
(19) United States
US 2005022.3221A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0223221A1
Proudler et al. (43) Pub. Date: Oct. 6, 2005

(54) APPARATUS AND METHOD FOR CREATING (30) Foreign Application Priority Data
A TRUSTED ENVIRONMENT

Nov. 22, 2001 (GB)... O127978.5

(76) Inventors: Graeme John Proudler, Bristol (GB);
Boris Balacheff, Bristol (GB); David
Plaquin, Bristol (GB)

Correspondence Address:
HEWLETTPACKARD COMPANY
Intellectual Property Administration
P.O. BOX 272400
Fort Collins, CO 80527-2400 (US)

(21) Appl. No.: 11/090,964

(22) Filed: Mar. 25, 2005

Related U.S. Application Data

(63) Continuation-in-part of application No. 10/303,690,
filed on Nov. 21, 2002.

94

96

91

Publication Classification

(51) Int. Cl." ... G06F 9/45
(52) U.S. Cl. .. 713/164; 713/194

(57) ABSTRACT

A computer apparatus for creating a trusted environment
comprising a trusted device arranged to acquire a first
integrity metric to allow determination as to whether the
computer apparatus is operating in a trusted manner; a
processor arranged to allow execution of a first trust routine
and associated first operating environment, and means for
restricting the first operating environment access to
resources available to the trust routine, wherein the trust
routine being arranged to acquire the first integrity metric
and a Second integrity metric to allow determination as to
whether the first operating environment is operating in a
trusted manner.

95

Patent Application Publication Oct. 6, 2005 Sheet 1 of 8 US 2005/022.3221A1

12 14 1518

Patent Application Publication Oct. 6, 2005 Sheet 2 of 8 US 2005/022.3221 A1

Patent Application Publication Oct. 6, 2005 Sheet 3 of 8 US 2005/022.3221 A1

Patent Application Publication Oct. 6, 2005 Sheet 4 of 8 US 2005/022.3221 A1

500. SWITCH-ON

1 DEVICE N
{ ACCESSED X
NFIRST?

Yes 15

WRITE NEGATIVE
BOOLEAN VALUE

WRITE POSITIVE 510 BooleANVALUE.

READ HASH
INSTRUCTIONS

1 DEVICES
NACCESSED21No

Yes N52O

530

COMPUTE DIGEST
535

WRITE DIGEST
DEVICE MEMORY 54.0

DIRECT control S45.
- TO-BOS.

Patent Application Publication Oct. 6, 2005 Sheet 5 of 8 US 2005/022.3221A1

10. 60

Patent Application Publication Oct. 6, 2005 Sheet 6 of 8 US 2005/022.3221A1

Patent Application Publication Oct. 6, 2005 Sheet 7 of 8 US 2005/022.3221 A1

Windows

92 91

Figure 10

Patent Application Publication Oct. 6, 2005 Sheet 8 of 8 US 2005/022.3221 A1

TRUSTED, DEVICE RECEIVES
ATTESTATIONIDENTITY

-7 - CERTIFICATE
1110

TRUSTED DEVICESIGNS
ENDORSEMENT CREDENTIAL FOR

TRUST ROUTINE

1120

TRUSTED DEVICESIGNSPLATFORM.
CREDENTIAL FORTRUST ROUTINE

130

TRUSTROUTINE OBTAINS
ATTESTATIONIDENTITY

CERTIFICATE USENGENDORSEMENT
CREDENTIAL ANDPLATFORM

CREDENTIAL
1140 -?

Figure 11

US 2005/022.3221A1

APPARATUS AND METHOD FOR CREATING A
TRUSTED ENVIRONMENT

FIELD OF THE INVENTION

0001. The present invention relates to an apparatus and
method for creating a trusted environment.

BACKGROUND

0002 Computer platforms used for commercial applica
tions typically operate in an environment where their behav
iour is Vulnerable to modification by local or remote entities.
0003) Additionally, with the continuing increase in com
puter power it has become increasingly common for com
puter platforms to Support multiple users, where each user
can have their own operating environment installed on the
computer platform. Various virtualization technologies have
been developed to Support this approach, typically allowing
each user to have their own virtual machine running on the
computer platform.

0004. Where a number of separate operating systems are
running Simultaneously on a computer platform the operat
ing Systems are not necessarily isolated or protected from
one another. The volume of Source code for the Software
components involved is typically So large in modern oper
ating Systems that it is virtually impossible to ensure the
correctness of the Source code and whether the behaviour of
the Source code will behave as expected.
0005 Accordingly, this potential insecurity of the plat
form is a limitation on its use by parties who might other
wise be willing to use the platform.
0006 Increasing the level of trust in platforms therefore
enables greater user confidence that the platform and oper
ating System environment behave in a known manner.

SUMMARY OF THE INVENTION

0007. In accordance with the present invention there is
provided a computer apparatus for creating a trusted envi
ronment comprising a trusted device arranged to acquire a
first integrity metric to allow determination as to whether the
computer apparatus is operating in a trusted manner; a
processor arranged to allow execution of a first trust routine
and associated first operating environment, and means for
restricting access of the first operating environment to
resources available to the trust routine, wherein the trust
routine is arranged to acquire the first integrity metric and a
Second integrity metric to allow determination as to whether
the first operating environment is operating in a trusted

C.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 For a better understanding of the present invention
and to understand how the same may be brought into effect
reference will now be made, by way of example only, to the
accompanying drawings, in which:-
0009 FIG. 1 illustrates a system capable of implement
ing embodiments of the present invention;
0.010 FIG. 2 illustrates a motherboard for a computer
platform of FIG. 1 including a trusted device;

Oct. 6, 2005

0011 FIG. 3 illustrates privilege levels of a processor
useful for first embodiments of the present invention;
0012 FIG. 4 illustrates the trusted device of FIG. 2 in
more detail;
0013 FIG. 5 illustrates the steps involved in acquiring an
integrity metric of the computing apparatus as used in
embodiments of the invention;
0014 FIG. 6 illustrates a system capable of implement
ing first embodiments of the present invention;
0.015 FIG. 7 illustrates a virtual trusted device in accor
dance with first embodiments of the present invention;
0016 FIG. 8 illustrates first embodiments of the present
invention;
0017 FIG. 9 illustrates, generally, virtualization pro
ceSSes operating on computing apparatus;
0018 FIG. 10 illustrates the computer apparatus of FIG.
10 modified according to second embodiments of the inven
tion; and
0019 FIG. 11 illustrates a process of providing a trust
routine with an attestation identity according to Second
embodiments of the invention.

SPECIFIC IDESCRIPTION OF EMBODIMENTS
OF THE INVENTION

0020. Two sets of embodiments of the invention will now
be described, with Some common features (particularly in
relation to basic platform architecture, trusted devices and
collection of integrity metrics) between the two. The first set
of embodiments describes a first approach to virtualization
employing privilege levels of a processor to achieve isola
tion. The second set of embodiments describes another
approach to Virtualization and also indicates a form of
Virtual trusted device for a virtual operating environment
developed to be highly consistent with Trusted Computing
Group (TCG) specifications for trusted platforms and trusted
devices.

0021. The embodiments generally provide the incorpo
ration into a computing platform of a physical trusted device
and a Software trust routine (i.e. a virtual trusted device). The
function of the physical trusted device is to bind the identity
of the platform to reliably measured data that provides an
integrity metric of the platform, while the virtual trusted
device binds the identity of an associated Software operating
environment (e.g. an operating System) to reliably measured
data that provides an integrity metric of the operating
environment. The identities and the integrity metrics may be
compared with expected values provided by a trusted party
(TP) that is prepared to vouch for the trustworthiness of the
platform. Optionally, the expected values provided by the
trusted third party are Securely Stored in the respective
physical trusted device and the virtual trusted device. If there
is a match, the implication is that at least part of the platform
and operating System is operating correctly, depending on
the Scope of the integrity metric.
0022 Auser verifies the correct operation of the platform
and operating environment before exchanging other data
with the platform. A user does this by requesting the
identities and integrity metrics of the physical trusted device
and the virtual trusted device. (Optionally the trusted

US 2005/022.3221A1

devices will refuse to provide evidence of identity if it itself
was unable to verify correct operation of the platform.) The
user receives the proof of identity and the identity metric,
and compares them against the values provided by the
trusted third party. If the measured data reported by the
trusted devices are the same as that provided by the trusted
third party, the user can trust the platform.
0023. Additionally, where the computer platform is
arranged to Support a plurality of Separate operating envi
ronments, each operating environment having their own
respective virtual trusted device, the users of the respective
operating environments can trust that their operating envi
ronment is isolated from any other operating environment
running on the computer platform.

0024. Once a user has established trusted operation of the
platform and operating environment, he exchanges other
data with the platform. For a local user, the exchange might
be by interacting with Some Software application running
within the operating environment on the platform. For a
remote user, the exchange might involve a Secure transac
tion. In either case, the data eXchanged is typically signed
by one of the trusted devices. The user can then have greater
confidence that data is being eXchanged with a platform
whose behaviour can be trusted.

0.025 The trusted devices use cryptographic processes
but do not necessarily provide an external interface to those
cryptographic processes.

0026. In first embodiments, to ensure there is a minimum
risk that the virtual trusted device is susceptible to software
attack by rogue Software running on the computer platform
the virtual trusted device is arranged to be executed in a
processor privilege level that restricts access to other Soft
ware applications being executed on the computer platform
(as described below). Additionally, Secrets associated with
the Virtual trusted device are Stored Such that the Secrets are
inaccessible to Software applications being executed in a
processor privilege level that is lower than that in which the
Virtual trusted device is executed. Also, a most desirable
implementation would be to make the physical trusted
device tamperproof, to protect Secrets by making them
inaccessible to other platform functions and provide an
environment that is Substantially immune to unauthorised
modification. Since tamper-proofing is impossible, the best
approximation is a trusted device that is tamper-resistant, or
tamper-detecting. The trusted device, therefore, preferably
consists of one physical component that is tamper-resistant.
0.027 Techniques relevant to tamper-resistance are well
known to those skilled in the art of security. These tech
niques include methods for resisting tampering (Such as
appropriate encapsulation of the trusted device), methods for
detecting tampering (Such as detection of out of specification
Voltages, X-rays, or loSS of physical integrity in the trusted
device casing), and methods for eliminating data when
tampering is detected.
0028. A trusted platform 10 is illustrated in the diagram
in FIG. 1. The platform 10 includes the standard features of
a keyboard 14, mouse 16 and visual display unit (VDU) 18,
which provide the physical user interface of the platform.
In the platform 10, there are a plurality of modules 15: these
are other functional elements of the trusted platform of
essentially any kind appropriate to that platform (the func

Oct. 6, 2005

tional Significance of Such elements is not relevant to the
present invention and will not be discussed further herein).
0029. As illustrated in FIG. 2, the motherboard 20 of the
trusted computing platform 10 includes (among other stan
dard components) a main processor 21 with internal memory
25, main memory 22, a trusted device 24, a data bus 26 and
respective control lines 27 and lines 28, BIOS memory 29
containing the BIOS program 28 for the platform 10 and an
Input/Output (IO) device 23, which controls interaction
between the components of the motherboard, the keyboard
14, the mouse 16 and the VDU18. The main memory 22 is
typically random access memory (RAM).
0030. In the first embodiment the processor 21 has four
execution privilege levels PLO, PL1, PL2, PL3. Examples of
such processors are the Hewlett-Packard's PA-RISC proces
Sor or Intel's IA-64 processor, however other processor
configurations having a plurality of privilege levels can also
be used.

0031 Running in the processor 21 of this first embodi
ment is a secure platform architecture (SPA)31, as shown in
FIG 3.

0032) The SPA31 includes BIOS program or firmware 28
that runs on the processor 21 at execution privilege level 0
(PLO), the most privileged level of processor 21. SPA 31
includes a four-layer software ring that runs on top of BIOS
firmware 28 in processor 21.
0033. The innermost Software ring, running on top of
BIOS firmware 28, is referred to as the secure platform
kernel (SPK)32 and is the only software ring that runs as a
privileged task. SPK32 runs at PL0 and forms the founda
tion layer of SPA 31 and is the only ring layer that accesses
privileged System registers and executeS privileged instruc
tions.

0034) A secure platform global services module (SPGS)
33 runs on top of the SPK32 as an unprivileged task. SPGS
33 runs at execution privilege level 1 (PL1), the second most
privileged level of processor 21. SPK32 and SPKGS 33 are
collectively referred to as secure platform (SP) 34.
0035. At least one operating system image 35 runs on top
of SPGS33 as an unprivileged task. Operating system image
35 runs at execution privilege level 2 (PL2), the third most
privileged level of processor 31. End user applications 36
run on top of operating System image(s) 35 as unprivileged
taskS. End user applications 36 run at execution privilege
level 3 (PL3), the fourth privileged level (i.e., the least
privileged level) of processor 21.
0036) SPK 32 is preferably a small kernel of trusted,
provably correct code that performs Security critical Services
where the small size contributes to the SPK's security and
correctness. Examples of Security critical Services include
memory and proceSS management, trap and interrupt han
dling, and cryptographic Services, where Some of these
Security Services may be performed via a virtual trust device,
as described below. SPGS 33 is constructed with trusted
code, but utilizes hardware Security capabilities of the pro
ceSSorS 21, Such as IA-64 processors, to minimize the impact
of a failure. SPGS 33 runs as an unprivileged task and
employs SPK32 to perform privileged operations.

0037 Additionally, the SPK32 includes code to allow
execution of one or more virtual trusted devices 37 within

US 2005/022.3221A1

the SPK32. The virtual trusted device(s) 37 are associated
with an operating environment executed in PL2 and PL3 and
allow a user to establish whether the associated operating
environment can be trusted, as described below. It is not
essential, however, for the virtual trust device code to be
incorporated within the SPK code, the code can be housed
elsewhere, for example in the trusted device 24.

0038. To ensure that the virtual trusted device 37 can be
trusted it is desirable for the manufacture of the SPK code
to be validated by a trusted third party. On validation a
validation credential signed with the trusted third parties
private key is associated with the SPK code.
0039 SPGS 33 typically includes all the services that do
not have to be included in SPK32. One reason that secure
platform 34 is split into SPK32 and SPGS 33 is to permit
SPK32 to be small, stable and verifiable.

004.0 Interfaces between BIOS firmware 28 and proces
Sor hardware 21 include a privileged application binary
interface (ABI) and a non-privileged ABI. The interfaces
between SPK32 and BIOS firmware 28 include a privileged
ABI, a non-privileged ABI, and processor abstraction layer
(PAL)/system abstraction layer (SAL)/extensible firmware
interface (EFI) interfaces. The interfaces between SPGS 33
and SPK32 include a secure platform interface (SPI) and a
non-privileged ABI. The interfaces between operating Sys
tem image(s) 35 and SPGS 33 include a SPI, a global
services interface (GSI), and a non-privileged ABI. The
interfaces between end user applications 36 and operating
System image(s) 35 include an application program interface
(API) and a non-privileged ABI.
0041) SPGS 33 can partition operating system image
layer 35 into multiple independent protection domains
which operate at PL2. A protection domain is herein referred
to as a Software partition and associated collection of System
resources, Such as memory, I/O, processors, and the like,
created by SPGS 33 for the purpose of loading and executing
a single operating System image 35. Each of the multiple
independent protection domains are capable of booting and
executing an operating System image 35 or any other pro
gram capable of operation using only SPK32 and SPGS 33
Services, Such as a Specialized application control program.
0042. The multiple independent protection domains run
ning at PL2 are protected from each other through the
memory protection capabilities of the four privilege level
processor hardware 21, Such as the memory protection
capabilities of the IA-64 processor. Therefore, a failure in
one of the independent protection domains typically has no
effect on the other independent protection domains, even if
the failure is an operating System crash. The independent
protection domains provide the capability to manage System
utilization on a fine-grain basis while maintaining Security.
Operating System imageS35 are ported to Secure platform 34
of SPA 31 similar to how operating systems are ported to a
new hardware platform industrial standard archicture ISA in
the classical architecture for operating Systems.
0.043 End user applications 36 run at the least privileged
level, PL3, as unprivileged tasks under the control of an
operating System image 35 in a Secure platform 34 protec
tion domain. Typically, from the end user application per
Spective, the end user application 36 operates under the
control of an operating System image 35 as the end user

Oct. 6, 2005

application would run under the control of an operating
System in the classical architecture for operating Systems.
0044) In order for the computer platform 10 and operat
ing environment(s) to be trusted, a chain of trust from the
System hardware, through the boot process, to final running
code is established. In addition, all Software code is prefer
ably authenticated before being executed, and a properly
authenticated piece of code is preferably unchangeable
except by a similarly trusted component to maintain the
chain of trust. The Software authentication should be more
than a simple check Sum or other forgeable Scheme. Thus,
SPA 31 preferably employs Strong authentication using
cryptographic methods, Such as public key encryption, Such
that Software can be undetectably corrupt only if a private
key is known.
004.5 The chain of trust extends back to the trusted
device 24. As described below, after system reset the pro
cessor 21 is initially controlled by the trusted device 24,
which then after performing a Secure boot process hands
control over to the BIOS firmware 28. During the secure
boot process, the trusted device 24 acquires an integrity
metric of the computer platform 10, as described below.
0046) Specifically, the trusted device 24 used for embodi
ments of the invention comprises, as shown in FIG. 4: a
controller 40 programmed to control the overall operation of
the trusted device 24, and interact with the other functions
on the trusted device 24 and with the other devices on the
motherboard 20, a measurement function 41 for acquiring
the integrity metric from the platform 10; a cryptographic
function 42 for Signing, encrypting or decrypting Specified
data; an authentication function 43; and interface circuitry
44 having appropriate ports (46, 47 & 48) for connecting the
trusted device 24 respectively to the data bus 26, control
lines 27 and address lines 28 of the motherboard 20. Each of
the blocks in the trusted device 24 has access (typically via
the controller 40) to appropriate volatile memory areas 4
and/or non-volatile memory areas 3 of the trusted device 24.
Additionally, the trusted device 24 is designed, in a known
manner, to be tamper resistant.
0047 For reasons of performance, the trusted device 24
may be implemented as an application Specific integrated
circuit (ASIC). However, for flexibility, the trusted device
24 is preferably an appropriately programmed micro-con
troller. Both ASICs and micro-controllers are well known in
the art of microelectronicS and will not be considered herein
in any further detail.
0048 One item of data stored in the non-volatile memory
3 of the trusted device 24 is a certificate 350. The certificate
350 contains at least a public key 351 of the trusted device
24 and optionally an authenticated value 352 of the platform
integrity metric measured by a trusted party (TP). The
certificate 350 is signed by the TP using the TP's private key
prior to it being stored in the trusted device 24. In later
communications Sessions, a user of the platform 10 can
verify the integrity of the platform 10 and operating envi
ronment by comparing the acquired integrity metric (i.e.
measured integrity metric) with an authentic integrity metric
352, as described below. Knowledge of the TP's generally
available public key enables simple verification of the
certificate 350. The non-volatile memory 45 also contains an
identity (ID) label 353. The ID label 353 is a conventional
ID label, for example a Serial number, that is unique within

US 2005/022.3221A1

Some context. The ID label 353 is generally used for
indexing and labelling of data relevant to the trusted device
24, but is insufficient in itself to prove the identity of the
platform 10 under trusted conditions.
0049. The trusted third party that is requested to supply
the authentic integrity metric will inspect the type of the
platform to decide whether to vouch for it or not. This will
be a matter of policy. If all is well the TP measures the value
of integrity metric of the platform. Then, the TP generates a
certificate for the platform. The certificate is generated by
the TP by appending the trusted device's public key, and
optionally its ID label, to the measured integrity metric, and
Signing the String with the TPS private key.
0050. The trusted device 24 can subsequently prove its
identity by using its private key to proceSS Some input data
received from the user and produce output data, Such that the
input/output pair is Statistically impossible to produce with
out knowledge of the private key. Hence, knowledge of the
private key forms the basis of identity in this case. Clearly,
it would be feasible to use symmetric encryption to form the
basis of identity. However, the disadvantage of using Sym
metric encryption is that the user would need to share his
Secret with the trusted device. Further, as a result of the need
to share the Secret with the user, while Symmetric encryption
would in principle be Sufficient to prove identity to the user,
it would insufficient to prove identity to a third party, who
could not be entirely Sure the Verification originated from the
trusted device or the user.

0051. The trusted device 24 is initialised by writing the
certificate 350 into the appropriate non-volatile memory
locations 3 of the trusted device 24. This is done, preferably,
by secure communication with the trusted device 24 after it
is installed in the motherboard 20. The method of writing the
certificate to the trusted device 24 is analogous to the method
used to initialise Smart cards by writing private keys thereto.
The Secure communication is Supported by a master key,
known only to the TP, that is written to the trusted device (or
Smart card) during manufacture, and used to enable the
Writing of data to the trusted device 24, writing of data to the
trusted device 24 without knowledge of the master key is not
possible.
0.052 At some later point during operation of the plat
form, for example when it is Switched on or reset the trusted
device 24 measures and stores the integrity metric 361 of the
platform.
0053. The trusted device 24 is equipped with at least one
method of reliably measuring or acquiring the integrity
metric of the computing platform 10 with which it is
asSociated to enable comparison with the authentic integrity
metric supplied by the trusted third party. In this first
embodiment, the integrity metric is acquired by the mea
surement function 41 by generating a digest of the BIOS
instructions in the BIOS memory and the SPK code. The
measured integrity metric is signed using the trusted device
24 private key to provide confidence that the integrity metric
has been acquired by the trusted device 24. Such an acquired
integrity metric, if Verified as described above, gives a
potential user of the platform 10 a high level of confidence
that the platform 10 has not been subverted at a hardware,
or BIOS program, level.
0.054 The measurement function 41 has access to: non
volatile memory 3 for storing a hash program 354 and a

Oct. 6, 2005

private key 355 of the trusted device 24, and volatile
memory 4 for Storing acquired integrity metric in the form
of a digest 361. In appropriate embodiments, the volatile
memory 4 may also be used to Store the public keys and
associated ID labels 360a-360n of one or more authentic
Smart cards (not shown) that can be used to gain access to
the platform 10.
0055. In one preferred implementation, as well as the
digest, the integrity metric includes a Boolean value, which
is Stored in Volatile memory 4 by the measurement function
31, for reasons described below.
0056. A process for acquiring an integrity metric for the
computer platform 10 as used in first embodiments of the
invention will now be described with reference to FIG. 5.

0057. In step 500, at Switch-on, the measurement func
tion 41 monitors the activity of the main processor 21 on the
data, control and address lines (26, 27 & 28) to determine
whether the trusted device 24 is the first memory accessed.
Processor 21 is directed to the trusted device 24, which acts
as a memory. In step 505, if the trusted device 24 is the first
memory accessed, in Step 510, the measurement function 41
writes to volatile memory 3 a Boolean value which indicates
that the trusted device 24 was the first memory accessed.
Otherwise, in step 515, the measurement function writes a
Boolean value which indicates that the trusted device 24 was
not the first memory accessed.
0.058. In the event the trusted device 24 is not the first
accessed, there is of course a chance that the trusted device
24 will not be accessed at all. This would be the case, for
example, if the main processor 21 were manipulated to run
the BIOS program first. Under these circumstances, the
platform would operate, but would be unable to verify its
integrity on demand, Since the integrity metric would not be
available. Further, if the trusted device 24 were accessed
after the BIOS program had been accessed, the Boolean
value would clearly indicate lack of integrity of the platform.
0059) However, if a user is prepared to trust the BIOS the
computer platform 10 can be arranged to use the BIOS
instructions as the first instructions accessed.

0060. In step 520, when (or if) accessed as a memory by
the main processor 21, the main processor 21 reads the
stored native hash instructions 354 from the measurement
function 41 in step 525. The hash instructions 354 are passed
for processing by the main processor 21 over the data buS26.
In step 530, main processor 21 executes the hash instructions
354 and uses them, in step 535, to compute a digest of the
BIOS memory 29, by reading the contents of the BIOS
memory 29 and processing those contents according to the
hash program. In step 540, the main processor 21 writes the
computed digest 361 to the appropriate non-volatile memory
location 4 in the trusted device 24. In a similar manner the
measurement function 41 initiates the calculation of a digest
for the SPK32 that is correspondingly stored in an appro
priate non-volatile memory location 4 in the trusted device
24. The measurement function 41, in step 545, then calls the
BIOS firmware 28 in the BIOS memory 29, and execution
continues, as described below.
0061 Clearly, there are a number of different ways in
which the integrity metric of the platform may be calculated,
depending upon the Scope of the trust required. The mea
surement of the BIOS programs integrity provides a fun

US 2005/022.3221A1

damental check on the integrity of a platforms underlying
processing environment. The integrity metric should be of
such a form that it will enable reasoning about the validity
of the boot proceSS-the value of the integrity metric can be
used to verify whether the platform booted using the correct
BIOS. Optionally, individual functional blocks within the
BIOS could have their own digest values, with an ensemble
BIOS digest being a digest of these individual digests. This
enables a policy to state which parts of BIOS operation are
critical for an intended purpose, and which are irrelevant (in
which case the individual digests must be Stored in Such a
manner that validity of operation under the policy can be
established).
0062). Other integrity checks could involve establishing
that various other devices, components or apparatus attached
to the platform are present and in correct working order. In
one example, the BIOS programs associated with a SCSI
controller could be verified to ensure communications with
peripheral equipment could be trusted. In another example,
the integrity of other devices, for example memory devices
or co-processors, on the platform could be verified by
enacting fixed challenge/response interactions to ensure
consistent results. Where the trusted device 24 is a separable
component, Some Such form of interaction is desirable to
provide an appropriate logical binding between the trusted
device 24 and the platform. Also, although in the present
embodiment the trusted device 24 utilises the data bus as its
main means of communication with other parts of the
platform, it would be feasible, although not so convenient,
to provide alternative communications paths, Such as hard
wired paths or optical paths. Further, although in the present
embodiment the trusted device 24 instructs the main pro
ceSSor 21 to calculate the integrity metric in other embodi
ments, the trusted device itself is arranged to measure one or
more integrity metrics.
0063 Preferably, the BIOS boot process includes mecha
nisms to verify the integrity of the boot process itself. Such
mechanisms are already known from, for example, Intel's
draft “Wired for Management baseline specification v 2.0-
BOOT Integrity Service”, and involve calculating digests of
Software or firmware before loading that software or firm
ware. Such a computed digest is compared with a value
Stored in a certificate provided by a trusted entity, whose
public key is known to the BIOS. The software/firmware is
then loaded only if the computed value matches the expected
value from the certificate, and the certificate has been proven
valid by use of the trusted entity's public key. Otherwise, an
appropriate exception handling routine is invoked.
0.064 Optionally, after receiving the computed BIOS
digest, the trusted device 24 may inspect the proper value of
the BIOS digest in the certificate and not pass control to the
BIOS if the computed digest does not match the proper
value. Additionally, or alternatively, the trusted device 24
may inspect the Boolean value and not pass control back to
the BIOS if the trusted device 24 was not the first memory
accessed. In either of these cases, an appropriate exception
handling routine may be invoked.
0065. Further details of the operation of first embodi
ments of the invention will now be described with reference
to FIGS. 6 to 8.

0.066 Optionally, as shown in FIG. 6, to provide control
and Support to the computer platform 10 a System manage

Oct. 6, 2005

ment counsel (SMC) 60 is coupled to computer platform 10
via connection 62. In one embodiment, SMC 60 includes
Separate independent processors (not shown), Such as stan
dard non-networked personal computers (PCs). Connection
62 can include serial interfaces (e.g., RS-232 and USB),
and/or private LAN connections. SMC 60 is primarily
employed to authenticate SPK32 during computer platform
10 initialization. In addition, computer platform 10 is con
figured via SMC 60. In one embodiment, SMC 60 performs
remote debugging for SPK32 and SPGS 33.
0067. In one embodiment, GUI interfaces for system
control and management are only implemented on SMCs 60.
This embodiment permits development and testing of SyS
tem management interfaces and human factors in parallel
with development of the rest of computer platform 10,
without having to wait for the entire computer platform 10
to be brought up.
0068 More than one SMC 60 can be coupled to computer
platform 10 via serial interface and/or LAN connection 62.
In one embodiment, SMC 60 functions are integrated into
SPGS 33 in a computer platform 10 having a single pro
ceSSor, Such as a WorkStation.

0069. Additionally, the trust device 24 could be located in
the SMC and act as the trusted device remotely to the
computer platform 10.

0070. Once the trusted device 24 has initiated a trusted
boot-up sequence, as described above, it is still necessary to
ensure the chain of trust is maintained through to the
initialisation of the operating domains. Therefore, in addi
tion to utilising the trusted device 24 to provide information
as to whether the computer platform can be trusted it is
necessary to determine that a users operating environment
can be trusted.

0071 Accordingly, once the trusted device 24 has passed
control to the BIOS firmware 28 the SPA31 is arranged to
provide a trusted operating environment as described below.
0072 Initially on passing control to the BIOS firmware
28 the BIOS firmware 28, inter alia, boots up and authen
ticates the EFI.

0073. An EFI file system stores a secure platform (SP)
loader, a System configuration database (SCD), a SPK image
32, and a SPGS image 33.
0074 The EFI loads SP loader from EFI file system into
memory 25. The EFI authenticates this image using the
processor 21 manufacturer's public key. This authentication
requires that SP loader be digitally signed with the processor
21 manufacturer's private key.

0075) The EFI then transfers control to SP loader stored
in memory 25. SP loader is an EFI-based secondary loader
which is secure platform specific. SP loader is responsible
for loading SP images into memory 25.

0076. In one embodiment, it is possible for execution to
be transferred to an EFI shell prompt to enable initial system
installation and other administrative details, which breaks
the SP chain of trust. In this case, the EFI recognizes that
trust was lost and does not precede with loading SP loader.
Instead, computer platform 10 resets So that all processors
21 will again Start fetching instructions from trusted device
24.

US 2005/022.3221A1

0077 SP loader running from memory 25 loads the SCD
from EFI file system into memory 25. SP loader then
authenticates SCD employing a public key contained in the
SP loader image. SP loader employs SCD to determine
which SPK32 and SPGS 33 images to load from EFI file
system into memory. SP loader employs the above public
key for authenticating the SPK32 and SPGS 33 images. SP
loader creates a virtual mapping for an entry area of SPK32
with read and execute only permissions. SP loader then
Switches to virtual mode and branches to the SPK32 entry
point.

0078. In the boot sequence for bringing up SPK32, SPK
32 running from memory 25 on processor 21, initialises
privilege State (e.g., interruption vector table (NT), control
registers, and Some interrupt configuration) and creates any
other additional memory mappings required for SPK 32,
Such as writeable areas for SPK data. SPK32 then creates
any required memory mappings and any additional Set up
required to run SPGS 33.
0079 A secure platform (SP) 34 mirrored file system
stores two redundant control block images. SPK32 reads the
two redundant control block images from SP mirrored file
system into SPK 32 in memory 25 as redundant control
block imageS. The two redundant control block images
contain control information initialized at the very first com
puter platform 10. The redundant control block images are
employed to test whether computer platform 10 has already
been initialized.

0080. In one embodiment, the redundant control block
images each contain at least three distinct control areas. First
control area contains an image that also is signed by the
processor 21 manufacturer's public key, which was written
when computer platform 10 booted for the first time. First
control area is employed to Store a root System key (RSK)
in Second control area. Second control area contains the
RSK encrypted under itself. Second control area is
employed to validate that a correct RSK has been supplied
on Subsequent boots. Encrypting the RSK under itself per
mits validation of the RSK, by comparing the results with
the value already Stored in Second control area. Third control
area contains a top-level directory of platform control infor
mation, including keys, pseudo random number generator
(PRNG) State, and last entropy pool Snapshot, all encrypted
and integrity checked by the RSK.
0081) SPK32 typically has minimal or no I/O capability.
In one embodiment the SP loader performs I/O accesses
prior to transfer of control to SPK 32. In another embodi
ment, SPGS 33 is brought up to an I/O ready state prior to
the I/O operation to read from the disk, and returns control
to SPK32. In another embodiment, SPGS 33 loads memory
25 and then a call is made to SPK32 which performs the
above operation.

0082) SPK32 determines whether the control areas of the
two redundant control block images agree and the digital
Signature checks. If the control areas disagree, the control
areas of the redundant control block image whose integrity
checks as valid are used, and the control areas of the other
redundant control block whose integrity checks as invalid
are restored to match the used control areas of the valid
redundant control block image. If the control areas of both
redundant control block images are damaged, logs are used
to recover, Similar to many database Systems, and to restore

Oct. 6, 2005

the control areas of both redundant control block images.
Once the RSK is obtained, the boot process continues.
0083 SPK32 reads and decrypts protection keys from
the SP mirrored file system.
0084. The initial SPGS 33 domain initializes and per
forms discovery of I/O to include access to SMC 60. The
initial SPGS33 domain loads an encrypted SCD from the SP
mirrored file system. The initial SPGS 33 domain requests
SPK32 to decrypt the encrypted SCD. The decrypted SCD
specifies the number of SPGS 33 domains to create and
which system resources belong to which SPGS 33 domain.
The initial SPGS 33 domain then creates each additional
SPGS 33 domain specifying the corresponding subset of
System resources to include in the processor 21 in which the
SPGS 33 domain is run on.

0085. Each SPGS 33 domain similarly reads the
decrypted SCD and creates the Specified domains. Each
SPGS created domain includes the following. System
resources are allocated to each SPGS 33 domain on a per
domain basis. A domain initial image (DII) is loaded from
EFI file system into memory 25 as DII. DII is typically an
operating System Specific loader for initiating the loading of
an operating system for a specific domain in PL2. If SCD
indicates that the given SPGS 33 domain is a secure domain,
the self-contained public key of SP loader is employed to
authenticate DII. Thus, DIIs which are to run in Secure SPGS
33 domains are preferably digitally signed with the SP
loader's private key. One use of a non-secure SPGS 33
domain is to allow development and debugging of DIIs.
0086 On creation of each of the specified domains an
associated virtual trusted device is created in the SPK32.

0087 As the virtual trusted devices 37 are executed in the
SPK 32, which runs at the PLO level the only level that
executeS privileged instructions, the virtual trusted devices
37 can effectively be isolated from Software executed in the
other processor privilege levels. Accordingly, as the SPK32
is trusted code a user can be confident that the Virtual trusted
devices are shielded from non-trusted Software.

0088. Each virtual trusted device 37 comprises, as shown
in FIG. 7, a central routine 70 for controlling the overall
operation of the Virtual trusted device; a measurement
function 71 for acquiring an integrity metric for an associ
ated operating environment and obtaining the integrity met
ric acquired by the trusted device 24 and makes measure
ments on Software that is to be executed in the associated
operating environment; a cryptographic function 72 for
Signing, encrypting or decrypting Specified data. Addition
ally, each virtual trusted device 37 is able to verify the
integrity metric acquired by the trusted device 24 using the
trusted third parties public key. The virtual trusted devices
37 have access to memory associated with the PLO level.
Additionally, each virtual trusted device 37 is arranged to be
isolated from any other virtual trusted device 37 that is
asSociated with a separate operating environment.

0089. On creation of an associated operating environ
ment in PL1 the associated virtual trusted device 37 in PLO
is issued with a certificate that is associated with the user of
the operating environment.

0090. Each virtual trusted devices 37 certificate is stored
in local memory in the PLO level. The certificate contains a

US 2005/022.3221A1

public key of the respective virtual trusted device 37 and,
optionally, an authenticated value of an integrity metric for
measured by a trusted third party to allow verification of the
integrity metric acquired by the trusted device 24. The
certificate is signed by the trusted third party, using the
trusted third parties private key, prior to the certificate being
stored in the virtual trusted device 37, thereby confirming
that the trusted third party vouches for the virtual trusted
device 37. In this embodiment possible trusted third parties
could be either the physical trusted device 24 or the SMC 60.
0.091 AS described below, a user, on accessing a virtual
trusted device 37 associated with the respective operating
environment, can obtain the computer platform integrity
metric acquired and Signed by the trusted device 24 with the
trusted device's 24 private key and the integrity metric
measured and signed by the virtual trusted device 37 and the
virtual trusted device's 37 private key for the respective
operating environment. Accordingly, the user is able to
obtain all the integrity metric information required to allow
Verification that the respective operating environment can be
trusted from the virtual trusted device 37 without the user
needing to access the trusted device 24 directly.
0092. As virtual trusted devices 37 are created and
destroyed on the creation and destruction of operating
environments it is necessary to ensure that their transitory
existence does not compromise the trustworthiness of either
the computer platform 10 or associated operating environ
ments. AS Such, to ensure that trust can be maintained it is
essential that Secrets associated with the Virtual trusted
device(s) 37 do not exist in more than one active trusted
device at any given time. This requires that Strict and reliable
methods in the computer platform 10 ensure that on the
creation and destruction of a virtual trusted device 37 only
one copy of relevant Secrets (e.g. for example private keys)
are maintained.

0093. As such, destruction of a virtual trusted device 37
requires the permanent, Safe, Secret destruction of the Virtual
trusted devices secrets. If a virtual trusted device 37 is to be
Stored for re-use at a later date it Secrets must be safely and
Secretly preserved for future use.
0094. The secrets belonging to the virtual trusted device
37 could be stored in the physical trusted device 24 or SMC
60 using the protected Storage facilities of a trusted platform
module, for example. Virtual trusted device 37 secrets can be
Safely Stored using the trusted computer platform association
(TPCA) maintenance process.
0.095 For operating environments that need to continue
to exist despite the computer platform 10 having to be power
down and back up again it is possible to reassemble the
stored associated virtual trusted device 37. This allows the
same virtual trusted device 37 to be maintained for the same
operating environment, despite the temporary closing down
of the operating environment.
0.096 However, the method required to reassemble a
virtual trusted device 37 depends on the method used to
dismantle the initial virtual trusted device 37.

0097. If a virtual trusted device 37 has been saved using
the TCPA maintenance process, as described in section 7.3
of the TCPA specification, a new virtual trusted device 37
and trusted platform (i.e. operating environment) must be
created (e.g. new endorsement key, credentials can be pro

Oct. 6, 2005

vided via the virtual trusted devices certificate). The TCPA
maintenance process is used to transfer the appropriate
Secrets of the virtual trusted device to the new virtual trusted
device 37 in the new operating environment. This is a
two-step process, requiring first that the owner/user of the
new operating environment check that the new virtual
trusted device 37 and operating environment have at least
the same level of Security as the original virtual trusted
device 37 and operating environment, Such that the existing
credentials do not overstate the Security properties of the
new virtual trusted device 37 and associated operating
environment.

0098. If the previous virtual trusted device 37 has been
saved in full, a blank virtual trusted device 37 and associated
operating environment are created in PLO and PL1 respec
tively and the original Secrets Stored from the original virtual
trusted device 37 are loaded into the new virtual trusted
device. AS above, the new operating environment must be
checked that the new virtual trusted device 37 and operating
environment have at least the same level of Security as the
original virtual trusted device 37 and associated operating
environment, Such that the existing credentials do not over
State the Security properties of the new virtual trusted device
37 and operating environment. If a SMC 60 holds the
Secrets, Some Separate Security Service is required to confi
dentially communicate the secrets from the SMC 60 to the
computer platform 10. This will require a key distribution
Service, as is well known to a person skilled in the art.

0099. This allow multiple operating environments to be
created, where each operating environment has its own
associated virtual trusted device 37 Such that each virtual
trusted device 37 derives the integrity metric for the com
puter platform 10 from the trusted device 24 and addition
ally measures an integrity metric for the associated operating
environment. This allows a computer platform 10 to have
multiple users, each with their own respective operating
environment, where each operating environment is isolated
from each other and each operating environment can provide
an integrity metric for both itself and the computer platform
10. This allows a user of an operating environment to
determine whether his respective operating environment can
be trusted without requiring any information as to whether
any other operating environment is running on the computer
platform 10.

0100 Additionally, as each domain is isolated and the
virtual trusted devices 37 are executed in a privileged
processor level PLO rouge Software executed in one domain
can not attack Software executed in another domain.

0101 FIG. 8 illustrates a computer platform 10 having a
trusted device 24 with BIOS and SPK code installed on
processor 21. The computer platform 10 is acting as a Server
having three operating environments 80', 80", 80" executed
in privilege level 1 where each user would typically com
municate with the operating environment 80, 80", 80" via
a network connection. Each of the operating environments
80, 80", 80" has their own respective virtual trusted device
37, 37", 37" executed in the SPK32 at privilege level PL0.
Each virtual trusted device 37' 37", 37" has their own
unique certificate (not shown) for their respective operating
environment. When a user for each operating environment
80, 80", 80" wishes to communicate with their respective
operating environment 80',80", 80" they create a nonce (not

US 2005/022.3221A1

shown), Such as a random number, and, issue a challenge to
their respective virtual trusted device 37, 37", 37". The
nonce is used to protect the user from deception caused by
replay of old but genuine signatures (called a replay attack)
by untrustworthy platforms. The process of providing a
nonce and Verifying the response is an example of the
well-known challenge/response process.
0102) The respective virtual trusted device 37, 37", 37"
receives the challenge and creates an appropriate response.
This may be a digest of the measured integrity metric of the
computer platform integrity metric received from the trusted
device 24 and signed with the trusted device's 24 private key
and the measured integrity metric for the respective oper
ating environment 80', 80", 80" signed with the respective
virtual trusted device's 37 private key and the nonce, and
optionally its ID label. The respective trusted device 37',
37", 37" return the signed integrity metric, accompanied by
the respective virtual trusted devices 37, 37",37" certificate
and the trusted device's 24 certificate 350, to the user.
0103) The user receives the challenge response and veri
fies the certificate using the well known public key of the
TP(S). The user then extracts the virtual trusted device's 37,
37", 37" public key and the trusted device's 24 public key
from the certificate and uses them to decrypt the signed
integrity metrics from the challenge response. Then the user
Verifies the nonce inside the challenge response. Next the
user compares the computed integrity metrics, which it
extracts from the challenge response, with the proper plat
form integrity metrics, which in this embodiment are
extracted from the certificates. If any of the foregoing
Verification Steps fails the whole process ends with no
further communications taking place.
0104 Assuming all is well the user and the trusted
platform use other protocols to Set up Secure communica
tions for other data, where the data from the platform is
preferably signed by the trusted device 37,37",37" without
any knowledge of the other two operating environments
installed on the computer platform 10.
0105. A second set of embodiments will now be
described with reference to FIGS. 9 to 11. These second
embodiments have many features in common with the first
embodiments: differences are indicated positively; Some
common features are indicated positively, and the skilled
person will appreciate how other features of the first
embodiments may be applied in the Second embodiments.
0106 The second set of embodiments use a different
form of Virtualization technology. Alternative virtualization
technologies will now be described. AS the Skilled perSon
will appreciate, although only specific examples are pro
Vided, the principles of the present invention may be applied
acroSS the full range of Virtualization technologies.
0107 The basic requirement for virtualization is that any
machine instruction that is either privileged or Sensitive
(including input and output) can be intercepted by a control
layer (the virtualization layer). Instructions might be ones
that would allow direct access to the real hardware or reveal
Sensitive State about other Software running on it.
0108. This virtualization layer can be achieved in differ
ent ways. Some processors (as has been described for the
first embodiments) are naturally virtualizable, meaning that
all privileged or Sensitive instructions on that processor

Oct. 6, 2005

(generally a CPU) can be intercepted. Some CPUs (for
example those according to the Intel IA-32 architecture) are
not naturally virtualizable.
0109) Most forms of CPU and 10 (input/output) device
Virtualization make use of the hardware protection facilities
(such as privilege levels) provided by the real CPU that is
being virtualized. On naturally virtualizable platforms that
usually just means relying on the CPU protection mecha
nisms to make Sure that the underlying virtualization layer
always remains in control of the real hardware. This is all as
has been described for the first embodiments above.

0110. On CPUs which are not naturally a more software
based approach needs to be taken. It may also be desirable
to take such an approach on naturally virtualizable CPUs for
performance reasons. This approach involves rewriting the
operating Systems running on top of the control layer So that
they do not contain any privileged or Sensitive instructions
that would not naturally cause a transition to the control
layer. “Para-virtualization” is the term used to describe such
Source code rewrites of the operating Systems. The Xen
virtual machine monitor relies on this approach. VMWare
uses dynamic binary modification of the running operating
Systems as its means of remaining in control of the real
hardware platform.
0111. In a composite approach, both Intel (Vanderpool)
and AMD (Pacifica) have developed hardware features in
CPUs to support the running of virtual machine monitors.
With this Support any instruction, regardless of privilege
level, can be made to trigger a transition to the control layer.
With this approach it is no longer necessary to rely on
running operating Systems at different privilege levels to
those on which they would normally run.
0112 A general depiction of a platform using virtualiza
tion is provided in FIG. 9. Hardware 91 Supports a virtual
machine monitor (VMM) 92-this is the virtualization layer
which controls virtualization. On top of this are Separate
virtual machines with their own operating systems 93 and
applications 94.

0113 Second embodiments of the invention will be
described with reference to this depiction. The trusted device
24 is at the hardware level, and the isolation of a trusted
module-and any other virtual component-is achieved by
the virtualization layer 92. The result is shown in FIG. 10:
the hardware layer 91 contains a trusted device 95, and trust
routines 96 sit over the virtualization layer along with the
asSociated operating environments. The Second embodi
ments described below do not rely on the virtualization
technology used.

0114 For these second embodiments, the computer sys
tem of FIG. 1, the motherboard of FIG. 2 and the trusted
device of FIG. 4 are all used essentially as described above,
modified to be independent of the virtualization technol
ogy-further discussion on elements and use of a trusted
device in accordance with TCG practice are however dis
cussed below. Processor 21 in FIG. 2 may therefore be any
processor Suitable for use with a virtualization technology,
rather than Specifically one with multiple privilege levels as
specifically described above and as described in FIG. 3.
Integrity metrics are obtained in the general manner indi
cated in FIG. 5-the measurement process for such metrics
is not reliant on the form virtualization technology as

US 2005/022.3221A1

described (although relevant aspects of the virtualization
technology may be measured by integrity metrics, as is
described below). The measurement of integrity metrics in
accordance with TCG practice is described more fully in, for
example, “Trusted Computing Platforms-TCPA Technol
ogy in Context”, edited by Siani Pearson, 2003, Prentice
Hall PTR-integrity metrics as described in Pearson may be
used in Second embodiments of the invention.

0115 The description of FIG. 4 above describes the
trusted device-and Similarly trusted routines—each as a
Single entity. The approach taken in TCG Specifications is to
consider-rather than a Single trusted device-multiple enti
ties. The measurement engine which makes the first mea
surement within the trusted platform is termed the Root of
Trust for Measurement (RTM)-this, in addition to the
TPM, serves as a root of trust, generally achieved by a
trusted source of such software vouching for it. A Core Root
of Trust for Measurement (CRTM) comprises executable
instructions that, when controlling the main processing
engine on the platform, cause the platform to perform the
functions of an RTM. The Trusted Platform Module (TPM)
is an engine that that Stores and reports measurements
loaded into it by the RTM and subsequent measurement
agents. The Trusted Building Block (TBB) comprises the
CRTM and the connections between the CRTM, the TPM
and the platform (including the platforms main processing
engine). The Trusted Platform Module is, for the physical
platform, comprised in a physical device. Second embodi
ments of the present invention describe how trust routines
providing these elements in a virtualized form with respect
to the relationships between a trust routine and the operating
environment to which it relates can be related to the trusted
elements of the physical platform itself.
0116 FIG. 5 indicates a process for obtaining an integ
rity metric of a trusted platform. In the Second embodiments,
integrity metrics are obtained in essentially this way, but
may more specifically be produced the same way as a TCG
RTM and TPM acquire an integrity metric. Similarly, Supply
of an integrity metric may be achieved in the Same way that
a TCG TPM supplies an integrity metric. One such metric is
a measurement of a trust routine-Such an integrity metric
includes the RTM, CRTM, TPM and TBB for the trust
routine, each providing a virtualized equivalent to these
elements of TCG trusted platforms. Measurement and pro
Vision of integrity metricS according to TCG teaching,
together with further description of these entities in TCG
implementations, may be found in Pearson as referenced
above. This applies equally to trust routines-in Second
embodiments, a trust routine acquires and Supplies an integ
rity metric of the operating environment in the same way
that a TCG RTM and TPM acquire and supply an integrity
metric.

0117. It should be appreciated that the trusted device and
trust routines can have normal TCG Attestation Identities.
An Attestation Identity, as described in Pearson, is a Statis
tically unique, difficult to forge or counterfeit, identity which
is verifiable to either a local or a remote entity. It comprises
a digital certificate as a public part which contains a label
and a public key all signed by a trusted entity and a private
key retained as a secret in the TPM. Such an identity
provides Sufficient evidence that a trusted platform contains
the capabilities and data that must be trustworthy if reports
about the software environment in that platform are to be

Oct. 6, 2005

trusted. For the physically embodied TPM, such identities
(there may be any number) are generated by the TPM and
attested by a trusted entity termed a Privacy-CA. The
Privacy-CA attests to the Attestation Identity by creating a
certificate (termed an AIK Certificate) as described-this
binds the identity key to the identity label and generic
information about the platform. The Privacy-CA is per
Suaded to provide Such attestation by being provided with
sufficient information to establish that the trusted platform
containing the TPM is a genuine trusted platform. In TCG
specifications, this is provided by a Trusted Platform Mod
ule Entity vouching that a TPM is genuine by installing an
endorsement key pair in the TPM and embedding the public
key of the pair in an endorsement credential; and by a
platform manufacturer using a Platform Entity to provide an
analogous Platform Certificate to prove that the platform is
a genuine trusted platform. In embodiments, there may also
be required a Conformance Credential provided by the
manufacturer to show that the design of TPM and the design
of the platform meet TCG specifications. For the purpose of
discussion of these Second embodiments, it will be assumed
that the trusted device has a conventional TCG Attestation
Identity-discussion which follows relates to mechanisms
which enable trust routines to obtain Attestation Identities of
this type.
0118. The following features are provided by second
embodiments of the invention:

0119) The server perse is measured via the physical
platforms RTM and store the result in its physical
TPM.

0120) The server makes measurements of each vir
tual trusted platform, including at least:

0121 The virtual TPM (a digest of the executable
instructions that customise an engine that instan
tiates the virtual TPM). This includes the public
Endorsement Key pubEK) of that virtual TPM.

0122) The virtual TBB (a digest of the executable
instructions that customise an engine that instan
tiates the virtual TBB, which includes the virtual
RTM).

0123 The virtual normal platform.

0.124. A virtual trusted platform is measured via its
virtual RTM and stores the results in its virtual TPM.

0125) In order for a virtual TPM to obtain an Attes
tation Identity, the server's physical TPM must have
previously used an Attestation Identity of its own to

0.126 sign a virtual Endorsement Credential,
which comprises:

0.127) measurements from the server, including
measurements of the Virtualisation layer.

0128 measurements of the virtual TPM in the
virtual trusted platform

0129 sign a virtual Platform Credential, which
comprises:

0.130 measurements from the server, including
measurements of the Virtualisation layer.

US 2005/022.3221A1

0131 measurements of the virtual TBB in the
virtual trusted platform

0.132. When a virtual trusted platform reports its
measurements, the virtual trusted platform's virtual
TPM uses the virtual platforms Attestation Identity
to Sign the measurements.

0.133 When a virtual trusted platform is stopped, the
virtual TPM credentials are secured using the physi
cal platform's TPM and binding to the integrity
measurements of the virtual trusted platform's TBB

0134) The steps involved in enabling a virtual trusted
platform to acquire an Attestation Identity are shown in FIG.
11.

0135 AS indicated above, the trusted device may use
(1110) conventional TCG procedures and protocols to obtain
an Attestation Identity. The AIK certificate could be a
conventional TCG AIK certificate. In alternative embodi
ments, however, the AIK Certificate may be a modified TCG
AIK certificate, whose “security properties' field comprises
a description of the platform, including its virtualisation
processes that create the trust routines and operating envi
ronments. These extra fields could be part of the “security
properties” field in the platform's Platform Credential, Sup
plied to the entity creating the AIK Certificate.
0136. In order for a virtual TPM to obtain an Attestation
Identity, the server's physical TPM must have previously
used an Attestation Identity of the physical of the server to
sign a virtual Endorsement Credential (1120). This is con
Sistent with, but goes beyond, the first embodiments, which
require that the trusted device uses one of its private asym
metric keys to Vouch for a public key belonging to a trust
routine.

0.137 In such second embodiments, when a platform
instantiates a trust routine, the trust routine comprises the
virtual equivalent of a TCG TPM containing a TCG
Endorsement Key. Since the platform fully controls the trust
routine, the platform is fully capable of obtaining that
Endorsement Key from the trust routine. The platform is a
credible entity to construct and sign a certificate attesting
that that EKbelongs to a properly constructed (virtual) TPM
created by the platform, this certificate functioning as an
Endorsement Credential.

0.138. The certificate is thus a conventional TCG
Endorsement Credential, signed by a TCG Attestation Iden
tity belonging to the trusted device. This is possible provided
the AIK credential belonging to the trusted device has fields
comprising a description of the platforms Security proper
ties, including its virtualisation processes and at least part of
its trust routines.

0.139. In alternative embodiments, the certificate is a
modified TCG Endorsement Credential, with extra fields
comprising: (1) metrics obtained by the trusted device
describing the platform, including its virtualisation pro
cesses; (2) metrics obtained by the trusted device describing
at least part of the trust routine. The certificate is as before
signed by a TCG Attestation Identity belonging to the trusted
device.

0140. In order for a virtual TPM to obtain an Attestation
Identity, the server's physical TPM must have previously
used an Attestation Identity of the physical of the server to

10
Oct. 6, 2005

sign a virtual Platform Credential (1130). When a platform
instantiates a trust routine, the trust routine comprises the
virtual equivalent of a TCGTBB and TPM. The trust routine
and its associated operating environment contain a TCG
TPM, TBB, RTM, and CRTM securely bound to a virtual
normal platform, this certificate functioning as a Platform
Credential.

0.141. The platform is a credible entity to construct and
Sign a certificate attesting that there exists a properly con
Structed (virtual) TCG trusted platform containing a particu
lar TPM.

0142. The certificate is a conventional TCG Platform
Credential, signed by a TCG Attestation Identity belonging
to the trusted device. This possible provided the AIK cre
dential belonging to the trusted device has fields comprising
a description of the platform's Security properties, including
its virtualisation processes and at least part of its trust
routines.

0143. In alternative embodiments, this certificate is a
modified TCG Platform Credential, whose extra fields com
prise (1) metrics obtained by the trusted device describing
the platform, including its virtualisation processes that cre
ate the trust routines and operating environments; (2) met
rics obtained by the trusted device describing at least part of
the trust routine. The certificate is as before signed by a TCG
Attestation Identity belonging to the trusted device.

0144) The virtual TPM of the trust routine is now
equipped with the necessary credentials to obtain an Attes
tation Identity Certificate (1140). This is consistent with, but
goes beyond, the first embodiments which indicate that a
trusted party may use one of its private asymmetric keys to
Vouch for a public key belonging to a trust routine.

0145 When a trust routine creates an Attestation Identity,
it may wish to acquire a TCG Attestation Identity Certificate
for that identity. The trust routine follows conventional TCG
procedures and protocols, and Supplies the Endorsement
Credential and Platform Credential created by the platform.
0146 It should be appreciated that a CA (distinguished
by TCG as a “Privacy CA”) can follow normal TCG
procedures and protocols to create an Attestation Identity
certificate for a trust routine. The certificate, however,
should be a modified AIK certificate whose extra fields
comprise an indication of the TCG Attestation Identity
belonging to the trusted device.
0147 Alternative embodiments are possible as the plat
form is itself a credible entity to construct and Sign an
Attestation Identity certificate for the trust routine without
following TCG procedures and protocols. This is because
the platform fully controls the trust routine. Such a certifi
cate is a modified TCG Attestation identity certificate, whose
extra fields comprise: (1) metrics obtained by the trusted
device describing the platform, including its virtualisation
processes that create the trust routines and operating envi
ronments; (2) metrics obtained by the trusted device describ
ing at least part of the trust routine. The certificate is signed
by a TCG Attestation Identity belonging to the trusted
device.

0.148 When in possession of an Attestation Identity cer
tificate, the trust routine can act as a conventional TCG
TPM. In particular, when a trust routine Supplies integrity

US 2005/022.3221A1

metrics about an operating environment, the trust routine
Simply follows conventional TCG procedures and protocols,
and Signs the metrics using an Attestation Identity key.
0149. In second embodiments of the invention, interac
tions between entities-from third parties to entities asso
ciated with the platform to users—may thus be essentially
consistent with TCG procedures and protocols.
What is claimed:

1. A computer apparatus for creating a trusted environ
ment comprising a trusted device arranged to acquire a first
integrity metric to allow determination as to whether the
computer apparatus is operating in a trusted manner; a
processor arranged to allow execution of a first trust routine
and associated first operating environment, and means for
restricting access of the first operating environment to
resources available to the trust routine, wherein the trust
routine is arranged to acquire a Second integrity metric to
allow determination as to whether the first operating envi
ronment is operating in a trusted manner.

2. A computer apparatus as claimed in claim 1, wherein
the means for restricting access of the first operating envi
ronment comprises a control layer of Software and an
operating System of the first operating environment adapted
Such that any instructions in the operating System of the first
operating environment with potential to affect any environ
ment outside the first operating environment cause a tran
Sition to the control layer.

3. A computer apparatus according to claim 2, wherein the
trusted device is a tamper resistant device.

4. A computer apparatus according to claim 2, wherein the
trust routine is arranged to incorporate cryptographical func
tionality for restricting access to data associated with the
trust routine.

5. A computer apparatus according to claim 1, wherein the
trusted device has an attestation identity and an attestation
identity certificate containing attestation by a third party that
the trusted device comprises a valid trusted platform module
and that the computer apparatus comprises a valid trusted
platform.

6. A computer apparatus according to claim 5, wherein the
trust routine has an endorsement credential providing attes
tation by the trusted device that the trust routine comprises
a valid virtual trusted platform module and a platform
credential providing attestation by the trusted device that the
trust routine and the first operating environment comprises
a valid virtual trusted platform.

7. A computer apparatus according to claim 6, wherein the
trust routine has an attestation identity and an attestation
identity certificate containing attestation that the trusted
device comprises a valid trusted platform module and that
the computer apparatus comprises a valid trusted platform.

8. A computer apparatus according to claim 7, wherein the
attestation is provided by a third party.

9. A computer apparatus according to claim 7, wherein the
attestation is provided by the trusted device.

Oct. 6, 2005

10. A computer apparatus according to claim 7, wherein
the trusted device is arranged on powering down of the
computer apparatus to Store the endorsement credential, the
platform credential and the attestation identity certificate of
the trust routine.

11. A method for creating a trusted environment compris
ing acquiring a first integrity metric to allow determination
as to whether a computer apparatus is operating in a trusted
manner; executing a first trust routine and an associated first
operating environment, restricting the first operating envi
ronment's access to resources available to the trust routine,
and arranging the trust routine to acquire a Second integrity
metric to allow determination as to whether the first oper
ating environment is operating in a trusted manner.

12. A method according to claim 11, wherein the first
integrity metric is acquired by a trusted device in the
computing apparatus, the trusted device having an attesta
tion identity attested by a third party.

13. A method according to claim 12, further comprising
the trusted device providing the trust routine with an
endorsement credential providing attestation by the trusted
device that the trust routine comprises a valid virtual trusted
platform module and a platform credential providing attes
tation by the trusted device that the trust routine and the first
operating environment comprises a valid Virtual trusted
platform.

14. A method according to claim 13, further comprising
the trust routine generating an attestation identity and
obtaining an attestation identity certificate using the
endorsement credential and the platform credential.

15. A data Structure comprising an attestation identity
certificate for a trusted device in computer apparatus, the
attestation identity certificate comprising at least a public
key, a label, and a description of the computer apparatus
including its virtualization processes to enable the trusted
device to provide credentials for trust routines, all being
signed by a trusted party.

16. A data Structure comprising an attestation identity
certificate for a trust routine running on computer apparatus
having a trusted device, the attestation identity certificate
comprising at least a public key and a label, all being signed
by a trusted party.

17. A data structure according to claim 16, wherein the
trusted party is a third party and the attestation identity
certificate further comprises an indication of the attestation
identity of the trusted device.

18. A data structure according to claim 16, wherein the
trusted party is the trusted device and the attestation identity
certificate further comprises a description of the computer
apparatus including its virtualization processes and a
description of the trust routine.

