

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/142947 A1

(43) International Publication Date
24 September 2015 (24.09.2015)

WIPO | PCT

(51) International Patent Classification:

A61B 19/00 (2006.01)

(21) International Application Number:

PCT/US2015/021097

(22) International Filing Date:

17 March 2015 (17.03.2015)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

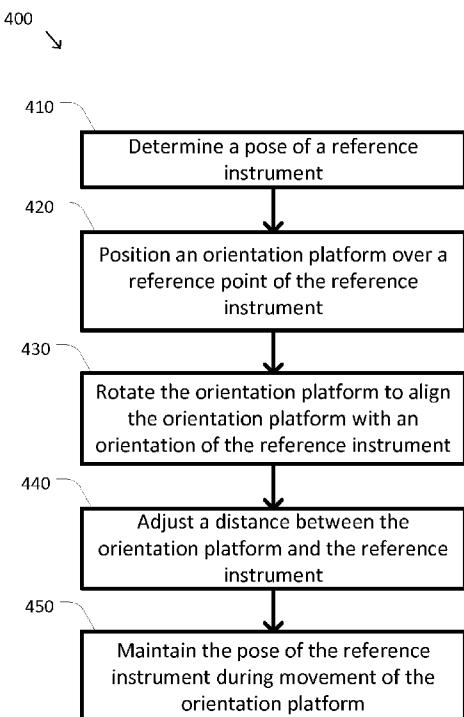
61/954,261 17 March 2014 (17.03.2014) US
62/024,887 15 July 2014 (15.07.2014) US

(71) Applicant: INTUITIVE SURGICAL OPERATIONS, INC. [US/US]; 1020 Kifer Road, Sunnyvale, California 94086 (US).

(72) Inventors: SWARUP, Nitish; 250 W. El Camino Real #6315, Sunnyvale, California 94087 (US). GRIFFITHS, Paul G.; 4503 Carlyle Court, Apt. 2304, Santa Clara, California 95054 (US). ITKOWITZ, Brandon D.; 834 Maria

Lane, Apt. 1050, Sunnyvale, California 94086 (US).

HANUSCHIK, Michael; 1449 Isabelle Avenue, Mountain View, California 94040 (US). NIXON, Thomas R.; 1074 Fairview Avenue, San Jose, California 95125 (US).


(74) Agents: NICKOLS, Julie, M. et al.; Intellectual Property Department, 1020 Kifer Road, Sunnyvale, California 94086 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR ALIGNING WITH A REFERENCE TARGET

(57) Abstract: A system and method of aligning with a reference target includes a computer-assisted medical device. The computer-assisted medical device includes an orientation platform, one or more first joints proximal to the orientation platform, one or more second joints distal to the orientation platform, one or more links distal to the orientation platform, a reference instrument coupled to the orientation platform by the second joints and the links; and a control unit coupled to the first joints and the second joints. The control unit determines a pose of the reference instrument. The pose includes a reference point and a reference orientation. The control unit further positions the orientation platform over the reference point using the first joints, rotates the orientation platform to align the orientation platform with the reference orientation using the first joints, and maintains the pose of the reference instrument using the second joints.

FIG. 4

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report (Art. 21(3))*

SYSTEM AND METHOD FOR ALIGNING WITH A REFERENCE TARGET

RELATED APPLICATIONS

The present disclosure claims priority to U.S. Provisional Patent Application No. 5 61/954,261 entitled “System and Method for Aligning with a Reference Target” filed March 17, 2014 and U.S. Provisional Patent Application No. 62/024,887 entitled “System and Method for Aligning with a Reference Target” filed July 15, 2014, which are both incorporated by reference herein in their entirety.

TECHNICAL FIELD

10 The present disclosure relates generally to operation of devices with articulated arms and more particularly to aligning with a reference target.

BACKGROUND

15 More and more devices are being replaced with autonomous and semiautonomous electronic devices. This is especially true in the hospitals of today with large arrays of autonomous and semiautonomous electronic devices being found in operating rooms, interventional suites, intensive care wards, emergency rooms, and the like. For example, glass and mercury thermometers are being replaced with electronic thermometers, intravenous drip lines now include electronic monitors and flow regulators, and traditional hand-held surgical instruments are being replaced by computer-assisted medical devices.

20 These electronic devices provide both advantages and challenges to the personnel operating them. Many of these electronic devices may be capable of autonomous or semi-autonomous motion of one or more articulated arms and/or end effectors. Before these articulated arms and their end effectors may be used, they are typically moved to or near a desired working position and orientation. This movement may be performed by teleoperation 25 or remote operation using one or more user input controls. As the complexity of these electronic devices increases and the articulated arms include large numbers of degrees of freedom, movement into the desired working position and orientation by teleoperation may become complex and/or time consuming. In addition, operators of these electronic devices may not always be aware of the limits of motion of one or more of the articulated arms or the 30 end effectors, such as medical instruments, coupled to those articulated arms. As a consequence, the operators may not always provide the best initial working position of the articulated arms that provides for the best range of motion after set-up.

Accordingly, improved methods and systems for the initial positioning of articulated arms and their end effectors are desirable.

SUMMARY

Consistent with some embodiments, a computer-assisted medical device includes an orientation platform, one or more first joints proximal to the orientation platform, one or more second joints distal to the orientation platform, one or more links distal to the orientation platform, a reference instrument coupled to orientation platform by the second joints and the links; and a control unit coupled to the first joints and the second joints. The control unit determines a pose of the reference instrument. The pose includes a reference point and a reference orientation. The control unit further positions the orientation platform over the reference point using the first joints, rotates the orientation platform to align the orientation platform with the reference orientation using the first joints, and maintains the pose of the reference instrument using the second joints.

Consistent with some embodiments, a method of controlling motion in a medical device includes determining a pose of a reference instrument of the medical device. The pose includes a reference point and a reference orientation. The method further includes positioning an orientation platform of the medical device over the reference point using one or more first joints, rotating the orientation platform to align the orientation platform with the reference orientation using the first joints, and maintaining the pose of the reference instrument using one or more second joints. The one or more first joints are proximal to the orientation platform. The one or more second joints are distal to the orientation platform and proximal to the reference instrument.

Consistent with some embodiments, a non-transitory machine-readable medium comprising a plurality of machine-readable instructions which when executed by one or more processors associated with a medical device are adapted to cause the one or more processors to perform a method, The method includes determining a pose of a reference instrument of the medical device. The pose includes a reference point and a reference orientation. The method further includes positioning an orientation platform of the medical device over the reference point using one or more first joints, rotating the orientation platform to align the orientation platform with the reference orientation using the first joints, and maintaining the pose of the reference instrument using one or more second joints. The one or more first joints

are proximal to the orientation platform. The one or more second joints are distal to the orientation platform and proximal to the reference instrument.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a simplified diagram of a computer-assisted system according to some
5 embodiments.

Figure 2 is a simplified diagram showing a computer-assisted device according to
some embodiments.

Figures 3A and 3B are simplified diagrams showing a top view of poses of the
orientation platform of Figure 2 before and after a targeting operation according to some
10 embodiments.

Figure 4 is a simplified diagram of a method of aligning with a reference target
according to some embodiments.

Figure 5 is a simplified diagram of a process of maintaining a pose of a reference
instrument during movement of an orientation platform according to some embodiments.

15 In the figures, elements having the same designations have the same or similar functions.

DETAILED DESCRIPTION

In the following description, specific details are set forth describing some
embodiments consistent with the present disclosure. It will be apparent to one skilled in the
art, however, that some embodiments may be practiced without some or all of these specific
20 details. The specific embodiments disclosed herein are meant to be illustrative but not
limiting. One skilled in the art may realize other elements that, although not specifically
described here, are within the scope and the spirit of this disclosure. In addition, to avoid
unnecessary repetition, one or more features shown and described in association with one
embodiment may be incorporated into other embodiments unless specifically described
25 otherwise or if the one or more features would make an embodiment non-functional.

Figure 1 is a simplified diagram of a computer-assisted system 100 according to some
embodiments. As shown in Figure 1, computer-assisted system 100 includes a device 110
with one or more movable or articulated arms 120. Each of the one or more articulated arms
120 may support one or more end effectors. In some examples, device 110 may be consistent

with a computer-assisted surgical device. The one or more articulated arms 120 each provide support for surgical instruments, imaging devices, and/or the like. Device 110 may further be coupled to an operator workstation (not shown), which may include one or more master controls for operating the device 110, the one or more articulated arms 120, and/or the end effectors. In some embodiments, device 110 and the operator workstation may correspond to a da Vinci® Surgical System commercialized by Intuitive Surgical, Inc. of Sunnyvale, California. In some embodiments, computer-assisted surgical devices with other configurations, fewer or more articulated arms, and/or the like may be used with computer-assisted system 100.

Device 110 is coupled to a control unit 130 via an interface. The interface may include one or more cables, connectors, and/or buses and may further include one or more networks with one or more network switching and/or routing devices. Control unit 130 includes a processor 140 coupled to memory 150. Operation of control unit 130 is controlled by processor 140. And although control unit 130 is shown with only one processor 140, it is understood that processor 140 may be representative of one or more central processing units, multi-core processors, microprocessors, microcontrollers, digital signal processors, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), and/or the like in control unit 130. Control unit 130 may be implemented as a stand-alone subsystem and/or board added to a computing device or as a virtual machine. In some embodiments, control unit may be included as part of the operator workstation and/or operated separately from, but in coordination with the operator workstation.

Memory 150 may be used to store software executed by control unit 130 and/or one or more data structures used during operation of control unit 130. Memory 150 may include one or more types of machine readable media. Some common forms of machine readable media may include floppy disk, flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, RAM, PROM, EPROM, FLASH-EPROM, any other memory chip or cartridge, and/or any other medium from which a processor or computer is adapted to read.

As shown, memory 150 includes a motion control application 160 that may be used to support autonomous and/or semiautonomous control of device 110. Motion control application 160 may include one or more application programming interfaces (APIs) for

receiving position, motion, and/or other sensor information from device 110, exchanging position, motion, and/or collision avoidance information with other control units regarding other devices, and/or planning and/or assisting in the planning of motion for device 110, articulated arms 120, and/or the end effectors of device 110. And although motion control 5 application 160 is depicted as a software application, motion control application 160 may be implemented using hardware, software, and/or a combination of hardware and software.

In some embodiments, computer-assisted system 100 may be found in an operating room and/or an interventional suite. And although computer-assisted system 100 includes only one device 110 with two articulated arms 120, one of ordinary skill would understand 10 that computer-assisted system 100 may include any number of devices with articulated arms and/or end effectors of similar and/or different design from device 110. In some examples, each of the devices may include fewer or more articulated arms and/or end effectors.

Figure 2 is a simplified diagram showing a computer-assisted device 200 according to some embodiments. For example, the computer-assisted device 200 may be consistent with 15 computer-assisted device 110. As shown in Figure 2, the computer-assisted device 200 includes various links and joints. The computer-assisted device generally has three different sets of links and joints. Starting at the proximal end with a mobile cart 210 is a set-up structure 220. Coupled to a distal end of the set-up structure is a series of set-up joints 240. And coupled to a distal end of the set-up joints 240 is a manipulator 260, such as a universal 20 surgical manipulator. In some examples, the series of set-up joints 240 and manipulator 260 may correspond to one of the articulated arms 120. And although computer-assisted device 200 is shown with only one series of set-up joints 240 and a corresponding manipulator 260, one of ordinary skill would understand that the computer-assisted device 200 may include 25 more than one series of set-up joints 240 and corresponding manipulators 260 so that the computer-assisted device 200 is equipped with multiple articulated arms.

As shown, the computer-assisted device 200 is mounted on the mobile cart 210. The mobile cart 210 enables the computer-assisted device 200 to be transported from location to location, such as between operating rooms or within an operating room to better position the computer-assisted device 200 near a patient table. The set-up structure 220 is mounted on the 30 mobile cart 210. As shown in Figure 2, the set-up structure 220 includes a two part column including column links 221 and 222. Coupled to the upper or distal end of the column link 222 is a shoulder joint 223. Coupled to the shoulder joint 223 is a two-part boom including

boom links 224 and 225. At the distal end of the boom link 225 is a wrist joint 226, and coupled to the wrist joint 226 is an orientation platform 227.

The links and joints of the set-up structure 220 include various degrees of freedom for changing the position and orientation (i.e., the pose) of the orientation platform 227. For 5 example, the two-part column may be used to adjust a height of the orientation platform 227 by moving the shoulder joint 223 up and down along an axis 232. The orientation platform 227 may additionally be rotated about the mobile cart 210, the two-part column, and the axis 232 using the shoulder joint 223. The horizontal position of the orientation platform 227 may also be adjusted along an axis 234 using the two-part boom. And the orientation of the 10 orientation platform 227 may also be adjusted by rotation about an axis 236 using the wrist joint 226. Thus, subject to the motion limits of the links and joints in the set-up structure 220, the position of the orientation platform 227 may be adjusted vertically above the mobile cart 210 using the two-part column. The positions of the orientation platform 227 may also be adjusted radially and angularly about the mobile cart 210 using the two-part boom and the 15 shoulder joint 223, respectively. And the angular orientation of the orientation platform 227 may also be changed using the wrist joint 226.

The orientation platform 210 may be used as a mounting point for one or more articulated arms. The ability to adjust the height, horizontal position, and orientation of the orientation platform 227 about the mobile cart 210 provides a flexible set-up structure for 20 positioning and orienting the one or more articulated arms about a work space, such as a patient, located near the mobile cart 210. Figure 2 shows a single articulated arm coupled to the orientation platform using a first set-up joint 242. And although only one articulated arm is shown, one of ordinary skill would understand that multiple articulated arms may be coupled to the orientation platform 227 using additional first set-up joints. An example of 25 this is described in further detail with respect to Figures 3A and 3B.

The first set-up joint 242 forms the most proximal portion of the set-up joints 240 section of the articulated arm. The set-up joints 240 may further include a series of joints and links. As shown in Figure 2, the set-up joints 240 include at least links 244 and 246 coupled via one or more joints (not expressly shown). The joints and links of the set-up joints 240 30 include the ability to rotate the set-up joints 240 relative to the orientation platform 227 about an axis 252 using the first set-up joint 242, adjust a height of the link 246 relative to the orientation platform along an axis 254, and rotate the manipulator at least about an axis 256

at the distal end of the link 246. The set-up joints 240 may further include additional joints, links, and axes permitting additional degrees of freedom for altering a pose of the manipulator 260 relative to the orientation platform 227.

The manipulator 260 is coupled to the distal end of the set-up joints 240 and includes 5 additional links and joints that permit control over a pose of an end effector or instrument 262 mounted at a distal end of the manipulator 260. The degrees of freedom in the manipulator 260 may permit at least control of the roll, pitch, and yaw of the instrument 262 relative to the distal end of the set-up joints 240. In some examples, the degrees of freedom in the manipulator 260 may further include the ability to advance and/or retreat the instrument 262 10 about a longitudinal axis of the instrument 262. In some examples, the degrees of freedom of the set-up joints 240 and the manipulator 260 may further be controlled so as to maintain a remote center 270 about a point on the instrument 262. In some examples, the remote center 270 may correspond to a surgical port in a patient so that as the instrument 262 is used, the remote center 270 remains stationary to limit stresses on the anatomy of the patient at the 15 remote center 270. In some examples, the manipulator 260 may be consistent with a universal surgical manipulator for use with the da Vinci® Surgical System commercialized by Intuitive Surgical, Inc. of Sunnyvale, California. In some examples, the instrument 262 may be an imaging device such as an endoscope, a gripper, a surgical tool such as a cautery or a scalpel, and/or the like.

Given the large number of degrees of freedom in the set-up structure 220, the set-up 20 joints 240, and the manipulator 260, it is not always an easy task to determine the best positions of each of the joints so that a pose of the manipulator 260 and, more importantly, a pose of the instrument 262 are maintained as desired. Further, as the desired poses of the manipulator 260 and the instrument 262 are adjusted during operation of the computer- 25 assisted device, suitable flexibility in ranges of motion and orientation should be available so that the desired poses may be obtained without reaching a range of motion limit on any of the joints in the set-up joints 240 or the manipulator 260. To accomplish this, poses of the set-up structure 220 and the orientation platform are typically selected during a set-up phase or targeting operation so that the joints in the set-up joints 240 and the manipulator 260 are 30 located near a center of their respective ranges of motion while at the same time establishing or maintaining a desired pose of the instrument 262 and/or a position of the remote center 270. For the computer-assisted device 200 of Figure 2, this may generally correspond to

poses for the orientation platform 227, the set-up joints 240, and the manipulator 260 so that an approximate rotational center point of the orientation platform 227 (e.g., the axis 236 about which the wrist joint 226 rotates) is located vertically over the remote center 270 and the orientation platform 227 is rotated so that the first set-up joint 242 is approximately near 5 its center of motion. In some examples, the height of the orientation platform 227 may further be adjusted relative to the remote center 270 to a suitable working height.

Figures 3A and 3B are simplified diagrams showing a top view of poses of the orientation platform 227 of Figure 2 before and after a targeting operation according to some 10 embodiments. Figure 3A shows a pose of a portion 300 of a computer-assisted device, such as computer assisted device 200, before the targeting operation. The portion 300 of the computer-assisted device shown in Figure 3A corresponds to those portions of the computer-assisted device beginning at the orientation platform 227 and links and joints distal to the orientation platform 227. As shown in Figure 3A, four articulated arms 310-340 are coupled to the orientation platform 227, although one of ordinary skill would understand that any 15 other number of articulated arms may be used. Each of the four articulated arms 310-340 may include different set-up joints, manipulators, and/or instruments. As shown, the four articulated arms include two interior arms 320 and 330, which are located between two exterior arms 310 and 340. An instrument on one of the articulated arms 310-340, typically one of the interior arms 320 or 330, is chosen as a reference target for the targeting operation. 20 For simplicity of explanation, the instrument 262 on articulated arm 320 is being selected as the reference target, although any of the instruments on the other articulated arms may also be selected as the reference target.

Before the targeting operation begins, the instrument 262 and the remote center 270 are typically positioned and oriented within the work space to help specify a region of interest 25 in the work space. In some examples, the instrument 262 and the remote center 270 may be positioned and/or oriented relative to a patient's anatomy. In some examples, the instrument 262 may be inserted through a surgical port on the patient with the remote center 270 being positioned at the surgical port. In some examples, a surgeon and/or other medical personnel may manually position and orient the instrument 262 and the remote center 270 using a 30 clutching feature of the articulated arm 320. In some examples, the instrument 262 may correspond to an endoscope, and the endoscope may be positioned and/or oriented toward a target portion of the patient's anatomy. Once the instrument 262 is positioned and oriented, it

is important to maintain that position and orientation during the targeting operation to reduce the likelihood of any injury to the patient and/or damage to the instrument 262. In some examples, for the purposes of the targeting operation, the remote center 270 may correspond to the position of the instrument 262 and an orientation axis 360 may correspond to the orientation of the instrument 262 with the orientation axis 360 being aligned with a shaft of the instrument 262. In some examples, once the instrument 262 is positioned and oriented, the surgeon and/or the other medical personnel may start the targeting operation using a control located on articulated arm 320 and/or at an operator console.

In some embodiments, one of the goals of the targeting operation may be to align a rotational center 350 of the orientation platform 227, such as the rotational center of the wrist joint 226, so that it is vertically above the remote center 270. Another goal of the targeting operation may be to rotate the orientation platform 227 so that a front face of the orientation platform is in alignment with the horizontal component of the orientation axis 360. In some examples, when the orientation axis 360 is vertical, this orientation goal may be omitted. In some examples, the orientation of the front face may correspond to a front face orientation vector 370. In some examples, this rotation may orient the articulated arms 310-340 near centers of the ranges of motion of their respective first set-up joints. In some examples, an additional goal of the targeting operation may be to adjust a height of the orientation platform 227 relative to the remote center 270 to place vertical adjustment joints in the articulated arm 320 near a center of their respective range of movement, to provide a suitable working distance between the orientation platform 227 and the remote center 270 to allow for adequate space for manipulating articulated arm 320 without collision with the orientation platform 227, to provide suitable separation between the orientation platform 227 and the remote center 270 to maintain a sterile field around the remote center 270, and/or to maintain a predetermined distance between the orientation platform 227 and the remote center 270 as determined by an operator.

Figure 3B shows changes in the position and orientation of the portion 300 of the computer-assisted device as a result of the targeting operation. As shown, the rotational center 350 of the orientation platform 227 is moved so that it aligns vertically with the remote center 270. Further, the orientation platform 227 is rotated so that the front face orientation vector 370 is aligned with the horizontal component of the orientation axis 360. Figure 3B further shows that the positions of the various joints in the set-up joints and the manipulator

of articulated arm 320 are altered to compensate for the changes in the relative position and orientation of the instrument 262 with respect to the orientation platform 227.

To achieve these goals, the position of the remote center 270 and the orientation of the orientation axis 360 are determined using sensors for monitoring the positions of the joints in the computer-assisted device and one or more kinematic models of the computer assisted device. Joints in the set-up structure proximal to the orientation platform 227 are adjusted to move the rotational center 350 over the remote center 270 and the orientation platform 227 is rotated to align the front face orientation vector 370 with the horizontal component of the orientation axis 360. In some examples, joints in the set-up structure may be adjusted to change the height of the orientation platform 227. In some examples, when the set-up structure corresponds to the set-up structure 220 of Figure 2, the rotational center 350 may also be aligned by changing the length of the two-part boom and rotating the shoulder joint 223, the orientation platform 227 may be rotated using the wrist joint 226, and the height of the orientation platform 227 may be adjusted using the two-part column. While the set-up structure is being moved, the joints in the set-up joints and the manipulator of the articulated arm 320 are adjusted to compensate for the movement and reorientation of the orientation platform 227. This is done to maintain a fixed position of the remote center 270 and a fixed orientation of the orientation axis 360 even though the relative position and orientation of the instrument 262 relative to the orientation platform 227 are changing. In some examples, the joint sensors and one or more kinematic models, and/or inverse Jacobian transposes may be used to determine the joint changes in the set-up joints and the manipulator. In some examples, the position of the remote center 270 and the orientation of the orientation axis 360 may further be maintained using resistance from the patient port and/or by the surgeon and/or other medical personnel. In addition, the other articulated arms 310, 330, and/or 340 may move along with the orientation platform 227. In some embodiments, collision avoidance algorithms may also be used to prevent collisions between the articulated arms 310-340 and between the articulated arms 310-340 and the set-up structure proximal to the orientation platform 227.

In some embodiments, one or more of the joints of the articulated arms 310-340 may be placed in a float state while the orientation platform 227 is in motion. Free and/or mostly free movement of each of the joints in the float state is permitted. In some examples, the joints being placed in the float state may be a subset of the joints in the respective articulated

arm 310-340. In some examples, this permits these joints to react to reduce and/or mitigate the effects of external stimulus applied to the respective articulated arm 310-340. In some examples, brakes on each of the joints in the float state, which are non-actuated joints, may be released allowing motion of each of the non-actuated joints. In some examples, each of 5 the joints in the float state, which are actuated joints, may be commanded to move to the actual positions and/or actual velocities determined for those respective joints based on values from one or more sensors associated with the articulated joints and/or the articulated arms 310-340 and/or one or more kinematic models. In some examples, setting the command positions of a feedback controller of the actuated joints to the actual positions and/or the 10 command velocities of the feedback controller to the actual joint velocities gives the impression that the actuated joints are moving freely, and when gravity compensation is also being applied, then also with the impression of apparent weightlessness.

In some embodiments, the movement of the joints in the float state may be subject to damping. To reduce and/or prevent unrestricted and/or wild movement of the articulated arm 15 while in the float state, one or more of the joints placed in the float state may be subject to some form of damped motion. For example, it may not be desirable for any of the articulated arms 310-340 that is subject to a strong external stimulus, such as a hard collision, to move away from the strong external stimulus without some limitation. Constraining the float state movement of the articulated arms 310-340 may reduce the risks of injury and/or damage 20 caused by a fast moving articulated arm. In some examples, the damped motion may be implemented on non-actuated joints by partially releasing the brakes so as to place a drag on movement of the non-actuated joints. In some examples, the brakes may be partially released by controlling one or more voltages, currents, duty cycles, and/or the like of signals used to control the brakes. In some examples, the damped motion may be implemented on actuated 25 joints by commanding the actuated joints to move a portion of the distance behind the actual position based on direction of motion, by increasing a derivative constant in the feedback controller without significantly affecting its stability margins, and/or by introducing a backward current and/or voltage on the actuators of the actuated joints to emulate a resisting force and/or torque. In some examples, the damped motion may be implemented on actuated 30 joints by commanding the velocities of the actuated joints to a value below the joint velocities determined based on the corresponding sensor values.

Figure 4 is a simplified diagram of a method 400 of aligning with a reference target according to some embodiments. One or more of the processes 410-450 of method 400 may be implemented, at least in part, in the form of executable code stored on non-transient, tangible, machine readable media that when run by one or more processors (e.g., the 5 processor 140 in control unit 130) may cause the one or more processors to perform one or more of the processes 410-450. In some embodiments, method 400 may be performed by an application, such as motion control application 160. In some embodiments, method 400 may be used to adjust positions and/or orientations of various joints and links in the set-up 10 structure, set-up joints, and/or manipulator joints of a computer-assisted device while maintaining the pose (position and orientation) of a reference instrument.

At a process 410, a pose of a reference instrument is determined. The reference target for the alignment or targeting operation of method 400 is based on the pose (position and orientation) of a reference instrument. The reference instrument is typically located at the distal end of an articulated arm of a computer-assisted device. In some examples, one or 15 more sensors associated with joints and links of the articulated arm and the computer-assisted device and one or more kinematic models of the articulated arm and the computer-assisted device may be used to determine the position and orientation of the reference instrument. In some examples, the pose of the reference instrument may be determined based on a reference point on the reference instrument and a reference orientation of the reference instrument. In 20 some examples, the reference instrument may have been previously posed, either manually or with computer assistance, by an operator of the computer-assisted device. In some examples, the operator may initiate determination of the pose of the reference instrument using one or more control inputs. In some examples, the articulated arm may be the articulated arm 320 and reference instrument may be the instrument 262, with the pose of the reference 25 instrument being determined by the remote center 270 and the orientation axis 360.

At a process 420, an orientation platform is positioned over a reference point of the reference instrument. To better position the orientation platform over a desired workspace for the computer-assisted device, one or more joints of the computer-assisted device that are proximal to the orientation platform are commanded to move the orientation platform of the computer-assisted device so that it is positioned over the reference point determined during 30 process 410. In some examples, the orientation platform may be moved so as to position a predetermined point on or near the orientation platform vertically above the reference point.

In some examples, the predetermined point may be associated with a centroid and/or other central point on the orientation platform and/or an axis about which the orientation platform may be rotated. In some examples, positioning of the orientation platform may include adjusting a horizontal distance and/or an angular position of the orientation platform relative to a central column of the computer-assisted device. In some examples, one or more kinematic models and/or motion planning algorithms may be used to determine one or more movement and/or positioning commands to be sent to one or more actuators of the computer-assisted device. In some examples, when the computer-assisted device is the computer-assisted device 200, one or more of the joints in the set-up structure 220 may be commanded to position the orientation platform 227 horizontally over the remote center. In some examples, process 420 may include positioning rotational center 350 over remote center 270.

At a process 430, the orientation platform is rotated to align the orientation platform with an orientation of the reference instrument. To provide for improved range of motion in the reference instrument, the orientation platform may be rotated to align the orientation platform with the orientation of the reference instrument determined during process 410. In some examples, the orientation platform may be rotated to align a predetermined orientation vector of the orientation platform with the orientation of the reference instrument. In some examples, the orientation platform may be rotated about its axis of rotation so that a first set-up joint in the articulated arm to which the reference instrument is attached is at or near its rotational range of motion. In some examples, the orientation platform may be rotated using one or more rotational joints, such as a wrist joint, located proximal to the orientation platform. In some examples, one or more kinematic models and/or motion planning algorithms may be used to determine one or more movement and/or positioning commands to be sent to one or more actuators of the computer-assisted device. In some examples, process 430 may be performed concurrently with process 420. In some examples, process 430 may be omitted when the orientation of the reference instrument does not include a horizontal component. In some examples, when the computer-assisted device is the computer-assisted device 200, the orientation platform 227 may be rotated about axis 236 and rotational center 350 using wrist joint 226 in order to align the front face orientation vector 370 with a horizontal component of the orientation axis 360.

At an optional process 440, a distance between the orientation platform and the reference instrument may be adjusted. In some examples, the distance between the

predetermined point on the orientation platform and the reference point of the reference instrument may be adjusted. In some examples, the distance of the orientation platform may be adjusted to place joints in the articulated arm near centers of their respective ranges of motion, to reduce the likelihood of collisions between the articulated arm and/or the reference

5 instrument with the set-up structure of the computer-assisted device, to help maintain a sterile field around the reference instrument, and/or to maintain a predetermined distance determined by an operator. In some examples, the distance may be the vertical distance between the reference point determined during process 410 and the predetermined point aligned during process 420. In some examples, the distance between the orientation platform
10 and the reference instrument may be adjusted using one or more joints located proximal to the orientation platform. In some examples, one or more kinematic models and/or motion planning algorithms may be used to determine one or more movement and/or positioning commands to be sent to one or more actuators of the computer-assisted device. In some examples, process 440 may be performed concurrently with processes 420 and/or 430.

15 At a process 450, the pose of the reference instrument is maintained during movement of the orientation platform. While the orientation platform is being moved during processes 420, 430, and/or 440, the pose of the reference instrument relative to a workspace for the computer-assisted device is maintained. The pose is maintained even though the position and/or orientation of the reference instrument relative to the orientation platform may be
20 changing. This may be accomplished by adjusting one or more joints of the articulated arm distal to the orientation platform in response to the movements of the one or more joints proximal to the orientation platform that are being commanded during processes 420, 430, and/or 440.

As discussed above and further emphasized here, Figure 4 is merely an example
25 which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. According to some embodiments, one or more of the processes 420-450 may be performed concurrently. According to some embodiments, additional conditions may result in premature termination of method 400 such as by returning control of the computer-assisted device to an operator and/or by suspension of
30 operation of the computer-assisted device. In some examples, the additional conditions may include inability to complete the desired movement, manual intervention and/or override from an operator using one or more controls on an operator workstation and/or the articulated

arms, detection of operator disengagement with the operator workstation using one or more safety interlocks, position tracking errors in the computer-assisted device, system faults, and/or the like. In some examples, the desired movement may not be possible due to the detection of imminent collisions among the links and/or joints of the computer-assisted device, range of motion limits in one or more of the joints of the computer-assisted device, inability to position and/or orient the orientation platform while maintaining the pose of the reference instrument during process 450, and/or the like. In some examples, premature termination of method 400 may result in an error notification being sent to the operator. In some examples, the error notification may include a text message, an audio indicator, a spoken phrase, and/or the like.

Figure 5 is a simplified diagram of the process 450 of maintaining the pose of the reference instrument during movement of the orientation platform according to some embodiments. As the orientation platform is being positioned and oriented during processes 420, 430, and/or 440, the movements of the orientation platform affect each of the links and joints of the articulated arm distal to the orientation platform, including the reference instrument. As these movements introduce changes in the pose of the reference instrument, processes 510-550 compensate for those changes so that the pose of the reference instrument is maintained.

At a process 510, a reference transform of the reference instrument is determined. Prior to the initiation of movement during processes 420, 430, and/or 440, one or more kinematic models of the computer-assisted device are used to determine a reference transform for the reference instrument. In some examples, the one or more kinematic models may include one or more kinematic models for the set-up structure proximal to the orientation platform, the set-up joints distal to the orientation platform, and/or the manipulator to which the reference instrument is attached. In some examples, the reference transform may model the pose of the reference instrument in a world coordinate system for the computer-assisted device and/or the workspace of which the reference instrument is a part.

At a process 520, an actual transform of the reference instrument is determined. As the joints proximal to the orientation platform are commanded during processes 420, 430, and/or 440, the pose of the reference instrument begins to change because the reference instrument is distal to the orientation platform. The commanded changes in joint positions and/or angles in the joints proximal to the orientation platform are monitored and the one or

more kinematic models are again applied to determine the actual transform of the reference instrument. The actual transform represents how the movements of processes 420, 430, and/or 440 are tending to move the reference instrument away from its desired pose.

At a process 530, differences between the actual transform and the reference transform are determined. The differences between the actual transform and the reference transform represent errors that would be introduced into the pose of the reference instrument unless they are compensated for by changes in joint positions and/or angles in the joints distal to the orientation platform. In some examples, the differences may be determined by subtracting corresponding matrix and/or vector representations of the action and reference transforms.

At a process 540, compensating joint changes are determined based on the differences. Using the differences between the actual transform and the reference transform determined during process 530, one or more compensating joint changes is determined. Because the compensating joints are located distal to the orientation platform, the differences between the actual transform and the reference transform is mapped from the world coordinate system of the actual and reference transforms to a local coordinate system based on the compensating joints. In effect, this transforms the errors in the absolute pose of the reference instrument from the world coordinate system to relative errors in the pose between the reference instrument and the most proximal of the compensating joints. In some examples, one or more kinematic models may be used to transform the differences to the local coordinate system. In some examples, the compensating joints may include one or more of the manipulator joints. In some examples, compensating joints may further include one or more of the set-up joints between the orientation platform and the manipulator. Once the relative errors in the pose are determined, they may be used to determine the compensating joint changes. In some examples, an inverse Jacobian may be used to map the relative errors to the compensating joint changes. In some examples, the compensating joint changes may include joint velocities for the compensating joints.

At a process 550, the compensating joints are driven. One or more commands are sent to the one or more actuators in the compensating joints based on the compensating joint changes determined during process 540. The commands sent to the compensating joints correct for the errors in the pose of the reference instrument introduced by the movements in the joints proximal to the orientation platform so that the pose of the reference instrument in

the world coordinate system is maintained with minimal error. As long as processes 420, 430, and/or 440 continue to make changes to the position and/or orientation of the orientation platform, processes 520-550 are repeated to compensate for any errors introduced into the pose of the reference instrument.

5 As discussed above and further emphasized here, Figure 5 is merely an example which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. According to some embodiments, the compensating joints may include a subset of the joints in the set-up joints and/or the manipulator. In some examples, the compensating joints may include just the roll, pitch, and
10 yaw joints of the manipulator. In some examples, other joints in the manipulator and/or the set-up joints may be locked to prevent relative movement during processes 510-550. In some examples, one or more non-actuated joints of the set-up joints and/or the manipulator distal to the orientation platform may be unlocked and/or placed in a float state during processes 510-550 so that errors in the pose of the reference instrument may be at least partially reduced by
15 changes in the unlocked joints. In some examples, the changes in the unlocked joints may reduce the amount that the compensating joints are to be driven. In some examples, the pose of the reference instrument may be at least partially maintained using resistance from a patient port and/or by an operator of the computer-assisted device.

Some examples of control units, such as control unit 130 may include non-transient,
20 tangible, machine readable media that include executable code that when run by one or more processors (e.g., processor 140) may cause the one or more processors to perform the processes of method 400. Some common forms of machine readable media that may include the processes of method 400 are, for example, floppy disk, flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other optical medium, punch cards, paper
25 tape, any other physical medium with patterns of holes, RAM, PROM, EPROM, FLASH-EPROM, any other memory chip or cartridge, and/or any other medium from which a processor or computer is adapted to read.

Although illustrative embodiments have been shown and described, a wide range of modification, change and substitution is contemplated in the foregoing disclosure and in
30 some instances, some features of the embodiments may be employed without a corresponding use of other features. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. Thus, the scope of the invention should be limited only by

the following claims, and it is appropriate that the claims be construed broadly and in a manner consistent with the scope of the embodiments disclosed herein.

WHAT IS CLAIMED IS:

What is claimed is:

1. A computer-assisted medical device comprising:
 - an orientation platform;
 - 5 one or more first joints proximal to the orientation platform;
 - one or more second joints distal to the orientation platform;
 - one or more links distal to the orientation platform;
 - a reference instrument coupled to the orientation platform by the second joints and the links; and
- 10 a control unit coupled to the first joints and the second joints;
 - wherein the control unit:
 - determines a pose of the reference instrument, the pose including a reference point and a reference orientation;
 - positions the orientation platform, using the first joints, over the reference point;
 - 15 rotates the orientation platform, using the first joints, to align the orientation platform with the reference orientation; and
 - maintains the pose of the reference instrument using the second joints.
- 20 2. The device of claim 1 wherein the control unit further adjusts a distance between the orientation platform and the reference point.
3. The device of claim 2 wherein the distance is selected to maintain a sterile field.
4. The device of claim 2 wherein the distance is selected to maintain a working height of the orientation platform above the reference point.
- 25 5. The device of claim 1 wherein the reference point is a remote center of the reference instrument.
6. The device of claim 1 wherein the reference instrument is an endoscope.
7. The device of claim 1 wherein the reference point is associated with a surgical port on a patient.

8. The device of claim 1 wherein the control unit further locks one or more of the second joints.

9. The device of claim 1 wherein the control unit further unlocks one or more of the second joints that are non-actuated joints.

5 10. The device of claim 1 wherein the control unit releases one or more brakes associated with the one or more of the second joints that are unlocked.

11. The device of claim 1 wherein the control unit partially releases one or more brakes associated with the one or more of the second joints that are unlocked.

10 12. The device of claim 1 wherein the control unit further positions a centroid of the orientation platform vertically above the reference point.

13. The device of claim 1 wherein the control unit further positions a rotational center of the orientation platform vertically above the reference point.

14. The device of claim 1 wherein the control unit further sends one or more commands to one or more first actuators coupled to the first joints to position and rotate the orientation 15 platform.

15. The device of claim 1 wherein the control unit further sends one or more commands to one or more first actuators coupled to the second joints to maintain the pose of the reference instrument.

16. The device of claim 1 wherein the control unit further:

20 determines a reference transform of the reference instrument in a first coordinate system prior to positioning or rotating the orientation platform;

determines an actual transform of the reference instrument in the first coordinate system while the orientation platform is being positioned and rotated;

25 determines differences between the reference transform and the actual transform; and maintains the pose of the reference instrument by driving the second joints based on the differences.

17. The device of claim 16 wherein the control unit further converts the differences to a second coordinate system local to the second joints.

18. The device of claim 16 wherein the control unit further determines commands for the second joints based on an inverse Jacobian for the second joints.
19. The device of claim 16 wherein the control unit further determines the reference transform and the actual transform based on positions of the first and second joints and one or 5 more kinematic models of the computer-assisted medical device.
20. The device of claim 19 wherein the positions of the first and second joints are based on readings from one or more sensors monitoring the first and second joints.
21. The device of claim 1 wherein the control unit further determines the pose of the reference instrument based on positions of the first and second joints and one or more 10 more kinematic models of the computer-assisted medical device.
22. The device of claim 21 wherein the positions of the first and second joints are based on readings from one or more sensors monitoring the first and second joints.
23. The device of claim 1 wherein the control unit further aligns a front face orientation vector of the orientation platform with a horizontal component of the reference orientation.
- 15 24. The device of claim 1 wherein the second joints are configured to control a roll, a pitch, and a yaw of the reference instrument relative to the orientation platform.
25. The device of claim 1 wherein the control unit further positions the orientation platform, rotates the orientation platform, and maintains the pose of the reference instrument concurrently.
- 20 26. The device of claim 1, further comprising one or more articulated arms distal to the orientation platform, each of the articulated arms comprising one or more third joints.
27. The device of claim 26 wherein the control unit further locks one or more of the third joints.
- 25 28. The device of claim 26 wherein the control unit further places one or more of the third joints in a float state.
29. The device of claim 28 wherein the control unit releases one or more brakes associated with the one or more of the third joints that are non-articulated joints when the one or more of the third joints are in the float state.

30. The device of claim 28 wherein the control unit partially releases one or more brakes associated with the one or more of the third joints when the one or more of the third joints are in the float state.

31. The device of claim 28 wherein the control unit commands the one or more of the 5 third joints that are actuated joints to a respective actual position when the one or more of the third joints are in the float state.

32. The device of claim 28 wherein the control unit commands the one or more of the third joints that are actuated joints to a respective actual velocity when the one or more of the third joints are in the float state.

10 33. The device of claim 28 wherein the control unit introduces a respective resisting force or torque on the one or more of the third joints that are actuated joints when the one or more of the third joints are in the float state.

15 34. The device of claim 28 wherein the control unit commands the one or more of the third joints that are actuated joints to a respective position between a respective actual position and a respective commanded position when the one or more of the third joints are in the float state.

35. The device of claim 28 wherein the control unit commands the one or more of the third joints that are actuated joints to a respective velocity that is lower than a respective actual velocity when the one or more of the third joints are in the float state.

20 36. A method of controlling motion in a medical device, the method comprising:
determining a pose of a reference instrument of the medical device, the pose including a reference point and a reference orientation;

25 positioning an orientation platform of the medical device over the reference point using one or more first joints, the one or more first joints being proximal to the orientation platform;

rotating the orientation platform, using the first joints, to align the orientation platform with the reference orientation; and

30 maintaining the pose of the reference instrument using one or more second joints, the one or more second joints being distal to the orientation platform and proximal to the reference instrument.

37. The method of claim 36, further comprising adjusting a distance between the orientation platform and the reference point.

38. The method of claim 36 wherein the reference point is a remote center of the reference instrument.

5 39. The method of claim 24 wherein the reference instrument is an endoscope.

40. The method of claim 36, further comprising unlocking one or more of the second joints that are non-actuated joints.

41. The method of claim 36, further comprising:

10 determining a reference transform of the reference instrument in a first coordinate system prior to positioning or rotating the orientation platform;

determining an actual transform of the reference instrument in the first coordinate system while the orientation platform is being positioned and rotated;

determining differences between the reference transform and the actual transform; and maintaining the pose of the reference instrument by driving the second joints based on

15 the differences.

42. The method of claim 36, further comprising aligning a front face orientation vector of the orientation platform with a horizontal component of the reference orientation.

43. The method of claim 36 wherein maintaining the pose of the reference instrument comprises controlling a roll, a pitch, and a yaw of the reference instrument relative to the 20 orientation platform.

44. The method of claim 36 wherein the positioning of the orientation platform, the rotating of the orientation platform, and the maintaining of the pose of the reference instrument are performed concurrently.

45. A non-transitory machine-readable medium comprising a plurality of machine-readable instructions which when executed by one or more processors associated with a medical device are adapted to cause the one or more processors to perform a method comprising:

determining a pose of a reference instrument of the medical device, the pose including a reference point and a reference orientation;

positioning an orientation platform of the medical device over the reference point using one or more first joints, the one or more first joints being proximal to the orientation platform;

- 5 rotating the orientation platform, using the first joints, to align the orientation platform with the reference orientation; and

maintaining the pose of the reference instrument using one or more second joints, the one or more second joints being distal to the orientation platform and proximal to the reference instrument.

10

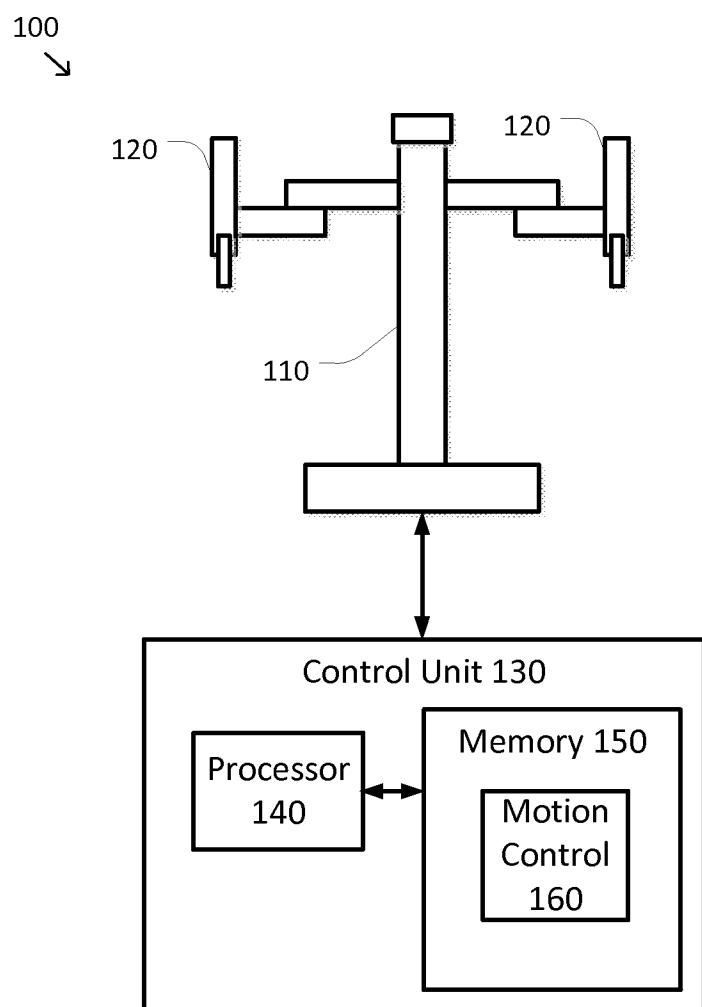


FIG. 1

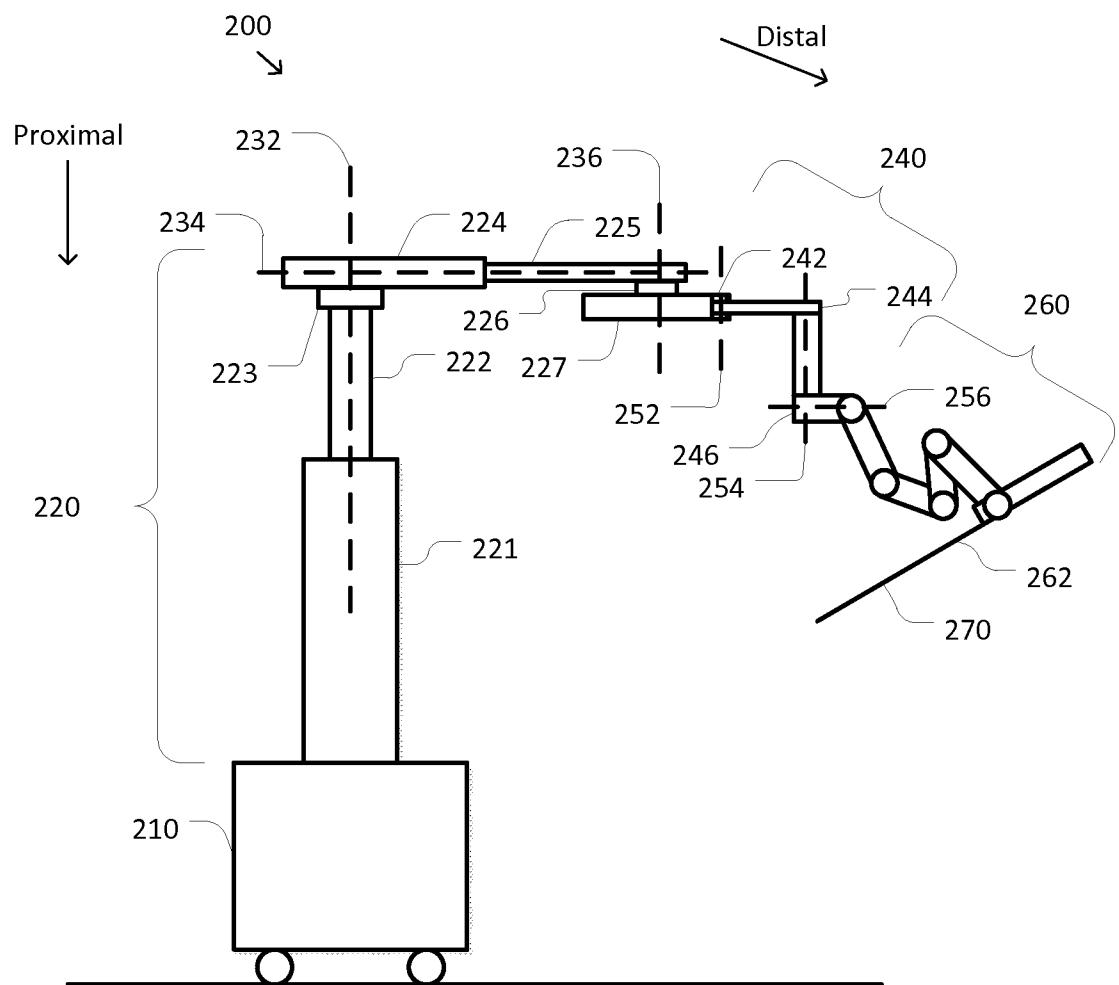


FIG. 2

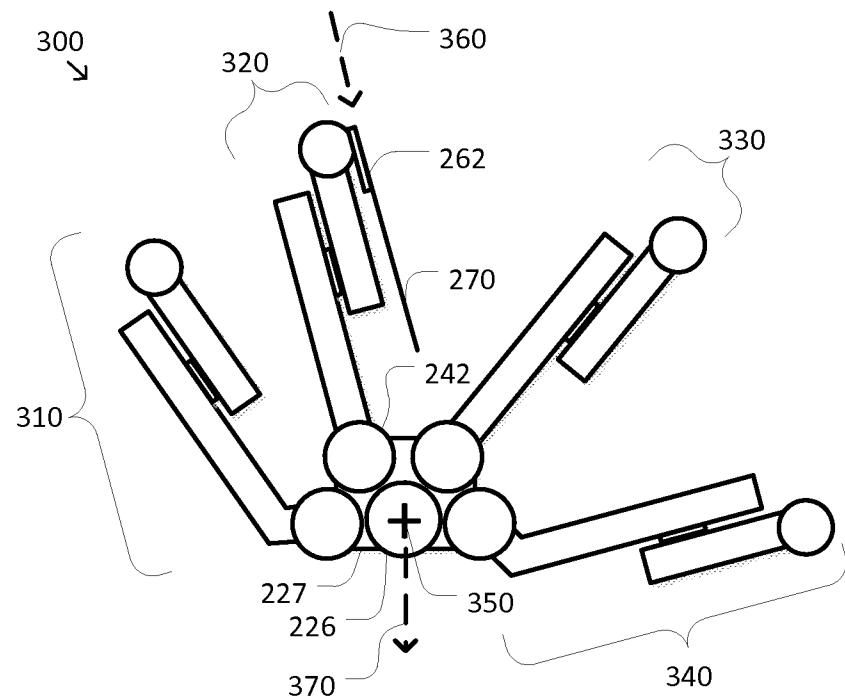


FIG. 3A

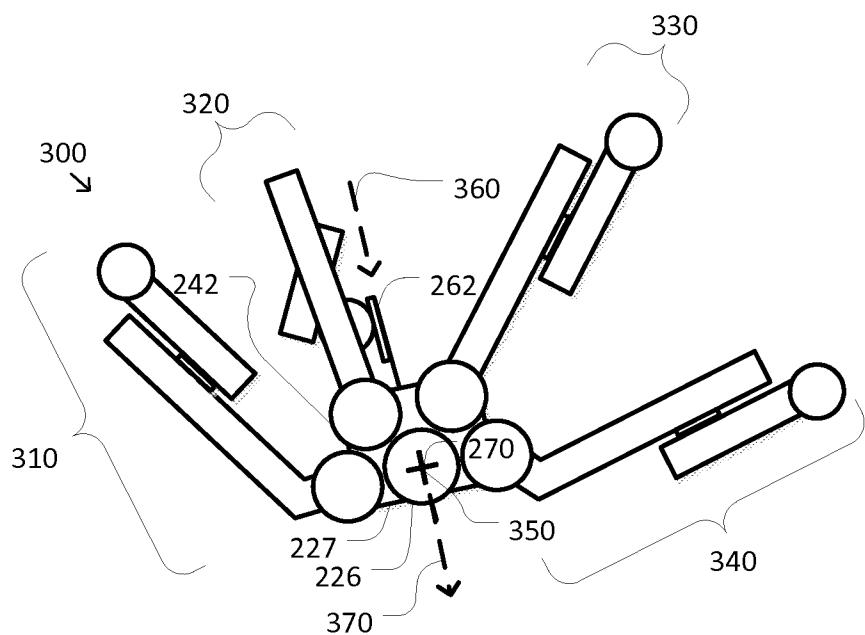


FIG. 3B

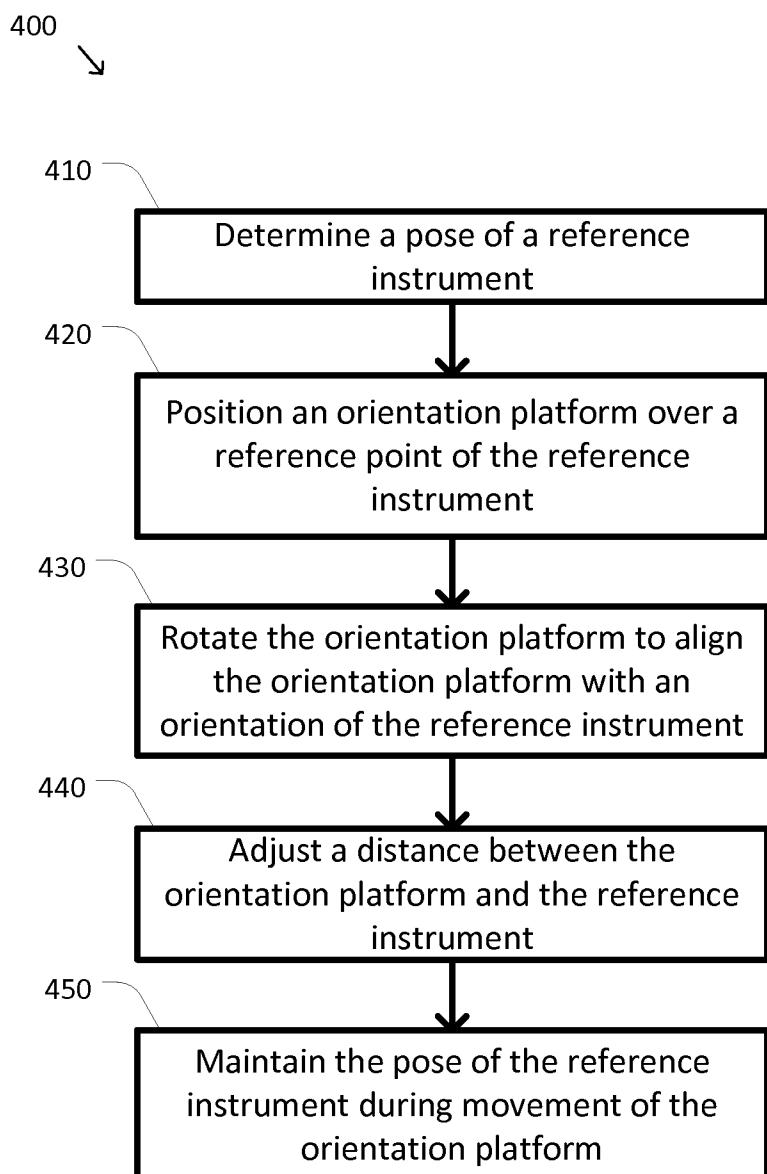


FIG. 4

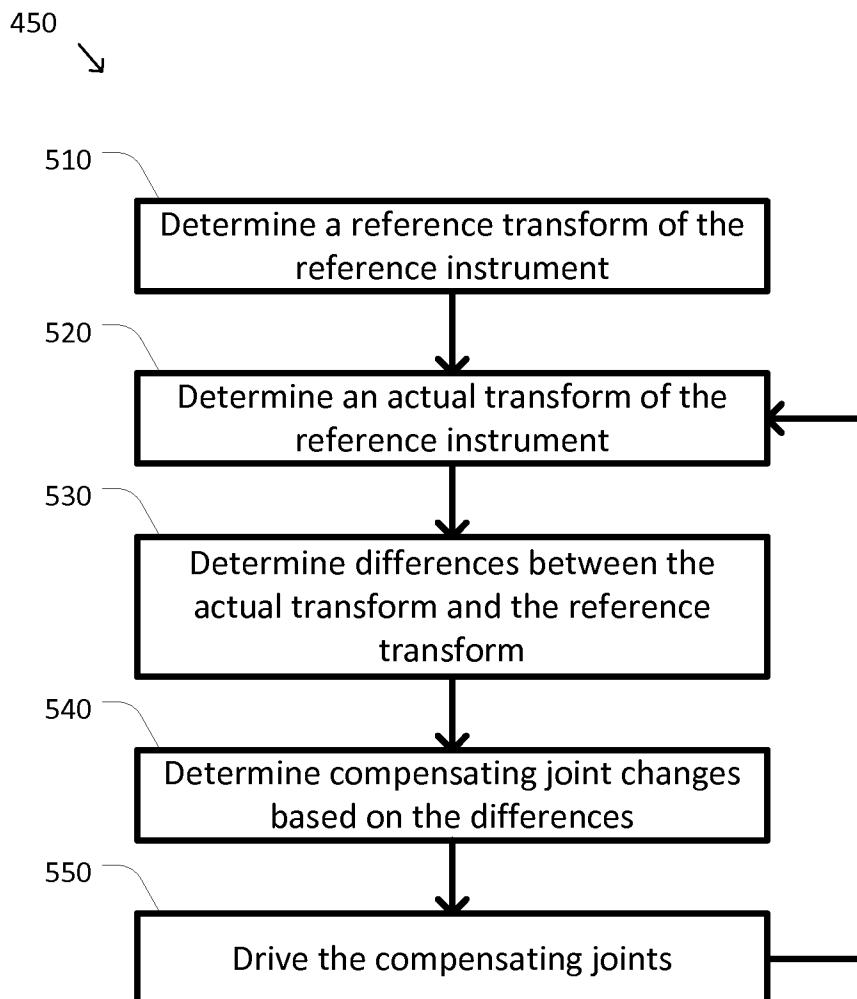


FIG. 5

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2015/021097

A. CLASSIFICATION OF SUBJECT MATTER

A61B 19/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61B 19/00; A61B 1/00; A61B 1/06; B25J 9/06; B25J 9/16Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: manipulator, collision, avoidance, orienting, platform, yaw, roll, pitch, set up, joints, mounting, aligning, target

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2013-0096576 A1 (COOPER, T. G. et al.) 18 April 2013 See paragraphs [0046]-[0066]; claims 31-51; figures 5A-12C.	1-15, 21-40, 42-45
A		16-20, 41
A	EP 0571827 A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 01 December 1993 See column 5, line 18 - column 21, line 33; figures 1-10.	1-45
A	US 2003-0021107 A1 (HOWEEL, C. A. et al.) 30 January 2003 See paragraphs [0052]-[0150]; figures 1-24.	1-45
A	US 2014-0031983 A1 (LOW, T. P. et al.) 30 January 2014 See paragraphs [0025]-[0064]; figures 1-13.	1-45
A	US 2010-0204713 A1 (RUIZ MORALES, E.) 12 August 2010 See paragraphs [0069]-[0153]; figures 1-30.	1-45

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 29 June 2015 (29.06.2015)	Date of mailing of the international search report 01 July 2015 (01.07.2015)
Name and mailing address of the ISA/KR International Application Division Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea Facsimile No. +82-42-472-7140	Authorized officer Han, Inho Telephone No. +82-42-481-3362

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2015/021097

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2013-0096576 A1	18/04/2013	CN 101106952 A CN 101106952 B CN 101664339 A CN 101664339 B CN 102415915 A CN 102579133 A CN 102813553 A CN 102813553 B CN 104042347 A EP 1841379 A1 EP 1841379 B1 EP 2263590 A2 EP 2263590 A3 EP 2263591 A2 EP 2263591 A3 EP 2329790 A2 EP 2537483 A2 JP 2008-528130 A JP 2012-020155 A JP 2012-020156 A JP 2012-143589 A JP 2014-028296 A JP 2014-158967 A JP 2014-239923 A JP 5500734 B2 JP 5622694 B2 US 2006-0167440 A1 US 2009-0163931 A1 US 2012-0277764 A1 US 2014-0243852 A1 US 7763015 B2 US 8348931 B2 US 8834489 B2 WO 2006-079108 A1	16/01/2008 09/11/2011 10/03/2010 10/10/2012 18/04/2012 18/07/2012 12/12/2012 21/01/2015 17/09/2014 10/10/2007 26/09/2012 22/12/2010 12/12/2012 22/12/2010 19/12/2012 08/06/2011 26/12/2012 31/07/2008 02/02/2012 02/02/2012 02/08/2012 13/02/2014 04/09/2014 25/12/2014 21/05/2014 12/11/2014 27/07/2006 25/06/2009 01/11/2012 28/08/2014 27/07/2010 08/01/2013 16/09/2014 27/07/2006
EP 0571827 A1	01/12/1993	EP 0571827 B1 JP 06-030896 A US 2009-0048611 A1 US 5279309 A US 5402801 A US 5417210 A US 5445166 A US 5572999 A US 5630431 A US 5695500 A US 5749362 A US 5950629 A US 5976156 A US 6024695 A	25/11/1998 08/02/1994 19/02/2009 18/01/1994 04/04/1995 23/05/1995 29/08/1995 12/11/1996 20/05/1997 09/12/1997 12/05/1998 14/09/1999 02/11/1999 15/02/2000

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2015/021097

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		US 6201984 B1 US 6231526 B1 US 6547782 B1 US 7447537 B1 US 8123675 B2	13/03/2001 15/05/2001 15/04/2003 04/11/2008 28/02/2012
US 2003-0021107 A1	30/01/2003	AU 2001-25975 A1 CA 2395377 A1 CA 2395377 C EP 1239805 A1 EP 1239805 B1 JP 04353668 B2 JP 2003-517883 A US 2001-0030683 A1 US 2002-0015296 A1 US 6471363 B1 US 6639623 B2 US 6899442 B2 WO 01-45627 A1	03/07/2001 28/06/2001 19/02/2008 18/09/2002 14/06/2006 28/10/2009 03/06/2003 18/10/2001 07/02/2002 29/10/2002 28/10/2003 31/05/2005 28/06/2001
US 2014-0031983 A1	30/01/2014	EP 2688717 A2 EP 2688720 A2 JP 2014-508658 A JP 2014-508659 A US 2014-0035306 A1 US 8833826 B2 WO 2012-129251 A2 WO 2012-129251 A3 WO 2012-129254 A2 WO 2012-129254 A3	29/01/2014 29/01/2014 10/04/2014 10/04/2014 06/02/2014 16/09/2014 27/09/2012 20/12/2012 27/09/2012 03/01/2013
US 2010-0204713 A1	12/08/2010	CA 2635135 A1 CA 2635135 C CN 101421080 A CN 101421080 B EP 1815949 A1 EP 1984150 A2 JP 05148512 B2 JP 2009-525097 A KR 10-1306215 B1 KR 10-2008-0100211 A WO 2007-088206 A2 WO 2007-088206 A3	09/08/2007 08/04/2014 29/04/2009 21/12/2011 08/08/2007 29/10/2008 20/02/2013 09/07/2009 09/09/2013 14/11/2008 09/08/2007 20/09/2007