wo 2012/155010 A1 |V 0000

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/155010 A1

15 November 2012 (15.11.2012) WIPO | PCT

(51) International Patent Classification: ton 98011 (US). CHERNOFF, Anton [US/US]; P.O. Box

GO6F 9/50 (2006.01) 1521, Littleton, Massachusetts 01460 (US).
(21) International Application Number: (74) Agent: MEYERTONS, HOOD, KIVLIN, KOWERT &
PCT/US2012/037433 GOETZEL, P.C.; KIVLIN, B. Noel, P.O. Box 398, Aus-

(22) Imternational Filing Date: tin, Texas 78767-0398 (US).
11 May 2012 (11.05.2012) (81) Designated States (uniess otherwise indicated, for every
e) . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
L. DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(30) Priority Data: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(71) Applicant (for all designated States except US): AD- MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
VANCED MICRO DEVICES, INC. [US/US]; One AMD OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
Place, P.O. Box 3453, Sunnyvale, California 94088 (US). SE, 8G, SK, SL, SM, ST, SV, §Y, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(72) Inventors; and . o

(75) Inventors/Applicants (for US only): BRETERNITZ, (84) Designated States (unless otherwise indicated, for every

Mauricio [US/US]; 5714 Penny Creek Drive, Austin,
Texas 78759 (US). KAMINSKI, Patryk [US/US]; 8712
Towana Trail, Austin, Texas 78736 (US). LOWERY,
Keith [US/US]; 10910 NE 197th Street, Bothell, Washing-

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: AUTOMATIC LOAD BALANCING FOR HETEROGENEOUS CORES

Hardware Resources

/ Assignments 400
Hardware Computing System 410
Processor Core 112 Processor Core 172
Hardware Hardware ‘ Hardware | Mardware |
Computation Computation | | Computation Computation |
Unit Unit Unit Unit
M2a 4129 412h 412r
e~ v » x
I W > \ Y
\ [\ \ \
! I N N 4
i ! AN !
| ! A\ S !
': / N \ :
! ,,' Operating System (0S)*, :
_—) / 420 \ H
1 ,’ ‘\ t
Applications ! i —— Y H
430 f K 0OS Kemel Scheduler || Y h .
- K 422 424 N unit.
i /
[4 p I *
,,'// / A
/ / ;o
’ i ’ 1
A S
S ¥ l ;oK
Kernel ‘.' Kernel Kernel F Kernel
440a ¢« 440) 440k S 4409
Work Work Work Work Work Work Work — Work
Unit Unit Unit Unit Unit Unit Unit Unit
442a 442d 442e 442h 442i 442m 442n 442q
FIG. 4

(57) Abstract: A system and method for efficient automatic schedul-
ing of the execution of work units between multiple heterogeneous
processor cores. A processing node includes a first processor core with
a general-purpose micro-architecture and a second processor core with
a single instruction multiple data micro-architecture. A computer pro-
gram comprises one or more compute kernels, or function calls. A
compiler computes pre-runtime information of the given function call.
A runtime scheduler produces one or more work units by matching
each of the one or more kernels with an associated record of data. The
scheduler assigns work units either to the first or to the second pro-
cessor core based at least in part on the computed pre-runtime inform-
ation. In addition, the scheduler is able to change an original assign-
ment for a waiting work unit based on dynamic runtime behavior of
other work units corresponding to a same kernel as the waiting work

WO 2012/155010 A1 WK 00N 0 T A AR

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

TITLE: AUTOMATIC LOAD BALANCING FOR HETEROGENEOUS CORES

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This invention relates to computing systems, and more particularly, to automatically

scheduling the execution of work units between multiple heterogeneous processor cores.

Description of the Relevant Art

[0002] The parallelization of tasks is used to increase the throughput of computer systems. To
this end, compilers or the software programmer may extract parallelized tasks from program code
to execute in parallel on the system hardware. With a single-core architecture, a single core may
include deep pipelines and multiple execution contexts configured to perform multi-threading.
To further increase parallel execution on the hardware, a multi-core architecture may include
multiple processor cores. This type of architecture may be referred to as a homogeneous multi-
core architecture and may provide higher instruction throughput than a single-core architecture.
However, particular instructions for a computationally intensive task may consume a
disproportionate share of a shared resource, which may in turn delay the deallocation of the
shared resource. Examples of such specific tasks may include cryptography, video graphics
rendering, and garbage collection.

[0003] To overcome the performance limitations of conventional general-purpose cores, a
computer system may offload specific tasks to special-purpose hardware. This hardware may
include a single instruction multiple data (SIMD) parallel architecture, a field-programmable gate
array (FPGA), and/or other specialized types of processing cores. When an architecture includes

multiple cores of different types it may be referred to as a heterogeneous multi-core architecture.

[0004] Presently, an operating system (OS) scheduler or a user-level scheduler, which may also
be referred to as a “scheduler”, may schedule workloads running on a computer system with a
heterogeneous multi-core architecture using a variety of schemes - such as a round-robin scheme.
Additionally, an scheduler may schedule these workloads based on availability of the cores.
Alternatively, a programmer may schedule the workloads in combination with the runtime
system. In such a case, the programmer may utilize a software platform to perform the

scheduling. For example, the OpenCL® (Open Computing Language) framework supports

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

programming across heterogeneous computing environments and includes a low-level
application programming interface (API) for heterogencous computing. The OpenCL framework
(generally referred to herein as “OpenCL”) includes a C-like language interface that may be used
to define execution queues, wherein each queue is associated with an OpenCL device. An
OpenCL device may be a CPU, a GPU, or other unit with at least one processor core within the
heterogeneous multi-core architecture. In the OpenCL framework a function call may be
referred to as an OpenCL compute kernel, or simply a “compute kernel”. A software
programmer may schedule the compute kernels in the execution queues. A compute kernel may
be matched with one or more records of data to produce one or more work units of computation.
Each work unit may have a unique identifier (ID).

[0005] The scheduling model described above may restrict portability and performance when
there is a mismatch between the scheduling schemes and system resources. The programmer
may trade portability for efficiency while attempting to provide an application that spans varied

system configurations.

SUMMARY OF EMBODIMENTS OF THE INVENTION

[0006] Systems and methods for performing efficient automatic scheduling of the execution of
work units between multiple heterogencous processor cores are contemplated.

[0007] In one embodiment, a processing node includes a first processor core with a first micro-
architecture and a second processor core with a second micro-architecture different from the first
micro-architecture. In one embodiment, the first micro-architecture is a general-purpose micro-
architecture and the second micro-architecture is a single instruction multiple data (SIMD)
micro-architecture. The processing node includes a memory coupled to each of the first and the
second processor cores. The memory stores a computer program comprising one or more
compute kernels, or function calls. As a compiler traverses the instructions of a given function
call, the compiler is configured to compute pre-runtime information of the given function call. A
scheduler within an operating system (OS) produces one or more work units by matching each of
the one or more kernels with an associated record of data. The scheduler also assigns the one or
more work units either to the first processor core or to the second processor core based at least in
part on the computed pre-runtime information. In addition, the scheduler is able to change an
original assignment for a waiting work unit from either the first or the second processor core to
the other processor core based on dynamic runtime behavior of other work units corresponding to

a same kernel as the waiting work unit.

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

[0008] These and other embodiments will be further appreciated upon reference to the

following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a generalized block diagram of one embodiment of an exemplary processing
node with a heterogeneous multi-core architecture.

[0010] FIG. 2 is a gencralized block diagram of one embodiment of source code defining
compute kernels.

[0011] FIG. 3 is a gencralized block diagram of one embodiment of source code defining
compute kernels with conditional statements.

[0012] FIG. 4 is a generalized block diagram of one embodiment of the scheduled assignments
between hardware resources and compute kernels.

[0013] FIG. 5 is a generalized block diagram of one embodiment of a logical layout of micro-
architectures for two types of processor cores.

[0014] FIG. 6 is a generalized block diagram of one embodiment of a general-purpose pipeline
execution flow.

[0015] FIG. 7 is a generalized block diagram of one embodiment of a SIMD pipeline execution
flow.

[0016] FIG. 8 is a generalized flow diagram illustrating one embodiment of a method for
scheduling work units to processor cores utilizing static information.

[0017] FIG. 9 is a generalized flow diagram illustrating one embodiment of a method for
scheduling work units to processor cores utilizing dynamic information

[0018] While the invention is susceptible to various modifications and alternative forms, specific
embodiments are shown by way of example in the drawings and are herein described in detail. It
should be understood, however, that drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the contrary, the invention is to cover
all modifications, equivalents and alternatives falling within the spirit and scope of the present

invention as defined by the appended claims.

DETAILED DESCRIPTION

[0019] In the following description, numerous specific details are set forth to provide a
thorough understanding of the present invention. However, one having ordinary skill in the art

should recognize that the invention might be practiced without these specific details. In some

3

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

instances, well-known circuits, structures, and techniques have not been shown in detail to avoid
obscuring the present invention.

[0020] Referring to FIG. 1, one embodiment of an exemplary processing node 110 with a
heterogeneous multi-core architecture is shown. Processing node 110 may include one or more
processing units 115, which may include one or more processor cores 112 and an associated
cache memory subsystem 114. In one embodiment, processor core 112 utilizes a general-
purpose micro-architecture.

[0021] Processing node 110 may also include one or more processing units 170, which may
comprise one or more processor cores 172 and data storage buffers 174. Processor core 172 may
not be a mirrored silicon image of processor core 112. Processor core 172 may have a micro-
architecture different from the micro-architecture used by processor core 112. In one
embodiment, the processor core 172 may be a different generation of a same processor family as
processor core 112. In another embodiment, the processor core 172 may be a voltage and/or
frequency scaled version of processor core 112. In other words, the processor core 172 is not a
silicon copy of the processor core 112 with a same functionality and instruction set architecture
(ISA), a same clock frequency, same cache sizes, a same memory model, and so forth.

[0022] Continuing with the micro-architecture of processor core 172, in yet another
embodiment, the processor core 172 may comprise a micro-architecture that provides high
instruction throughput for a computational intensive task. Processor core 172 may have a
parallel architecture. For example, the processor core 172 may be a single instruction multiple
data (SIMD) core. Examples of SIMD cores include graphics processing units (GPUs), digital
signal processing (DSP) cores, or other. In one embodiment, the processing node 110 comprises
a single instruction set architecture (ISA). Typically, as is well known in the art, single-ISA
multi-core architectures have been shown to provide higher power and throughput performances
for chip multiprocessors (CMP).

[0023] High instruction throughput on processing node 110 may be achieved with measured
power consumption within a given power limit when threads of software applications are
efficiently scheduled. The threads may be scheduled on one of processor cores 112 and 172 in a
manner that each thread has the highest instruction throughput based at least in part on the
runtime hardware resources of the processor cores 112 and 172.

[0024] Continuing with the components in the processing node 110, the processing node 110
may include memory controller 120, and interface logic 140. In one embodiment, the illustrated

functionality of processing node 110 is incorporated upon a single integrated circuit. In one

4

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

embodiment, processor cores 112 include circuitry for executing instructions according to a
predefined general-purpose instruction set. For example, the SPARC® instruction set
architecture (ISA) may be selected. Alternatively, the x86, x86-64®, Alpha®, PowerPC®,
MIPS®, PA-RISC®, or any other instruction set architecture may be selected. Generally,
processor core 112 accesses the cache memory subsystems 114, respectively, for data and
instructions. If the requested block is not found in cache memory subsystem 114 or in shared
cache memory subsystem 118, then a read request may be generated and transmitted to the
memory controller within the node to which the missing block is mapped.

[0025] In one embodiment, processing unit 170 is a graphics processing unit (GPU). Modern
GPUs are very efficient at manipulating and displaying computer graphics. The highly parallel
structure of GPUs makes them more effective than general-purpose central processing units
(CPUs), such as processing unit 115, for a range of complex algorithms. Typically, a GPU
executes calculations used for graphics and video and a CPU executes calculations for many
more system processes than graphics alone. Conventional GPUs utilize very wide single
instruction multiple data (SIMD) architectures to achieve high throughput in image-rendering
applications. Such applications generally entail executing the same programs, such as vertex
shaders or pixel shaders, on large numbers of objects (vertices or pixels). Since each object is
processed independently of other objects, but the same sequence of operations is used, a SIMD
architecture provides considerable performance enhancement. GPUs have also been considered
for non-graphical calculations.

[0026] In one embodiment, the GPU 170 may be located on a video card. In another
embodiment, the GPU 170 may be integrated on the motherboard. In yet another embodiment,
the illustrated functionality of processing node 110 may be incorporated upon a single integrated
circuit. In such an embodiment, the CPU 115 and the GPU 170 may be proprictary cores from
different design centers. Also, the GPU 170 may now be able to directly access both local
memories 114 and 118 and main memory via memory controller 120 from the processing node
110, rather than perform memory accesses off-chip via interface 140. This embodiment may
lower latency for memory accesses for the GPU 170, which may translate into higher
performance.

[0027] Continuing with the components of processing node 110 in FIG. 1, cache subsystems
114 and 118 may comprise high-speed cache memories configured to store blocks of data. Cache
memory subsystems 114 may be integrated within respective processor cores 112. Alternatively,

cache memory subsystems 114 may be coupled to processor cores 114 in a backside cache

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

configuration or an inline configuration, as desired. Still further, cache memory subsystems 114
may be implemented as a hierarchy of caches. Caches that are located nearer processor cores 112
(within the hierarchy) may be integrated into processor cores 112, if desired. In one embodiment,
cache memory subsystems 114 ecach represent L2 cache structures, and shared cache subsystem
118 represents an L3 cache structure. Both the cache memory subsystem 114 and the shared
cache memory subsystem 118 may include a cache memory coupled to a corresponding cache
controller.

[0028] Generally, packet processing logic 116 is configured to respond to control packets
received on the links to which processing node 110 is coupled, to generate control packets in
response to processor cores 112 and/or cache memory subsystems 114, to generate probe
commands and response packets in response to transactions selected by memory controller 120
for service, and to route packets for which node 110 is an intermediate node to other nodes
through interface logic 140. Interface logic 140 may include logic to receive packets and
synchronize the packets to an internal clock used by packet processing logic 116.

[0029] Tuning now to FIG. 2, one embodiment of source code utilizing compute kernels is
shown. OpenCL™ (Open Computing Language) is one example of an application programming
interface (API) for heterogencous computing. OpenCL includes a C-like language interface that
defines execution queues, wherein each queue is associated with an OpenCL device. An
OpenCL device may be a CPU, a GPU, or other unit with at least one processor core within the
heterogeneous multi-core architecture. A function call may be referred to as an OpenCL kernel,
or simply a “compute kernel”. The OpenCL framework may improve computing performance
for a wide variety of data-parallel applications used in gaming, entertainment, science and
medical fields. For a heterogencous architecture, a computer program typically comprises a
collection of compute kernels and internal functions. A software programmer may define the
compute kernels, whereas the internal functions may be defined in a given library.

[0030] For a data-parallel software application, an N-Dimensional computation domain may
define an organization of an “execution domain”. The N-Dimensional computation domain may
also be referred to as an N-Dimensional grid or an N-Dimensional Range (“NDRange”). The
NDRange may be a one-, two-, or three-dimensional space. This dimensional space may also be
referred to as an index space. For example, a software application may perform data processing
on a two-dimensional (2D) array of data, such as an image file. The software application may
perform an algorithm developed by a software programmer on a pixel-by-pixel basis of a 2D

image. A given compute kernel may be invoked over the index space (the NDRange).

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

[0031] Typically after compilation, the arguments and parameters of each compute kernel are
set. Additionally, associated memory objects and buffers are created. A given instance of the
compute kernel may be executed as its own software thread. A given instance of the compute
kernel at a given point in the index space may be referred to as a “work item”. A work item may
also be referred to as a work unit. A work unit may operate with the one or more instructions in
the compute kernel on a record of data corresponding to a given pixel (a given index) of the 2D
image. Typically, work units have an associated unique identifier (ID). In another example, an
introductory computer program processing the string “Hello World” may have one work unit for
computing each letter in the string.

[0032] The NDRange may define a total number of work units that execute in parallel if there
is sufficient hardware support. For example, the NDRange may define a number of 280 work
units, but a GPU may support the simultancous execution of 64 work units at any given time.
The total number of work units may define a global work size. As is well known to those skilled
in the art, the work units may be further grouped into work groups. Each work group may have a
unique identifier (ID). The work units within a given work group may be able to communicate
with each other and synchronize execution and coordinate memory accesses. A number of work
units may be clustered into a wave front for simultaneous execution on a GPU in a SIMD
manner. Regarding the example above for 280 total work units, a wave front may include 64
work units.

[0033] The OpenCL framework is an open programming standard for various compute devices,
or OpenCL devices. A software programmer may avoid writing a vendor-specific code, which
may result in improved code portability. Other frameworks are available and may offer more
vendor-specific coding for heterogencous architectures. For example, NVIDIA offers Compute
Unified Device Architecture (CUDA®) and AMD offers ATI Stream®. With a CUDA
framework, a compute kernel is typically statically compiled when the computer program is
compiled. With an OpenCL framework, a compute kernel is typically compiled with a Just-In-
Time (JIT) method. The JIT method may generate an appropriate binary code after obtaining the
system configuration. With a JIT compilation method, the compilation time is included with the
total execution time. Therefore, compiler optimizations may increase the execution time. In
addition, at run time the OpenCL compiler may generate multiple versions of compute kernels.
One version of a compute kernel may be generated for each type of OpenCL device type, such as

a general-purpose CPU, a SIMD GPU, and so forth.

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

[0034] The two frameworks, OpenCL and CUDA, have a difference in terminology between
their respective execution models. For example, a work unit, a work group, a wave front and an
NDRange in OpenCL have corresponding terms in CUDA such as a thread, a thread block, a
warp and a grid. Throughout the rest of the description, the terms corresponding to OpenCL are
used. However, the systems and methods described may apply to CUDA, ATI Stream and other
frameworks.

[0035] As shown in FIG. 2, code 210 defines two function calls generally titled “doWorkA”
and “doWorkB”. Each function call may be referred to as a “compute kernel”. A compute
kernel may be matched with one or more records of data to produce one or more work units of
computation. Therefore, two or more work units may utilize the same instructions of the single
function call, but operate on different records of data. For example, the function call “Power2”
in code 220 may be used to execute 10 work units, one for each data value in the array “INPUT”.
Here, a record comprises a single data value. In other examples, a record may comprise two or
more fields, wherein each field includes a data value. A SIMD micro-architecture may
efficiently execute the instructions of the kernel “Power2”, calculate the power of 2 for the
values in the INPUT array and write the output to the RESULT array.

[0036] The OpenCL framework may invoke an instance of a compute kernel multiple times in
parallel. With a JIT compiling method, these instances are compiled at runtime to be later
invoked. Each invocation (call) to the compute kernel has one associated unique ID (a work unit
ID) that may be fetched by calling an internal function named get global id(0). Regarding the
above example in code 220, the compute kernel “Power2” is invoked once for each data value in
the INPUT array. In this case, the compute kernel “Power2” is invoked 10 times. Accordingly,
ten unique work unit IDs are fetched. The OpenCL framework may differentiate between these
different instances by utilizing the unique work unit IDs. The data to be operated on (a record)
may also be specified, such as a specific data value in the INPUT array. Therefore, at runtime, a
work unit may be scheduled by default to a same OpenCL device as the associated compute
kernel is scheduled.

[0037] Tuning now to FIG. 3, one embodiment of source code defining compute kernels with
conditional statements is shown. Similar to code 210, the code 230 shown in FIG. 3 defines two
function calls generally titled “doWorkA” and “doWorkB”. Again, each function call may be
referred to as a “compute kernel”. Here, only one of the two compute kernels is executed during
runtime. The selection of which compute kernel is executed is based on a conditional test

provided by the function call “EvaluateFunction”. A result of a given instruction or whether the

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

given instruction is executed is data-dependent on the execution of previous instructions and data
corresponding to an associated record. If the result of the conditional test is not consistent
among a wave front of work units, the benefits of a SIMD micro-architecture may be reduced.
For example, a given SIMD core may have 64 parallel computation units available for
simultaneous execution of 64 work units. However, if half of the 64 work units pass the
conditional test while the other half fails the conditional test, then only half of the parallel
computation units are utilized during a given stage of processing.
[0038] Turning now to FIG. 4, a generalized block diagram illustrating one embodiment of the
scheduled assignments 400 between hardware resources and compute kernels is shown. Here,
the partitioning of hardware and software resources and their interrelationships and assignments
during the execution of one or more software applications 430 is shown. In one embodiment, an
operating system 420 allocates regions of memory for compute kernels 440a-440; and 440k-
440q. When applications 430, or computer programs, execute, each application may comprise
multiple compute kernels. For example, a first executing application may comprise compute
kernels 440a-440; and a second executing application may comprise compute kernels 440k-440q.
Within each of these compute kernels may be one or more work units. For example, compute
kernel 440a comprises work units 442a-442d, compute kernel 440j comprises work units 442e¢-
442h, compute kernel 440k comprises 442j-442m and compute kernel 440q comprises work units
442n-442q. A work unit may execute independently of other work units and execute concurrently
with other work units.
[0039] Each of the compute kernels shown in FIG. 4 may own its own resources such as an
image of memory, or an instance of instructions and data before application execution. Each of
the compute kernels may also comprise process-specific information such as address space that
addresses the code, data, and possibly a heap and a stack; variables in data and control registers
such as stack pointers, general and floating-point registers, program counter, and otherwise; and
operating system descriptors such as stdin, stdout, and otherwise, and security attributes such as a
set of permissions.
[0040] In one embodiment, hardware computing system 410 incorporates a general-purpose
processor core 112 and a SIMD processor core 172, each configured to process one or more work
units. In another embodiment, system 410 includes two other heterogencous processor cores. In
general, for a given application, operating system 420 sets up an address space for the
application, loads the application's code into memory, sets up a stack for the program, branches

to a given location inside the application, and begins execution of the application, upon requests

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

from the scheduler. Typically, the portion of the operating system 420 that manages such
activities is the operating system (OS) compute kernel 422. The OS compute kernel 422 is
referred to as “OS compute kernel” in order not to confuse it with a compute kernel, or a function
call. The OS Compute kernel 422 may further determine a course of action when insufficient
memory is available for the execution of the application. As stated before, an application may be
divided into more than one compute kernel and system 410 may be running more than one
application. Therefore, there may be several compute kernels running in parallel. The scheduler,
using the OS Compute kernel 422, may decide at any time which of the simultancous executing
compute kernels is allocated to the processor cores 112 and 172. The OS Compute kernel 422
may allow a process to run on a core of a processor, which may have one or more cores, for a
given amount of time referred to as a time slice. An scheduler 424 in the operating system 420
may comprise decision logic for assigning compute kernels to cores.

[0041] In one embodiment, only one compute kernel can execute at any time on any one of the
hardware computation units 412a-412g and 412h-412r. These hardware computation units
comprise hardware that can handle the execution of a given instruction of a given work unit with
associated data. This hardware may include an arithmetic logic unit that is configured to perform
addition, multiplication, zero detect, a bit-wise shift, division, video graphics and multimedia
instructions or other operations known to those skilled in the art of processor design. These
hardware computation units may include a hardware thread in a multi-threaded processor, a
parallel hardware column in a SIMD micro-architecture, and so forth.

[0042] The dashed lines in FIG. 4 denote assignments and do not necessarily denote direct
physical connections. Thus, for example, hardware computation unit 412a may be assigned to
execute work unit 442d. However, later (e.g., after a context switch), the hardware computation
unit 412a may be assigned to execute work unit 442h. In one embodiment, the scheduler 424
may schedule the work units 442a-442q to the hardware computation units 412a-412r with a
round-robin scheme. Alternatively, the scheduler 424 may schedule the work units 442a-442q to
the cores 112 and 172 with a round-robin scheme. An assignment of a given work unit to a given
hardware computation unit may be performed by an associated processor core. In another
embodiment, the scheduler 424 may perform the scheduling based on availability of the
processor cores 112 and 172. In yet another embodiment, the scheduler 424 may perform the
scheduling according to assignments created by a programmer utilizing the OpenCL™ API or
another similar API. These scheduling schemes may restrict portability and performance when

there is a mismatch between the work unit assignments and hardware resources.

10

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

[0043] Referring to FIG. 5, a generalized block diagram illustrating one embodiment of a
logical layout of micro-architectures for two types of processor cores is shown. Although each
of a general-purpose core 510 and a single instruction multiple data (SIMD) core 560 is shown,
other types of heterogencous cores are possible and contemplated. Each of the cores 510 and 560
have a dynamic random access memory (DRAM) 550a and 550b for storage of data and
instructions. In one embodiment, the cores 510 and 560 share a same DRAM. In another
embodiment, a given level of a cache memory subsystem (not shown) is shared in addition to the
DRAM. For example, referring again to FIG. 1, the cache memory subsystem 118 is shared by
the cores 112 and 172.

[0044] Each of the cores 510 and 560 include a cache memory subsystem 530. As shown, the
general-purpose core 510 logically has the cache memory subsystem 530 separate from the
control logic 520 and the arithmetic logic units (ALUs) 540. The data flow within the core 510
may be pipelined, although storage elements, such as pipeline registers, are not shown in order to
simplify the illustration. In a given pipeline stage, an ALU may be unused if instructions in this
stage do not utilize a certain type of ALU or if another work unit (or another thread for a general-
purpose core) consumes the ALUs during this stage.

[0045] As shown, the SIMD core 560 has the cache memory subsystem 530 grouped with
control logic 520 for each row of computation units 542. The data flow within the core 560 may
be pipelined, although storage elements, such as pipeline registers, are not shown in order to
simplify the illustration. In a given pipeline stage, a computation unit may be unused if an
associated instruction in this stage is not executed based on a previous failed test, such as a not-
taken branch.

[0046] Referring now to FIG. 6, a generalized block diagram illustrating one embodiment of a
general-purpose pipeline execution flow 600 is shown. Instructions 602-608 may be fetched and
enter a general-purpose pipeline. Instruction 606 may be a computation intensive instruction.
During particular stages of the pipeline execution flow, one or more of the instructions 602-608
consume resources in the general-purpose processor core 112, such as decoder logic, instruction
scheduler entries, reorder buffer entries, ALUs, register file entries, branch prediction units, and
so forth.

[0047] In a balanced scheme, each of the instructions 602-608 consume an equal amount of
resources each stage. However, typically, a general-purpose core does not replicate resources for
cach instruction due to real-estate cost, power consumption and other design considerations.

Therefore, the workload may become unbalanced. For example, the instruction 606 may

11

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

consume more resources for one or more pipe stages due to its computation intensive behavior.
As shown, the resources 630 consumed by this instruction may become far greater than the
resources consumed by other instructions. In fact, the computation intensive instruction may
block the usage of hardware resources by other instructions.

[0048] Some computation intensive tasks may place pressure on shared resources within the
general-purpose core 112. Thus, throughput losses occur for both the computational intensive
process and other processes waiting for the shared resources. In addition, some instructions
occupy the shared resource and other resources on the die to support the computation being
performed on the shared resource. Such a long latency instruction may concurrently block other
processes from using several resources during a long latency.

[0049] Referring now to FIG. 7, a generalized block diagram illustrating one embodiment of a
SIMD pipeline execution flow 700 is shown. Instructions 702-708 may be fetched and enter a
SIMD pipeline with associated data. Instruction 704 may be a control flow transfer instruction,
such as a branch. The instruction 706 may be a first instruction in a taken path. For example, the
branch instruction 704 may be associated with an IF statement in a high-level language program.
The instruction 706 may be associated with a THEN statement in the high-level language
program. The instruction 708 may be a first instruction in a not-taken path. The instruction 708
may be associated with an ELSE statement in the high-level language program.

[0050] Each of the computation units within a given row may be a same computation unit.
Each of these computation units may operate on a same instruction, but different data associated
with a different work unit. As shown, some of the work units pass the test provided by the
branch instruction 704 and other work units fail the test. The SIMD core 172 may execute each
of the available paths and selectively disable the execution units, such as the computation units,
corresponding to work items that did not choose the current path. For example, during execution
of an If-Then-Else construct statement, within each column of a SIMD architecture are execution
units configured to execute the “Then” (Path A) and the “Else” (Path B) paths. The efficiency of
parallel execution may be reduced as the first and the second work units halt execution and wait
as the third work unit continues with its ongoing execution. Therefore, not all of the
computation units are active computation units 710 in a given row after execution of the branch
instruction 704. If a large number of computation units are inactive during a given pipe stage,
the efficiency and throughput of the SIMD core is reduced.

[0051] Turning now to FIG. 8, one embodiment of a method 800 for scheduling work units to

processor cores utilizing static information is shown. The components embodied in the

12

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

processing node 110 and the hardware resource assignments shown in FIG. 4 described above
may generally operate in accordance with method 800. For purposes of discussion, the steps in
this embodiment and subsequent embodiments of methods described later are shown in
sequential order. However, some steps may occur in a different order than shown, some steps
may be performed concurrently, some steps may be combined with other steps, and some steps
may be absent in another embodiment.

[0052] In block 802, a software program or subroutine may be located and analyzed. This
software program may be written for compilation and execution on a heterogeneous architecture.
Program code may refer to any portion of a software application, subroutine, dynamic linked
library, or otherwise. A pathname may be entered at a command prompt by a user, a pathname
may be read from a given directory location, or other, in order to begin compiling the source
code. The program code may be written by a designer in a high-level language such as C, a C-
like language such as OpenCL™, and so forth. In one embodiment, the source code is statically
compiled. In such an embodiment, during a static front-end compilation, the source code may be
translated to an intermediate representation (IR). A back-end compilation step may translate the
IR to machine code. The static back-end compilation may perform more transformations and
optimizations. The compiler may identify a kernel in the program code.

[0053] In block 804, the compiler may read one or more instructions of the kernel and analyze
them. If a conditional statement is identified (conditional block 806), then in block 808, a count
of a number of conditional statements may be incremented. The conditional statement may be a
control flow transfer instruction, such as a branch. In one embodiment, separate counts may be
maintained for different types of control flow transfer instructions such as forward/backward
branches, direct/indirect branches, jumps, and so forth. It may be possible for a compiler or other
tool to statically determine a direction of a branch, a target of a branch or an address of a memory
access operation. However, in one embodiment, some processing typically performed during
runtime on associated data may be performed during compilation. For example, a simple test to
determine a direction (taken, not-taken) of a branch may be performed. Although, compilation
may be referred to as “‘static compilation”, one or more small dynamic operations may be
performed. This compilation may also be referred to as “pre-runtime compilation”. Another
example of a dynamic step performed at this time is identifying a next instruction to execute in
cach of a THEN, ELSEIF and ELSE blocks of an If-Then-Elself-Else construct.

[0054] If a memory access instruction is identified (conditional block 810), then in block 812, a

corresponding access pattern may be determined. Memory accesses may be sequential, stride,

13

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

direct, indirect, gather in groups, scattered and so forth. Again, some dynamic computation may
be performed with data associated with a work unit during compilation. The compiler may
maintain counts of different categories of memory accesses.

[0055] In one embodiment, prior to code execution, static binary instrumentation may be
performed. An instruction may be inspected in order to determine whether the instruction
qualifies for instrumentation. Instrumentation allows measuring and error-checking analysis to
be performed in subsequent execution by analysis routines. In addition, profiling data may be
collected. An application’s performance may be increased based on an understanding of the
dynamic behavior of the resulting work units such as a memory profile. In addition, dynamic
scheduling of work units based on the dynamic behavior of completed work units derived from a
same kernel may be performed. The use of static compile time control flow graphs and data flow
graphs may be used to detect initialized variables and program behavior prior to runtime
execution. However, the dynamic behavior may provide further information. Therefore, at least
control flow transfer instructions and memory access instructions, such as load/read and
store/write operations, may be instrumented. However, in order to reduce an amount of
measurement data to store and analysis to perform, filtering may be used to reduce the number of
instrumented instructions even when a given instruction otherwise qualifies for instrumentation.
[0056] If an instruction does qualify for instrumentation (conditional block 814), then in block
816, during an instrumentation stage, analysis routines may be placed in-line or reside in a
function call, wherein the function name is placed in-line within the code either before or after
the qualified instruction to be instrumented. If the last instruction is reached (conditional block
818), then in block 820, the scheduler schedules each work unit to execute on a corresponding
one of the cores 112 and 172 within a heterogeneous architecture according to the pre-runtime, or
static, information.

[0057] The scheduler 424 used in a heterogencous multi-core architecture may place priority
on a match between the hardware resources and organization within a core and the characteristics
of a work unit. For example, the work units corresponding to a kernel with low thread-level
parallelism may be scheduled on the general-purpose processor core 112.

[0058] A work unit with a number of control flow transfer instructions greater than a given
threshold may be scheduled on core 112. Alternatively, the work units of a kernel comprising a
relatively high number of control flow instructions with varying directions based on associated
data may be scheduled on core 112. For example, if a kernel has a high number of control flow

transfer instructions, but the direction (taken, not-taken) is consistent among a high number of

14

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

work units, then the work units may be scheduled on the SIMD core 172. Otherwise, if the
directions of the control flow transfer instructions are inconsistent, or varying, then the
associated work units may be scheduled on core 112.

[0059] If a relatively high number of memory access instructions perform accesses of memory
locations in a sequential manner or a stride manner, then the corresponding work units may be
scheduled on the SIMD core 172. If a relatively high number of memory access instructions
perform accesses of memory locations in a scattered or indirect manner, then the corresponding
work units may be scheduled on the general-purpose core 112. At run time the OpenCL™
compiler may generate multiple versions of kernels for each OpenCL™ device type, such as the
general-purpose core 112 and the SIMD core 172. In one example, the scheduler 424 may
schedule the first 256 work units of a given kernel to execute on the SIMD core 172. However,
based on the monitored dynamic behavior of those work units, the scheduler 424 may schedule
the last 16 work units of the given kernel to the general-purpose core 112.

[0060] Turning now to FIG. 9, one embodiment of a method 900 for scheduling work units to
processor cores utilizing dynamic information is shown. The components embodied in the
processing node 110 and the hardware resource assignments shown in FIG. 4 described above
may generally operate in accordance with method 900. For purposes of discussion, the steps in
this embodiment and subsequent embodiments of methods described later are shown in
sequential order. However, some steps may occur in a different order than shown, some steps
may be performed concurrently, some steps may be combined with other steps, and some steps
may be absent in another embodiment.

[0061] In block 902, an associated record of data is assigned to each work unit of a given
kernel. In block 904, the scheduler 424 schedules the work units to heterogeneous cores. The
method 700 may be used to perform the scheduling. In block 906, the processor cores 112 and
172 execute the corresponding scheduled work units. In block 908, instrumentation code and
tools monitor and collect the dynamic behavior of the executing work units. The collected data
may be stored in one or more tables. Entries of the one or more tables may utilize a processor
core identifier (ID), a kernel ID and a work unit ID to indicate the current system topology being
measured.

[0062] An event index may indicate a type of event being measured by the instrumented code.
An actual measured value may be stored along with a rate value. The rate may include a

corresponding frequency or percentage measurement. A status field may be used to indicate

15

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

whether the measured value and rate value are valid. One or more configurable threshold values
may be stored. In one embodiment, these threshold values are programmable.

[0063] If a scheduled work unit is waiting to be executed (conditional block 910), then in block
912, the monitored dynamic behavior of any executing work units corresponding to the same
kernel may be analyzed. In block 914, one of the heterogeneous cores is determined to be
suitable for efficient execution of the given work unit. For example, as a number of instructions
per work unit increases, there is a higher chance the instructions correspond to general-purpose
functionality. Therefore, when the measured number passes a given threshold, the general-
purpose core 112 may be more suitable for execution of the waiting work unit. Additionally, a
count of instructions between taken branches may be used.

[0064] A given loop in the code and a number of loops may indicate efficient execution with a
SIMD micro-architecture. A number of executed branches and other types of control flow
transfer instructions beyond a given threshold may indicate the general-purpose core 112 offers
more efficient execution. Similarly, a relatively high number of cache misses may indicate the
general-purpose core 112 may be more efficient than the SIMD core 172 for execution of the
work unit. A relatively high number of executed floating-point operations, executed graphics
processing operations, and pipeline stalls due to write buffer overflow may indicate the SIMD
core 172 offers more efficient execution for the waiting work unit. Also, an execution time to
determine the preferred OpenCL™ device type to execute the waiting work unit may be used.
Other runtime criteria are possible and contemplated. In addition, each of the criteria may have
associated weights used in a summing formula of all the criteria to determine the preferred
OpenCL™ device type for execution.

[0065] In block 916, a comparison is made between the processor core determined above for
efficient execution of the waiting work unit and a previously scheduled processor core. If there
is a match (conditional block 918), then in block 920, the scheduler 424 schedules the waiting
work unit on the previously scheduled processor core. If there is not a match (conditional block
918), then in block 922, the scheduler 424 schedules the waiting work unit on the processor core
found from the above analysis utilizing dynamic behavior of a corresponding kernel.

[0066] It is noted that the above-described embodiments may comprise software. In such an
embodiment, the program instructions that implement the methods and/or mechanisms may be
conveyed or stored on a computer readable medium. Numerous types of media which are
configured to store program instructions are available and include hard disks, floppy disks, CD-

ROM, DVD, flash memory, Programmable ROMs (PROM), random access memory (RAM), and

16

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

various other forms of volatile or non-volatile storage. Generally speaking, a computer accessible
storage medium may include any storage media accessible by a computer during use to provide
instructions and/or data to the computer. For example, a computer accessible storage medium
may include storage media such as magnetic or optical media, ¢.g., disk (fixed or removable),
tape, CD-ROM, or DVD-ROM, CD-R, CD-RW, DVD-R, DVD-RW, or Blu-Ray. Storage media
may further include volatile or non-volatile memory media such as RAM (e.g. synchronous
dynamic RAM (SDRAM), double data rate (DDR, DDR2, DDR3, etc.) SDRAM, low-power
DDR (LPDDR2, etc.) SDRAM, Rambus DRAM (RDRAM), static RAM (SRAM), etc.), ROM,
Flash memory, non-volatile memory (e.g. Flash memory) accessible via a peripheral interface
such as the Universal Serial Bus (USB) interface, etc. Storage media may include
microelectromechanical systems (MEMS), as well as storage media accessible via a
communication medium such as a network and/or a wireless link.

[0067] Additionally, program instructions may comprise behavioral-level description or
register-transfer level (RTL) descriptions of the hardware functionality in a high level
programming language such as C, or a design language (HDL) such as Verilog, VHDL, or
database format such as GDS II stream format (GDSII). In some cases the description may be
read by a synthesis tool which may synthesize the description to produce a netlist comprising a
list of gates from a synthesis library. The netlist comprises a set of gates which also represent the
functionality of the hardware comprising the system. The netlist may then be placed and routed
to produce a data set describing geometric shapes to be applied to masks. The masks may then
be used in various semiconductor fabrication steps to produce a semiconductor circuit or circuits
corresponding to the system. Alternatively, the instructions on the computer accessible storage
medium may be the netlist (with or without the synthesis library) or the data set, as desired.
Additionally, the instructions may be utilized for purposes of emulation by a hardware based type
emulator from such vendors as Cadence®, EVE®, and Mentor Graphics®.

[0068] Although the embodiments above have been described in considerable detail, numerous
variations and modifications will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace

all such variations and modifications.

17

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

WHAT IS CLAIMED IS

1. A method for scheduling work units in a heterogeneous multi-core architecture comprising:

scheduling a first compute kernel within a computer program to a first processor core of a
plurality of processor cores based at least in part on information determined during
compilation of the first compute kernel, wherein the first processor core has a first
micro-architecture;

receiving measured runtime information corresponding to the runtime behavior of the first
compute kernel on the first processor core; and

rescheduling the first compute kernel from the first processor core to a second processor core
of the plurality of processor cores based at least in part on the received runtime
information, wherein the second processor core has a second micro-architecture

different from the first micro-architecture.

2. The method as recited in claim 1, further comprising generating a different version of binary

code for the first compute kernel for each of the first and the second processor cores.

3. The method as recited in claim 1, wherein the first micro-architecture is a general-purpose
micro-architecture and the second micro-architecture is a single instruction multiple data (SIMD)

micro-architecture.

4. The method as recited in claim 3, further comprising scheduling the first compute kernel to
the first processor core, in response to determining said information includes an indication that

there exists a number of branch instructions greater than a first threshold.

5. The method as recited in claim 3, further comprising:
determining a second compute kernel includes a first number of instructions with
scattered or indirect memory accesses;
determining the second compute kernel includes a second number of instructions with
sequential or stride memory accesses;
scheduling the second compute kernel to the first processor core, in response to
determining said first number of instructions is greater than the second number of

instructions; and

18

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

scheduling the second compute kernel to the second processor core, in response to
determining said first number of instructions is not greater than the second

number of instructions.

6. The method as recited in claim 3, wherein said runtime information of the first compute
kernel includes an indication that a number of instructions of a given type is greater than a
second threshold, wherein the given type includes at least one of the following: cryptographic,

floating-point, garbage collection and video graphics.

7. The method as recited in claim 3, further comprising rescheduling a third compute kernel
from the second processor core to the first processor core, in response to determining associated
runtime information indicates a number of executed branch instructions is greater than a third

threshold.

8. The method as recited in claim 3, further comprising rescheduling a fourth compute kernel
from the second processor core to the first processor core, in response to determining associated
runtime information indicates a number of instructions utilizing a single instruction multiple data

(SIMD) processing unit is less than a fourth threshold.

9. A computing system including a heterogencous multi-core architecture comprising:
a first processor core with a first micro-architecture;
a second processor core with a second micro-architecture different from the first micro-
architecture;
an operating system comprising a scheduler, wherein the scheduler is configured to:
schedule the first compute kernel to the first processor core based at least in part
on information determined during compilation of the first compute kernel;
receive measured runtime information corresponding to the runtime behavior of
the first compute kernel on the first processor core; and
reschedule the first compute kernel from the first processor core to the second

processor core based at least in part on the received runtime information.

10. The computing system as recited in claim 9, further comprising a compiler configured to

compile a first compute kernel within a computer program, wherein the compiler is further

19

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

configured to generate a different version of binary code for the first compute kernel for each of

the first and the second processor cores.

11. The computing system as recited in claim 9, wherein the first micro-architecture is a
general-purpose micro-architecture and the second micro-architecture is a single instruction

multiple data (SIMD) micro-architecture.

12. The computing system as recited in claim 11, wherein the scheduler is further configured to
schedule the first compute kernel to the first processor core, in response to determining said
information includes an indication that there exists a number of branch instructions greater than a

first threshold.

13. The computing system as recited in claim 11, wherein the scheduler is further configured to:

determine a second compute kernel includes a first number of instructions with scattered
or indirect memory accesses;

determine the second compute kernel includes a second number of instructions with
sequential or stride memory accesses;

schedule the second compute kernel to the first processor core, in response to
determining said first number of instructions is greater than the second number of
instructions; and

schedule the second compute kernel to the second processor core, in response to
determining said first number of instructions is not greater than the second

number of instructions.

14. The computing system as recited in claim 11, wherein said runtime information of the first
compute kernel includes an indication that a number of instructions of a given type is greater
than a second threshold, wherein the given type includes at least one of the following:

cryptographic, floating-point, garbage collection and video graphics.

15. The computing system as recited in claim 11, wherein the scheduler is further configured to
reschedule a third compute kernel from the second processor core to the first processor core, in
response to determining associated runtime information indicates a number of executed branch

instructions greater than a given third threshold.

20

10

15

20

25

30

WO 2012/155010 PCT/US2012/037433

16. The computing system as recited in claim 11, wherein the scheduler is further configured to
reschedule a fourth compute kernel from the second processor core to the first processor core, in
response to determining associated runtime information indicates a number of instructions
utilizing a single instruction multiple data (SIMD) processing unit is less than a given fourth

threshold.

17. A computer readable storage medium storing program instructions configured to schedule
compute kernels in a heterogeneous multi-core architecture, wherein the program instructions are
executable to:
schedule a first compute kernel within a computer program to a first processor core of a
plurality of processor cores based at least in part on information determined during
compilation of the first compute kernel, wherein the first processor core has a first
micro-architecture;
receive measured runtime information corresponding to the runtime behavior of the first
compute kernel on the first processor core; and
reschedule the first compute kernel from the first processor core to a second processor core of
the plurality of processor cores based at least in part on the received runtime
information, wherein the second processor core has a second micro-architecture

different from the first micro-architecture.

18. The computer readable storage medium as recited in claim 17, wherein the first micro-
architecture is a general-purpose micro-architecture and the second micro-architecture is a single

instruction multiple data (SIMD) micro-architecture.

19. The computing system as recited in claim 18, wherein the program instructions are further
executable to:
determine a second compute kernel includes a first number of instructions with scattered
or indirect memory accesses;
determine the second compute kernel includes a second number of instructions with

sequential or stride memory accesses;

21

WO 2012/155010 PCT/US2012/037433

schedule the second compute kernel to the first processor core, in response to
determining said first number of instructions is greater than the second number of
instructions; and
schedule the second compute kernel to the second processor core, in response to
5 determining said first number of instructions is not greater than the second

number of instructions.

20. The computing system as recited in claim 18, wherein the program instructions are further
executable to reschedule a second compute kernel from the second processor core to the first
10 processor core, in response to determining associated runtime information indicates a number of

executed branch instructions is greater than a third threshold.

22

WO 2012/155010 PCT/US2012/037433
1/9
ﬁ Processing Node 110
MC
120
A
Shared Cache
Memory
Subsystem
118
1 y
Packet Pro1c1e6531ng Logic
' ‘ '
L Unit 115 ‘I S Unit 170 ’I
| | | I
IF Cache Memory IF
140 : Subsystem I : Buffers] 140
114 I 174 I
| — I l |
R N R B
: | : |
General- I : I
I N I e
! Processor I | F C |
| Core I | 1%6 I
' 12 I ' —= |
| = | | = |
Y
IF
140

FIG. 1

WO 2012/155010

2/9

Code 210

void DoWorkA(Record * record)
{

/l perform steps of a first algorithm
// on the record

}

void DoWorkB(Record * record)
{

/f perform steps of a second algorithm
// on the record

}

void KernelFunction(Record * recordsArray)

{
const int unitld = get_global_1d(0);
DoWorkA(&recordsArray[unitld]);

DoWorkB(&recordsArray[unitld]);
t

Code 220

INPUT=11,3,2,7,8,
1,3, 5,2, 4]

KERNEL Power2(INPUT,

RESULT) {
N = get_array_index();
V = INPUTI[NJ;
RESULTI[N] =V *V;

}

FIG. 2

PCT/US2012/037433

WO 2012/155010

3/9

Code 230]

void DoWorkA(Record * record)

{
Il perform steps of a first algorithm
// on the record

}

void DoWorkB(Record * record)

{
// perform steps of a second algorithm
// on the record

}

void KernelFunction(Record * recordsArray)
{

const int unitld = get_global _|d(0);

If (EvaluateFunction(recordsArray[unitld])

{
DoWorkA(&recordsArray[unitid]);

}

glse

{
DoWorkB(&recordsArray| unitld]);
}
}

FIG. 3

PCT/US2012/037433

WO 2012/155010 PCT/US2012/037433

4/9
Hardware Resources
/ Assignments 400
Hardware Computing System 410
Processor Core 112 Processor Core 172
Hardware Hardware Hardware Hardware
Computation Computation Computation Computation
Unit Unit Unit Unit
412a 4124 412h 412r
S » » h
\‘ \| \\ ‘\
1 \ \ i
‘. ! \ \
i : AN i
| K \ !
\ h \ :
: ! \]
| A 1
! i Operating System (0S) ", !
; / 420 N !
H ll \\ h
Applications ! ! \ !
430 i J OS Kernel | Scheduler !
- l' [I ﬁ _4_24_ I’
H / v
: ’, \\UI’
" /' 4 A A J
i I, 'I \‘
! / 7
! / T
' / | !
i / : !
! 4 Y i v KO -
Kernel ‘:' Kernel Kernel ,’, Kernel
440ai 440j E 44Okﬂ/ 440q
Work Work Work Work : Work Work Work Work
Unit Unit Unit Unit | | Unit Unit Unit Unit
442a 442d 442¢ 442h | i 442i 442m 442n 442q
FIG. 4

PCT/US2012/037433

WO 2012/155010

SIMD Core 560

;ﬁ

5/9

= o

x ;ou‘

n W
RO AA A

e s
RS #0#”%%&“0”;
R
TQQ”‘”O % 0&7&0&#’.’0&%&00&
g&#% 3% :
?4»%?%«0;#44 0»«4&0@0»1
pesetel

5 -
ettty g&
%‘* R ARIARE R A
V’O& % 0*“‘0 82 3
SRR sttt
ettt tetes
M“n%@«o s
e VOVO*QO S
R
ptetetetetatetatotatetetatotetotel
REEELS #m.m..:_m*

e = ©
Foteatetstatatat ettt ettty

NS M.m O

u%cm ¢“¢ SREIEEKE 5

= ﬁv«o‘%ﬁ#% ©

Tttt et etototetetety :

General-Purpose

T §

Core 510 j‘
N s,

5
4

553
CaLi,
tz%’
Q‘
bt <
§f§
S0
=

o

0’4
20‘0“ S5
,)#

e

b ¢+
WVO@%&&#& LA
RSSSIRSIEES
R

25

i
i

4

L

[0 0.410

wﬁﬁﬂﬂ%@*f# 0

v§¢0¢+¢¢¢ SRS

03_0.00‘ S e

“&”‘*ﬁ‘&*&”%’”"

&..%*v@o%nuf»o% »»ouM
o

4

Computation

Arithmetic Logic

Cache Memory
Subsystem 530

Control
LOgiC 520

FIG. 5

PCT/US2012/037433

6/9

WO 2012/155010

9 OlId

- 7 J— N S N \
0F9 @ uoionnsu| ¢ €9 O uononuisu| 029 g uoponssu| EEELK [9 v uononnsuj R
Ag pswinsuon ez Aq pawinsuo9 d Ag pswnsuo) SRR Ag pawnsuon d
$90IN0S8Y S20JN0S9Y $92IN0S9Y S80JN0SaY

LT B
LT [T

809
@ uononysuy|

909
D uoponasu|
SAISUSIU|
uoneindwon

Ry

ARSI

¥09
g uononJsuj

209
Vv uononisuy|

009 Mo[4 uopnooxy 7
aujjadid asodind-jelauagy

WO 2012/155010 PCT/US2012/037433

7/9 o '
— EII(IJ\/IWD7FC’)|(§)eI|ne Execution
= R

<
7 7 7
1
b

DA
AN

- Branch
Inst ﬁ> ;
w7

Path A
Instr d> 4

706

&

7

?

,
n

%

Z
Path B
Instr ;> f

708

o

Active
Computation
Unit 710

FIG. 7

WO 2012/155010

PCT/US2012/037433

8/9
Identify a kernel in a Read one or more
computer program. instructions in the kernel. <
802 804
Identify ™
A4———No a conditional
[dentify
a memory access Yes
instruction? \J
810 No
- Increment a count.
808
Yes
y
Determine a corresponding
access pattern. >
812
An
instruction
‘4——No qualifies for

Reached
ast instruction’?
818

~4—No

Yes

A/

Schedule a work unit to
execute on a given core of
multiple heterogeneous
cores according to static
information.

820

instrumentation?
814

Yes

Y

Insert instrumentation and
analysis routines for the
instruction.

3816

FIG. 8

WO 2012/155010

e N
Assign associated record(s)

of data to each kernel to
produce one or more work
units.
902
Schedule work units to

heterogeneous cores.
904

'

Execute the work units on
— the cores.
906

9/9

PCT/US2012/037433

Method 900
/—_

Determine a given core
suitable for efficient
execution of the given work
unit.

914

'

Compare the determined
given core to a previously
scheduled core for executing
the given work unit.

916

FIG. 9

Monitor dynamic behavior of 1
the work units.
208 | Yes
No ¢
Schedule the waiting given
' work unit on the previously
\ Ic_it(_antify scheduled core.
4—No a waiting given
4 work unit? 920
910
Yes Schedule the waiting given
Y —» work unit on the given core.
Analyze the dynamic 922
information. — ,
912
- -

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/037433

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Architectures",

INTERNATIONAL CONFERENCE ON

PAGE(S) 19 - 33, XP019114340,
ISBN: 978-3-540-92989-5
page 1, line 1 - Tine 5

Y VACTOR J JIMA CR NEZ ET AL: "Predictive
Runtime Code Scheduling for Heterogeneous

25 January 2009 (2009-01-25), FOURTH
HIGH-PERFORMANCE EMBEDDED ARCHITECTURES

AND COMPILERS (HIPEAC 2009). PAPHOS,
CYPRUS, JANUARY 25-28, 2009, SPRINGER, DE,

page 23, line 16 - page 24, line 8

1-20

_/__

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 July 2012

Date of mailing of the international search report

06/08/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Miihlenbrock, Martin

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/037433

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y HOWARD JAY SIEGEL ET AL: "Software
support for heterogeneous computing",

ACM COMPUTING SURVEYS,

vol. 28, no. 1, 1 March 1996 (1996-03-01),
pages 237-239, XP55033939,

ISSN: 0360-0300, DOI:
10.1145/234313.234411

page 237, right-hand column, line 3 - page
238, right-hand column, line 8

A PEKKA O JASKELAINEN ET AL: "OpenCL-based
design methodology for
application-specific processors",

EMBEDDED COMPUTER SYSTEMS (SAMOS), 2010
INTERNATIONAL CONFERENCE ON, IEEE,
PISCATAWAY, NJ, USA,

19 July 2010 (2010-07-19), pages 223-230,
XP031806001,

ISBN: 978-1-4244-7936-8

the whole document

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report
	Page 35 - wo-search-report

