, for example mono-, di- or triethanolamine. Internal salts may furthermore be formed. The term "pharmaceutically acceptable salt", as used herein, refers to salts derived from organic and inorganic acids such as, for example, acetic, propionic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, phthalic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, naphthalenesulfonic, benzenesulfonic, toluenesulfonic, camphorsulfonic, and similarly known acceptable acids when a compound of this invention contains a basic moiety.

Compounds of the invention include esters, carbamates or other conventional prodrug forms, which in general,
are functional derivatives of the compounds of the invention and which are readily converted to the inventive active moiety in vivo. Correspondingly, the method of the invention embraces the treatment of the various conditions described hereinabove with a compound of formula I or with a compound which is not specifically disclosed but which, upon administration, converts to a compound of formula I in vivo.

[0056] Advantageously, the present invention also provides a convenient and effective process for the preparation of a compound of formula I wherein \(R_2 \) is other than H (Ia) which comprises reacting a compound of formula II with at least two molar equivalents of an oxidizing agent, optionally in the presence of a solvent, to give the compound of formula Ia. The process is shown hereinbelow in flow diagram I wherein \(R_2 \) is other than H.

[FLOW DIAGRAM I]

[0057] Oxidizing agents suitable for use in the process of the invention include potassium peroxymonosulfate, peracetic acid, perbenzoic acid, chromium trioxide, t-butylperoxide, preferably potassium peroxymonosulfate, or the like, or a mixture thereof.

[0058] Solvents suitable for use in the process of the invention include solvents such as alkanols, i.e., methanol, ethanol, propanol or the like, water, acetone, chloroform, or the like, or a mixture thereof.

[0059] Compounds of formula II may be prepared using conventional synthetic methods and, if required, standard isolation or separation techniques. For example, compounds of formula II wherein \(R_2 \) is H (Ila) may be prepared by sequentially reacting a 4-chloroheterocyclic compound of formula III with magnesium to form the corresponding Grignard intermediate and reacting said intermediate with an orthofluorobenzoyl chloride of formula IV to give the ketone of formula V; reacting the formula V ketone with hydrazine to give the indazole of formula VI; and reacting the formula VI indazole with a thiol of formula VII in the presence of a coupling agent, such as Cul, to give the desired compound of formula IIa. The reaction is shown in flow diagram II wherein X is Cl, Br or I.

[FLOW DIAGRAM II]

[0060] Compounds of formula II wherein \(R_2 \) is other than H (Iib) may be prepared by reacting the formula IIa indazole with an appropriate alkylhalide, \(R_2 X \), in the presence of a base such as NaH to give the desired compound of formula IIb. The reaction is shown in flow diagram III wherein X is Cl, Br or I.
Compounds of formula Ila or IIb may be converted to compounds of formula Ia using the process described hereinabove in flow diagram I.

Compounds of formula I wherein R₂ is H may be prepared by dealkylating the formula Ia compound using conventional dealkylation techniques such as treatment with 1-chloroethyl chloroformate, vinyl chloroformate, pyridinium bromide or the like, or debenzylation via hydrogenation or any standard method known to remove an alkyl moiety from a ring nitrogen atom.

Advantageously, the formula I compounds of the invention are useful for the treatment of CNS disorders related to or affected by the 5-HT6 receptor including motor, mood, personality, behavioral, psychiatric, cognitive, neurodegenerative, or the like disorders, for example Alzheimer’s disease, Parkinson’s disease, attention deficit disorder, anxiety, epilepsy, depression, obsessive compulsive disorder, sleep disorders, neurodegenerative disorders (such as anorexia or bulimia), schizophrenia, memory loss, disorders associated withdrawal from drug or nicotine abuse, or the like in certain gastrointestinal disorders such as irritable bowel syndrome. Accordingly, the present invention provides a method for the treatment of a disorder of the central nervous system related to or affected by the 5-HT6 receptor in a patient in need thereof which comprises providing said patient a therapeutically effective amount of a compound of formula I as described hereinabove. The compounds may be provided by oral or parenteral administration or in any common manner known to be an effective administration of a therapeutic agent to a patient in need thereof.

The term “providing” as used herein with respect to providing a compound or substance embraced by the invention, designates either directly administering such a compound or substance, or administering a prodrug, derivative or analog which forms an equivalent amount of the compound or substance within the body.

The inventive method includes: a method for the treatment of schizophrenia; a method for the treatment of a disease associated with a deficit in memory, cognition, and/or learning or a cognitive disorder such as Alzheimer’s disease or attention deficit disorder; a method for the treatment of developmental disorders such as schizophrenia; Down’s syndrome, Fragile X syndrome, autism or the like; a method for the treatment of behavioral disorders, e.g., anxiety, depression, or obsessive compulsive disorder; a method for the treatment of motion or motor disorders such as Parkinson’s disease or epilepsy; a method for the treatment of a neurodegenerative disorder such as stroke or head trauma or withdrawal from drug addiction including addiction to nicotine, alcohol, or other substances of abuse, or any other CNS disease or disorder associated with or related to the 5-HT6 receptor.

In one embodiment, the present invention provides a method for treating attention deficit disorders (ADD, also known as Attention Deficit Hyperactivity Disorder or ADHD) in both children and adults. Accordingly, in this embodiment, the present invention provides a method for treating attention deficit disorders in a pediatric patient.

The present invention therefore provides a method for the treatment of each of the conditions listed above in a patient, preferably in a human, said method comprises providing said patient a therapeutically effective amount of a compound of formula I as described hereinabove. The compounds may be provided by oral or parenteral administration or in any common manner known to be an effective administration of a therapeutic agent to a patient in need thereof.

The therapeutically effective amount provided in the treatment of a specific CNS disorder may vary according to the specific condition(s) being treated, the size, age and response pattern of the patient, the severity of the disorder, the judgment of the attending physician and the like. In general, effective amounts for daily oral administration may be about 0.01 to 1,000 mg/kg, preferably about 0.5 to 500 mg/kg and effective amounts for parenteral administration may be about 0.1 to 100 mg/kg, preferably about 0.5 to 50 mg/kg.

In actual practice, the compounds of the invention are provided by administering the compound or a precursor thereof in a solid or liquid form, either neat or in combination with one or more conventional pharmaceutical carriers or excipients. Accordingly, the present invention provides a pharmaceutical composition which comprises a pharmaceutically acceptable carrier and an effective amount of a compound of formula I as described hereinabove.

In one embodiment, the invention relates to compositions comprising at least one compound of formula I, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers, excipients, or diluents. Such compositions include pharmaceutical compositions for treating or controlling disease states or conditions of the central nervous system. In certain embodiments, the compositions comprise mixtures of one or more compounds of formula I.

In certain embodiments, the invention relates to compositions comprising at least one compound of formula I, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers, excipients, or diluents. Such compositions are prepared in accordance with accept-
able pharmaceutical procedures. Pharmaceutically acceptable carriers are those carriers that are compatible with the other ingredients in the formulation and are biologically acceptable.

[0072] The compounds of formula I may be administered orally or parenterally, neat, or in combination with conventional pharmaceutical carriers. Applicable solid carriers can include one or more substances that can also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, and disintegrating agents, or encapsulating materials. In powders, the carrier is a finely divided solid that is in admixture with the finely divided active ingredient. In tablets, the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methylcellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidone, low melting waxes and ion exchange resins.

[0073] In certain embodiments, a compound of formula I is provided in a disintegrating tablet formulation suitable for pediatric administration.

[0074] Liquid carriers can be used in preparing solutions, suspensions, emulsions, syrups and elixirs. The active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both, or a pharmaceutically acceptable oil or fat. The liquid carrier can contain other suitable pharmaceutical additives such as, for example, solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators. Suitable examples of liquid carriers for oral and parenteral administration include water (particularly containing additives as above, e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration, the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration. The liquid carrier for pressurized compositions can be halogenated hydrocarbon or other pharmaceutically acceptable propellant.

[0075] In certain embodiments, a liquid pharmaceutical composition is provided wherein said composition is suitable for pediatric administration. In other embodiments, the liquid composition is a syrup or suspension.

[0076] Liquid pharmaceutical compositions that are sterile solutions or suspensions can be administered by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. Compositions for oral administration can be in either liquid or solid form.

[0077] The compounds of formula I may be administered rectally or vaginally in the form of a conventional suppository. For administration by intranasal or intrabronchial inhalation or insufflation, the compounds of formula I can be formulated into an aqueous or partially aqueous solution, which can then be utilized in the form of an aerosol. The compounds of formula I can also be administered transdermally through the use of a transdermal patch containing the active compound and a carrier that is inert to the active compound, is non-toxic to the skin, and allows delivery of the agent for systemic absorption into the blood stream via the skin. The carrier can take any number of forms such as creams and ointments, pastes, gels, and occlusive devices. The creams and ointments can be viscous liquid or semisolid emulsions of either the oil-in-water or water-in-oil type. Pastes comprised of absorbent powders dispersed in petroleum or hydrophilic petroleum containing the active ingredient can also be suitable. A variety of occlusive devices can be used to release the active ingredient into the blood stream such as a semipermeable membrane covering a reservoir containing the active ingredient with or without a carrier, or a matrix containing the active ingredient. Other occlusive devices are known in the literature.

[0078] Preferably the pharmaceutical composition is in unit dosage form, e.g. as tablets, capsules, powders, suspensions, emulsions, granules, or suppositories. In such form, the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient; the unit dosage forms can be packaged compositions, for example, packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids. The unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form.

[0079] The therapeutically effective amount of a compound of formula I provided to a patient will vary depending upon what is being administered, the purpose of the administration, such as prophylaxis or therapy, the state of the patient, the manner of administration, and the like. In therapeutic applications, compounds of formula I are provided to a patient suffering from a condition in an amount sufficient to treat or at least partially treat the symptoms of the condition and its complications. An amount adequate to accomplish this is a "therapeutically effective amount" as described previously herein. The dosage to be used in the treatment of a specific case must be subjectively determined by the attending physician. The variables involved include the specific condition and the size, age, and response pattern of the patient. The treatment of substance abuse follows the same method of subjective drug administration under the guidance of the attending physician. Generally, a starting dose is about 5 mg per day with gradual increase in the daily dose to about 150 mg per day, to provide the desired dosage level in the patient.

[0081] For a more clear understanding, and in order to illustrate the invention more clearly, specific examples thereof are set forth hereinbelow. The following examples are merely illustrative and are not to be understood as limiting the scope and underlying principles of the invention in any way. The term HNMR designates proton nuclear magnetic resonance. The term MS designates mass spectrum. The terms THF, EtOAc and DMSO designate tetrahydrofuran, ethyl acetate and dimethylsulfoxide, respectively. All chromatography is performed using SiO2 as support. Unless otherwise noted, all parts are by weight.
EXAMPLE 1
Preparation of 4-(2-Fluoro-5-iodobenzoyl)-1-methylpiperidine

A stirred suspension of Mg turnings (3.82 g, 157 mmol) in dry THF, under N₂, was treated with 2-3 drops of dibromoethane, followed by slow addition of freshly-distilled 4-chloro-N-methylpiperidine (7.00 g, 52.4 mmol) in THF. The reaction mixture was heated at 70°C for 3 h, cooled to room temperature, added to 2-fluoro-5-iodobenzoyl chloride (10.1 g, 35.6 mmol) in THF at -78°C, warmed to room temperature over 1 h and concentrated in vacuo. The resultant residue was dissolved in EtOAc, washed with brine, dried over Na₂SO₄ and concentrated in vacuo. This residue was purified by chromatography (0-10% CH₂Cl₂ in CH₃OH as eluent) to provide the title compound (6.50 g, 53%), characterized by HNMR and mass spectral analyses.

EXAMPLE 2
Preparation of 5-Iodo-3-(1-methylpiperidin-4-yl)-1H-indazole

[0085] A mixture of 4-(2-fluoro-5-iodobenzoyl)-1-methylpiperidine (4.20 g, 12.1 mmol), anhydrous NH₂NH₂ (30 mL), and DMSO (15 mL) was heated at 100°C overnight, diluted with ice water and filtered. The filtercake was washed with water and dried in vacuo to provide the title compound (4.1 g, 99%), characterized by HNMR and mass spectral analyses.

EXAMPLE 3
Preparation of 3-(1-Methylpiperidin-4-yl)-5-(1-naphthylsulfonyl)-1H-indazole

[0086]
EXAMPLE 4
Preparation of 3-(1-Methylpiperidin-4-yl)-5-(1-naphthylsulfonyl)-1H-indazole hydrochloride

[0087] A mixture of 5-iodo-3-(1-methylpiperidin-4-yl)-1H-indazole (0.32 g, 0.94 mmol), 1-naphthylthiol (0.15 g, 0.94 mmol), CuI (0.018 g, 0.09 mmol), ethylene glycol (0.116 g, 1.88 mmol), and KC\textsubscript{3}CO\textsubscript{3} (0.259 g, 1.88 mmol) in iPrOH (1.3 mL) was heated at 90° C. overnight, diluted with 20% CH\textsubscript{3}OH in CH\textsubscript{2}Cl\textsubscript{2}, passed through a pad of silica gel, concentrated, and chromatographed, using 15% MeOH in CH\textsubscript{2}Cl\textsubscript{2} as eluent, to provide the title compound (90 mg, 26%), characterized by NMR and mass spectral analyses.

EXAMPLES 5-14
Preparation of 5-Arylsulfonyl-3-(1-methylpiperidin-4-yl)-1H-indazole Hydrochloride Compounds

[0090] Using essentially the same procedures described in Examples 3 and 4 and employing the desired thiol in step 1, the compounds shown in Table I were obtained and identified by HNMR and mass spectral analyses.

TABLE I

<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>R1</th>
<th>[M + H]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>phenyl</td>
<td>356</td>
</tr>
<tr>
<td>6</td>
<td>3-fluorophenyl</td>
<td>374</td>
</tr>
<tr>
<td>7</td>
<td>3-chlorophenyl</td>
<td>390</td>
</tr>
<tr>
<td>8</td>
<td>4-fluorophenyl</td>
<td>374</td>
</tr>
<tr>
<td>9</td>
<td>3-methylphenyl</td>
<td>370</td>
</tr>
<tr>
<td>10</td>
<td>4-(trifluoromethyl)phenyl</td>
<td>424</td>
</tr>
<tr>
<td>11</td>
<td>4-(trifluoromethoxy)phenyl</td>
<td>440</td>
</tr>
<tr>
<td>12</td>
<td>4-(isopropyl)phenyl</td>
<td>398</td>
</tr>
<tr>
<td>13</td>
<td>2-naphthyl</td>
<td>406</td>
</tr>
<tr>
<td>14</td>
<td>4-(methoxy)phenyl</td>
<td>386</td>
</tr>
</tbody>
</table>

EXAMPLE 15
Evaluation of 5-HT\textsubscript{6} Binding Affinity of Test Compounds

[0092] The affinity of test compounds for the serotonin 5-HT\textsubscript{6} receptor was evaluated in the following manner. Cultured Hela cells expressing human cloned 5-HT\textsubscript{6} receptors
TABLE II

<table>
<thead>
<tr>
<th>Test Compound (Example No.)</th>
<th>5-HT₆ Binding Ki (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.8</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>13</td>
<td>9.6</td>
</tr>
<tr>
<td>14</td>
<td>123</td>
</tr>
</tbody>
</table>

1-9. (canceled)

10. A method for the treatment of a central nervous system disorder related to or affected by the 5-HT₁₆ receptor in a patient in need thereof which comprises providing to said patient a therapeutically effective amount of a compound of formula I

![Chemical Structure](attachment:chemical_structure.png)

wherein
R is H, halogen or an optionally substituted alkyl or haloalkyl group;
R₁ is an aryl or heteroaryl group each group optionally substituted or an optionally substituted 8- to 13-membered bicyclic or tricyclic ring system having a N atom at the bridgehead and optionally containing 1, 2 or 3 additional heteratoms selected from N, O or S;
R₂ is H or an alkyl, cycloalkyl, aryl or heteroaryl group each group optionally substituted;
R₃ and R₄ are each independently H, or an optionally substituted alkyl group;
R₅ is 0 or an integer of 1 or 2; and
R₆ is H or an alkyl, alkenyl, alkynyl or cycloalkyl, group each group optionally substituted; or a stereoisomer thereof or a pharmaceutically acceptable salt thereof.

11. The method according to claim 10 wherein said disorder is a cognitive disorder, a developmental disorder or a neurodegenerative disorder.

12. The method according to claim 11 wherein said disorder is a cognitive disorder.

13. The method according to claim 11 wherein said disorder is selected from the group consisting of: a learning disorder; attention deficit disorder; Down’s syndrome, Fragile X syndrome or autism.

14. The method according to claim 11 wherein said disorder is stroke or head trauma.

15-20. (canceled)
21. The method according to claim 10 wherein said disorder is cognitive impairment in Alzheimer's patients.
22. The method according to claim 10 wherein n is 1.
23. The method according to claim 10 wherein R₁ is an optionally substituted phenyl or naphthyl group.
24. The method according to claim 10 wherein R, R₃ and R₄ are H.
25. The method according to claim 10 wherein R₂ is H or methyl and R₃ and R₄ are H.

26. The method according to claim 21 wherein n is 1.
27. The method according to claim 21 wherein R₁ is an optionally substituted phenyl or naphthyl group.
28. The method according to claim 21 wherein R, R₃ and R₄ are H.
29. The method according to claim 21 wherein R₂ is H or methyl and R₃ and R₄ are H.

* * * * *