特許公告: EXHAUST GAS CLEANING METHOD

発明の名称: 排気ガス浄化方法

Abstract: Installed in the exhaust passageway of an internal combustion engine is a particulate filter (22) carrying an active oxygen release agent which takes in and retains oxygen when excess surrounding oxygen is present and which releases the retained oxygen, in the form of active oxygen when the surrounding oxygen concentration lowers. The air-fuel ratio of exhaust gases flowing into the particulate filter (22) is normally maintained on the lean side and is sometimes temporarily switched to the rich side. When the air-fuel ratio of the exhaust gases is switched to the rich side, the active oxygen released from the active oxygen release agent accelerates the oxidative reaction of particulates on the particulate filter, thereby continuously oxidatively removing the particulates contained in the exhaust gases without generating luminous flames on the particulate filter (22).
内燃機関の排気通路内に、周囲に過剰酸素が存在すると酸素を取込んで酸素を保持しつつ周囲の酸素濃度が低下すると保持した酸素を活性酸素の形で放出する活性酸素放出剤を担持したパティキュレートフィルタ（22）が配置される。パティキュレートフィルタ（22）に流入する排気ガスの空燃比は通常リーンに維持され、時折一時的にリッチに切換えられる。排気ガスの空燃比がリッチに切換えられたときには活性酸素放出剤から放出される活性酸素によりパティキュレートフィルタ上の微粒子の酸化反応が促進され、それによって排気ガス中の微粒子をパティキュレートフィルタ（22）上でにおいて輝炎を発することなく連続的に酸化除去せしめる。
排気ガス浄化方法

技術分野

本発明は排気ガス浄化方法に関する。

背景技術

従来よりディーゼル機関においては、排気ガス中に含まれる微粒子を除去するために機関排気通路内にパティキュレートフィルタを配置してこのパティキュレートフィルタにより排気ガス中の微粒子を一旦捕集し、パティキュレートフィルタ上に捕集された微粒子を着火燃焼しめることによりパティキュレートフィルタを再生するようにしている。ところがパティキュレートフィルタ上に捕集された微粒子は600℃程度以上の高温にならないと着火せず、これに対してもディーゼル機関の排気ガス温は通常600℃よりもかなり低い。従って排気ガス熱でもってパティキュレートフィルタ上に捕集された微粒子を着火させるのは困難であり、排気ガス熱でもってパティキュレートフィルタ上に捕集された微粒子を着火させるためには微粒子の着火温度を低くしなければならない。

ところで従来よりパティキュレートフィルタ上に触媒を担持すれば微粒子の着火温度を低下できることが知られており、従って従来より微粒子の着火温度を低下させるために触媒を担持した種々のパティキュレートフィルタが公知である。

例えば特公平7-106290号公報にはパティキュレートフィルタ上に白金族金属およびアルカリ土類金属酸化物の混合物を担持させたパティキュレートフィルタが開示されている。このパティキ
パティキュレートフィルタではほぼ350℃から400℃の比較的低温でもって微粒子が着火され、次いで連続的に燃焼させられる。

ディーゼル機関では負荷が高くなれば排気ガス温が350℃から400℃に達し、従って上述のパティキュレートフィルタでは一見したところ機関負荷が高くなったときに排気ガス熱によって微粒子を着火燃焼させることができるように見える。しかしながら実際には排気ガス温が350℃から400℃に達しても微粒子が着火しない場合があり、またたとえ微粒子が着火したとしても一部の微粒子しか燃焼せず、多量の微粒子が燃え残るという問題を生ずる。

即ち、排気ガス中に含まれる微粒子量が少ないときにはパティキュレートフィルタ上に付着する微粒子量が少なく、このときには排気ガス温が350℃から400℃になるとパティキュレートフィルタ上の微粒子は着火し、次いで連続的に燃焼させられる。

しかしながら排気ガス中に含まれる微粒子量が多くなるとパティキュレートフィルタ上に付着した微粒子が完全に燃焼する前にこの微粒子の上に別の微粒子が堆積し、その結果パティキュレートフィルタ上に微粒子が積層状に堆積する。このようにパティキュレートフィルタ上に微粒子が積層状に堆積すると酸素と接触しやすい一部の微粒子は燃焼させられるが酸素と接触しない残りの微粒子は燃焼せず、斯くして多量の微粒子が燃え残ることになる。従って排気ガス中に含まれる微粒子量が多くなるとパティキュレートフィルタ上に多量の微粒子が堆積し続けることになる。

一方、パティキュレートフィルタ上に多量の微粒子が堆積するとこれら堆積した微粒子は次第に着火燃焼し始らくなる。このように燃焼し始らくなるのはおそらく堆積している間に微粒子中の炭素が燃焼し始らうグラフィト等に変化するからであると考えられる。事実、パティキュレートフィルタ上に多量の微粒子が堆積し続ける
と350℃から400℃の低温では堆積した微粒子が着火せず、堆積した微粒子を着火せめるためには600℃以上の高温が必要となる。しかしながらディーゼル機関では通常、排気ガス温が600℃以上の高温になることが少なく、従ってパティキュレートフィルタ上に多量の微粒子が堆積し続けると排気ガス熱によって堆積した微粒子を着火せめるのが困難となる。

一方、このとき排気ガス温を600℃以上の高温にすることができたとすると堆積した微粒子は着火するがこの場合には別の問題を生ずる。即ち、この場合、堆積した微粒子は着火させられると輝炎を発して燃焼し、このときパティキュレートフィルタの温度は堆積した微粒子の燃焼が完了するまで長時間に亘り800℃以上に維持される。しかしながらこのようにパティキュレートフィルタが長時間に亘り800℃以上の高温にさらされるとパティキュレートフィルタが早期に劣化し、斯くしてパティキュレートフィルタを新品と早期に交換しなければならないという問題が生ずる。

また、堆積した微粒子が燃焼せめられるとアッシュが凝縮して大きな塊なりとなり、これらアッシュの塊まりによってパティキュレートフィルタの細孔が目詰まりを生ずる。目詰まりした細孔の数は時間の経過と共に次第に増大し、斯くしてパティキュレートフィルタにおける排気ガス流の圧損が次第に大きくなる。排気ガス流の圧損が大きくなると機関の出力が低下し、スくしてこの点からもパティキュレートフィルタを新品と早期に交換しなければならないという問題が生ずる。

このように多量の微粒子が一旦積層状に堆積してしまうと上述の如き種々の問題が生じ、従って排気ガス中に含まれる微粒子量とパティキュレートフィルタ上において燃焼しゅる微粒子量とのバランスを考えて多量の微粒子が積層状に堆積しないようにする必要があ
る。しかしながら上述の公報に記載されたパティキュレートフィルタでは排気ガス中に含まれる微粒子量とパティキュレートフィルタ上において燃焼しる微粒子量とのバランスについては何ら考えておらず、斯くして上述したように種々の問題を生じることになる。

また、上述の公報に記載されたパティキュレートフィルタでは排気ガス温が350℃以下になると微粒子は着火されず、斯くしてパティキュレートフィルタ上に微粒子が堆積する。この場合、堆積量が少なければ排気ガス温が350℃から400℃になったときに堆積した微粒子が燃焼しめるられるが多量の微粒子が積層状に堆積すると排気ガス温が350℃から400℃になったときに堆積した微粒子が着火せず、たとえ着火したとしても一部の微粒子は燃焼しないために燃え残りが生じる。

この場合、多量の微粒子が積層状に堆積する前に排気ガス温を上昇させれば堆積した微粒子を燃え残ることなく燃焼しめることができるが上述の公報に記載されたパティキュレートフィルタではこのようなことは何ら考えておらず、斯くして多量の微粒子が積層状に堆積した場合には排気ガス温を600℃以上に上昇させない限り、堆積した全微粒子を燃焼させることができない。

発明の開示

本発明の目的は、排気ガス中の微粒子をパティキュレートフィルタ上において連続的に酸化除去することのできる排気ガス浄化方法を提供することにある。

また、本発明の別の目的は、排気ガス中の微粒子をパティキュレートフィルタ上において連続的に酸化除去ができかつ同時に排気ガス中のNOxを除去することのできる排気ガス浄化方法を提供することにある。
本発明によれば、燃焼室から排出された排気ガス中の微粒子を除去するためのパティキュレートフィルタ上に、周囲に過剰酸素が存在すると酸素を取込んで酸素を保持しつつ周囲の酸素濃度が低下すると保持した酸素を活性酸素の形で放出する活性酸素放出剤を担持させ、パティキュレートフィルタに流入する排気ガスの空燃比を通常はリーンに維持すると共に時折一時的にリッチに切換えて排気ガスの空燃比がリッチに切換えられたときには活性酸素放出剤から放出される活性酸素によりパティキュレートフィルタ上の微粒子の酸化反応を促進させ、それによってパティキュレートフィルタ上の微粒子が輝炎を発することなく酸化除去せしめられる排気ガス処理方法が提供される。

また、本発明によれば、燃焼室から排出された排気ガス中の微粒子を除去するためのパティキュレートフィルタ上に、周囲に過剰酸素が存在すると酸素を取込んで酸素を保持しつつ周囲の酸素濃度が低下すると保持した酸素を活性酸素の形で放出すると共に、パティキュレートフィルタに流入する排気ガスの空燃比がリーンのときには排気ガス中のNOₓを吸収しパティキュレートフィルタに流入する排気ガスの空燃比が理論空燃比又はリッチになると吸収したNOₓを放出する活性酸素放出・NOₓ吸収剤を担持させ、パティキュレートフィルタに流入する排気ガスの空燃比を通常はリーンに維持すると共に時折一時的にリッチに切換えて排気ガスの空燃比がリッチに切換えられたときには活性酸素放出・NOₓ吸収剤から放出される活性酸素によりパティキュレートフィルタ上の微粒子の酸化反応を促進させると共に、活性酸素放出・NOₓ吸収剤から放出されるNOₓを還元させ、それによってパティキュレートフィルタ上の微粒子が輝炎を発することなく酸化除去せしめられると共に、同時に排気ガス中のNOₓが除去せしめられる排気ガス処理方法が提供される。
される。

図面の簡単な説明

図1は内燃機関の全体図、図2A、2Bは機関の要求トルクを示す図、図3A、3Bはパルティキュレートフィルタを示す図、図4A、4Bは微粒子の酸化作用を説明するための図、図5Aから5Cは微粒子の堆積作用を説明するための図、図6は酸化除去可能微粒子量とパルティキュレートフィルタの温度との関係を示す図、図7A、7Bは酸化除去可能微粒子量を示す図、図8Aから8Fは酸化除去可能微粒子量Gのマップを示す図、図9A、9Bは排気ガス中の酸素濃度およびNOx濃度のマップを示す図、図10A、10Bは排出微粒子量を示す図、図11は機関の運転を制御するためのフローチャート、図12は噴射制御を説明するための図、図13はスモークの発生量を示す図、図14A、14Bは燃焼室内のガス温度を示す図、図15は内燃機関別の実施例を示す全体図、図16は内燃機関の更に別の実施例を示す全体図、図17は内燃機関の更に別の実施例を示す全体図、図18は内燃機関の更に別の実施例を示す全体図、図19は内燃機関の更に別の実施例を示す全体図、図20Aから20Cは微粒子の堆積濃度等を示す図、図21は機関の運転を制御するためのフローチャートである。

発明を実施するための最良の形態

図1は本発明を圧縮着火式内燃機関に適用した場合を示している。なお、本発明は火花点火式内燃機関にも適用することもできる。

図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポ
ートを夫々示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介して排気ターボチャージャ14のコンプレッサ15に連結される。吸気ダクト13内にはステップモータ16により駆動されるスロットル弁17が配置され、更に吸気ダクト13周りには吸気ダクト13内を流れる吸入空気を冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導びかれ、機関冷却水によって吸入空気が冷却される。一方、排気ポート10は排気マニホールド19および排気管20を介して排気ターボチャージャ14の排気タービン21に連結され、排気タービン21の出口はパティキュレートフィルタ22を内蔵したケーシング23に連結される。

排気マニホールド19とサージタンク12とは排気ガス再循環（以下、EGRと称す）通路24を介して互いに連結され、EGR通路24内には電気制御式EGR制御弁25が配置される。また、EGR通路24周りにはEGR通路24内を流れるEGRガスを冷却するための冷却装置26が配置される。図1に示される実施例では機関冷却水が冷却装置26内に導びかれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁6は燃料供給管6aを介して燃料リザーバー、いわゆるコンポーネント27に連結される。このコンポーネント27内へは電気制御式の吐出量可変な燃料ポンプ28から燃料が供給され、コンポーネント27内に供給された燃料は各燃料供給管6aを介して燃料噴射弁6に供給される。コンポーネント27にはコンポーネント27内の燃料圧を検出するための燃料圧センサ29が取付けられ、燃料圧センサ29の出力信号に基づいてコンポーネント27内の燃料圧が目標燃料圧となるように燃料ポンプ28の吐出量が制御される。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM（リードオンリーメモリ）32、RAM（ランダムアクセスメモリ）33、CPU（マイクロプロセッサ）34、入力ポート35および出力ポート36を具備する。燃料圧センサ29の出力信号は対応するAD変換器37を介して入力ポート35に入力される。また、パティキュレートフィルタ22にはパティキュレートフィルタ22の温度を検出するための温度センサ39が取付けられ、この温度センサ39の出力信号は対応するAD変換器37を介して入力ポート35に入力される。アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁6、スロットル弁駆動用ステップモータ16、EGR制御弁25、および燃料ポンプ28に接続される。

図2Aは要求トルクTQと、アクセルペダル40の踏込み量Lと、機関回転数Nとの関係を示している。なお、図2Aにおいて各曲線は等トルク曲線を表しており、TQ=0で示される曲線はトルクが零であることを示しており、残りの曲線はTQ=a, TQ=b, TQ=c, TQ=dの順に次第に要求トルクが高くなる。図2Aに示される要求トルクTQは図2Bに示されるようにアクセルペダル40の踏込み量Lと機関回転数Nの関数としてマップの形で予めROM32に記憶されている。本発明による実施例では図2Bに示すマップからアクセルペダル40の踏込み量Lおよび機関回転数Nに応じた要求トルクTQがまず初めに算出され、この要求トルクT
Qに基づいて燃料噴射量等が算出される。

図３Aおよび３Bにバティキュレートフィルタ２２の構造を示す。
なお、図３Aはバティキュレートフィルタ２２の正面図を示しており、図３Bはバティキュレートフィルタ２２の側面断面図を示している。図３Aおよび３Bに示されるようにバティキュレートフィルタ２２はハニカム構造をなしており、互いに平行をなして延びる複数個の排気流通路５０、５１を具備する。これら排気流通路は下流端が栓５２により閉塞された排気ガス流入通路５０と、上流端が栓５３により閉塞された排気ガス流出通路５１とにより構成される。
なお、図３Aにおいてハッティングを付した部分は栓５３を示している。従って排気ガス流入通路５０および排気ガス流出通路５１は薄肉の隔壁５４を介して交互に配置される。云い換えると排気ガス流入通路５０および排気ガス流出通路５１は各排気ガス流入通路５０が４つの排気ガス流出通路５１によって包囲され、各排気ガス流出通路５１が４つの排気ガス流入通路５０によって包囲されるように配置される。

バティキュレートフィルタ２２は例えばコーディライトのような多孔質材料から形成されており、従って排気ガス流入通路５０内に流入した排気ガスは図３Bにおいて矢印で示されるように周囲の隔壁５４内を通って隣接する排気ガス流出通路５１内に流出する。

本発明による実施例では各排気ガス流入通路５０および各排気ガス流出通路５１の周壁面、即ち各隔壁５４の両側表面上および隔壁５４内の細孔内壁面上には例えばアルミナからなる担体の層が形成されており、この担体上に貴金属触媒、および周囲に過剰酸素が存在すると酸素を取込んで酸素を保持しかも周囲の酸素濃度が低下すると保持した酸素を活性酸素の形で放出する活性酸素放出剤が担持されている。

9
この場合、本発明による実施例では貴金属触媒として白金P t が用いられており、活性酸素放出剤としてカリウムK、ナトリウムNa、リチウムLi、セシウムCs、ルビジウムRbのようなアルカリ金属、バリウムBa、カルシウムCa、ストロンチウムSrのようなアルカリ土類金属、ランタンLa、イットリウムY、セリウムCeのような希土類、および錫Sn、鉄Feのような遷移金属から選ばれた少くとも一つが用いられている。

なお、この場合活性酸素放出剤としてはカルシウムCaよりもイオン化傾向の高いアルカリ金属又はアルカリ土類金属、即ちカリウムK、リチウムLi、セシウムCs、ルビジウムRb、バリウムBa、ストロンチウムSrを用いるか、或いはセリウムCeを用いることが好ましい。

次にパティキュレートフィルタ22による排気ガス中の微粒子除去について担体上に白金P t およびカリウムKを担持させた場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類金属、希土類、遷移金属を用いても同様な微粒子除去作用が行われる。

図1に示されるような圧縮着火式内燃機関では空気過剰のもとで燃焼が行われ、従って排気ガスは多量の過剰空気を含んでいる。即ち、吸気通路、燃焼室5および排気通路内に供給された空気と燃料との比を排気ガスの空燃比と称すると図1に示されるような圧縮着火式内燃機関では排気ガスの空燃比はリーンとなっている。また、燃焼室5内ではNOが発生するので排気ガス中にはNOが含まれている。また、燃料中にはイオウSが含まれており、このイオウSは燃焼室5内で酸素と反応してSO2となる。従って排気ガス中にはSO2が含まれている。従って過剰酸素、NOおよびSO2を含んだ排気ガスがパティキュレートフィルタ22の排気ガス流入通路5
0 内に流入することになる。

図 4 A および 4 B は排気ガス流入通路 5 0 の内周面および隔壁 5 4 内の細孔内壁面上に形成された担体層の表面の拡大図を模式的に表わしている。なお、図 4 A および 4 B において 6 0 は白金 P t の粒子を示しており、6 1 はカリウム K を含んでいる活性酸素放出剤を示している。

上述したように排気ガス中には多量の過剰酸素が含まれているので排気ガスがパティキュレートフィルタ 2 2 の排気ガス流入通路 5 0 内に流入すると図 4 A に示されるようにこれら酸素 O 2 が O 2 と又は O 2 と形で白金 P t の表面に付着する。一方、排気ガス中の N O は白金 P t の表面上で O 2 と又は O 2 と反応し、N O 2 となる（2 NO + O 2 → 2 NO 2）。次いで生成された N O 2 の一部は白金 P t 上で酸化されつつ活性酸素放出剤 6 1 内に吸収され、カリウム K と結合しながら図 4 A に示されるように硝酸イオン NO 3 と活性酸素放出剤 6 1 内に拡散し、一部の硝酸イオン NO 3 は硝酸カリウム KNO 3 を生成する。

一方、上述したように排気ガス中には S O 2 も含まれており、この S O 2 も N O と同様なメカニズムによって活性酸素放出剤 6 1 内に吸収される。即ち、上述したように酸素 O 2 が O 2 と又は O 2 の形で白金 P t の表面に付着しており、排気ガス中の S O 2 は白金 P t の表面で O 2 と又は O 2 と反応して S O 3 となる。次いで生成された S O 3 の一部は白金 P t 上で更に酸化されつつ活性酸素放出剤 6 1 内に吸収され、カリウム K と結合しながら硫酸イオン SO 4 2 の形で活性酸素放出剤 6 1 内に拡散し、硫酸カリウム K 2 SO 4 を生成する。このようにして活性酸素放出触媒 6 1 内には硝酸カリウム KNO 3 および硫酸カリウム K 2 SO 4 が生成される。

一方、燃焼室 5 内においては主にカーボン C からなる微粒子が生
成され、従って排気ガス中にはこれら微粒子が含まれている。排気ガス中に含まれているこれら微粒子は排気ガスがパティキュレートフィルタ22の排気ガス流入通路50内を流れているときに、或いは排気ガス流入通路50から排気ガス流出通路51に向かうときに図4Bにおいて62で示されるように担体層の表面、例えば活性酸素放出剤61の表面上に接触し、付着する。

このように微粒子62が活性酸素放出剤61の表面上に付着すると微粒子62と活性酸素放出剤61との接触面では酸素濃度が低下する。酸素濃度が低下すると酸素濃度の高い活性酸素放出剤61内との間で濃度差が生じ、斯くして活性酸素放出剤61内の酸素が微粒子62と活性酸素放出剤61との接触面に向けて移動しようとする。その結果、活性酸素放出剤61内に形成されている硝酸カリウムKNO₃がカリウムKと酸素OとNOとに分解され、酸素Oが微粒子62と活性酸素放出剤61との接触面に向かい、NOが活性酸素放出剤61から外部に放出される。外部に放出されたNOは下流側の白金Pt上において酸化され、再び活性酸素放出剤61内に吸収される。

一方、このとき活性酸素放出剤61内に形成されている硫酸カリウムK₂SO₄もカリウムKと酸素OとSO₂とに分解され、酸素Oが微粒子62と活性酸素放出剤61との接触面に向かい、SO₂が活性酸素放出剤61から外部に放出される。外部に放出されたSO₂は下流側の白金Pt上において酸化され、再び活性酸素放出剤61内に吸収される。

一方、微粒子62と活性酸素放出剤61との接触面に向かう酸素Oは硝酸カリウムKNO₃や硫酸カリウムK₂SO₄のような化合物から分解された酸素である。化合物から分解された酸素Oは高いエネルギーを有しており、極めて高い活性を有する。従って微粒子6
2と活性酸素放出剤61との接触面に向かう酸素は活性酸素Oとな
っている。これら活性酸素Oが微粒子62に接触すると微粒子62
の酸化作用が促進され、微粒子62は数分から数10分の短時間の
うちに輝炎を発することなく酸化せしめられる。このように微粒子
62が酸化せしめられている間に他の微粒子が次から次へとバティ
キュレートフィルタ22に付着する。従って実際にはバティキュレ
ートフィルタ22上にはある程度の量の微粒子が常時堆積しており
、この堆積している微粒子のうちの一部の微粒子が酸化除去せしめ
られることになる。このようにしてバティキュレートフィルタ22
上に付着した微粒子62が輝炎を発することなく連続燃焼せしめら
れる。

なお、NOxは酸素原子の結合および分離を繰返しつつ活性酸素
放出剤61内において硝酸イオンNO3-の形で拡散するものと考え
られ、この間にも活性酸素が発生する。微粒子62はこの活性酸素
によっても酸化せしめられる。また、このようにバティキュレート
フィルタ22上に付着した微粒子62は活性酸素Oによって酸化せ
しめられるがこれら微粒子62は排気ガス中の酸素によっても酸化
せしめられる。
バティキュレートフィルタ22上に積層状に堆積した微粒子が燃
焼せしめられるときにはバティキュレートフィルタ22が赤熱し、
火炎を伴って燃焼する。このような火炎を伴う燃焼は高温でないと
持続せず、従ってこのような火炎を伴なう燃焼を持続させるために
はバティキュレートフィルタ22の温度を高温に維持しなければな
らない。
これに対して本発明では微粒子62は上述したように輝炎を発す
ることなく酸化せしめられ、このときバティキュレートフィルタ2
2の表面が赤熱することもない。即ち、云い換えると本発明ではか
なり低い温度でもって微粒子 62 が酸化除去せしほされる。従って本発明による輝炎を発しない微粒子 62 の酸化による微粒子除去作用は火炎を伴う燃焼による微粒子除去作用と全く異なっている。

ところで白金 Pt および活性酸素放出剤 61 はパティキュレートフィルタ 22 の温度が高くなるほど活性化するので単位時間当りに活性酸素放出剤 61 が放出する活性酸素 O の量はパティキュレートフィルタ 22 の温度が高くなるほど増大する。また当然のことながら微粒子は微粒子自身の温度が高いほど酸化除去されやすくなる。従ってパティキュレートフィルタ 22 上において単位時間当りに輝炎を発することなく酸化除去可能な酸化除去可能微粒子量はパティキュレートフィルタ 22 の温度が高くなるほど増大する。

図 6 の実線は単位時間当りに輝炎を発することなく酸化除去可能な酸化除去可能微粒子量 G を示しており、図 6 の横軸はパティキュレートフィルタ 22 の温度 T F を示している。なお、図 6 は単位時間を 1 秒とした場合のみ、即ち 1 秒当りの酸化除去可能微粒子量 G を示しているがこの単位時間としては 1 分、10 分等任意の時間を採用することができる。例えば単位時間として 10 分を用いた場合に単位時間当りの酸化除去可能微粒子量 G は 10 分間当りの酸化除去可能微粒子量 G を表すことになり、この場合でもパティキュレートフィルタ 22 上において単位時間当りに輝炎を発することなく酸化除去可能な酸化除去可能微粒子量 G は図 6 に示されるようにパティキュレートフィルタ 22 の温度が高くなるほど増大する。

さて、単位時間当りに燃焼室 5 から排出される微粒子の量を排出微粒子量 M と称するとこの排出微粒子量 M が同じ単位時間当りに酸化除去可能微粒子 G よりも少ないとき、例えば 1 秒当りの排出微粒子量 M が 1 秒当りの酸化除去可能微粒子量 G よりも少ないとき、或
いは10分当りの排出微粒子量Mが10分当りの酸化除去可能微粒子量Gよりも少ないとき、即ち図6の領域Iでは燃焼室5から排出された全ての微粒子がパティキュレートフィルタ22上において輝炎を発することなく順次短時間のうちに酸化除去せしめられる。

これに対し、排出微粒子量Mが酸化除去可能微粒子量Gよりも多いとき、即ち図6の領域IIでは全ての微粒子を順次酸化するには活性酸素量が不足している。図5A〜5Cはこのような場合の微粒子の酸化の様子を示している。

即ち、全ての微粒子を順次酸化するには活性酸素量が不足している場合には図5Aに示すように微粒子62が活性酸素放出剤61上に付着すると微粒子62の一部のみが酸化され、十分に酸化されなかった微粒子部分が担体層上に残留する。次いで活性酸素量が不足している状態が継続すると次から次へと酸化されなかった微粒子部分が担体層上に残留し、その結果図5Bに示されるように担体層の表面が残留微粒子部分63によって覆われることがになる。

担体層の表面を覆うこの残留微粒子部分63は次第に酸化されにくいカーボン質に変質し、新しくてこの残留微粒子部分63はそのまま残留しやすくなる。また、担体層の表面が残留微粒子部分63によって覆われると白金P tによるNO、SO₂の酸化作用および活性酸素放出剤61からの活性酸素の放出作用が抑制される。その結果、図5Cに示されるように残留微粒子部分63の上に別の微粒子64が次から次へと堆積する。即ち、微粒子が積層状に堆積することになる。このように微粒子が積層状に堆積するとこれら微粒子は白金P tや活性酸素放出剤61から距離を隔てているためにとえ酸化されやすい微粒子であってもはや活性酸素Oによって酸化されることがなく、従ってこの微粒子64上に更に別の微粒子が次から次へと堆積する。即ち、排出微粒子量Mが酸化除去可能微粒子
量Gよりも多い状態が継続するとバティキュレートフィルタ22上には微粒子が積層状に堆積し、スズして排気ガス温を高温にするか、或はバティキュレートフィルタ22の温度を高温にしない限り、堆積した微粒子を着火燃焼させることができるなくなる。

このように図6の領域Iでは微粒子はバティキュレートフィルタ22上において輝炎を発することなく短時間のうちに酸化せしめられ、図6の領域IIでは微粒子がバティキュレートフィルタ22上に積層状に堆積する。従って微粒子がバティキュレートフィルタ22上に積層状に堆積しないようにするためには排出微粒子量Mを常時酸化除去可能微粒子量Gよりも少なくしておく必要がある。

図6からわかるように本発明の実施例で用いられているバティキュレートフィルタ22ではバティキュレートフィルタ22の温度TFがかなり低くても微粒子を酸化させることができるが可能であり、従って図1に示す圧縮着火式内燃機関において排出微粒子量Mおよびバティキュレートフィルタ22の温度TFを排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなくなるように維持することが可能である。従って本発明による実施例においては基本的に排出微粒子量Mおよびバティキュレートフィルタ22の温度TFを排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなるように維持するようにしている。

このように排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなくなるように維持するとバティキュレートフィルタ22上に微粒子が積層状に堆積しなくななる。その結果、バティキュレートフィルタ22における排気ガス流の圧損は全くと言っていいほど変化することなくほぼ一定の最小圧損値に維持される。斯くして機関の出力低下を最小限に維持することができる。

また、微粒子の酸化による微粒子除去作用はかなり低温でもって
行われる。従ってパティキュレートフィルタ 22 の温度はさほど上昇せず、断くしてパティキュレートフィルタ 22 が劣化する危険性はほとんどない。また、パティキュレートフィルタ 22 上に微粒子が積層状に堆積しないのでアシュが凝集する危険性が少なく、従ってパティキュレートフィルタ 22 が目詰まりする危険性が少なくなる。

ところでこの目詰まりは主に硫酸カルシウム CaSO₄ によって生ずる。即ち、燃料や潤滑油はカルシウム Ca を含んでおり、従って排気ガス中にカルシウム Ca が含まれている。このカルシウム Ca は SO₃ が存在すると硫酸カルシウム CaSO₄ を生成する。この硫酸カルシウム CaSO₄ は固体であって高温になっても熱分解しない。従って硫酸カルシウム CaSO₄ が生成され、この硫酸カルシウム CaSO₄ によってパティキュレートフィルタ 22 の細孔が閉塞されると目詰まりを生ずることになる。

しかしながらこの場合、活性酸素放出剤 61 としてカルシウム Ca よりもイオン化傾向の高いアルカリ金属又はアルカリ土類金属、例えばカリウム K を用いると活性酸素放出剤 61 内に拡散する SO₃ はカリウム K と結合して硫酸カリウム K₂SO₄ を形成し、カルシウム Ca は SO₃ と結合することなくパティキュレートフィルタ 22 の隔壁 54 を通過して排気ガス排出通路 51 内に流出する。従ってパティキュレートフィルタ 22 の細孔が目詰まりすることがなくなる。従って前述したように活性酸素放出剤 61 としてはカルシウム Ca よりもイオン化傾向の高いアルカリ金属又はアルカリ土類金属、即ちカリウム K、リチウム Li、セシウム Cs、ルビジウム Rb、バリウム Ba、ストロンチウム Sr を用いることが好ましいことになる。

さて、本発明による実施例では基本的に全ての運転状態において
排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなるように維持している。しかしながら実際にはこのように全ての運転状態において排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなるように維持するようにしていても機関の運転状態の急激な変化等の何らの理由によって排出微粒子量Mの方が酸化除去可能微粒子量Gよりも多くなる場合がある。このように排出微粒子量Mの方が酸化除去可能微粒子量Gよりも多くなると前述したようにバティキュレートフィルタ22上に酸化されなかった微粒子部分が残留しはじめる。

このとき、排出微粒子量Mの方が酸化除去可能微粒子量Gよりも多い状態が継続すると前述したように微粒子がバティキュレートフィルタ22上に積層状に堆積してしまう。しかしながらこのように酸化されなかった微粒子部分が残留しはじめているときに、即ち微粒子が一定程度以下しか堆積していないときに排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなるとこの残留微粒子部分は活性酸素Oによって輝炎を発することなく酸化除去される。即ち、排出微粒子量Mが酸化除去可能微粒子量Gよりも多くなったとしても微粒子が積層状に堆積する前に排出微粒子量Mを酸化除去可能微粒子量Gよりも少なくすれば微粒子が積層状に堆積することがなくなる。

そこで本発明による実施例では排出微粒子量Mが酸化除去可能微粒子量Gよりも多くなったときには排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなるようにしている。

なお、このように排出微粒子量Mが酸化除去可能微粒子量Gよりも多くなったときには排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなるようにしていても何らかの理由によりバティキュレートフィルタ22上に微粒子が積層状に堆積する場合がある。ところがこのような場合であっても排気ガスの一部又は全体の空燃比が
一時的にリッチにされるとパティキュレートフィルタ２２上に堆積した微粒子は輝炎を発することなく酸化せしめられる。即ち、排気ガスの空燃比がリッチにされると、即ち排気ガス中の酸素濃度が低下せしめられると活性酸素放出剤６１から外部に活性酸素が一気に放出され、これら一気に放出された活性酸素によって堆積した微粒子が輝炎を発することなく短時間で燃焼除去せしめられる。

一方、空燃比がリークに維持されているとき白金Ｐｔの表面が酸素で覆われ、いわゆる白金Ｐｔの酸素被毒が生ずる。このような酸素被毒が生ずるとNOₓに対する酸化作用が低下するためにNOₓの吸収効率が低下し、斯くして活性酸素放出剤６１からの活性酸素放出量が低下する。しかしながら空燃比がリッチにされると白金Ｐｔ表面上の酸素が消費されるために酸素被毒が解消され、従って空燃比がリッチからリークに切換えられるとNOₓに対する酸化作用が強まるためにNOₓの吸収効率が高くなり、斯くして活性酸素放出剤６１からの活性酸素放出量が増大する。

従って空燃比がリークに維持されているときに空燃比を時折リークからリッチに一時に切換えとその都度白金Ｐｔの酸素被毒が解消されるために空燃比がリークであるときの活性酸素放出量が増大し、斯くしてパティキュレートフィルタ２２上における微粒子の酸化作用を促進することができると。

また、セリウムCeは空燃比がリークのときには酸素を取込み（Ce₂O₃→Ce₂O₅）、空燃比がリッチになると活性酸素を放出する（2Ce₂O₅→Ce₆O₁₃）機能を有する。従って活性酸素放出剤６１としてセリウムCeを用いると空燃比がリークのときにはパティキュレートフィルタ２２上に微粒子が付着すると活性酸素放出剤６１から放出された活性酸素によって微粒子が酸化され、空燃比がリッチになると活性酸素放出剤６１から多量の活性酸素が放出され
ために微粒子が酸化される。従って活性酸素放出剤GとしてセリウムCeを用いた場合にも空燃比を時折リーンからリッチに一時的に切換えるとパティキュレートフィルタ2.2における微粒子の酸化反応を促進することができる。

さて、図6においては酸化除去可能微粒子量Gがパティキュレートフィルタ2.2の温度TFのみの関数として示されているがこの酸化除去可能微粒子量Gは実際には排気ガス中の酸素濃度、排気ガス中のNOx濃度、排気ガス中の未燃HC濃度、微粒子の酸化のしやすさの程度、パティキュレートフィルタ2.2内における排気ガス流の空間速度、排気ガス圧等の関数でもある。従って酸化除去可能微粒子量Gはパティキュレートフィルタ2.2の温度TFを含む上述の全ての因子の影響を考慮に入れて算出することが好ましい。

しかしながらこれら因子のうちで酸化除去可能微粒子量Gに最も大きな影響を与えるのはパティキュレートフィルタ2.2の温度TFであり、比較的大きな影響を与えるのは排気ガス中の酸素濃度とNOx濃度である。図7Aはパティキュレートフィルタ2.2の温度TFおよび排気ガス中の酸素が変化したときの酸化除去可能微粒子量Gの変化を示しており、図7Bはパティキュレートフィルタ2.2の温度TFおよび排気ガス中のNOx濃度が変化したときの酸化除去可能微粒子量Gの変化を示している。なお、図7Aおよび7Bにおいて破線は排気ガス中の酸素濃度およびNOx濃度が基準値であるときを示しており、図7Aにおいて[O2]1は基準値よりも排気ガス中の酸素濃度が高いとき、[O2]2は[O2]1よりも更に酸化濃度が高いときを示しており、図7Bにおいて[NO1]1は基準値よりも排気ガス中のNOx濃度が高いとき、[NO2]1は[NO1]1よりも更にNOx濃度が高いときを示している。

排気ガス中の酸素濃度が高くなるとそれだけでも酸化除去可能微
粒子量Gが増大するが活性酸素放出剤61内に取込まれる酸素量が増大するので活性酸素放出剤61から放出される活性酸素も増大する。従って図7Aに示されるように排気ガス中の酸素濃度が高くなるほど酸化除去可能微粒子量Gは増大する。

一方、排気ガス中のNOは前述したように白金Ptの表面上において酸化されてNO₂となる。このようにして生成されたNO₂の一部は活性酸素放出剤61内に吸収され、残りのNO₂は白金Ptの表面から外部に離脱する。このとき微粒子はNO₂と接触すると酸化反応が促進され、従って図7Bに示されるように排気ガス中のNO₂濃度が高くなるほど酸化除去可能微粒子量Gは増大する。ただし、このNO₂による微粒子の酸化促進作用は排気ガス温度がほぼ250℃からほぼ450℃の間でしか生じないので図7Bに示されるように排気ガス中のNO₂濃度が高くなるとパティキュレートフィルタ22の温度TFがほぼ250℃から450℃の間のときに酸化除去可能微粒子量Gが増大する。

前述したように酸化除去可能微粒子量Gは酸化除去可能微粒子量Gに影響を与える全ての因子を考慮に入れて算出することが好ましい。しかしながら本発明による実施例ではこれら因子のうちで酸化除去可能微粒子量Gに最も大きな影響を与えるパティキュレートフィルタ22の温度TFと、比較的大きな影響を与える排気ガス中の酸素濃度およびNO₂濃度のみに基づいて酸化除去可能微粒子量Gを算出するようにしている。

即ち、本発明による実施例では図8Aから8Fに示されるようにパティキュレートフィルタ22の各温度TF（200℃、250℃、300℃、350℃、400℃、450℃）における酸化除去可能微粒子量Gが夫々排気ガス中の酸素濃度[O₂]と排気ガス中のNO₂濃度[NO]の関数としてマップの形で示し、ROM32内に
記憶されており、各バディキュレートフィルタ22の温度TF、酸化濃度[O₂]およびNOx濃度[NO]に応じた酸化除去可能微粒子量Gが図8Aから8Dに示されるマップから比例配分により算出される。

なお、排気ガス中の酸素濃度[O₂]およびNOx濃度[NO]は酸素濃度センサおよびNOx濃度センサを用いて検出することができる。しかしながら本発明による実施例では排気ガス中の酸素濃度[O₂]が要求トルクTQおよび機関回転数Nの関数として図9Aに示すようなマップの形で予めROM32内に記憶されており、排気ガス中のNOx濃度[NO]も要求トルクTQおよび機関回転数Nの関数として図9Bに示すようなマップの形で予めROM32内に記憶されており、これらのマップから排気ガス中の酸素濃度[O₂]およびNOx濃度[NO]が算出される。

一方、排出微粒子量Mは機関の型式によって変化するが機関の型式が定まると要求トルクTQおよび機関回転数Nの関数となる。図10Aは図1に示される内燃機関の排出微粒子量Mを示しており、各曲線M₁，M₂，M₃，M₄，M₅は等排出微粒子量（M₁＜M₂＜M₃＜M₄＜M₅）を示している。図10Aに示される例では要求トルクTQが高くなるほど排出微粒子量Mが増大する。なお、図10Aに示される排出微粒子量Mは要求トルクTQおよび機関回転数Nの関数として図10Bに示すマップの形で予めROM32内に記憶されている。

前述したように本発明による実施例では排出微粒子量Mが酸化除去可能微粒子量Gを越えたときには排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなるように排出微粒子量M又は酸化除去可能微粒子量Gの少なくとも一方が制御される。

なお、排出微粒子量Mが酸化除去可能微粒子量Gより多少多くて
もパティキュレートフィルタ22上に堆積する微粒子量はさほど多くない。従って排出微粒子量Mが酸化除去可能微粒子量Gに小さな一定値αを加算した許容量（G + α）よりも大きくなったときに排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなるように排出微粒子量Mおよび酸化除去可能微粒子量Gの少なくとも一方を制御するようにしてもよい。

次に図11を参照しつつ運転制御方法について説明する。

図11を参照するとまず初めにステップ100においてスロットル弁17の開度が制御され、次いでステップ101ではEGR制御弁25の開度が制御される。次いでステップ102では燃料噴射弁6からの噴射制御が行われる。次いでステップ103では図10Bに示されるマップから排出微粒子量Mが算出される。次いでステップ104では図8Aから8Fに示されるマップからパティキュレートフィルタ22の温度TF、排気ガス中の酸素濃度[O₂]および排気ガス中のNOx濃度[NΟ]に応じた酸化除去可能微粒子量Gが算出される。

次いでステップ105では排出微粒子量Mが酸化除去可能微粒子量Gよりも大きくなったことを示すフラグがセットされているか否かが判別される。フラグがセットされていないときにはステップ106に進んで排出微粒子量Mが酸化除去可能微粒子量Gよりも大きくなったか否かが判別される。M ≤ Gのとき、即ち排出微粒子量Mが酸化除去可能微粒子量Mと同じか、又は酸化除去可能微粒子量Gよりも少ないときは処理サイクルを完了する。

これに対してステップ106においてM > Gであると判別されたとき、即ち排出微粒子量Mが酸化除去可能微粒子量Gよりも多くなったときにはステップ107に進んでフラグがセットされ、次いでステップ108に進む。フラグがセットされるとその後の処理サイ
クルではステップ105からステップ108にジャンプする。

ステップ108では排出微粒子量Mと、酸化除去可能微粒子量Gから一定値βを差引いた制御解除値(G - β)とが比較される。M ≧ G - βのとき、即ち排出微粒子量Mが制御解除値(G - β)よりも大きいときにはステップ109に進んでバティキュレートフィルタ22において微粒子の連続酸化作用を続行するための制御が行われる。即ち排出微粒子量Mが酸化除去可能微粒子量Gよりも少なくなるように排出微粒子量Mおよび酸化除去可能微粒子量Gの少なくとも一方が制御される。

次いでステップ108においてM < G - βになったと判断されると、即ち排出微粒子量Mが制御解除値(G - β)よりも少なくなるとステップ110に進んで元の運転状態に徐々に復帰する制御が行われ、フラグがリセットされる。

図11のステップ109において行われる連続酸化続ける制御および図11のステップ110において行われる復帰制御は種々のやり方があり、従って次にこれら連続酸化続ける制御および復帰制御の種々のやり方について順次説明する。

M > Gとなったときに排出微粒子量Mを酸化除去可能微粒子量Gよりも少なくする方法の一つはバティキュレートフィルタ22の温度TFを上昇させる方法である。そこでまず初めにバティキュレートフィルタ22の温度TFを上昇させる方法について説明する。

バティキュレートフィルタ22の温度TFを上昇させるのに有効な方法の一つは燃料噴射時期を圧縮上死点以後まで遅角させる方法である。即ち、通常主燃料Q。は図12において(I)に示されるように圧縮上死点付近で噴射される。この場合、図12の(II)に示されるように主燃料Q。の噴射時期が遅角されると後燃え期間が長くなり、斯くして排気ガス温が上昇する。排気ガス温が高くなる
とそれに伴ってバティキュレートフィルタ 22 の温度 TF が高くなり、その結果 M < G の状態となる。

また、バティキュレートフィルタ 22 の温度 TF を上昇させるために図 12 の (III) に示されるように主燃料 Q。に加え、吸気上死点付近において補助燃料 Q。を噴射することもできる。このように補助燃料 Q。を追加的に噴射すると補助燃料 Q。分だけ燃焼させられる燃料が増えるために排気ガス温が上昇し、斯くしてバティキュレートフィルタ 22 の温度 TF が上昇する。

一方、このように吸気上死点付近において補助燃料 Q。を噴射すると圧縮行程中に圧縮熱によってこの補助燃料 Q。からアルデヒド、ケトン、パーオキサイド、一酸化炭素等の中間生成物が生成され、これら中間生成物によって主燃料 Q。の反応が加速される。従ってこの場合には図 12 の (III) に示されるように主燃料 Q。の噴射時期を大巾に遅らせても失火を生ずることなく良好な燃焼が得られる。即ち、このように主燃料 Q。の噴射時期を大巾に遅らせることができるので排気ガス温はかなり高くなり、斯くしてバティキュレートフィルタ 22 の温度 TF をすみやかに上昇させることができる。

また、バティキュレートフィルタ 22 の温度 TF を上昇させるために図 12 の (IV) に示されるように主燃料 Q。に加え、膨張行程中又は排気行程中に補助燃料 Q。を噴射することもできる。即ち、この場合、大部分の補助燃料 Q。は燃焼することなく未燃 HC の形で排気通路内に排出される。この未燃 HC はバティキュレートフィルタ 22 上において酸化反応熱によって酸化される。このとき発生する酸化反応熱によってバティキュレートフィルタ 22 の温度 TF が上昇せしめられる。

これまで説明した例ではたとえば図 12 の (I) に示されるよう
に主燃料Q。が喷射されているときに図11のステップ106においてM> Gになったと判断されると図11のステップ109において図12の（II）又は（III）又は（IV）に示されるように喷射制御される。次いで図11のステップ108においてM< G − βになったと判断されるとステップ110において図12の（I）に示す噴射方法に復帰するための制御が行われる。

次にM< Gの状態にするために低温燃焼を用いる方法について説明する。

即ち、EGR率を増大していくとスモークの発生量が次第に増大してピークに達し、更にEGR率を高めていくと今度はスモークの発生量が激激に低下することが知られている。このことによってEGRガスの冷却度合いを変えたときのEGR率とスモークとの関係を示す図13を参照しつつ説明する。なお、図13において曲線AはEGRガスを強力に冷却してEGRガス温をほぼ90℃に維持した場合を示しており、曲線Bは小型の冷却装置でEGRガスを冷却した場合を示しており、曲線CはEGRガスを強制的に冷却していない場合を示している。

図13の曲線Aで示されるようにEGRガスを強力に冷却した場合にはEGR率が50パーセントよりも少し低いところでスモークの発生量がピークとなり、この場合にはEGR率をほぼ55パーセント以上にすればスモークがほとんど発生しなくなる。一方、図13の曲線Bで示されるようにEGRガスを少し冷却した場合にはEGR率が50パーセントよりも少し高いところでスモークの発生量がピークとなり、この場合にはEGR率をほぼ65パーセント以上にすればスモークがほとんど発生しなくなる。また、図13の曲線Cで示されるようにEGRガスを強制的に冷却していない場合にはEGR率が55パーセントの付近でスモークの発生量がピークとな
り、この場合にはＥＧＲ率をほぼ70パーセント以上にすればスモークがほとんど発生しなくなる。

このようにＥＧＲガス率を55パーセント以上にするとスモークが発生しなくなるのは、ＥＧＲガスの吸熱作用によって燃焼時における燃料および周囲のガス温がさほど高くならず、即ち低温燃焼が行われ、その結果炭化水素が炭まで成長しないからである。

この低温燃焼は、空燃比にかかわらずにスモークの発生を抑制しつつＮＯₓの発生量を低減することができるという特徴を有する。即ち、空燃比がリッチにされると燃料が過剰となるが燃焼温度が低い温度に抑制されているために過剰な燃料は炭まで成長せず、斯くしてスモークが発生することがない。また、このときＮＯₓも極めて少量しか発生しない。一方、平均空燃比がリーンのとき、或いは空燃比が理論空燃比のときでも燃焼温度が高くなれば少量の炭が生成されるが低温燃焼下では燃焼温度が低い温度に抑制されているためにスモークは全く発生せず、ＮＯₓも極めて少量しか発生しない。

一方、この低温燃焼を行うと燃料およびその周囲のガス温は低くなるが排気ガス温は上昇する。このことについて図14Aおよび14Bを参照しつつ説明する。

図14Aの実線は低温燃焼が行われたときの燃焼室5内の平均ガス温Tgとクランク角との関係を示しており、図14Aの破線は通常の燃焼が行われたときの燃焼室5内の平均ガス温Tgとクランク角との関係を示している。また、図14Bの実線は低温燃焼が行われたときの燃料およびその周囲のガス温Tfとクランク角との関係を示しており、図14Bの破線は通常の燃焼が行われたときの燃料およびその周囲のガス温Tfとクランク角との関係を示している。

低温燃焼が行われているときには通常の燃焼が行われているとき
に比べてＥＧＲガス量が多く、従って図１４Ａに示されるように圧縮止点付近は、即ち圧縮工程中は実線で示す低温燃焼時における平均ガス温T_gのほうが破線で示す通常の燃焼時における平均ガス温T_gよりも高くなっている。なお、このとき図１４Ｂに示されるように燃料およびその周囲のガス温T_fは平均ガス温T_gとほぼ同じ温度になっている。

次いで圧縮止点付近において燃焼が開始されるがこの場合、低温燃焼が行われているときには図１４Ｂの実線が示されるように燃料およびその周囲のガス温T_fはさほど高くなりならない。これに対して通常の燃焼が行われている場合には燃料周りに多量の酸素が存在するために図１４Ｂの破線で示されるように燃料およびその周囲のガス温T_fは極めて高くなる。このように通常の燃焼が行われた場合には燃料およびその周囲のガス温T_fは低温燃焼が行われている場合に比べてかなり高くなるが大部分を占めるそれ以外のガスの温度は低温燃焼が行われている場合に比べて通常の燃焼が行われている場合の方が低くなっており、従って図１４Ａに示されるように圧縮止点付近における燃焼室5内の平均ガス温T_gは低温燃焼が行われている場合の方が通常の燃焼が行われている場合に比べて高くなる。その結果、図１４Ａに示されるように燃焼が完了した後の燃焼室5内の既燃ガス温度は低温燃焼が行われた場合の方が通常の燃焼が行われた場合に比べて高くなり、斯くして低温燃焼を行うと排気ガス温が高くなる。

このように低温燃焼が行われるとスモークの発生量、即ち排出微粒子量Mが少なくなり、排気ガス温度が上昇する。従って$M > G$となったときに通常の燃焼から低温燃焼に切換えると排出微粒子量Mは減少し、しかもパティキュレートフィルタ２２の温度T_Fが上昇して酸化除去可能微粒子量Gが増大するので容易に$M < G$の状態にす
ることができる。この低温燃焼を用いる場合には図11のステップ
106においてM>Gであると判断されるとステップ109におい
て低温燃焼に切換えられ、次いでステップ108においてM<G-β
であると判断されるとステップ110において通常の燃焼に切換
えられる。

次にM<Gの状態にするためにバティキュレートフィルタ22の
温度TFを上昇させるための更に別の方法について説明する。図1
5はこの方法を実行するのに適した内燃機関を示している。図15
を参照するとこの内燃機関では排気管20内に炭化水素供給装置7
0が配置されている。この方法では図11のステップ106におい
てM>Gであると判断されるとステップ109において炭化水素供
給装置70から排気管20内に炭化水素が供給される。この炭化水
素はバティキュレートフィルタ22上において過剰酸素により酸化
せられると、このときの酸化反応熱によってバティキュレートフィ
ルタ22の温度TFが上昇せまられる。次いで図11のステップ
108においてM<G-βであると判断されるとステップ110に
おいて炭化水素供給装置70からの炭化水素の供給が停止される。
なお、この炭化水素供給装置70はバティキュレートフィルタ22
と排気ポート10との間であればどこに配置してもよい。

次にM<Gの状態にするためにバティキュレートフィルタ22の
温度TFを上昇させるための更に別の方法について説明する。図1
6はこの方法を実行するのに適した内燃機関を示している。図16
を参照するとこの内燃機関ではバティキュレートフィルタ22下流
の排気管71内にアクチュエータ72により駆動される排気制御弁
73が配置されている。

この方法では図11のステップ106においてM>Gであると判
別されるとステップ109において排気制御弁73がほぼ全閉とさ
れ、排気制御弁 73 をほぼ全閉にすることによる機関出力トルクの低下を阻止するために主燃料 Q。の噴射量が増大させられる。排気制御弁 73 をほぼ全閉にすると排気制御弁 73 上流の排気通路内の圧力、即ち背圧が上昇する。背圧が上昇すると燃焼室 5 内から排気ガスが排気ポート 10 内に排出されるときに排気ガスの圧力がさほど低下せず、従って温度もさほど低下しなくなる。しかもこのとき主燃料 Q。の噴射量が增大させられれているので燃焼室 5 内の既燃ガス温が高くなっており、従って排気ポート 10 内に排出された排気ガスの温度はかなり高くなる。その結果、バティキュレートフィルタ 22 の温度が急速に上昇せしめられる。

次いで図 11 のステップ 108 において M < G - β であると判断されるとステップ 110 において排気制御弁 73 が全開せしめられ、主燃料 Q。の噴射量の増量作用が停止される。

次に M < G の状態にするためにバティキュレートフィルタ 22 の温度 T F を上昇させるための更に別の方法について説明する。図 17 はこの方法を実行するのに適した内燃機関を示している。図 17 を参照するとこの内燃機関では排気タービン 21 を迂回する排気バイパス通路 74 内にアクチュエータ 75 により制御されるウェストゲートバルブ 76 に配置されている。このアクチュエータ 75 は通常サージタンク 12 内の圧力、即ち過給圧に応じて過給圧が一定圧以上にならないようにウェストゲートバルブ 76 の開度を制御している。

この方法では図 11 のステップ 106 において M > G であると判定されるとステップ 109 においてウェストゲートバルブ 76 が全開せしめられる。排気ガスは排気タービン 21 を通過すると温度低下するがウェストゲートバルブ 76 を全開にすると大部分の排気ガスは排気バイパス通路 74 内を流れるために温度低下しなくなる。
斯くしてパティキュレートフィルタ22の温度が上昇することになる。次いで図11のステップ108においてM< G - βであると判断されるとステップ110においてウェストゲートバルブ76が開弁しめられ、過給圧が一定圧を越えないようにウェストゲートバルブ76の開度が制御される。

次にM< Gの状態にするために排出微粒子量Mを低下させる方法について説明する。即ち、噴射燃料と空気が十分に混合すればするほど、即ち、噴射燃料周りの空気量が多くなればなるほど噴射燃料は良好に燃焼しつめられるので微粒子は発生しなくなる。従って排出微粒子量Mを低下させるには噴射燃料と空気とがより一層十分に混合するようにしてやればよいことになる。ただし、噴射燃料と空気との混合をよくすると燃焼が活発になるためにNOxの発生量が増大する。従って排出微粒子量Mを低下させる方法は、別の言い方をするときN0xの発生量を増大させる方法と言える。

いずれにしても排出微粒子量PMを低下させる方法も種々の方法があり、従ってこれら方法について順次説明する。

排出微粒子量PMを低下させる方法として前述した低温燃焼を用いることもできるがその他の有効な方法としては燃料噴射を制御する方法が挙げられる。例えば燃料噴射量を低下させると燃料噴射量周りに十分な空気が存在するようになり、斯くして排出微粒子量Mが低減する。

また、噴射時期を進角すると噴射燃料周りに十分な空気が存在するようになり、斯くして排出微粒子量Mが低減する。また、コモンレール27内の燃料圧、即ち噴射圧を高めると噴射燃料が分散するので燃焼燃料と空気との混合が良好となり、斯くして排出微粒子量Mが低減する。また、主燃料Qの噴射直前の圧縮行程末期に補助燃料を噴射するようにしている場合、いわゆるバイロット噴射を行う。
っている場合には補助燃料の燃焼により酸素が消費されるために主燃料Q。周りの空気が不十分となる。従ってこの場合にはパイロット噴射を停止することによって排出微粒子量Mが低減する。

即ち、燃料噴射を制御することによって排出微粒子量Mを低減するようにした場合には図11のステップ106においてM > Gであると判別されるとステップ109において燃料噴射量が低下させられるか、又は燃料噴射時期が進角されるか、又は噴射圧が高められるか、又はパイロット噴射が停止され、それによって排出微粒子量Mが低減させられる。次いで図11のステップ108においてM < G - βであると判断されるとステップ110において元の燃料噴射状態に復帰させられる。

次にM < Gにするために排出微粒子量Mを低減するための別の方策について説明する。この方法では図11のステップ106においてM > Gであると判別されるとステップ109においてEGR率を低下させるためにEGR制御弁25の開度が低下せめられる。EGR率が低下すると噴射燃料周りの空気量が増大し、スグして排出微粒子量Mが減少する。次いで図11のステップ108においてM < G - βであると判断されるとステップ110においてEGR率が元のEGR率まで上昇せめられる。

次にM < Gにするために排出微粒子量Mを低減するための更に別の方法について説明する。この方法では図11のステップ106においてM > Gであると判別されるとステップ109において過給圧を増大するためにウェストゲートバルブ76（図17）の開度が減少せめられる。過給圧が増大すると噴射燃料周りの空気量が増大し、スグして排出微粒子量Mが減少する。次いで図11のステップ108においてM < G - βであると判断されるとステップ110において過給圧が元の過給圧に戻される。
次にM < G にするために排気ガス中の酸素濃度を増大させる方法について説明する。排気ガス中の酸素濃度が増大するとそれだけでも酸化除去可能微粒子量 G が増大するが更に活性酸素放出剤 61 内に取込まれる酸素量が増大するので活性酸素放出剤 61 から放出される活性酸素量が増大し、斯くして酸化除去可能微粒子量 G が増大する。

この方法を実行するための方法としては EGR 率を制御する方法が挙げられる。即ち、図 11 のステップ 106 において M > G であると判別されるとステップ 109 において EGR 率が低下するように EGR 制御弁 25 の開度が減少せしめられる。EGR 率が低下するということは吸入空気中における吸入空気量の割合が増大することを意味しており、斯くして EGR 率が低下すると排気ガス中の酸素濃度が上昇する。その結果、酸化除去可能微粒子量 G が増大する。また、EGR 率が低下すると前述したように排出微粒子量 M が減少する。従って EGR 率が低下すると急激に M < G となる。次いで図 11 のステップ 108 において M < G - β であると判断されるとステップ 110 において EGR 率が元の EGR 率に戻される。

次に排気ガス中の酸素濃度を増大させるために 2 次空気を用いる方法について説明する。図 18 に示す例では排気タービン 21 とパティキュレートフィルタ 22 との間の排気管 77 が 2 次空気供給導管 78 を介して吸気ダクト 13 に連結され、2 次空気供給導管 78 内に供給制御弁 79 が配置される。また、図 19 に示す例では 2 次空気供給導管 78 が機関駆動のエアポンプ 80 に連結されている。なお、排気通路内への 2 次空気の供給位置はパティキュレートフィルタ 22 と排気ポート 10 との間であればどこでもよい。

図 18 又は図 19 に示す内燃機関においては図 11 のステップ 106 において M > G であると判別されるとステップ 109 において
供給制御弁79が開弁されない。その結果、2次空気供給導管78から排気管77に2次空気が供給され、斯くして排気ガス中の酸素濃度が増大せしめられる。次いで図11のステップ108においてM＞G-βであると判断されることとステップ110において供給制御弁79が開弁せしめられる。

次にバティキュレートフィルタ22上において単位時間当たり酸化せしめられる酸化除去微粒子量GGを逐次算出し、排出微粒子量Mが算出された酸化除去微粒子量GGを越えたときにはM＜GGとなるように排出微粒子量M又は酸化除去可能微粒子量Gの少なくともいずれか一方を制御するようにした実施例について説明する。

前述したように微粒子がバティキュレートフィルタ22上に付着するとこの微粒子は短時間のうちに酸化せしめられるがこの微粒子が完全に酸化除去せしめられる前に他の微粒子が次から次へとバティキュレートフィルタ22に付着する。従って実際にはバティキュレートフィルタ22上にはある程度の量の微粒子が常時堆積しており、この堆積している微粒子のうちの一部の微粒子が酸化除去せしめられる。この場合、単位時間当たり酸化除去せしめられる微粒子GGが排出微粒子量Mと同じであれば排気ガス中の全微粒子はバティキュレートフィルタ22上において酸化除去せしめられる。しかしながら排出微粒子量Mが単位時間当たりに酸化除去せしめられる微粒子量GGよりも多くなるとバティキュレートフィルタ22上の堆積微粒子量は次第に増大し、ついには微粒子が積層状に堆積して低い温度では着火しえなくなる。

このように排出微粒子量Mが酸化除去微粒子量GGと同じか又は酸化除去微粒子量GGよりも少なければ排気ガス中の全微粒子をバティキュレートフィルタ22上において酸化除去せしめることができる。従ってこの実施例では排出微粒子量Mが酸化除去微粒子量G
Gを越えたときにはM＜Gとするとパティキュレートフィルタ22の温度TFや排出微粒子量M等を制御するようにしている。
ところでお酸化除去微粒子量Gは次式のように表すことができる。

\[G (g/s \cdot cm^2) = C \cdot \exp \left(-\frac{E}{RT} \right) \cdot [PM] \cdot \left(\left[O_2 \right]^n + \left[NO \right]^n \right) \]

ここでCは定数、Eは活性化エネルギー、Rはガス定数、Tはパティキュレートフィルタ22の温度TF、[PM]はパティキュレートフィルタ22上における微粒子の堆積濃度(mol/cm²)、[O₂]は排気ガス中の酸素濃度、[NO]は排気ガス中のNO_x濃度を示している。

なお、酸化除去微粒子量Gは実際には、排気ガス中の未燃HC濃度、微粒子の酸化のしやすさの程度、パティキュレートフィルタ22内における排気ガス流の空間速度、排気ガス圧等の関数であるがここではこれらの影響を考えないこととする。

一方、排気ガス中の酸素濃度[O₂]が高くなれば前述したようにそれだけでも酸化除去微粒子量Gは増大するが更に活性酸素放出剤61から放出される活性酸素量が増大する。従って排気ガス中の酸素濃度[O₂]が高くなるとそれに比例して酸化除去微粒子量
G G は増大し、斯くして排気ガス中の酸素濃度 [O₂] と上式中の [O₂] をとの関係は図 20B に示されるようになる。

一方、排気ガス中の NOx 濃度 [NO] が高くなると前述したように NO₂ の発生量が増大するので酸化除去微粒子量 G G は增大する。しかしながら NOからNO₂への変換は前述したように排気ガス温がほぼ 250°C からほぼ 450°C の間でしか生じない。従って排気ガス中の NOx 濃度 [NO] と上式中の [NO] との関係は、排気ガス温がほぼ 250°C から 450°C の間のときには図 20C の実線 [NO] で示されるように [NO] が増大するにつれて [NO] が増大するが、排気ガス温がほぼ 250°C 以下又はほぼ 450°C 以上では図 20C の実線 [NO] で示されるように [NO] にかかわらずに [NO] はほぼ零となる。

この実施例では一定時間経過する毎に上式に基づいて酸化除去微粒子量 G G が算出される。このとき堆積している微粒子量を PM (g) とするとこの微粒子のうち酸素除去微粒子量 G G に相当する微粒子が除去され、新たに排出微粒子量 M に相当する微粒子がパティキュレートフィルタ 22 上に付着する。従って最終的な微粒子の堆積量は次式で表されることになる。

PM + M - G G

次に図 21 を参照しつつ運転制御方法について説明する。

図 21 を参照するとまず初めにステップ 200 においてスロットル弁 17 の開度が制御され、次いでステップ 201 では EGR 制御弁 25 の開度が制御される。次いでステップ 202 では燃料噴射弁 6 からの噴射制御が行われる。次いでステップ 103 では図 10B に示されるマップから排出微粒子量 M が算出される。次いでステップ 204 では次式に基づいて酸化除去微粒子量 G G が算出される。

GG = C - EXP (-E/RT) ・ [PM] 1 ・ ([O₂]) +
[N O]°

次いでステップ205では次式に基づいて最終的な微粒子の堆積量PMが算出される。

PM ← PM + M - GG

次いでステップ206では排出微粒子量Mが酸化除去微粒子量GGよりも大きくなっことを示すフラグがセットされているか否かが判別される。フラグがセットされていないときにはステップ207に進んで排出微粒子量Mが酸化除去可能微粒子量GGよりも大きくなったか否かが判別される。M ≳ GGとき、即ち排出微粒子量Mが酸化除去微粒子量GGよりも少ないときには処理サイクルを完了する。

これに対してステップ207においてM ≳ GGであると判別されたとき、即ち排出微粒子量Mが酸化除去微粒子量GGよりも大きくなったときにはステップ208に進んでフラグがセットされ、次いでステップ209に進む。フラグがセットされるとその後の処理サイクルではステップ206からステップ209にジャンプする。

ステップ209では排出微粒子量Mと、酸化除去微粒子量GGから一定値βを差引いた制御解除値（GG - β）とが比較される。M ≳ GG - βのとき、即ち排出微粒子量Mが制御解除値（GG - β）よりも大きいときにはステップ210に進んでパティキュレートフィルタ22において微粒子の連続酸化作用を続行するための制御、即ち前述したようにパティキュレートフィルタ22の温度TFを上昇させるための制御、又は排出微粒子量Mを低下させるための制御、又は排気ガス中の酸素濃度を高めるための制御が行われる。

次いでステップ209においてM < GG - βになったと判断されると、即ち排出微粒子量Mが制御解除値（GG - β）よりも少なくなるとステップ211に進んで元の運転状態に徐々に復帰する制御
が行われ、フラグがリセットされる。

さて、これまで述べた実施例ではパティキュレートフィルタ22
の各隔壁54の両側面上および隔壁54内の細孔内壁面上に例えば
アルミナからなる担体の層が形成されており、この担体上に貴金属
触媒および活性酸素放出剤が担持されている。この場合、この担体
上にパティキュレートフィルタ22に流入する排気ガスの空燃比が
リーンのときには排気ガス中に含まれるNOxを吸収しパティキュレートフィルタ22に流入する排気ガスの空燃比が理論空燃比又は
リッチになると吸収したNOxを放出するNOx吸収剤を担持させることもできる。

この場合、貴金属としては前述したように白金Ptが用いられ、
NOx吸収剤としてはカリウムK、ナトリウムNa、リチウムLi
、セシウムCs、ルビジウムRbのようなアルカリ金属、バリウム
Ba、カルシウムCa、ストロンチウムSrのようなアルカリ土類
、ランタンLa、イットリウムYのような希土類から選ばれた少なく
とも一つが用いられる。なお、前述した活性酸素放出剤を構成する
金属と比較すればわかるようにNOx吸収剤を構成する金属と、活性
酸素放出剤を構成する金属とは大部分が一致している。

この場合、NOx吸収剤および活性酸素放出剤として夫々異なる
金属を用いることもできるし、同一の金属を用いることもできる。
NOx吸収剤および活性酸素放出剤として同一の金属を用いた場合
にはNOx吸収剤としての機能と活性酸素放出剤としての機能との
双方の機能を同時に果すことになる。

次に貴金属触媒として白金Ptを用い、NOx吸収剤としてカリ
ウムKを用いた場合を例にとってNOxの吸放出作用について説明
する。

まず初めにNOxの吸収作用について検討するとNOxは図4A
に示すメカニズムと同じメカニズムでもってNOₓ吸収剤に吸収される。ただし、この場合図4Aにおいて符号61はNOₓ吸収剤を示す。

即ち、パティキュレートフィルタ22に流入する排気ガスの空燃比がリッチのときには排気ガス中に多量の過剰酸素が含まれているので排気ガスがパティキュレートフィルタ22の排気ガス流入通路50内に流入すると図4Aに示されるようにこれら酸素O₂がO²⁻又はO₂⁻の形で白金Ptの表面に付着する。一方、排気ガス中のNOは白金Ptの表面上でO₂⁻又はO₂⁻と反応し、NO₂となら（2NO+O₂→2NO₂）。次いで生成されたNO₂の一部は白金Pt上で酸化されつつNOₓ吸収剤61内に吸収され、カリウムKと結合しながら図4Aに示されるように硝酸イオンNO₃⁻の形でNOₓ吸収剤61内に拡散し、一部の硝酸イオンNO₃⁻は硝酸カリウムKNO₃を生成する。このようにしてNOがNOₓ吸収剤61内に吸収される。

一方、パティキュレートフィルタ22に流入する排気ガスがリッチになると硝酸イオンNO₃⁻は酸素とOとNOに分解され、次から次へとNOₓ吸収剤61からNOが放出される。従ってパティキュレートフィルタ22に流入する排気ガスの空燃比がリッチになると短時間のうちにNOₓ吸収剤61からNOが放出され、しかもこの放出されたNOが還元されるために大気中にNOが排出されるとはない。

なお、この場合、パティキュレートフィルタ22に流入する排気ガスの空燃比を理論空燃比にしてもNOₓ吸収剤61からNOが放出される。しかしながらこの場合にはNOₓ吸収剤61からNOが徐々にしか放出されないためにNOₓ吸収剤61に吸収されている全NOₓを放出させるには若干長い時間を要する。
ところで前述したようにNOx吸収剤および活性酸素放出剤として夫々異なる金属を用いることもできるし、NOx吸収剤および活性酸素放出剤として同一の金属を用いることもできる。NOx吸収剤および活性酸素放出剤として同一の金属を用いた場合には前述したようにNOx吸収剤としての機能と活性酸素放出剤としての機能との双方の機能を同時に果すことになり、このように双方の機能を同時に果すものを以下、活性酸素放出・NOx吸収剤と称する。この場合には図4Aにおける符号61は活性酸素放出・NOx吸収剤を示すことになる。

このような活性酸素放出・NOx吸収剤61を用いた場合、バティキュレートフィルタ22に流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOは活性酸素放出・NOx吸収剤61に吸収され、排気ガス中に含まれる微粒子が活性酸素放出・NOx吸収剤61に付着するとこの微粒子は活性酸素放出・NOx吸収剤61から放出される活性酸素等によって短時間のうちに酸化除去せしめられる。従ってこのとき排気ガス中の微粒子およびNOxの双方が大気中に排出されるのを阻止することができることになる。

一方、バティキュレートフィルタ22に流入する排気ガスの空燃比がリッチになると活性酸素放出・NOx吸収剤61からNOが放出される。このNOは未燃HC、COにより還元され、新しくしてこのときにもNOが大気中に排出されることはいない。また、このときバティキュレートフィルタ22上に微粒子が堆積していた場合にはこの微粒子は活性酸素放出・NOx吸収剤61から放出される活性酸素によって酸化除去せしめられる。

なお、NOx吸収剤又は活性酸素放出・NOx吸収剤が用いられた場合にはNOx吸収剤又は活性酸素放出・NOx吸収剤のNOx。
吸収能力が飽和する前に、NOx 吸収剤又は活性酸素放出・NOx 吸収剤から NOx を放出するためにバティキュレートフィルタ 2 に対して流入する排気ガスの空燃比が一時的にリッチにされる。即ち、リース空燃比のもとで燃焼が行われているときに時折空燃比が一時的にリッチにされる。

また、本発明はバティキュレートフィルタ 2 2 の両側面に形成された体の面上に白金 Pt と同様の貴金属を担持した場合にも適用することができる。ただし、この場合には酸化除去可能微粒子量 G を示す実線は図 5 に示す実線に比べて若干右側に移動する。この場合には白金 Pt の表面上に保持される NO2 又は SO3 から活性酸素が放出される。

また、活性酸素放出剤として NO2 又は SO3 を吸着保持し、これら吸着された NO2 又は SO3 から活性酸素を放出しうる触媒を用いこともできる。

更に本発明は、バティキュレートフィルタ上流の排気通路内に酸化触媒を配置してこの酸化触媒により排気ガス中の NO を NO2 に変換し、この NO2 とバティキュレートフィルタ上に堆積した微粒子とを反応させてこの NO2 により微粒子を酸化するようにした排気ガス浄化装置にも適用できる。
請求の範囲

1. 燃焼室から排出された排気ガス中の微粒子を除去するためのパティキュレートフィルタ上に、周囲に過剰酸素が存在すると酸素を取込んでも酸素を保持しかた周囲の酸素濃度が低下すると保持した酸素を活性酸素の形で放出する活性酸素放出剤を担持させ、パティキュレートフィルタに流入する排気ガスの空燃比を通常はリッチに維持すると共に時折一時的にリッチに切換えて排気ガスの空燃比がリッチに切換えられたときには活性酸素放出剤から放出される活性酸素によりパティキュレートフィルタ上の微粒子の酸化反応を促進させ、それによってパティキュレートフィルタ上の微粒子が輝炎を発することなく酸化除去せしめられる排気ガス浄化方法。

2. 燃焼室から排出された排気ガス中の微粒子を除去するためのパティキュレートフィルタ上に、周囲に過剰酸素が存在すると酸素を取込んでも酸素を保持しかた周囲の酸素濃度が低下すると保持した酸素を活性酸素の形で放出すると共に、パティキュレートフィルタに流入する排気ガスの空燃比がリーンのときには排気ガス中のNOₓを吸収しパティキュレートフィルタに流入する排気ガスの空燃比が理論空燃比又はリッチになると吸収したNOₓを放出する活性酸素放出・NOₓ吸収剤を担持させ、パティキュレートフィルタに流入する排気ガスの空燃比を通常はリーンに維持すると共に時折一時的にリッチに切換えて排気ガスの空燃比がリッチに切換えられたときには活性酸素放出・NOₓ吸収剤から放出される活性酸素によりパティキュレートフィルタ上の微粒子の酸化反応を促進させると共に、活性酸素放出・NOₓ吸収剤から放出されるNOₓを還元させ、それによってパティキュレートフィルタ上の微粒子が輝炎を発することなく酸化除去せしめられると共に、同時に排気ガス中のNO
が除去せしめられる排気ガス処理方法。

3. 上記バティキュレートフィルタは、単位時間当たりに燃焼室から排出される排出微粒子量がバティキュレートフィルタ上において単位時間当りに輝炎を発することなく酸化除去可能な酸化除去可能性微粒子量よりも少ないときには微粒子をバティキュレートフィルタ上において輝炎を発することなく酸化除去し、該排出微粒子量が該酸化除去可能微粒子量を越えたとしても排気ガスの空燃比を時折一時的にリッチに切換えることにより微粒子がバティキュレートフィルタ上において輝炎を発することなく酸化除去せしめられるように該排出微粒子量および該酸化除去可能微粒子量を維持するようにした請求項1又は2に記載の排気ガス処理方法。

4. 該酸化除去可能微粒子量がバティキュレートフィルタの温度の関数である請求項3に記載の排気ガス処理方法。

5. 該酸化除去可能微粒子量はバティキュレートフィルタの温度に加え、排気ガス中の酸素濃度又はNOx濃度の少くとも一つの関数である請求項4に記載の排気ガス処理方法。

6. 該酸化除去可能微粒子量が少なくともバティキュレートフィルタの温度の関数として予め記憶されている請求項4に記載の排気ガス処理方法。

7. 該排出微粒子量が該酸化除去可能微粒子量を越えたときには該排出微粒子量が該酸化除去可能微粒子量よりも少なくなるように排出微粒子量と酸化除去可能微粒子量の少くとも一方を制御するようにした請求項3に記載の排気ガス処理方法。

8. 該排出微粒子量が該酸化除去可能微粒子量を予め定められた量以上越えたときには該排出微粒子量が該酸化除去可能微粒子量よりも少なくなったときに排出微粒子量と酸化除去可能微粒子量の少くとも一方を制御するようにした請求項7に記載の排気ガス処理方法。
9. パティキュレートフィルタの温度を上昇させることにより該排出微粒子量を該酸化除去可能微粒子量よりも少なくするようにした請求項7に記載の排気ガス浄化方法。

10. 該排出微粒子量を減少させることにより該排出微粒子量を該酸化除去可能微粒子量よりも少なくするようにした請求項7に記載の排気ガス浄化方法。

11. 排気ガス中の酸素濃度を高めることにより該排出微粒子量を該酸化除去可能微粒子量よりも少なくするようにした請求項7に記載の排気ガス浄化方法。

12. パティキュレートフィルタ上において単位時間当たりに輝炎を発することなく酸化除去せしめられる酸化除去微粒子量を算出し、該排出微粒子量が該酸化除去微粒子量を越えたときには該排出微粒子量が該酸化除去微粒子量よりも少なくなるように該排出微粒子量又は該酸化除去可能微粒子量の少なくとも一方を制御するためにした請求項3に記載の排気ガス浄化方法。

13. パティキュレートフィルタ上に貴金属触媒を担持した請求項1又は2に記載の排気ガス浄化方法。

14. パティキュレートフィルタ上に貴金属触媒に加え、アルカリ金属又はアルカリ土類金属又は希土類又は遷移金属を担持した請求項13に記載の排気ガス浄化方法。

15. 上記アルカリ金属およびアルカリ土類金属がカルシウムよりもイオン化傾向の高い金属からなる請求項14に記載の排気ガス浄化方法。
Fig. 6

酸化除去可能微粒子量G
(g/sec)

TF(℃)

Ⅰ

Ⅱ
Fig.11

- **運転制御**
 - スロットル弁の制御
 - EGR制御弁の制御
 - 噴射制御
 - Mの算出
 - Gの算出
 - フラグセット
 - 105
 - YES
 - M > G
 - NO
 - フラグセット
 - 107
 - YES
 - M < G - β
 - NO
 - 復帰制御
 - 110
 - YES
 - 108
 - 106
 - 103
 - 102
- 101
- 100

END
Fig.13

スモーク

EGR率（%）

A, B, C
参照番号の一覧表

1 … 機関本体
5 … 燃焼室
6 … 燃料噴射弁
1 2 … サージタンク
1 4 … ターボチャージャ
1 7 … スロットル弁
1 9 … 排気マニホールド
2 2 … パティキュレートフィルタ
2 5 … E G R 制御弁
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl.7 F01N 3/02, F01N 3/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl.7 F01N 3/02, F01N 3/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Jitsuyo Shinan Koho 1940-1996
 Kokai Jitsuyo Shinan Koho 1996-2001
 Kokai Jitsuyo Shinan Koho 1971-2001
 Toroku Jitsuyo Shinan Koho 1994-2001

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 8-338229, A (Toyota Motor Corporation), 24 December, 1996 (24.12.96), Column 5, lines 1 to 25; Columns 7, 8 (Family: none)</td>
<td>1-15</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 10-306717, A (Toyota Motor Corporation), 17 November, 1998 (17.11.98), Column 6, lines 34 to 41 & US, 5974791, A</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>JP, 7-174018, A (Toyota Motor Corporation), 11 July, 1995 (11.07.95), Fig. 1 (Family: none)</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>JP, 11-50833, A (Toyota Motor Corporation), 23 February, 1999 (23.02.99), Fig. 3 & EP, 894950, A2</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* "A" document defining the general state of the art which is not considered to be of particular relevance
* "E" earlier document but published on or after the international filing date
* "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* "O" document referring to an oral disclosure, use, exhibition or other means
* "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
15 May, 2001 (15.05.01)

Date of mailing of the international search report
29 May, 2001 (29.05.01)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
国際調査報告

国際出願番号 PCT／JP01／01099

A. 発明の属する分野の分類（国際特許分類（IPC））
Int. Cl’ F01N 3／02
F01N 3／08

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int. Cl’ F01N 3／02
F01N 3／08

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1940－1996年
日本国公開実用新案公報 1971－2001年
日本国公開実用新案公報 1996－2001年
日本国登録実用新案公報 1994－2001年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 8－338229, A (トヨタ自動車株式会社), 24. 1 2月, 1996 (24. 12. 96), 第5欄, 第1－25行, 第7欄, 第8欄 (ファミリーなし)</td>
<td>1－15</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 10－306717, A (トヨタ自動車株式会社), 17. 11月, 1998 (17. 11. 98), 第6欄, 第34－41行 &US, 5974791, A</td>
<td>1－15</td>
</tr>
<tr>
<td>A</td>
<td>JP, 7－174018, A (トヨタ自動車株式会社), 11. 7月, 1995 (11. 07. 95), 図1 (ファミリーなし)</td>
<td>1－15</td>
</tr>
</tbody>
</table>

C欄の続きにも文献が列挙されている。

* 引用文献のカテゴリー
「A」特に関連のある文献ではなく、一般的技術水準を示すものの
「E」国際出願日前の出願または特許であるが、国際出願日以前に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 15. 05. 01
国際調査報告の発送日 29. 05. 01

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号100－8915
東京都千代田区霞が関3丁目4番3号

特許庁審査官（権限のある職員） 亀田 貴志
電話番号 03－3581－1101 内線 3355

様式PCT／ISA／210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP, 11-50833, A (トヨタ自動車株式会社), 23.2月, 1999 (23.02.99), 図3&E P, 894950, A2</td>
<td>1-15</td>
</tr>
</tbody>
</table>

様式PCT/ISA/210（第2ページの続き）（1998年7月）