FISHING MARKER FLOAT WITH HAND REEL

Inventors: Robert E. Bosse, Cumming, GA (US); Timothy M. Gregory, Alpharetta, GA (US); Daniel Lewis Vesuvio, Atlanta, GA (US)

Correspondence Address:
LAVA GROUP LAW BY SMITH & FROHWEIN, LLC
P.O. BOX 88148
ATLANTA, GA 30356 (US)

Appl. No.: 10/852,380
Filed: May 24, 2004

Related U.S. Application Data
Provisional application No. 60/472,758, filed on May 22, 2003.

ABSTRACT
A fishing marker float with hand reel for easy reeling and/or winding of string and weight back onto the marker float. One aspect of the inventive device includes a main floating assembly with a shaft for installation of a float end, string and weight and hand reel crank. The main float is a plastic structure that includes a float end and a two diameter shaft that as a one piece assembly is able to float. The sub float is a plastic structure that slides onto the small diameter shaft of the main float, is free to turn around the said small diameter shaft and is able to float. The weight is a lead or other bendable non corrosive yet of decent mass that attaches to the large diameter shaft of the main float using a 60 foot piece of nylon string. The reel crank is a handle that attaches to the end of the small diameter shaft of the main float so the sub float can be held with one hand while winding the string around the large diameter shaft of the main float.
FISHING MARKER FLOAT WITH HAND REEL

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application for Patent filed on May 22, 2003 and assigned Ser. No. 60/472,758.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not applicable.

REFERENCE TO SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING COMPACT DISK APPENDIX

[0003] Not applicable.

BACKGROUND OF THE INVENTION

[0004] The present invention relates generally to water marker floats and, more particularly, to a marker float that includes a hand reel for easy reeling and/or winding of string and weight back on to the marker float.

[0005] Nothing upsets a true angler more than a pile of tangled fishing line and leads. However, in a sport in which all of the targets exist substantially below the surface of the water, ropes, lines and leads are a necessary evil. And where there are a plurality of ropes, lines and leads, you will typically have a tendency to tangles.

[0006] In an effort to maximize the pillage of an excursion, anglers typically look for underwater structures, such as edges of submerged creek banks or drop offs, brush piles, old road beds, underwater bridges and the like, where fish are likely to gather. When such structures are located, the angler will typically use a marker float or buoy to temporarily mark the location. Thus, as the angler’s boat drifts away from the fishing spot, the marker indicates where the angler should be casting the lures or baited hooks. After fishing the area, the angler then retrieves the marker float or buoy. In a typical day of fishing, ten or more marker floats or buoys may need to be dropped and retrieved. It can be appreciated that the typical marker float or buoy used by an angler has a body and a weight connected to the body by a flexible line which is wound about the body. Two configurations of marker floats or buoys most commonly used by fishermen have a dumbbell-shaped body, such as illustrated in U.S. Pat. No. 3,653,085 to Rolven, and an H-shaped body, such as illustrated in U.S. Pat. No. 5,195,688 to Clemons. Both of these marker floats or buoy bodies have a pair of enlarged end portions connected by a central portion. The flexible tether line is connected at one end to and wound around the central portion of the body. When the body is placed on the surface of the water, the weight causes the body to rotate so as to unwind the tether line and allow the weight to sink in the body of water.

[0007] Rewinding the tether line onto the marker float or buoy body has been carried out heretofore both manually and mechanically. To manually rewind the tether line, the fisherman typically holds one of the enlarged ends of the body in one hand and winds the line about the central portion of the body using the other hand. This is a time-consuming task. And furthermore, in cold water conditions it is also extremely uncomfortable to reach into the water and reel up twenty to fifty feet or more of tether line by hand.

[0008] To mechanically rewind the line, the fisherman may use a separate winding device, such as disclosed in the above-cited Clemons patent, or a winding device combined with the marker buoy, such as disclosed in U.S. Pat. No. 5,087,216 to Noggle and in U.S. Pat. No. 5,234,365 to Cooper et al. The separate winding device of the Clemons patent employs a rotatable tubular member for containing one of the end portions and an electric motor for rotatably driving the tubular member and automatically winding the tether line back onto the central portion of the marker buoy body. The combined winding and marker buoy devices of the Noggle and Cooper et al. patents respectively have manually and automatically operated reels mounted between buoyant side structures. The Clemens, Noggle and Cooper devices represent steps in the right direction toward overcoming the drawbacks associated with directly manually gripping and rewinding the tether line. However, it is perceived by the inventor herein that improvements are still needed in the art to make the rewinding operation more efficient when using marker floats or buoys having the aforementioned configurations.

[0009] In these respects, the fishing marker float or buoy with hand reel according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of easy reeling and/or winding of string and weight back on to the marker float.

SUMMARY OF THE INVENTION

[0010] In view of the foregoing disadvantages inherent in the known types of marker floats or buoys now present in the prior art, the present invention provides a new fishing marker float with hand reel construction wherein the same can be utilized for easy reeling and/or winding of string and weight back on to the marker float.

[0011] Although there have been other marker floats and buoys with winding capabilities, none of these previous inventions have the winding apparatus like or even similar in any fashion to the present invention. One of the general purposes of the present invention, is to provide a new fishing marker float with hand reel that has many of the advantages of the marker float mentioned heretofore and many novel features that result in a new fishing marker float with hand reel which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art marker floats, either alone or in any combination thereof.

[0012] To attain this, the present invention generally comprises a main floating assembly with a two diameter shaft for installation of a float end, string and weight and hand reel crank. The main float is a plastic structure that includes a float end and a two diameter shaft that as a one piece assembly is able to float. The sub float is a plastic structure that slides onto the small diameter shaft of the main float, is free to turn around the said small diameter shaft and is able to float. A weight is attached to the end of a string. The weight can be a lead or other bendable non corrosive material that has a decent mass. The other end of the string or rope is attached to the large diameter shaft of the main float using a 60 foot piece of nylon string. The reel crank is a plastic handle that attaches to the end of the small diameter
shaft of the main float so the sub float can be held with one hand while winding the string around the large diameter shaft of the main float.

[0013] There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter. In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. It should also be understood that the fact that various aspects can be included, modified or eliminated from various embodiments does not render those aspects as obvious or defeat the novelty of those aspects. Instead, the present invention is described in terms of broad language, where necessary, to indicate that other novel and non-obvious aspects of the present invention are not to be limited by other novel and non-obvious aspects. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting.

[0014] An object of the present invention is to provide a fishing marker float with hand reel that will overcome the shortcomings of the prior art devices.

[0015] Another object of the present invention is to provide a fishing marker float with hand reel for easy reeling and/or winding of string and weight back on to the marker float.

[0016] Another object is to provide a fishing marker float with hand reel that enables the user to quickly wind the string back on the float.

[0017] Another object is to provide a fishing marker float with hand reel that is one assembly that is simple and inexpensive.

[0018] Another object is to provide a fishing marker float with hand reel that reacts to the movement of fish in a specific area being fished, especially during tournament fishing.

[0019] Another object is to provide a fishing marker float with hand reel that the string on the float will not tangle during retrieval.

[0020] Another object is to provide a fishing marker float with hand reel that does not interfere with other fishing tasks being performed in the same general area.

[0021] Another object is to provide a fishing marker float with hand reel that is an ideal weight and does not affect the overall true purpose of the marker float.

[0022] Another object is to provide a fishing marker float with hand reel that allows the weight to unwind very fast when the marker float is placed in the water.

[0023] Other objects and advantages of the present invention will become obvious to the reader and it is intended that these objects and advantages are within the scope of the present invention.

[0024] To the accomplishment of the above and related objects, this invention may be embodied in the form illustrated in the accompanying drawings, attention being called to the fact, however, that the drawings are illustrative only, and that changes may be made in the specific construction illustrated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] Various other objects, features and attendant advantages of the present invention will become fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:

[0026] FIGS. 1a-b are perspective drawings of an assembly view of one embodiment of the present invention showing the various components in an assembled manner.

[0027] FIG. 2a is a side view of the main component of an exemplary embodiment of the present invention.

[0028] FIG. 2b is an end view of the main component of an exemplary embodiment of the present invention.

[0029] FIG. 3a is an end view of another component of an exemplary embodiment of the present invention.

[0030] FIG. 3b is a side view of another component of an exemplary embodiment of the present invention.

[0031] FIG. 4 is a side view of an exemplary weight component of the float that attaches to the main component.

[0032] FIG. 5a is a side view of an exemplary embodiment of the reel crank component of the marker float.

[0033] FIG. 5b is an end view of an exemplary embodiment of the reel crank component of the marker float.

[0034] FIGS. 6a-d are side views of alternate embodiments for the shaft of the marker float.

DETAILED DESCRIPTION OF THE INVENTION

[0035] Turning now to the drawings, in which like labels refer to like elements throughout the several views, various aspects and features of the present invention are described. In the present invention includes a winding marker buoy that provides a novel advancement in the art. The present invention can be incorporated into various embodiments but in its most basic structure, the present invention includes a floating member that is generally dumbbell shaped in that it includes a shaft with two larger members at each end of the shaft. At least of the larger members is configured to rotate freely, or at least with some ease. A crank or reel is attached, either directly or indirectly to the shaft, and can be employed to rotate the shaft. A string can be attached to the shaft of the floating member and a weight or anchor can be attached to the other end of the string. In operation, a fully wound floating member can be placed into the water to mark a location. The anchor begins to sink into the water causing the floating member to rotate as the string unwinds. Once the anchor reaches the bottom of the body of water, the string no longer unwinds. Weights can be included within the floating member to further prevent or discourage the floating member from rotating once the anchor reaches to floor of the water body. When retrieving the floating
member, a user can grasp the larger member of the floating member and then begin turning the shaft with the crank. This will result in winding the string back onto the shaft. Once the string is fully wound, the floating member can be stored.

[0036] More specifically, FIGS. 1-5 illustrate the components of one embodiment of the present invention. FIGS. 1-5 illustrate a fishing marker float with hand reel, which comprises a main floating assembly with a two diameter shaft for installation of a float end, string and weight and hand reel crank.

[0037] FIGS. 1a-b are perspective drawings of an assembly view of one embodiment of the present invention showing the various components in an assembled manner. In the illustrated embodiment, the marker buoy 100 includes a main float 120. The main float 120 is preferably a plastic structure that includes a float end 122 and a two diameter shaft 124 that as a one piece assembly is able to float. The marker buoy 100 also includes a sub float 130. The sub float 130 is preferably a plastic structure that slides onto a small diameter shaft of the main float 120, is free to turn around the small diameter shaft and is able to float. A weight 140 attaches to the large diameter shaft of the main float 120 using a piece of nylon string 180 (a 60 foot nylon string is typically sufficient for most lake fishing). The weight is typically and preferably constructed of lead or other bendable non-corrosive or corrosive resistant material that has a substantial mass in comparison to water. The marker buoy 100 also includes a reel crank 150. The reel crank 150 is a handle that attaches to the end of the small diameter shaft of the main float 120 so the sub float 130 can be held with one hand while winding the string 180 around the shaft 124 of the main float 120.

[0038] FIG. 2a is a side view of the main component of an exemplary embodiment of the present invention. FIG. 2b is an end view of the main component of an exemplary embodiment of the present invention. The main float 120 is preferably comprised of a molded plastic octagon shaped sphere 122 included or attached as one piece to a two diameter shaft 124 that starts out larger from the sphere end. The main float 120 is preferably made of hard plastic that as an assembly is hollow on the sphere end 122 with one of the octagon sections 126 weighing more than the other seven and the shaft 124 being solid plastic allowing for the reel crank 150 to fasten to the end 128. The main float 120 as an assembly is sealed as one piece so that it is able to float. More than one piece of plastic mold may be utilized in constructing the main float 120 detail of the invention. The main float end 122 and the two diameter shaft 124 can be molded separately as long as the final main float is one assembly when manufacturing is complete.

[0039] FIG. 3a is an end view of another component of an exemplary embodiment of the present invention. FIG. 3b is a side view of another component of an exemplary embodiment of the present invention. The sub float 130 illustrated in FIGS. 3a-b is preferably a plastic structure that slides on to the small diameter portion 127 of the shaft 124 of the main float 120, is free to turn around the small diameter portion 127 of the shaft 124 and is able to float. The sub float 130 is preferably made of a molded plastic octagon shaped sphere similar in size to the octagon shaped sphere 122 of the main float 120. The inside diameter 132 of the sub float 130 must consist of a tube that assures the inside of the sphere is sealed and able to slide over the small diameter portion 127 of the shaft 124 on the main float 120. The sub float 130 is made of hard plastic and preferably one of the octagon sections 134 weighs more than the other seven. The sub float 130 as an assembly is sealed as one piece so that it is able to float. More than one piece of plastic mold may be utilized in constructing the sub float 130 detail of the invention. The octagon float end and the inside diameter tube can be molded separately as long as the final sub float is one assembly when manufacturing is complete.

[0040] The term two diameter shaft means that preferably, the shaft will include one portion that has a first diameter and a second portion that has a second diameter that is less than the first diameter. The purpose of the two diameter shaft is to provide a flange or surface against which the sub float 130 can rest against and thereby prevent the sub float 130 from traversing the entire length of the shaft 124. It should be appreciated that this function can also be accomplished using other configurations. One alternate configuration is to use a raised ring or flange around the shaft. The ring or flange can operate to prevent the sub float from moving across the entire length of the shaft similarly as the edge of the larger diameter portion of the shaft. Those skilled in the art will appreciate that other configurations can also fall within the definition of a two diameter shaft. In fact, any mechanism that prevents the sub float from traversing the length of the shaft by increasing the diameter of the shaft is anticipated. In addition, the shaft may include more than two diameters and still meet the definition of the present invention.

[0041] FIG. 4 is a side view of an exemplary weight component of the float that attaches to the main component. The weight 140 is a lead or other bendable non corrosive or corrosive resistant material that has a mass that is substantially greater than the mass of water. The weight 140 attaches to the large diameter portion 129 shaft of the main float 120 using a string or rope, such as nylon string 180. A typical length for nylon string 180 is 60 feet. The weight 140 is preferably comprised of lead or other non corrosive metal that can be bent and connected to 60 feet of nylon string 180. The weight 140 must have a thru hole for the nylon string 180 to attach thus making the weight 140 and nylon string 180 one assembly. The overall length, width and thickness of the weight 140 can vary to some extent as long as the weight is enough to allow the nylon string 180 to unwind around the shaft 124 of the main float 120.

[0042] FIG. 5a is a side view of an exemplary embodiment of the reel crank component of the marker float. FIG. 5b is an end view of an exemplary embodiment of the reel crank component of the marker float. The reel crank 150 is a handle that attaches to the end 128 of the small diameter portion 127 of the shaft 124 of the main float 120 so the sub float 130 can be held with one hand while winding the string around the large diameter portion 129 of the shaft 124 of the main float 120. The reel crank 150 is preferably comprised of plastic, aluminum or other non corrosive material that can be fastened to the end 128 of the small diameter portion 127 of the shaft 124 of the main float 120. The reel crank 150 preferably includes a thru hole in the center so that it can be connected to the end 128 of the shaft 124. The reel crank 150 can be attached to the shaft 124 in a variety of alternate manners also. For instance, the crank reel 150 can be mounted on the surface of the shaft 124 and clamped down
to prevent the crank reel 150 from slipping when it is turned. The shaft 124 may also include a contoured surface area that can be slid into a hollowed out portion or hole of the crank arm 150. This configuration is similar to a socket wrench type connection. A contoured end of the shaft 124 is inserted into a similarly shaped contoured hole in the crank reel 150.

[0043] The overall length, width and thickness of the reel crank 150 can vary to some extent as long as it can function in the manner intended. The sub float 130 slides over the small diameter portion 127 of the shaft 124 of the main float 120 and stops when it butts up against the edge of the large diameter portion 129 of the shaft 124 of the main float 122. The reel crank 150 is then fastened to the center end 128 of the small diameter portion 127 of the shaft 124 of the main float 120 thus securing the sub float from being able to slide off of the main float 120.

[0044] One end of the nylon string 180 is connected to the weight 140 and the other end is fastened to the large diameter shaft 129 of the main float 120. Alternatively, the reel crank 150 may be attached in any manner to the small diameter portion 127 of the shaft 124 of the main float 120 as long as it is secured in such a manner that the sub float 130 does not come off. The nylon string 180 that attaches to the large diameter portion 129 of the shaft 124 of the main float 120 can be fastened in any manner as long as it does not come off when the string is fully extended or completely unwound.

[0045] When using an embodiment of the present invention, the user first determines the desired location in the water to drop the present invention, thereby marking a spot. Once the user drops the marker float 100 into the water, the weight of the weight 140 descends and thereby causing the nylon string 180 to unravel from around the large diameter portion 129 of the main float 122 until the weight stops 140 on the bottom of the lake, pond or other fishing water source (or until the nylon string 180 is completely unwound). When the user is ready to pull the marker float 100 from the water, the user holds the present invention in one hand by the sub float 130 and turns the main float 122 utilizing the reel crank thus wrapping the nylon string 180 around the large diameter portion 129 of the shaft 124 of the main float 122. The user reels the nylon string 180 all the way to the weight 140 itself then bends the weight 140 around the large diameter portion 129 of the shaft 124.

[0046] As to a further discussion of the manner of usage and operation of the present invention, the same should be apparent from the above description. Accordingly, no further discussion relating to the manner of usage and operation will be provided.

[0047] FIGS. 1-5 show an exemplary embodiment of the present invention. An overall novel aspect of the present invention is a self-contained marker float that includes the ability to wind the string attached to the anchor or weight onto the marker float. Thus, it will be appreciated that multiple other configurations may also be employed to satisfy this novel aspect of the present invention. One such alternative embodiment is to attach the crank reel 150 to the opposite end of the main float 120. Thus, the crank reel 150 would be attached to the large sphere 122 of the main float 120. In operation, the user can still grasp the sub float 130 and then turn the crank reel 150 to rewind the nylon string 180.

[0048] In another embodiment, both the large sphere 122 and the sub float 130 can be rotatably attached to the shaft 124. For instance, the large diameter portion of the shaft in this embodiment would be in the middle portion of the shaft and the two ends of the shaft would have a narrower diameter. The sphere 122 and the sub float 130 would then be secured onto the shaft in a variety of techniques including the attachment of the crank reel 150, a washer, or incorporating a flange into the end of the shaft that facilitates sliding the sphere 122 or the sub float 130 onto the shaft but provides great resistance when trying to remove the same. In this embodiment, the user can grasp either the sphere 122 or the sub float 130 in one hand and turn the crank reel 150 with the other hand to rewind the nylon string 180.

[0049] In yet another embodiment, the crank reel 150 can be eliminated all together. In this embodiment, the sphere 122 is rigidly attached to the shaft 124 so that it does not rotate. The sub float 130 is attached as previously described. To rewind the nylon string 180, the user grasps the sub float 130 in one hand and then turns the sphere 122 with the other hand thereby rewinding the nylon string 180 onto the shaft 124.

[0050] It should also be appreciated that the shape of the marker float 100 is not limited to being octagon shaped. The shape of the sphere 122 and the sub float could be round, square, triangular or any of a variety of other shapes.

[0051] It should also be appreciated that the shape of the shaft 124 can assume a variety of configurations. FIGS. 6a-d are side views of alternate embodiments for the shaft of the marker float. The shaft in FIG. 6a includes a main portion 610, a rim 612 and a short portion 614. The sphere 122 or the equivalent thereof is secured onto the main portion 610. The sub float 130 is then slid over the short portion 614. The sub float 130 will include an interior channel that has a diameter slightly larger than the diameter of the short portion 614 of the shaft. The sub float is then held in place by either a crank reel 150 or some other technique. The rim 612 prevents the sub float 130 from traversing the entire length of the shaft.

[0052] The shaft in FIG. 6b is similar to the one illustrated in FIG. 6a, with the exception that rather than a rim 612, on or more protrusions 622 securely fastened to the shaft or integral to the shaft are used for the sub float 130 to abut against.

[0053] The shaft in FIG. 6c is particular suitable for above-described embodiment in which the sphere 122 and the sub float 130 are both able to freely rotate on the shaft, but is also applicable to an embodiment in which the sphere is securely attached to the shaft. In this embodiment of the shaft, the sphere 122 is mounted on a first short portion 630 of the shaft and the sub float 130 is mounted on the second short portion 634. The middle portion 632 of the shaft has a larger diameter than the first and second short portion thereby creating edges 636 and 638 for the sphere 122 and the sub float 130 to abut against respectfully.

[0054] The shaft in FIG. 6d is tapered from a thick end 640 to a thin end 644. A washer 642 can be installed onto the shaft prior to the sub float 130. The washer 642 serves as an edge for the sub float 130 to abut against. Those skilled in the art will appreciate that the entire shaft or just portions of the shaft may be tapered.
Other embodiments that are not illustrated are also anticipated by the present invention. For instance, the sub float could be attached to an axle that is coaxially entered inside the center shaft and connected similar to a bicycle axle with a ball-bearings or other similar structure. The present invention is not limited to any particular structure but rather, the present invention is directed towards any structure that allows for a stationary piece (such as the sub float) and a rotating piece that allows the string to be wound onto the center shaft.

With respect to the above description, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention. Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention. The invention has been described as using or being constructed of particular materials. However, those skilled in the art will appreciate that other materials may also be used in the construction of an embodiment of present invention. For instance, high density foam, thin aluminum, or other materials may also be used without departing from the spirit and scope of the present invention.

What is claimed is:

1. An apparatus for marking water positions, the apparatus comprising:
 a central shaft having a first end and a second end;
 a first water tight float that is coaxially affixed to the first end of the central shaft;
 a second water tight float including a passage through a central portion of the float and that is coaxially and rotatably mounted onto the second end of the central shaft, wherein the central shaft can be freely rotated within the passage.

2. The apparatus of claim 1, wherein the central shaft defines a surface near the second end of the central shaft, the surface operating to prevent the second water tight float from sliding towards the first end of the central shaft.

3. The apparatus of claim 2, wherein the surface is a ringed circumference around the central shaft, the ringed circumference having a diameter greater than the diameter of the central shaft.

4. The apparatus of claim 2, wherein the surface is a transition from a first diameter to a second diameter, the first diameter being greater than the second diameter and the second end having the second diameter.

5. The apparatus of claim 1, wherein a crank reel is mounted to the end portion of the second end of the central shaft, the reel being operative to turn the central shaft when the reel is turned.

6. The apparatus of claim 1, wherein the first water tight float includes weighting on one side of the water tight float so as to restrict rotation of float when the float is resting in water.

7. The apparatus of claim 1, wherein a crank reel is mounted to the end portion of the first end of the central shaft, the reel being operative to turn the central shaft when the reel is turned.

8. The apparatus of claim 1, wherein a crank reel is mounted to the end portion of either the first end or the second end of the central shaft and a first end of a string is fixedly attached to the central shaft, and the second end of the string is attached to a weight.

9. An apparatus for marking water positions, the apparatus comprising:
 a central shaft having a first end, a second end and a protrusion located proximate to the second end, the protrusion extending from the surface of the central shaft;
 a float including a passage through a central portion of the float and that is coaxially and rotatably mounted onto the second end of the central shaft, wherein the central shaft can be freely rotated within the passage;
 a string with a first end attached to the central shaft and a second end attached to a weight; and
 a crank reel this is fixedly attached to one end of the central shaft so that when a user holds the float and turns the crank reel, the central shaft rotates within the passage of the float and thereby wind the string onto the central shaft.

10. The apparatus of claim 9, wherein the central shaft includes a second float that is fixedly attached to the first end of the central shaft, the second float being weighted on one side.

11. An apparatus for marking water positions, the apparatus comprising:
 a central shaft having a first end and a second end and a stop;
 a first water tight float that is coaxially affixed to the first end of the central shaft;
 a second water tight float including a passage through a central portion of the float and that is coaxially and rotatably mounted onto the second end of the central shaft but is prevented from sliding towards the first end of the central shaft by the stop, wherein the central shaft can be freely rotated within the passage.

12. The apparatus of claim 11, wherein the stop is a ringed circumference around the central shaft, the ringed circumference having a diameter greater than the diameter of the central shaft.

13. The apparatus of claim 11, wherein the stop is a transition from a first diameter to a second diameter, the first diameter being greater than the second diameter and the second end having the second diameter.

14. The apparatus of claim 11, wherein the stop is a protrusion from the surface of the central shaft, the protrusion causing the diameter of the central shaft at that location to be greater than the diameter of the passage of the second float.
15. The apparatus of claim 11, wherein a crank reel is mounted to the end portion of the second end of the central shaft, the reel being operative to turn the central shaft when the reel is turned.

16. The apparatus of claim 15, wherein the first water tight float includes weighting on one side of the water tight float so as to restrict rotation of float when the float is resting in water.

17. The apparatus of claim 11, wherein a crank reel is mounted to the end portion of the first end of the central shaft, the reel being operative to turn the central shaft when the reel is turned.

18. The apparatus of claim 11, wherein a crank reel is mounted to the end portion of either the first end or the second end of the central shaft and a first end of a string is fixedly attached to the central shaft, and the second end of the string is attached to a weight.

19. The apparatus of claim 18, wherein when the string is fully wound onto the central shaft and the apparatus is placed into the water, the weight attached to the second end of the string will sink in the water causing the apparatus to rotate on the surface of the water as the string unwinds.

20. The apparatus of claim 19, wherein a user can grasp the second float and turn the crank reel thereby causing the string to rewind onto the central shaft.

* * * * *