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Definition 

The set of all possible symbols Currently in use. 

Atomic symbols The symbols 0 and 1, which are based on the raw 0 and 1 bit values, 
All Subsequently defined Symbols represent tuples that are Dased on symbois Oard 1. 

Character 
Compressed file size 

Data stream 
| 

Dictionary 
|Encoded data Strea? 

Pass 

A symbol that appears in the data stream. 

The number of bits that are required to store the enCOced data stream, the dictionary 
and the symbol-encoding information, 

A sequential stream of characters. 
The terms data stream and text are synonymous in this document. 
A collection of information regarding all symbols (the alphabet). 
A data stream of Huffman encoded Characters. 

The performance of one iteration of the compression procedure applied to the Current 
data stream, 

Symbol 

Symbol-encoding 
information 

Text 

Tuple 

A unit of information. The information that is represented by a symbol can be from 1 
to N binary bits in length. 

Symbols in the alphabet are digitally encoded to reduce the amount of Space 
required to store Or transmit them electronically,The encoding information is stored 
and used to decompress the data later. 

A well Understood method of minimizing the Space required to store a series of 
characters is the use of minimumweighted path length trees, as given by David 
Huffman (D. E. Knuth, The Art of Computer Programming, 1973, Vol. 1, p. 402). 

A sequential stream of characters. 
The terms data stream and text are synonymous in this document, 

Two adjoining characters in the data stream Ortext. The Order of the appearance of 
characters in the tuple is designated as "first" and "ast". The notation fortuples is 
"first-last" to show the Order of appearance in the pair of characters and to avoid 
Confusion of the tuples with real numbers. For example, a tuple of symbol 1 followed 
by symbol () is written as 120. 

In each pass through the data stream, the most highly occurring tuple is determined. 
A new symbois Created to represent the tuple in the data Stream. The symbolstancs 
for and replaces all CCCurrences of the tuple in the data stream, 

F.G. 1 

US 2011/OO16135 A1 

  

  



Patent Application Publication Jan. 20, 2011 Sheet 2 of 50 US 2011/OO16135 A1 

12 

Last 0 || 1 
0 

18 21 19 2O 

FIG. 3 
22 

Last || 0 || 1 
2 

  

  



Patent Application Publication Jan. 20, 2011 Sheet 3 of 50 US 2011/0016135 A1 

C Pythagoerean Theorem 
A A2+ B2= c2 

B 

F.G. 5 

23 

Tuple A2 B2 C2Hypotenuse 

3>7 9 49 58 7.6 

4. 
5 
4 OP4 4x4 3>44S45>4 64 74 
5 OS 1.52s 325 
6 OP6 162>6NP64-656 6>6 7>6 

25 

FIG 7 

  

  

    

  





Patent Application Publication Jan. 20, 2011 Sheet 5 of 50 US 2011/OO16135 A1 

40 

Last o 

Alphabet 

1 || 1 || - 
2 || 1 || 0 
F.G. 13 

    

  

  

    

    

  



Patent Application Publication Jan. 20, 2011 Sheet 6 of 50 US 2011/0016135 A1 

O 1 2 O O O 2 1 2 O O O 2 1 2 O O O 21 20 OO 2 1 2 OO O 2 1 
2 O OO 2 1 2 O OO 2 1 2 O O O 2 1 2 O OO 2 1 2 O O O 2 1 2 O 
O O 2 1 2 O OO 2 1 2 O OO 21 2 O O O 2 1 2 OOO 2 1 2 OOO 
2 12 O O O 2 1 2 O O O 2 1 2 O O O 21 20 OO 2 1 2 OO O 2 1 

F.G. 14 2 O O O 2 1 2 O OO 2 1 2 OOO 2 1 2 O O O 2 1 2 OO O 2 1 2 O 
O O 2 1 2 O O 2 O 1 2 O OO 2 1 2 O O O 2 2 OO O 2 12 O O2 
O 1 2 O O O 2 1 2 O OO 2 12 O O O 2 1 2 OOO 2 1 2 O O O 2 1 
2 O OO 2 1 2 O OO 2 1 2 OOO 2 1 2 O O 2 O 1 2 O O O 2 1 2 O 
O 2 O 1 2 O O 2 O 1 2 O O 20 1 2 O O 2 O 1 2 O O 2 O 1 2 O O2 

Read the Huffman Code from 
the root to the leaves, 

Right 
145 Branch 

Symbol Huffma 
Symbol Count Code 

Huffman 0 || 144 0. 
Tree 
- 2 96 11 

50 100 

  

  

  



Patent Application Publication Jan. 20, 2011 Sheet 7 of 50 US 2011/OO16135 A1 

52 

53 54 / 

0 || 0 || 1 || 144. 144 

2 11 2 96 192 

Compression Overhead Current 

File information 8 

55 

F.G. 17 

56 

overhead o 25 FIG. 19 
Compression Ratio 132/ 

  

  

    

    

    

  

  

    

    

  



Patent Application Publication Jan. 20, 2011 Sheet 8 of 50 US 2011/OO16135 A1 

Last || 0 || 1 || 2 
0 || 0-0 1-0 2-0 

FG. 20 

last of 1 2 
0 || 48 || 0 (56) 

401 

pnape 

    

  

    

  

  

  



US 2011/0016135 A1 Jan. 20, 2011 Sheet 9 of 50 Patent Application Publication 

30,111 

F.G. 24 

Huffman Bit 

FG. 25 

  



Patent Application Publication Jan. 20, 2011 Sheet 10 of 50 US 2011/OO16135 A1 

571 

File information 8 
Dictionary Length 6 

581 

IZE 

overhead of 38 
Total BitS Needed 

Compression Ratio 14.1% 

3511 
/ 

Last 0 1 2 3 
o 0-01-02-03-0 

0-11-12-13-1 
2 0-21-22-23-2 
3 0-31-32-33-3 

FG. 27 

FG. 28 

    

    

  

  

    

    

    

  



Patent Application Publication Jan. 20, 2011 Sheet 11 of 50 US 2011/OO16135 A1 

4011 

pnape 

  



US 2011/OO16135 A1 Jan. 20, 2011 Sheet 12 of 50 Patent Application Publication 

30 

FIG. 31 

o 
Code Count 

FG. 32 

Symbol Total 
Count Bits length 

340 Total Bits for Data 

FG 33 

  



Patent Application Publication Jan. 20, 2011 Sheet 13 of 50 US 2011/OO16135 A1 

5711 

Compression 

File information a 
Dictionary Length 10 10 

Tree Length 24 
Total Overhead 

ZE 

overhead O 42 

FIG 35 35111 

Last || 0 || 1 || 2 || 3 || 4 
0 || 0-0 1-0 2-0 3-04-0 

4 0-4 1-4 2-4 3-4 4-4 
FG. 36 

  

  

    

      

    

  



Patent Application Publication Jan. 20, 2011 Sheet 14 of 50 US 2011/OO16135 A1 

401 11 

O p 

  



Patent Application Publication Jan. 20, 2011 Sheet 15 of 50 US 2011/OO16135 A1 

3O-5 

O 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 
O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 
5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 3 5 O 2 5 O 2 5 O 2 5 3 5 
O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 3 5 O 2 5 3 5 3 
5 3 53 5. 3 5 2 

41-4 

Symbol Huffman 

10 40 10 
1 O - 

40 01 2 O1 

3 8 001 

Code Length Count Bits 

O 10 || 2 | 40 80 
2 01 2 40 80 
3 001 || 3 || 8 24 

  

    

    

  



Patent Application Publication Jan. 20, 2011 Sheet 16 of 50 US 2011/OO16135 A1 

67111 

File information 8 

Total overhead (48 

IZE 

overhead || 0 || 48 
Total Bits Needed 384 (33) 

FG. 43 35-4 

Last O 1 2 3 4 5 
0 || 0-0 || 10 2>0 30 4-0 5-0 

FG. 44 

    

    

    

    

  



Patent Application Publication Jan. 20, 2011 Sheet 17 of 50 US 2011/0016135 A1 

HING IF 5 10,398 || 0 || 0 
  

  

      

    

  

  

  



Patent Application Publication Jan. 20, 2011 Sheet 18 of 50 US 2011/OO16135 A1 

41-5 

Symbol Huffman 

O 4 

Code Length Count Bits 

0 || 0 1 40 40 

3 || 101| 4 || 8 32 FIG. 49 
5 100 3 9 27 
6 11 2 39 78 

57-4 

File information 8 
F.G. 50 

    

  

  

    

    

    

  

    

  



Patent Application Publication Jan. 20, 2011 Sheet 19 of 50 US 2011/0016135A1 

58-4 

Compressed File 

overhead O 59 

F.G. 51 

35-5 

Last 0 | 1 || 2 || 3 || 4 || 5 || 6 
0 || 0-0 1-0 2-03-04-05-06-0 

4 0-4 1-4 2-4 3-4 4-4 5-4 6-4 

6 0-6 1-62-63-64-65-66-6 
FG. 52 

    

    

    

    

    

  



Patent Application Publication Jan. 20, 2011 Sheet 20 of 50 US 2011/0016135A1 

40-5 

  



Patent Application Publication Jan. 20, 2011 Sheet 21 of 50 US 2011/OO16135 A1 

r 
O 577 777 7777 777 777 777 7 777 777 77 357 
77 35 77 777 777 357 35 35 353 53 52 

41-6 

Symbol Huffman 

0 1 0100 

52-5 

Code 

O O1 OO 

2 O1011 

EOF 

  

  



Patent Application Publication Jan. 20, 2011 Sheet 22 of 50 US 2011/OO16135 A1 

ROOt Read the Huffman Code from 
the root to the leaves. 59 

1 Left 
Branch Right 

39 Branch 

Huffman 
Tree 

57.5 

File information 8 

FIG 59 

    

    

  

  

  

  



Patent Application Publication Jan. 20, 2011 Sheet 23 of 50 US 2011/001 6135 A1 

58-5 

Size 

overhead 0 71 

F.G. 60 

160% 

14.0% 

120% 

100% 

80% 

60% 

40% 

20% i is 

1. 3 5 7 9 11 13 15 17 19 21 23 25 27 

Passes 

FG 61 

  

  

  

  



Patent Application Publication Jan. 20, 2011 Sheet 24 of 50 US 2011/OO16135 A1 

Pre-FX Order Parse of the Huffman Tree 
Path Symbol | Binary Symbol 

110 O101 
OOOO 
1OOO 
OO 10 

(8, EOF) (2) 
62 

Powers Value Value of Bits 

23 a 1000 4 

F.G. 64 

    

  

  



Patent Application Publication Jan. 20, 2011 Sheet 25 of 50 US 2011/OO16135 A1 

63 

Bits Binary Walues 
per Stored 

Last So First Last BitS 
| 2 | 1 || 0 || 1 || 1 c 10 

3 2 0 2 10 00 1000 

| 5 || 4 || 0 || 3 || 100 oooooooo 
6 2 5 3 010 101010101 
7 || 0 || 6 || 3 || 000 110000110 

F.G. 65 

ot 
O 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 5 
7 : 3 5 7 7 7 7 3 5 3 5 3 5 3 3 5 3 5, 2 EOE 

F.G. 66 

  

  

    

    

    

  



Patent Application Publication Jan. 20, 2011 Sheet 26 of 50 US 2011/OO16135 A1 

68 

/ 
1 1 O OO O 100 OO 1 1 1 1 1 1 1 1 1 

1 O OO O OC O11 OO O OO O1 OO O OO O11 OO 
OO 1 O1 OO 

69 

.....------------- -- 

Fie Symbol 
Type Width Huffman Tree 

-no 

Dictionary Encoded Data 

EOF Padi Bits 

11 OO1 O11 OOOOOO1 OOOOOOOOOO 11 OO11. 

1 OOOOO1111 OOCOOOO 101 OOO110 O 1000011111111111 

111111111111111 O1 CO 111 O11 OO 111111 O1 OO1 O11 OO 

OOOO 11 OOO11 OOO1. OC 01 011 OOO X 

7 
69b 

F.G. 69 

70 

OOOOOOOO 11 OOO1 OOOOOO1 OOOOOOOOOO 11 OC 111 OOOOO 11 OOOOOO1 OOOOOO 
0 1 000011111 1 11 1 101 OO (1 OO 111 OOOO! OOOOOO 
11 OOOOOOOOO 1011 Oi O10 x 

FG. 70 

  

  



Patent Application Publication Jan. 20, 2011 Sheet 27 of 50 US 2011/OO16135 A1 

O 
OO 10 1 OOO OO10 

(8,EOF) (2) (8,EOF) (2) 
Final Huffman Tree 

FG. 71 

  

  



Patent Application Publication Jan. 20, 2011 Sheet 28 of 50 US 2011/OO16135 A1 

73 

Symbol First 

RRLLE 1100C 
RLRRLLL O1100C 
IRLRRILLO101100C 

  



Patent Application Publication Jan. 20, 2011 Sheet 29 of 50 

DeCode Tree 

FG. 75 

DeCode Tree 

FIG 76 

DeCode Table 
Branch Path Original Bits 

O 
1. 
O 

RL 100 
OO 

COO 
C1 COO 

LRRRILLO 101,000 

Decode Table 
Symbol Branch Path Original Bits 
A O. R. . . . . . . . . . . . 

RR, 1100 
RRLLL 11CO 

6 RLRRLL C11 COO 
7 LRLRRLLL OC11 COO 

US 2011/OO16135 A1 

  

  

  

  

  



Patent Application Publication Jan. 20, 2011 Sheet 30 of 50 US 2011/OO16135 A1 

Original Bits 
I. O 
R l 
RL 

RLL 1.O. 
... RRLI 1100 
ARRELEASC) 
RERRILL 1C11000 

7 IRLRRLLL O1C1100) 
Huffman ree 

DeCode Tree 

FIG 77 

Huffman Tree 

FG. 78 

  

  

  

  

  



Patent Application Publication Jan. 20, 2011 Sheet 31 of 50 US 2011/OO16135 A1 

79 

DeCode able 
Branch Path|Original Bits 

O. 
R 

O 
1. 

111 COO 
Oi O1CO 

- 2 10 

4 RRLI 1100 
1CO 

6 RRRLL 
7 IRLRRL. 

DeCode Tree 

FG. 79 

DeCode Table 
Branch Path Original Bits 

RLRRLL 
LRLRRLL, O1C1000 

DeCode Tree 

FG. 8O 

  

  

  

      

  

    

  

  

    

  

  



Patent Application Publication Jan. 20, 2011 Sheet 32 of 50 US 2011/OO16135 A1 

81 

DeCode Table 
SymbolBranch Path. Original Bits 

L O 
R 1 
RL O 
R 1 OO 

RRLL 1100 
RRELL 110 OO 

RRRL.L. 101100 
LRRRLL, OO1100 

Huffman Tree 

Decode Tree 

FG. 81 

    

    

    

  

  



Patent Application Publication Jan. 20, 2011 Sheet 33 of 50 US 2011/OO16135 A1 

Encoded Symbol and Original Bits Represented 
Data 
O 1 OO 

SV mbo 7 = 0 1 0 1 1 OOO 

S 
Symbo 7 at 01 0 1 1 OOO 
S 
Symbo 7 = 0 1 0 1 1 OOO 

symbol 7 = 01011000 
SWimbo 7 OO 11 OOO 

mbo 7 c O1 O11 OOO 
moo ( et OO1 1 OOO 

O 7 - OO1 1 OOO 

S 
S 
S 

S ra 

S 
S 

82 

mO 7 - OO 11 OOO 
mbo 7 = 0 1 0 1 1 OOO 

SWrmo 3 = 1 OO 
Symbol 5 - 11 OOO 

SVO 5 = 11 OOO 
11 11 

FG. 82A 

  

  

  

  

  

    

    

  

  

    

  



Patent Application Publication Jan. 20, 2011 Sheet 34 of 50 US 2011/OO16135 A1 

Symbol and Original Bits Represented 
Data 

SV mbo 7 = 0 1 011 OOO 
SVimbo 7 - 01 011 OOO 
Symbo 7 = 0 1 0 1 1 OOO 

O11 SVmbol 3 - 1 OO 
SV mbo 5 = 11 OOO 
SWmbo 7 at OO 11 OOO 
mbo 7 = 0 1 011 OOO 
mbo 7 x 01 011 OOO 
mbO 7 O1 O11 OOO 
mbo 7 - O 1011 OOO 
mbo 7 - O 1011 OOO 
mbo 7 = O1011 OOO 
mbo 7 in O1 O11 OOO 
mbO3 = 1 OO 
mbo 5 - 11 OOO 
mbo 7 = 0 1 0 1 1 OOO 
mbo 3 = 100 
mbO 5 - 11 OOO 
mbO3 at 100 
mbO 5 - 11 OOO 
mbol 3 = 100 
mbO 5 = 11 OOO 
mbO3 - 100 
mbO 5 = 11 OOO 
mbo. 3 - 1 OO 
mo 5 E 11 OOO 
mbol 2 - 10 
OF-done 

FG. 82B 

82 

silio 
S 

O11 

i 11 11 
SAG 

O11 S 

O11 

O11 

O1011 
O1010 

    

    

  

    



Patent Application Publication Jan. 20, 2011 Sheet 35 of 50 US 2011/0016135 A1 

To other - 
computing devices 18O y 

F.G. 83 

  



Patent Application Publication Jan. 20, 2011 Sheet 36 of 50 US 2011/0016135A1 

Key Iriff Tatif 

200 

Fig. 84 

  



Patent Application Publication Jan. 20, 2011 Sheet 37 of 50 US 2011/OO16135 A1 

  



Patent Application Publication Jan. 20, 2011 Sheet 38 of 50 

Symbol Branch Path 
O 

R 
R 

Decode able 

US 2011/OO16135 A1 

Original Bits 

1) 

FG. 86 

RLL C) 
RRL, 11 CO 

RRLLL 11 OCO 
6 RRLLERLL 110.001CO 

8 RRLL.L.R. 1100001) 

  

    

    

  

  



Patent Application Publication Jan. 20, 2011 Sheet 39 of 50 US 2011/0016135A1 

riairs Bit: 
t 

FL. 
PFT.L. 

FRLLE.F.L.L ill. 

s RRT.L.L.J., 

FFT.I.L.I.F.T. l 

FRLE. 

l 

SimCl Brah Fath 

TFE 

Fig. 87 

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Jan. 20, 2011 Sheet 40 of 50 US 2011/0016135 A1 

L. L. noooollooloo ll. El ll. 11:00.100 locool 
-- - --- ----- '-- '-...-- '- , r '-- 

E. 8 8 3. -240 1 ll. l l l lls. . . . . Eli ... 1 11.000l. 110 0010) 
24 -- " - '- --- *-m- '-...- 

... .' ' 
- '. --- 

8. : 8 

ill ill 3 l l 
k. 

lili lll: lili lili L. li. 
" . u- '-sur --" --- y 

3. f E. 8 

ilo (la ll) Coilo 11.000 l) ( 1.ligocol. iio). LQ (, - 
-ms- -a- --- *---. 

8 E. & 

'----' '-...-- 
:-- - 

Fig. 88 

  



Patent Application Publication Jan. 20, 2011 Sheet 41 of 50 US 2011/OO16135 A1 

2.76 

Fig. 89 

  



Patent Application Publication Jan. 20, 2011 Sheet 42 of 50 US 2011/OO16135 A1 

Fict Fead the Hiji Taf adg froTh 
? th. E. I. It to the eages. 

Left 3 Right 
Ers. Est: 

Hiffa 
Trea J 

23C 

Lagas. 

: 

Fig. 90 

  



Patent Application Publication Jan. 20, 2011 Sheet 43 of 50 US 2011/0016135A1 

  



US 2011/OO16135 A1 Patent Application Publication 



Patent Application Publication Jan. 20, 2011 Sheet 45 of 50 US 2011/0016135 A1 

Erioded Cats 

EFSymbol P3d Bits to ByteAlig. 

F.2-lled key Irificiristic 

|-law Key Iriformation 3rd 
Encoded ata 

Fig. 93 

  



Patent Application Publication Jan. 20, 2011 Sheet 46 of 50 US 2011/0016135 A1 

Tern Definition 

Digital Spectrum Information about a file, based on its content, that identifies the 
file and its position in an N-dimensional universe. 

Characteristic The digital spectrum for a file's data stream. The symbol 
digital spectrum dictionary from this process defines the N-dimensional space. 
Related digital The digital spectrum for a related file's data stream as determined 
spectrum by a "fast approximation" process that identifies the file and its 

position in the same N-dimensional universe as the characteristic 
digital spectrum. 

Azimuth of the A measure of the azimuth of the frequency vector from the origin 
symbol frequency in N-dimensional space, as measured by applying trigonometry. 
WeCO ----------------- 

Magnitude of the A measure of the distance from the origin in N-dimensional space 
symbol frequency to the terminal point of the symbol frequency vector, as measured 
WectOf by applying Pythagorean geometry. ---- 
Similarity A measure of the difference in magnitude of the frequency vectors 

for two digital spectra in all N-dimensional Space. 
Adjacency A measure of the distance between two frequency vectors in an N 

dimensional space, 
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DIGITAL SPECTRUM OF FILE BASED ON 
CONTENTS 

0001. This utility application claims priority to U.S. Pro 
visional Application Ser. Nos. 61/236,571 and 61/271,079, 
filed Aug. 25, 2009, and Jul. 16, 2009, respectively. Their 
contents are expressly incorporated herein as if set forth 
herein. 

FIELD OF THE INVENTION 

0002 The present invention relates generally to compres 
sion/decompression of data. More particularly, it relates to 
defining a digital spectrum of a compressed file in order to 
determine properties that can be compared to other files to 
ascertain file similarity, adjacency and grouping, to name a 
few. Vectors and Scalar values, among other things, are 
described for the digital spectrum. 

BACKGROUND OF THE INVENTION 

0003 Recent data suggests that nearly eighty-five percent 
of all data is found in computing files and growing annually at 
around sixty percent. One reason for the growth is that regu 
latory compliance acts, statutes, etc., (e.g., Sarbanes-Oxley, 
HIPAA, PCI) force companies to keep file data in an acces 
sible state for extended periods of time. However, block level 
operations in computers are too lowly to apply any meaning 
ful interpretation of this stored data beyond taking Snapshots 
and block de-duplication. While other business intelligence 
products have been introduced to provide capabilities greater 
than block-level operations, they have been generally limited 
to structured database analysis. They are much less meaning 
ful when acting upon data stored in unstructured environ 
mentS. 

0004. Unfortunately, entities the world over have paid 
enormous Sums of money to create and store their data, but 
cannot find much of it later in instances where it is haphaz 
ardly arranged or arranged less than intuitively. Not only 
would locating this information bring back value, but being 
able to observe patterns in it might also prove valuable 
despites its usefulness being presently unknown. However, 
entities cannot expend so much time and effort in finding this 
data that it outweighs its usefulness. Notwithstanding this, 
there are still other scenarios, such as government compli 
ance, litigation, audits, etc., that dictate certain data/informa 
tion be found and produced, regardless of its cost in time, 
money and effort. Thus, a clear need is identified in the art to 
better find, organize and identify digital data, especially data 
left in unstructured states. 
0005. In search engine technology, large amounts of unre 
lated and unstructured digital data can be quickly gathered. 
However, most engines do little to organize the data other 
than give a hierarchical presentation. Also, when the engine 
finds duplicate versions of data, it offers few to no options on 
eliminating the replication or migrating/relocating redundan 
cies. Thus, a further need in the art exists to overcome the 
drawbacks of search engines. 
0006 When it comes to large amounts of data, whether 
structured or not, compression techniques have been devised 
to preserve storage capacity, reduce bandwidth during trans 
mission, etc. With modern compression algorithms, however, 
they simply exist to scrunch large blocks of data into Smaller 
blocks according to their advertised compression ratios. AS is 
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known, some do it without data loss (lossless) while others do 
it “lossy.” None do it, unfortunately, with a view toward 
recognizing similarities in the data itself. 
0007. From biology, it is known that highly similar species 
have highly similar DNA strings. In the computing context, 
consider two word processing files relating to stored baseball 
statistics. In a first file, words might appear for a baseball 
batter, Such as “batting average.” “on base percentage.” and 
"slugging percentage, while a second file might have words 
for a baseball pitcher, such as “strikeouts.” “walks, and 
“earned runs. Conversely, a third file wholly unrelated to 
baseball, statistics or sports, may have words such as “envi 
ronmental protection.” “furniture or whatever comes to 
mind. It would be exceptionally useful if, during times of 
compression, or upon later manipulation by an algorithm if 
"mapping could recognize the similarity in Subject matter in 
the first two files, although not exact to one another, and 
provide options to a user. Appreciating that the “words” in the 
example files are represented in the computing context as 
binary bits (1’s or 0's), which occurs by converting the 
English alphabet into a series of 1's and 0's through applica 
tion of ASCII encoding techniques, it would be further useful 
if the compression algorithm could first recognize the simi 
larity in subject matter of the first two files at the level of raw 
bit data. The reason for this is that not all files have words and 
instead might represent pictures (e.g., jpeg) or spread sheets 
of numbers. 
0008. Appreciating that certain products already exist in 
the above-identified market space, clarity on the need in the 
art is as follows. One, present day “keyword matching” is 
limited to select set of words that have been pulled from a 
document into an index for matching to the same exact words 
elsewhere. Two, “Grep” is a modern day technique that 
searches one or more input files for lines containing an iden 
tical match to a specified pattern. Three, “Beyond Compare.” 
and similar algorithms, are line-by-line comparisons of mul 
tiple documents that highlight differences between them. 
Four, block level data de-duplication has no application in 
compliance contexts, data relocation, or business intelli 
gence. 
0009. The need in the art, on the other hand, needs to serve 
advanced notions of identifying new business intelligence, 
conducting operations on completely unstructured or haphaz 
ard data, and organizing it, providing new useful options to 
users, providing new user views, providing new encryption 
products, and identifying highly similar data, to name a few. 
As a byproduct, Solving this need will create new opportuni 
ties in minimizing transmission bandwidth and storage 
capacity, among other things. Naturally, any improvements 
along Such lines should contemplate good engineering prac 
tices, such as stability, ease of implementation, unobtrusive 
neSS, etc. 

SUMMARY OF THE INVENTION 

0010 Applying the principles and teachings associated 
with a file's digital spectrum solves the foregoing and other 
problems. Broadly, methods and apparatus of a digital spec 
trum is used to compute and communicate a file's informa 
tional characteristics. Two representative methods are pre 
sented. In the first, a file's informational position may be 
represented as a vector in an N-dimensional space, where 
each dimension is defined by a symbol described in the digital 
spectrum. The position along the axis of any given dimension 
is described by the frequency (or other derivative informa 
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tion) of occurrence of that symbol. Relative to the origin of 
the N-dimensional space, the file's informational position can 
be computed. Comparing positions reveals similarity, or not, 
of the files. 
0011. In another method, the digital spectrum defines a 
line graph, wherein each symbol and its frequency of occur 
rence define a point on the line. A distance function between 
two spectra line graphs is computed. Comparing the values 
derived from the distance function reveals similarity, or not, 
of the files. Also, total numbers of bits in the files are extracted 
by knowing the lengths of the original bits corresponding to 
every symbol. A symbol bit length spectrum is defined. Fur 
ther derivative comparison functions are anticipated using the 
symbol bit length spectrum and file length. 
0012 Executable instructions loaded on one or more com 
puting devices for undertaking the foregoing are also contem 
plated as are computer program products available as a down 
load or on a computer readable medium. The computer 
program products are also available for installation on a net 
work appliance or an individual computing device. 
0013 These and other embodiments of the present inven 
tion will be set forth in the description which follows, and in 
part will become apparent to those of ordinary skill in the art 
by reference to the following description of the invention and 
referenced drawings or by practice of the invention. The 
claims, however, indicate the particularities of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0014. The accompanying drawings incorporated in and 
forming apart of the specification, illustrate several aspects of 
the present invention, and together with the description serve 
to explain the principles of the invention. In the drawings: 
0015 FIG. 1 is a table in accordance with the present 
invention showing terminology; 
0016 FIG. 2 a table in accordance with the present inven 
tion showing a tuple array and tuple nomenclature; 
0017 FIG. 3 is a table in accordance with the present 
invention showing the counting of tuples in a data stream; 
0018 FIG. 4 is a table in accordance with the present 
invention showing the Count from FIG. 3 in array form: 
0019 FIG. 5 is Pythagorean's Theorem for use in resolv 
ing ties in the counts of highest occurring tuples; 
0020 FIG. 6 is a table in accordance with the present 
invention showing a representative resolution of a tie in the 
counts of three highest occurring tuples using Pythagorean's 
Theorem: 
0021 FIG. 7 is a table in accordance with the present 
invention showing an alternative resolution of a tie in the 
counts of highest occurring tuples; 
0022 FIG. 8 is an initial dictionary in accordance with the 
present invention for the data stream of FIG. 9; 
0023 FIGS. 8-60 are iterative data streams and tables in 
accordance with the present invention depicting dictionaries, 
arrays, tuple counts, encoding, and the like illustrative of 
multiple passes through the compression algorithm; 
0024 FIG. 61 is a chart in accordance with the present 
invention showing compression optimization; 
0025 FIG. 62 is a table in accordance with the present 
invention showing compression statistics; 
0026 FIGS. 63-69 are diagrams and tables in accordance 
with the present invention relating to storage of a compressed 
file; 
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0027 FIGS. 70-82b are data streams, tree diagrams and 
tables in accordance with the present invention relating to 
decompression of a compressed file; 
0028 FIG. 83 is a diagram in accordance with the present 
invention showing a representative computing device for 
practicing all or some the foregoing; 
(0029 FIGS. 84-93 are diagrams inaccordance with a “fast 
approximation' embodiment of the invention that utilizes key 
information of an earlier compressed file for a file under 
present consideration having patterns Substantially similar to 
the earlier compressed file; and 
0030 FIGS. 94-97A-B are definitions and diagrams in 
accordance with the present invention showing a “digital 
spectrum’ embodiment of an encoded file. 

DETAILED DESCRIPTION OF THE 
ILLUSTRATED EMBODIMENTS 

0031. In the following detailed description of the illus 
trated embodiments, reference is made to the accompanying 
drawings that form a part hereof, and in which is shown by 
way of illustration, specific embodiments in which the inven 
tion may be practiced. These embodiments are described in 
sufficient detail to enable those skilled in the art to practice the 
invention and like numerals represent like details in the vari 
ous figures. Also, it is to be understood that other embodi 
ments may be utilized and that process, mechanical, electri 
cal, arrangement, Software and/or other changes may be made 
without departing from the scope of the present invention. In 
accordance with the present invention, methods and appara 
tus are hereinafter described for optimizing data compression 
of digital data. 
0032. In a representative embodiment, compression 
occurs by finding highly occurring patterns in data streams, 
and replacing them with newly defined symbols that require 
less space to store than the original patterns. The goal is to 
eliminate as much redundancy from the digital data as pos 
sible. The end result has been shown by the inventor to 
achieve greater compression ratios oncertain tested files than 
algorithms heretofore known. 
0033. In information theory, it is well understood that col 
lections of data contain significant amounts of redundant 
information. Some redundancies are easily recognized, while 
others are difficult to observe. A familiar example of redun 
dancy in the English language is the ordered pair of letters 
QU. When Q appears in written text, the reader anticipates 
and expects the letter U to follow, such as in the words queen, 
quick, acquit, and square. The letter U is mostly redundant 
information when it follows Q. Replacing a recurring pattern 
of adjacent characters with a single symbol can reduce the 
amount of space that it takes to store that information. For 
example, the ordered pair of letters QU can be replaced with 
a single memorable symbol when the text is stored. For this 
example, the small Greek letter alpha (C) is selected as the 
symbol, but any could be chosen that does not otherwise 
appear in the text under consideration. The resultant com 
pressed text is one letter shorter for each occurrence of QU 
that is replaced with the single symbol (C), e.g., "Cleen.” 
“Click.” “acoit, and “sCare.” Such is also stored with a defi 
nition of the symbol alpha (C.) in order to enable the original 
data to be restored. Later, the compressed text can be 
expanded by replacing the symbol with the original letters 
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QU. There is no information loss. Also, this process can be 
repeated many times over to achieve further compression. 

DEFINITIONS 

0034. With reference to FIG. 1, a table 10 is used to define 
terminology used in the below compression method and pro 
cedure. 

Discussion 

0035 Redundancy is the superfluous repetition of infor 
mation. As demonstrated in the QU example above, adjacent 
characters in written text often form expected patterns that are 
easily detected. In contrast, digital data is stored as a series of 
bits where each bit can have only one of two values: off 
(represented as a Zero (0)) and on (represented as a one (1)). 
Redundancies in digital data, Such as long sequences of Zeros 
or ones, are easily seen with the human eye. However, pat 
terns are not obvious in highly complex digital data. The 
invention's methods and procedures identify these redundan 
cies in stored information so that even highly complex data 
can be compressed. In turn, the techniques can be used to 
reduce, optimize, or eliminate redundancy by Substituting the 
redundant information with symbols that take less space to 
store than the original information. When it is used to elimi 
nate redundancy, the method might originally return com 
pressed data that is larger than the original. This can occur 
because information about the symbols and how the symbols 
are encoded for storage must also be stored so that the data 
can be decompressed later. For example, compression of the 
word "queen’ above resulted in the compressed word “Cueen.” 
But a dictionary having the relationship QU-O. also needed to 
be stored with the word “Cleen,” which makes a “first pass” 
through the compression technique increase in size, not 
decrease. Eventually, however, further “passes' will stop 
increasing and decrease so rapidly, despite the presence of an 
ever-growing dictionary size, that compression ratios will be 
shown to greatly advance the state of the art. By automating 
the techniques with computer processors and computing soft 
ware, compression will also occur exceptionally rapidly. In 
addition, the techniques herein will be shown to losslessly 
compress the data. 

The Compression Procedure 
0036. The following compression method iteratively sub 
stitutes symbols for highly occurring tuples in a data stream. 
An example of this process is provided later in the document. 

Prerequisites 

0037. The compression procedure will be performed on 
digital data. Each stored bit has a value of binary 0 or binary 
1. This series of bits is referred to as the original digital data. 

Preparing the Data 

0038. The original digital data is examined at the bit level. 
The series of bits is conceptually converted to a stream of 
characters, referred to as the data stream that represents the 
original data. The symbols 0 and 1 are used to represent the 
respective raw bit values in the new data stream. These sym 
bols are considered to be atomic because all Subsequently 
defined symbols represent tuples that are based on 0 and 1. 
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0039. A dictionary is used to document the alphabet of 
symbols that are used in the data stream. Initially, the alphabet 
consists solely of the symbols 0 and 1. 

Compressing the Data Stream 
0040. The following tasks are performed iteratively on the 
data stream: 

0041) Identifying all possible tuples that can occur for 
the set of characters that are in the current data stream. 

0042. Determining which of the possible tuples occurs 
most frequently in the current data stream. In the case of 
a tie, use the most complex tuple. (Complexity is dis 
cussed below.) 

0.043 Creating a new symbol for the most highly occur 
ring tuple, and add it to the dictionary. 

0044 Replacing all occurrences of the most highly 
occurring tuple with the new symbol. 

0.045 Encoding the symbols in the data stream by using 
an encoding scheme, such as a path-weighted Huffman 
coding scheme. 

0046 Calculating the compressed file size. 
0047 Determining whether the compression goal has 
been achieved. 

0.048 Repeating for as long as necessary to achieve 
optimal compression. That is, if a stream of data were 
compressed so completely that it was represented by a 
single bit, it and its complementary dictionary would be 
larger than the original representation of the stream of 
data absent the compression. (For example, in the QU 
example above, if “C.” represented the entire word 
"queen the word "queen' could be reduced to one 
symbol, e.g., “C.” However, this one symbol and its 
dictionary (reciting "queen C is larger than the original 
content "queen.) Thus, optimal compression herein 
recognizes a point of marginal return whereby the dic 
tionary grows too large relative to the amount of com 
pression being achieved by the technique. 

Each of these steps is described in more detail below. 

Identifying all Possible Triples 
0049. From FIG. 1, a “tuple' is an ordered pair of adjoin 
ing characters in a data stream. To identify all possible tuples 
in a given data stream, the characters in the current alphabet 
are systematically combined to form ordered pairs of sym 
bols. The left symbol in the pair is referred to as the “first 
character, while the right symbol is referred to as the “last 
character. In a larger context, the tuples represent the “pat 
terns’ examined in a data stream that will yield further advan 
tage in the art. 
0050. In the following example and with any data stream 
of digital data that can be compressed according to the tech 
niques herein, two symbols (0 and 1) occur in the alphabet and 
are possibly the only symbols in the entire data stream. By 
examining them as “tuples, the combination of the 0 and 1 as 
ordered pairs of adjoining characters reveals only four pos 
sible outcomes, i.e., a tuple represented by “00, a tuple 
represented by “01, a tuple represented by “10, and a tuple 
represented by “11” 
0051. With reference to FIG. 2, these four possibilities are 
seen in table 12. In detail, the table shows the tuple array for 
characters 0 and 1. In the cell for column 0 and row 0, the tuple 
is the ordered pair of 0 followed by 0. The shorthand notation 
of the tuple in the first cell is “0>0. In the cell for column 0 
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and row 1, the tuple is 0 followed by 1, or “O>1”. In the cell for 
column 1 and row 0, the tuple is “10'. In the cell for column 
1 and row 1, the tuple is “1-1. 

Determining the Most Highly Occurring Tuple 
0052. With FIG. 2 in mind, it is determined which tuple in 
a bit stream is the most highly occurring. To do this, simple 
counting occurs. It reveals how many times each of the pos 
sible tuples actually occurs. Each pair of adjoining characters 
is compared to the possible tuples and the count is recorded 
for the matched tuple. 
0053. The process begins by examining the adjacent char 
acters in position one and two of the data stream. Together, the 
pair of characters forms a tuple. Advance by one character in 
the stream and examine the characters in positions two and 
three. By incrementing through the data stream one character 
at a time, every combination of two adjacent characters in the 
data stream is examined and tallied against one of the tuples. 
0054 Sequences of repeated symbols create a special case 
that must be considered when tallying tuples. That is, when a 
symbol is repeated three or more times, skilled artisans might 
identify instances of a tuple that cannot exist because the 
symbols in the tunic belong to other instances of the same 
tuple. The number of actual tuples in this case is the number 
of times the symbol repeats divided by two. 
0055 For example, consider the data stream 14 in table 16 
(FIG.3) having 10 characters shown as “01 10000101. Upon 
examining the first two characters 01, a tuple is recognized in 
the form 0 followed by 1 (0>1). Then, increment forward one 
character and consider the second and third characters 11, 
which forms the tuple of 1 followed by 1 (1-> 1). As progres 
sion occurs through the data stream, 9 possible tuple combi 
nations are found: O>1, 1>1, 1>0, OD0, 0>0, OD0, OD1, 1>0, 
and 0>1 (element 15, FIG.3). In the sequence of four sequen 
tial Zeros (at the fourth through seventh character positions in 
the data stream “01 10000101), three instances of a 0 fol 
lowed by a 0 (or 0>0) are identified as possible tuples. It is 
observed that the second instance of the 0-0 tuple (element 
17, FIG. 3) cannot be formed because the symbols are used in 
the 0-0 tuple before and after it, by prescribed rule. Thus, 
there are only two possible instances in the COUNT18, FIG. 
3, of the 0-0 tuple, not 3. In turn, the most highly occurring 
tuple counted in this data stream is 0>1, which occurs 3 times 
(element 19, FIG. 3). Similarly, tuple 1 >1 occurs once (ele 
ment 20, FIG. 3), while tuple 1 >0 occurs twice (element 21, 
FIG.3). 
0056. After the entire data stream has been examined, the 
final counts for each tuple are compared to determine which 
tuple occurs most frequently. In tabular form, the 0 followed 
by a 1 (tuple 0-1) occurs the most and is referenced at element 
19 in table 22, FIG. 4. 
0057. In the situation of a tie between two or more tuples, 
skilled artisans must choose between one of the tuples. For 
this, experimentation has revealed that choosing the tuple that 
contains the most complex characters usually results in the 
most efficient compression. If all tuples are equally complex, 
skilled artisans can choose any one of the tied tuples and 
define it as the most highly occurring. 
0058. The complexity of a tuple is determined by imagin 
ing that the symbols form the sides of a right triangle, and the 
complexity is a measure of the length of the hypotenuse of 
that triangle. Of course, the hypotenuse is related to the Sum 
of the squares of the sides, as defined by the Pythagorean 
Theorem, FIG. 5. 
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0059. The tuple with the longest hypotenuse is considered 
the most complex tuple, and is the winner in the situation of a 
tie between the highest numbers of occurring tuples. The 
reason for this is that less-complex tuples in the situation of a 
tie are most likely to be resolved in Subsequent passes in the 
decreasing order of their hypotenuse length. Should a tie in 
hypotenuse length occur, or a tie in complexity, evidence 
appears to suggest it does not make a difference which tuple 
is chosen as the most highly occurring. 
0060 For example, suppose that tuples 3>7, 4-4 and 1-5 
each occur 356 times when counted (in a same pass). To 
determine the complexity of each tuple, use the tuple symbols 
as the two sides of a right triangle and calculate the hypot 
enuse, FIG. 6. In the instance of 3>7, the side of the hypot 
enuse is the square root of (three squared (9) plus seven 
squared (49)), or the square root of 58, or 7.6. In the instance 
of 4-4, the side of the hypotenuse is the square root of (four 
squared (16) plus four squared (16), of the square root of 32, 
or 5.7. Similar, 1-5 calculates as a hypotenuse of 5.1 as seen 
in table 23 in the Figure. Since the tuple with the largest 
hypotenuse is the most complex, 3>7's hypotenuse of 7.6 is 
considered more complex than either of the tuples 4->4 or 1 >5. 
0061 Skilled artisans can also use the tuple array to visu 
alize the hypotenuse by drawing lines in the columns and 
rows from the array origin to the tuple entry in the array, as 
shown in table 24 in FIG. 7. As seen, the longest hypotenuse 
is labeled 25, so the 3>7 tuple wins the tie, and is designated 
as the most highly occurring tuple. Hereafter, a new symbolis 
created to replace the highest occurring tuple (whether occur 
ring the most outright by count or by tie resolution), as seen 
below. However, based on the complexity rule, it is highly 
likely that the next passes will replace tuple 4D4 and then 
tuple 1 >5. 

Creating a Symbol for the Most Highly Occurring Tuple 

0062. As before, a symbol stands for the two adjacent 
characters that form the tuple and skilled artisans select any 
new symbol they want provided it is not possibly found in the 
data stream elsewhere. Also, since the symbol and its defini 
tion are added to the alphabet, e.g., if “C-QU, a dictionary 
grows by one new symbol in each pass through the data, as 
will be seen. A good example of a new symbol for use in the 
invention is a numerical character, sequentially selected, 
because numbers provide an unlimited Source of unique sym 
bols. In addition, reaching an optimized compression goal 
might take thousands (or even tens of thousands) of passes 
through the data stream and redundant symbols must be 
avoided relative to previous passes and future passes. 
Replacing the Tuple with the New Symbol 
0063. Upon examining the data stream to find all occur 
rences of the highest occurring tuple, skilled artisans simply 
substitute the newly defined or newly created symbol for each 
occurrence of that tuple. Intuitively, Substituting a single sym 
bol for two characters compresses the data stream by one 
character for each occurrence of the tuple that is replaced. 

Encoding the Alphabet 

0064. To accomplish this, counting occurs for how many 
times that each of the symbols in the current alphabet occurs 
in the data stream. They then use the symbol count to apply an 
encoding scheme, such as a path-weighted Huffman coding 
scheme, to the alphabet. Huffman trees should be within the 
purview of the artisan's skill set. 
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0065. The encoding assigns bits to each symbol in the 
current alphabet that actually appears in the data stream. That 
is, symbols with a count of Zero occurrences are not encoded 
in the tree. Also, symbols might go “extinct” in the data 
stream as they are entirely consumed by yet more complex 
symbols, as will be seen. As a result, the Huffman code tree is 
rebuilt every time a new symbol is added to the dictionary. 
This means that the Huffman code for a given symbol can 
change with every pass. The encoded length of the data 
stream usually decreases with each pass. 

Calculating the Compressed File Size 

0066. The compressed file size is the total amount of space 
that it takes to store the Huffman-encoded data stream plus 
the information about the compression, such as information 
about the file, the dictionary, and the Huffman encoding tree. 
The compression information must be saved along with other 
information so that the encoded data can be decompressed 
later. 
0067. To accomplish this, artisans count the number of 
times that each symbol appears in the data stream. They also 
count the number of bits in the symbol's Huffman code to find 
its bit length. They then multiply the bit length by the symbol 
count to calculate the total bits needed to store all occurrences 
of the symbol. This is then repeated for each symbol. There 
after, the total bit counts for all symbols are added to deter 
mine how many bits are needed to store only the compressed 
data. To determine the compressed file size, add the total bit 
count for the data to the number of bits required for the related 
compression information (the dictionary and the symbol 
encoding information). 
Determining Whether the Compression Goal has been 
Achieved 
0068 Substituting a tuple with a single symbol reduces the 

total number of characters in a data stream by one for each 
instance of a tuple that is replaced by a symbol. That is, for 
each instance, two existing characters are replaced with one 
new character. In a given pass, each instance of the tuple is 
replaced by a new symbol. There are three observed results: 

0069. The length of the data stream (as measured by 
how many characters make up the text) decreases by half 
the number of tuples replaced. 

0070 The number of symbols in the alphabet increases 
by one. 

(0071. The number of nodes in the Huffman tree 
increases by two. 

0072 By repeating the compression procedure a sufficient 
number of times, any series of characters can eventually be 
reduced to a single character. That “super-symbol character 
conveys the entire meaning of the original text. However, the 
information about the symbols and encoding that is used to 
reach that final symbol is needed to restore the original data 
later. As the number of total characters in the text decreases 
with each repetition of the procedure, the number of symbols 
increases by one. With each new symbol, the size of the 
dictionary and the size of the Huffman tree increase, while the 
size of the data decreases relative to the number of instances 
of the tuple it replaces. It is possible that the information 
about the symbol takes more space to store than the original 
data it replaces. In order for the compressed file size to 
become Smaller than the original data stream size, the text size 
must decrease faster than the size increases for the dictionary 
and the Huffman encoding information. 
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0073. The question at hand is then, what is the optimal 
number of Substitutions (new symbols) to make, and how 
should those substitutions be determined? 
0074 For each pass through the data stream, the encoded 
length of the text decreases, while the size of the dictionary 
and the Huffman tree increases. It has been observed that the 
compressed file size will reach a minimal value, and then 
increase. The increase occurs at Some point because so few 
tuple replacements are done that the decrease in text size no 
longer outweighs the increase in size of the dictionary and 
Huffman tree. 
0075. The size of the compressed file does not decrease 
Smoothly or steadily downward. As the compression process 
proceeds, the size might plateau or temporarily increase. In 
order to determine the true (global) minimum, it is necessary 
to continue Some number of iterations past the each new 
(local) minimum point. This true minimal value represents 
the optimal compression for the data stream using this 
method. 
0076 Through experimentation, three conditions have 
been found that can be used to decide when to terminate the 
compression procedure: asymptotic reduction, observed low, 
and single character. Each method is described below. Other 
terminating conditions might be determined through further 
experimentation. 

Asymptotic Reduction 
0077. An asymptotic reduction is a concession to process 
ing efficiency, rather than a completion of the procedure. 
When compressing larger files (100 kilobytes (KB) or 
greater), after several thousand passes, each additional pass 
produces only a very small additional compression. The com 
pressed size is still trending downward, but at Such a slow rate 
that additional compute time is not warranted. 
0078 Based on experimental results, the process is termi 
nated if at least 1000 passes have been done, and less than 1% 
of additional data stream compression has occurred in the last 
1000 passes. The previously noted minimum is therefore used 
as the optimum compressed file. 

Observed Low 

0079 A reasonable number of passes have been per 
formed on the data and in the last reasonable number of passes 
a new minimum encoded file size has not been detected. It 
appears that further passes only result in a larger encoded file 
S17C. 

0080 Based on experimental results, the process is termi 
nated if at least 1000 passes have been done, and in the last 
10% of the passes, a new low has not been established. The 
previously noted minimum is then used as the optimum com 
pressed file. 

Single Character 
I0081. The data stream has been reduced to exactly one 
character. This case occurs if the file is made up of data that 
can easily reduce to a single symbol. Such a file filled with a 
repeating pattern. In cases like this, compression methods 
other than this one might result in Smaller compressed file 
S17S. 

How the Procedure Optimizes Compression 
I0082. The representative embodiment of the invention 
uses Huffman trees to encode the data stream that has been 
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progressively shortened by tuple replacement, and balanced 
against the growth of the resultant Huffman tree and dictio 
nary representation. 
0083. The average length of a Huffman encoded symbol 
depends upon two factors: 

I0084. How many symbols must be represented in the 
Huffman tree 

I0085. The distribution of the frequency of symbol use 
I0086. The average encoded symbol length grows in a 
Somewhat stepwise fashion as more symbols are added to the 
dictionary. Because the Huffman tree is a binary tree, 
increases naturally occur as the number of symbols passes 
each level of the power of 2 (2, 4, 8, 16, 32, 64, etc.). At these 
points, the average number of bits needed to represent any 
given symbol normally increases by 1 bit, even though the 
number of characters that need to be encoded decreases. 
Subsequent compression passes usually overcome this tem 
porary jump in encoded data stream length. 
I0087. The second factor that affects the efficiency of Huff 
man coding is the distribution of the frequency of symbol use. 
If one symbol is used significantly more than any other, it can 
be assigned a shorter encoding representation, which results 
in a shorter encoded length overall, and results in maximum 
compression. The more frequently a symbol occurs, the 
shorter the encoded stream that replaces it. The less fre 
quently a symbol occurs, the longer the encoded stream that 
replaces it. 
0088 Ifall symbols occuratapproximately equal frequen 
cies, the number of symbols has the greater effect than does 
the size of the encoded data stream. Supporting evidence is 
that maximum compression occurs when minimum redun 
dancy occurs, that is, when the data appears random. This 
state of randomness occurs when every symbol occurs at the 
same frequency as any other symbol, and there is no discern 
able ordering to the symbols. 
0089. The method and procedure described in this docu 
ment attempt to create a state of randomness in the data 
stream. By replacing highly occurring tuples with new sym 
bols, eventually the frequency of all symbols present in the 
data stream becomes roughly equal. Similarly, the frequency 
of all tuples is also approximately equal. These two criteria 
(equal occurrence of every symbol and equal occurrence of 
ordered symbol groupings) is the definition of random data. 
Random data means no redundancy. No redundancy means 
maximum compression. 
0090 This method and procedure derives optimal com 
pression from a combination of the two factors. It reduces the 
number of characters in the data stream by creating new 
symbols to replace highly occurring tuples. The frequency 
distribution of symbol occurrence in the data stream tends to 
equalize as oft occurring symbols are eliminated during tuple 
replacement. This has the effect of flattening the Huffman 
tree, minimizing average path lengths, and therefore, mini 
mizing encoded data stream length. The number of newly 
created symbols is held to a minimum by measuring the 
increase in dictionary size against the decrease in encoded 
data stream size. 

Example of Compression 

0091 To demonstrate the compression procedure, a small 
data file contains the following simple ASCII characters: 
0092 aaaaaaaaaaaaaaaaaaaaaaaaaaa 
baaabaaaaaaaababbbbbb 
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0093. Each character is stored as a sequence of eight bits 
that correlates to the ASCII code assigned to the character. 
The bit values for each character are: 
0094) a=01100001 
0.095 b=01100010 
0096. The digital data that represents the file is the original 
data that we use for our compression procedure. Later, we 
want to decompress the compressed file to get back to the 
original data without data loss. 

Preparing the Data Stream 
0097. The digital data that represents the file is a series of 

bits, where each bit has a value of 0 or 1. We want to abstract 
the view of the bits by conceptually replacing them with 
symbols to form a sequential stream of characters, referred to 
as a data stream. 
0098. For our sample digital data, we create two new sym 
bols called 0 and 1 to represent the raw bit values of 0 and 1. 
respectively. These two symbols form our initial alphabet, so 
we place them in the dictionary 26, FIG.8. 
(0099. The data stream 30 in FIG.9 represents the original 
series of bits in the stored file, e.g., the first eight bits 32 are 
“01 100001” and correspond to the first letter “a” in the data 
file. Similarly, the very last eight bits 34 are “01 100010 and 
correspond to the final letter “b’ in the data file, and each of 
the 1's and 0's come from the ASCII code above. 
0100 Also, the characters in data stream 30 are separated 
with a space for user readability, but the space is not consid 
ered, just the characters. The space would not occur in com 
puter memory either. 

Compressing the Data Stream 
0101. The data stream 30 of FIG. 9 is now ready for com 
pression. The procedure will be repeated until the compres 
sion goal is achieved. For this example, the compression goal 
is to minimize the amount of space that it takes to store the 
digital data. 

Initial Pass 

0102 For the initial pass, the original data stream and 
alphabet that were created in “Preparing the Data Stream” are 
obtained. 

Identifying all Possible Tuples 
0103) An easy way to identify all possible combinations of 
the characters in our current alphabet (at this time having 0 
and 1) is to create a tuple array (table 35, FIG. 10). Those 
symbols are placed or fitted as a column and row, and the cells 
are filled in with the tuple that combines those symbols. The 
columns and rows are constructed alphabetically from left to 
right and top to bottom, respectively, according to the order 
that the symbols appearin our dictionary. For this demonstra 
tion, we will consider the symbol in a column to be the first 
character in the tuple, and the symbol in a row to be the last 
character in the tuple. To simplify the presentation of tuples in 
each cell, we will use the earlier-described notation of 
“first-last’ to indicate the order of appearance in the pair of 
characters, and to make it easier to visually distinguish the 
symbols in the pair. The tuples shown in each cell now rep 
resent the patterns we want to look for in the data stream. 
0104 For example, the table 35 shows the tuple array for 
characters 0 and 1. In the cell for column 0 and row 0, the tuple 
is the ordered pair of 0 followed by 0. The shorthand notation 
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of the tuple in the first cell is “O>0. In the cell for column 0 
and row 1, the tuple is 0 followed by 1, or “O>1”. In the cell for 
column 1 and row 0, the tuple is “10'. In the cell for column 
1 and row 1, the tuple is “1-1”. (As skilled artisans will 
appreciate, most initial dictionaries and original tuple arrays 
will be identical to these. The reason is that computing data 
streams will all begin with a stream of 1's and 0's having two 
symbols only.) 
Determining the Highly Occurring Tuple 
0105. After completion of the tuple array, we are ready to 
look for the tuples in the data stream 30, FIG.9. We start at the 
beginning of the data stream with the first two characters "01 
labeled element 37. We compare this pair of characters to our 
known tuples, keeping in mind that order matters. We match 
the pair to a topic, and add one count for that instance. We 
move forward by one character, and look at the pair of char 
acters 38 in positions two and three in the data stream, or “11” 
We compare and match this pair to one of the tuples, and add 
one count for that instance. We continue tallying occurrences 
of the tuples in this manner until we reach the end of the data 
stream. In this instance, the final tuple is “10 labeled 39. By 
incrementing through the data stream one character at a time, 
we have considered every combination of two adjacent char 
acters in the data stream, and tallied each instance againstone 
of the tuples. We also consider the rule for sequences of 
repeated symbols, described above, to determine the actual 
number of instances for the tuple that is defined by pairs of 
that symbol. 
0106 For example, the first two characters in our sample 
data stream are 0 followed by 1. This matches the tuple 0-1, 
so we count that as one instance of the tuple. We step forward 
one character. The characters in positions two and three are 1 
followed by 1, which matches the tuple 1 >1. We count it as 
one instance of the 1 > 1 tuple. We consider the sequences of 
three or more Zeros in the data stream (e.g., 01100001 ...) to 
determine the actual number of tuples for the 0-0 tuple. We 
repeat this process to the end of the data set with the count 
results in table 40, FIG. 11. 
0107 Now that we have gathered statistics for how many 
times each tuple appears in the data stream 30, we compare 
the total counts for each tuple to determine which pattern is 
the most highly occurring. The tuple that occurs most fre 
quently is a tie between a 1 followed by 0 (1 >0), which occurs 
96 times, and a 0 followed by 1 (0>1), which also occurs 96 
times. As discussed above, skilled artisans then choose the 
most complex tuple and do so according to Pythagorean's 
Theorem. The sum of the squares for each tuple is the same, 
which is 1 (1+0) and 1 (0+1). Because they have the same 
complexity, it does not matter which one is chosen as the 
highest occurring. In this example, we will choose tuple 1 >0. 
0108. We also count the number of instances of each of the 
symbols in the current alphabet as seen in table 41, FIG. 12. 
The total symbol count in the data stream is 384 total symbols 
that represent 384 bits in the original data. Also, the symbol 0 
appears 240 times in original data stream 30, FIG.9, while the 
symbol 1 only appears 144 times. 
Pass 1 

0109. In this next pass, we replace the most highly occur 
ring tuple from the previous pass with a new symbol, and then 
we determine whether we have achieved our compression 
goal. 
Creating a Symbol for the Highly Occurring Tuple 
0110] We replace the most highly occurring tuple from the 
previous pass with a new symbol and add it to the alphabet. 
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Continuing the example, we add a new symbol 2 to the dic 
tionary and define it with the tuple defined as 1 followed by 0 
(1>0). It is added to the dictionary 26' as seen in FIG. 13. (Of 
course, original symbol 0 is still defined as a 0, while original 
symbol 1 is still defined as a 1. Neither of these represent a 
first symbol followed a last symbol which is why dashes 
appear in the dictionary 26' under “Last' for each of them.) 
Replacing the Tuple with the New Symbol 
0111. In the original data stream 30, every instance of the 
tuple 1 >0 is now replaced with the new, single symbol. In our 
example data stream 30, FIG.9, the 96 instances of the tuple 
1>0 have been replaced with the new symbol “2 to create the 
output data stream 30', FIG. 14, that we will use for this pass. 
As skilled artisans will observe, replacing ninety-six double 
instances of symbols with a single, new symbol shrinks or 
compresses the data stream 30' in comparison to the original 
data stream 30, FIG. 8. 

Encoding the Alphabet 

0112. After we compress the data stream by using the new 
symbol, we use a path-weighted Huffman coding scheme to 
assign bits to each symbol in the current alphabet. 
0113 To do this, we again count the number of instances 
of each of the symbols in the current alphabet (now having 
“0” “1” and “2.) The total symbol count in the data stream is 
288 symbols as seen in table 41', FIG. 15. We also have one 
end-of-file (EOF) symbol at the end of the data stream (not 
shown). 
0114. Next, we use the counts to build a Huffman binary 
code tree. 1) List the symbols from highest count to lowest 
count. 2) Combine the counts for the two least frequently 
occurring symbols in the dictionary. This creates a node that 
has the value of the sum of the two counts. 3) Continue 
combining the two lowest counts in this manlier until there is 
only one symbol remaining. This generates a Huffman binary 
code tree. 
0115 Finally, label the code tree paths with Zeros (Os) and 
ones (1S). The Huffman coding scheme assigns shorter code 
words to the more frequent symbols, which helps reduce the 
size length of the encoded data. The Huffman code for a 
symbol is defined as the String of values associated with each 
path transition from the root to the symbol terminal node. 
0116. With reference to FIG. 16, the tree 50 demonstrates 
the process of building the Huffman tree and code for the 
symbols in the current alphabet. We also create a code for the 
end of file marker that we placed at the end of the data stream 
when we counted the tuples. In more detail, the root contem 
plates 289 total symbols, i.e., the 288 symbols for the alphabet 
“0” “1” and “2” plus one EOF symbol. At the leaves, the “0” 
is shown with its counts 144 the “1” with its count of 48, the 
“2 with its count of 96 and the EOF with its count of 1. 
Between the leaves and root, the branches define the count in 
a manner skilled artisans should readily understand. 
0117. In this compression procedure, we will re-build a 
Huffman code tree every time we add a symbol to the current 
dictionary. This means that the Huffman code for a given 
symbol can change with every compression pass. 

Calculating the Compressed File Size 

0118. From the Huffman tree, we use its code to evaluate 
the amount of space needed to store the compressed data as 
seen in table 52, FIG. 17. First, we count the number of bits in 
the Huffman code for each symbol to find its bit length 53. 
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Next, we multiply a symbol’s bit length by its count 54 to 
calculate the total bits 55 used to store the occurrences of that 
symbol. We add the total bits 56 needed for all symbols to 
determine how many bits are needed to store only the com 
pressed data. As seen, the current data stream 30'. FIG. 14 
requires 483 bits to store only the information. 
0119) To know whether we achieved optimal compres 
Sion, we must consider the total amount of space that it takes 
to store the compressed data plus the information about the 
compression that we need to store in order to decompress the 
data later. We also must store information about the file, the 
dictionary, and the Huffman tree. The table 57 in FIG. 18 
shows the total compression overhead as being 25 bits, which 
brings the compressed size of the data stream to 508 bits, or 
483 bits plus 25 bits. 
Determining Whether the Compression Goal has been 
Achieved 
0120 Finally, we compare the original number of bits 
(384, FIG. 12) to the current number of bits (508) that are 
needed for this compression pass. We find that it takes 1.32 
times as many bits to store the compressed data as it took to 
store the original data, table 58, FIG. 19. This is not compres 
sion at all, but expansion. 
0121. In early passes, however, we expect to see that the 
Substitution requires more space than the original data 
because of the effect of carrying a dictionary, adding symbols, 
and building a tree. On the other hand, skilled artisans should 
observe an eventual reduction in the amount of space needed 
as the compression process continues. Namely, as the size of 
the data set decreases by the symbol replacement method, the 
size grows for the symbol dictionary and the Huffman tree 
information that we need for decompressing the data. 

Pass 2 

0122. In this pass, we replace the most highly occurring 
tuple from the previous pass (pass 1) with still another new 
symbol, and then we determine whether we have achieved our 
compression goal. 

Identifying all Possible Tuples 
0123. As a result of the new symbol, the tuple array is 
expanded by adding the symbol that was created in the pre 
vious pass. Continuing our example, we add 2 as a first 
symbol and last symbol, and enter the tuples in the new cells 
of table 35", FIG. 20. 

Determining the Highly Occurring Tuple 

0.124. As before, the tuple array identifies the tuples that 
we look for and tally in our revised alphabet. As seen in table 
40', FIG. 21, the Total Symbol Count=288. The tuple that 
occurs most frequently when counting the data stream 30'. 
FIG. 14, is the character 2 followed by the character 0 (2-0). 
It occurs 56 times as seen circled in table 40', FIG. 21. 

Creating a Symbol for the Highly Occurring Tuple 

0125 We define still another new symbol “3 to represent 
the most highly occurring tuple 2D-0, and add it to the dictio 
nary 26". FIG. 22, for the alphabet that was developed in the 
previous passes. 
Replacing the Tuple with the New Symbol 
0126. In the data stream 30'. FIG. 14, we replace every 
instance of the most highly occurring tuple with the new 

Jan. 20, 2011 

single symbol. We replace the 56 instances of the 2-0 tuple 
with the symbol 3 and the resultant data stream 30" is seen in 
FIG. 23. 

Encoding the Alphabet 

0127. As demonstrated above, we count the number of 
symbols in the data stream, and use the count to build a 
Huffman tree and code for the current alphabet. The total 
symbol count has been reduced from 288 to 234 (e.g., 88+48+ 
40+58, but not including the EOF marker) as seen in table 
41", FIG. 24. 

Calculating the Compressed File Size 

0.128 We need to evaluate whether our substitution 
reduces the amount of space that it takes to store the data. As 
described above, we calculate the total bits needed (507) as in 
table S2. FIG. 25. 
I0129. In table 57, FIG. 26, the compression overhead is 
calculated as 38 bits. 
Determining Whether the Compression Goal has been 
Achieved 
0.130 Finally, we compare the original number of bits 
(384) to the current number of bits (545–507+38) that are 
needed for this compression pass. We find that it takes 141% 
or 1.41 times as many bits to store the compressed data as it 
took to store the original data. Compression is still not 
achieved and the amount of data in this technique is growing 
larger rather than Smaller in comparison to the previous pass 
requiring 132%. 

PaSS3 

I0131. In this pass, we replace the most highly occurring 
tuple from the previous pass with a new symbol, and then we 
determine whether we have achieved our compression goal. 

Identifying all Possible Tuples 

(0132) We expand the tuple array 35". FIG. 28 by adding 
the symbol that was created in the previous pass. We add the 
symbol “3 as a first symbol and last symbol, and enter the 
tuples in the new cells. 

Determining the Highly Occurring Tuple 

I0133. The tuple array identifies the tuples that we look for 
and tally in our revised alphabet. In table 40", FIG. 29, the 
Total Symbol Count is 232, and the tuple that occurs most 
frequently is the character 1 followed by character 3 (1 >3). It 
occurs 48 times, which ties with the tuple of character 3 
followed by character O. We determine that the tuple 1 >3 is 
the most complex tuple because it has a hypotenuse length 25' 
of 3.16 (SQRT(1 +3°)), and tuple 3>0 has a hypotenuse of 3 
(SQRT(0+3)). 

Creating a Symbol for the Highly Occurring Tuple 

I0134. We define a new symbol 4 to represent the most 
highly occurring tuple 1 >3, and add it to the dictionary 26", 
FIG. 30, for the alphabet that was developed in the previous 
passes. 
Replacing the Topic with the New Symbol 
I0135) In the data stream, we replace every instance of the 
most highly occurring tuple from the earlier data stream with 
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the new single symbol. We replace the 48 instances of the 1D-3 
tuple with the symbol 4 and new data stream 30-4 is obtained, 
FIG. 31. 

Encoding the Alphabet 
0136. We count the number of symbols in the data stream, 
and use the count to build a Huffman tree and code for the 
current alphabet as seen in table 41" FIG. 32. There is no 
Huffman code assigned to the symbol 1 because there are no 
instances of this symbol in the compressed data in this pass. 
(This can be seen in the data stream 30-4, FIG. 31.) The total 
symbol count has been reduced from 232 to 184 (e.g., 88+0+ 
40+8+48, but not including the EOF marker). 

Calculating the Compressed File Size 

0.137 We need to evaluate whether our substitution 
reduces the amount of space that it takes to store the data. As 
seen in table 52". FIG. 33, the total bits are equal to 340. 
0.138. In table 57", FIG. 34, the compression overhead in 
bits is 42. 
Determining Whether the Compression Goal has been 
Achieved 
0139 Finally, we compare the original number of bits 
(384) to the current number of bits (382) that are needed for 
this compression pass. We find that it takes 0.99 times as 
many bits to store the compressed data as it took to store the 
original data. Compression is achieved. 

Pass 4 

0140. In this pass, we replace the most highly occurring 
tuple from the previous pass with a new symbol, and then we 
determine whether we have achieved our compression goal. 

Identifying all Possible Tuples 
0141. We expand the tuple array 35", FIG. 36, by adding 
the symbol that was created in the previous pass. We add the 
symbol 4 as a first symbol and last symbol, and enter the 
tuples in the new cells. 

Determining the Highly Occurring Tuple 

0142. The tuple array identifies the tuples that we look for 
and tally in our revised alphabet. In table 40". FIG. 37, the 
Total Symbol Count=184 and the tuple that occurs most fre 
quently is the character 4 followed by character 0 (4-0). It 
occurs 48 times. 

Creating a Symbol for the Highly Occurring Tuple 
0143 We define a new symbol 5 to represent the 4>0tuple, 
and add it to the dictionary 26-4, FIG.38, for the alphabet that 
was developed in the previous passes. 
Replacing the Tuple with the New Symbol 
0144. In the data stream, we replace every instance of the 
most highly occurring tuple with the new single symbol. We 
replace the 48 instances of the 40 tuple in data stream 30-4, 
FIG. 31, with the symbol 5 as seen in data stream 30-5, FIG. 
39. 

Encoding the Alphabet 

0145 As demonstrated above, we count the number of 
symbols in the data stream, and use the count to build a 
Huffman tree and code for the current alphabet. There is no 
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Huffman code assigned to the symbol 1 and the symbol 4 
because there are no instances of these symbols in the com 
pressed data in this pass. The total symbol count has been 
reduced from 184 to 136 (e.g., 40+0+40+8+0+48, but not 
including the EOF marker) as seen in table 41-4, FIG. 40. 

Calculating the Compressed File Size 

0146 We need to evaluate whether our substitution 
reduces the amount of space that it takes to store the data. As 
seen in table 52", FIG. 41, the total number of bits is 283. 
0147 As seen in table 57", FIG. 42, the compression 
overhead in bits is 48. 
Determining Whether the Compression Goal has been 
Achieved 
0148 Finally, we compare the original number of bits 
(384) to the current number of bits (331) that are needed for 
this compression pass as seen in table 58". FIG. 43. In turn, 
we find that it takes 0.86 times as many bits to store the 
compressed data as it took to store the original data. 

PaSS 5 

0149. In this pass, we replace the most highly occurring 
tuple from the previous pass with a new symbol, and then we 
determine whether we have achieved our compression goal. 

Identifying all Possible Tuples 

0150. We expand the tuple array by adding the symbol that 
was created in the previous pass. We add the symbol 5 as a first 
symbol and last symbol, and enter the tuples in the new cells 
as seen in table 35-4, FIG. 44. 

Determining the Highly Occurring Tuple 

0151. The tuple array identifies the tuples that we look for 
and tally in our revised alphabet as seen in table 40-4, FIG. 45. 
(Total Symbol Count=136) The tuple that occurs most fre 
quently is the symbol 2 followed by symbol 5 (2-5), which 
has a hypotenuse of 5.4. It occurs 39 times. This tuple ties 
with the tuple 0>2 (hypotenuse is 2) and 5>0 (hypotenuse is 
5). The tuple 2D5 is the most complex based on the hypot 
enuse length 25" described above. 

Creating a Symbol for the Highly Occurring Tuple 

0152 We define a new symbol 6 to represent the most 
highly occurring tuple 2>5, and add it to the dictionary for the 
alphabet that was developed in the previous passes as seen in 
table 26-5, FIG. 46. 
Replacing the Tuple with the New Symbol 
0153. In the data stream, we replace every instance of the 
most highly occurring tuple with the new single symbol. We 
replace the 39 instances of the 2-5 tuple in data stream 30-5, 
FIG. 39, with the symbol 6 as seen in data stream 30-6, FIG. 
47. 

Encoding the Alphabet 

0154 As demonstrated above, we count the number of 
symbols in the data stream, and use the count to build a 
Huffman tree and code for the current alphabet as seen in 
table 41-5, FIG. 48. There is no Huffman code assigned to the 
symbol 1 and the symbol 4 because there are no instances of 
these symbols in the compressed data in this pass. The total 
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symbol count has been reduced from 136 to 97 (e.g., 40+1+ 
8+9+39, but not including the EOF marker) as seen in table 
52-4, FIG. 49. 

Calculating the Compressed File Size 
O155 We need to evaluate whether our substitution 
reduces the amount of space that it takes to store the data. As 
seen in table 52-4, FIG. 49, the total number of bits is 187. 
0156. As seen in table 57-4, FIG. 50, the compression 
overhead in bits is 59. 
Determining Whether the Compression Goal has been 
Achieved 
0157 Finally, we compare the original number of bits 
(384) to the current number of bits (246, or 187+59) that are 
needed for this compression pass as seen in table 58-4, FIG. 
51. We find that it takes 0.64 times as many bits to store the 
compressed data as it took to store the original data. 

Pass 6 

0158. In this pass, we replace the most highly occurring 
tuple from the previous pass with a new symbol, and then we 
determine whether we have achieved our compression goal. 

Identifying all Possible Tuples 
0159. We expand the tuple array 35-5 by adding the sym 
bol that was created in the previous pass as seen in FIG. 52. 
We add the symbol 6 as a first symbol and last symbol, and 
enter the tuples in the new cells. 

Determining the Highly Occurring Tuple 
0160 The tuple array identifies the tuples that we look for 
and tally in our revised alphabet. (Total Symbol Count=97) 
The tuple that occurs most frequently is the symbol 0 fol 
lowed by symbol 6 (0>6). It occurs 39 times as seen in table 
40-5, FIG. 53. 

Creating a Symbol for the Highly Occurring Tuple 
0161 We define a new symbol 7 to represent the 0-6 tuple, 
and add it to the dictionary for the alphabet that was devel 
oped in the previous passes as seen in table 26-6, FIG. 54. 
Replacing the Topic with the New Symbol 
0162. In the data stream, we replace every instance of the 
most highly occurring tuple with the new single symbol. We 
replace the 39 instances of the 0-6 tuple in data stream 30-6, 
FIG. 47, with the symbol 7 as seen in data stream 30-7, FIG. 
55. 

Encoding the Alphabet 

0163 As demonstrated above, we count the number of 
symbols in the data stream, and use the count to build a 
Huffman tree and code for the current alphabet as seen in 
table 41-6, FIG.56. There is no Huffman code assigned to the 
symbol 1, symbol 4 and symbol 6 because there are no 
instances of these symbols in the compressed data in this pass. 
The total symbol count has been reduced from 97 to 58 (e.g., 
1+0+1+8+0+9+0+39, but not including the EOF marker). 
0164. Because all the symbols 1, 4, and 6 have been 
removed from the data stream, there is no reason to express 
them in the encoding scheme of the Huffman tree 50', FIG.57. 
However, the extinct symbols will be needed in the decode 
table. A complex symbol may decode to two less complex 
symbols. For example, a symbol 7 decodes to 0>6. 
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0.165. We need to evaluate whether our substitution 
reduces the amount of space that it takes to store the data. As 
seen in table 52-5, FIG. 58, the total number of bits is 95. 
(0166 As seen in table 57-5, FIG. 59, the compression 
overhead in bits is 71. 
Determining Whether the Compression Goal has been 
Achieved 
0.167 Finally, we compare the original number of bits 
(384) to the current number of bits (166, or 95+71) that are 
needed for this compression pass as seen in table 58-5, FIG. 
60. We find that it takes 0.43 times as many bits to store the 
compressed data as it took to store the original data. 

Subsequent Passes 

(0168 Skilled artisans will also notice that overhead has 
been growing in size while the total number of bits is still 
decreasing. We repeat the procedure to determine if this is the 
optimum compressed file size. We compare the compression 
size for each Subsequent pass to the first occurring lowest 
compressed file size. The chart 60, FIG. 61, demonstrates 
how the compressed file size grows, decreases, and then 
begins to grow as the encoding information and dictionary 
sizes grow. We can continue the compression of the foregoing 
techniques until the text file compresses to a single symbol 
after 27 passes. 

Interesting Symbol Statistics 

(0169. With reference to table 61, FIG. 62, interesting sta 
tistics about the symbols for this compression are observable. 
For instance, the top 8 symbols represent 384 bits (e.g., 312+ 
45+24+2+1) and 99.9% (e.g., 81.2+11.7+6.2+0.5+0.3%) of 
the file. 

Storing the Compressed File 

0170 The information needed to decompress a file is usu 
ally written at the front of a compressed file, as well as to a 
separate dictionary only file. The compressed file contains 
information about the file, a coded representation of the Huff 
man tree that was used to compress the data, the dictionary of 
symbols that was created during the compression process, 
and the compressed data. The goal is to store the information 
and data in as few bits as possible. 
0171 This section describes a method and procedure for 
storing information in the compressed file. 

File Type 
0172. The first four bits in the file are reserved for the 
version number of the file format, called the file type. This 
field allows flexibility for future versions of the software that 
might be used to write the encoded data to the storage media. 
The file type indicates which version of the software was used 
when we saved the file in order to allow the file to be decom 
pressed later. 
0173 Four bits allows for up to 16 versions of the soft 
ware. That is, binary numbers from 0000 to 1111 represent 
version numbers from 0 to 15. Currently, this field contains 
binary 0000. 

Maximum Symbol Width 
0.174. The second four bits in the file are reserved for the 
maximum symbol width. This is the number of bits that it 
takes to store in binary form the largest symbol value. The 
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actual value stored is four less than the number of bits 
required to store the largest symbol value in the compressed 
data. When we read the value, we add four to the stored 
number to get the actual maximum symbol width. This tech 
nique allows symbol values up to 20 bits. In practical terms, 
the value 220 (2 raised to the 20" power) means that about 1 
million symbols can be used for encoding. 
0175 For example, if symbols 0-2000 might appear in the 
compressed file, the largest symbol ID (2000) would fit in a 
field containing 11 bits. Hence, a decimal 7 (binary 0.111) 
would be stored in this field. 
0176). In the compression example, the maximum symbol 
width is the end-of-file symbol 8, which takes four bits in 
binary (1000). We subtract four, and store a value of 0000. 
When we decompress the data, we add four to Zero to find the 
maximum symbol width of four bits. The symbol width is 
used to read the Huffman tree that immediately follows in the 
coded data stream. 

Coded Huffman Tree 

0177. We must store the path information for each symbol 
that appears in the Huffman tree and its value. To do this, we 
convert the symbol's digital value to binary. Each symbol will 
be stored in the same number of bits, as determined by the 
symbol with the largest digital value and stored as the just 
read “symbol width”. 
0178. In the example, the largest symbol in the dictionary 
in the Huffman encoded tree is the end-of-file symbol 8. The 
binary form of8 is 1000, which takes 4 bits. We will store each 
of the symbol values in 4 bits. 
0179 To store a path, we will walk the Huffman tree in a 
method known as a pre-fix order recursive parse, where we 
visit each node of the tree in a known order. For each node in 
the tree one bit is stored. The value of the bit indicates if the 
node has children (1) or if it is a leaf with no children (O). If it 
is a leaf, we also store the symbol value. We start at the root 
and follow the left branch down first. We visit each node only 
once. When we return to the root, we follow the right branch 
down, and repeat the process for the right branch. 
0180. In the following example, the Huffman encoded tree 

is redrawn as 50-2 to illustrate the prefix-order parse, where 
nodes with children are labeled as 1, and leaf nodes are 
labeled as 0 as seen in FIG. 63. 
0181. The discovered paths and symbols are stored in the 
binary form in the order in which they are discovered in this 
method of parsing. Write the following bit string to the file, 
where the bits displayed in bold/underline represent the path, 
and the value of the 0 node are displayed without bold/under 
line. The spaces are added for readability; they are not written 
to media. 
110 O101 11 OOOOO 10 1 OOOOOO1 OOOO11 OO111 

Encode Array for the Dictionary 
0182. The dictionary information is stored as sequential 

first/last definitions, starting with the two symbols that define 
the symbol 2. We can observe the following characteristics of 
the dictionary: 

0183 The symbols 0 and 1 are the atomic (non-divis 
ible) symbols common to every compressed file, so they 
do not need to be written to media. 

0.184 Because we know the symbols in the dictionary 
are sequential beginning with 2, we store only the sym 
bol definition and not the symbol itself. 
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0185. A symbol is defined by the tuple it replaces. The 
left and right symbols in the tuple are naturally symbols 
that precede the symbol they define in the dictionary. 

0186 We can store the left/right symbols of the tuple in 
binary form. 

0187 We can predict the maximum number of bits that 
it takes to store numbers in binary form. The number of 
bits used to store binary numbers increases by one bit 
with each additional power of two as seen, for example, 
in table 62, FIG. 64: 

0188 Because the symbol represents a tuple made up of 
lower-level symbols, we will increase the bit width at the next 
higher symbol value; that is, at 3, 5, 9, and 17, instead of at 2, 
4, 8, and 16. 
(0189 We use this information to minimize the amount of 
space needed to store the dictionary. We store the binary 
values for the tuple in the order of first and last, and use only 
the number of bits needed for the values. 

0190. Three dictionary instances have special meanings. 
The 0 and 1 symbols represent the atomic symbols of data 
binary Obinary 1, respectively. The last structure in the array 
represents the end-of-file (EOF) symbol, which does not have 
any component pieces. The EOF symbol is always assigned a 
value that is one number higher than the last symbol found in 
the data stream. 

0191 Continuing our compression example, the table 63, 
FIG. 65, shows how the dictionary is stored. 
0.192 Write the following bit string to the file. The spaces 
are added for readability; they are not written to media. 
10 1 OOOO 111 1 OOOOOO10101 OOO110 

Encoded Data 

0193 To store the encoded data, we replace the symbol 
with its matching Huffman code and write the bits to the 
media. At the end of the encoded bit string, we write the EOF 
symbol. In our example, the final compressed symbol string is 
seen again as 30-7, FIG. 66, including the EOF. 
0194 The Huffman code for the optimal compression is 
shown in table 67, FIG. 67. 
0.195 As we step through the data stream, we replace the 
symbol with the Huffman coded bits as seen at string 68, FIG. 
68. For example, we replace symbol 0 with the bits 0100 from 
table 67, replace symbol 5 with 00 from table 67, replace 
instances of symbol 7 with 1, and so on. We write the follow 
ing string to the media, and write the end of file code at the 
end. The bits are separated by spaces for readability; the 
spaces are not written to media. 
0196. The compressed bit string for the data, without 
spaces is: 0100001111111111111111111111111110110 
O111011 OO11111111011 OO101OOO11 OOO1 
1OOO11 OOO11 OOO 101101010 

Overview of the Stored File 

(0197). As summarized in the diagram 69, FIG. 69, the 
information stored in the compressed file is the file type, 
symbol width, Huffman tree, dictionary, encoded data, and 
EOF symbol. After the EOF symbol, a variable amount of pad 
bits are added to align the data with the final byte in storage. 
(0198 In the example, the bits 70 of FIG.70 are written to 
media. Spaces are shown between the major fields for read 
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ability; the spaces are not written to media. The 'x' represents 
the pad bits. In FIG. 69, the bits 70 are seen filled into diagram 
69b corresponding to the compressed file format. 

Decompressing the Compressed File 
0199 The process of decompression unpacks the data 
from the beginning of the file 69, FIG. 69, to the end of the 
Stream. 

File Type 
0200 Read the first four bits of the file to determine the file 
format version. 

Maximum Symbol Width 
0201 Read the next four bits in the file, and then add four 
to the value to determine the maximum symbol width. This 
value is needed to read the Huffman tree information. 

Huffman Tree 

0202 Reconstruct the Huffman tree. Each 1 bit represents 
a node with two children. Each 0 bit represents a leaf node, 
and it is immediately followed by the symbol value. Read the 
number of bits for the symbol using the maximum symbol 
width. 
0203. In the example, the stored string for Huffman is: 
0204 11001011100000101000000100001100111 
0205 With reference to FIG. 71, diagram 71 illustrates 
how to unpack and construct the Huffman tree using the 
pre-fix order method. 

Dictionary 

0206 To reconstruct the dictionary from file 69, read the 
values for the pairs of tuples and populate the table. The 
values of 0 and 1 are known, so they are automatically 
included. The bits are read in groups based on the number of 
bits per symbol at that level as seen in table 72, FIG.72. 
0207. In our example, the following bits were stored in the 

file: 101 OOOO 111101 OOOO 10101OOO110 
0208 We read the numbers in pairs, according to the bits 
per symbol, where the pairs represent the numbers that define 
symbols in the dictionary: 

Bits Symbol 

1 O 2 
10 OO 3 
O1 11 4 
1OOOOO 5 
O10 101 6 
OOO 110 7 

0209 We convert each binary number to a decimal num 
ber: 

Decimal Value Symbol 

1 O 2 
2 O 3 
13 4 
4 O 5 
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-continued 

Decimal Value Symbol 

25 6 
O 6 7 

0210 We identify the decimal values as the tuple defini 
tions for the symbols: 

Symbol Tuple 

2 1 > 0 
3 2 > O 
4 1 > 3 
5 4 > 0 
6 2 > 5 
7 O > 6 

0211 We populate the dictionary with these definitions as 
seen in table 73, FIG. 73. 

Construct the Decode Tree 

0212 We use the tuples that are defined in the re-con 
structed dictionary to build the Huffman decode tree. Let's 
decode the example dictionary to demonstrate the process. 
The diagram 74 in FIG. 74 shows how we build the decode 
tree to determine the original bits represented by each of the 
symbols in the dictionary. The step-by-step reconstruction of 
the original bits is as follows: 
0213 Start with symbols 0 and 1. These are the atomic 
elements, so there is no related tuple. The symbol 0 is a left 
branch from the root. The symbol 1 is a right branch. (Left and 
right are relative to the node as you are facing the diagram— 
that is, on your left and on your right.) The atomic elements 
are each represented by a single bit, so the binary path and the 
original path are the same. Record the original bits 0 and 1 in 
the decode table. 
0214 Symbol 2 is defined as the tuple 1 >0 (symbol 1 
followed by symbol 0). In the decode tree, go to the node for 
symbol 1, then add a path that represents symbol 0. That is, 
add a left branch at node 1. The terminating node is the 
symbol 2. Traverse the path from the root to the leaf to read the 
branch paths of left (L) and right (R). Replace each left branch 
with a 0 and each right path with a 1 to view the binary forum 
of the path as LR, or binary 10. 
0215 Symbol 3 is defined as the tuple 2>0. In the decode 
tree, go to the node for symbol 2, then add a path that repre 
sents symbol 0. That is, add a left branch at node 2. The 
terminating node is the symbol 3. Traverse the path from the 
root to the leaf to read the branch path of RLL. Replace each 
left branch with a 0 and each right path with a 1 to view the 
binary form of the path as 100. 
0216) Symbol 4 is defined as the tuple 1 >3. In the decode 
tree, go to the node for symbol 1, then add a path that repre 
sents symbol 3. From the root to the node for symbol 3, the 
path is RLL. At symbol 1, add the RLL path. The terminating 
node is symbol 4. Traverse the path from the root to the leaf to 
read the path of RRLL, which translates to the binary format 
of 1100. 
0217. Symbol 5 is defined as the tuple 4->0. In the decode 
tree, go to the node for symbol 4, then add a path that repre 
sents symbol 0. At symbol 4, add the L path. The terminating 
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node is symbol 5. Traverse the path from the root to the leaf to 
read the path of RRLLL, which translates to the binary format 
of 11000. 
0218 Symbol 6 is defined as the tuple 2D5. In the decode 

tree, go to the node for symbol 2, then add a path that repre 
sents symbol 5. From the root to the node for symbol 5, the 
path is RRLLL. The terminating node is symbol 6. Traverse 
the path from the root to the leaf to read the path of RLR 
RLLL, which translates to the binary format of 1011000. 
0219. Symbol 7 is defined as the tuple 0>6. In the decode 
tree, go to the node for symbol 0, then add a path that repre 
sents symbol 6. From the root to the node for symbol 6, the 
path is RLRRLLL. The terminating node is symbol 7. 
Traverse the path from the root to the leaf to read the path of 
LRLRRLLL, which translates to the binary format of 
O1 O1OOO. 

Decompress the Data 
0220 To decompress the data, we need the reconstructed 
Huffman tree and the decode table that maps the symbols to 
their original bits as seen at 75, FIG. 75. We read the bits in the 
data file one bit at a time, following the branching path in the 
Huffman tree from the root to a node that represents a symbol. 
The compressed file data bits are: 010000111111111111111 
111111111011 OO111011 OO11111111011001011 OOO11OOO1 
1OOO11OOO11 OOO 101101010 
0221 For example, the first four bits of encoded data 0100 
takes us to symbol 0 in the Huffman tree, as illustrated in the 
diagram 76, FIG. 76. We lookup 0 in the decode treeandtable 
to find the original bits. In this case, the original bits are also 
0. We replace 0100 with the single bit 0. 
0222. In the diagram 77 in FIG. 77, we follow the next two 
bits 00 to find symbol 5 in the Huffman tree. We look up 5 in 
the decode tree and table to find that symbol 5 represents 
original bits of 11000. We replace 00 with 11000. 
0223) In the diagram 78, FIG.78, we follow the next bit 1 
to find symbol 7 in the Huffman tree. We look up 7 in the 
decode tree and table to find that symbol 7 represents the 
original bits 01011000. We replace the single bit 1 with 
01011000. We repeat this for each 1 in the series of 1s that 
follow. 
0224. The next symbol we discover is with bits 011. We 
follow these bits in the Huffman tree in diagram 79, FIG. 79. 
We look up symbol 3 in the decode tree and table to find that 
it represents original bits 100, so we replace011 with bits 100. 
0225. We continue the decoding and replacement process 

to discover the symbol 2 near the end of the stream with bits 
01011, as illustrated in diagram 80, FIG. 80. We look up 
symbol 2 in the decode tree and table to find that it represents 
original bits 10, so we replace 01 011 with bits 10. 
0226. The final unique sequence of bits that we discover is 
the end-of-file sequence of 01 010, as illustrated in diagram 
81, FIG. 81. The EOF tells us that we are done unpacking. 
0227. Altogether, the unpacking of compressed bits recov 
ers the original bits of the original data stream in the order of 
diagram 82 spread across two FIGS. 82a and 82b. 
0228. With reference to FIG. 83, a representative comput 
ing system environment 100 includes a computing device 
120. Representatively, the device is a general or special pur 
pose computer, a phone, a PDA, a server, a laptop, etc., having 
a hardware platform 128. The hardware platform includes 
physical I/O and platform devices, memory (M), processor 
(P), such as a CPU(s), USB or other interfaces (X), drivers 
(D), etc. In turn, the hardware platform hosts one or more 
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virtual machines in the form of domains 130-1 (domain 0, or 
management domain), 130-2 (domain U1), ... 130-n (domain 
Un), each having its own guest operating system (O.S.) (e.g., 
Linux, Windows, Netware, Unix, etc.), applications 140-1, 
140-2, ... 140-n, file systems, etc. The workloads of each 
virtual machine also consume data stored on one or more 
disks 121. 
0229. An intervening Xen or other hypervisor layer 150, 
also known as a “virtual machine monitor” or virtualization 
manager, serves as a virtual interface to the hardware and 
virtualizes the hardware. It is also the lowest and most privi 
leged layer and performs scheduling control between the 
virtual machines as they task the resources of the hardware 
platform, e.g., memory, processor, storage, network (N) (by 
way of network interface cards, for example), etc. The hyper 
visor also manages conflicts, among other things, caused by 
operating system access to privileged machine instructions. 
The hypervisor can also be type 1 (native) or type 2 (hosted). 
According to various partitions, the operating systems, appli 
cations, application data, boot data, or other data, executable 
instructions, etc., of the machines are virtually stored on the 
resources of the hardware platform. Alternatively, the com 
puting system environment is not a virtual environmentatall, 
but a more traditional environment lacking a hypervisor, and 
partitioned virtual domains. Also, the environment could 
include dedicated services or those hosted on other devices. 
0230. In any embodiment, the representative computing 
device 120 is arranged to communicate 180 with one or more 
other computing devices or networks. In this regard, the 
devices may use wired, wireless or combined connections to 
other devices/networks and may be director indirect connec 
tions. If direct, they typify connections within physical or 
network proximity (e.g., intranet). If indirect, they typify 
connections such as those found with the internet, satellites, 
radio transmissions, or the like. The connections may also be 
local area networks (LAN), wide area networks (WAN). 
metro area networks (MAN), etc., that are presented by way 
of example and not limitation. The topology is also any of a 
variety, such as ring, star, bridged, cascaded, meshed, or other 
known or hereinafter invented arrangement. 
0231. In still other embodiments, skilled artisans will 
appreciate that enterprises can implement some or all of the 
foregoing with humans, such as system administrators, com 
puting devices, executable code, or combinations thereof. In 
turn, methods and apparatus of the invention further contem 
plate computer executable instructions, e.g., code or soft 
ware, as part of computer program products on readable 
media, e.g., disks for insertion in a drive of a computing 
device 120, or available as downloads or direct use from an 
upstream computing device. When described in the context of 
Such computer program products, it is denoted that items 
thereof. Such as modules, routines, programs, objects, com 
ponents, data structures, etc., perform particular tasks or 
implement particular abstract data types within various struc 
tures of the computing system which cause a certain function 
or group of function, and Such are well known in the art. 
0232. While the foregoing produces a well-compressed 
output file, e.g., FIG. 69, skilled artisans should appreciate 
that the algorithm requires relatively considerable processing 
time to determine a Huffman tree, e.g., element 50, and a 
dictionary, e.g., element 26, of optimal symbols for use in 
encoding and compressing an original file. Also, the time 
spent to determine the key information of the file is signifi 
cantly longer than the time spent to encode and compress the 
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file with the key. The following embodiment, therefore, 
describes a technique to use a file's compression byproducts 
to compress other data files that contain Substantially similar 
patterns. The effectiveness of the resultant compression 
depends on how similar a related file's patterns are to the 
original file's patterns. As will be seen, using previously 
created, but related key, decreases the processing time to a 
small fraction of the time needed for the full process above, 
but at the expense of a slightly less effective compression. The 
process can be said to achieve a “fast approximation’ to 
optimal compression for the related files. 
0233. The definitions from FIG. 1 still apply. 
0234 Broadly, the “fast approximation' hereafter 1) 
greatly reduces the processing time needed to compress a file 
using the techniques above, and 2) creates and uses a decode 
tree to identify the most complex possible pattern from an 
input bit stream that matches previously defined patterns. 
Similar to earlier embodiments, this encoding method 
requires repetitive computation that can be automated by 
computer Software. The following discusses the logical pro 
cesses involved. 

Compression Procedure Using a Fast Approximation to Opti 
mal Compression 
0235 Instead ofusing the iterative process of discovery of 
the optimal set of symbols, above, the following uses the 
symbols that were previously created for another file that 
contains patterns significantly similar to those of the file 
under consideration. In a high-level flow, the process involves 
the following tasks: 

0236 1. Select a file that was previously compressed 
using the procedure(s) in FIGS. 2-82b. The file should 
contain data patterns that are significantly similar to the 
current file under consideration for compression. 

0237 2. From the previously compressed file, read its 
key information and unpack its Huffman tree and sym 
bol dictionary by using the procedure described above, 
e.g., FIGS. 63-82b. 

0238 3. Create a decode tree for the current file by using 
the symbol dictionary from the original file. 

0239 4. Identify and count the number of occurrences 
of patterns in the current file that match the previously 
defined patterns. 

0240 5. Create a Huffman encoding tree for the sym 
bols that occur in the current file plus an end-of-file 
(EOF) symbol. 

0241 6. Store the information using the Huffman tree 
for the current file plus the file type, symbol width, and 
dictionary from the original file. 

Each of the tasks is described in more detail below. An 
example is provided thereafter. 

Selecting a Previously Compressed File 

0242. The objective of the fast approximation method is to 
take advantage of the key information in an optimally com 
pressed file that was created by using the techniques above. In 
its uncompressed form of original data, the compressed file 
should contain data patterns that are significantly similar to 
the patterns in the current file under consideration for com 
pression. The effectiveness of the resultant compression 
depends on how similar a related file's patterns are to the 
original file's patterns. The way a skilled artisan recognizes a 
similar file is that similar bit patterns are found in the origi 
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nally compressed and new file yet to be compressed. It can be 
theorized a priori that files are likely similar if they have 
similar formatting (e.g., text, audio, image, powerpoint, 
spreadsheet, etc), topic content, tools used to create the files, 
file type, etc. Conclusive evidence of similar bit patterns is 
that similar compression ratios will occur on both files (i.e. 
original file compresses to 35% of original size, while target 
file also compresses to about 35% of original size). It should 
be noted that similar file sizes are not a requisite for similar 
patterns being present in both files. 
0243 With reference to FIG. 84, the key information 200 
of a file includes the file type, symbol width, Huffman tree, 
and dictionary from an earlier file, e.g., file 69, FIG. 69. 

Reading and Unpacking the Key Information 

0244. From the key information 200, read and unpack the 
File Type, Maximum Symbol Width, Huffman Tree, and Dic 
tionary fields. 

Creating a Decode Tree for the Current File 
0245 Create a pattern decode tree using the symbol dic 
tionary retrieved from the key information. Each symbol rep 
resents a bit pattern from the original data stream. We deter 
mine what those bits are by building a decode tree, and then 
parsing the tree to read the bit patterns for each symbol. 
0246 We use the tuples that are defined in the re-con 
structed dictionary to build the decode tree. The pattern 
decode tree is formed as a tree that begins at the root and 
branches downward. A terminal node represents a symbol ID 
value. A transition node is a placeholder for a bit that leads to 
terminal nodes. 

Identifying and Counting Pattern Occurrences 

0247 Read the bit stream of the current file one bit at a 
time. As the data stream is parsed from left to right, the paths 
in the decode tree are traversed to detect patterns in the data 
that match symbols in the original dictionary. 
0248 Starting from the root of the pattern decode tree, use 
the value of each input bit to determine the descent path thru 
the pattern decode tree. A “0” indicates a path down and to the 
left, while a “1” indicates a path down and to the right. 
Continue descending through the decode tree until there is no 
more descent path available. This can occur because a branch 
left is indicated with no left branch available, or a branch right 
is indicated with no right branch available. 
0249. When the end of the descent path is reached, one of 
the following occurs: 

0250 If the descent path ends in a terminal node, count 
the symbol ID found there. 

0251. If the descent path ends in a transition node, 
retrace the descent path toward the root, until a terminal 
node is encountered. This terminal node represents the 
most complex pattern that could be identified in the input 
bit stream. For each level of the tree ascended, replace 
the bit that the path represents back into the bit stream 
because those bits form the beginning of the next pattern 
to be discovered. Count the symbol ID found in the 
terminal node. 

0252 Return to the root of the decode tree and continue 
with the next bit in the data stream to find the next symbol. 
0253) Repeat this process until all of the bits in the stream 
have been matched to patterns in the decode tree. When done, 
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there exists a list of all of the symbols that occur in the bit 
stream and the frequency of occurrence for each symbol. 

Creating a Huffman Tree and Code for the Current File 
0254 Use the frequency information to create a Huffman 
encoding tree for the symbols that occur in the current file. 
Include the end-of-file (EOF) symbol when constructing the 
tree and determining the code. 

Storing the Compressed File 

0255 Use the Huffman tree for the current file to encode 
its data. The information needed to decompress the file is 
written at the front of the compressed file, as well as to a 
separate dictionary only file. The compressed file contains: 

0256 The file type and maximum symbol width infor 
mation from the original file's key 

0257. A coded representation of the Huffman tree that 
was created for the current file and used to compress its 
data, 

0258. The dictionary of symbols from the original file's 
key. 

0259. The Huffman-encoded data, and 
0260. The Huffman-encoded EOF symbol. 

Example of “Fast Approximation' 
0261 This example uses the key information 200 from a 
previously created but related compressed file to approximate 
the symbols needed to compress a different file. 

Reading and Unpacking the Key Information 
0262. With reference to table 202, FIG. 85, a representa 
tive dictionary of symbols (0-8) was unpacked from the key 
information 200 for a previously compressed file. The sym 
bols 0 and 1 are atomic, according to definition (FIG. 1) in that 
they represent bits 0 and 1, respectively. The reading and 
unpacking this dictionary from the key information is given 
above. 
Construct the Decode Tree from the Dictionary 
0263. With reference to FIG. 86, a diagram 204 demon 
strates the process of building the decode tree for each of the 
symbols in the dictionary (FIG. 85) and determining the 
original bits represented by each of the symbols in the dictio 
nary. In the decode tree, there are also terminal nodes, e.g., 
205, and transition nodes, e.g., 206. A terminal node repre 
sents a symbol value. A transition node does not represent a 
symbol, but represents additional bits in the path to the next 
symbol. The step-by-step reconstruction of the original bits is 
described below. 
0264 Start with symbols 0 and 1. These are the atomic 
elements, by definition, so there is no related tuple as in the 
dictionary of FIG. 85. The symbol 0 branches left and down 
from the root. The symbol 1 branches right and down from the 
root. (Left and right are relative to the node as you are facing 
the diagram—that is, on your left and on your right.) The 
atomic elements are each represented by a single bit, so the 
binary path and the original path are the same. You record the 
“original bits’ 0 and 1 in the decode table 210, as well as its 
“branch path.” 
0265 Symbol 2 is defined from the dictionary as the tuple 
1>0 (symbol 1 followed by symbol 0). In the decode tree 212, 
go to the node for symbol 1 (which is transition node 205 
followed by a right path Rand ending in a terminal node 206, 
or arrow 214), then add a path that represents symbol 0 (which 
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is transition node 205 followed by a left path Land ending in 
a terminal node 206, or path 216). That is, you add a left 
branch at node 1. The terminating node 220 is the symbol 2. 
Traverse the path from the root to the leaf to read the branch 
paths of right (R) and left (L). Replace each left branch with 
a 0 and each right path with a 1 to view the binary form of the 
path as RL, or binary 10 as in decode table 210. 
0266 Symbol 3 is defined as the tuple 2-0. In its decode 
tree 230, it is the same as the decode tree for symbol 2, which 
is decode tree 212, followed by the “0” Particularly, in tree 
230, go to the node for symbol 2, then add a path that repre 
sents symbol 0. That is, you add a left branch (e.g., arrow 216) 
at node 2. The terminating node is the symbol 3. Traverse the 
path from the root to the leaf to read the branch path of RLL. 
Replace each left branch with a 0 and each right path with a 1 
to view the binary format of 100 as in the decode table. 
0267 Similarly, the other symbols are defined with 
decode trees building on the decode trees for other symbols. 
In particular, they are as follows: 
0268 Symbol 4 from the dictionary is defined as the tuple 
1>3. In its decode tree, go to the node for symbol 1, then add 
a path that represents symbol 3. From the root to the node for 
symbol 3, the path is RLL. At symbol 1, add the RLL path. 
The terminating node is symbol 4. Traverse the path from the 
root to the leaf to read the path of RRLL, which translates to 
the binary format of 1100 as in the decode table. 
0269. Symbol 5 is defined as the tuple 4->0. In its decode 
tree, go to the node for symbol 4, then add a path that repre 
sents symbol 0. At symbol 4, add the L path. The terminating 
node is symbol 5. Traverse the path from the root to the leaf to 
read the path of RRLLL, which translates to the binary format 
of 11000. 
(0270. Symbol 6 is defined as the tuple 5>3. In its decode 
tree, go to the node for symbol 5, then add a path that repre 
sents symbol 3. The terminating node is symbol 6. Traverse 
the path from the root to the leaf to read the path of RRLLL 
RLL, which translates to the binary format of 11000100. 
0271 Symbol 7 is defined from the dictionary as the tuple 
5>0. In its decode tree, go to the node for symbol 5, then add 
a path that represents symbol 0. From the root to the node for 
symbol 5, the path is RRLLL. Add a left branch. The termi 
nating node is symbol 7. Traverse the path from the root to the 
leaf to read the path of RRLLLL, which translates to the 
binary format of 110000. 
0272 Finally, symbol 8 is defined in the dictionary as the 
tuple 7-2. In its decode tree, go to the node for symbol 7, then 
add a path that represents symbol 2. From the root to the node 
for symbol 7, the path is RRLLLL. Adda RL path for symbol 
2. The terminating node is symbol 8. Traverse the path from 
the root to the leaf to read the path of RRLLLLRL, which 
translates to the binary format of 11000010. 
0273. The final decode tree for all symbols put together in 
a single tree is element 240, FIG. 87, and the decode table 210 
is populated with all original bit and branch path information. 

Identifying and Counting Pattern Occurrences 

0274 For this example, the sample or “current file' to be 
compressed is similar to the one earlier compressed who's 
key information 200, FIG. 84, was earlier extracted. It con 
tains the following representative “bit stream” (reproduced in 
FIG. 88, with spaces for readability): 011000010110001001 
1OOOO1011 OOO1 OO11OOOO 1011 OOOO1 O11OOO1 OO11 OOOO1 O1 
1OOO10 
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O11OOOO 1011 OOOO 1011 OOO1 OO11OOOO 1011 OOO1 OO11 OOOO1 
O11OOO1 OO11 OOOO 1011 OOO10 
O11OOO1 OO11 OOO1 OO11 OOO1 OO11OOO1 OO11 OOOO1011 OOOO1 
O11OOO1 OO11 OOOO 1011 OOO 10 O11OOOO1 O11OOO10 

0275 Westep through the stream one bit at a time to match 
patterns in the stream to the known symbols from the dictio 
nary 200, FIG. 85. To determine the next pattern in the bit 
stream, we look for the longest sequence of bits that match a 
known symbol. To discover symbols in the new data bit 
stream, read a single bit at a time from the input bit stream. 
Representatively, the very first bit, 250 FIG. 88, of the bit 
stream is a “0” With reference to the Decode Tree, 240 in 
FIG. 87, start at the top-most (the root) node of the tree. The 
“0” input bit indicates a down and left “Branch Path” from the 
root node. The next bit from the source bit stream at position 
251 in FIG. 88, is a “1” indicating a down and right path. The 
Decode Tree does not have a defined path down and right 
from the current node. However the current node is a terminal 
node, with a symbol ID of 0. Write a symbol 0 to a temporary 
file, and increment the counter corresponding to symbol ID 0. 
Return to the root node of the Decode Tree, and begin looking 
for the next symbol. The “1” bit that was not previously usable 
in the decode (e.g., 251 in FIG.88) indicates a down and right. 
The next bit “1” (252 in FIG. 88) indicates a down and right. 
Similarly, subsequent bits “000010” indicate further descents 
in the decode tree with paths directions of LLLLRL, resulting 
in path 254 from the root. The next bit “1” (position 255, FIG. 
88) denotes a further down and right path, which does not 
exist in the decode tree 240, as we are presently at a terminal 
node. The symbol ID for this terminal node is 8. Write a 
symbol 8 to the temporary file, and increment the counter 
corresponding to symbol ID 8. 
0276 Return to the root node of the Decode Tree, and 
begin looking for the next symbol again starting with the last 
unused input streambit, e.g., the bit “1” at position 255, FIG. 
88. Subsequent bits in the source bit stream, “11000100” lead 
down through the Decode Tree to a terminal node for symbol 
6. The next bit, “1”, at position 261, FIG. 88, does not repre 
sent a possible down and right traversal path. Thus, write a 
symbol 6 to the temporary file, and increment the counter 
corresponding to symbol ID 6. Again, starting back at the root 
of the tree, perform similar decodes and book keeping to 
denote discovery of symbols 
86886868868686866666886868. Starting again at the root of 
the Decode Tree, parse the paths represented by input bits 
“1100010” beginning at position 262. There are no more bits 
available in the input stream. However, the current position in 
the Decode Tree, position 268, does not identify a known 
symbol. Thus, retrace the Decode Tree path upward toward 
the root. On each upward level node transition, replaceabitat 
the front of the input bit stream with a bit that represents that 
path transition; e.g. up and right is a “0”, up and left is a “1”. 
Continue the upward parse until reaching a valid symbol ID 
node, in this case the node 267 for symbol ID 5. In the process, 
two bits (e.g., positions 263 and 264, FIG. 88) will have been 
pushed back onto the input stream, a “0”, and then a “1. As 
before, write a symbol 5 to a temporary file, and increment the 
counter corresponding to symbol ID 5. Starting back at the 
root of the tree, bits are pulled from the input stream and 
parsed downward, in this case the “1” and then the “0” at 
positions 263 and 264. As we are now out of input bits, after 
position 264, examine the current node for a valid symbol ID, 
which in this case does exist at node 269, a symbol ID of 2. 
Write a symbol 2 to the temporary files, increment the corre 
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sponding counter. All input bits have now been decoded to 
previously defined symbols. The entire contents of the tem 
porary file a symbols: 
“O868688.68688.6868686666688.686852. 
0277 From here, the frequency of occurrence of each of 
the symbols in the new bit stream is counted. For example, the 
symbols “0” and 2" are each found occurring once at the 
beginning and end of the new bit stream. Similarly, the sym 
bol “5” is counted once just before the symbol “2. Each of the 
symbols “6” and “8” are counted fourteen times in the middle 
of the new bit stream for a total of thirty-one symbols. Its 
result is shown in table 275, FIG. 89. Also, one count for the 
end of file (EOF) symbol is added that is needed to mark the 
end of the encoded data when we store the compressed data. 

Creating a Huffman Tree and Code for the Current File 
(0278. From the symbol “counts” in FIG. 89, a Huffman 
binary code tree 280 is built for the current file, as seen in FIG. 
90. There is no Huffman code assigned to the symbol 1, 
symbol 3, symbol 4, and symbol 7 because there are no 
instances of these symbols in the new bit stream. However, 
the extinct symbols will be needed in the decode table for the 
tree. The reason for this is that a complex symbol may decode 
to two less complex symbols. For example, it is known that a 
symbol 8 decodes to tuple 7-2, e.g., FIG. 85. 
(0279. To construct the tree 280, list first the symbols from 
highest count to lowest count. In this example, the symbol “8” 
and symbol “6” tied with a count of fourteen and are each 
listed highest on the tree. On the other hand, the least counted 
symbols were each of symbol “0” “2,” “5,” and the EOF. 
Combine the counts for the two least frequently occurring 
symbols in the dictionary. This creates a node that has the 
value of the sum of the two counts. In this example, the EOF 
and 0 are combined into a single node 281 as are the symbols 
2 and 5 at node 283. Together, all four of these symbols 
combine into a node 285. Continue combining the two lowest 
counts in this manner until there is only one symbol remain 
ing. This generates a Huffman binary code tree. 
0280 Label the code tree paths with Zeros (Os) and ones (1 
s). To encode a symbol, parse from the root to the symbol. 
Each left and down path represents a 0 in the Huffman code. 
Each right and down path represents a 1 in the Huffman code. 
The Huffman coding scheme assigns shorter code words to 
the more frequent symbols, which helps reduce the size 
length of the encoded data. The Huffman code for a symbol is 
defined as the string of values associated with each path 
transition from the root to the symbol terminal node. 
(0281. With reference to FIG.91, table 290 shows the final 
Huffman code for the current file, as based on the tree. For 
example, the symbol “8” appears with the Huffman code 0. 
From the tree, and knowing the rule that “0” is a left and down 
path, the “8” should appear from the root at down and left, as 
it does. Similarly, the symbol “5” should appear at “1011' or 
right and down, left and down, right and down, and right and 
down, as it does. Similarly, the other symbols are found. 
There is no code for symbols 1, 3, 4, and 7, however, because 
they do not appear in the current file. 

Storing the Compressed File 
0282. The diagram in FIG. 92 illustrates how we now 
replace the symbols with their Huffman code value when the 
file is stored, such as in file format element 69, FIG. 69. 
0283 As is seen, the diagram 295 shows the original bit 
stream that is coded to symbols or a new bit stream, then 
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coded to Huffman codes. For example, the “0” bit at position 
250 in the original bit stream coded to a symbol “0” as 
described in FIG. 88. By replacing the symbol.O with its 
Huffman code (1001) from table 290, FIG.91, the Huffman 
encoded bits are seen, as: 1001 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 
11 O 11 O 11 11 11 11 11 OO 11 O 11 O 1011 1 01 0 1 OOO 

0284 Spaces are shown between the coded bits for read 
ability; the spaces are not written to media. Also, the code for 
the EOF symbol (1000) is placed at the end of the encoded 
data and shown in underline. 

0285. With reference to FIG. 93, the foregoing informa 
tion is stored in the compressed file 69' for the current file. As 
skilled artisans will notice, it includes both original or re-used 
information and new information, thereby resulting in a “fast 
approximation.” In detail, it includes the file type from the 
original key information (200), the symbol width from the 
original key information (200), the new Huffman coding 
recently created for the new file, the dictionary from the key 
information (200) of the original file, the data that is encoded 
by using the new Huffman tree, and the new EOF symbol. 
After the EOF symbol, a variable amount of pad bits are 
added to align the data with the final byte in storage. 
0286. In still another alternate embodiment, the following 
describes technology to identify a file by its contents. It is 
defined, in one sense, as providing a file’s “digital spectrum.” 
The spectrum, in turn, is used to define a file's position in an 
N-dimensional universe. This universe provides a basis by 
which a file's position determines similarity, adjacency, dif 
ferentiation and grouping relative to other files. Ultimately, 
similar files can originate many new compression features, 
such as the “fast approximations' described above. The ter 
minology defined in FIG. 1 remains valid as does the earlier 
presented information for compression and/or fast approxi 
mations using similar files. It is Supplemented with the 
definitions in FIG. 94. Also, the following considers an alter 
nate use of the earlier described symbols to define a digital 
variance in a file. For simplicity in this embodiment, a data 
stream under consideration is sometimes referred to as a 
“file 

0287. The set of values that digitally identifies the file, 
referred to as the file's digital spectrum, consists of several 
pieces of information found in two scalar values and two 
VectOrS. 

The scalar values are: 
0288 The number of symbols in the symbol dictionary 
(the dictionary being previously determined above.) 

0289. The number of symbols also represents the num 
ber of dimensions in the N-dimensional universe, and 
thus, the number of coordinates in the vectors. 

0290. The length of the source file in bits. 
0291. This is the total number of bits in the symbolized 
data stream after replacing each symbol with the original 
bits that the symbol represents. 

The Vectors are: 

0292 An ordered vector of frequency counts, where 
each count represents the number of times a particular 
symbol is detected in the symbolized data stream. 

0293 F. (Fo, F, F, F, ..., F), 
where F represents the symbol frequency vector, 0 to Nare the 
symbols in a file's symbol dictionary, and X represents the 
source file of interest. 
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0294. An ordered vector of bit lengths, where each bit 
length represents the number of bits that are represented 
by a particular symbol. 

0295 B (B. B. B. B. . . . . B). 
0296 where B represents the bit-length vector, 0 to N 
are the symbols in a file's symbol dictionary, and x 
represents the source file of interest. 

0297. The symbol frequency vector can be thought of as a 
series of coordinates in an N-dimensional universe where N is 
the number of symbols defined in the alphabet of the dictio 
nary, and the counts represent the distance from the origin 
along the related coordinate axis. The vector describes the 
file's informational position in the N-dimension universe. 
The meaning of each dimension is defined by the meaning of 
its respective symbol. 
0298. The origin of N-dimensional space is an ordered 
vector with a value of 0 for each coordinate: 

0299 F-(0, 0, 0, 0, 0, 0, 0, 0,..., 0). 
0300. The magnitude of the frequency vector is calculated 
relative to the origin. An azimuth in each dimension can also 
be determined using ordinary trigonometry, which may be 
used at a later time. By using Pythagorean geometry, the 
distance from the origin to any point F, in the N-dimensional 
space can be calculated, i.e.: 

D-Square root(((Fo-Fo)2)+((F-F)2)+((F- 
F2)2)+(F-F)2)+...+((F-F)2)) 

0301 Substituting the 0 at each coordinate for the values at 
the origin, the simplified equation is: 

0302 As an example, imagine that a file has 10 possible 
symbols and the frequency vector for the file is: 

F=(3, 5, 6, 1, 0, 7, 19, 3, 6, 22). 
0303 Since this vector also describes the file's informa 
tional position in this 10-dimension universe, its distance 
from the origin can be calculated using the geometry outlined. 
Namely,: 

0304 Dox=31.78. 

Determining a Characteristic Digital Spectrum 
0305 To create a digital spectrum for a file under current 
consideration, we begin with the key information 200, FIG. 
84, which resulted from an original file of interest. The digital 
spectrum determined for this original file is referred to as the 
characteristic digital spectrum. A digital spectrum for a 
related file of interest, on the other hand, is determined by its 
key information from another file. Its digital spectrum is 
referred to as a related digital spectrum. 
0306 The key information actually selected for the char 
acteristic digital spectrum is considered to be a “well-suited 
key. A “well-suited key” is a key best derived from original 
data that is Substantially similar to the current data in a current 
file or source file to be examined. The key might even be the 
actual compression key for the source file under consider 
ation. However, to eventually use the digital spectrum infor 
mation for the purpose of file comparisons and grouping, it is 
necessary to use a key that is not optimal for any specific file, 
but that can be used to define the N-dimensional symbol 
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universe in which all the files of interest are positioned and 
compared. The more closely a key matches a majority of the 
files to be examined, the more meaningful it is during Subse 
quent comparisons. 
0307 The well-suited key can be used to derive the digital 
spectrum information for the characteristic file that we use to 
define the N-dimensional universe in which we will analyze 
the digital spectra of other files. From above, the following 
information is known about the characteristic digital spec 
trum of the file: 

0308 The number of symbols (N) in the symbol dictio 
nary 

(0309 The length of the source file in bits 
0310. An ordered vector of symbol frequency counts 
0311 F. (F, F, F, F, ..., F.), 
0312 where F represents the symbol frequency, 0 to N 
are the symbols in the characteristic file's symbol dic 
tionary, and irepresents the characteristic file of interest. 

0313 An ordered vector of bit lengths 
0314 B, (Bo, B. B. B. . . . . By), 
0315 where B represents the bit-length vector, 0 to N 
are the symbols in the characteristic file's symbol dic 
tionary, and irepresents the characteristic file of interest. 

Determining a Related Digital Spectrum 

0316. Using the key information and digital spectrum of 
the characteristic file, execute the process described in the fast 
approximation embodiment for a current, related file of inter 
est, but with the following changes: 

0317 1. Create a symbol frequency vector that contains 
one coordinate position for the set of symbols described 
in the characteristic file's symbol dictionary. 
0318 F (For Fl F2. Fs. • • s Fy), 
0319 where F represents the symbol frequency, 0 to 
N are the symbols in the characteristic file's symbol 
dictionary, and represents the related file of interest. 

0320 Initially, the count for each symbol is zero (0). 
0321 2. Parse the data stream of the related file of 
interest for symbols. As the file is parsed, conduct the 
following: 
0322 a. Tally the instance of each discovered symbol 
in its corresponding coordinate position in the symbol 
frequency vector. That is, increment the respective 
counter for a symbol each time it is detected in the 
source file. 

0323 b. Do not Huffman encode or write the detected 
symbol. 

0324 c. Continue parsing until the end of the file is 
reached. 

0325 3. At the completion of the source file parsing, 
write a digital spectrum output file that contains the 
following: 
0326 a. The number of symbols (N) in the symbol 
dictionary 

0327 b. The length of the source file in bits 
0328 c. The symbol frequency vector developed in 
the previous steps. 
0329 F (F, Fl F2. Fs. • • s Fy), 
0330 where F represents the frequency vector, Oto 
N are the symbols in the characteristic file's symbol 
dictionary, and the represents the file of interest. 
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0331 d. The bit length vector 
0332 B, (B. B. B. B.,..., B.), 
0333 where B represents the bit-length vector, 0 to 
N are the symbols in the characteristic file's symbol 
dictionary, and represents the file of interest. 

Advantages of Digital Spectrum Analysis 

0334. The digital spectrum of a file can be used to catalog 
a file's position in an N-dimensional space. This position in 
space, or digital spectrum, can be used to compute "dis 
tances between file positions, and hence similarity, e.g., the 
closer the distance, the closer the similarity. The notion of a 
digital spectrum may eventually lead to the notion of a self 
cataloging capability of digital files, or other. 

Begin: Example Defining a File's Digital Spectrum 

0335 To demonstrate the foregoing embodiment, the digi 
tal spectrum will be determined for a small data file that 
contains the following simple ASCII characters: 

aaaaaaaaaaaaaaaaaaaaaaaaaaabaaabaaaaaaaababbbbbb (eqn. 100) 

0336 Each character is stored as a sequence of eight bits 
that correlates to the ASCII code assigned to the character. 
The bit values for each character are: 

a=O11OOOO1 (eqn. 101) 

b=011 OOO10 (eqn. 102) 

0337. By substituting the bits of equations 101 and 102 for 
the “a” and “b' characters in equation 100, a data stream 30 
results as seen in FIG. 9. (Again, the characters are separated 
in the Figure with spaces for readability, but the spaces are not 
considered, just the characters.) 
0338 After performing an optimal compression of the 
data by using the process defined above in early embodi 
ments, the symbols remaining in the data stream 30-7 are seen 
in FIG.55. Alternatively, they are shown here as: 

O 57 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
35 77 735 77 777 777 357 353 53 53 5352 

0339. With reference to FIG.95, table 300 identifies the 
symbol definitions from equation 103 and the bits they rep 
resent. The symbol definition 302 identifies the alphabet of 
symbols determined from the data during the compression 
process. The symbols 0 and 1 are atomic symbols and repre 
sent original bits 0 and 1, by definition. The subsequent sym 
bols, i.e. 2-7, are defined by tuples, or ordered pairs of sym 
bols, that are represented in the data, e.g., symbol 4 
corresponds to a “1” followed by a 3’ or 1 >3. In turn, each 
symbol represents a series or sequence of bits 304 in the data 
stream of equation 103 (the Source file), e.g., symbol 4 cor 
responds to original bits 1100. 
0340. With reference to table 310, FIG. 96, the number of 
occurrences of each symbol is counted in the data stream 
(equation 103) and the number of bits represented by each 
symbol is counted. For example, the symbol “7” in equation 
103 appears thirty nine (39) times. In that its original bits 304, 
correspond to "01011000, it has eight (8) original bits 
appearing in the data stream for every instance of a “symbol 
7' appearing. For a grand total of numbers of bits, the symbol 
count 312 is multiplied by the bit length 314 to arrive at a bit 
count 316. In this instance, thirty nine (39) is multiplied by 
eight (8) to achieve a bit count of three-hundred twelve (312) 
for the symbol 7. A grand total of the number of bit counts 316 

(eqn. 103) 
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for every symbol 320 gives a length of the source file 325 in 
numbers of bits. In this instance, the source file length (in bits) 
is three-hundred eighty-four (384). 
0341. In turn, the scalar values to be used in the file's 
digital spectrum are: 

(0342 Source File Length in bits=384 
(0343. Number of Symbols=8 total (or symbols 0 
through 7, column 320, FIG. 96) 

The vectors to be used in the file's digital spectrum are: 
0344) Frequency spectrum, F, represented by the 
ordered vector of counts for each symbol, from column 
312, FIG.96: 

(0345 F-(1, 0, 1, 8, 0, 9, 0,39) 
0346 Bit length spectrum, Bx, is represented by the 
ordered vector of counts for the original bits in the file 
that are represented by each symbol, from column 314, 
FIG.96: 

0347 B=(1,1,2,3,4, 5, 7, 8) 
0348. The digital spectrum information can be used to 
calculate various useful characteristics regarding the file from 
which it was derived, as well as its relationship to other 
spectra, and the files from which the other spectra were 
derived. As an example, the frequency spectrum F(X) shown 
above, may be thought to describe a file's informational posi 
tion in an 8-dimension universe, where the meaning of each 
dimension is defined by the meaning of its respective sym 
bols. 
0349. Since the origin of the 8-dimensional space is an 
ordered vector with a value of 0 at each symbol position, e.g., 
F(0)=(0,0,0,0,0,0,0,0), the informational position in 8-di 
mensional space can be defined as an azimuth and distance 
from the origin. The magnitude of the position vector is 
calculated using Pythagorean geometry. Dist(x,0)-sqrt (((F 
(x,0)-F(00), 2)+... (F(x,7)-F(0.7)2)). Simplified, this mag 
nitude becomes Dist(x,0)-sqrt((F(x,0)2+F(x,2)2+F(x,3)2 
... F(x,7)2)). Using the values above in F, the magnitude of 
the Dist(x,0)=40.84, or Dosquare root (((1) 2)+((O)2)+((1) 
2)+((8)2)+((O)2)+((9)2)+((O)2)+((39)2))=square root 
(1+0+1+64+0+81+0+1521)=40.84. Azimuth of the vector 
can be computed using basic trigonometry. Comparison of 
computed positions between files is useful to determine simi 
larity, or not, of two or more subject files. 
0350 Another way to use the digital spectrum is to con 
sider the vectors as defining points of a line graph 350, as 
presented in FIG.97A. As an example, the X axis, labeled as 
“Patterns.” defines a position for each symbol (e.g., element 
320, FIG.96) represented in the Frequency Spectrum. The Y 
axis, labeled as “Frequency, defines the values of the fre 
quencies (or derivatives thereof) found in the Frequency 
Spectrum. From FIG.96, for example, symbols “3” and “5” 
have counts or frequencies of eight (8) and nine (9), respec 
tively, and would be plotted in the line graph at x-y coordi 
nates of (3.8) and (5.9). 
0351) Determination of the similarity of two digital spec 

tra can be representatively determined using standard least 
squares statistical curve fitting techniques. In FIGS. 97A and 
97B, four digital spectra are presented for comparison, 
whereby: 
0352 File 1 has a frequency spectrum F1=(1,4,13.5.12.6, 
20,15, 18.21); 
0353 File 2 has a frequency spectrum F2=(1,5,13.6,15.5, 
21.20, 15.20): 
0354 File 3 has a frequency spectrum F3-(2,9,8,9,21.10, 
15,10,15,24); and 
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0355 File 4 has a frequency spectrum F4=(3,107.9.22,12, 
15,12,16.25). 
0356. As best seen in FIG. 98B, skilled artisans will visu 
ally recognize that the graph represented by F1 is “closest to 
the graph of F2. Similarly, the graphs represented by F3 and 
F4 are closer to each other than, for instance, than either of the 
graphs represented by spectra from F1 and F2. “Closeness” is 
seen in the figure by graph filler 351 and 352 in the area 
between the files. For mathematical comparison purposes, a 
notion of the area between a reference and target graph can be 
determined. In a representative embodiment, a Suitable 
method, which minimizes Small differences and accentuates 
larger differences, is a sum of the squares of the differences at 
each point. The measurement of a difference function 
between two graphs, Filex and Filey, is computed as follows: 

0357 Hence, for the representation of the difference func 
tion between the above files F1 and F2, the computation is: 

D(F1, F2)=(1-1)2+(4-5)2+(13-13)2+(5-6)2+ 
(12-15)2(6-6)2+(20-21)2+(15-20)2+(18-15)2+ 
(21-20) 2=48. 

0358. A representation of the difference function between 
files F1 and F3 is: 

0359 A matrix of the value of difference functions 
between each possible spectra graph may be computed to 
determine a measure of closeness between each possible 
spectra pair. The difference function values matrix for the 
above set of spectra F1, F2, F3 and F4 using the example 
comparison technique looks like this: 

Spectra ID F1 F2 F3 F4 

F1 O 48 232 282 
F2 48 O 264 298 
F3 232 264 O 14 
F4 282 298 14 O 

0360 Examination of the difference values between spec 
tra lead to many useful conclusions. For example, the two 
most closely similar spectra are those belonging to files F3 
and F4 (difference function value 14). The most dissimilar 
spectra, on the other hand, are those corresponding to files F2 
and F4 (difference value 298). Relative to spectrum IDF1, the 
most similar spectrum is that belonging to file F2. Relative to 
spectrum ID F2, the most similar spectrum is that belonging 
to file F1. Relative to spectrum ID F3, the most similar spec 
trum is that belonging to file F4. Relative to spectrum ID F4. 
the most similar spectrum is that belonging to file F3. It can be 
also observed that there seem to be two groups of files, with 
two files is each group; files F1 and F2: the other group is files 
F3 and F4. The “closeness” of the latter group (e.g., differ 
ence value=14) is a much “tighter grouping than that for the 
former group (e.g., difference value of 48). Skilled artisans 
will readily recognize the usefulness of these characteristics 
as a springboard for ascertaining still other properties and 
manipulations of files. 
0361. The foregoing has been described in terms of spe 
cific embodiments, but one of ordinary skill in the art will 
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recognize that additional embodiments are possible without 
departing from its teachings. This detailed description, there 
fore, and particularly the specific details of the exemplary 
embodiments disclosed, is given primarily for clarity of 
understanding, and no unnecessary limitations are to be 
implied, for modifications will become evident to those 
skilled in the art upon reading this disclosure and may be 
made without departing from the spirit or scope of the inven 
tion. Relatively apparent modifications, of course, include 
combining the various features of one or more figures with the 
features of one or more of the other figures. 

1. In a computing system environment, a method of deter 
mining a digital spectrum of a file stored on a computing 
device, the file having a plurality of symbols representing an 
underlying data stream of original bits of data, comprising 
determining a number of occurrences of each said symbol in 
the file. 

2. The method of claim 1, further including determining 
how many different symbols (N) are in the plurality of sym 
bols thereby defining an N-dimensional space. 

3. The method of claim 1, further including determining a 
magnitude of the file based on the determined number of 
OCCUCCS 

4. The method of claim 3, further including determining 
similarity of the file to another file by computing a distance 
function between the magnitudes of the file and the another 
file. 

5. The method of claim 1, further including determining a 
number of the original bits of data represented by an entirety 
of the determined number of occurrences of said each symbol 
in the file. 

6. The method of claim 1, further including determining 
each of the original bits of data for every symbol of the 
plurality of symbols. 

7. In a computing system environment, a method of deter 
mining a digital spectrum of a file stored on a computing 
device, the file having a plurality of symbols, comprising: 

determining original bits of data for every said symbol; and 
determining a number of occurrences of said every symbol 

in the file. 
8. The method of claim 7, further including determining 

how many different symbols (N) are in the plurality of sym 
bols thereby defining an N-dimensional space, the deter 
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mined number of occurrences being used to create an ordered 
vector in the N-dimensional space. 

9. The method of claim 8, further including determining a 
magnitude of the file based on the ordered vector relative to an 
origin of the N-dimensional space. 

10. The method of claim 9, further including determining a 
number of occurrences of every symbol in a second file. 

11. The method of claim 10, further including creating a 
second ordered vector in the N-dimensional space for the 
second file. 

12. The method of claim 11, further including determining 
a second magnitude of the second file relative to the origin of 
the N-Dimensional space. 

13. The method of claim 13, further including comparing 
the second magnitude of the second file to the magnitude of 
the file to determine similarity of the files. 

14. In a computing system environment, a method of deter 
mining similarity of two or more files stored on one or more 
computing devices, each said file having a plurality of sym 
bols representing an underlying data stream of original bits of 
data, comprising: 

determining a number of occurrences of every said symbol 
in said each file; and 

comparing the number of occurrences between the files. 
15. The method of claim 14, wherein said each file has a 

same total number of different symbols (N) thereby defining 
an N-dimensional space, the determined number of occur 
rences being used to create an ordered vector in the N-dimen 
sional space for said each file. 

16. The method of claim 15, further including determining 
a magnitude of said each file based on the ordered vectors 
relative to an origin of the N-dimensional space. 

17. The method of claim 16, wherein the comparing further 
includes comparing the magnitudes of said each file. 

18. The method of claim 14, further including determining 
for said each file a total number of the original bits of data. 

19. The method of claim 18, further including determining 
for said each file a series of bits representing each of the 
original bits of data for said every symbol of the plurality of 
symbols. 

20. A computer program product having executable 
instructions for loading on a computing device that undertake 
the method of claim 1. 

c c c c c 


