A method for packaging a composite element composed of an elongated strip of mastic sealant material having a flexible carrier tape adhered to one surface and a resilient spacer-dehydrator element adhered to the opposite surface is disclosed. The composite element, described above, is coiled with the side of the carrier tape that is free of mastic being disposed nearest the center of the coil. Thereafter, if the coil has been prepared for shipment or storage, the coil is maintained in a dry, inert and, where required, cooled atmosphere until subsequently used.

7 Claims, 4 Drawing Figures
PACKAGING ARRANGEMENT FOR A MULTIPLE GLAZED UNIT SPACER ASSEMBLY

BACKGROUND OF THE INVENTION

This invention relates to packaging a composite hermetic sealant, spacer-dehydrator element for use, shipment or storage and, more specifically, to a technique for coiling a composite element comprising an elongated strip of mastic sealant material having a flexible carrier tape or the like adhered to one surface and a resilient spacer-dehydrator element adhered to the opposite surface. In particular, the present invention relates to coiling the above-described composite element for subsequent use, shipment or storage in connection with the fabrication of hermetically sealed multiple glazed units.

In abandoned Ser. No. 749,758, the disclosure of which is specifically relied upon and incorporated herein by reference, there are shown and described multiple glazed window units comprised of a pair of glass sheets spaced from each other along their opposed marginal edge portions by an elastomeric spacer-dehydrator element and having a mastic sealant disposed about the peripheries of the glass sheets and the spacer-dehydrator element to provide a hermetically sealed unit. In accordance with the foregoing invention, the spacer-dehydrator element is preferably composed of a desiccant material dispersed in a matrix of moisture vapor transmittable styrene-butadiene rubber.

In accordance with the present invention, it has now been discovered that it is possible to package or coil continuous, pre-assembled lengths of the required spacer-dehydrator and sealant components of the above-described units at one location for use or temporary storage at that location or for shipment to and use or temporary storage at a distant multiple glazed window fabrication site. More particularly, in accordance with this invention, it has been discovered that it is possible to package continuous lengths of the composite hermetic sealant, spacer-dehydrator element in a coil for use, shipment or storage, and thereby provide a continuous coil or length of the composite element from which shorter lengths can be removed as needed in the construction of multiple glazed units.

Among the requirements that had to be met in connection with this invention were: providing continuous, pre-assembled lengths of the composite element in a compact package; maintaining the pre-assembled disposition or physical arrangement of the components of the composite element both in the package and when subsequently withdrawn therefrom for use; preventing or minimizing moisture pick-up by the desiccant during shipment and/or storage; and protecting room temperature vulcanizable or curable sealants against curing after packaging and during shipment and/or storage. The present invention makes the achievement of each of the above-mentioned requirements or objectives possible by providing a novel and unique arrangement for preparing the composite element for use, shipment or storage.

In accordance with the present invention, the composite carrier tape or ribbon, hermetic sealant, spacer-dehydrator element is coiled about a core member with the flexible carrier tape in nearest adjacency to the core piece. For some reason, which is not completely understood, if the composite element is coiled with its spacer-dehydrator component nearest the core, the spacer-dehydrator moves relative to the hermetic sealant causing the spacer-dehydrator to assume a wavy or undulatory disposition with respect to the sealant along substantial portions of the length of the composite element. This latter condition, of course, would defeat one of the principal objectives of this invention, i.e., continuously maintaining the pre-assembled disposition of the components of the composite element. Surprisingly, however, it has been discovered that by coiling the composite element with the carrier tape or ribbon nearest the core, the occurrence of this waviness condition is obviated. Accordingly, the packaging arrangement of the present invention permits maintaining the pre-assembled disposition or physical arrangement of the component parts of the composite element both in the package and when subsequently withdrawn therefrom for use.

Moreover, the coiling arrangement of this invention provides a compact package for economy in shipment and/or storage and also provides a continuous roll or coil of spacer-sealant material from which a desired segment can be removed as needed.

In addition, in accordance with this invention, it has been discovered that moisture pick-up by the desiccant can be minimized or prevented and that room temperature vulcanizable sealants can be protected against curing during shipment and/or storage by maintaining the composite spacer-sealant element in a cool, dry, inert atmosphere, such as is provided by the presence of dry ice in the package. The dry ice maintains a low ambient temperature below that at which the sealant will cure and also aids, by vaporization of the dry ice, in providing a relatively moisture-free, inert atmosphere that precludes any significant pick-up of moisture by the desiccant material.

The foregoing and other objects, features and advantages of this invention will become more apparent from the description that follows when taken in conjunction with the drawing, in which:

FIG. 1 is a perspective view of a section of a composite carrier ribbon-sealant-spacer element coiled in accordance with this invention;

FIG. 2 is a perspective view, similar to FIG. 1, of a section of a composite carrier ribbon-sealant-spacer element and depicting the wavy condition that occurs with the spacer component when this component of the composite element is disposed nearest the center of the coil;

FIG. 3 is a cross section of a marginal edge portion of a typical multiple glazed unit within the contemplation of this invention; and

FIG. 4 is an exploded, perspective view of a preferred shipping or storage packaging arrangement of this invention.

Illustrated in FIG. 1 is a length of a composite hermetic sealant, spacer-dehydrator element 10 coiled in accordance with the present invention and comprising a flexible carrier tape or ribbon 12 having an elongated strip of mastic material 14 adhered to one side thereof and a resilient spacer-dehydrator element 16 adhered to the mastic material. As shown, ribbon 12 is preferably slightly wider than the strip of mastic 14 and the strip of mastic 14 is wider than spacer-dehydrator 16. Each of the elements 12, 14 and 16 are coextensive in length and generally symmetrically disposed on either side of a center line along the length of the composite element 10.

In the construction of multiple glazed units, such as illustrated by the cross section shown in FIG. 3, a continuous length of spacer-sealant assembly 10 is placed around the periphery of a pair of spaced, parallel glass sheets 6 and 8 to provide an insulating air space between the sheets. The glass sheets are thus separated at their marginal edges by the continuous spacer-dehydrator element 16 and hermetic sealing of the insulating air space is accomplished by the moisture-resistant mastic 14 being adhered or bonded to the peripheral edge of spacer-dehydrator element 16 and the peripheral edges of the glass sheets. A hand roller may be conveniently used to press mastic 14 into sealing contact with the edges of the glass sheets and any flowing of mastic 14 that may occur is intended to be concealed by the slightly greater width of ribbon 12 over the original width of mastic strip 14.

For use in connection with this invention, carrier ribbon 12 may be composed of any flexible material, although a moisture-resistant material is preferred. In the particular embodiment shown, for example, ribbon 12 is a strip of 5-6 mil aluminum foil. However, a strip of flexible, moisture-resistant plastic or other flexible, moisture-resistant material may also be used, if desired.

Adhesive, moisture-resistant mastic compositions 14, within the contemplation of this invention, are materials that are capable of cold flow at room temperature and include...
3,657,900

3 precured materials, such as disclosed in U.S. Pat. No. 2,974,377, as well as thermosetting and/or room temperature curable materials, such as disclosed in U.S. Pat. Nos. 3,076,777 and 3,320,333. Room temperature curable materials that cold flow to form a seal and cure to form a resilient structural bond are particularly desirable for use as an “edge-pack” or hermetic seal in the construction of multiple glazed units.

Spacer-dehydrator 16 is a flexible or resilient member the preferred composition of which is fully disclosed in the aforementioned abandoned application Ser. No. 749,758. Briefly, spacer-dehydrator 16 is preferably comprised of a powdered molecular sieve material dispersed in a matrix of a thermoplastic styrene-butadiene rubber. Reference may be had to the aforesaid copending application Ser. No. 749,758 for further details regarding spacer-dehydrator 16, its method of manufacture and ultimate use in multiple glazed window constructions.

Thus, the spacer assembly 10 contains three different materials which are aligned in the manufacturing process. During shipment and/or storage, the spacer assembly must retain this alignment and be kept dry. This is essential for fabricating good units from the spacer assembly. For example, if the spacer-dehydrator 16 moves in relation to the sealant 14 and foil 12, it will be impossible to obtain the required fit and seal around the marginal edge of the unit. Also, if the spacer-dehydrator 16 is in contact with moisture, it will lose its drying capacity. Moreover, maintaining the spacer assembly in a cool and/or cold ambient environment, during shipment or storage, is desirable in order to retard the cure of heat and room temperature curable or vulcanizable mastic sealants.

In accordance with the present invention, after composite element 10 has been prepared or assembled in continuous strip form it is wound into a flat, cylindrical coil with the side of the carrier ribbon or foil 12 that is free of mastic 14 being disposed nearest the center of the coil. This coiling arrangement is illustrated in FIG. 1. By way of comparison, the reverse arrangement for coiling composite element 10 is illustrated in FIG. 2. Also illustrated in FIG. 2 is the undesirable movement or misalignment of spacer-dehydrator 16 relative to mastic 14 that results by reason of coiling composite element 10 in the manner shown therein rather than the manner shown in FIG. 1. However, when spacer element 10 is coiled in the manner shown in FIG. 1, the alignment of spacer-dehydrator 16 relative to mastic 14 and foil 12 is maintained and good units can consistently be produced without difficulty in obtaining the required seal around the marginal edges of the units.

Depicted in FIG. 4 is an exploded view of a preferred packaging arrangement in accordance with this invention. Spacer-sealant assembly 10 is coiled on a support or frame 18 composed of a hollow cylindrical hub or core member 20 having a circular rim 22 affixed about one of its ends. Spacer-sealant assembly 10 is wound about core member 20 to form a coil arrangement 26 so that foil 12 faces toward the core and spacer-dehydrator 16 faces away from the core. After the desired length of spacer-sealant assembly 10 is wound or coiled on frame 18, the frame and spacer-sealant assembly are placed in a cylindrical box 24 having an inside diameter slightly larger than the outside diameter of rim 22. As shown, a plurality of these coils 26 may be stacked one on top of the other in box 24 until the box is filled. Then, dry ice 28, either packaged or in loose pieces, is placed in the hollow hub 20. Lid 30 is thereafter placed on box 24 and the completed package is sealed for shipment.

Although the present invention has been described with particular reference to the specific details of a certain embodiment thereof, it is not intended that such details shall be regarded as limitations upon the scope of the invention except insofar as included in the accompanying claims.

We claim:

1. A packaging arrangement for a composite carrier tape, mastic sealant, spacer-dehydrator element comprising an elongated strip of mastic sealant material having a flexible carrier tape adhered to one surface, a resilient spacer-dehydrator element adhered to the opposite surface and coiled with the side of the carrier tape that is free of mastic being disposed nearest the center of the coil, said mastic sealant being a material that cold flows at room temperature and has insufficient cohesive strength to prevent movement of said spacer-dehydrator into an undulatory disposition along the length of a coil of the composite element when the spacer-dehydrator is disposed nearest the center of the coil.

2. A packaging arrangement according to claim 1 wherein said composite element is coiled about a core member.

3. A packaging arrangement according to claim 1 wherein said mastic sealant comprises a hermetic sealant material.

4. A packaging arrangement according to claim 3 wherein said spacer-dehydrator element comprises a desiccant dispersed in a matrix of a thermoplastic styrene-butadiene rubber.

5. A packaging arrangement according to claim 1 which includes a plurality of coils of said composite element disposed within a container, a dry, inert environment within said container and a closure for said container.

6. A packaging arrangement according to claim 5 wherein dry ice is present within said container to provide said dry, inert environment.

7. A packaging arrangement according to claim 5 which includes means to cool the environment within said container below room temperature.