20167172195 AT I 000 OO0 OO0 0

<

W

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2016/172195 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Filing Date:
20 April 2016 (20.04.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/150,191 20 April 2015 (20.04.2015) US
62/150,188 20 April 2015 (20.04.2015) US
62/198,958 30 July 2015 (30.07.2015) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, M/S Sop7, Redwood
Shores, California 94065 (US).

Inventors: HEGDE, Vidya; c/o Oracle India Pvt Ltd.,
Lexington Tower, Prestige Street, St. John's Woods, No.
18, 2nd Cross Road, Chikka Audugodi, Bangalore 560029
(IN). DE LAVARENE, Jean; 16 rue du Mal de Lattre de
Tassigny, 78000 Versailles (FR). SURBER, Douglas; c/o
ORACLE INTERNATIONAL CORPORATION, 500 Or-
acle Parkway, M/S 5op7, Redwood Shores, California
94065 (US). DILMAN, Mark; ¢/o ORACLE INTERNA-
TIONAL CORPORATION, 500 Oracle Parkway, M/S
Sop7, Redwood Shores, California 94065 (US). NOVAK,
Leonid; c¢/o ORACLE INTERNATIONAL CORPORA-

27 October 2016 (27.10.2016) WIPOIPCT
International Patent Classification:
GO6F 17/30 (2006.01)
International Application Number:
PCT/US2016/028420

(74

(8D

(84)

TION, 500 Oracle Parkway, M/S Sop7, Redwood Shores,
California 94065 (US). HU, Wei; ¢/o ORACLE INTER-
NATIONAL CORPORATION, 500 Oracle Parkway, M/S
Sop7, Redwood Shores, California 94065 (US). SHIV-
ARUDRAIAH, Ashok; ¢/o0 ORACLE INTERNATIONAL
CORPORATION, 500 Oracle Parkway, M/S Sop7, Red-
wood Shores, California 94065 (US). ZHOU, Tong; c/o
ORACLE INTERNATIONAL CORPORATION, 500 Or-
acle Parkway, M/S 5op7, Redwood Shores, California
94065 (US). TARANOYV, Ilya; ¢/o ORACLE INTERNA-
TIONAL CORPORATION, 500 Oracle Parkway, M/S
Sop7, Redwood Shores, California 94065 (US).

Agents: MEYER, Sheldon R. et al,; TUCKER ELLIS
LLP, One Market Plaza, Steuart Tower, Suite 700, San
Francisco, California 94105 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR PROVIDING ACCESS TO A SHARDED DATABASE USING A CACHE AND A
SHARD TOPOLOGY

“Application Sever / Database
Emvironment 110

Connection Pool Logie 150

Poo [eg. UCP) 160

Connection to

Connectiona-in-Usc 162

Alog. Cruk AT
Bog. Crunk 02)

Client Application
180

Connection request with
Shard Key and
‘Super Shard Key
(6. vith shard key X)
212 ™

Idle Connectans 164

L1

layer enables
Tast key path
access to
shardichunk
214

Database Driver (2.g., JOBG) 1-2
Shard Topo ogy Layer 210

Shard Key Rangs
Key X

y
Chunk 02
Connaction B

Shard topology

_J-snard s Chunkc 174

| Sharded Database 170}
L Database Region A e.g., DB East) 130
Shar
Diregtor | e
Listener fe A
138 DBET 132 DBE2 134
[Shard A [Sherd B
T Chunk A1 Chunk 31
Chunk A2 Chunk 33
chunk 3r
— ———
Database Region B (e.g., DB West) 140]
Ty Yy
BT 142 DBW2 114
[Shard O [Shard D
™ g Chunk G1 [chunk D1
[P{ctunk c2 Chunk D2
o
ireolor
Listoner Chunk n [Chunk Dn
148
~— -
| T

FIGURE 6

(57) Abstract: In accordance with an embodiment, the system enables access to a sharded database. A shard-aware client application
connecting to a sharded database can use a connection pool (e.g., a Universal Connection Pool, UCP), to store or access connections
to different shards or chunks of the sharded database within a shared pool. As new connections are created, a shard topology layer
can be built at the database driver layer, which learns and caches shard key ranges to locations of shards, and enables subsequent
connection requests from a client application to use a fast key path access to the appropriate shard or chunk. A connection pool and
database driver can be configured to allow a client application to provide a shard key, either during connection checkout or at a later
time; recognize shard keys specified by the client application; and enable connection by the client application to a particular shard or
chunk.

WO 2016/172195 A1 AT 00T 00 A A

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, S, SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, .

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, Yublished:

LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, — with international search report (Art. 21(3))

WO 2016/172195 PCT/US2016/028420

SYSTEM AND METHOD FOR PROVIDING ACCESS TO A SHARDED
DATABASE USING A CACHE AND A SHARD TOPOLOGY

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but otherwise

reserves all copyright rights whatsoever.

Claim of Priority:

[0001] This application claims the benefit of priority to U.S. Provisional Patent
Applications titled “SYSTEM AND METHOD FOR PROVIDING DIRECT ACCESS TO A
SHARDED DATABASE”, Application No. 62/150,191, filed April 20, 2015; “SYSTEM AND
METHOD FOR PROVIDING DIRECT ACCESS TO A SHARDED DATABASE”, Application No.
62/198,958, filed July 30, 2015; and “SYSTEM AND METHOD FOR PROVIDING ACCESS TO
A SHARDED DATABASE USING A CACHE AND A SHARD TOPOLOGY”, Application No.
62/150,188, filed April 20, 2015; each of which above applications are herein incorporated by

reference.

Field of Invention:

[0002] Embodiments of the invention are generally related to application servers and
databases, and are particularly related to systems and methods for providing access to a

sharded database.

Background:
[0003] Modern web-oriented software applications face increasing challenges with

regard to scalability, including the need to handle extremely large volumes of data. For
example, within a mobile chat system, the database tables that are needed to process
messages have grown in size dramatically, such that the volume of a single table can become a
limiting factor in the scalability of a particular application. A common approach to addressing
this type of problem is the use of sharding, in which data is presented as multiple smaller
databases or shards. These are some examples of the types of environments in which

embodiments of the invention can be used.

WO 2016/172195 PCT/US2016/028420

Summary:
[0004] In accordance with an embodiment, described herein are systems and methods

for providing direct access to a sharded database. A shard director or listener operates to
provide access by software client applications to database shards. A connection pool (e.g., a
Universal Connection Pool, UCP) and database driver (e.g., a Java Database Connectivity,
JDBC, component) can be configured to allow a client application to provide a shard key, either
during connection checkout or at a later time; recognize shard keys specified by the client
application; and enable connection by the client application to a particular shard or chunk. The
approach enables efficient re-use of connection resources, and faster access to appropriate
shards.

[0005] In accordance with an embodiment, the system enables access to a sharded
database using a cache and a shard topology. A shard-aware client application connecting to a
sharded database can use a connection pool (e.g., UCP), to store or access connections to
different shards or chunks of the sharded database within a shared pool. As new connections
are created, a shard topology layer can be built at the database driver layer, which learns and
caches shard key ranges to locations of shards. The shard topology layer enables subsequent
connection requests from a client application to use a fast key path access to the appropriate
shard or chunk.

[0006] In accordance with an embodiment, if there are no available connections in the
connection pool to the particular shard or chunk, then an attempt can be made to repurpose an
existing available connection to another chunk, and re-use that connection.

[0007] The above and additional embodiments are described in further detail below.

Brief Description of the Figures:

[0008] Figure 1 illustrates a system for enabling direct access to a sharded database, in
accordance with an embodiment.

[0009] Figure 2 further illustrates a system for enabling direct access to a sharded
database, in accordance with an embodiment.

[0010] Figure 3 further illustrates a system for enabling direct access to a sharded
database, in accordance with an embodiment.

[0011] Figure 4 illustrates a process for enabling direct access to a sharded database,
in accordance with an embodiment.

[0012] Figure 5 illustrates a system for enabling access to a sharded database using a
cache and a shard topology, in accordance with an embodiment.

[0013] Figure 6 further illustrates a system for enabling access to a sharded database
2

WO 2016/172195 PCT/US2016/028420

using a cache and a shard topology, in accordance with an embodiment.

[0014] Figure 7 further illustrates a system for enabling access to a sharded database
using a cache and a shard topology, in accordance with an embodiment.

[0015] Figure 8 illustrates a sequence diagram that describes the flow when a
connection pool is used to create and maintain a pool of connections to a sharded database, in
accordance with an embodiment.

[0016] Figure 9 illustrates a sequence diagram that describes the flow when
applications use a database driver, without the connection pool, to fetch connections to a
sharded database, in accordance with an embodiment.

[0017] Figure 10 illustrates a process for enabling access to a sharded database using

a cache and a shard topology, in accordance with an embodiment.

[0018] Figure 11 illustrates a database topology class design, in accordance with an
embodiment.
[0019] Figure 12 illustrates a service topology class design, in accordance with an
embodiment.

Detailed Description:

[0020] As described above, modern web-oriented software applications face increasing
challenges with regard to scalability, including the need to handle extremely large volumes of
data, such that the volume of a single table can become a limiting factor in the scalability of a
particular application. A common approach to addressing this type of problem is the use of
sharding, in which data is presented as multiple smaller databases or shards. To provide
support for such environments, in accordance with various embodiments, described herein are

systems and methods for providing access to a sharded database.

Sharded Databases

[0021] In accordance with an embodiment, sharding is a database-scaling technique
which uses a horizontal partitioning of data across multiple independent physical databases.
The part of the data which is stored in each physical database is referred to as a shard. From
the perspective of a software client application, the collection of all of the physical databases
appears as a single logical database.

[0022] In accordance with an embodiment, a database table can be partitioned using a
shard key (SHARD_KEY), for example as one or more columns that determine, within a
particular shard, where each row is stored. A shard key can be provided in a connect string or

description as an attribute of connect data (CONNECT_DATA).
3

WO 2016/172195 PCT/US2016/028420

[0023] Shard grouping, an additional level of sharing which provides a form of user-
controlled data partitioning using a shard group key (SHARDGROUP_KEY), can optionally be
used in distributing data across database groups (DBGROUPS), for example:

(DESCRIPTION=(...) (CONNECT DATA=(SERVICE NAME=ORCL (SHARD KEY=...)
(SHARDGROUP KEY=...)))

[0024] Examples of shard keys can include a VARCHARZ2, CHAR, DATE, NUMBER, or
TIMESTAMP in the database. It is the responsibility of the user to present a shard key
compliant with the national language support formatting specified in the database. In
accordance with an embodiment, a sharded database can also accept connections without a
shard key or shard group key.

[0025] In accordance with an embodiment, to reduce the impact of resharding on
system performance and data availability, each shard can be subdivided into smaller pieces or
chunks. Each chunk acts as a unit of resharding that can be moved from one shard to another.
Chunks also simplify routing, by adding a level of indirection to the shard key mapping.

[0026] For example, each chunk can be automatically associated with a range of shard
key values. A user-provided shard key can be mapped to a particular chunk, and that chunk
mapped to a particular shard. If a database operation attempts to operate on a chunk that is not
existent on a particular shard, then an error will be raised. When shard groups are used, each
shard group is a collection of those chunks that have a specific value of shard group identifier.
[0027] In accordance with an embodiment, a shard-aware client application can work
with sharded database configurations, including the ability to connect to one or multiple
database shards in which the data is partitioned based on one or more sharding methods. Each
time a database operation is required, the client application can determine the shard to which it
needs to connect.

[0028] In accordance with an embodiment, a sharding method can be used to map
shard key values to individual shards. Different sharding methods can be supported, for
example: hash-based sharding, in which a range of hash values is assigned to each chunk, so
that upon establishing a database connection the system applies a hash function to a given
value of the sharding key, and calculates a corresponding hash value which is then mapped to a
chunk based on the range to which that value belongs; range-based sharding, in which a range
of shard key values is assigned directly to individual shards; and list-based sharding, in which
each shard is associated with a list of shard key values.

[0029] In accordance with an embodiment, a database can also be associated with one

4

WO 2016/172195 PCT/US2016/028420

or more supershards. The association of a supershard with a database allows an additional
constraint to be put in the records stored in the database. For example, within a particular
database table, if a location is identified as a shard group identifier, then a sharding method can
be used to ensure that a data center where records for a particular customer are stored is the
one closest in proximity to the location specified by that customer.

[0030] In accordance with an embodiment, resharding is the process of redistributing
data across the shards of a sharded database. Resharding is required in some situations, for
example when shards are added to or removed from a sharded database; to eliminate skew in
the data or workload distribution across shards; or to satisfy application requirements, for
example that certain data must be stored together.

[0031] In accordance with an embodiment, a global data services (GDS) component can
be used to provide a scalability, availability, and manageability framework for use with muilti-
database environments. GDS can operate with one or more global service manager (GSM)
listeners, to present a multi-database configuration to clients as a single logical database,
including support for failover, load balancing, and centralized management for database
services. For example, a client request can be routed to an appropriate database based on
availability, load, network latency, replication lag, or other parameters. A GDS pool provides a
set of replicated databases that offer a global service, so that, for example, the databases in a
GDS pool can be located in multiple data centers across different regions. A sharded GDS pool
contains the shards of a sharded database, together with their replicas. From the perspective of

a database client, a sharded GDS pool appears as a single sharded database.

1. Direct Access to Sharded Databases

[0032] In accordance with an embodiment, described herein are systems and methods
for providing direct access to a sharded database. A shard director or listener component
operates to provide access by software client applications to database shards. A connection
pool (e.g., a Universal Connection Pool, UCP) and database driver (e.g., a Java Database
Connectivity, JDBC, component) can be configured to allow a client application to provide a
shard key, either during connection checkout or at a later time; recognize shard keys specified
by the client application; and enable connection by the client application to a particular shard or
chunk. The approach enables efficient re-use of connection resources, and faster access to
appropriate shards.

[0033] Figure 1 illustrates a system for enabling direct access to a sharded database, in
accordance with an embodiment.

[0034] As illustrated in Figure 1, in accordance with an embodiment of an application
5

WO 2016/172195 PCT/US2016/028420

server or database environment 110 which includes physical computer resources (e.g.,
processor/CPU, memory, network) 111, and a database driver (e.g., a JDBC component) 112, a
shard-aware client application connecting to a sharded database 120 can use a connection pool
component 160 (e.g., UCP) with associated connection pool logic 150, to store or access
connections to different shards or chunks of the sharded database, within a shared pool.

[0035] In the exemplary environment illustrated in Figure 1, the sharded database can
comprise a first database region A (here indicated as DB East, DBE) 130, including sharded
database instances “DBE 1”7 132, with shard A stored as chunks A1, A2, ... An; and “DBE 2”
134, with shard B stored as chunks B1, B2, ... Bn.

[0036] As further illustrated in Figure 1, a second database region B (here indicated as
DB West, DBW) 140, includes sharded database instances “DBW 1” 142, with shard C stored
as chunks C1, C2, ... Cn; and “DBW 2” 144, with shard D stored as chunks D1, D2, ... Dn.
[0037] In accordance with an embodiment, each database region or group of sharded
database instances can be associated with a shard director or listener component (e.g., a GSM
listener, or another type of listener) that operates to provide access by software client
applications to database shards. For example, a shard director or listener 138 can be
associated with first database region A, and another shard director or listener 148 can be
associated with second database region B.

[0038] In accordance with an embodiment, a client application can provide one or more
shard keys to the connection pool (e.g., UCP) during the connection request; and, based on the
one or more shard keys, the connection pool can route the connection request to the correct or
appropriate shard.

[0039] In accordance with an embodiment, the connection pool maintains a plurality of
connections-in-use 162, and idle connections 164. The connection pool can identify a
connection to a particular shard or chunk by its shard keys, and allow re-use of a connection
when a request for a same shard key is received from a client.

[0040] For example, as illustrated in Figure 1, a connection to a chunk A1 can be used
to connect 174 to that chunk. If there are no available connections in the pool to the particular
shard or chunk, the system can attempt to repurpose an existing available connection to
another shard or chunk, and re-use that connection. The data distribution across the shards
and chunks in the database can be made transparent to the user, which also minimizes the
impact of re-sharding of chunks on the user.

[0041] Figure 2 further illustrates a system for enabling direct access to a sharded
database, in accordance with an embodiment.

[0042] As illustrated in Figure 2, when a shard-aware client application 180 provides one
6

WO 2016/172195 PCT/US2016/028420

or more shard keys 182 to the connection pool (e.g., UCP), in association with a connection
request; then if the connection pool or database driver already has a mapping for the shard
keys, the connection request can be directly forwarded to the appropriate shard and chunk 184,
in this example to chunk C2.

[0043] Figure 3 further illustrates a system for enabling direct access to a sharded
database, in accordance with an embodiment.

[0044] As illustrated in Figure 3, when a shard-aware client application does not provide
a shard key in association with the connection request, or if the connection pool (e.g., UCP) or
database driver (e.g., JDBC) does not have a mapping for a provided shard key; then the
connection request can be forwarded to an appropriate shard director or listener (e.g., a
GDS/GSM listener) 186, including in this example to the shard director or listener associated
with the second database region B.

[0045] Figure 4 illustrates a process for enabling direct access to a sharded database,
in accordance with an embodiment.

[0046] As illustrated in Figure 4, at step 192, a database is provided having a plurality of
shards and associated with one or more database drivers, and one or more connection pools,
which together provide access by client applications to data stored at the database.

[0047] At step 194, one or more of the database driver or connection pool are
configured to enable a client application to provide a shard key information during checkout of a
connection to the database, or at a later point in time, which is then used to provide access by
the client application to an appropriate shard of the database.

[0048] At step 196, the database driver and/or connection pool recognize shard keys
specified by the client application, and enable the client application to connect to a specific
shard and chunk associated with that client application.

[0049] At step 198, the connection pool can identify a connection by its shard keys, and
allow re-use of connections when a request for a same shard key is received from a client

application.

Building the Shard Key for a Connection Request

[0050] In accordance with an embodiment, shard-aware client applications can identify
and build shard keys, and optionally a shard group, needed to fetch a connection to the sharded
database, for example using a ShardKey or similar interface and builder which enables

compound shard keys to be prepared with different data types:

subkey(Object subkey, java.sgl.SQLTYPE subkeyDataType)
7

WO 2016/172195 PCT/US2016/028420

[0051] In accordance with an embodiment, multiple invocations can be made to the
subkey(...) method on the ShardKey builder, to build a compound shard key, where each
subkey can be of different data type. The data type can be defined using an enumerator

oracle.jdbc.OracleType, for example as a string and date compound shard key:

ShardKey shardKey = datasource
. createShardKeyBuilder ()
. subkey(<string>, oracle.jdbc.OracleType.VARCHARZ)
. subkey (<date>, oracle.jdbc.OracleType.DATE)
. build():;

[0052] In accordance with an embodiment, a select set of data types can be supported
as keys, and corresponding validations provided in the builder to prevent unsupported data
types. Exemplary data types can include OracleType.VARCHARZ2; OracleType.CHAR,;
OracleType.NVARCHAR; OracleType.NCHAR; OracleType. NUMBER; OracleType.FLOAT,
OracleType.DATE; OracleType. TIMESTAMP; OracleType. TIMESTAMP WITH LOCAL TIME
ZONE; and OracleType.RAW.

Updating a Connect String with Shard Key Values

[0053] In accordance with an embodiment, when a connection is created using a
listener for a connection request including one or more shard keys, the ShardKey interface
converts the shard key to a corresponding BASEG4 encoded string, so that the connect data will

have the following two fields that are relevant to the database driver:

SHARD KEY B64 for base64 encoded binary representation of shard key

GROUP_KEY B64 for base64 encoded binary representation of group key

[0054] Fields for base64-encoded values (*_B64) can have the following format:

... (CONNECT DATA=(SHARD KEY B64=[version] [type] [int literal]
[int literal] ... ,[base64 binaryl], [base64 binaryl],
[base6d binary]l,...))...

[0055] In accordance with an embodiment, the connect string starts with a header with

“version” number = 1, followed by a “type” whose value can be defined as shown in Table 1.
8

WO 2016/172195 PCT/US2016/028420

0 The string doesn't contain hash value. Character values are encoded in

1 The string contains hash value. AL32UTF8 (for varchar) and
AL16UTF16 (for nvarchar)

encodings.

2 The string doesn't contain hash value. Character values are encoded in

3 The string contains hash value. database encoding (which may be
specific for each column).

4 The string contains only hash value.

Table 1
[0056] In accordance with an embodiment, after the string type, a space-separated

value “type identifiers” are provided (as decimal integer literals), as shown in Table 2.

1 VARCHAR, NVARCHAR, [CHAR, NCHAR = 96]
2 NUMBER
12 DATE
23 RAW
180 TIMESTAMP
231 TIMESTAMP WITH LOCAL TIME ZONE
Table 2
[0057] In accordance with an embodiment, the header is terminated by a comma, and is

followed by a comma-separated list of base64 encoded values for each part of the compound
shard key, wherein the data types can be encoded as follows:

[0058] NUMBER, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH LOCAL
TIMEZONE: for these data types, a corresponding Oracle representation can be used to convert
them into corresponding byte arrays before B64 encoding.

[0059] RAW, VARCHAR, CHAR: for the input strings from the user for these data types,
the client can use AL32UTF8 character encoding before being B64 encoded.

[0060] NVARCHAR, NCHAR: for these data types, the AL16UTF16 encoding is

9

WO 2016/172195 PCT/US2016/028420

recommended.
[0061] For example, the key (“US”, “94002”) can be encoded as:

... (CONNECT DATA=(SHARD KEY B64=1 1 2,VVM=,0TQwMDI=))...

Connection Checkout from the Connection Pool with a Known Shard Key

[0062] In accordance with an embodiment, when a connection is borrowed from the
connection pool, a shard-aware client application can provide the shard key and the shard
group key using a connection builder as described above, which can be provided, for example,

with OracleDataSource and PoolDataSource:

Connection conn = dataSource
. createConnectionBuilder ()
. shardkey(<shard key>) //of type ShardKey
. shardGroupKey (<shard group key>)
. build()

[0063] In accordance with an embodiment, the above API’s ensure that the connection
created or borrowed from the pool is connected to the correct shard and chunk, including that:
[0064] (1) All operations on this connection will be limited to the shard and the chunk
specified by the key supplied during connection checkout; otherwise an error or exception will
be thrown back to the application. Race condition will also result in exception during connection
usage.

[0065] (2) The URL specified against this datasource should not already contain the
shard keys, when using a getConnection API that explicitly specify shard keys for the request;

else an exception will be returned back to the user.

Setting the Shard Key on an Existing or Checked-Out Connection

[0066] In accordance with an embodiment, a setShardKey or similar interface allows for
setting of a shard key on a connection. When the application has not been able to provide one
or more shard keys at the connection checkout time, the connection pool and database driver
(e.g., UCP/JDBC) can also support the use of an API at the connection level, for example in an

OracleConnection class:

connection.setShardKey (<shard key>,<shard group key>);

10

WO 2016/172195 PCT/US2016/028420

[0067] In accordance with an embodiment, the shard key and shard group key are of
type ShardKey. When the above is called on a connection, one of the following is possible:
[0068] (1) One or more shard keys supplied in setShardKey matches the shard and the
chunk that the connection was originally created on. In this case no further action is needed
and the connection can be used as is.

[0069] (2) The shard key specified by the setShardKey APl maps to a different “chunk”
but on the same shard on which the connection was originally created on. In this case it is
required to switch the connection to the correct chunk.

[0070] (3) The shard key specified by the setShardKey happens to be a different shard
from the one on which the connection has been created. Hence a switch of the underlying
physical connection to the correct shard is required before the connection can be used further.
[0071] In accordance with an embodiment, if the latter scenario is encountered when the
database driver (e.g., JDBC) is used directly, without the pool, then an error is returned to the
application indicating incorrect shard keys. The connection is still usable and can be used for
performing operations on the original chunk that it was connected to before the setShardKey
was called. If the setShardKey is successful, then all operation on this connection once the
shard key is set will be limited to the shard and the chunk specified by the key supplied during
setShardKey. Also, the application should ensure that there is no ongoing transaction on the
connection when the setShardKey is called. If not, then an exception is thrown to the
application indicating that setShardKey could not be completed.

[0072] In accordance with an embodiment, if a connection switch is imminent as in case
(3), or a service switch needs to be done as in case (2), then all the open result sets, statement,

large objects, streams, etc. on the connection, have to be closed.

Connection Checkout without providing Shard Keys

[0073] In accordance with an embodiment, when an application does not provide a
shard key at checkout from the connection pool or database driver (e.g., UCP/JDBC), before
using the connection to execute single-shard queries, the query is directed to a coordinator
shard that facilitates execution of such queries and returns the result to the application.

[0074] In accordance with an embodiment, once a connection is created through a
listener, the connection pool (e.g., UCP) will attempt to extract an actual “chunk name”
corresponding to the chunk, and “instance/shard name" on which the connection was created,
and use this information to identify a connection in the pool.

[0075] The chunk name and instance/shard name information will be present in the
11

WO 2016/172195 PCT/US2016/028420

context (SYS_CONTEXT) after connection creation, and can be updated if there is a “switch
chunk” operation on that connection at any point. The chunk information can also be made part
of a connection object in the pool, and can be used during lookup for best candidate connection
to be returned to user at checkout, and also for connection processing in response to system
status or notification events (e.g., from Oracle Fast Application Notification, FAN, or Runtime

Connection Load Balancing, RLB, environments).

Connection Selection during Connection Borrow in the Connection Pool

[0076] In accordance with an embodiment, for every connection checkout request from
the connection pool (e.g., UCP), the connection pool can use the chunk information stored with
each connection in the pool to determine a best possible matching connection to return to the
user in one of the following ways:

[0077] (1) Given the shard keys in the connection request, the connection pool can
attempt to look up the matching chunk name for the keys in the shard topology which has so far
been discovered by the pool. If the matching chunk name is not found, then the connection
request is forwarded to the listener for a new connection to be created.

[0078] (2) Else the chunk name can be used to fetch a list of instances on which the
chunk is present, using a connection selection algorithm, and a connection is chosen to one of
these instances. This will ensure that the connection is created to an instance on which the
chunk corresponding to the shard keys requested by the user.

[0079] (3) Once the connection is chosen, a chunk switch piggyback is made on the
connection specifying the chunk name and the shard keys to be used in the current session. If
a matching connection is not found, then a new connection is created by forwarding the request

to the listener.

Failover/Resharding Event Handling
[0080] In accordance with an embodiment, the connection pool (e.g., UCP) can

subscribe to failover events per service using a subscription string such as, for example:

("eventType=database/event/service/<service name>")

[0081] For sharding support, the OracleDBTopology and the connection pool (e.g.,
UCP) can subscribe to receive types of events which correspond to chunk movement or

splitting. The chunk level event subscription string can be, for example:

12

WO 2016/172195 PCT/US2016/028420

("eventType=database/event/service/chunk™)

[0082] The chunk name can be a part of this event body. When a first connection is
made to a particular chunk, the corresponding chunk name is read from the sys_context, and a
chunk event subscription can be made to receive all chunk related events. In accordance with

an embodiment, chunk subscription is not service based.

[0083] In accordance with an embodiment, any re-sharding effort or splitting of chunks
on the server side, will give rise to corresponding chunk down notification events which have the

chunk name specified in the event body, for example:

VERSION=1.0 event type=CHUNK chunk=<chunk name>
instance=<instance name> host=<host> database=<db name>
db domain=<db domain name> status=<UP|DOWN>

timestamp=<timestamp> timezone=<timezone>

[0084] In accordance with an embodiment, the connection pool (e.g. UCP) can update
its sharding topology to be in sync with the recent chunk event:
[0085] (1) The connection pool will remove the corresponding “instance” information

from the chunk placement information (i.e. the mapping of chunk to list of instances on which it

is present).
[0086] (2) The shard key information for the chunk is not removed from the topology.
[0087] (3) When the chunk comes up on a known instance, the instance information for

that chunk is added in the chunk placement table and the shard key topology cache updated
with the shard key information for that chunk if it has changed.

[0088] (4) If the chunk comes up on an unknown instance, then the instance information
is added to UCP topology and the chunk placement data and the entire shard key topology for
that instance is fetched and placed in the shard key topology cache of the connection pool.
[0089] (5) The chunk UP events are not processed by the connection pool.

[0090] In accordance with an embodiment, when there is a need to split the chunks in a

sharded database, the server will send the chunk Split events which will look like the following:

VERSION=1.0 event type=CHUNK chunk=<chunk name>
instance=<instance name> host=<host> database=<db name>
db domain=<db domain name> status=SPLIT timestamp=<timestamp>

timezone=<timezone> newchunk=<new chunkname>
13

WO 2016/172195 PCT/US2016/028420

[hash=<split boundary hash value>]

[0091] In accordance with an embodiment, hash is applicable only in cases of automatic
hash based sharding where the boundary corresponds to the high value of the first split chunk
and the low value of the second split chunk). The connection pool (e.g., UCP) will need to
process the chunk split event as follows:

[0092] (1) The instance name on which the split is received will be removed from the
chunk placement data.

[0093] (2) The chunk name is now updated with a new version, since the chunk is now
undergoing a split and the new chunks after split needs to be distinguished from the old chunk
on replicas where the chunk is yet to split.

[0094] (3) Both the shard topology table and chunk placement table are updated with
the new chunk name keeping all other data intact. This will ensure that the replicas that are yet
to undergo the split will remain unaffected by the split and will continue to handle connection
requests as before.

[0095] (4) When there are no existing connection to handle requests and new
connections are created, if the connection is created to the newly split chunk, the new chunk
names and its ranges are populated into the topology cache and at this point both the split /un-
split chunks will be available to handle the connection requests for the key-ranges.

[0096] (5) This process continues until all the replicas have undergone the split in which
case the old chunk name (updated version) will no longer have any instances, which is then
cleaned up from both the chunk placement and shard key topology tables.

[0097] (6) For automatic sharding , in step (1) after the chunk split is received , the new
chunk information with new ranges as specified by the hash value is update in the shard key

topology table as well as the new chunk placement information is updated.

Runtime Connection Load Balancing (RLB) requirements for Shared Pool

[0098] In accordance with an embodiment, for pools which have connections to the
sharded databases, an RLB subscription can include that: the connection pool (e.g., UCP) will
subscribe to the global service for RLB notifications from the GDS cluster. RLB events from a
GDS database will be based on global services; hence when a global service RLB is received,
to check the distribution pattern for each chunk that the pool is currently catering, the system

can derive the RLB% applicable to that chunk, and then attempt connection distribution.

Chunk Placement Data for Sharded Databases
14

WO 2016/172195 PCT/US2016/028420

[0099] In accordance with an embodiment, a shard metadata information is created and
maintained in the connection pool (e.g. UCP) that has a mapping of chunk name to the shard
instances on which the service is available, and the priority of the chunk on that instance. In
accordance with an embodiment, internally the data structure created will look as shown in table

3 for sharded databases:

Chunk Name Shard Instance List

CHUNK_1_1 [<Instance:dbs1%1, Priority:0>, <Instance:dbs1%2, Priority:0>]

CHUNK_1_10 [<Instance:dbs1%1, Priority:0>, <Instance:dbs1%2, Priority:0>]

CHUNK_1_100 | [<Instance:dbs1%1, Priority:0>, <Instance:dbs1%?2, Priority:0>]

CHUNK_1_11 [<Instance:dbs1%1, Priority:0>, <Instance:dbs1%2, Priority:0>]

Table 3

Shard Key to Chunk Name Mapping for Sharded Databases

[00100] In accordance with an embodiment, apart from the service to shard list mapping,
the system can include a mapping of shard key rangellist or range to the chunk which
corresponds to these shard keys. In accordance with an embodiment, shard grouping can be
list or range based, when the sharding method is set to hash-based. In all other cases, shard
groups are not supported. The following cases are possible as examples of the topology data,

including, for hash based sharding and list based supersharding (Table 4):

<Group Key List, Shard key Hash Range> Chunk Name
[gold, silver], {Low:0, High:42949672} CHUNK_2_1
[gold, silver], {Low:42949672, High:85899344} CHUNK_2_2
[regular, bronze], {Low:0, High:42949672} CHUNK_1_100
Table 4
[00101] For hash based sharding and range based supersharding (Table 5):

<Group Key Range, Shard Key HashRange> Chunk Name

15

WO 2016/172195 PCT/US2016/028420

{1-10} , {Low:0, High:42949672} CHUNK_2_1
{1-10} , {Low:42949672, High:85899344} CHUNK_ 2_2
[10-MAX] , {Low:0, High:42949672} CHUNK_1_100
Table 5
[00102] For range based sharding, with no shard grouping (Table 6):
Shard Key Hash Range Chunk Name
{Low:0, High:42949672} CHUNK_2_1
{Low:42949672, High:85899344} CHUNK_ 2_2
{Low:85899344, High: MAX} CHUNK_1_100
Table 6
[00103] For list based sharding, with no shard grouping (Table 7):
Shard Key List Chunk Name
[IN,AU] CHUNK_2_1
[US,CAN] CHUNK_2_2
[DE,UK] CHUNK_1_100
Table 7
Shard Metadata Cache
[00104] In accordance with an embodiment, the connection pool maintains a shard

metadata cache that includes information learnt and collected as when new connections are

created from the pool to different chunk and shards of a sharded database, for example:

[00105] (1) Shard key and shard group key ranges applicable to chunk to which the
connection pool (e.g., UCP) has created a connection;

[00106] (2) Shard key column information such as database encoding if applicable;
[00107] (3) Sharding and shard grouping method (e.g., hash-based, list-based, range-

based).
16

WO 2016/172195 PCT/US2016/028420

Building Topology on Create Connection

[00108] In accordance with an embodiment, when a new connection is created using the
shard, the data from the LOCAL_CHUNK tables and sharding metadata, such as sharding type,
and database encoding type, are extracted from the LOCAL_CHUNK_TYPES table and stored
in the metadata cache on the client side. The chunk priority for each chunk on the instance is

also read and stored on the client side.

Update Topology based on Server Side Oracle Notification Service (ONS) events

[00109] In accordance with an embodiment, the metadata cache can be kept in
synchrony with the server side changes by processing all of the following database high-
availability (HA) events and updating the corresponding data structures on the client side:
[00110] (1) For a global service member down event, or instance down event, the
corresponding instance is removed from the instance list of the chunks that are impacted. If the
chunk is not up on any other instance, the corresponding chunk data needs to be cleaned from
the chunk metadata stored in the topology.

[00111] (2) For a global service down event, both the service and chunk related data
need to be cleaned up.

[00112] (3) For a chunk down event, the corresponding impacted entries in the chunk

information stored in the topology needs to be cleaned up.

Shard Key Lookup

[00113] In accordance with an embodiment, an internal method can be provided on the
metadata cache that is of the format chunk (ShardKey shardKey, ShardKey groupKey) and is
used to get the chunk name corresponding to one or more shard keys provided as parameters
to this method. The ShardKey object can include methods that allow comparison and check

equality of two shard keys.

Security

[00114] In accordance with an embodiment, to address security concerns with exposing
the contents (shard keys and ranges) and location of different chunks in a sharded database,
the system can support the use of specific “password protected roles” defined on the server for
enabling the user access to the data in the tables, such as LOCAL_CHUNK_TYPE,
LOCAL_CHUNK_COLUMNS, LOCAL_CHUNKs. Database users who use UCP or JDBC or

building a custom connection pool and who wish to maintain connections (or pool) to the
17

WO 2016/172195 PCT/US2016/028420

sharded database, and also want to build a client side topology snapshot of the sharded

database, can have to have this role provisioned for them.

2. Access to Sharded Databases using a Cache and Shard Topology

[00115] In accordance with an embodiment, the system enables access to a sharded
database using a cache and a shard topology. As new connections are created, a shard
topology layer can be built at the database driver layer, which learns and caches shard key
ranges to locations of shards. The shard topology layer enables subsequent connection
requests from a client application to bypass a shard director or listener, and instead use a fast
key path access to the appropriate shard or chunk. Figure 5 illustrates a system for enabling
access to a sharded database using a cache and a shard topology, in accordance with an
embodiment.

[00116] As illustrated in Figure 5, in accordance with an embodiment, and as described
above, a shard-aware client application connecting to a sharded database can use a connection
pool (e.g., UCP), to store or access connections to different shards or chunks of the sharded
database within a shared pool.

[00117] As also described above, in accordance with an embodiment, the sharded
database can comprise a first database region A (DBE), including sharded database instances
“DBE 1”7 with shard A stored as chunks A1, A2, ... An; and “DBE 2” with shard B stored as
chunks B1, B2, ... Bn; and a second database region B (DBW), including sharded database
instances “DBW 1” with shard C stored as chunks C1, C2, ... Cn; and “DBW 2” with shard D
stored as chunks D1, D2, ... Dn.

[00118] As also described above, in accordance with an embodiment, each database
region or group of sharded database instances can be associated with a shard director or
listener component (e.g., GSM). An application can provide the shard key to UCP during the
connection request, and, based on the shard key, the connection pool can route the connection
request to the correct shard.

[00119] In accordance with an embodiment, as new connections are created, a shard
topology layer 210 can be built at the database driver (e.g., JDBC) layer, which learns and
caches shard key ranges to the location of each shard. A subsequent connection request can
bypass the shard director or listener, and instead use a fast key path access to the appropriate
shard or chunk.

[00120] Figure 6 further illustrates a system for enabling access to a sharded database
using a cache and a shard topology, in accordance with an embodiment.

[00121] As illustrated in Figure 6, a shard-aware client application can make a
18

WO 2016/172195 PCT/US2016/028420

connection request with shard key and super shard key (e.g., with shard key X) 212. The shard
topology layer enables fast key path access to a shard/chunk 214, including caching shard key
ranges to the location of each shard.

[00122] Figure 7 further illustrates a system for enabling access to a sharded database
using a cache and a shard topology, in accordance with an embodiment.

[00123] As illustrated in Figure 7, in this example, the shard topology can be used to
provide fast key path access by the shard-aware client application to, in this example, chunk C2,

bypassing the shard director or listener.

GetConnection API design
[00124] In accordance with an embodiment, exemplary APlI's defined on the

OracleDatasource can include:

datasource. getConnectionToShard(<shard key>)

which can be used when there is one level of sharding in the database and there is no super
shard key involved. A connection can be obtained with a default user name and password that
is set on the datasource. Shard key is a required parameter, and using the API with null or

incorrect shard keys will result in an exception thrown back to the application.

datasource. getConnectionToShard (<shard key>, <super shard key>,

<user name>, <password>)

which can be used when the connection needs to be fetched or created for a specific set of
shard keys or for a specific user. Shard key is a required parameter, and using the API with null
or incorrect shard keys will result in an exception thrown back to the application. The super

shard key can be null.

datasource. getConnectionToShard (<shard key>, <super shard key>,

<user name>, <password>, <label properties>)

which can be used when the connection needs to be fetched or created for a specific set of
shard keys or for a specific user, also matching the user-defined labels. Shard key is a required
parameter, and using the API with null or incorrect shard keys will result in an exception thrown

back to the application. The super shard key can be null.

19

WO 2016/172195 PCT/US2016/028420

Connection Creation and Retrieval with Shard Key

[00125] Figure 8 illustrates a sequence diagram that describes the flow when a
connection pool is used to create and maintain a pool of connections to a sharded database, in
accordance with an embodiment.

[00126] As illustrated in Figure 8, in accordance with an embodiment, a connection pool
(e.g., UCP) can be used to create and maintain a pool of connections to the sharded database,
and to support use of a getConnectionToShard API call made against the PoolDatasource. For
example, as illustrated, a client application 230 can utilize a connection pool 232 (e.g., UCP),
database driver 234 (e.g., JDBC), and database topology module 236, together with a shard
director or listener 238, to access a sharded database 240, and to support the use of a shard
topology layer. When a client application makes a get connection request 250, optionally with
one or more shard keys, the connection pool makes a get service topology request 252 to the
database topology module, which can return an instance list 254.

[00127] In accordance with an embodiment, i the instance list is empty, then the
connection pool can make a get connection request to the database driver 260, which calls the
shard director or listener to create the connection 262. When the connection to the database is
created 264, the connection is returned to the client application, 266, 268, 270, 272, and the
shard topology updated accordingly 274.

[00128] Alternatively, if the instance list is not empty, the connection pool can make a
lookup on available connections in the pool for matching instances 280, and return an
appropriate connection to the client application 290.

[00129] In accordance with an embodiment, if the instance list has a valid list of found
available connections, then the connection pool can repurpose an existing connection 292, and
switch a virtual service on that connection 294. The repurposed connection can then be
returned to the client application 296, 298, 300.

[00130] Alternatively, if the instance list has no matching connections, then the
connection pool can, as described above, make a get connection request to the database driver
310, which calls the shard director or listener to create the connection 312. When the
connection to the database is created 314, the connection is returned to the client application,
316, 318, 320, 322, and the shard topology again updated accordingly 326.

[00131] Figure 9 illustrates a sequence diagram that describes the flow when
applications use a database driver, without the connection pool, to fetch connections to a
sharded database, in accordance with an embodiment.

[00132] As illustrated in Figure 9, in accordance with an embodiment, applications can
20

WO 2016/172195 PCT/US2016/028420

use a database driver such as a JDBC driver, without the connection pool, to fetch connections
to the sharded database. The connection request can bypass the shard director or listener and
use a fast key path access to the appropriate shard or chunk.

[00133] As illustrated in Figure 9 when a client application makes a get connection
request 330 with one or more shard keys, the database driver can directly call the shard director
or listener to create the connection 332, without requiring any input from the connection pool.
When the connection to the database is created 334, the connection is returned to the client
application, 336, 338, 340, and the shard topology updated accordingly 342.

[00134] Figure 10 illustrates a process for enabling access to a sharded database using
a cache and a shard topology, in accordance with an embodiment.

[00135] As illustrated in Figure 10, at step 343, a database is provided having a plurality
of shards and associated with one or more database drivers, and one or more connection pools,
which together provide access by client applications to data stored at the database.

[00136] At step 345, the database driver is configured to enable a client application to
provide a shard key information which is used to provide access by the client application to an
appropriate shard of the database, including a shard topology layer that learns and caches

shard key ranges to the location of shards within the database, for use in processing connection

requests.

[00137] At step 347, the connection pool can identify a connection by its shard key, and
allow re-use of connections when a request for a same shard key is received from a client
application.

[00138] At step 349, the shard topology layer enables subsequent connection requests to

bypass a shard director or listener, and instead use a fast key path access to the appropriate

shard or chunk.

SetShardKey on Connection through the Connection Pool (e.g., UCP)

[00139] In accordance with an embodiment, when a client application or user attempts to
perform a setShardKey(..) against a borrowed connection, the following operations are
performed on the connection:

[00140] (1) If the shard key maps to a given range in the shard topology table, then the
virtual service name against the key range is looked up. If the virtual service name is the same
as the one that is on the connection, then the connection is created to the same chunk and can
be re-used directly.

[00141] (2) If the shard key maps to the new virtual service that is present on the same

instance as the one the connection has been created on, then the connection can be re-used by
21

WO 2016/172195 PCT/US2016/028420

switching the service on the connection to the new virtual service. Before the connection’s
virtual service is switched, all the open artifacts on the connection needs to be closed, using the
JDBC API's. If there is an ongoing transaction on the connection, the operation will fail with an
exception provided to the user.

[00142] (3) If the shard key maps to a new virtual service, which exists on a different
instance then the connection pool (e.g., UCP) needs to switch the physical connection
underneath the proxied connection, for example by the following process: The connection
returned to the application is a proxy connection object that represents the underlying physical
connection. When the connection needs to be switched to a new shard instance, the connection
pool first tries to find an existing connection in the pool that is created to the target virtual
service name, otherwise it creates a new connection. The original connection that was wrapped
in the proxy is returned back to the pool after closing all the open artifacts. If there is an
ongoing transaction, this operation will result in an exception. The new connection is then
associated with the proxy connection object, using a capability called setDelegate that changes
the underlying physical connection under the proxy object. The user can continue to use the
proxy object now, which now points to the shard and chunk as specified by the new keys in the

setShardKey call.

SetShardKey on Connection through the Database Driver (e.g., JDBC)

[00143] In accordance with an embodiment, when the user tries to do a setShardKey
against the connection object using the database driver (e.g., JDBC), the following process can
be followed:

[00144] (1) If the shard key maps to a given range in the shard topology table, then the
virtual service name against the key range is looked up. If the virtual service name is same as
the one that is on the connection, then the connection is created to the same chunk and can be
re-used directly.

[00145] (2) If the shard key maps to the new virtual service that is present on the same
instance as the one the connection has been created on, then the connection can be re-used by
just switching the service on the connection to the new virtual service. Before the connection’s
virtual service is switched, all the open artifacts on the connection needs to be closed, using the
database driver (e.g., JDBC) API's. If there is an ongoing transaction on the connection, the
operation will fail with an exception provided to the user.

[00146] (3) If the shard key maps to a new virtual service, which exists on a different

instance/shard, then a corresponding error message is returned to the user.

22

WO 2016/172195 PCT/US2016/028420

Connection Selection in the Connection Pool (e.g., UCP)

[00147] In accordance with an embodiment, a connection can be selected in the
connection pool (e.g., UCP) using the following process:

[00148] (1) When a getConnection(..) request is received at the pool with a shard key
information, in order to get the service name corresponding to the shard key and the super

shard key, the connection pool can call an API provided by the OracleDBTopology Module:

dbTopology.getServiceName (<shard key>, <super shard key>)

[00149] (2) If the service name for this chunk is not available in OracleDBTopology yet,
i.e. there has been no connection to that particular chunk, a new connection can be created to
the shard using the listener. In this case, the connection string is modified to include the shard
and super shard key and a connection creation request is made, to be handled by the listener.
The database driver (e.g., JDBC) needs to handle getConnection (<shard_key>,
<super_shard_key>) by updating the URL with these two keys, before trying to create the
connection.

[00150] (3) If there is an existing valid mapping for the shard keys and a corresponding
service name is returned by the above API, the connection pool will check if there is an already
available connection to that service i.e. any connection that is already created to the same
chunk or virtual service; and, if so the connection can be directly re-used.

[00151] (4) | there is no available connection in the connection pool for that service and
there is room in the pool to grow, then a consideration can be made if a new connection needs
to be created, or if an available connection can be repurposed to obtain a connection to the
desired chunk.

[00152] (5) If in (4) it is decided to repurpose a connection, to choose the candidate for
repurpose the below process can be followed: the connection pool (e.g, UCP) uses the
OracleDBTopology API getServiceTopology (<service_name>) to get the list of instances on
which the virtual service (chunk) is available. If the virtual service topology is not present, then
the connection repurposing needs to be aborted and the system should try to create a new
connection for the virtual service (chunk). If the virtual service topology is available, then get a
list of instances that have the chunk corresponding to the virtual service; and choose the best
instance to use to select a candidate connection for repurposing, e.g., using an RLB algorithm if
enabled on the pool. On the instance/shard that is chosen in the previous step, get a list of all
the available connections, and then choose the connection from a service which has the

maximum number of available connections at this point, which is deemed to be the best
23

WO 2016/172195 PCT/US2016/028420

candidate for repurpose. The candidate connection is then repurposed by switching the service
on the connection and the connection is returned back to the user. If the switch service fails
due to any reason, fall back to random algorithm for choosing an instance from the list of
instances provided above, and then repeat the same process and try to repurpose a connection.
If repurposing connection using the random algorithm fails for some reason, attempt to create a
new connection to the chunk specified by the shard keys if there is room to grow in the pool,
else an error is reported.

[00153] In accordance with an embodiment, using the getConnection that allow the users
to pass in the connection labels as well as shard keys, connection labeling can be supported
over and above the connection retrieval from the pool using shard keys. The usual connection
selection includes selection by RLB and affinity first followed by labeling match (or cost). With
sharding support, the system can first select the connections by shard keys (virtual service) and

then by RLB/Affinity and connection labeling algorithm will be applied as usual.

Connection Storage and Lookup in the Connection Pool (e.g., UCP)

[00154] In accordance with an embodiment, once the connection is created, the
connection pool (e.g., UCP) will attempt to extract the actual “service” name corresponding to
the internal virtual service of the chunk on which the connection is created and place it in the
connection request identifier for the connection. The connection request identifier will be used
to look up and borrow connections with the correct service name (chunk) from UCP’s
connection storage. The service name will also be used to determine the best candidate
connection for repurpose when a matching connection is not obtained in the pool and the

connection service switch is imminent.

OracleDBTopology Module

[00155] Figure 11 illustrates a database topology class design 350, in accordance with
an embodiment.

[00156] In accordance with an embodiment, an OracleDBTopology module can be
placed within the database driver (e.g., JDBC), and contains all the topology data for the
database, for example the service-to-instance mapping, and the shard key to service mapping
for all services and shard keys referred to by the pool or by the application using the database
driver.

[00157] In accordance with an embodiment, an instance OracleDBTopology instance is
associated with an OracleDataSource instance and there is a 1:1 mapping between them. The

operations and the data present in the OracleDBTopology can be used by: users of a database
24

WO 2016/172195 PCT/US2016/028420

driver in order to lookup the shard or service topology; the connection pool (e.g., UCP) to route
connection requests efficiently based on the cached topology; custom pool implementations
which can leverage this module to allow the pool to use the topology data and maintain pool of
connections to a sharded database.

[00158] In accordance with an embodiment, the OracleDBTopology can be initialized
lazily when the first connection is created using the OracleDataSource using one of the
getConnection () API’'s, the connection object is used to get the required information for
initializing the OracleDBTopology module. The connection created is used to lookup the table
LOCAL_CHUNK_TYPES table. The columns SHARD_TYPE and the SUPER_TYPE are read
to determine the sharding and the super-sharding methodology. These values are stored as a
property in OracleDBTopology instance. A DEF_VERSION is also extracted and placed in the

client side.

Service Topology

[00159] Figure 12 illustrates a service topology class design 360, in accordance with an
embodiment.
[00160] In accordance with an embodiment, the ServiceTopologyMap contains a map of

1:n mappings between the virtual service names to the list of instances that the service is
currently running on. This map is populated incrementally as and when each connection is
created and the method updatedOnCreateConnection() is called on the OracleDbTopology.
[00161] In accordance with an embodiment, both the virtual service name and instance
name that the current connection is created on is present in the sys_context. On every new
connection created, the system can check if the virtual service name is already in the map, and
if not a new entry is added for the virtual service name and the instance. If the virtual service
name is already in the map, and the instance name also is present in the instance list of the
service, then no further action is needed; otherwise the instance is added to the instance list.
[00162] In accordance with an embodiment, a ShardTopologyMap provides an interface
and defines a data structure that can be used to map a chunk key range or list, to the virtual

service name.

Interfaces and APlIs

[00163] In accordance with an embodiment, an exemplary application program interface
(API) is described below, including a database driver (e.g., JDBC) APl and a connection pool
(e.g. UCP) API. In accordance with other embodiments and examples, other types of APIs or

interfaces can be used.
25

WO 2016/172195 PCT/US2016/028420

Appendix A: Database Driver (e.g., JDBC) API
[00164] In accordance with an embodiment, an exemplary database driver (e.g., JDBC)
APl is described below. In accordance with other types of database drivers, other types of

database driver API’s or interfaces can be used.

Shard Key Interface
public interface ShardKey extends Comparable<ShardKey>{
J *x
* Used to compare two shard keys. If the shard keys are
* compound the corresponding sub-keys in two keys will be

* compared.

* @param o
* ShardKey to which this Shard key is to be compared.
* @return -1, 0 or 1 as this ShardKey is less than, equal
* to, or greater than the shard key that is passed in
* as a method parameter
* @see java.lang.Comparable#compareTo(java.lang.Object)
*/

int compareTo (ShardKey o) ;

Connection Builder Interface
J *x
* Builder class for building connection objects with additional parameters
* other than just the username and password. To use the builder, the
* corresponding builder method needs to be called for each parameter that needs
* to be part of the connection request followed by a build() method.
* The order in which the builder methods are called is not important.
* However if the same builder attribute is applied more than once, only
* the most recent value will be considered while building the connection.

* The builder's build() method can be called only once on a builder object.

* Example usage

* OracleDataSource ods = new OracleDataSource();

* ..//set the required properties on the datasource
* Connection conn = ods.createConnectionBuilder ()

* .user ("user™)

* .password ("password")

* .proxyClientName ("proxy client™)

26

WO 2016/172195 PCT/US2016/028420

* .serviceName("service_name")
* Lbuild();
*
* @param
* Type of connection builder
* @param <S>

* Type of connections created using this builder

*/
public interface ConnectionBuilder<B extends ConnectionBuilder<B, 5>, S>
extends Builder<S> {
/**
* @param user
* @return This connection builder object
*/

B user(String user);

/**

* @param password

* @return This connection builder object
*/

B password(String password) ;

/**

* @param serviceName

* @return This connection builder object
*/

B serviceName (String serviceName) ;

J *x
* @param shardKey
* Shard Key object that needs to be part of connection request
* @return This instance of the connection builder.
*/

B shardKey(ShardKey shardKey) ;

J *x
* @param shardGroupKey
* Shard Group Key object that needs to be part of connection request
* @return This instance of the connection builder.
*/

B shardGroupKey (ShardKey shardGroupKey) ;

27

WO 2016/172195 PCT/US2016/028420

OracleConnectionBuilder
class oracle.jdbc.pool.OracleConnectionBuilder

implements oracle.jdbc.ConnectionBuilder<OracleConnectionBuilder, Connection>

//Oracle’s Implementation class for ConnectionBuilder.

OracleDataSource
class oracle.jdbc.pool.OracleDataSource
{
OracleConnectionBuilder createConnectionBuilder () { }

OracleShardKeyBuilder createShardKeyBuilder();

OracleConnection
interface oracle.jdbc.OracleConnection
{
J *x
* Used to check the validity of the connection and if the shard keys passed

* to this method are valid for this connection.

* @param shardKey

* shard key to be validated against this connection

* @param groupKey

* shard group key to be validated against this connection

* @param timeout

time in seconds before which the validation process is expected to
* be completed,else the validation process is aborted.
* @return true if the connection is valid and the shard keys are valid to be
* set on this connection.
* @throws SQLException
* if there is any exception while performing this wvalidation.
*/

boolean isValid(ShardKey shardKey, ShardKey groupKey, int timeout)

throws SQLException;

/**

* Used to set the shard key and the shard group key on this connection.

*

* @param shardKey

* shard key to be set on this connection

28

WO 2016/172195 PCT/US2016/028420

* @param groupKey

shard group key to be set on this connection

* @throws SQLException

*

*/

if there is an exception while setting the shard keys
on this connection. In this case the connection will continue to
be associated with the shard keys that was set on this connection

before this method was called.

void setShardKey(ShardKey shardKey, ShardKey groupKey) throws SQLException;}

Appendix B: Connection Pool (e.g. UCP) API

[00165]

In accordance with an embodiment, an exemplary connection pool (e.g. UCP)

APl is described below. In accordance with other types of connection pools, other types of

connection pool API’'s or interfaces can be used.

UCP Connection Builder

/**

* UCP’s Connection Builder class for building connection objects with additional

parameters

* other than just the username,password and labels. To use the builder, the

* corresponding builder method needs to be called for each parameter that needs

* to be part of the connection request followed by a build() method. The order

* in which the builder methods are called is not important. However if the same

* builder attribute is applied more than once, only the most recent value will

* be considered while building the connection. The builder's build() method can

* be called only once on a builder object.

* Example usage

* PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource () ;

* . .//set the required properties on the datasource

* Connection conn = pds.createConnectionBuilder()

.user ("user™)
.password ("password")
.serviceName ("service name")

.build();

* @param <C>

Type of connections created using this builder

* @param

Type of connection builder
29

WO 2016/172195 PCT/US2016/028420

*/
public interface oracle.ucp.jdbc.UCPConnectionBuilder extends

oracle. jdbc.ConnectionBuilder<UCPConnectionBuilder, Connection> {

/**
* Sets the user attribute on the builder

*

* @param user

* - the database user on whose behalf the connection is being made
* @return - this builder object

*/

@Override

public UCPConnectionBuilder user(String user) ;

/**
* Sets the password attribute on the builder

* @param password

* - the user's password
* @return - this builder object
*/
@Override

public UCPConnectionBuilder password(String password) ;

/**
* Sets the labels attribute on the builder

*

* @param labels

* - The requested connection labels.
* @return - this builder object
*/

public UCPConnectionBuilder labels(Properties labels) ;

/**
* @param serviceName to retrieve the connection
* @return this connection builder instance
*/

public UCPConnectionBuilder serviceName (String serviceName) ;

/**
* @param shardKey
* Shard Key object that needs to be part of connection request

* @return This instance of the connection builder.

30

WO 2016/172195 PCT/US2016/028420

*/
public UCPConnectionBuilder shardKey(ShardKey shardKey) ;

J *x
* @param shardGroupKey
* Shard Group Key object that needs to be part of connection request
* @return This instance of the connection builder.
*/

public UCPConnectionBuilder shardGroupKey (ShardKey shardGroupKey) ;

/**
* @return Connection built considering the builder attributes

* @throws SQLException i1if there is a failure in building the connection.

*/

public Connection build() throws SQLException;

/**
* Sets the labels attribute on the builder

*

* @param labels

* - The requested connection labels.
* @return - this builder object
*/

ConnectionBuilder labels (Properties labels);

PoolDataSource Interface

Interface oracle.ucp.jdbc.PoolDataSource

{

/**
* @return UCPConnectionBuilder that can help build Connection with multiple
* parameters other than just the user,password and labels.
*/

public UCPConnectionBuilder createConnectionBuilder () ;

/**
* @return OracleShardKeyBuilder that can help build Shard Keys.
*/

public OracleShardKeyBuilder createShardKeyBuilder () ;

31

WO 2016/172195 PCT/US2016/028420

[00166] Embodiments of the present invention may be conveniently implemented using
one or more conventional general purpose or specialized digital computer, computing device,
machine, or microprocessor, including one or more processors, memory and/or computer
readable storage media programmed according to the teachings of the present disclosure.
Appropriate software coding can readily be prepared by skilled programmers based on the
teachings of the present disclosure, as will be apparent to those skilled in the software art.
[00167] In some embodiments, the present invention includes a computer program
product which is a non-transitory storage medium or computer readable medium (media) having
instructions stored thereon/in which can be used to program a computer to perform any of the
processes of the present invention. Examples of the storage medium can include, but is not
limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and
magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory
devices, magnetic or optical cards, nanosystems (including molecular memory ICs), or any type
of media or device suitable for storing instructions and/or data.

[00168] The foregoing description of embodiments of the present invention has been
provided for the purposes of illustration and description. It is not intended to be exhaustive or to
limit the invention to the precise forms disclosed. Many modifications and variations will be
apparent to the practitioner skilled in the art. The embodiments were chosen and described in
order to best explain the principles of the invention and its practical application, thereby enabling
others skilled in the art to understand the invention for various embodiments and with various

modifications that are suited to the particular use contemplated.

32

WO 2016/172195 PCT/US2016/028420

Claims:

What is claimed is:

1. A system for providing access to a sharded database, comprising:
a computer, including a processor,
an application server or database environment which provides access to a database
having a plurality of shards by which data is stored and presented, and wherein the database is
associated with:
a database driver, and
a connection pool which creates and maintains a pool of connections for use with
the database,
wherein the connection pool and database driver operate together to provide
access by client applications to data stored at the database, using the connections;
wherein the database driver caches shard key ranges to locations of shards within the
database, as a shard topology, for use in processing connection requests; and
wherein the database driver is configured to enable a client application to access the
database as part of a connection request, including determining a location of an appropriate
shard within the database, using the shard topology, and providing access by the client

application to the appropriate shard of the database.

2. The system of claim 1, wherein a shard topology layer is configured to enable
subsequent connection requests to bypass a shard director or listener component that operates
to provide access by software client applications to database shards, and instead use a fast key

path access to the appropriate shard or chunk.

3. The system of claim 1 or 2, wherein the connection pool and database driver are
configured to enable a client application to provide shard key information during at least one of a
checkout of a connection to the database, or at a later point in time; and

wherein the system is configured to use the shard key information to provide direct
access by the client application to an appropriate shard of the database, for use by the client

application.

4 A system for providing access to a sharded database, comprising:

a computer, including a processor,
33

WO 2016/172195 PCT/US2016/028420

an application server or database environment which provides access to a database
having a plurality of shards by which data is stored and presented, and wherein the database is
associated with:
a database driver, and
a connection pool which creates and maintains a pool of connections for use with
the database,
wherein the connection pool and database driver operate together to provide
access by client applications to data stored at the database, using the connections;
wherein the connection pool and database driver are configured to enable a client
application to provide a shard key information during at least one of a checkout of a connection
to the database, or at a later point in time; and
wherein the shard key information is then used by the system to provide direct access by

the client application to an appropriate shard of the database, for use by the client application.

5. The system of claim 3 or 4, wherein the database driver and connection pool are
configured to recognize shard keys specified by the client application, and enable the client

application to connect to a specific shard and chunk associated with that client application.

6. The system of any preceding claim, wherein the connection pool is configured to identify
a connection by its shard key, and to allow re-use of a connection when a request for a same

shard key is received from a client application.

7. The system of any preceding claim, wherein, if there are no connections in the
connection pool to a particular shard or chunk, then an attempt is made to repurpose an existing

available connection to another chunk and re-use that connection.

8. A method of providing access to a sharded database, comprising:
providing, by a computer, access to a database having a plurality of shards by which
data is stored and presented, and wherein the database is associated with
a database driver, and
a connection pool which creates and maintains a pool of connections for use with
the database,
wherein the connection pool and database driver operate together to provide
access by client applications to data stored at the database, using the connections;

wherein the database driver caches shard key ranges to locations of shards within the
34

WO 2016/172195 PCT/US2016/028420

database, as a shard topology, for use in processing connection requests; and

wherein the database driver is configured to enable a client application to access the
database as part of a connection request, including determining a location of an appropriate
shard within the database, using the shard topology, and providing access by the client

application to the appropriate shard of the database.

9. The method of claim 8, wherein the shard topology layer enables subsequent connection
requests to bypass a shard director or listener component that operates to provide access by
software client applications to database shards, and instead use a fast key path access to the

appropriate shard or chunk.

10. The method of claim 8 or 9, wherein the connection pool and database driver are
configured to enable a client application to provide a shard key information during at least one of
a checkout of a connection to the database, or at a later point in time; and

wherein the shard key information is then used to provide direct access by the client

application to an appropriate shard of the database, for use by the client application.

1. A method of providing access to a sharded database, comprising:
providing, by a computer, access to a database having a plurality of shards by which
data is stored and presented, and wherein the database is associated with
a database driver, and
a connection pool which creates and maintains a pool of connections for use with
the database,
wherein the connection pool and database driver operate together to provide
access by client applications to data stored at the database, using the connections;
wherein connection pool and database driver are configured to enable a client
application to provide a shard key information during at least one of a checkout of a connection
to the database, or at a later point in time; and
wherein the shard key information is then used to provide direct access by the client

application to an appropriate shard of the database, for use by the client application.

12. The method of claim 10 or 11, wherein the database driver and connection pool are
configured to recognize shard keys specified by the client application, and enable the client

application to connect to a specific shard and chunk associated with that client application.

35

WO 2016/172195 PCT/US2016/028420

13. The method of any of claims 8 to 12, wherein the connection pool is configured to
identify a connection by its shard keys, and to allow re-use of a connection when a request for a

same shard key is received from a client application.

14. The method of any of claims 8 to 13, wherein, if there are no connections in the
connection pool to a particular shard or chunk, then an attempt is made to repurpose an existing

available connection to another chunk and re-use that connection.

15. A non-transitory computer readable storage medium, including instructions stored
thereon, which when read and executed by one or more computers cause the one or more

computers to perform the method of any of claims 8 to 14.

16. A non-transitory computer readable storage medium, including instructions stored
thereon which when read and executed by one or more computers cause the one or more
computers to perform the steps comprising:
providing a database having a plurality of shards by which data is stored and presented,
and wherein the database is associated with
a database driver, and
a connection pool which creates and maintains a pool of connections for use with
the database,
wherein the connection pool and database driver operate together to provide
access by client applications to data stored at the database, using the connections;
wherein the database driver caches shard key ranges to locations of shards within the
database, as a shard topology, for use in processing connection requests; and
wherein the database driver is configured to enable a client application to access the
database as part of a connection request, including determining a location of an appropriate
shard within the database, using the shard topology, and providing access by the client

application to the appropriate shard of the database.

17. The non-transitory computer readable storage medium of claim 16, wherein the shard
topology layer enables subsequent connection requests to bypass a shard director or listener
component that operates to provide access by software client applications to database shards,

and instead use a fast key path access to the appropriate shard or chunk.

18. The non-transitory computer readable storage medium of claim 16 or 17, wherein the
36

WO 2016/172195 PCT/US2016/028420

connection pool and database driver are configured to enable a client application to provide
shard key information during at least one of a checkout of a connection to the database, or at a
later point in time; and

wherein the shard key information is then used to provide direct access by the client

application to an appropriate shard of the database, for use by the client application.

19. A non-transitory computer readable storage medium, including instructions stored
thereon which when read and executed by one or more computers cause the one or more
computers to perform the steps comprising:
providing a database having a plurality of shards by which data is stored and presented,
and wherein the database is associated with
a database driver, and
a connection pool which creates and maintains a pool of connections for use with
the database,
wherein the connection pool and database driver operate together to provide
access by client applications to data stored at the database, using the connections;
wherein the connection pool and database driver are configured to enable a client
application to provide a shard key information during at least one of a checkout of a connection
to the database, or at a later point in time; and
wherein the shard key information is then used to provide direct access by the client

application to an appropriate shard of the database, for use by the client application.

20. The non-transitory computer readable storage medium of claim 18 or 19, wherein the
database driver and connection pool are configured to recognize shard keys specified by the
client application, and enable the client application to connect to a specific shard and chunk

associated with that client application.

21. The non-transitory computer readable storage medium of any of claims 16 to 20,
wherein the connection pool is configured to identify a connection by its shard key, and to allow
re-use of a connection when a request for a same shard key is received from a client

application.

22. The non-transitory computer readable storage medium of any of claims 16 to 21,
wherein, if there are no connections in the connection pool to a particular shard or chunk, then

an attempt is made to repurpose an existing available connection to another chunk and re-use
37

WO 2016/172195 PCT/US2016/028420

that connection.

38

PCT/US2016/028420

WO 2016/172195

112

e

ug yunyd

¢a3unyy

Ld HuUnyd

@ pleys
vyl cmad

N
e

ovl (1sep g “b8) g uoibey eseqeleq

N

ug Aunyo

g 3unyo

g unyd

d PEEYS

vel ¢38d

T~
N

TN
8rl
U5 YUY Ioue)sI
: J 1010811
pieys
<o uUNyH
| O 3unyp
J pieyS
vl Imad

\\I]
N~
e N

Uy Yunyo

¢V unyp

LY AUNYO -4, —

v P2BYS T
ctl 139d gl
T~ 1oUB)8IT
~— | Jiopeug
pieys

0¢1 (1se3 gQ ""B'e) v uoibey eseqejeq

0cC| ©SEQEJE(Q pepleys

L JHNOId4

L1 Munyg / peys-
0} UOKYBUUOYD

Ll
(iomieN ‘Alows ‘Ndo “Be)
sa01nosey Jendwon [eoisAyg

ZL 1L (ogar “6-e) Jenuq eseqgeie(

[(zoxunyo “Be) g |

ALy B v |

291 e8-ul-suoljosuuo)

091 (dDon “68) jood uonosuuo)

05| 21607 [oo4 UoIoBUUCD

0l | JuswuolAug
aseqele(] / Jealas uopeolddy

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

WO 2016/172195

2112

¢ F4NOId
]
\\I} \\I}
8rl
ug yunyo u Yunyo 1OUSISt]
_ _ J Jojoal(
pieys
< Munyp
Ld YuUnyp | O 3unyp //
apieys J pieyS
vl cmad vl Imad
\\Ij \\I]
N~ N~
_ 781
oFL (1s8M g “Be) g uoibey eseqeleq JUNyYd pue pJeys
ajeudoidde
ay) 0) papIemio}
N T Aposuip aq ued
Jsenbal LOIOBUUDD U}
dg Aunyo v Aunyo ‘skoy pIeys oy} 1o}
: : fuiddew e sey Apessje ™
24 unyo ¢V unyp JoAlp aseqelep
/ 100d uonosuuo? Ji
1g Unyo AL] ot N S
T ebeeeen. L PLL MUNUD [PIEYS:
d p:eys V PIEYS 0} UORDBULOY
el ¢34dd ctl 139d
8tl
— N | meuesn
pieys
0c| (1se3 gQ "be) v Uolbey eseqejeq

0cC| ©SEQEJE(Q pepleys

Ll
(iomieN ‘Alows ‘Ndo “Be)
sa01nosey Jendwon [eoisAyg

ZL 1L (ogar “6-e) Jenuq eseqgeie(

1 vy “Bo)y |

\\\
>

Z9] 9SN-UI-SuU0josuUL0D

091 (dDon “68) jood uonosuuo)

05| 21607 [oo4 UoIoBUUCD

0l | JuswuolAug
aseqele(] / Jealas uopeolddy

—

8l
(sAey pJeys apnjoul Aew)
Jsenbai uonosuuon

08l
Lopeoljddy jusljo

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

WO 2016/172195

312

0cC| ©SEQEJE(Q pepleys

€ JdNoOiId
_
98l
ug »unyod ud 3unyo e opeip
pieys e o)
¢dMunyy COAUNYD fe POPJEMIO}
/ aq ueo jsenbal
L@ unyd RORLUTIS) N UoIoaUU0D 8Y]
apieys 9 pleys ‘asIMIBYIO
vl emdad ¢yl LMmdad
\\Ij \\I]
(\\ /l\
8l
ol (1sepm gQ “B8) g uolbey eseqeleq JUNYD puE pIeys
ajeudoidde
3y} 0} paplemio}
N TN Aposuip 29 ued
Jsanbal uoIjodUUDD U}
dg Aunyo v Aunyo ‘skoy pIeys oy} 1o}
fuiddew e sey Apessje ™
78 uny) Zvuny JaAlp eseqelep
/ 100d uonosuuo? Ji
19 Munyd AR U] o N A
T e VAL UNYD [pIBYS-
d pieys V PeYs 0} UOOBUUOD
el ¢34d ctl 13dd gl
— N N 1oug)sI
N~ N~ J dcjoalg
preys
0c| (1se3 gQ "be) v Uolbey eseqejeq

Ll
(iomieN ‘Alows ‘Ndo “Be)
sa01nosey Jendwon [eoisAyg

ZL 1L (ogar “6-e) Jenuq eseqgeie(

[y

(g0 yunyp “be) =]

L

ALy B v |

Z9] 9SN-UI-SuU0josuUL0D

l--\------

091 (dDon “68) jood uonosuuo)

05| 21607 [oo4 UoIoBUUCD

0l | JuswuolAug
aseqele(] / Jealas uopeolddy

—

8l
(sAey pJeys apnjoul Aew)
Jsenbai uonosuuon

08l
Lopeoljddy jusljo

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

WO 2016/172195

4112

vy 3dNoid

uoneoldde jusljo B WoJy paaieosl S| Asy pJeys awes e Joj jsenbel B usym SUORISUUOD
JO 9sNn-81 MO|[e pue ‘sAay pieys s)i AQ UCIOSUUOD B Ajjuspl Ueod [ood UoIJosUUo)

uoneoljdde jusljo Jey} Yim psjeloosse
yunyo pue pieys oioeds e 0} J0eUU0D 0} uoljesijdde jusijo 8y} mojje pue ‘uolesidde
1Usljo 8y} Aq palioads skey pieys ©ziubooel |00d UOOSUUOD JO/pUE JSALIP 8SEqele(]

v6lL

aseqgejep ay} Jo pieys eeludoidde ue o) uoieoldde
U89 ay) Aq sse00e aplaold 0] pasn usy} sl yoiym ‘swn ul julod Jsie| g Je 1o ‘aseqelep
8U} 0] UOROBUUOD E JO Inoyoayo Bulinp uoiewiojul A8y pleys e apinoid o) uopeoljdde
JuBl[o B 8|geus 0} painbiuoo ale jood LO}oauUoD 10 JoALlp 8SEJRIEP Y} JO BIoW IO 8UQ

26l

aseqejep ey} je palois ejep o} suoleoldde jusi|o
Aq sseooe apiroid Jayjebo) yoiym ‘sjood Uoj0auLOD 8IJ0W JO U0 pUe ‘SIBALIP BSEGR)ep
2J0W IO SUO UjIm pejeloosse pue spleys jo A}ijednid e Buirey ssegejep e spircld

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

WO 2016/172195

M2

N

ug yunyd

¢a3unyy

Ld HuUnyd

@ pleys
vyl cmad

N
N—

opL (18 g “B8) g uoibey eseqeieq

N

ug Aunyo

g 3unyo

g unyd

d PEEYS

vel ¢38d

Y
N

|
TN
8yl
up yunyn jousst
. JEQLEYq
pleySs
O unyg
10 3unyo
O pleys
vl lmAad

L~
/l\
T

uy Junyd

¢y unyo

WAUNYOR-LL

v peys B
¢tl 139d gcl
T~ 1oug)sI
~—_ | jiopaiq
pleys

o€l (1se3 gq ""be) v uoibey eseqeleq

0cC| ©SEQEJE(Q pepleys

S JNOId

vLL Munuyd / pJeys-
0} UoNY8UU0Y

g uonosuuo)
-€OUNYYH
X Aoy
sbuey Aoy preys

01 Jeke Abojodo] pleys

ZL 1L (ogar “6-e) Jenuq eseqgeie(

| (€oounyo "Be)g |

ALY o)y |

Z9] 9SN-UI-SuU0josuUL0D

091 (dDon “68) jood uonosuuo)

0G| 21607 [ood uoioeuuon)

0l | JuswuolAug
aseqele(] / Jealas uopeolddy

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

WO 2016/172195

6/12

e

ug yunyd

¢a3unyy

Ld HuUnyd

@ pleys
vyl cmad

N

N

e

ud yunyd

¢O0UNYO |

FOR LU

J pleys

crl Imdd
N

8yl
lsusjsr
J 1ojoau1
pieys

9 JFANVId

N

N~—

ovl (1sep g “b8) g uoibey eseqeleq

N

ug Aunyo

g 3unyo

g unyd

d PEEYS

vel ¢38d

T~
N

e N

Uy Yunyo

¢V unyp

LY AUNYO -4, —

v P2BYS T
ctl 139d gl
T~ 1oUB)8IT
~— | Jiopeug
pieys

0¢1 (1se3 gQ ""B'e) v uoibey eseqejeq

0cC| ©SEQEJE(Q pepleys

1474
yunys/preys

~—__ oOjssaooe

Lped Aoy Jse}
s9|qeus Jofe|
ABojodo} pieysg

vL1 MuUNyQ / pJeys-

0} UOKYBUUOYD

L abuey Aey pleys

g uoposuuo)
€O UNYH
X Ay

01 ¢ JoAheT ABojodo| pleys

ZL 1L (ogar “6-e) Jenuq eseqgeie(

1 vy “Bo)y |

1

- 1

1

L(codtuno "6e)g |
“

)

1

\\\
>

091 (dDon “68) jood uonosuuo)

i

A%
X A8 pieys yum 6°9)
Aoy paeys Jedng
pue Ae)| pJeys
yym ysenbas uonosuuon

\

08l
Lopeoljddy jusljo

05| 21607 [oo4 UoIoBUUCD

0l | JuswuolAug
aseqele(] / Jealas uopeolddy

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

WO 2016/172195

M2

L J4Noid

e

ug yunyd

¢a3unyy

Ld HuUnyd

@ pleys
vyl cmad

N

N

e

ud yunyd

FOR LU

J pleys

crl Imdd
N

8yl
lsusjsr
J 1ojoau1
pieys

N~—

ovl (1sep g “b8) g uoibey eseqeleq

1474
/l yunyo/pJeys

N~~—_ oisseooe |

Lped Aoy Jse}
s9|qeus Jofe|
ABojodo} pieysg

N

ug Aunyo

g 3unyo

g unyd
d PEEYS
vel ¢449d

T~
N

e N

Uy Junyp

v AUNYoH

AL] ot N S

T ebeeeen. L PLL MUNUD [PIEYS:
v PIEUS 0} UON8UUOD
ctl 139d gl
T~ 1oUB)8IT
~— | Jiopeug
pieys

0¢1 (1se3 gQ ""B'e) v uoibey eseqejeq

L abuey Aey pleys

g uoposuuo)
€O UNYH
X Ay

01 Jeke Abojodo] pleys
ZL 1L (ogar “6-e) Jenuq eseqgeie(

1 vy “Bo)y |

\\\
>

Z9] 9SN-UI-SuU0josuUL0D

091 (dDon “68) jood uonosuuo)

05| 21607 [oo4 UoIoBUUCD

0l | JuswuolAug
aseqele(] / Jealas uopeolddy

A%
X A8 pieys yum 6°9)
Aoy paeys Jedng
pue Ae)| pJeys
yym ysenbas uonosuuon

\

i

08l
Lopeoljddy jusljo

0cC| ©SEQEJE(Q pepleys

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

8/12

WO 2016/172195

SUBSTITUTE SHEET (RULE 26)

8 FdNvid
] 1 |]] |
r - - (o - 1 - - ¥ - sefeeens)
L - 1 : 1 - (i }
) 1 e 1 1
m “ _”m-”_*wmm ABojodo | syepdn) m .m. .m.
-—-.g|¢ uonosuuoD-—- 1 F-— = m— . 81€ UON0BUUOD)--— = s o m e m o = »{! [-—0T€ UoosuUOD-- B! - +--gZE UOoBUUOD B !
P (<shey pieys>) “ m m m
1 | | € uonosuuon sjesln (<shey preys>)] (<shoy pieyss) ! I
. I UoNosULOY) 81eal)| 41 I
suojoeuuoQ BuoleoN 1 CHETOIREIBOEIRE0 T <~0,¢ uogosuuog jeg ! | “
== == = i - ¥ !
: | 96¢ | <H 86¢ P11 - $--00€ Uojosuuoy |
] 1 |] [} |
m < ¢ UOHOSUUOD UO SDIAISG [BNIA YOUMS m P 767 UonoauuoD m m
suoloBUUOY 8|qe|leAY punod ! ! “ - ssodindsy | ! !
] o T H P » L . 4--067 UONOBUUOD:] “
i i " 08z seourisu| Buiyore |y uo ﬁ |
) 1) d)
J0]S|| PIeA B Sey 18I 8ouelsy|) 1004 Hi stonosloo ZiRereny amiooT | | i
. [el - du -l - J K)
' ' _M_ ' 1 “
m i _ /7 Abojodo | siepdn m m
L _.-..997 UoNoBUUOY) - =+ cmimime=. = =007 UONOBUUO) s = s = s e m e = e = -=0/g uonosuuoD~- | 1 |- +- -7/ uonosuuo): |
]] 1
(<shey pleys>) (<o ! | ' !
! uolPaUUoY) 8jeal <SASY PlEYS>]]
y POCHoh O 9IESi0 ! Z9Z Uonosuuo) eieald (<shey pieys>) ' !
Aidwe s13s17 souejsU| i i 1 09 uonsuuo) 1e9 |, _
- . - b m
“ “ cmrm = = PG 181 mocmumc_.l.l.l.l.l.l..'“ “
[}
" “ (<skey| preyss) ' ¢ (<sheypreyss) | “
! ! ' g6z Abojodo] eolnles Jo9 1™ gz uonosuuo) je9 L
] I |]] !
)44 8EC 18usjsT 9E¢ SINpPoN (0gar “69) (don “69) 0gc

aseqele(] pepieys / Joysiiq pleys ABojodo | sseqejeq ¥£Z JaAllq esegele(ZEZ 1004 Uoiosuuon uoneolddy Jus|D

PCT/US2016/028420

WO 2016/172195

912

6 FNoiId

] 1 |] |
] } |] }
] 1 }] }
] } |] !
] 1 | [} |
] | | [} |
] 1)])
]) }] 1
] 1 |] |
] | | [} |
] | |] |
] } }] }
] 1 |] |
] | | [} |
] 1 |] |
] 1 |] !
] 1 }] }
] 1)] }
] 1 | [} |
] 1 |] |
] 1 }] }
] 1 |] !
] 1 | [} |
] 1 |] |
] 1 L}])
] 1)])
] } }] }
1 1 | 1 |
] | | [} |
] 1] |
])])
] 1])
] | -
" “ ezt ABojodo| erepdn “
m m m O.Vm COEO@CCOO P m
“ “l QEE UONOBUUO)=+ =+ v v = v s - “
' .=.-0ge co:omccooiiL) i “
“)) “

} |])

1 | 1 |

| | ! 1

(<shey preyss)) “ “

] 1 !] }
“ FE£€ UoNoBUUOY) Bjeal) “ (<shey pIeys>) " “
“ “ €€ U0}oaUL0D 9jeeI) 5 (<shey pieuss) "
i ") “ 0E€ UoNosUUo] J9) -
] I |] !

)44 8EC 18usjsT 9E¢ SINpPoN (0gar “69) (don “69) 0gc
aseqeje(] pepleys / lojosliq pleys ABojodo | eseqeje(] ¥£7 leauq sseqgeie(Z€Z l0od uojosuuo) i uoneolddy Jusin

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

WO 2016/172195

10/12

0} F4NOId

yunyo Jo pleys sjendoldde ayy o} sse09e Yjed Aa jSE) B 9SN pesjsul pue ‘Jaus)s|| Jo
Jojosuip pieys e ssedAq o} sjsenbal uoijosuuoo Jusnbesqns se|qeus Jehe| ABojodol pleys

uoljeo|jdde jusijo B Woly panlsoel s| Aoy pleys awes e 10} jsenbal B Usym SUO[IBUUOD
JO 8sn-8) MO|[e pue ‘A8y pJeys syl Aq UOI}OBUUOD B Ajljuspl UeO j0od uoiosuuo)

Sve

s}senbeal uonoeuuoo Buisseoo.d
Ul @sn 1o} ‘eseqgelep ey} UIYIM Spleys Jo uoneoo| sy o} sebue.
Koy pleys soyoeo pue suleg| 1ey) 1ake| ABojodo) pieys e Buipnjoul ‘esegeiep Uy Jo pleys
ejelidoidde ue o} uoneoldde juaio eyy AQ s$8008 epircid 0 pasn SI YoIym UOITBULIOU
Ao pleys e eplaoid o} uoljeoljdde jJusijo e e|geus 0} painbyuoo s JeAlIp eseqele(]

eve

aseqejep ey} je palois ejep o} suoleoldde jusi|o
Aq sseooe apiroid Jayjebo) yoiym ‘sjood Uoj0auLOD 8IJ0W JO U0 pUe ‘SIBALIP BSEGR)ep
2J0W IO SUO UjIm pejeloosse pue spleys jo A}ijednid e Buirey ssegejep e spircld

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

WO 2016/172195

1112

Li FHNOIH

BuLis :(bug Asypreygiadns ‘Bus sy preys) sAaypieysio4ainiagiah
<9oUBJsu|d|oRIO> 195 :(uon g :991n8s) ABojodo | 8o1nI9G)eh

(JusAgSNO Juana) JusnagguQsiepdn

(uonvaUUODB|oRIO (UOIBUUOI) UoOBULODB)RaIDUOSePdN
(uonosuuoDajoRIO UonRIBUUT) $8160|0d0 | 8ZIjeniul

06¢ sse|n Abojodo | eseqgeieq

Ul :UoISIBABIRPdN

9dA | pleyg :adA] pieys

9dA | pleys :adA] preysiadns
<douelsu(s|orI>)SIT IsITeoue)sul
depyAbojodo | 8a1n19g ABojodo | 821nI8S
deyAbojodo | preys :A60jodo | pieys

ABojodo | qqioelQ:()Abojodo | geb

ABojodo | qqioel0:AbBojodo | qp

(ABojodo | gas|oelQ) sinpoy Abojodo| aseqeleq

(821n0SEIRQ BJ0RIQ) 82IN0S Ble(

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/028420

WO 2016/172195

12/12

¢t 3dNvid

(eoueysu| :29uRIsUI ‘BuULS :9IIAISS) 18QUIBABJIAIBSBAOWAI
(8ouesu|g|oRIQ B3UBISUl) 8dUBISU[BAOWB]

(Buing :991/8S) 92INDSOAOWD]

(eouejsupoRIO Bour)sSul ‘Bulng :821AI8S) 898G ppR

uea|00(:(82Ur)SU|BIORIN :8JUBJSUI) 8oUR)SUISRY

uesajooq :(bulg :821M8s) BIIAIBSSRY

(92UBISU|9|2RI0 (9oUERISUI) 9IUBISUIUOSSIIAIDS]eB
<<8IURISU|B[IBIO> JOS ((Bug :821n8s) adinegIio4saoue)sufiab

<<BuLys> 188 ‘@ouesulspeIO> depyuseH depsdIAIsS0] 8ouEB)SUl
<<9lue)sulgIeIO> 183 ‘BulyS> depyseH :depyaoue)su|o | 991AI9S

(depAbojodo | 991n19S) deyy ABojodo | a21A18S

o¢ sse|n ABojodo] eoinieg

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/028420

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 20157026213 Al (HEGDE VIDYA [IN] ET AL)
22 January 2015 (2015-01-22)
figure 4
figure 5A

paragraph [0029] - paragraph [0040]
paragraph [0054] - paragraph [0059]
paragraph [0020] - paragraph [0021]

X US 2014/324910 Al (DE LAVARENE JEAN [US]
ET AL) 30 October 2014 (2014-10-30)
figures 1-2

paragraph [0018] - paragraph [0025]

A US 2005/038801 Al (COLRAIN CAROL [US] ET
AL) 17 February 2005 (2005-02-17)
figures 1-3

paragraph [0031] - paragraph [0092]

_/__

1-22

1-22

1-22

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

cited to establish the publication date of another citation or other
special reason (as specified)

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik
Tel. (+31-70) 340-2040,

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
14 July 2016 25/07/2016
Name and mailing address of the ISA/ Authorized officer

Fax: (+31-70) 340-3018 Konak, Eyiip

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/028420
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2014/101100 Al (HU WEI-MING [US] ET AL) 1-22
10 April 2014 (2014-04-10)
figures 2-3

paragraph [0028] - paragraph [0094]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/028420
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2015026213 Al 22-01-2015 NONE
US 2014324910 Al 30-10-2014 CN 104871134 A 26-08-2015
EP 2989546 Al 02-03-2016
US 2014324910 Al 30-10-2014
US 2014324911 Al 30-10-2014
WO 2014176363 Al 30-10-2014
US 2005038801 Al 17-02-2005 NONE
US 2014101100 Al 10-04-2014 CN 104769919 A 08-07-2015
EP 2904763 Al 12-08-2015
US 2014101100 Al 10-04-2014
US 2015058290 Al 26-02-2015
WO 2014055143 Al 10-04-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report
	Page 55 - wo-search-report

