
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0016135 A1

US 2011 OO16135A1

Teerlink (43) Pub. Date: Jan. 20, 2011

(54) DIGITAL SPECTRUM OF FILE BASED ON Publication Classification
CONTENTS (51) Int. Cl.

G06F 7/30 (2006.01)
(76) Inventor: t N. Teerlink, Cedar Hills, UT (52) U.S. C. ... 707/749; 707/748; 707/736; 707/E17.033

(US) (57) ABSTRACT

Correspondence Address: A digital spectrum defines and communicates a file's infor
KING & SCHICKLI, PLLC mational characteristics. A file's informational position may
247 NORTH BROADWAY be represented as a vector in an N-dimensional space, where
LEXINGTON, KY 40507 (US) each dimension is defined by a symbol. A position along the

axis of any given dimension is described by the frequency of
occurrence of that symbol. Relative to the origin of the space,

(21) Appl. No.: 12/616,306 the file's position can be computed. Comparing positions
reveals similarity, or not, of the files. Another method uses the

(22) Filed: Nov. 11, 2009 digital spectrum to define a line graph. Each symbol and its
frequency define points on the line. A distance function

Related U.S. Application Data between two spectra line graphs is computed. Comparing
values from the distance functions reveals similarity, or not,

(60) Provisional application No. 61/236,571, filed on Aug. of the files. Also, total numbers of bits in the files are extracted

14

25, 2009, provisional application No. 61/271,079,
filed on Jul. 16, 2009.

15

18

Count 322 || 3 | 1

by knowing the lengths of the original bits corresponding to
every symbol. A symbol bit length spectrum is also defined.

17
16

O>O 1 >O O> 1 1 > 1
OSO-1 >O O>1
O>O O> 1

21 19 20

Patent Application Publication Jan. 20, 2011 Sheet 1 of 50

Definition

The set of all possible symbols Currently in use.

Atomic symbols The symbols 0 and 1, which are based on the raw 0 and 1 bit values,
All Subsequently defined Symbols represent tuples that are Dased on symbois Oard 1.

Character
Compressed file size

Data stream
|

Dictionary
|Encoded data Strea?

Pass

A symbol that appears in the data stream.

The number of bits that are required to store the enCOced data stream, the dictionary
and the symbol-encoding information,

A sequential stream of characters.
The terms data stream and text are synonymous in this document.
A collection of information regarding all symbols (the alphabet).
A data stream of Huffman encoded Characters.

The performance of one iteration of the compression procedure applied to the Current
data stream,

Symbol

Symbol-encoding
information

Text

Tuple

A unit of information. The information that is represented by a symbol can be from 1
to N binary bits in length.

Symbols in the alphabet are digitally encoded to reduce the amount of Space
required to store Or transmit them electronically,The encoding information is stored
and used to decompress the data later.

A well Understood method of minimizing the Space required to store a series of
characters is the use of minimumweighted path length trees, as given by David
Huffman (D. E. Knuth, The Art of Computer Programming, 1973, Vol. 1, p. 402).

A sequential stream of characters.
The terms data stream and text are synonymous in this document,

Two adjoining characters in the data stream Ortext. The Order of the appearance of
characters in the tuple is designated as "first" and "ast". The notation fortuples is
"first-last" to show the Order of appearance in the pair of characters and to avoid
Confusion of the tuples with real numbers. For example, a tuple of symbol 1 followed
by symbol () is written as 120.

In each pass through the data stream, the most highly occurring tuple is determined.
A new symbois Created to represent the tuple in the data Stream. The symbolstancs
for and replaces all CCCurrences of the tuple in the data stream,

F.G. 1

US 2011/OO16135 A1

Patent Application Publication Jan. 20, 2011 Sheet 2 of 50 US 2011/OO16135 A1

12

Last 0 || 1
0

18 21 19 2O

FIG. 3
22

Last || 0 || 1
2

Patent Application Publication Jan. 20, 2011 Sheet 3 of 50 US 2011/0016135 A1

C Pythagoerean Theorem
A A2+ B2= c2

B

F.G. 5

23

Tuple A2 B2 C2Hypotenuse

3>7 9 49 58 7.6

4.
5
4 OP4 4x4 3>44S45>4 64 74
5 OS 1.52s 325
6 OP6 162>6NP64-656 6>6 7>6

25

FIG 7

Patent Application Publication Jan. 20, 2011 Sheet 5 of 50 US 2011/OO16135 A1

40

Last o

Alphabet

1 || 1 || -
2 || 1 || 0
F.G. 13

Patent Application Publication Jan. 20, 2011 Sheet 6 of 50 US 2011/0016135 A1

O 1 2 O O O 2 1 2 O O O 2 1 2 O O O 21 20 OO 2 1 2 OO O 2 1
2 O OO 2 1 2 O OO 2 1 2 O O O 2 1 2 O OO 2 1 2 O O O 2 1 2 O
O O 2 1 2 O OO 2 1 2 O OO 21 2 O O O 2 1 2 OOO 2 1 2 OOO
2 12 O O O 2 1 2 O O O 2 1 2 O O O 21 20 OO 2 1 2 OO O 2 1

F.G. 14 2 O O O 2 1 2 O OO 2 1 2 OOO 2 1 2 O O O 2 1 2 OO O 2 1 2 O
O O 2 1 2 O O 2 O 1 2 O OO 2 1 2 O O O 2 2 OO O 2 12 O O2
O 1 2 O O O 2 1 2 O OO 2 12 O O O 2 1 2 OOO 2 1 2 O O O 2 1
2 O OO 2 1 2 O OO 2 1 2 OOO 2 1 2 O O 2 O 1 2 O O O 2 1 2 O
O 2 O 1 2 O O 2 O 1 2 O O 20 1 2 O O 2 O 1 2 O O 2 O 1 2 O O2

Read the Huffman Code from
the root to the leaves,

Right
145 Branch

Symbol Huffma
Symbol Count Code

Huffman 0 || 144 0.
Tree
- 2 96 11

50 100

Patent Application Publication Jan. 20, 2011 Sheet 7 of 50 US 2011/OO16135 A1

52

53 54 /

0 || 0 || 1 || 144. 144

2 11 2 96 192

Compression Overhead Current

File information 8

55

F.G. 17

56

overhead o 25 FIG. 19
Compression Ratio 132/

Patent Application Publication Jan. 20, 2011 Sheet 8 of 50 US 2011/OO16135 A1

Last || 0 || 1 || 2
0 || 0-0 1-0 2-0

FG. 20

last of 1 2
0 || 48 || 0 (56)

401

pnape

US 2011/0016135 A1 Jan. 20, 2011 Sheet 9 of 50 Patent Application Publication

30,111

F.G. 24

Huffman Bit

FG. 25

Patent Application Publication Jan. 20, 2011 Sheet 10 of 50 US 2011/OO16135 A1

571

File information 8
Dictionary Length 6

581

IZE

overhead of 38
Total BitS Needed

Compression Ratio 14.1%

3511
/

Last 0 1 2 3
o 0-01-02-03-0

0-11-12-13-1
2 0-21-22-23-2
3 0-31-32-33-3

FG. 27

FG. 28

Patent Application Publication Jan. 20, 2011 Sheet 11 of 50 US 2011/OO16135 A1

4011

pnape

US 2011/OO16135 A1 Jan. 20, 2011 Sheet 12 of 50 Patent Application Publication

30

FIG. 31

o
Code Count

FG. 32

Symbol Total
Count Bits length

340 Total Bits for Data

FG 33

Patent Application Publication Jan. 20, 2011 Sheet 13 of 50 US 2011/OO16135 A1

5711

Compression

File information a
Dictionary Length 10 10

Tree Length 24
Total Overhead

ZE

overhead O 42

FIG 35 35111

Last || 0 || 1 || 2 || 3 || 4
0 || 0-0 1-0 2-0 3-04-0

4 0-4 1-4 2-4 3-4 4-4
FG. 36

Patent Application Publication Jan. 20, 2011 Sheet 14 of 50 US 2011/OO16135 A1

401 11

O p

Patent Application Publication Jan. 20, 2011 Sheet 15 of 50 US 2011/OO16135 A1

3O-5

O 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5
O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2
5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 3 5 O 2 5 O 2 5 O 2 5 3 5
O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 O 2 5 3 5 O 2 5 3 5 3
5 3 53 5. 3 5 2

41-4

Symbol Huffman

10 40 10
1 O -

40 01 2 O1

3 8 001

Code Length Count Bits

O 10 || 2 | 40 80
2 01 2 40 80
3 001 || 3 || 8 24

Patent Application Publication Jan. 20, 2011 Sheet 16 of 50 US 2011/OO16135 A1

67111

File information 8

Total overhead (48

IZE

overhead || 0 || 48
Total Bits Needed 384 (33)

FG. 43 35-4

Last O 1 2 3 4 5
0 || 0-0 || 10 2>0 30 4-0 5-0

FG. 44

Patent Application Publication Jan. 20, 2011 Sheet 17 of 50 US 2011/0016135 A1

HING IF 5 10,398 || 0 || 0

Patent Application Publication Jan. 20, 2011 Sheet 18 of 50 US 2011/OO16135 A1

41-5

Symbol Huffman

O 4

Code Length Count Bits

0 || 0 1 40 40

3 || 101| 4 || 8 32 FIG. 49
5 100 3 9 27
6 11 2 39 78

57-4

File information 8
F.G. 50

Patent Application Publication Jan. 20, 2011 Sheet 19 of 50 US 2011/0016135A1

58-4

Compressed File

overhead O 59

F.G. 51

35-5

Last 0 | 1 || 2 || 3 || 4 || 5 || 6
0 || 0-0 1-0 2-03-04-05-06-0

4 0-4 1-4 2-4 3-4 4-4 5-4 6-4

6 0-6 1-62-63-64-65-66-6
FG. 52

Patent Application Publication Jan. 20, 2011 Sheet 20 of 50 US 2011/0016135A1

40-5

Patent Application Publication Jan. 20, 2011 Sheet 21 of 50 US 2011/OO16135 A1

r
O 577 777 7777 777 777 777 7 777 777 77 357
77 35 77 777 777 357 35 35 353 53 52

41-6

Symbol Huffman

0 1 0100

52-5

Code

O O1 OO

2 O1011

EOF

Patent Application Publication Jan. 20, 2011 Sheet 22 of 50 US 2011/OO16135 A1

ROOt Read the Huffman Code from
the root to the leaves. 59

1 Left
Branch Right

39 Branch

Huffman
Tree

57.5

File information 8

FIG 59

Patent Application Publication Jan. 20, 2011 Sheet 23 of 50 US 2011/001 6135 A1

58-5

Size

overhead 0 71

F.G. 60

160%

14.0%

120%

100%

80%

60%

40%

20% i is

1. 3 5 7 9 11 13 15 17 19 21 23 25 27

Passes

FG 61

Patent Application Publication Jan. 20, 2011 Sheet 24 of 50 US 2011/OO16135 A1

Pre-FX Order Parse of the Huffman Tree
Path Symbol | Binary Symbol

110 O101
OOOO
1OOO
OO 10

(8, EOF) (2)
62

Powers Value Value of Bits

23 a 1000 4

F.G. 64

Patent Application Publication Jan. 20, 2011 Sheet 25 of 50 US 2011/OO16135 A1

63

Bits Binary Walues
per Stored

Last So First Last BitS
| 2 | 1 || 0 || 1 || 1 c 10

3 2 0 2 10 00 1000

| 5 || 4 || 0 || 3 || 100 oooooooo
6 2 5 3 010 101010101
7 || 0 || 6 || 3 || 000 110000110

F.G. 65

ot
O 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 5
7 : 3 5 7 7 7 7 3 5 3 5 3 5 3 3 5 3 5, 2 EOE

F.G. 66

Patent Application Publication Jan. 20, 2011 Sheet 26 of 50 US 2011/OO16135 A1

68

/
1 1 O OO O 100 OO 1 1 1 1 1 1 1 1 1

1 O OO O OC O11 OO O OO O1 OO O OO O11 OO
OO 1 O1 OO

69

.....------------- --

Fie Symbol
Type Width Huffman Tree

-no

Dictionary Encoded Data

EOF Padi Bits

11 OO1 O11 OOOOOO1 OOOOOOOOOO 11 OO11.

1 OOOOO1111 OOCOOOO 101 OOO110 O 1000011111111111

111111111111111 O1 CO 111 O11 OO 111111 O1 OO1 O11 OO

OOOO 11 OOO11 OOO1. OC 01 011 OOO X

7
69b

F.G. 69

70

OOOOOOOO 11 OOO1 OOOOOO1 OOOOOOOOOO 11 OC 111 OOOOO 11 OOOOOO1 OOOOOO
0 1 000011111 1 11 1 101 OO (1 OO 111 OOOO! OOOOOO
11 OOOOOOOOO 1011 Oi O10 x

FG. 70

Patent Application Publication Jan. 20, 2011 Sheet 27 of 50 US 2011/OO16135 A1

O
OO 10 1 OOO OO10

(8,EOF) (2) (8,EOF) (2)
Final Huffman Tree

FG. 71

Patent Application Publication Jan. 20, 2011 Sheet 28 of 50 US 2011/OO16135 A1

73

Symbol First

RRLLE 1100C
RLRRLLL O1100C
IRLRRILLO101100C

Patent Application Publication Jan. 20, 2011 Sheet 29 of 50

DeCode Tree

FG. 75

DeCode Tree

FIG 76

DeCode Table
Branch Path Original Bits

O
1.
O

RL 100
OO

COO
C1 COO

LRRRILLO 101,000

Decode Table
Symbol Branch Path Original Bits
A O. R.

RR, 1100
RRLLL 11CO

6 RLRRLL C11 COO
7 LRLRRLLL OC11 COO

US 2011/OO16135 A1

Patent Application Publication Jan. 20, 2011 Sheet 30 of 50 US 2011/OO16135 A1

Original Bits
I. O
R l
RL

RLL 1.O.
... RRLI 1100
ARRELEASC)
RERRILL 1C11000

7 IRLRRLLL O1C1100)
Huffman ree

DeCode Tree

FIG 77

Huffman Tree

FG. 78

Patent Application Publication Jan. 20, 2011 Sheet 31 of 50 US 2011/OO16135 A1

79

DeCode able
Branch Path|Original Bits

O.
R

O
1.

111 COO
Oi O1CO

- 2 10

4 RRLI 1100
1CO

6 RRRLL
7 IRLRRL.

DeCode Tree

FG. 79

DeCode Table
Branch Path Original Bits

RLRRLL
LRLRRLL, O1C1000

DeCode Tree

FG. 8O

Patent Application Publication Jan. 20, 2011 Sheet 32 of 50 US 2011/OO16135 A1

81

DeCode Table
SymbolBranch Path. Original Bits

L O
R 1
RL O
R 1 OO

RRLL 1100
RRELL 110 OO

RRRL.L. 101100
LRRRLL, OO1100

Huffman Tree

Decode Tree

FG. 81

Patent Application Publication Jan. 20, 2011 Sheet 33 of 50 US 2011/OO16135 A1

Encoded Symbol and Original Bits Represented
Data
O 1 OO

SV mbo 7 = 0 1 0 1 1 OOO

S
Symbo 7 at 01 0 1 1 OOO
S
Symbo 7 = 0 1 0 1 1 OOO

symbol 7 = 01011000
SWimbo 7 OO 11 OOO

mbo 7 c O1 O11 OOO
moo (et OO1 1 OOO

O 7 - OO1 1 OOO

S
S
S

S ra

S
S

82

mO 7 - OO 11 OOO
mbo 7 = 0 1 0 1 1 OOO

SWrmo 3 = 1 OO
Symbol 5 - 11 OOO

SVO 5 = 11 OOO
11 11

FG. 82A

Patent Application Publication Jan. 20, 2011 Sheet 34 of 50 US 2011/OO16135 A1

Symbol and Original Bits Represented
Data

SV mbo 7 = 0 1 011 OOO
SVimbo 7 - 01 011 OOO
Symbo 7 = 0 1 0 1 1 OOO

O11 SVmbol 3 - 1 OO
SV mbo 5 = 11 OOO
SWmbo 7 at OO 11 OOO
mbo 7 = 0 1 011 OOO
mbo 7 x 01 011 OOO
mbO 7 O1 O11 OOO
mbo 7 - O 1011 OOO
mbo 7 - O 1011 OOO
mbo 7 = O1011 OOO
mbo 7 in O1 O11 OOO
mbO3 = 1 OO
mbo 5 - 11 OOO
mbo 7 = 0 1 0 1 1 OOO
mbo 3 = 100
mbO 5 - 11 OOO
mbO3 at 100
mbO 5 - 11 OOO
mbol 3 = 100
mbO 5 = 11 OOO
mbO3 - 100
mbO 5 = 11 OOO
mbo. 3 - 1 OO
mo 5 E 11 OOO
mbol 2 - 10
OF-done

FG. 82B

82

silio
S

O11

i 11 11
SAG

O11 S

O11

O11

O1011
O1010

Patent Application Publication Jan. 20, 2011 Sheet 35 of 50 US 2011/0016135 A1

To other -
computing devices 18O y

F.G. 83

Patent Application Publication Jan. 20, 2011 Sheet 36 of 50 US 2011/0016135A1

Key Iriff Tatif

200

Fig. 84

Patent Application Publication Jan. 20, 2011 Sheet 37 of 50 US 2011/OO16135 A1

Patent Application Publication Jan. 20, 2011 Sheet 38 of 50

Symbol Branch Path
O

R
R

Decode able

US 2011/OO16135 A1

Original Bits

1)

FG. 86

RLL C)
RRL, 11 CO

RRLLL 11 OCO
6 RRLLERLL 110.001CO

8 RRLL.L.R. 1100001)

Patent Application Publication Jan. 20, 2011 Sheet 39 of 50 US 2011/0016135A1

riairs Bit:
t

FL.
PFT.L.

FRLLE.F.L.L ill.

s RRT.L.L.J.,

FFT.I.L.I.F.T. l

FRLE.

l

SimCl Brah Fath

TFE

Fig. 87

Patent Application Publication Jan. 20, 2011 Sheet 40 of 50 US 2011/0016135 A1

L. L. noooollooloo ll. El ll. 11:00.100 locool
-- - --- ----- '-- '-...-- '- , r '--

E. 8 8 3. -240 1 ll. l l l lls. Eli ... 1 11.000l. 110 0010)
24 -- " - '- --- *-m- '-...-

... .' '
- '. ---

8. : 8

ill ill 3 l l
k.

lili lll: lili lili L. li.
" . u- '-sur --" --- y

3. f E. 8

ilo (la ll) Coilo 11.000 l) (1.ligocol. iio). LQ (, -
-ms- -a- --- *---.

8 E. &

'----' '-...--
:-- -

Fig. 88

Patent Application Publication Jan. 20, 2011 Sheet 41 of 50 US 2011/OO16135 A1

2.76

Fig. 89

Patent Application Publication Jan. 20, 2011 Sheet 42 of 50 US 2011/OO16135 A1

Fict Fead the Hiji Taf adg froTh
? th. E. I. It to the eages.

Left 3 Right
Ers. Est:

Hiffa
Trea J

23C

Lagas.

:

Fig. 90

Patent Application Publication Jan. 20, 2011 Sheet 43 of 50 US 2011/0016135A1

US 2011/OO16135 A1 Patent Application Publication

Patent Application Publication Jan. 20, 2011 Sheet 45 of 50 US 2011/0016135 A1

Erioded Cats

EFSymbol P3d Bits to ByteAlig.

F.2-lled key Irificiristic

|-law Key Iriformation 3rd
Encoded ata

Fig. 93

Patent Application Publication Jan. 20, 2011 Sheet 46 of 50 US 2011/0016135 A1

Tern Definition

Digital Spectrum Information about a file, based on its content, that identifies the
file and its position in an N-dimensional universe.

Characteristic The digital spectrum for a file's data stream. The symbol
digital spectrum dictionary from this process defines the N-dimensional space.
Related digital The digital spectrum for a related file's data stream as determined
spectrum by a "fast approximation" process that identifies the file and its

position in the same N-dimensional universe as the characteristic
digital spectrum.

Azimuth of the A measure of the azimuth of the frequency vector from the origin
symbol frequency in N-dimensional space, as measured by applying trigonometry.
WeCO -----------------

Magnitude of the A measure of the distance from the origin in N-dimensional space
symbol frequency to the terminal point of the symbol frequency vector, as measured
WectOf by applying Pythagorean geometry. ----
Similarity A measure of the difference in magnitude of the frequency vectors

for two digital spectra in all N-dimensional Space.
Adjacency A measure of the distance between two frequency vectors in an N

dimensional space,

FIG. 94

Patent Application Publication Jan. 20, 2011 Sheet 47 of 50

FIG 95

Symbol
Meaning
(Original
Bits)

1 1 000

1 O1 OOO

US 2011/0016135 A1

Patent Application Publication Jan. 20, 2011 Sheet 48 of 50 US 2011/OO16135 A1

2 (O

symbol | Sympo 3 2. 3. It
3 O 322. Meaning r - 36

Symbol (Original
Symbol : Definition Bits) 3ol. Bit Length Bit Count

101 1 000

010) 000 39... . . .
Source File Length (in bits)

32.5
FIG. 96

Patent Application Publication Jan. 20, 2011 Sheet 49 of 50 US 2011/OO16135 A1

Spectrum Comparison

:

| >

s

l

Patters

FIG 97A

Patent Application Publication Jan. 20, 2011 Sheet 50 of 50 US 2011/OO16135 A1

Spectrum Comparison i

3.
| :
:

25 ---

15

8.------...---------------------r-------------------------wi-war---------war-w ... url ----- run.----.

FG. 97B

US 2011/001 6 135 A1

DIGITAL SPECTRUM OF FILE BASED ON
CONTENTS

0001. This utility application claims priority to U.S. Pro
visional Application Ser. Nos. 61/236,571 and 61/271,079,
filed Aug. 25, 2009, and Jul. 16, 2009, respectively. Their
contents are expressly incorporated herein as if set forth
herein.

FIELD OF THE INVENTION

0002 The present invention relates generally to compres
sion/decompression of data. More particularly, it relates to
defining a digital spectrum of a compressed file in order to
determine properties that can be compared to other files to
ascertain file similarity, adjacency and grouping, to name a
few. Vectors and Scalar values, among other things, are
described for the digital spectrum.

BACKGROUND OF THE INVENTION

0003 Recent data suggests that nearly eighty-five percent
of all data is found in computing files and growing annually at
around sixty percent. One reason for the growth is that regu
latory compliance acts, statutes, etc., (e.g., Sarbanes-Oxley,
HIPAA, PCI) force companies to keep file data in an acces
sible state for extended periods of time. However, block level
operations in computers are too lowly to apply any meaning
ful interpretation of this stored data beyond taking Snapshots
and block de-duplication. While other business intelligence
products have been introduced to provide capabilities greater
than block-level operations, they have been generally limited
to structured database analysis. They are much less meaning
ful when acting upon data stored in unstructured environ
mentS.

0004. Unfortunately, entities the world over have paid
enormous Sums of money to create and store their data, but
cannot find much of it later in instances where it is haphaz
ardly arranged or arranged less than intuitively. Not only
would locating this information bring back value, but being
able to observe patterns in it might also prove valuable
despites its usefulness being presently unknown. However,
entities cannot expend so much time and effort in finding this
data that it outweighs its usefulness. Notwithstanding this,
there are still other scenarios, such as government compli
ance, litigation, audits, etc., that dictate certain data/informa
tion be found and produced, regardless of its cost in time,
money and effort. Thus, a clear need is identified in the art to
better find, organize and identify digital data, especially data
left in unstructured states.
0005. In search engine technology, large amounts of unre
lated and unstructured digital data can be quickly gathered.
However, most engines do little to organize the data other
than give a hierarchical presentation. Also, when the engine
finds duplicate versions of data, it offers few to no options on
eliminating the replication or migrating/relocating redundan
cies. Thus, a further need in the art exists to overcome the
drawbacks of search engines.
0006 When it comes to large amounts of data, whether
structured or not, compression techniques have been devised
to preserve storage capacity, reduce bandwidth during trans
mission, etc. With modern compression algorithms, however,
they simply exist to scrunch large blocks of data into Smaller
blocks according to their advertised compression ratios. AS is

Jan. 20, 2011

known, some do it without data loss (lossless) while others do
it “lossy.” None do it, unfortunately, with a view toward
recognizing similarities in the data itself.
0007. From biology, it is known that highly similar species
have highly similar DNA strings. In the computing context,
consider two word processing files relating to stored baseball
statistics. In a first file, words might appear for a baseball
batter, Such as “batting average.” “on base percentage.” and
"slugging percentage, while a second file might have words
for a baseball pitcher, such as “strikeouts.” “walks, and
“earned runs. Conversely, a third file wholly unrelated to
baseball, statistics or sports, may have words such as “envi
ronmental protection.” “furniture or whatever comes to
mind. It would be exceptionally useful if, during times of
compression, or upon later manipulation by an algorithm if
"mapping could recognize the similarity in Subject matter in
the first two files, although not exact to one another, and
provide options to a user. Appreciating that the “words” in the
example files are represented in the computing context as
binary bits (1’s or 0's), which occurs by converting the
English alphabet into a series of 1's and 0's through applica
tion of ASCII encoding techniques, it would be further useful
if the compression algorithm could first recognize the simi
larity in subject matter of the first two files at the level of raw
bit data. The reason for this is that not all files have words and
instead might represent pictures (e.g., jpeg) or spread sheets
of numbers.
0008. Appreciating that certain products already exist in
the above-identified market space, clarity on the need in the
art is as follows. One, present day “keyword matching” is
limited to select set of words that have been pulled from a
document into an index for matching to the same exact words
elsewhere. Two, “Grep” is a modern day technique that
searches one or more input files for lines containing an iden
tical match to a specified pattern. Three, “Beyond Compare.”
and similar algorithms, are line-by-line comparisons of mul
tiple documents that highlight differences between them.
Four, block level data de-duplication has no application in
compliance contexts, data relocation, or business intelli
gence.
0009. The need in the art, on the other hand, needs to serve
advanced notions of identifying new business intelligence,
conducting operations on completely unstructured or haphaz
ard data, and organizing it, providing new useful options to
users, providing new user views, providing new encryption
products, and identifying highly similar data, to name a few.
As a byproduct, Solving this need will create new opportuni
ties in minimizing transmission bandwidth and storage
capacity, among other things. Naturally, any improvements
along Such lines should contemplate good engineering prac
tices, such as stability, ease of implementation, unobtrusive
neSS, etc.

SUMMARY OF THE INVENTION

0010 Applying the principles and teachings associated
with a file's digital spectrum solves the foregoing and other
problems. Broadly, methods and apparatus of a digital spec
trum is used to compute and communicate a file's informa
tional characteristics. Two representative methods are pre
sented. In the first, a file's informational position may be
represented as a vector in an N-dimensional space, where
each dimension is defined by a symbol described in the digital
spectrum. The position along the axis of any given dimension
is described by the frequency (or other derivative informa

US 2011/001 6 135 A1

tion) of occurrence of that symbol. Relative to the origin of
the N-dimensional space, the file's informational position can
be computed. Comparing positions reveals similarity, or not,
of the files.
0011. In another method, the digital spectrum defines a
line graph, wherein each symbol and its frequency of occur
rence define a point on the line. A distance function between
two spectra line graphs is computed. Comparing the values
derived from the distance function reveals similarity, or not,
of the files. Also, total numbers of bits in the files are extracted
by knowing the lengths of the original bits corresponding to
every symbol. A symbol bit length spectrum is defined. Fur
ther derivative comparison functions are anticipated using the
symbol bit length spectrum and file length.
0012 Executable instructions loaded on one or more com
puting devices for undertaking the foregoing are also contem
plated as are computer program products available as a down
load or on a computer readable medium. The computer
program products are also available for installation on a net
work appliance or an individual computing device.
0013 These and other embodiments of the present inven
tion will be set forth in the description which follows, and in
part will become apparent to those of ordinary skill in the art
by reference to the following description of the invention and
referenced drawings or by practice of the invention. The
claims, however, indicate the particularities of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0014. The accompanying drawings incorporated in and
forming apart of the specification, illustrate several aspects of
the present invention, and together with the description serve
to explain the principles of the invention. In the drawings:
0015 FIG. 1 is a table in accordance with the present
invention showing terminology;
0016 FIG. 2 a table in accordance with the present inven
tion showing a tuple array and tuple nomenclature;
0017 FIG. 3 is a table in accordance with the present
invention showing the counting of tuples in a data stream;
0018 FIG. 4 is a table in accordance with the present
invention showing the Count from FIG. 3 in array form:
0019 FIG. 5 is Pythagorean's Theorem for use in resolv
ing ties in the counts of highest occurring tuples;
0020 FIG. 6 is a table in accordance with the present
invention showing a representative resolution of a tie in the
counts of three highest occurring tuples using Pythagorean's
Theorem:
0021 FIG. 7 is a table in accordance with the present
invention showing an alternative resolution of a tie in the
counts of highest occurring tuples;
0022 FIG. 8 is an initial dictionary in accordance with the
present invention for the data stream of FIG. 9;
0023 FIGS. 8-60 are iterative data streams and tables in
accordance with the present invention depicting dictionaries,
arrays, tuple counts, encoding, and the like illustrative of
multiple passes through the compression algorithm;
0024 FIG. 61 is a chart in accordance with the present
invention showing compression optimization;
0025 FIG. 62 is a table in accordance with the present
invention showing compression statistics;
0026 FIGS. 63-69 are diagrams and tables in accordance
with the present invention relating to storage of a compressed
file;

Jan. 20, 2011

0027 FIGS. 70-82b are data streams, tree diagrams and
tables in accordance with the present invention relating to
decompression of a compressed file;
0028 FIG. 83 is a diagram in accordance with the present
invention showing a representative computing device for
practicing all or some the foregoing;
(0029 FIGS. 84-93 are diagrams inaccordance with a “fast
approximation' embodiment of the invention that utilizes key
information of an earlier compressed file for a file under
present consideration having patterns Substantially similar to
the earlier compressed file; and
0030 FIGS. 94-97A-B are definitions and diagrams in
accordance with the present invention showing a “digital
spectrum’ embodiment of an encoded file.

DETAILED DESCRIPTION OF THE
ILLUSTRATED EMBODIMENTS

0031. In the following detailed description of the illus
trated embodiments, reference is made to the accompanying
drawings that form a part hereof, and in which is shown by
way of illustration, specific embodiments in which the inven
tion may be practiced. These embodiments are described in
sufficient detail to enable those skilled in the art to practice the
invention and like numerals represent like details in the vari
ous figures. Also, it is to be understood that other embodi
ments may be utilized and that process, mechanical, electri
cal, arrangement, Software and/or other changes may be made
without departing from the scope of the present invention. In
accordance with the present invention, methods and appara
tus are hereinafter described for optimizing data compression
of digital data.
0032. In a representative embodiment, compression
occurs by finding highly occurring patterns in data streams,
and replacing them with newly defined symbols that require
less space to store than the original patterns. The goal is to
eliminate as much redundancy from the digital data as pos
sible. The end result has been shown by the inventor to
achieve greater compression ratios oncertain tested files than
algorithms heretofore known.
0033. In information theory, it is well understood that col
lections of data contain significant amounts of redundant
information. Some redundancies are easily recognized, while
others are difficult to observe. A familiar example of redun
dancy in the English language is the ordered pair of letters
QU. When Q appears in written text, the reader anticipates
and expects the letter U to follow, such as in the words queen,
quick, acquit, and square. The letter U is mostly redundant
information when it follows Q. Replacing a recurring pattern
of adjacent characters with a single symbol can reduce the
amount of space that it takes to store that information. For
example, the ordered pair of letters QU can be replaced with
a single memorable symbol when the text is stored. For this
example, the small Greek letter alpha (C) is selected as the
symbol, but any could be chosen that does not otherwise
appear in the text under consideration. The resultant com
pressed text is one letter shorter for each occurrence of QU
that is replaced with the single symbol (C), e.g., "Cleen.”
“Click.” “acoit, and “sCare.” Such is also stored with a defi
nition of the symbol alpha (C.) in order to enable the original
data to be restored. Later, the compressed text can be
expanded by replacing the symbol with the original letters

US 2011/001 6 135 A1

QU. There is no information loss. Also, this process can be
repeated many times over to achieve further compression.

DEFINITIONS

0034. With reference to FIG. 1, a table 10 is used to define
terminology used in the below compression method and pro
cedure.

Discussion

0035 Redundancy is the superfluous repetition of infor
mation. As demonstrated in the QU example above, adjacent
characters in written text often form expected patterns that are
easily detected. In contrast, digital data is stored as a series of
bits where each bit can have only one of two values: off
(represented as a Zero (0)) and on (represented as a one (1)).
Redundancies in digital data, Such as long sequences of Zeros
or ones, are easily seen with the human eye. However, pat
terns are not obvious in highly complex digital data. The
invention's methods and procedures identify these redundan
cies in stored information so that even highly complex data
can be compressed. In turn, the techniques can be used to
reduce, optimize, or eliminate redundancy by Substituting the
redundant information with symbols that take less space to
store than the original information. When it is used to elimi
nate redundancy, the method might originally return com
pressed data that is larger than the original. This can occur
because information about the symbols and how the symbols
are encoded for storage must also be stored so that the data
can be decompressed later. For example, compression of the
word "queen’ above resulted in the compressed word “Cueen.”
But a dictionary having the relationship QU-O. also needed to
be stored with the word “Cleen,” which makes a “first pass”
through the compression technique increase in size, not
decrease. Eventually, however, further “passes' will stop
increasing and decrease so rapidly, despite the presence of an
ever-growing dictionary size, that compression ratios will be
shown to greatly advance the state of the art. By automating
the techniques with computer processors and computing soft
ware, compression will also occur exceptionally rapidly. In
addition, the techniques herein will be shown to losslessly
compress the data.

The Compression Procedure
0036. The following compression method iteratively sub
stitutes symbols for highly occurring tuples in a data stream.
An example of this process is provided later in the document.

Prerequisites

0037. The compression procedure will be performed on
digital data. Each stored bit has a value of binary 0 or binary
1. This series of bits is referred to as the original digital data.

Preparing the Data

0038. The original digital data is examined at the bit level.
The series of bits is conceptually converted to a stream of
characters, referred to as the data stream that represents the
original data. The symbols 0 and 1 are used to represent the
respective raw bit values in the new data stream. These sym
bols are considered to be atomic because all Subsequently
defined symbols represent tuples that are based on 0 and 1.

Jan. 20, 2011

0039. A dictionary is used to document the alphabet of
symbols that are used in the data stream. Initially, the alphabet
consists solely of the symbols 0 and 1.

Compressing the Data Stream
0040. The following tasks are performed iteratively on the
data stream:

0041) Identifying all possible tuples that can occur for
the set of characters that are in the current data stream.

0042. Determining which of the possible tuples occurs
most frequently in the current data stream. In the case of
a tie, use the most complex tuple. (Complexity is dis
cussed below.)

0.043 Creating a new symbol for the most highly occur
ring tuple, and add it to the dictionary.

0044 Replacing all occurrences of the most highly
occurring tuple with the new symbol.

0.045 Encoding the symbols in the data stream by using
an encoding scheme, such as a path-weighted Huffman
coding scheme.

0046 Calculating the compressed file size.
0047 Determining whether the compression goal has
been achieved.

0.048 Repeating for as long as necessary to achieve
optimal compression. That is, if a stream of data were
compressed so completely that it was represented by a
single bit, it and its complementary dictionary would be
larger than the original representation of the stream of
data absent the compression. (For example, in the QU
example above, if “C.” represented the entire word
"queen the word "queen' could be reduced to one
symbol, e.g., “C.” However, this one symbol and its
dictionary (reciting "queen C is larger than the original
content "queen.) Thus, optimal compression herein
recognizes a point of marginal return whereby the dic
tionary grows too large relative to the amount of com
pression being achieved by the technique.

Each of these steps is described in more detail below.

Identifying all Possible Triples
0049. From FIG. 1, a “tuple' is an ordered pair of adjoin
ing characters in a data stream. To identify all possible tuples
in a given data stream, the characters in the current alphabet
are systematically combined to form ordered pairs of sym
bols. The left symbol in the pair is referred to as the “first
character, while the right symbol is referred to as the “last
character. In a larger context, the tuples represent the “pat
terns’ examined in a data stream that will yield further advan
tage in the art.
0050. In the following example and with any data stream
of digital data that can be compressed according to the tech
niques herein, two symbols (0 and 1) occur in the alphabet and
are possibly the only symbols in the entire data stream. By
examining them as “tuples, the combination of the 0 and 1 as
ordered pairs of adjoining characters reveals only four pos
sible outcomes, i.e., a tuple represented by “00, a tuple
represented by “01, a tuple represented by “10, and a tuple
represented by “11”
0051. With reference to FIG. 2, these four possibilities are
seen in table 12. In detail, the table shows the tuple array for
characters 0 and 1. In the cell for column 0 and row 0, the tuple
is the ordered pair of 0 followed by 0. The shorthand notation
of the tuple in the first cell is “0>0. In the cell for column 0

US 2011/001 6 135 A1

and row 1, the tuple is 0 followed by 1, or “O>1”. In the cell for
column 1 and row 0, the tuple is “10'. In the cell for column
1 and row 1, the tuple is “1-1.

Determining the Most Highly Occurring Tuple
0052. With FIG. 2 in mind, it is determined which tuple in
a bit stream is the most highly occurring. To do this, simple
counting occurs. It reveals how many times each of the pos
sible tuples actually occurs. Each pair of adjoining characters
is compared to the possible tuples and the count is recorded
for the matched tuple.
0053. The process begins by examining the adjacent char
acters in position one and two of the data stream. Together, the
pair of characters forms a tuple. Advance by one character in
the stream and examine the characters in positions two and
three. By incrementing through the data stream one character
at a time, every combination of two adjacent characters in the
data stream is examined and tallied against one of the tuples.
0054 Sequences of repeated symbols create a special case
that must be considered when tallying tuples. That is, when a
symbol is repeated three or more times, skilled artisans might
identify instances of a tuple that cannot exist because the
symbols in the tunic belong to other instances of the same
tuple. The number of actual tuples in this case is the number
of times the symbol repeats divided by two.
0055 For example, consider the data stream 14 in table 16
(FIG.3) having 10 characters shown as “01 10000101. Upon
examining the first two characters 01, a tuple is recognized in
the form 0 followed by 1 (0>1). Then, increment forward one
character and consider the second and third characters 11,
which forms the tuple of 1 followed by 1 (1-> 1). As progres
sion occurs through the data stream, 9 possible tuple combi
nations are found: O>1, 1>1, 1>0, OD0, 0>0, OD0, OD1, 1>0,
and 0>1 (element 15, FIG.3). In the sequence of four sequen
tial Zeros (at the fourth through seventh character positions in
the data stream “01 10000101), three instances of a 0 fol
lowed by a 0 (or 0>0) are identified as possible tuples. It is
observed that the second instance of the 0-0 tuple (element
17, FIG. 3) cannot be formed because the symbols are used in
the 0-0 tuple before and after it, by prescribed rule. Thus,
there are only two possible instances in the COUNT18, FIG.
3, of the 0-0 tuple, not 3. In turn, the most highly occurring
tuple counted in this data stream is 0>1, which occurs 3 times
(element 19, FIG. 3). Similarly, tuple 1 >1 occurs once (ele
ment 20, FIG. 3), while tuple 1 >0 occurs twice (element 21,
FIG.3).
0056. After the entire data stream has been examined, the
final counts for each tuple are compared to determine which
tuple occurs most frequently. In tabular form, the 0 followed
by a 1 (tuple 0-1) occurs the most and is referenced at element
19 in table 22, FIG. 4.
0057. In the situation of a tie between two or more tuples,
skilled artisans must choose between one of the tuples. For
this, experimentation has revealed that choosing the tuple that
contains the most complex characters usually results in the
most efficient compression. If all tuples are equally complex,
skilled artisans can choose any one of the tied tuples and
define it as the most highly occurring.
0058. The complexity of a tuple is determined by imagin
ing that the symbols form the sides of a right triangle, and the
complexity is a measure of the length of the hypotenuse of
that triangle. Of course, the hypotenuse is related to the Sum
of the squares of the sides, as defined by the Pythagorean
Theorem, FIG. 5.

Jan. 20, 2011

0059. The tuple with the longest hypotenuse is considered
the most complex tuple, and is the winner in the situation of a
tie between the highest numbers of occurring tuples. The
reason for this is that less-complex tuples in the situation of a
tie are most likely to be resolved in Subsequent passes in the
decreasing order of their hypotenuse length. Should a tie in
hypotenuse length occur, or a tie in complexity, evidence
appears to suggest it does not make a difference which tuple
is chosen as the most highly occurring.
0060 For example, suppose that tuples 3>7, 4-4 and 1-5
each occur 356 times when counted (in a same pass). To
determine the complexity of each tuple, use the tuple symbols
as the two sides of a right triangle and calculate the hypot
enuse, FIG. 6. In the instance of 3>7, the side of the hypot
enuse is the square root of (three squared (9) plus seven
squared (49)), or the square root of 58, or 7.6. In the instance
of 4-4, the side of the hypotenuse is the square root of (four
squared (16) plus four squared (16), of the square root of 32,
or 5.7. Similar, 1-5 calculates as a hypotenuse of 5.1 as seen
in table 23 in the Figure. Since the tuple with the largest
hypotenuse is the most complex, 3>7's hypotenuse of 7.6 is
considered more complex than either of the tuples 4->4 or 1 >5.
0061 Skilled artisans can also use the tuple array to visu
alize the hypotenuse by drawing lines in the columns and
rows from the array origin to the tuple entry in the array, as
shown in table 24 in FIG. 7. As seen, the longest hypotenuse
is labeled 25, so the 3>7 tuple wins the tie, and is designated
as the most highly occurring tuple. Hereafter, a new symbolis
created to replace the highest occurring tuple (whether occur
ring the most outright by count or by tie resolution), as seen
below. However, based on the complexity rule, it is highly
likely that the next passes will replace tuple 4D4 and then
tuple 1 >5.

Creating a Symbol for the Most Highly Occurring Tuple

0062. As before, a symbol stands for the two adjacent
characters that form the tuple and skilled artisans select any
new symbol they want provided it is not possibly found in the
data stream elsewhere. Also, since the symbol and its defini
tion are added to the alphabet, e.g., if “C-QU, a dictionary
grows by one new symbol in each pass through the data, as
will be seen. A good example of a new symbol for use in the
invention is a numerical character, sequentially selected,
because numbers provide an unlimited Source of unique sym
bols. In addition, reaching an optimized compression goal
might take thousands (or even tens of thousands) of passes
through the data stream and redundant symbols must be
avoided relative to previous passes and future passes.
Replacing the Tuple with the New Symbol
0063. Upon examining the data stream to find all occur
rences of the highest occurring tuple, skilled artisans simply
substitute the newly defined or newly created symbol for each
occurrence of that tuple. Intuitively, Substituting a single sym
bol for two characters compresses the data stream by one
character for each occurrence of the tuple that is replaced.

Encoding the Alphabet

0064. To accomplish this, counting occurs for how many
times that each of the symbols in the current alphabet occurs
in the data stream. They then use the symbol count to apply an
encoding scheme, such as a path-weighted Huffman coding
scheme, to the alphabet. Huffman trees should be within the
purview of the artisan's skill set.

US 2011/001 6 135 A1

0065. The encoding assigns bits to each symbol in the
current alphabet that actually appears in the data stream. That
is, symbols with a count of Zero occurrences are not encoded
in the tree. Also, symbols might go “extinct” in the data
stream as they are entirely consumed by yet more complex
symbols, as will be seen. As a result, the Huffman code tree is
rebuilt every time a new symbol is added to the dictionary.
This means that the Huffman code for a given symbol can
change with every pass. The encoded length of the data
stream usually decreases with each pass.

Calculating the Compressed File Size

0066. The compressed file size is the total amount of space
that it takes to store the Huffman-encoded data stream plus
the information about the compression, such as information
about the file, the dictionary, and the Huffman encoding tree.
The compression information must be saved along with other
information so that the encoded data can be decompressed
later.
0067. To accomplish this, artisans count the number of
times that each symbol appears in the data stream. They also
count the number of bits in the symbol's Huffman code to find
its bit length. They then multiply the bit length by the symbol
count to calculate the total bits needed to store all occurrences
of the symbol. This is then repeated for each symbol. There
after, the total bit counts for all symbols are added to deter
mine how many bits are needed to store only the compressed
data. To determine the compressed file size, add the total bit
count for the data to the number of bits required for the related
compression information (the dictionary and the symbol
encoding information).
Determining Whether the Compression Goal has been
Achieved
0068 Substituting a tuple with a single symbol reduces the

total number of characters in a data stream by one for each
instance of a tuple that is replaced by a symbol. That is, for
each instance, two existing characters are replaced with one
new character. In a given pass, each instance of the tuple is
replaced by a new symbol. There are three observed results:

0069. The length of the data stream (as measured by
how many characters make up the text) decreases by half
the number of tuples replaced.

0070 The number of symbols in the alphabet increases
by one.

(0071. The number of nodes in the Huffman tree
increases by two.

0072 By repeating the compression procedure a sufficient
number of times, any series of characters can eventually be
reduced to a single character. That “super-symbol character
conveys the entire meaning of the original text. However, the
information about the symbols and encoding that is used to
reach that final symbol is needed to restore the original data
later. As the number of total characters in the text decreases
with each repetition of the procedure, the number of symbols
increases by one. With each new symbol, the size of the
dictionary and the size of the Huffman tree increase, while the
size of the data decreases relative to the number of instances
of the tuple it replaces. It is possible that the information
about the symbol takes more space to store than the original
data it replaces. In order for the compressed file size to
become Smaller than the original data stream size, the text size
must decrease faster than the size increases for the dictionary
and the Huffman encoding information.

Jan. 20, 2011

0073. The question at hand is then, what is the optimal
number of Substitutions (new symbols) to make, and how
should those substitutions be determined?
0074 For each pass through the data stream, the encoded
length of the text decreases, while the size of the dictionary
and the Huffman tree increases. It has been observed that the
compressed file size will reach a minimal value, and then
increase. The increase occurs at Some point because so few
tuple replacements are done that the decrease in text size no
longer outweighs the increase in size of the dictionary and
Huffman tree.
0075. The size of the compressed file does not decrease
Smoothly or steadily downward. As the compression process
proceeds, the size might plateau or temporarily increase. In
order to determine the true (global) minimum, it is necessary
to continue Some number of iterations past the each new
(local) minimum point. This true minimal value represents
the optimal compression for the data stream using this
method.
0076 Through experimentation, three conditions have
been found that can be used to decide when to terminate the
compression procedure: asymptotic reduction, observed low,
and single character. Each method is described below. Other
terminating conditions might be determined through further
experimentation.

Asymptotic Reduction
0077. An asymptotic reduction is a concession to process
ing efficiency, rather than a completion of the procedure.
When compressing larger files (100 kilobytes (KB) or
greater), after several thousand passes, each additional pass
produces only a very small additional compression. The com
pressed size is still trending downward, but at Such a slow rate
that additional compute time is not warranted.
0078 Based on experimental results, the process is termi
nated if at least 1000 passes have been done, and less than 1%
of additional data stream compression has occurred in the last
1000 passes. The previously noted minimum is therefore used
as the optimum compressed file.

Observed Low

0079 A reasonable number of passes have been per
formed on the data and in the last reasonable number of passes
a new minimum encoded file size has not been detected. It
appears that further passes only result in a larger encoded file
S17C.

0080 Based on experimental results, the process is termi
nated if at least 1000 passes have been done, and in the last
10% of the passes, a new low has not been established. The
previously noted minimum is then used as the optimum com
pressed file.

Single Character
I0081. The data stream has been reduced to exactly one
character. This case occurs if the file is made up of data that
can easily reduce to a single symbol. Such a file filled with a
repeating pattern. In cases like this, compression methods
other than this one might result in Smaller compressed file
S17S.

How the Procedure Optimizes Compression
I0082. The representative embodiment of the invention
uses Huffman trees to encode the data stream that has been

US 2011/001 6 135 A1

progressively shortened by tuple replacement, and balanced
against the growth of the resultant Huffman tree and dictio
nary representation.
0083. The average length of a Huffman encoded symbol
depends upon two factors:

I0084. How many symbols must be represented in the
Huffman tree

I0085. The distribution of the frequency of symbol use
I0086. The average encoded symbol length grows in a
Somewhat stepwise fashion as more symbols are added to the
dictionary. Because the Huffman tree is a binary tree,
increases naturally occur as the number of symbols passes
each level of the power of 2 (2, 4, 8, 16, 32, 64, etc.). At these
points, the average number of bits needed to represent any
given symbol normally increases by 1 bit, even though the
number of characters that need to be encoded decreases.
Subsequent compression passes usually overcome this tem
porary jump in encoded data stream length.
I0087. The second factor that affects the efficiency of Huff
man coding is the distribution of the frequency of symbol use.
If one symbol is used significantly more than any other, it can
be assigned a shorter encoding representation, which results
in a shorter encoded length overall, and results in maximum
compression. The more frequently a symbol occurs, the
shorter the encoded stream that replaces it. The less fre
quently a symbol occurs, the longer the encoded stream that
replaces it.
0088 Ifall symbols occuratapproximately equal frequen
cies, the number of symbols has the greater effect than does
the size of the encoded data stream. Supporting evidence is
that maximum compression occurs when minimum redun
dancy occurs, that is, when the data appears random. This
state of randomness occurs when every symbol occurs at the
same frequency as any other symbol, and there is no discern
able ordering to the symbols.
0089. The method and procedure described in this docu
ment attempt to create a state of randomness in the data
stream. By replacing highly occurring tuples with new sym
bols, eventually the frequency of all symbols present in the
data stream becomes roughly equal. Similarly, the frequency
of all tuples is also approximately equal. These two criteria
(equal occurrence of every symbol and equal occurrence of
ordered symbol groupings) is the definition of random data.
Random data means no redundancy. No redundancy means
maximum compression.
0090 This method and procedure derives optimal com
pression from a combination of the two factors. It reduces the
number of characters in the data stream by creating new
symbols to replace highly occurring tuples. The frequency
distribution of symbol occurrence in the data stream tends to
equalize as oft occurring symbols are eliminated during tuple
replacement. This has the effect of flattening the Huffman
tree, minimizing average path lengths, and therefore, mini
mizing encoded data stream length. The number of newly
created symbols is held to a minimum by measuring the
increase in dictionary size against the decrease in encoded
data stream size.

Example of Compression

0091 To demonstrate the compression procedure, a small
data file contains the following simple ASCII characters:
0092 aaaaaaaaaaaaaaaaaaaaaaaaaaa
baaabaaaaaaaababbbbbb

Jan. 20, 2011

0093. Each character is stored as a sequence of eight bits
that correlates to the ASCII code assigned to the character.
The bit values for each character are:
0094) a=01100001
0.095 b=01100010
0096. The digital data that represents the file is the original
data that we use for our compression procedure. Later, we
want to decompress the compressed file to get back to the
original data without data loss.

Preparing the Data Stream
0097. The digital data that represents the file is a series of

bits, where each bit has a value of 0 or 1. We want to abstract
the view of the bits by conceptually replacing them with
symbols to form a sequential stream of characters, referred to
as a data stream.
0098. For our sample digital data, we create two new sym
bols called 0 and 1 to represent the raw bit values of 0 and 1.
respectively. These two symbols form our initial alphabet, so
we place them in the dictionary 26, FIG.8.
(0099. The data stream 30 in FIG.9 represents the original
series of bits in the stored file, e.g., the first eight bits 32 are
“01 100001” and correspond to the first letter “a” in the data
file. Similarly, the very last eight bits 34 are “01 100010 and
correspond to the final letter “b’ in the data file, and each of
the 1's and 0's come from the ASCII code above.
0100 Also, the characters in data stream 30 are separated
with a space for user readability, but the space is not consid
ered, just the characters. The space would not occur in com
puter memory either.

Compressing the Data Stream
0101. The data stream 30 of FIG. 9 is now ready for com
pression. The procedure will be repeated until the compres
sion goal is achieved. For this example, the compression goal
is to minimize the amount of space that it takes to store the
digital data.

Initial Pass

0102 For the initial pass, the original data stream and
alphabet that were created in “Preparing the Data Stream” are
obtained.

Identifying all Possible Tuples
0103) An easy way to identify all possible combinations of
the characters in our current alphabet (at this time having 0
and 1) is to create a tuple array (table 35, FIG. 10). Those
symbols are placed or fitted as a column and row, and the cells
are filled in with the tuple that combines those symbols. The
columns and rows are constructed alphabetically from left to
right and top to bottom, respectively, according to the order
that the symbols appearin our dictionary. For this demonstra
tion, we will consider the symbol in a column to be the first
character in the tuple, and the symbol in a row to be the last
character in the tuple. To simplify the presentation of tuples in
each cell, we will use the earlier-described notation of
“first-last’ to indicate the order of appearance in the pair of
characters, and to make it easier to visually distinguish the
symbols in the pair. The tuples shown in each cell now rep
resent the patterns we want to look for in the data stream.
0104 For example, the table 35 shows the tuple array for
characters 0 and 1. In the cell for column 0 and row 0, the tuple
is the ordered pair of 0 followed by 0. The shorthand notation

US 2011/001 6 135 A1

of the tuple in the first cell is “O>0. In the cell for column 0
and row 1, the tuple is 0 followed by 1, or “O>1”. In the cell for
column 1 and row 0, the tuple is “10'. In the cell for column
1 and row 1, the tuple is “1-1”. (As skilled artisans will
appreciate, most initial dictionaries and original tuple arrays
will be identical to these. The reason is that computing data
streams will all begin with a stream of 1's and 0's having two
symbols only.)
Determining the Highly Occurring Tuple
0105. After completion of the tuple array, we are ready to
look for the tuples in the data stream 30, FIG.9. We start at the
beginning of the data stream with the first two characters "01
labeled element 37. We compare this pair of characters to our
known tuples, keeping in mind that order matters. We match
the pair to a topic, and add one count for that instance. We
move forward by one character, and look at the pair of char
acters 38 in positions two and three in the data stream, or “11”
We compare and match this pair to one of the tuples, and add
one count for that instance. We continue tallying occurrences
of the tuples in this manner until we reach the end of the data
stream. In this instance, the final tuple is “10 labeled 39. By
incrementing through the data stream one character at a time,
we have considered every combination of two adjacent char
acters in the data stream, and tallied each instance againstone
of the tuples. We also consider the rule for sequences of
repeated symbols, described above, to determine the actual
number of instances for the tuple that is defined by pairs of
that symbol.
0106 For example, the first two characters in our sample
data stream are 0 followed by 1. This matches the tuple 0-1,
so we count that as one instance of the tuple. We step forward
one character. The characters in positions two and three are 1
followed by 1, which matches the tuple 1 >1. We count it as
one instance of the 1 > 1 tuple. We consider the sequences of
three or more Zeros in the data stream (e.g., 01100001 ...) to
determine the actual number of tuples for the 0-0 tuple. We
repeat this process to the end of the data set with the count
results in table 40, FIG. 11.
0107 Now that we have gathered statistics for how many
times each tuple appears in the data stream 30, we compare
the total counts for each tuple to determine which pattern is
the most highly occurring. The tuple that occurs most fre
quently is a tie between a 1 followed by 0 (1 >0), which occurs
96 times, and a 0 followed by 1 (0>1), which also occurs 96
times. As discussed above, skilled artisans then choose the
most complex tuple and do so according to Pythagorean's
Theorem. The sum of the squares for each tuple is the same,
which is 1 (1+0) and 1 (0+1). Because they have the same
complexity, it does not matter which one is chosen as the
highest occurring. In this example, we will choose tuple 1 >0.
0108. We also count the number of instances of each of the
symbols in the current alphabet as seen in table 41, FIG. 12.
The total symbol count in the data stream is 384 total symbols
that represent 384 bits in the original data. Also, the symbol 0
appears 240 times in original data stream 30, FIG.9, while the
symbol 1 only appears 144 times.
Pass 1

0109. In this next pass, we replace the most highly occur
ring tuple from the previous pass with a new symbol, and then
we determine whether we have achieved our compression
goal.
Creating a Symbol for the Highly Occurring Tuple
0110] We replace the most highly occurring tuple from the
previous pass with a new symbol and add it to the alphabet.

Jan. 20, 2011

Continuing the example, we add a new symbol 2 to the dic
tionary and define it with the tuple defined as 1 followed by 0
(1>0). It is added to the dictionary 26' as seen in FIG. 13. (Of
course, original symbol 0 is still defined as a 0, while original
symbol 1 is still defined as a 1. Neither of these represent a
first symbol followed a last symbol which is why dashes
appear in the dictionary 26' under “Last' for each of them.)
Replacing the Tuple with the New Symbol
0111. In the original data stream 30, every instance of the
tuple 1 >0 is now replaced with the new, single symbol. In our
example data stream 30, FIG.9, the 96 instances of the tuple
1>0 have been replaced with the new symbol “2 to create the
output data stream 30', FIG. 14, that we will use for this pass.
As skilled artisans will observe, replacing ninety-six double
instances of symbols with a single, new symbol shrinks or
compresses the data stream 30' in comparison to the original
data stream 30, FIG. 8.

Encoding the Alphabet

0112. After we compress the data stream by using the new
symbol, we use a path-weighted Huffman coding scheme to
assign bits to each symbol in the current alphabet.
0113 To do this, we again count the number of instances
of each of the symbols in the current alphabet (now having
“0” “1” and “2.) The total symbol count in the data stream is
288 symbols as seen in table 41', FIG. 15. We also have one
end-of-file (EOF) symbol at the end of the data stream (not
shown).
0114. Next, we use the counts to build a Huffman binary
code tree. 1) List the symbols from highest count to lowest
count. 2) Combine the counts for the two least frequently
occurring symbols in the dictionary. This creates a node that
has the value of the sum of the two counts. 3) Continue
combining the two lowest counts in this manlier until there is
only one symbol remaining. This generates a Huffman binary
code tree.
0115 Finally, label the code tree paths with Zeros (Os) and
ones (1S). The Huffman coding scheme assigns shorter code
words to the more frequent symbols, which helps reduce the
size length of the encoded data. The Huffman code for a
symbol is defined as the String of values associated with each
path transition from the root to the symbol terminal node.
0116. With reference to FIG. 16, the tree 50 demonstrates
the process of building the Huffman tree and code for the
symbols in the current alphabet. We also create a code for the
end of file marker that we placed at the end of the data stream
when we counted the tuples. In more detail, the root contem
plates 289 total symbols, i.e., the 288 symbols for the alphabet
“0” “1” and “2” plus one EOF symbol. At the leaves, the “0”
is shown with its counts 144 the “1” with its count of 48, the
“2 with its count of 96 and the EOF with its count of 1.
Between the leaves and root, the branches define the count in
a manner skilled artisans should readily understand.
0117. In this compression procedure, we will re-build a
Huffman code tree every time we add a symbol to the current
dictionary. This means that the Huffman code for a given
symbol can change with every compression pass.

Calculating the Compressed File Size

0118. From the Huffman tree, we use its code to evaluate
the amount of space needed to store the compressed data as
seen in table 52, FIG. 17. First, we count the number of bits in
the Huffman code for each symbol to find its bit length 53.

US 2011/001 6 135 A1

Next, we multiply a symbol’s bit length by its count 54 to
calculate the total bits 55 used to store the occurrences of that
symbol. We add the total bits 56 needed for all symbols to
determine how many bits are needed to store only the com
pressed data. As seen, the current data stream 30'. FIG. 14
requires 483 bits to store only the information.
0119) To know whether we achieved optimal compres
Sion, we must consider the total amount of space that it takes
to store the compressed data plus the information about the
compression that we need to store in order to decompress the
data later. We also must store information about the file, the
dictionary, and the Huffman tree. The table 57 in FIG. 18
shows the total compression overhead as being 25 bits, which
brings the compressed size of the data stream to 508 bits, or
483 bits plus 25 bits.
Determining Whether the Compression Goal has been
Achieved
0120 Finally, we compare the original number of bits
(384, FIG. 12) to the current number of bits (508) that are
needed for this compression pass. We find that it takes 1.32
times as many bits to store the compressed data as it took to
store the original data, table 58, FIG. 19. This is not compres
sion at all, but expansion.
0121. In early passes, however, we expect to see that the
Substitution requires more space than the original data
because of the effect of carrying a dictionary, adding symbols,
and building a tree. On the other hand, skilled artisans should
observe an eventual reduction in the amount of space needed
as the compression process continues. Namely, as the size of
the data set decreases by the symbol replacement method, the
size grows for the symbol dictionary and the Huffman tree
information that we need for decompressing the data.

Pass 2

0122. In this pass, we replace the most highly occurring
tuple from the previous pass (pass 1) with still another new
symbol, and then we determine whether we have achieved our
compression goal.

Identifying all Possible Tuples
0123. As a result of the new symbol, the tuple array is
expanded by adding the symbol that was created in the pre
vious pass. Continuing our example, we add 2 as a first
symbol and last symbol, and enter the tuples in the new cells
of table 35", FIG. 20.

Determining the Highly Occurring Tuple

0.124. As before, the tuple array identifies the tuples that
we look for and tally in our revised alphabet. As seen in table
40', FIG. 21, the Total Symbol Count=288. The tuple that
occurs most frequently when counting the data stream 30'.
FIG. 14, is the character 2 followed by the character 0 (2-0).
It occurs 56 times as seen circled in table 40', FIG. 21.

Creating a Symbol for the Highly Occurring Tuple

0125 We define still another new symbol “3 to represent
the most highly occurring tuple 2D-0, and add it to the dictio
nary 26". FIG. 22, for the alphabet that was developed in the
previous passes.
Replacing the Tuple with the New Symbol
0126. In the data stream 30'. FIG. 14, we replace every
instance of the most highly occurring tuple with the new

Jan. 20, 2011

single symbol. We replace the 56 instances of the 2-0 tuple
with the symbol 3 and the resultant data stream 30" is seen in
FIG. 23.

Encoding the Alphabet

0127. As demonstrated above, we count the number of
symbols in the data stream, and use the count to build a
Huffman tree and code for the current alphabet. The total
symbol count has been reduced from 288 to 234 (e.g., 88+48+
40+58, but not including the EOF marker) as seen in table
41", FIG. 24.

Calculating the Compressed File Size

0.128 We need to evaluate whether our substitution
reduces the amount of space that it takes to store the data. As
described above, we calculate the total bits needed (507) as in
table S2. FIG. 25.
I0129. In table 57, FIG. 26, the compression overhead is
calculated as 38 bits.
Determining Whether the Compression Goal has been
Achieved
0.130 Finally, we compare the original number of bits
(384) to the current number of bits (545–507+38) that are
needed for this compression pass. We find that it takes 141%
or 1.41 times as many bits to store the compressed data as it
took to store the original data. Compression is still not
achieved and the amount of data in this technique is growing
larger rather than Smaller in comparison to the previous pass
requiring 132%.

PaSS3

I0131. In this pass, we replace the most highly occurring
tuple from the previous pass with a new symbol, and then we
determine whether we have achieved our compression goal.

Identifying all Possible Tuples

(0132) We expand the tuple array 35". FIG. 28 by adding
the symbol that was created in the previous pass. We add the
symbol “3 as a first symbol and last symbol, and enter the
tuples in the new cells.

Determining the Highly Occurring Tuple

I0133. The tuple array identifies the tuples that we look for
and tally in our revised alphabet. In table 40", FIG. 29, the
Total Symbol Count is 232, and the tuple that occurs most
frequently is the character 1 followed by character 3 (1 >3). It
occurs 48 times, which ties with the tuple of character 3
followed by character O. We determine that the tuple 1 >3 is
the most complex tuple because it has a hypotenuse length 25'
of 3.16 (SQRT(1 +3°)), and tuple 3>0 has a hypotenuse of 3
(SQRT(0+3)).

Creating a Symbol for the Highly Occurring Tuple

I0134. We define a new symbol 4 to represent the most
highly occurring tuple 1 >3, and add it to the dictionary 26",
FIG. 30, for the alphabet that was developed in the previous
passes.
Replacing the Topic with the New Symbol
I0135) In the data stream, we replace every instance of the
most highly occurring tuple from the earlier data stream with

US 2011/001 6 135 A1

the new single symbol. We replace the 48 instances of the 1D-3
tuple with the symbol 4 and new data stream 30-4 is obtained,
FIG. 31.

Encoding the Alphabet
0136. We count the number of symbols in the data stream,
and use the count to build a Huffman tree and code for the
current alphabet as seen in table 41" FIG. 32. There is no
Huffman code assigned to the symbol 1 because there are no
instances of this symbol in the compressed data in this pass.
(This can be seen in the data stream 30-4, FIG. 31.) The total
symbol count has been reduced from 232 to 184 (e.g., 88+0+
40+8+48, but not including the EOF marker).

Calculating the Compressed File Size

0.137 We need to evaluate whether our substitution
reduces the amount of space that it takes to store the data. As
seen in table 52". FIG. 33, the total bits are equal to 340.
0.138. In table 57", FIG. 34, the compression overhead in
bits is 42.
Determining Whether the Compression Goal has been
Achieved
0139 Finally, we compare the original number of bits
(384) to the current number of bits (382) that are needed for
this compression pass. We find that it takes 0.99 times as
many bits to store the compressed data as it took to store the
original data. Compression is achieved.

Pass 4

0140. In this pass, we replace the most highly occurring
tuple from the previous pass with a new symbol, and then we
determine whether we have achieved our compression goal.

Identifying all Possible Tuples
0141. We expand the tuple array 35", FIG. 36, by adding
the symbol that was created in the previous pass. We add the
symbol 4 as a first symbol and last symbol, and enter the
tuples in the new cells.

Determining the Highly Occurring Tuple

0142. The tuple array identifies the tuples that we look for
and tally in our revised alphabet. In table 40". FIG. 37, the
Total Symbol Count=184 and the tuple that occurs most fre
quently is the character 4 followed by character 0 (4-0). It
occurs 48 times.

Creating a Symbol for the Highly Occurring Tuple
0143 We define a new symbol 5 to represent the 4>0tuple,
and add it to the dictionary 26-4, FIG.38, for the alphabet that
was developed in the previous passes.
Replacing the Tuple with the New Symbol
0144. In the data stream, we replace every instance of the
most highly occurring tuple with the new single symbol. We
replace the 48 instances of the 40 tuple in data stream 30-4,
FIG. 31, with the symbol 5 as seen in data stream 30-5, FIG.
39.

Encoding the Alphabet

0145 As demonstrated above, we count the number of
symbols in the data stream, and use the count to build a
Huffman tree and code for the current alphabet. There is no

Jan. 20, 2011

Huffman code assigned to the symbol 1 and the symbol 4
because there are no instances of these symbols in the com
pressed data in this pass. The total symbol count has been
reduced from 184 to 136 (e.g., 40+0+40+8+0+48, but not
including the EOF marker) as seen in table 41-4, FIG. 40.

Calculating the Compressed File Size

0146 We need to evaluate whether our substitution
reduces the amount of space that it takes to store the data. As
seen in table 52", FIG. 41, the total number of bits is 283.
0147 As seen in table 57", FIG. 42, the compression
overhead in bits is 48.
Determining Whether the Compression Goal has been
Achieved
0148 Finally, we compare the original number of bits
(384) to the current number of bits (331) that are needed for
this compression pass as seen in table 58". FIG. 43. In turn,
we find that it takes 0.86 times as many bits to store the
compressed data as it took to store the original data.

PaSS 5

0149. In this pass, we replace the most highly occurring
tuple from the previous pass with a new symbol, and then we
determine whether we have achieved our compression goal.

Identifying all Possible Tuples

0150. We expand the tuple array by adding the symbol that
was created in the previous pass. We add the symbol 5 as a first
symbol and last symbol, and enter the tuples in the new cells
as seen in table 35-4, FIG. 44.

Determining the Highly Occurring Tuple

0151. The tuple array identifies the tuples that we look for
and tally in our revised alphabet as seen in table 40-4, FIG. 45.
(Total Symbol Count=136) The tuple that occurs most fre
quently is the symbol 2 followed by symbol 5 (2-5), which
has a hypotenuse of 5.4. It occurs 39 times. This tuple ties
with the tuple 0>2 (hypotenuse is 2) and 5>0 (hypotenuse is
5). The tuple 2D5 is the most complex based on the hypot
enuse length 25" described above.

Creating a Symbol for the Highly Occurring Tuple

0152 We define a new symbol 6 to represent the most
highly occurring tuple 2>5, and add it to the dictionary for the
alphabet that was developed in the previous passes as seen in
table 26-5, FIG. 46.
Replacing the Tuple with the New Symbol
0153. In the data stream, we replace every instance of the
most highly occurring tuple with the new single symbol. We
replace the 39 instances of the 2-5 tuple in data stream 30-5,
FIG. 39, with the symbol 6 as seen in data stream 30-6, FIG.
47.

Encoding the Alphabet

0154 As demonstrated above, we count the number of
symbols in the data stream, and use the count to build a
Huffman tree and code for the current alphabet as seen in
table 41-5, FIG. 48. There is no Huffman code assigned to the
symbol 1 and the symbol 4 because there are no instances of
these symbols in the compressed data in this pass. The total

US 2011/001 6 135 A1

symbol count has been reduced from 136 to 97 (e.g., 40+1+
8+9+39, but not including the EOF marker) as seen in table
52-4, FIG. 49.

Calculating the Compressed File Size
O155 We need to evaluate whether our substitution
reduces the amount of space that it takes to store the data. As
seen in table 52-4, FIG. 49, the total number of bits is 187.
0156. As seen in table 57-4, FIG. 50, the compression
overhead in bits is 59.
Determining Whether the Compression Goal has been
Achieved
0157 Finally, we compare the original number of bits
(384) to the current number of bits (246, or 187+59) that are
needed for this compression pass as seen in table 58-4, FIG.
51. We find that it takes 0.64 times as many bits to store the
compressed data as it took to store the original data.

Pass 6

0158. In this pass, we replace the most highly occurring
tuple from the previous pass with a new symbol, and then we
determine whether we have achieved our compression goal.

Identifying all Possible Tuples
0159. We expand the tuple array 35-5 by adding the sym
bol that was created in the previous pass as seen in FIG. 52.
We add the symbol 6 as a first symbol and last symbol, and
enter the tuples in the new cells.

Determining the Highly Occurring Tuple
0160 The tuple array identifies the tuples that we look for
and tally in our revised alphabet. (Total Symbol Count=97)
The tuple that occurs most frequently is the symbol 0 fol
lowed by symbol 6 (0>6). It occurs 39 times as seen in table
40-5, FIG. 53.

Creating a Symbol for the Highly Occurring Tuple
0161 We define a new symbol 7 to represent the 0-6 tuple,
and add it to the dictionary for the alphabet that was devel
oped in the previous passes as seen in table 26-6, FIG. 54.
Replacing the Topic with the New Symbol
0162. In the data stream, we replace every instance of the
most highly occurring tuple with the new single symbol. We
replace the 39 instances of the 0-6 tuple in data stream 30-6,
FIG. 47, with the symbol 7 as seen in data stream 30-7, FIG.
55.

Encoding the Alphabet

0163 As demonstrated above, we count the number of
symbols in the data stream, and use the count to build a
Huffman tree and code for the current alphabet as seen in
table 41-6, FIG.56. There is no Huffman code assigned to the
symbol 1, symbol 4 and symbol 6 because there are no
instances of these symbols in the compressed data in this pass.
The total symbol count has been reduced from 97 to 58 (e.g.,
1+0+1+8+0+9+0+39, but not including the EOF marker).
0164. Because all the symbols 1, 4, and 6 have been
removed from the data stream, there is no reason to express
them in the encoding scheme of the Huffman tree 50', FIG.57.
However, the extinct symbols will be needed in the decode
table. A complex symbol may decode to two less complex
symbols. For example, a symbol 7 decodes to 0>6.

Jan. 20, 2011

0.165. We need to evaluate whether our substitution
reduces the amount of space that it takes to store the data. As
seen in table 52-5, FIG. 58, the total number of bits is 95.
(0166 As seen in table 57-5, FIG. 59, the compression
overhead in bits is 71.
Determining Whether the Compression Goal has been
Achieved
0.167 Finally, we compare the original number of bits
(384) to the current number of bits (166, or 95+71) that are
needed for this compression pass as seen in table 58-5, FIG.
60. We find that it takes 0.43 times as many bits to store the
compressed data as it took to store the original data.

Subsequent Passes

(0168 Skilled artisans will also notice that overhead has
been growing in size while the total number of bits is still
decreasing. We repeat the procedure to determine if this is the
optimum compressed file size. We compare the compression
size for each Subsequent pass to the first occurring lowest
compressed file size. The chart 60, FIG. 61, demonstrates
how the compressed file size grows, decreases, and then
begins to grow as the encoding information and dictionary
sizes grow. We can continue the compression of the foregoing
techniques until the text file compresses to a single symbol
after 27 passes.

Interesting Symbol Statistics

(0169. With reference to table 61, FIG. 62, interesting sta
tistics about the symbols for this compression are observable.
For instance, the top 8 symbols represent 384 bits (e.g., 312+
45+24+2+1) and 99.9% (e.g., 81.2+11.7+6.2+0.5+0.3%) of
the file.

Storing the Compressed File

0170 The information needed to decompress a file is usu
ally written at the front of a compressed file, as well as to a
separate dictionary only file. The compressed file contains
information about the file, a coded representation of the Huff
man tree that was used to compress the data, the dictionary of
symbols that was created during the compression process,
and the compressed data. The goal is to store the information
and data in as few bits as possible.
0171 This section describes a method and procedure for
storing information in the compressed file.

File Type
0172. The first four bits in the file are reserved for the
version number of the file format, called the file type. This
field allows flexibility for future versions of the software that
might be used to write the encoded data to the storage media.
The file type indicates which version of the software was used
when we saved the file in order to allow the file to be decom
pressed later.
0173 Four bits allows for up to 16 versions of the soft
ware. That is, binary numbers from 0000 to 1111 represent
version numbers from 0 to 15. Currently, this field contains
binary 0000.

Maximum Symbol Width
0.174. The second four bits in the file are reserved for the
maximum symbol width. This is the number of bits that it
takes to store in binary form the largest symbol value. The

US 2011/001 6 135 A1

actual value stored is four less than the number of bits
required to store the largest symbol value in the compressed
data. When we read the value, we add four to the stored
number to get the actual maximum symbol width. This tech
nique allows symbol values up to 20 bits. In practical terms,
the value 220 (2 raised to the 20" power) means that about 1
million symbols can be used for encoding.
0175 For example, if symbols 0-2000 might appear in the
compressed file, the largest symbol ID (2000) would fit in a
field containing 11 bits. Hence, a decimal 7 (binary 0.111)
would be stored in this field.
0176). In the compression example, the maximum symbol
width is the end-of-file symbol 8, which takes four bits in
binary (1000). We subtract four, and store a value of 0000.
When we decompress the data, we add four to Zero to find the
maximum symbol width of four bits. The symbol width is
used to read the Huffman tree that immediately follows in the
coded data stream.

Coded Huffman Tree

0177. We must store the path information for each symbol
that appears in the Huffman tree and its value. To do this, we
convert the symbol's digital value to binary. Each symbol will
be stored in the same number of bits, as determined by the
symbol with the largest digital value and stored as the just
read “symbol width”.
0178. In the example, the largest symbol in the dictionary
in the Huffman encoded tree is the end-of-file symbol 8. The
binary form of8 is 1000, which takes 4 bits. We will store each
of the symbol values in 4 bits.
0179 To store a path, we will walk the Huffman tree in a
method known as a pre-fix order recursive parse, where we
visit each node of the tree in a known order. For each node in
the tree one bit is stored. The value of the bit indicates if the
node has children (1) or if it is a leaf with no children (O). If it
is a leaf, we also store the symbol value. We start at the root
and follow the left branch down first. We visit each node only
once. When we return to the root, we follow the right branch
down, and repeat the process for the right branch.
0180. In the following example, the Huffman encoded tree

is redrawn as 50-2 to illustrate the prefix-order parse, where
nodes with children are labeled as 1, and leaf nodes are
labeled as 0 as seen in FIG. 63.
0181. The discovered paths and symbols are stored in the
binary form in the order in which they are discovered in this
method of parsing. Write the following bit string to the file,
where the bits displayed in bold/underline represent the path,
and the value of the 0 node are displayed without bold/under
line. The spaces are added for readability; they are not written
to media.
110 O101 11 OOOOO 10 1 OOOOOO1 OOOO11 OO111

Encode Array for the Dictionary
0182. The dictionary information is stored as sequential

first/last definitions, starting with the two symbols that define
the symbol 2. We can observe the following characteristics of
the dictionary:

0183 The symbols 0 and 1 are the atomic (non-divis
ible) symbols common to every compressed file, so they
do not need to be written to media.

0.184 Because we know the symbols in the dictionary
are sequential beginning with 2, we store only the sym
bol definition and not the symbol itself.

Jan. 20, 2011

0185. A symbol is defined by the tuple it replaces. The
left and right symbols in the tuple are naturally symbols
that precede the symbol they define in the dictionary.

0186 We can store the left/right symbols of the tuple in
binary form.

0187 We can predict the maximum number of bits that
it takes to store numbers in binary form. The number of
bits used to store binary numbers increases by one bit
with each additional power of two as seen, for example,
in table 62, FIG. 64:

0188 Because the symbol represents a tuple made up of
lower-level symbols, we will increase the bit width at the next
higher symbol value; that is, at 3, 5, 9, and 17, instead of at 2,
4, 8, and 16.
(0189 We use this information to minimize the amount of
space needed to store the dictionary. We store the binary
values for the tuple in the order of first and last, and use only
the number of bits needed for the values.

0190. Three dictionary instances have special meanings.
The 0 and 1 symbols represent the atomic symbols of data
binary Obinary 1, respectively. The last structure in the array
represents the end-of-file (EOF) symbol, which does not have
any component pieces. The EOF symbol is always assigned a
value that is one number higher than the last symbol found in
the data stream.

0191 Continuing our compression example, the table 63,
FIG. 65, shows how the dictionary is stored.
0.192 Write the following bit string to the file. The spaces
are added for readability; they are not written to media.
10 1 OOOO 111 1 OOOOOO10101 OOO110

Encoded Data

0193 To store the encoded data, we replace the symbol
with its matching Huffman code and write the bits to the
media. At the end of the encoded bit string, we write the EOF
symbol. In our example, the final compressed symbol string is
seen again as 30-7, FIG. 66, including the EOF.
0194 The Huffman code for the optimal compression is
shown in table 67, FIG. 67.
0.195 As we step through the data stream, we replace the
symbol with the Huffman coded bits as seen at string 68, FIG.
68. For example, we replace symbol 0 with the bits 0100 from
table 67, replace symbol 5 with 00 from table 67, replace
instances of symbol 7 with 1, and so on. We write the follow
ing string to the media, and write the end of file code at the
end. The bits are separated by spaces for readability; the
spaces are not written to media.
0196. The compressed bit string for the data, without
spaces is: 0100001111111111111111111111111110110
O111011 OO11111111011 OO101OOO11 OOO1
1OOO11 OOO11 OOO 101101010

Overview of the Stored File

(0197). As summarized in the diagram 69, FIG. 69, the
information stored in the compressed file is the file type,
symbol width, Huffman tree, dictionary, encoded data, and
EOF symbol. After the EOF symbol, a variable amount of pad
bits are added to align the data with the final byte in storage.
(0198 In the example, the bits 70 of FIG.70 are written to
media. Spaces are shown between the major fields for read

US 2011/001 6 135 A1

ability; the spaces are not written to media. The 'x' represents
the pad bits. In FIG. 69, the bits 70 are seen filled into diagram
69b corresponding to the compressed file format.

Decompressing the Compressed File
0199 The process of decompression unpacks the data
from the beginning of the file 69, FIG. 69, to the end of the
Stream.

File Type
0200 Read the first four bits of the file to determine the file
format version.

Maximum Symbol Width
0201 Read the next four bits in the file, and then add four
to the value to determine the maximum symbol width. This
value is needed to read the Huffman tree information.

Huffman Tree

0202 Reconstruct the Huffman tree. Each 1 bit represents
a node with two children. Each 0 bit represents a leaf node,
and it is immediately followed by the symbol value. Read the
number of bits for the symbol using the maximum symbol
width.
0203. In the example, the stored string for Huffman is:
0204 11001011100000101000000100001100111
0205 With reference to FIG. 71, diagram 71 illustrates
how to unpack and construct the Huffman tree using the
pre-fix order method.

Dictionary

0206 To reconstruct the dictionary from file 69, read the
values for the pairs of tuples and populate the table. The
values of 0 and 1 are known, so they are automatically
included. The bits are read in groups based on the number of
bits per symbol at that level as seen in table 72, FIG.72.
0207. In our example, the following bits were stored in the

file: 101 OOOO 111101 OOOO 10101OOO110
0208 We read the numbers in pairs, according to the bits
per symbol, where the pairs represent the numbers that define
symbols in the dictionary:

Bits Symbol

1 O 2
10 OO 3
O1 11 4
1OOOOO 5
O10 101 6
OOO 110 7

0209 We convert each binary number to a decimal num
ber:

Decimal Value Symbol

1 O 2
2 O 3
13 4
4 O 5

Jan. 20, 2011

-continued

Decimal Value Symbol

25 6
O 6 7

0210 We identify the decimal values as the tuple defini
tions for the symbols:

Symbol Tuple

2 1 > 0
3 2 > O
4 1 > 3
5 4 > 0
6 2 > 5
7 O > 6

0211 We populate the dictionary with these definitions as
seen in table 73, FIG. 73.

Construct the Decode Tree

0212 We use the tuples that are defined in the re-con
structed dictionary to build the Huffman decode tree. Let's
decode the example dictionary to demonstrate the process.
The diagram 74 in FIG. 74 shows how we build the decode
tree to determine the original bits represented by each of the
symbols in the dictionary. The step-by-step reconstruction of
the original bits is as follows:
0213 Start with symbols 0 and 1. These are the atomic
elements, so there is no related tuple. The symbol 0 is a left
branch from the root. The symbol 1 is a right branch. (Left and
right are relative to the node as you are facing the diagram—
that is, on your left and on your right.) The atomic elements
are each represented by a single bit, so the binary path and the
original path are the same. Record the original bits 0 and 1 in
the decode table.
0214 Symbol 2 is defined as the tuple 1 >0 (symbol 1
followed by symbol 0). In the decode tree, go to the node for
symbol 1, then add a path that represents symbol 0. That is,
add a left branch at node 1. The terminating node is the
symbol 2. Traverse the path from the root to the leaf to read the
branch paths of left (L) and right (R). Replace each left branch
with a 0 and each right path with a 1 to view the binary forum
of the path as LR, or binary 10.
0215 Symbol 3 is defined as the tuple 2>0. In the decode
tree, go to the node for symbol 2, then add a path that repre
sents symbol 0. That is, add a left branch at node 2. The
terminating node is the symbol 3. Traverse the path from the
root to the leaf to read the branch path of RLL. Replace each
left branch with a 0 and each right path with a 1 to view the
binary form of the path as 100.
0216) Symbol 4 is defined as the tuple 1 >3. In the decode
tree, go to the node for symbol 1, then add a path that repre
sents symbol 3. From the root to the node for symbol 3, the
path is RLL. At symbol 1, add the RLL path. The terminating
node is symbol 4. Traverse the path from the root to the leaf to
read the path of RRLL, which translates to the binary format
of 1100.
0217. Symbol 5 is defined as the tuple 4->0. In the decode
tree, go to the node for symbol 4, then add a path that repre
sents symbol 0. At symbol 4, add the L path. The terminating

US 2011/001 6 135 A1

node is symbol 5. Traverse the path from the root to the leaf to
read the path of RRLLL, which translates to the binary format
of 11000.
0218 Symbol 6 is defined as the tuple 2D5. In the decode

tree, go to the node for symbol 2, then add a path that repre
sents symbol 5. From the root to the node for symbol 5, the
path is RRLLL. The terminating node is symbol 6. Traverse
the path from the root to the leaf to read the path of RLR
RLLL, which translates to the binary format of 1011000.
0219. Symbol 7 is defined as the tuple 0>6. In the decode
tree, go to the node for symbol 0, then add a path that repre
sents symbol 6. From the root to the node for symbol 6, the
path is RLRRLLL. The terminating node is symbol 7.
Traverse the path from the root to the leaf to read the path of
LRLRRLLL, which translates to the binary format of
O1 O1OOO.

Decompress the Data
0220 To decompress the data, we need the reconstructed
Huffman tree and the decode table that maps the symbols to
their original bits as seen at 75, FIG. 75. We read the bits in the
data file one bit at a time, following the branching path in the
Huffman tree from the root to a node that represents a symbol.
The compressed file data bits are: 010000111111111111111
111111111011 OO111011 OO11111111011001011 OOO11OOO1
1OOO11OOO11 OOO 101101010
0221 For example, the first four bits of encoded data 0100
takes us to symbol 0 in the Huffman tree, as illustrated in the
diagram 76, FIG. 76. We lookup 0 in the decode treeandtable
to find the original bits. In this case, the original bits are also
0. We replace 0100 with the single bit 0.
0222. In the diagram 77 in FIG. 77, we follow the next two
bits 00 to find symbol 5 in the Huffman tree. We look up 5 in
the decode tree and table to find that symbol 5 represents
original bits of 11000. We replace 00 with 11000.
0223) In the diagram 78, FIG.78, we follow the next bit 1
to find symbol 7 in the Huffman tree. We look up 7 in the
decode tree and table to find that symbol 7 represents the
original bits 01011000. We replace the single bit 1 with
01011000. We repeat this for each 1 in the series of 1s that
follow.
0224. The next symbol we discover is with bits 011. We
follow these bits in the Huffman tree in diagram 79, FIG. 79.
We look up symbol 3 in the decode tree and table to find that
it represents original bits 100, so we replace011 with bits 100.
0225. We continue the decoding and replacement process

to discover the symbol 2 near the end of the stream with bits
01011, as illustrated in diagram 80, FIG. 80. We look up
symbol 2 in the decode tree and table to find that it represents
original bits 10, so we replace 01 011 with bits 10.
0226. The final unique sequence of bits that we discover is
the end-of-file sequence of 01 010, as illustrated in diagram
81, FIG. 81. The EOF tells us that we are done unpacking.
0227. Altogether, the unpacking of compressed bits recov
ers the original bits of the original data stream in the order of
diagram 82 spread across two FIGS. 82a and 82b.
0228. With reference to FIG. 83, a representative comput
ing system environment 100 includes a computing device
120. Representatively, the device is a general or special pur
pose computer, a phone, a PDA, a server, a laptop, etc., having
a hardware platform 128. The hardware platform includes
physical I/O and platform devices, memory (M), processor
(P), such as a CPU(s), USB or other interfaces (X), drivers
(D), etc. In turn, the hardware platform hosts one or more

Jan. 20, 2011

virtual machines in the form of domains 130-1 (domain 0, or
management domain), 130-2 (domain U1), ... 130-n (domain
Un), each having its own guest operating system (O.S.) (e.g.,
Linux, Windows, Netware, Unix, etc.), applications 140-1,
140-2, ... 140-n, file systems, etc. The workloads of each
virtual machine also consume data stored on one or more
disks 121.
0229. An intervening Xen or other hypervisor layer 150,
also known as a “virtual machine monitor” or virtualization
manager, serves as a virtual interface to the hardware and
virtualizes the hardware. It is also the lowest and most privi
leged layer and performs scheduling control between the
virtual machines as they task the resources of the hardware
platform, e.g., memory, processor, storage, network (N) (by
way of network interface cards, for example), etc. The hyper
visor also manages conflicts, among other things, caused by
operating system access to privileged machine instructions.
The hypervisor can also be type 1 (native) or type 2 (hosted).
According to various partitions, the operating systems, appli
cations, application data, boot data, or other data, executable
instructions, etc., of the machines are virtually stored on the
resources of the hardware platform. Alternatively, the com
puting system environment is not a virtual environmentatall,
but a more traditional environment lacking a hypervisor, and
partitioned virtual domains. Also, the environment could
include dedicated services or those hosted on other devices.
0230. In any embodiment, the representative computing
device 120 is arranged to communicate 180 with one or more
other computing devices or networks. In this regard, the
devices may use wired, wireless or combined connections to
other devices/networks and may be director indirect connec
tions. If direct, they typify connections within physical or
network proximity (e.g., intranet). If indirect, they typify
connections such as those found with the internet, satellites,
radio transmissions, or the like. The connections may also be
local area networks (LAN), wide area networks (WAN).
metro area networks (MAN), etc., that are presented by way
of example and not limitation. The topology is also any of a
variety, such as ring, star, bridged, cascaded, meshed, or other
known or hereinafter invented arrangement.
0231. In still other embodiments, skilled artisans will
appreciate that enterprises can implement some or all of the
foregoing with humans, such as system administrators, com
puting devices, executable code, or combinations thereof. In
turn, methods and apparatus of the invention further contem
plate computer executable instructions, e.g., code or soft
ware, as part of computer program products on readable
media, e.g., disks for insertion in a drive of a computing
device 120, or available as downloads or direct use from an
upstream computing device. When described in the context of
Such computer program products, it is denoted that items
thereof. Such as modules, routines, programs, objects, com
ponents, data structures, etc., perform particular tasks or
implement particular abstract data types within various struc
tures of the computing system which cause a certain function
or group of function, and Such are well known in the art.
0232. While the foregoing produces a well-compressed
output file, e.g., FIG. 69, skilled artisans should appreciate
that the algorithm requires relatively considerable processing
time to determine a Huffman tree, e.g., element 50, and a
dictionary, e.g., element 26, of optimal symbols for use in
encoding and compressing an original file. Also, the time
spent to determine the key information of the file is signifi
cantly longer than the time spent to encode and compress the

US 2011/001 6 135 A1

file with the key. The following embodiment, therefore,
describes a technique to use a file's compression byproducts
to compress other data files that contain Substantially similar
patterns. The effectiveness of the resultant compression
depends on how similar a related file's patterns are to the
original file's patterns. As will be seen, using previously
created, but related key, decreases the processing time to a
small fraction of the time needed for the full process above,
but at the expense of a slightly less effective compression. The
process can be said to achieve a “fast approximation’ to
optimal compression for the related files.
0233. The definitions from FIG. 1 still apply.
0234 Broadly, the “fast approximation' hereafter 1)
greatly reduces the processing time needed to compress a file
using the techniques above, and 2) creates and uses a decode
tree to identify the most complex possible pattern from an
input bit stream that matches previously defined patterns.
Similar to earlier embodiments, this encoding method
requires repetitive computation that can be automated by
computer Software. The following discusses the logical pro
cesses involved.

Compression Procedure Using a Fast Approximation to Opti
mal Compression
0235 Instead ofusing the iterative process of discovery of
the optimal set of symbols, above, the following uses the
symbols that were previously created for another file that
contains patterns significantly similar to those of the file
under consideration. In a high-level flow, the process involves
the following tasks:

0236 1. Select a file that was previously compressed
using the procedure(s) in FIGS. 2-82b. The file should
contain data patterns that are significantly similar to the
current file under consideration for compression.

0237 2. From the previously compressed file, read its
key information and unpack its Huffman tree and sym
bol dictionary by using the procedure described above,
e.g., FIGS. 63-82b.

0238 3. Create a decode tree for the current file by using
the symbol dictionary from the original file.

0239 4. Identify and count the number of occurrences
of patterns in the current file that match the previously
defined patterns.

0240 5. Create a Huffman encoding tree for the sym
bols that occur in the current file plus an end-of-file
(EOF) symbol.

0241 6. Store the information using the Huffman tree
for the current file plus the file type, symbol width, and
dictionary from the original file.

Each of the tasks is described in more detail below. An
example is provided thereafter.

Selecting a Previously Compressed File

0242. The objective of the fast approximation method is to
take advantage of the key information in an optimally com
pressed file that was created by using the techniques above. In
its uncompressed form of original data, the compressed file
should contain data patterns that are significantly similar to
the patterns in the current file under consideration for com
pression. The effectiveness of the resultant compression
depends on how similar a related file's patterns are to the
original file's patterns. The way a skilled artisan recognizes a
similar file is that similar bit patterns are found in the origi

Jan. 20, 2011

nally compressed and new file yet to be compressed. It can be
theorized a priori that files are likely similar if they have
similar formatting (e.g., text, audio, image, powerpoint,
spreadsheet, etc), topic content, tools used to create the files,
file type, etc. Conclusive evidence of similar bit patterns is
that similar compression ratios will occur on both files (i.e.
original file compresses to 35% of original size, while target
file also compresses to about 35% of original size). It should
be noted that similar file sizes are not a requisite for similar
patterns being present in both files.
0243 With reference to FIG. 84, the key information 200
of a file includes the file type, symbol width, Huffman tree,
and dictionary from an earlier file, e.g., file 69, FIG. 69.

Reading and Unpacking the Key Information

0244. From the key information 200, read and unpack the
File Type, Maximum Symbol Width, Huffman Tree, and Dic
tionary fields.

Creating a Decode Tree for the Current File
0245 Create a pattern decode tree using the symbol dic
tionary retrieved from the key information. Each symbol rep
resents a bit pattern from the original data stream. We deter
mine what those bits are by building a decode tree, and then
parsing the tree to read the bit patterns for each symbol.
0246 We use the tuples that are defined in the re-con
structed dictionary to build the decode tree. The pattern
decode tree is formed as a tree that begins at the root and
branches downward. A terminal node represents a symbol ID
value. A transition node is a placeholder for a bit that leads to
terminal nodes.

Identifying and Counting Pattern Occurrences

0247 Read the bit stream of the current file one bit at a
time. As the data stream is parsed from left to right, the paths
in the decode tree are traversed to detect patterns in the data
that match symbols in the original dictionary.
0248 Starting from the root of the pattern decode tree, use
the value of each input bit to determine the descent path thru
the pattern decode tree. A “0” indicates a path down and to the
left, while a “1” indicates a path down and to the right.
Continue descending through the decode tree until there is no
more descent path available. This can occur because a branch
left is indicated with no left branch available, or a branch right
is indicated with no right branch available.
0249. When the end of the descent path is reached, one of
the following occurs:

0250 If the descent path ends in a terminal node, count
the symbol ID found there.

0251. If the descent path ends in a transition node,
retrace the descent path toward the root, until a terminal
node is encountered. This terminal node represents the
most complex pattern that could be identified in the input
bit stream. For each level of the tree ascended, replace
the bit that the path represents back into the bit stream
because those bits form the beginning of the next pattern
to be discovered. Count the symbol ID found in the
terminal node.

0252 Return to the root of the decode tree and continue
with the next bit in the data stream to find the next symbol.
0253) Repeat this process until all of the bits in the stream
have been matched to patterns in the decode tree. When done,

US 2011/001 6 135 A1

there exists a list of all of the symbols that occur in the bit
stream and the frequency of occurrence for each symbol.

Creating a Huffman Tree and Code for the Current File
0254 Use the frequency information to create a Huffman
encoding tree for the symbols that occur in the current file.
Include the end-of-file (EOF) symbol when constructing the
tree and determining the code.

Storing the Compressed File

0255 Use the Huffman tree for the current file to encode
its data. The information needed to decompress the file is
written at the front of the compressed file, as well as to a
separate dictionary only file. The compressed file contains:

0256 The file type and maximum symbol width infor
mation from the original file's key

0257. A coded representation of the Huffman tree that
was created for the current file and used to compress its
data,

0258. The dictionary of symbols from the original file's
key.

0259. The Huffman-encoded data, and
0260. The Huffman-encoded EOF symbol.

Example of “Fast Approximation'
0261 This example uses the key information 200 from a
previously created but related compressed file to approximate
the symbols needed to compress a different file.

Reading and Unpacking the Key Information
0262. With reference to table 202, FIG. 85, a representa
tive dictionary of symbols (0-8) was unpacked from the key
information 200 for a previously compressed file. The sym
bols 0 and 1 are atomic, according to definition (FIG. 1) in that
they represent bits 0 and 1, respectively. The reading and
unpacking this dictionary from the key information is given
above.
Construct the Decode Tree from the Dictionary
0263. With reference to FIG. 86, a diagram 204 demon
strates the process of building the decode tree for each of the
symbols in the dictionary (FIG. 85) and determining the
original bits represented by each of the symbols in the dictio
nary. In the decode tree, there are also terminal nodes, e.g.,
205, and transition nodes, e.g., 206. A terminal node repre
sents a symbol value. A transition node does not represent a
symbol, but represents additional bits in the path to the next
symbol. The step-by-step reconstruction of the original bits is
described below.
0264 Start with symbols 0 and 1. These are the atomic
elements, by definition, so there is no related tuple as in the
dictionary of FIG. 85. The symbol 0 branches left and down
from the root. The symbol 1 branches right and down from the
root. (Left and right are relative to the node as you are facing
the diagram—that is, on your left and on your right.) The
atomic elements are each represented by a single bit, so the
binary path and the original path are the same. You record the
“original bits’ 0 and 1 in the decode table 210, as well as its
“branch path.”
0265 Symbol 2 is defined from the dictionary as the tuple
1>0 (symbol 1 followed by symbol 0). In the decode tree 212,
go to the node for symbol 1 (which is transition node 205
followed by a right path Rand ending in a terminal node 206,
or arrow 214), then add a path that represents symbol 0 (which

Jan. 20, 2011

is transition node 205 followed by a left path Land ending in
a terminal node 206, or path 216). That is, you add a left
branch at node 1. The terminating node 220 is the symbol 2.
Traverse the path from the root to the leaf to read the branch
paths of right (R) and left (L). Replace each left branch with
a 0 and each right path with a 1 to view the binary form of the
path as RL, or binary 10 as in decode table 210.
0266 Symbol 3 is defined as the tuple 2-0. In its decode
tree 230, it is the same as the decode tree for symbol 2, which
is decode tree 212, followed by the “0” Particularly, in tree
230, go to the node for symbol 2, then add a path that repre
sents symbol 0. That is, you add a left branch (e.g., arrow 216)
at node 2. The terminating node is the symbol 3. Traverse the
path from the root to the leaf to read the branch path of RLL.
Replace each left branch with a 0 and each right path with a 1
to view the binary format of 100 as in the decode table.
0267 Similarly, the other symbols are defined with
decode trees building on the decode trees for other symbols.
In particular, they are as follows:
0268 Symbol 4 from the dictionary is defined as the tuple
1>3. In its decode tree, go to the node for symbol 1, then add
a path that represents symbol 3. From the root to the node for
symbol 3, the path is RLL. At symbol 1, add the RLL path.
The terminating node is symbol 4. Traverse the path from the
root to the leaf to read the path of RRLL, which translates to
the binary format of 1100 as in the decode table.
0269. Symbol 5 is defined as the tuple 4->0. In its decode
tree, go to the node for symbol 4, then add a path that repre
sents symbol 0. At symbol 4, add the L path. The terminating
node is symbol 5. Traverse the path from the root to the leaf to
read the path of RRLLL, which translates to the binary format
of 11000.
(0270. Symbol 6 is defined as the tuple 5>3. In its decode
tree, go to the node for symbol 5, then add a path that repre
sents symbol 3. The terminating node is symbol 6. Traverse
the path from the root to the leaf to read the path of RRLLL
RLL, which translates to the binary format of 11000100.
0271 Symbol 7 is defined from the dictionary as the tuple
5>0. In its decode tree, go to the node for symbol 5, then add
a path that represents symbol 0. From the root to the node for
symbol 5, the path is RRLLL. Add a left branch. The termi
nating node is symbol 7. Traverse the path from the root to the
leaf to read the path of RRLLLL, which translates to the
binary format of 110000.
0272 Finally, symbol 8 is defined in the dictionary as the
tuple 7-2. In its decode tree, go to the node for symbol 7, then
add a path that represents symbol 2. From the root to the node
for symbol 7, the path is RRLLLL. Adda RL path for symbol
2. The terminating node is symbol 8. Traverse the path from
the root to the leaf to read the path of RRLLLLRL, which
translates to the binary format of 11000010.
0273. The final decode tree for all symbols put together in
a single tree is element 240, FIG. 87, and the decode table 210
is populated with all original bit and branch path information.

Identifying and Counting Pattern Occurrences

0274 For this example, the sample or “current file' to be
compressed is similar to the one earlier compressed who's
key information 200, FIG. 84, was earlier extracted. It con
tains the following representative “bit stream” (reproduced in
FIG. 88, with spaces for readability): 011000010110001001
1OOOO1011 OOO1 OO11OOOO 1011 OOOO1 O11OOO1 OO11 OOOO1 O1
1OOO10

US 2011/001 6 135 A1

O11OOOO 1011 OOOO 1011 OOO1 OO11OOOO 1011 OOO1 OO11 OOOO1
O11OOO1 OO11 OOOO 1011 OOO10
O11OOO1 OO11 OOO1 OO11 OOO1 OO11OOO1 OO11 OOOO1011 OOOO1
O11OOO1 OO11 OOOO 1011 OOO 10 O11OOOO1 O11OOO10

0275 Westep through the stream one bit at a time to match
patterns in the stream to the known symbols from the dictio
nary 200, FIG. 85. To determine the next pattern in the bit
stream, we look for the longest sequence of bits that match a
known symbol. To discover symbols in the new data bit
stream, read a single bit at a time from the input bit stream.
Representatively, the very first bit, 250 FIG. 88, of the bit
stream is a “0” With reference to the Decode Tree, 240 in
FIG. 87, start at the top-most (the root) node of the tree. The
“0” input bit indicates a down and left “Branch Path” from the
root node. The next bit from the source bit stream at position
251 in FIG. 88, is a “1” indicating a down and right path. The
Decode Tree does not have a defined path down and right
from the current node. However the current node is a terminal
node, with a symbol ID of 0. Write a symbol 0 to a temporary
file, and increment the counter corresponding to symbol ID 0.
Return to the root node of the Decode Tree, and begin looking
for the next symbol. The “1” bit that was not previously usable
in the decode (e.g., 251 in FIG.88) indicates a down and right.
The next bit “1” (252 in FIG. 88) indicates a down and right.
Similarly, subsequent bits “000010” indicate further descents
in the decode tree with paths directions of LLLLRL, resulting
in path 254 from the root. The next bit “1” (position 255, FIG.
88) denotes a further down and right path, which does not
exist in the decode tree 240, as we are presently at a terminal
node. The symbol ID for this terminal node is 8. Write a
symbol 8 to the temporary file, and increment the counter
corresponding to symbol ID 8.
0276 Return to the root node of the Decode Tree, and
begin looking for the next symbol again starting with the last
unused input streambit, e.g., the bit “1” at position 255, FIG.
88. Subsequent bits in the source bit stream, “11000100” lead
down through the Decode Tree to a terminal node for symbol
6. The next bit, “1”, at position 261, FIG. 88, does not repre
sent a possible down and right traversal path. Thus, write a
symbol 6 to the temporary file, and increment the counter
corresponding to symbol ID 6. Again, starting back at the root
of the tree, perform similar decodes and book keeping to
denote discovery of symbols
86886868868686866666886868. Starting again at the root of
the Decode Tree, parse the paths represented by input bits
“1100010” beginning at position 262. There are no more bits
available in the input stream. However, the current position in
the Decode Tree, position 268, does not identify a known
symbol. Thus, retrace the Decode Tree path upward toward
the root. On each upward level node transition, replaceabitat
the front of the input bit stream with a bit that represents that
path transition; e.g. up and right is a “0”, up and left is a “1”.
Continue the upward parse until reaching a valid symbol ID
node, in this case the node 267 for symbol ID 5. In the process,
two bits (e.g., positions 263 and 264, FIG. 88) will have been
pushed back onto the input stream, a “0”, and then a “1. As
before, write a symbol 5 to a temporary file, and increment the
counter corresponding to symbol ID 5. Starting back at the
root of the tree, bits are pulled from the input stream and
parsed downward, in this case the “1” and then the “0” at
positions 263 and 264. As we are now out of input bits, after
position 264, examine the current node for a valid symbol ID,
which in this case does exist at node 269, a symbol ID of 2.
Write a symbol 2 to the temporary files, increment the corre

Jan. 20, 2011

sponding counter. All input bits have now been decoded to
previously defined symbols. The entire contents of the tem
porary file a symbols:
“O868688.68688.6868686666688.686852.
0277 From here, the frequency of occurrence of each of
the symbols in the new bit stream is counted. For example, the
symbols “0” and 2" are each found occurring once at the
beginning and end of the new bit stream. Similarly, the sym
bol “5” is counted once just before the symbol “2. Each of the
symbols “6” and “8” are counted fourteen times in the middle
of the new bit stream for a total of thirty-one symbols. Its
result is shown in table 275, FIG. 89. Also, one count for the
end of file (EOF) symbol is added that is needed to mark the
end of the encoded data when we store the compressed data.

Creating a Huffman Tree and Code for the Current File
(0278. From the symbol “counts” in FIG. 89, a Huffman
binary code tree 280 is built for the current file, as seen in FIG.
90. There is no Huffman code assigned to the symbol 1,
symbol 3, symbol 4, and symbol 7 because there are no
instances of these symbols in the new bit stream. However,
the extinct symbols will be needed in the decode table for the
tree. The reason for this is that a complex symbol may decode
to two less complex symbols. For example, it is known that a
symbol 8 decodes to tuple 7-2, e.g., FIG. 85.
(0279. To construct the tree 280, list first the symbols from
highest count to lowest count. In this example, the symbol “8”
and symbol “6” tied with a count of fourteen and are each
listed highest on the tree. On the other hand, the least counted
symbols were each of symbol “0” “2,” “5,” and the EOF.
Combine the counts for the two least frequently occurring
symbols in the dictionary. This creates a node that has the
value of the sum of the two counts. In this example, the EOF
and 0 are combined into a single node 281 as are the symbols
2 and 5 at node 283. Together, all four of these symbols
combine into a node 285. Continue combining the two lowest
counts in this manner until there is only one symbol remain
ing. This generates a Huffman binary code tree.
0280 Label the code tree paths with Zeros (Os) and ones (1
s). To encode a symbol, parse from the root to the symbol.
Each left and down path represents a 0 in the Huffman code.
Each right and down path represents a 1 in the Huffman code.
The Huffman coding scheme assigns shorter code words to
the more frequent symbols, which helps reduce the size
length of the encoded data. The Huffman code for a symbol is
defined as the string of values associated with each path
transition from the root to the symbol terminal node.
(0281. With reference to FIG.91, table 290 shows the final
Huffman code for the current file, as based on the tree. For
example, the symbol “8” appears with the Huffman code 0.
From the tree, and knowing the rule that “0” is a left and down
path, the “8” should appear from the root at down and left, as
it does. Similarly, the symbol “5” should appear at “1011' or
right and down, left and down, right and down, and right and
down, as it does. Similarly, the other symbols are found.
There is no code for symbols 1, 3, 4, and 7, however, because
they do not appear in the current file.

Storing the Compressed File
0282. The diagram in FIG. 92 illustrates how we now
replace the symbols with their Huffman code value when the
file is stored, such as in file format element 69, FIG. 69.
0283 As is seen, the diagram 295 shows the original bit
stream that is coded to symbols or a new bit stream, then

US 2011/001 6 135 A1

coded to Huffman codes. For example, the “0” bit at position
250 in the original bit stream coded to a symbol “0” as
described in FIG. 88. By replacing the symbol.O with its
Huffman code (1001) from table 290, FIG.91, the Huffman
encoded bits are seen, as: 1001 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0
11 O 11 O 11 11 11 11 11 OO 11 O 11 O 1011 1 01 0 1 OOO

0284 Spaces are shown between the coded bits for read
ability; the spaces are not written to media. Also, the code for
the EOF symbol (1000) is placed at the end of the encoded
data and shown in underline.

0285. With reference to FIG. 93, the foregoing informa
tion is stored in the compressed file 69' for the current file. As
skilled artisans will notice, it includes both original or re-used
information and new information, thereby resulting in a “fast
approximation.” In detail, it includes the file type from the
original key information (200), the symbol width from the
original key information (200), the new Huffman coding
recently created for the new file, the dictionary from the key
information (200) of the original file, the data that is encoded
by using the new Huffman tree, and the new EOF symbol.
After the EOF symbol, a variable amount of pad bits are
added to align the data with the final byte in storage.
0286. In still another alternate embodiment, the following
describes technology to identify a file by its contents. It is
defined, in one sense, as providing a file’s “digital spectrum.”
The spectrum, in turn, is used to define a file's position in an
N-dimensional universe. This universe provides a basis by
which a file's position determines similarity, adjacency, dif
ferentiation and grouping relative to other files. Ultimately,
similar files can originate many new compression features,
such as the “fast approximations' described above. The ter
minology defined in FIG. 1 remains valid as does the earlier
presented information for compression and/or fast approxi
mations using similar files. It is Supplemented with the
definitions in FIG. 94. Also, the following considers an alter
nate use of the earlier described symbols to define a digital
variance in a file. For simplicity in this embodiment, a data
stream under consideration is sometimes referred to as a
“file

0287. The set of values that digitally identifies the file,
referred to as the file's digital spectrum, consists of several
pieces of information found in two scalar values and two
VectOrS.

The scalar values are:
0288 The number of symbols in the symbol dictionary
(the dictionary being previously determined above.)

0289. The number of symbols also represents the num
ber of dimensions in the N-dimensional universe, and
thus, the number of coordinates in the vectors.

0290. The length of the source file in bits.
0291. This is the total number of bits in the symbolized
data stream after replacing each symbol with the original
bits that the symbol represents.

The Vectors are:

0292 An ordered vector of frequency counts, where
each count represents the number of times a particular
symbol is detected in the symbolized data stream.

0293 F. (Fo, F, F, F, ..., F),
where F represents the symbol frequency vector, 0 to Nare the
symbols in a file's symbol dictionary, and X represents the
source file of interest.

Jan. 20, 2011

0294. An ordered vector of bit lengths, where each bit
length represents the number of bits that are represented
by a particular symbol.

0295 B (B. B. B. B. B).
0296 where B represents the bit-length vector, 0 to N
are the symbols in a file's symbol dictionary, and x
represents the source file of interest.

0297. The symbol frequency vector can be thought of as a
series of coordinates in an N-dimensional universe where N is
the number of symbols defined in the alphabet of the dictio
nary, and the counts represent the distance from the origin
along the related coordinate axis. The vector describes the
file's informational position in the N-dimension universe.
The meaning of each dimension is defined by the meaning of
its respective symbol.
0298. The origin of N-dimensional space is an ordered
vector with a value of 0 for each coordinate:

0299 F-(0, 0, 0, 0, 0, 0, 0, 0,..., 0).
0300. The magnitude of the frequency vector is calculated
relative to the origin. An azimuth in each dimension can also
be determined using ordinary trigonometry, which may be
used at a later time. By using Pythagorean geometry, the
distance from the origin to any point F, in the N-dimensional
space can be calculated, i.e.:

D-Square root(((Fo-Fo)2)+((F-F)2)+((F-
F2)2)+(F-F)2)+...+((F-F)2))

0301 Substituting the 0 at each coordinate for the values at
the origin, the simplified equation is:

0302 As an example, imagine that a file has 10 possible
symbols and the frequency vector for the file is:

F=(3, 5, 6, 1, 0, 7, 19, 3, 6, 22).
0303 Since this vector also describes the file's informa
tional position in this 10-dimension universe, its distance
from the origin can be calculated using the geometry outlined.
Namely,:

0304 Dox=31.78.

Determining a Characteristic Digital Spectrum
0305 To create a digital spectrum for a file under current
consideration, we begin with the key information 200, FIG.
84, which resulted from an original file of interest. The digital
spectrum determined for this original file is referred to as the
characteristic digital spectrum. A digital spectrum for a
related file of interest, on the other hand, is determined by its
key information from another file. Its digital spectrum is
referred to as a related digital spectrum.
0306 The key information actually selected for the char
acteristic digital spectrum is considered to be a “well-suited
key. A “well-suited key” is a key best derived from original
data that is Substantially similar to the current data in a current
file or source file to be examined. The key might even be the
actual compression key for the source file under consider
ation. However, to eventually use the digital spectrum infor
mation for the purpose of file comparisons and grouping, it is
necessary to use a key that is not optimal for any specific file,
but that can be used to define the N-dimensional symbol

US 2011/001 6 135 A1

universe in which all the files of interest are positioned and
compared. The more closely a key matches a majority of the
files to be examined, the more meaningful it is during Subse
quent comparisons.
0307 The well-suited key can be used to derive the digital
spectrum information for the characteristic file that we use to
define the N-dimensional universe in which we will analyze
the digital spectra of other files. From above, the following
information is known about the characteristic digital spec
trum of the file:

0308 The number of symbols (N) in the symbol dictio
nary

(0309 The length of the source file in bits
0310. An ordered vector of symbol frequency counts
0311 F. (F, F, F, F, ..., F.),
0312 where F represents the symbol frequency, 0 to N
are the symbols in the characteristic file's symbol dic
tionary, and irepresents the characteristic file of interest.

0313 An ordered vector of bit lengths
0314 B, (Bo, B. B. B. By),
0315 where B represents the bit-length vector, 0 to N
are the symbols in the characteristic file's symbol dic
tionary, and irepresents the characteristic file of interest.

Determining a Related Digital Spectrum

0316. Using the key information and digital spectrum of
the characteristic file, execute the process described in the fast
approximation embodiment for a current, related file of inter
est, but with the following changes:

0317 1. Create a symbol frequency vector that contains
one coordinate position for the set of symbols described
in the characteristic file's symbol dictionary.
0318 F (For Fl F2. Fs. • • s Fy),
0319 where F represents the symbol frequency, 0 to
N are the symbols in the characteristic file's symbol
dictionary, and represents the related file of interest.

0320 Initially, the count for each symbol is zero (0).
0321 2. Parse the data stream of the related file of
interest for symbols. As the file is parsed, conduct the
following:
0322 a. Tally the instance of each discovered symbol
in its corresponding coordinate position in the symbol
frequency vector. That is, increment the respective
counter for a symbol each time it is detected in the
source file.

0323 b. Do not Huffman encode or write the detected
symbol.

0324 c. Continue parsing until the end of the file is
reached.

0325 3. At the completion of the source file parsing,
write a digital spectrum output file that contains the
following:
0326 a. The number of symbols (N) in the symbol
dictionary

0327 b. The length of the source file in bits
0328 c. The symbol frequency vector developed in
the previous steps.
0329 F (F, Fl F2. Fs. • • s Fy),
0330 where F represents the frequency vector, Oto
N are the symbols in the characteristic file's symbol
dictionary, and the represents the file of interest.

Jan. 20, 2011

0331 d. The bit length vector
0332 B, (B. B. B. B.,..., B.),
0333 where B represents the bit-length vector, 0 to
N are the symbols in the characteristic file's symbol
dictionary, and represents the file of interest.

Advantages of Digital Spectrum Analysis

0334. The digital spectrum of a file can be used to catalog
a file's position in an N-dimensional space. This position in
space, or digital spectrum, can be used to compute "dis
tances between file positions, and hence similarity, e.g., the
closer the distance, the closer the similarity. The notion of a
digital spectrum may eventually lead to the notion of a self
cataloging capability of digital files, or other.

Begin: Example Defining a File's Digital Spectrum

0335 To demonstrate the foregoing embodiment, the digi
tal spectrum will be determined for a small data file that
contains the following simple ASCII characters:

aaaaaaaaaaaaaaaaaaaaaaaaaaabaaabaaaaaaaababbbbbb (eqn. 100)

0336 Each character is stored as a sequence of eight bits
that correlates to the ASCII code assigned to the character.
The bit values for each character are:

a=O11OOOO1 (eqn. 101)

b=011 OOO10 (eqn. 102)

0337. By substituting the bits of equations 101 and 102 for
the “a” and “b' characters in equation 100, a data stream 30
results as seen in FIG. 9. (Again, the characters are separated
in the Figure with spaces for readability, but the spaces are not
considered, just the characters.)
0338 After performing an optimal compression of the
data by using the process defined above in early embodi
ments, the symbols remaining in the data stream 30-7 are seen
in FIG.55. Alternatively, they are shown here as:

O 57
35 77 735 77 777 777 357 353 53 53 5352

0339. With reference to FIG.95, table 300 identifies the
symbol definitions from equation 103 and the bits they rep
resent. The symbol definition 302 identifies the alphabet of
symbols determined from the data during the compression
process. The symbols 0 and 1 are atomic symbols and repre
sent original bits 0 and 1, by definition. The subsequent sym
bols, i.e. 2-7, are defined by tuples, or ordered pairs of sym
bols, that are represented in the data, e.g., symbol 4
corresponds to a “1” followed by a 3’ or 1 >3. In turn, each
symbol represents a series or sequence of bits 304 in the data
stream of equation 103 (the Source file), e.g., symbol 4 cor
responds to original bits 1100.
0340. With reference to table 310, FIG. 96, the number of
occurrences of each symbol is counted in the data stream
(equation 103) and the number of bits represented by each
symbol is counted. For example, the symbol “7” in equation
103 appears thirty nine (39) times. In that its original bits 304,
correspond to "01011000, it has eight (8) original bits
appearing in the data stream for every instance of a “symbol
7' appearing. For a grand total of numbers of bits, the symbol
count 312 is multiplied by the bit length 314 to arrive at a bit
count 316. In this instance, thirty nine (39) is multiplied by
eight (8) to achieve a bit count of three-hundred twelve (312)
for the symbol 7. A grand total of the number of bit counts 316

(eqn. 103)

US 2011/001 6 135 A1

for every symbol 320 gives a length of the source file 325 in
numbers of bits. In this instance, the source file length (in bits)
is three-hundred eighty-four (384).
0341. In turn, the scalar values to be used in the file's
digital spectrum are:

(0342 Source File Length in bits=384
(0343. Number of Symbols=8 total (or symbols 0
through 7, column 320, FIG. 96)

The vectors to be used in the file's digital spectrum are:
0344) Frequency spectrum, F, represented by the
ordered vector of counts for each symbol, from column
312, FIG.96:

(0345 F-(1, 0, 1, 8, 0, 9, 0,39)
0346 Bit length spectrum, Bx, is represented by the
ordered vector of counts for the original bits in the file
that are represented by each symbol, from column 314,
FIG.96:

0347 B=(1,1,2,3,4, 5, 7, 8)
0348. The digital spectrum information can be used to
calculate various useful characteristics regarding the file from
which it was derived, as well as its relationship to other
spectra, and the files from which the other spectra were
derived. As an example, the frequency spectrum F(X) shown
above, may be thought to describe a file's informational posi
tion in an 8-dimension universe, where the meaning of each
dimension is defined by the meaning of its respective sym
bols.
0349. Since the origin of the 8-dimensional space is an
ordered vector with a value of 0 at each symbol position, e.g.,
F(0)=(0,0,0,0,0,0,0,0), the informational position in 8-di
mensional space can be defined as an azimuth and distance
from the origin. The magnitude of the position vector is
calculated using Pythagorean geometry. Dist(x,0)-sqrt (((F
(x,0)-F(00), 2)+... (F(x,7)-F(0.7)2)). Simplified, this mag
nitude becomes Dist(x,0)-sqrt((F(x,0)2+F(x,2)2+F(x,3)2
... F(x,7)2)). Using the values above in F, the magnitude of
the Dist(x,0)=40.84, or Dosquare root (((1) 2)+((O)2)+((1)
2)+((8)2)+((O)2)+((9)2)+((O)2)+((39)2))=square root
(1+0+1+64+0+81+0+1521)=40.84. Azimuth of the vector
can be computed using basic trigonometry. Comparison of
computed positions between files is useful to determine simi
larity, or not, of two or more subject files.
0350 Another way to use the digital spectrum is to con
sider the vectors as defining points of a line graph 350, as
presented in FIG.97A. As an example, the X axis, labeled as
“Patterns.” defines a position for each symbol (e.g., element
320, FIG.96) represented in the Frequency Spectrum. The Y
axis, labeled as “Frequency, defines the values of the fre
quencies (or derivatives thereof) found in the Frequency
Spectrum. From FIG.96, for example, symbols “3” and “5”
have counts or frequencies of eight (8) and nine (9), respec
tively, and would be plotted in the line graph at x-y coordi
nates of (3.8) and (5.9).
0351) Determination of the similarity of two digital spec

tra can be representatively determined using standard least
squares statistical curve fitting techniques. In FIGS. 97A and
97B, four digital spectra are presented for comparison,
whereby:
0352 File 1 has a frequency spectrum F1=(1,4,13.5.12.6,
20,15, 18.21);
0353 File 2 has a frequency spectrum F2=(1,5,13.6,15.5,
21.20, 15.20):
0354 File 3 has a frequency spectrum F3-(2,9,8,9,21.10,
15,10,15,24); and

Jan. 20, 2011

0355 File 4 has a frequency spectrum F4=(3,107.9.22,12,
15,12,16.25).
0356. As best seen in FIG. 98B, skilled artisans will visu
ally recognize that the graph represented by F1 is “closest to
the graph of F2. Similarly, the graphs represented by F3 and
F4 are closer to each other than, for instance, than either of the
graphs represented by spectra from F1 and F2. “Closeness” is
seen in the figure by graph filler 351 and 352 in the area
between the files. For mathematical comparison purposes, a
notion of the area between a reference and target graph can be
determined. In a representative embodiment, a Suitable
method, which minimizes Small differences and accentuates
larger differences, is a sum of the squares of the differences at
each point. The measurement of a difference function
between two graphs, Filex and Filey, is computed as follows:

0357 Hence, for the representation of the difference func
tion between the above files F1 and F2, the computation is:

D(F1, F2)=(1-1)2+(4-5)2+(13-13)2+(5-6)2+
(12-15)2(6-6)2+(20-21)2+(15-20)2+(18-15)2+
(21-20) 2=48.

0358. A representation of the difference function between
files F1 and F3 is:

0359 A matrix of the value of difference functions
between each possible spectra graph may be computed to
determine a measure of closeness between each possible
spectra pair. The difference function values matrix for the
above set of spectra F1, F2, F3 and F4 using the example
comparison technique looks like this:

Spectra ID F1 F2 F3 F4

F1 O 48 232 282
F2 48 O 264 298
F3 232 264 O 14
F4 282 298 14 O

0360 Examination of the difference values between spec
tra lead to many useful conclusions. For example, the two
most closely similar spectra are those belonging to files F3
and F4 (difference function value 14). The most dissimilar
spectra, on the other hand, are those corresponding to files F2
and F4 (difference value 298). Relative to spectrum IDF1, the
most similar spectrum is that belonging to file F2. Relative to
spectrum ID F2, the most similar spectrum is that belonging
to file F1. Relative to spectrum ID F3, the most similar spec
trum is that belonging to file F4. Relative to spectrum ID F4.
the most similar spectrum is that belonging to file F3. It can be
also observed that there seem to be two groups of files, with
two files is each group; files F1 and F2: the other group is files
F3 and F4. The “closeness” of the latter group (e.g., differ
ence value=14) is a much “tighter grouping than that for the
former group (e.g., difference value of 48). Skilled artisans
will readily recognize the usefulness of these characteristics
as a springboard for ascertaining still other properties and
manipulations of files.
0361. The foregoing has been described in terms of spe
cific embodiments, but one of ordinary skill in the art will

US 2011/001 6 135 A1

recognize that additional embodiments are possible without
departing from its teachings. This detailed description, there
fore, and particularly the specific details of the exemplary
embodiments disclosed, is given primarily for clarity of
understanding, and no unnecessary limitations are to be
implied, for modifications will become evident to those
skilled in the art upon reading this disclosure and may be
made without departing from the spirit or scope of the inven
tion. Relatively apparent modifications, of course, include
combining the various features of one or more figures with the
features of one or more of the other figures.

1. In a computing system environment, a method of deter
mining a digital spectrum of a file stored on a computing
device, the file having a plurality of symbols representing an
underlying data stream of original bits of data, comprising
determining a number of occurrences of each said symbol in
the file.

2. The method of claim 1, further including determining
how many different symbols (N) are in the plurality of sym
bols thereby defining an N-dimensional space.

3. The method of claim 1, further including determining a
magnitude of the file based on the determined number of
OCCUCCS

4. The method of claim 3, further including determining
similarity of the file to another file by computing a distance
function between the magnitudes of the file and the another
file.

5. The method of claim 1, further including determining a
number of the original bits of data represented by an entirety
of the determined number of occurrences of said each symbol
in the file.

6. The method of claim 1, further including determining
each of the original bits of data for every symbol of the
plurality of symbols.

7. In a computing system environment, a method of deter
mining a digital spectrum of a file stored on a computing
device, the file having a plurality of symbols, comprising:

determining original bits of data for every said symbol; and
determining a number of occurrences of said every symbol

in the file.
8. The method of claim 7, further including determining

how many different symbols (N) are in the plurality of sym
bols thereby defining an N-dimensional space, the deter

20
Jan. 20, 2011

mined number of occurrences being used to create an ordered
vector in the N-dimensional space.

9. The method of claim 8, further including determining a
magnitude of the file based on the ordered vector relative to an
origin of the N-dimensional space.

10. The method of claim 9, further including determining a
number of occurrences of every symbol in a second file.

11. The method of claim 10, further including creating a
second ordered vector in the N-dimensional space for the
second file.

12. The method of claim 11, further including determining
a second magnitude of the second file relative to the origin of
the N-Dimensional space.

13. The method of claim 13, further including comparing
the second magnitude of the second file to the magnitude of
the file to determine similarity of the files.

14. In a computing system environment, a method of deter
mining similarity of two or more files stored on one or more
computing devices, each said file having a plurality of sym
bols representing an underlying data stream of original bits of
data, comprising:

determining a number of occurrences of every said symbol
in said each file; and

comparing the number of occurrences between the files.
15. The method of claim 14, wherein said each file has a

same total number of different symbols (N) thereby defining
an N-dimensional space, the determined number of occur
rences being used to create an ordered vector in the N-dimen
sional space for said each file.

16. The method of claim 15, further including determining
a magnitude of said each file based on the ordered vectors
relative to an origin of the N-dimensional space.

17. The method of claim 16, wherein the comparing further
includes comparing the magnitudes of said each file.

18. The method of claim 14, further including determining
for said each file a total number of the original bits of data.

19. The method of claim 18, further including determining
for said each file a series of bits representing each of the
original bits of data for said every symbol of the plurality of
symbols.

20. A computer program product having executable
instructions for loading on a computing device that undertake
the method of claim 1.

c c c c c

