(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2005203663 B2

(54) Title
Method and system for synthetic backup and restore
(51)2 International Patent Classification(s)
GO6F 12-/16 (2006.01) 20060101AFI2006010
GO6F 12/16 1BHAU
(21) Application No: 2005203663 (22) Application Date: 2005 08 16
(30) Priority Data
(31) Number (32) Date (33) Country
10,948,009 2004 .09 .22 us
(43) Publication Date : 2006 04 06
(43) Publication Journal Date : 5006 04 06
(1) Applicant(s)
Microsoft Corporation
(72) Inventor(s)
Berkowitz, Brian T., wan Ingen, Catharine
(74) Agent/Attorney
Davies Colliscon Cave, 1 Nicholson Street, Melbourne, VIC, 3000
(56) Related Art

us 20020059505
us 6141773

16 Aug 2005

2005203663

ABSTRACT

A method and system for backing up and restoring data.
First, a full backup is performed to create a full dataset.
Thereafter, incremental or differential datasets may be
created by incremental or differential backups, respectively.
When a new full dataset is needed, instead of performing a
full backup, a previous full dataset may be combined with
subsequent incremental or differential datasets to create the
new full dataset. The new full dataset may be created on a
computer other than the computer which hosts the data of the
previous full dataset. The new full dataset may be used for
offsite storage or to quickly restore data in the event of a

failure or corruption of a computer’s file system.

217

(START 205

Y

FIG. 2

16 Aug 2005

CREATE NEW EMPTY DATASET k210

2005203663

A
SET POINTERS By TO By TO
FIRST ENTRY IN EACH DATASET

NN215

ADVANCE POINTERS B
THROUGH By, AS NECESSARY kU220
(FIG. 3)

y

Y

ADD To NEw DATASET FROM FIRST
DATASET THAT INCLUDES METADATA

AND DATA FOR THE ENTRY 225
(FIG. 4)
y
ADVANCE POINTER B, 230

235

Bo
PAST LAST ENTRY
OF DATASET?2

240

16 Aug 2005 .

2005203663

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:
DAVIES COLLISON CAVE

Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Method and system for synthetic backup and restore

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102

27 Oct 2010

2005203663

15

20

CINRPAnbIDCOMKAL 1452891 DOC- 20072010

S 1A -

TECHNICAL FIELD

The invention relates generally to computers, and more

particularly to backups and restores of data.

BACKGROUND

Performing full backups of data on a computer is a very
costly management task. Typically, it involves enumerating
all files on the file system of the computer and backing up
each of those files individually. Because of the random
nature in which these files are spread over the file system
and the significant overhead imposed by extracting metadata
associated with the files, enumerating over all the files in
performing a backup tends to be very slow. Despite the
expense, most organizations perform a full backup on a
weekly basis, both to limit the time that it takes to
recover from a disaster and because of the need to store
datasets created by these backups offsite in case of data

center loss (e.g., fires, flooding, and earthquakes).

Incremental or differential backups may be performed
between full backups to capture the changes that happen
between the full backups. The datasets created by both

23 Feb 2011

2005203663

20

25

30

CANRPaRBRDCCIMK AR 4716X0_1 DOC- 23272011

_2-

incremental and differential backups may consume
considerable resources in storing the differences between
the file system at the time of the full backup and the time
of the differential backup. With incremental backups,
restoring the files on a computer after a disaster may
consume substantially more time as the dataset created by
the full backup may need to be restored and then datasets

created by one or more incremental backups applied.

What is needed is a method and system that quickly and
efficiently allows a file system to be fully backed up
without severely impacting the performance of a computer.
Ideally, such a method and system would also provide an
efficient mechanism for restoring files to the computer in
the case of partial or complete failure of the computer’s

file system.

It is desired, therefore, to provide in a computing
system, a method for creating a synthetic full backup of a
file system, that alleviates one or more of the above
difficulties, or that at least provides a useful
alternative.

SUMMARY

In accordance with the present invention, there is
provided in a computing system, a method for creating a
synthetic full backup of a file system, the method
comprising:

performing a normal full backup of a file system, the
file system including data, wherein the normal full backup
uses the file system to create a normal full backup dataset
at create time and store the normal full backup dataset on
one oOr more computer storage media, and wherein the normal

full backup dataset is a first full backup;

23 Feb 2011

2005203663

20

25

30

€ INRPOnBNDCOWK AU TI6KN_] DOC-2v27201 |

.3

subsequent to performing the normal full backup,
performing a partial backup of the file system to create a
second backup dataset and store it on one or more computer
storage media after changes to the file system, such that
the first full backup is out of date, the second backup
dataset including only a portion of the data of the file
system, including portions of the file system changed since
the normal full backup, wherein performing the partial
backup of the file system to create the second backup
dataset comprises differentiating whether to perform a full
or partial backup of all files within the file system based
on file size, wherein differentiating comprises:
for all files within the file system, determining
whether the files exceed a predetermined size, and:
for all files determined to have a size
exceeding the predetermined size, copying only
changed extents within such files, such that only
changes within a file, rather than an entire file,
are included in the second backup dataset of the
partial backup of the file system; and
for all files determined to have a size less
than the predetermined size, copying the entire
contents of such files, such that the entire
files, rather than merely changes to files, are
included in the second backup dataset of the
partial backup of the file system;
performing a synthetic backup operation by merging the
first full backup of the normal full backup with the second
backup dataset to create a first synthetic full dataset of
the file system and to store the first synthetic full

dataset on one or more computer storage media, wherein the

23 Feb 2011

2005203663

20

25

30

CANRPQABIICCWMK A M6Kn_1,DOC-23m27201 |

S3A-

first synthetic full dataset is equivalent of what a normal
full backup would have created if executed at create time of
the first synthetic full dataset, and wherein a synthetic
backup creates a full dataset based on prior backups rather
than the file system; and

periodically performing an additional synthetic backup
operation to create a second synthetic full dataset of the
file system and any changes thereto, and to store the second
synthetic full data set on one or more computer storage
media, and such that the first full backup is the only

normal backup performed to create a full dataset.

The present invention also provides one or more
computer storage media for use in a computing environment,
the computer-readable storage media having stored thereon
computer executable instructions that, when executed by a
computing device, cause the computing device to perform a
method for creating a synthetic full backup of a file system
of the computing environment, the method executed by the
computing device comprising:

performing a normal full backup of a file system, the
file system including data, wherein the normal full backup
uses the file system to create a normal full backup dataset
at create time and store the normal full backup dataset on
one or more computer storage media, and wherein the normal
full backup dataset is a first full backup;

subsequent to performing the normal full backup,
performing a partial backup of the file system to create a
second backup dataset and store it on one or more computer
storage media after changes to the file system, such that
the first full backup is out of date, the second backup

dataset including only a portion of the data of the file

23 Feb 2011

2005203663

20

25

CANRPanbhOCCMX AVT6KA_1.DOC-23027201 |

-3B -

system, including portions of the file system changed since
the normal full backup, wherein performing the partial
backup of the file system to create the second backup
dataset comprises differentiating whether to perform a full
or partial backup of all files within the file system based
on file size, wherein differentiating comprises:

for all files within the file system, determining
whether the files exceed a predetermined size, and:

for all files determined to have a size exceeding the
predetermined size, copying only changed extents within such
files, such that only changes within a file, rather than an
entire file, are included in the second backup dataset of
the partial backup of the file system; and

for all files determined to have a size less than the
predetermined size, copying the entire contents of such
files, such that the entire files, rather than mexely
changes to files, are included in the second backup dataset
of the partial backup of the file system;

performing a synthetic backup operation by merging the
first full backup of the normal full backup with the second
backup dataset to create a first synthetic full dataset of
the file system and to store the first synthetic £full
dataset on one or more computer storage media, wherein the
first synthetic full dataset is equivalent of what a normal
full backup would have created if executed at create time of
the first synthetic full dataset, and wherein a synthetic
backup creates a full dataset based on prior backups rather
than the file system; and

periodically performing an additional synthetic backup
operation to create a second synthetic full dataset of the

file system and any changes thereto, and to store the second

23 Feb 2011

2005203663

20

25

CANRPORSIDCCMKAVATIHD_| DOC-242201 1

synthetic full data set on one or more computer storage
media, and such that the first £full backup is the only

normal backup performed to create a full dataset.

Briefly, embodiments of the present invention provide a
method and system for backing up and restoring data. First,
a full backup 1is performed to create a full dataset.
Thereafter, incremental or differential datasets wmay be
created by incremental or differential backups,
respectively. When a new full dataset is needed, instead of
performing a full backup, a previous full dataset may be
combined with subsequent incremental or differential
datasets to create the new full dataset. The new full
dataset may be created on a computer other than the computer
which hosts the data of the previous full dataset. The new
full dataset may be used for offsite storage or to quickly
restore data in the event of a failure or corruption of a

computer‘s file system.

In some embodiments of the invention, datasets are

stored in online storage such as a hard disk.

In some embodiments of the invention, a physical backup
is performed which allows shadow copies included on a volume

to also be backed up.

In some embodiments of the invention, datasets may be
created using differential compression to allow multiple

datasets to be efficiently stored in online storage.

-10-

27 Oct 2010

2005203663

20

25

CANRPoRbTDCOWK AUI45259_L DOC-20409/2010

“4A -

In some embodiments of the invention, a file system
filter tracks which blocks or extents of certain files
(e.g., large files) in a file system have changed. Upon
backup, rather than copying each large file, only the blocks

or extents that have changed are copied.

In some embodiments of the invention, data from a
dataset may be read directly from the dataset by an
application to allow access to the data prior to or without

restoring the dataset.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are hereinafter
described, by way of example only, with reference to the

accompanying drawings, wherein:

FIGURE 1 is a block diagram representing a computer

system into which the present invention may be embodied;

FIGS. 2-4 are flow diagrams that generally represent
actions that may occur to perform a synthetic full backup in

accordance with various embodiments of the invention;

FIG. 5 is a block diagram of aspects of a shadow copy
mechanism that uses copy-on-write in accordance with various

embodiments of the invention;

FIG. 6 1is a flow diagram that generally represents
actions that may occur to perform a physical backup in

accordance with various embodiments of the invention; and

FIG. 7 is a block diagram showing an exemplary system
in which changed extents may be tracked in accordance with

various embodiments of the invention.

-11-

16 Aug 2005 |

2005203663

20

DETAILED DESCRIPTION

EXEMPLARY OPERATING ENVIRONMENT

Figure 1 illustrates an example of a suitable computing
system environment 100 on which the invention may be
implemented. The computing system environment 100 is only one
example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the comput ing
environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of components
illustrated in the exemplary operating environment 100.

The invention is operational with numerous other general
purpose or special purpose computing system environments or
configurations. Examples of well known computing systems,
environments, and/or configurations that may be suitable for
use with the invention include, but are not limited to,
personal computers, server computers, hand-held or laptop
devices, multiprocessor systems, microcontroller-based
systems, set top boxes, programmable consumer electronics,

network PCs, minicomputers, mainframe computers, distributed

-12-

27 Oct 2010

2005203663

20

25

C-NRPORBADCCWK AL 145159_1 DOC-27 132011}

-6

computing environments that include any of the above systems

or devices, and the like.

Embodiments of the invention may be described in the
general context of computer-executable instructions, such as
program modules, being executed by a computer. Generally,
program modules include routines, programs, objects,
components, data structures, and so forth, which perform
particular tasks or implement particular abstract data
types. The invention may also be practiced in distributed
computing environments where tasks are performed by remote
processing devices that are linked through a communications
network. In a distributed computing environment, program
modules may be located in both lcocal and remote computer

storage media including memory storage devices.

With reference to Figure 1, an exemplary system for
implementing the invention includes a general-purpose
computing device in the form of a computer 110. Components
of the computer 110 may include, but are not limited to, a
processing unit 120, a system memory 130, and a system bus
121 that couples various system components including the
system memory to the processing unit 120. The system bus
121 may be any of several types of bus structures including

a memory bus

13-

16 Aug 2005 .

2005203663

20

Oor memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. By way of example, and
not limitation, such architectures include Industry Standard
Architecture (ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus also known as Mezzanine bus.

Computer 110 typically includes a variety of computer-
readable media. Computer-readable media can be any available
media that can be accessed by the computer 110 and includes
both volatile and nonvolatile media, and removable and non-
removable media. By way of example, and not limitation,
computer-readable.media may comprise computer storage media
and communication media. Computer storage media includes both
volatile and nonvolatile, removable and non-removable media
implemented in any method or technology for storage of
information such as computer-readable instructions, data
structures, program modules, or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical disk storage, magnetic cassettes,

magnetic tape, magnetic disk storage or other magnetic storage

-14-

16 Aug 2005 .

2005203663

20

devices, or any other medium which can be used to store the
desired information and which can accessed by the computer
110. Communication media typically embodies computer-readable
instructions, data structures, program modules, or other data
in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such
& manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared
and other wireless media. Combinations of the any of the
above should also be included within the scope of computer-
readable media.

The system memory 130 includes computer storage media in
the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 131 and random access memory (RAM) 132. A
basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements
within computer 110, such as during start-up, is typically

stored in ROM 131. RAM 132 typically contains data and/or

-15-

27 Oct 2010

2005203663

20

25

30

C\NRPoRbRDCCWIKAL3143259_1 DOC-2K0M200

.9.

program modules that are immediately accessible to and/or
presently being operated on by processing unit 120. By way
of example, and not limitation, Figure 1 illustrates
operating system 134, application programs 135, other

program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, Figure 1 illustrates a hard disk drive
141 that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from or
writes to a removable, nonvelatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156 such as a CD ROM or
other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state
RAM, solid state ROM, and the like. The hard disk drive 141
is typically connected to the system bus 121 through a non-
removable memory interface such as interface 140, and
magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable

memory interface, such as interface 150.

The drives and their associated computer storage media,
discussed above and illustrated in Figure 1, provide storage
of computer-readable instructions, data structures, program
modules, and other data for the computer 110. In Figure 1,
for example, hard disk drive 141 is illustrated as storing

operating system 144, application programs 145, other

-16-

27 Oct 2010

2005203663

20

25

30

CINRPOABRDCCWMK AW 15282_1 DOC-2MARAON

-10-

program modules 146, and program data 147. Note that these
components can either be the same as or different from
operating system 134, application programs 135, other
program modules 136, and program data 137. Operating system
144, application programs 145, other program modules 146,
and program data 147 are given different numbers herein to
illustrate that, at a minimum, they are different copies. A
user may enter commands and information into the computer
110 through input devices such as a keyboard 162 and
pointing device 161, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, a touch-sensitive screen of a handheld PC or other
writing tablet, or the like. These and other input devices
are often connected to the processing unit 120 through a
user input interface 160 that is coupled to the system bus,
but may be connected by other interface and bus structures,
such as a parallel port, game port or a universal serial bus
(USB). A monitor 191 or other type of display device is
also connected to the system bus 121 via an interface, such
as a video interface 190. In addition to the monitor,
computers may also include other peripheral output devices
such as speakers 197 and printer 196, which may be connected

through an output peripheral interface 195,

The computer 110 may operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computer 180. The remote computer 180 may
be a personal computer, a server, a router, a network PC, a
peer device or other common network node, and typically
includes many or all of the elements described above

relative to the computer 110, although only a memory storage

17-

27 Oct 2010

2005203663

CANRPONDADCCRAK AGIHS259_) DOCIRUNNI0

o1 -

device 181 has been illustrated in Figure 1. The logical
connections depicted in Figure 1 include a local area
network (LAN) 171 and a wide area network (WAN) 173, but may
also include other networks. Such networking environments
are commonplace in offices, enterprise-wide computer

networks, intranets and the Internet.

18-

16 Aug 2005

2005203663

20

When used in a LAN networking environment, the computer
110 is connected to the LAN 171 through a network interface or
adapter 170. When used in a WAN networking environment, the
computer 110 typically includes a modem 172 or other means for
establishing communications over the WAN 173, such as the
Internet. The modem 172, which may be internal or external,
may be connected to the system bus 121 via the user input
interface 160 or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer
110, or portions thereof, may be stored in the remote memory
storage device. By way of example, and not limitation, Figure
1 illustrates remote application programs 185 as residing on
memory device 181. It will be appreciated that the network
connections shown are exemplary and other means of
establishing a communications link between the computers may

be used.

Synthetic Full Backups

Instead of performing full backups on a periodic basis, a
full backup may be performed once with incremental or
differential backups performed thereafter. Whenever a new

full dataset is needed (e.g., on a weekly basis for off-site

-19-

16 Aug 2005

2005203663

20

storage or otherwise), a synthetic full backup may be
performed using the last full dataset and either the last
differential dataset or all the incremental datasets created
after the last full dataset. A synthetic full backup creates
a dataset that is equivalent to what a normal full backup
would have created if executed at the create time of the last
dataset used by the synthetic full backup. Hereafter, the

term full backup may refer to a normal full backup and/or to a

synthetic full backup.

The term full dataset refers to a representation of data
of a data source at a point in time. A data source may
include a volume (e.g., for file-oriented data), a database
(e.g., for data stored in a complex store), or some
combination thereof. A full dataset may be created by
performing a normal full backup, a synthetic full backup, or a
physical full backup.

A differential dataset is created by a differential
backup and includes the differences between a data source at
the time of the last full backup and the data source at the
time the differential backup is performed. An incremental
dataset is created by an incremental backup and includes the

differences between a data source at the time of the last

-20-

16 Aug 2005 .

2005203663

20

backup (full, differential, or incremental) and the data
source at the time tﬁe incremental backup is performed.

An algorithm for doing a merge of the datasets created by
a full backup and a differential backup in a synthetic full
backup is described below. This algorithm assumes that each
dataset is formatted in Microsoft® Tape Format (MTF) although
the methodology applies to datasets formatted in any format
where there is an existing or creatable catalog enumerating
the contents of the datasets or at least the deltas from the
previous full, differential, or incremental dataset.

In each dataset created in MTF format by a full,
incremental, or differential backup, an entry for each file or
directory on the volume appears in a header of the dataset.
Hereafter, the term “object” is sometimes used to refer to a
file or directory or both. For a full dataset created in MTF
format by a full backup, the metadata and data for all files
and directories on the volume appear in the full dataset. For
datasets created in MTF format by differential or incremental
backups, the metadata and data for an entry may only appear in
the dataset created by the differential or incremental backup
if the object has been newly created or changed from the

previous dataset on which the differential or incremental

21-

27 Oct 2010

2005203663

20

CANRPonbRDCCMK AN 145259_1 DOC-27 02000

-15-

dataset is based. MTF orders objects within a dataset in a
well-defined order and ensures that if an object F appears
in the dataset, then all of the object’s ancestor
directories (parent, grandparent, etc.) up to the root of

the volume have also previously appeared within the dataset.

As used herein, data associated with an object includes
the content associated with the object while metadata
associated with an object includes any attributes or other

data associated with the object.

FIGS. 2-4 are flow diagrams that generally represent
actions that may occur to perform a full synthetic backup in
accordance with various embodiments of the invention.
Referring to FIG. 2, at block 205, the process begins. At
block 210, a new empty dataset is created. At block 215,
pointers are set to the first entry in each of the datasets
that is involved in the merge. Let By be a pointer to the
most recent differential or incremental dataset, B; to By., be
pointers to differential or incremental datasets that are
ordered in time and immediately less recent than the dataset
pointed to by By, and By be a pointer that points to the last

full dataset. The algorithm proceeds as follows:

22-

16 Aug 2005

2005203663

20

At block 215, the pointer associated with each dataset is
assigned to the first entry associated with the dataset. At
block 220, each pointer is advanced, if necessary, until the
entry associated with the pointer is either equal to or
greater than the entry pointed to by Bp as described in more
detail in conjunction with FIG. 3. A pointer may not need to
be advanced if the entry it points to is already greater than
or equal to the entry pointed to by By or if the pointer has
passed the last entry of its associated dataset.

At block 225, information from the first dataset that
includes metadata and data is added to the new dataset as
described in more detail in conjunction with FIG. 4. At block
230, the pointer By is advanced to examine the next entry found
in the dataset. At block 235, if By indicates that the end of
its dataset has been reached, processing ends at block 240;
otherwise, processing branches to block 220.

FIG. 3 is a flow diagram that generally represents
actions which correspond to block 220 of FIG. 2 that may occur
to advance pointers that point to datasets in accordance with
various aspects of the invention. The pointers that point to
each dataset (not including the pointer associated with B,) are

advanced, if necessary, until they are greater than or equal

23-

16 Aug 2005

2005203663

i

20

to the entry pointed to by B,. The process 1s entered at block
305. At block 310, an index {e.g., X) is assigned to 1 in
preparation for selecting pointer B,. At block 315, the
pointer By is selected to examine the entry pointed to by the
pointer Bx. At block 320, a determination is made as to
whether the entry in the dataset pointed to by By is greater
than or equal to the entry in the dataset pointed to by By or
whether By points past the end of the dataset associated with
Bx. If so, processing branches to block 330, where the index
is incremented to obtain the next pointer. Otherwise,
processing branches to block 325, where the pointer By is
incremented to point to the next entry of its associated
dataset. The loop associated with blocks 320 and 325
continues until the entry pointed to by By is greater than or
equal to the entry pointed to by Bo or until By points past the
end of the dataset associated with By.

At block 335, a determination is made as to whether the
index (e.g., X) is greater than the number of pointers (e.g.,
N). If so, all the pointers have been examined and advanceagd,
if necessary, and processing branches to block 340 where the
process returns to the calling process. If not, processing

branches to block 315 where the next pointer is selected.

-24-

16 Aug 2005

2005203663

20

FIG. 4 is a flow diagram that generally represents
actions that correspond to block 225 of FIG. 2 that may occur
to find the most recent dataset entry to insert into the new
dataset in accordance with various aspects of the invention.
The process is entered at block 405. At block 410, an index
(e.g., X) is set to zero in preparation for selecting the
pointer to the dataset created by the most recent backup. At
block 415, the pointer By is selected to examine.the entry
pointed to by the pointer. At block 420, a determination is
made as to whether the entry pointed to by pointer By contains
metadata and data for the entry. If the entry pointed to by By
contains metadata and data, then processing branches to block
430, where the entry and metadata and data are added to the
new dataset. Otherwise, processing branches to block 425
where the index (e.g., X) is incremented at block 425 and the
next pointer is selected at block 415. The actions
represented by blocks 415-425 repeat until the most recent
dataset with an entry containing the data and metadata is
found.

Note that under MTF if a dataset contains an entry for an

object but no metadata or data, this means that each previous

-25-

16 Aug 2005

2005203663

20

dataset contains such an entry for this object until some
dataset also contains the data and metadata for the object.

The algorithm described above may be used to:

. merge a full dataset with the most recent
differential dataset that is based on that full

dataset;

merge a full dataset with every incremental dataset
that was created after the full dataset (e.g., for
use if only incremental backups are performed); or
. merge a full dataset with the most recent
differential dataset that is based on that full
dataset and every incremental dataset that is based
on that differential dataset (e.g., for use if both
differential and incremental backups are performed) .
As noted above, the algorithm described above has been
described based on MTF format. It will be recognized,
however, that without departing from the spirit or scope of
the present invention, this algorithm may be readily modified
to account for other formats as long as each incremental or
differential dataset includes a way of determining what
objects were deleted from the previous dataset and what

objects were modified or added to the previous dataset.

-26-

16 Aug 2005

2005203663

20

While the algorithm described above may be used to merge
datasets which are either on disk Oor on tape, in practice, it
may be most efficient when all of the incremental/differential
datasets and the full dataset that are being merged are on
disk.

Furthermore, the algorithm described above may be
generalized to a multi-pass merge, but overheads associated
with multiple passes may make the algorithm less interesting
in practice. Since tape is a sequential media, having all
datasets open’ simultaneously may use a moderately large number
of tape drives (e.g., one drive per dataset) and may work best
with no collocation of the datasets (i.e!, one and only one
merging dataset per media) .

Finally, to offload merge processing from a production
computer, a separate backup computer may be used to perform
the merge processing. It will be recognized that this has

many advantages including freeing the production computer for

production purposes.

Physical Backups and Restores

One problem with existing technology for performing full

backups is that there is no association between the logical

27-

16 Aug 2005

2005203663

20

objects that are backed up and the physical representation of
those objects on disk. This problem may be overcome through
the use of a shadow copy. A shadow copy is a “snapshot” of
one volume. Logically, a shadow copy is an exact duplicate of
a volume at a given point in time, even though the volume may
not be entirely copied (e.g., via copy-on-write) in creating
the shadow copy. A shadow copy may be viewed as a separate
volume by the operating system and any executing applications.
For example, a shadow copy may have a volume device, a volume
name, a drive letter, a mount point, and any other attribute
of an actual volume. 1In addition, a shadow copy may be
exposed through a network remote path such as a network share
(sometimes referred to simply as a “share”) associated with it
that allows access to a portion or all of the data contained
within the shadow copy from a network.

A shadow copy may be created by various well-known
techniques, including copy-on-write, split mirror, specialized
hardware that creates a copy of the disk itself, and other
methods and systems known to those skilled in the art.

Shadow copy technology may use a differential area to
implement copy-on-write shadow copies. The differential area

maps blocks on the volume to the contents of those blocks at

-28-

16 Aug 2005

2005203663

20

the point in time that the shadow copy was created. The
difference technology of the shadow copy technology may
operate on the physical block level instead of at the object
(file or directory) level.

For example, referring to FIG. 5, in copy-on-write, a
driver may divide a disk into extents. An extent refers to a
number of contiguous blocks on a storage media and may differ
depending on application. For example one application may
divide a disk into extents having one size, while another
application may divide the disk into extents having a
different size.

If a block on the disk changes after creation of the
shadow copy, before the block is changed, the extent
containing the block (e.g., extent 506) is copied to a storage
location (e.g., extent 507) in a differential area 515. For a
particular shadow copy, an extent is only copied the first
time any block within the extent changes. When a request for
information in the shadow copy is received, first, a check is
performed to determine if the block has changed in the
original volume (e.g., by checking whether an extent
containing that block exists in the differential area 515).

If the block has not changed, data from the original volume is

-29-

27 Oct 2010

2005203663

20

CNRPonbIDCOWK AL 145284 _| DOC-2160R2014

-23-

retrieved and returned. If the block has changed, data from
the differential area 515 is retrieved and returned. Note
that if a block is overwritten with the same data, that an
extent containing the block is not written to the

differential area 515.

In order to backup a shadow copy, the mapping from the
original volume physical blocks to differential area extents
is preserved. One way to backup both the volume and any
shadow copies persisted thereon is to do a physical backup
of the volume. The term physical backup refers to copying
physical blocks associated with a volume instead of
performing an object-by-object backup. Note that blocks in
empty extents may or may not be copied in a physical backup.
A backup application may save a bitmap or other indication
of which extents were empty and which were not empty in a
dataset created by the backup. It will be recognized that
not copying the empty extents will generally cause the

dataset created by the physical backup to be smaller.

While various embodiments of the invention have been
described in conjunction with copy-on-write shadow copy
techniques, other shadow copy techniques may also be used

without departing from the scope of the invention.

-30-

16 Aug 2005 .

2005203663

20

FIG. 6 is a flow diagram that generally represents
actions that may occur to perform a physical backup in
accordance with various aspects of the invention. Whenever
the differential areas used for persisted shadow copies are
collocated with the original volume, performing a physical
backup will preserve the shadow copies as well as the volume.
In this case, a backup may be taken as follows:

At block 605, the process is started. At block 610, a
backup shadow copy of the volume involved in the backup is
created. The backup shadow copy may be deleted as scon as the
backup completes. Note that creating the backup shadow copy
(instead of attempting to copy blocks from the volume
directly) may be done to obtain a consistent and stable image
of the volume.

At block 615, the shadow copy is opened as a raw volume,
i.e., as a file representing the physical blocks underlying

the shadow copy.

At block 620, the shadow copy is backed up in block

order.
Whenever the differential areas used for persisted shadow

copies are not collocated with the original volume, both the

volume containing the differential areas and the original

-31-

16 Aug 2005 .

2005203663

20

volume are backed up together. This may be done by taking

shadow copies of both volumes at the same time and then

accessing the shadow copies to create a dataset. An exemplary

method and system for taking such shadow copies is described

in U.S. Patent No. 6,647,473, which is assigned to the

assignee of the present invention, and hereby incorporated by

reference.

A physical backup has some important attributes:

The backup will mostly be done as a spiral read off the
disk. There may be some random access for blocks that
change after the shadow copy is created at block 610
above, but in general, the backup will be substantially
faster than would be possible doing a normal full backup.
The backup does not incur the previously discussed file
handling overheads associated with obtaining objects and
metadata associated therewith. Thus, the backup may use
significantly less processing of the computer that is
being backed up.

When a dataset created by the physical backup is
restored, then the restored volume will have the contents
of the volume at the time that the shadow copy of the

volume involved was performed (e.g., at block 610) and

-32-

16 Aug 2005 .

2005203663

20

all persisted shadow copies that were on the volume at

that time.

A dataset created by a physical backup may also be used
for a fast recovery in conjunction with a normal backup
rotation that includes differential and/or incremental
backups. The dataset created by the physical backup may be
treated as a full dataset and the dataset created by the
differential or incremental backups may reference the dataset
created by the physical backup. 1In this case, a subsequent
incremental or differential dataset may be restored by first
restoring the dataset created by the physical backup and then
applying any subsequent differential and incremental datasets.

In addition, optional shadow copies may be created after
applying each differential or incremental dataset. Creating
these optional shadow copies may allow for quick reverting to
a disk state represented by any of the shadow copies so that a
volume may be restored to a state having as much good data as
was available on the volume just prior to a disastrous loss or
corruption of the volume.

Also note that when a full dataset is created by a
physical full backup, the restore speed may be substantially

faster than restoring a dataset created through a non-physical

-33-

16 Aug 2005

2005203663

20

backup as the restore may be accomplished through a spiral

|
write of blocks instead of object-by-object. |

Differential Compression of Full Datasets

Typically, a data source does not change substantially
from week to week. Furthermore, there are certain types of
data sources where it is expected that very little change will
occur. These data sources include:

* Data sources associated with operating system (0S) which
include the 0S binaries and system services persistent
state.

¢ Data sources that include mostly read only databases or
file stores such as those used for group scheduling and
document management systems in which an appointment,
contacts, and document management database is backed up.
These data sources change as documents are modified or
certain objects (e.g., contacts, calendar, and schedule)
change.

Since the cost of maintaining a full dataset online is
relatively expensive (i.e., on the order of the size of the
volume that is backed up), being able to compress full

datasets to take advantage of their slowly changing nature is

-34-

advantageous and may allow many more full datasets to be

16 Aug 2005 .

maintained online using the same amount of storage.
Two techniques may be used for doing differential
compression in backups:
5 ¢ Use shadow copy technology to do the compression as

described in more detail below. This technique works

2005203663

very well for datasets where content changes on the
blocks that generally remain in the same place and do not
move around positionally.

0 * Use a differential compression algorithm that is able to
determine differences in datasets where the same data may
appear in different positions at different times.
Exemplary differential compression algorithms are
described in United States Patent Application Serial Nos.

_5 10/825,753 and 10/844,893, which are both assigned to the
assignee of the present invention, and hereby
incorporated by reference.

With shadow copy technology, in one embodiment, a new
full backup may be performed as follows:

20 1. Create a persistent shadow copy of the volume

containing the dataset.

-35-

16 Aug 2005

2005203663

20

2. Overwrite the original dataset on the original
volume with a new full dataset or new synthetic full dataset
as described in conjunction with FIGS 2-4.

3. Rename the original dataset to the new dataset.

In another embodiment, a new full backup may be performed
as follows:

1. Create a persistent shadow copy of the volume
containing the dataset.

2. Create a new full dataset or new synthetic full
dataset as described in conjunction with FIGS 2-4 on a volume

other than the volume containing the original volume.

3. Overwrite the original dataset with the new dataset.
4. Rename the original dataset to the new dataset.
5. Delete the new dataset on the other volume.

When the original dataset is overwritten with the new
dataset, the shadow copy technology described above places
extents containing blocks that have changed in content
(between the original and new datasets) into the differences
area. Changing the name from the original dataset name to the
new dataset name causes extents containing blocks with
metadata regarding the original dataset to change and be

placed in the differences area. This allows a program to

-36-

16 Aug 2005

2005203663

20

access either the new dataset or the original dataset (via the
shadow copy). It will be recognized that by using the
technique described above, that the additional disk space
needed for a new full dataset may simply comprise extents
changed between the last full dataset and the new full
dataset.

A new backup may be performed using remote differential
compression as follows:

1. Create a new synthetic full dataset as described in
conjunction with FIGS. 2-4.

2. Apply one of the exemplary remote compression
algorithms described above to the original full dataset and
the synthetic full dataset created in step 1 to create a
differentially compressed dataset.

3. Delete the new dataset and rename the differential
compression file to the new dataset name.

After the differentially compressed dataset is created
using remote differential compression, a full dataset may be
obtained by applying the differential compressed file to the

previous full dataset.

-37-

27 Oct 2010

2005203663

20

C\WRPonbADCCWK AN 35259_1 DOC-20AW120180

-31-

Delta Computation for Backup of Large Data Files

A differential or incremental backup may be performed
by examining each object on a storage device to see if the
object has changed since the previous backup upon which the
differential or incremental backup is based. Determining
whether an object has changed may be performed, for example,
by locking at the last modify time of the object. If it is
determined that the object has changed, then the entire
object may be copied to the dataset. Copying an entire
object into a incremental or differential dataset each time
any portion of the object changes may consume significant
resources for large objects such as databases and e-mail
stores which change frequently but where only a small

portion of the object is actually changed.

In one embodiment of the invention, the extents in an
object that have actually changed since a last backup are
tracked so that they may be backed up when an incremental or
differential backup is performed. Tracking these extents
may be accomplished with a file system filter that keeps
track of changes to large files (e.g., any files larger than
16MB) on the volumes of a computer. The size of files
tracked by the file system filter may be pre-configured or

selected.

-38-

27 Oct 2010

2005203663

15

20

CANRPOABRDCOWMKAW35289_1 DOC- K091

_32-

A file system filter may maintain the following

information in a persistent store associated with a volume:
¢ The path to the object that has been changed.

¢ The set of extents in the object that have changed.

In one embodiment of the invention, the file system
filter tracks the set of blocks that have changed in the

cbject rather than the set of extents that have.

FIG. 7 is a block diagram showing an exemplary system
in which changed extents may be tracked in accordance with
various aspects of the invention. An operating system 705
may receive requests to write to a file system 715. Such
requests are passed through a file system filter 710. If
the file system filter 710 determines that any changes to
extents of a file should be tracked, it stores which extents

have changed in a persistent store 720.

With an incremental backup scheme, the persistent store
that tracks the extents may be reset each time an
incremental or full backup is performed so that changes from
each previous backup are tracked. If a differential backup
scheme is used, the persistent store that tracks the extents

may be reset each time a new full backup is performed.

-39-

16 Aug 2005

2005203663

20

A differential or incremental backup may use the
persistent store as follows. If a reference to an object
appears in the persistent store, then the differential or
incremental backup may simply back up:

The list of extents in that object that have changed; and

The contents of those extents in the same order that they
appear in the list.

To reconstruct an object from a set of incremental
datasets and a full dataset or from a differential dataset and
a full dataset, the following actions may be performed:

1. For each extent in the object, find the most recent
dataset that has that extent in its list of extents that have
changed or has a full dataset of the object; and

2. Copy that extent from that dataset and continue at
the next extent.

In one embodiment of the invention, two lists of extents
may be maintained to support a full, differential, and
incremental backup scheme. The file system filter tracks
whether each candidate object (e.g., of sufficient size or

othér criteria) has changed in the two lists by:

* Maintaining a list of extents that have changed in those

objects since the last full backup was performed; and

-40-

16 Aug 2005

2005203663

20

* Maintaining a list of extents that have changed in those
objects since the last differential or incremental backup
was performed.

A differential dataset may be created using the first
list of extents while an incremental dataset may be created
using the second list of extents. The second list may be
reset whenever an incremental or differential backup is
performed. The first list may be reset when a full backup is
performed.

Reading Data Directly from a Dataset

Many applications (e.g., e-mail, document management ,
active directory, and the like) store objects in a database.
It is often desirable to restore particular sets of objects
from the database rather than restoring the entire database.
This is often the case when recovering from a user error such
as when a user accidentally deletes documents or email
messages that the user did not intend to delete. For example,
it is very common to restore mailboxes from e-mail databases
and individual documents from a document management system.

Typically, these kinds of objects may be restored by
allocating space for the entire database, restoring the entire

database to the point in time that the objects to be restored

-41-

16 Aug 2005

2005203663

20

are at the desired state (e.g., not deleted or changed), and
then using an application (e.g., an e-mail system, document
management system, or other suitable application) to mount the
database and extract the desired objects.

By keeping a dataset on a disk there may be no need to
restore the dataset to a disk before accessing the desired
objects via the appropriate application. Instead, the
application may access the files directly as stored in the
dataset. If a dataset created by a physical backup is stored
as a copy of a volume (as opposed to in MTF format), the
dataset may be mounted directly as a volume after removing any
header or trailer in the dataset.

If the dataset is stored in an MTF format (or some other
archive format), a file system filter may perform the
following actions:

* Expose the dataset as a volume and allow access to the
volume. Give the volume a different name or allow access
through a location different from the location of the

original volume in a local computer name space;

¢ Perform a lookup to locate the appropriate database file
contained in the dataset when an application attempts to

open the database file via the exposed volume. Note that

-42-

16 Aug 2005 .

2005203663

20

as the dataset appears as a volume (e.g., through the use

of the file system filter), each file and directory in
the volume (and hence the dataset) may be opened

directly;

* Allow metadata to be directly read from the volume and

allow object data to be read using the normal file system

I/0 primitives; and

* Preserve the read-only nature of the dataset by
performing copy-on-writes in a separate location when an
application attempts to write data to the volume. This
may be useful to support an application that does not
support a read-only mount, such as an e-mail server or
client.

The file system filter may utilize an online catalog
associated with the dataset that maps each object in the
dataset to a corresponding offset in the created volume. This
catalog may be created for datasets that do not store a
catalog therein. For example, when opening an object in the
volume, the online catalog may be searched for that object and
the offset into the dataset found.

Headers at the offset may be used to extract metadata for

the object and to create a mapping between the offsets to the

-43-

16 Aug 2005 .

2005203663

ul

20

object and offsets into the data for the object. Any read
operations oﬁ the object may result in a corresponding read
operation on the dataset at the computed offset based on this
mapping.

For datasets stored in MTF or non-MTF format, if a
dataset is created by an incremental or differential backup,
then a file system filter may treat the dataset and any other
datasets it is based on as a unit. To obtain information
related to an object, the unit of datasets may be searched to
find the most recent dataset containing the information.
Prior to allowing access to the volume based on the group of
datasets created by backups, an online catalog may be created
to map objects to their corresponding locations within the
datasets.

As can be seen from the foregoing detailed description,
there is provided an improved method and system for creating,
restoring, and using datasets associated with backups. While
the invention is susceptible to various modifications and
alternative constructions, certain illustrated embodiments
thereof are shown in the drawings and have been described
above in detail. It should be understood, however, that there

is no intention to limit the invention to the specific forms

-44-

27 Oct 2010

2005203663

CANRPorBADCCWMK AVS145239_L DOC-284972010

-38-

disclosed, but on the contrary, the intention is to cover
all modifications, alternative constructions, and

equivalents falling within the scope of the invention.

Throughout this specification and the claims which
follow, unless the context requires otherwise, the word
"comprise", and variations such as "comprises" or
"comprising", will be understood to imply the inclusion of a
stated integer or step or group of integers or steps but not
the exclusion of any other integer or step or group of

integers or steps.

The reference in this specification to any prior
publication (or information derived from it), or to any
matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that
that prior publication (or information derived from it) or
known matter forms part of the common general knowledge in

the field of endeavour to which this specification relates.

-45-

23 Feb 2011

2005203663

20

25

30

CANRPOnbRDCCWME ABITITIY_I DOC-2322011

-39

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. In a computing system, a method for creating a
synthetic full backup of a file system, the method
comprising:
performing a normal full backup of a file system, the
file system including data, wherein the normal full backup
uses the file system to create a normal full backup dataset
at create time and store the normal full backup dataset on
one or more computer storage media, and wherein the normal
full backup dataset is a first full backup;
subsequent to performing the normal full backup,
performing a partial backup of the file system to create a
second backup dataset and store it on one or more computer
storage media after changes to the file system, such that
the first full backup is out of date, the second backup
dataset including only a portion of the data of the file
system, including portions of the file system changed since
the normal full backup, wherein performing the partial
backup of the file system to create the second backup
dataset comprises differentiating whether to perform a full
or partial backup of all files within the file system based
on file size, wherein differentiating comprises:
for all files within the file system, determining
whether the files exceed a predetermined size, and:
for all files determined to have a size
exceeding the predetermined size, copying only
changed extents within such files, such that only
changes within a file, rather than an entire file,
are included in the second backup dataset of the

partial backup of the file system; and

-46-

23 Feb 2011

2005203663

20

25

30

CANRPoABADCOWKAWATITY_I DOC-23072011

.40 -

for all files determined to have a size less
than the predetermined size, copying the entire
contents of such files, such that the entire
files, rather than merely changes to files, are
included in the second backup dataset of the

partial backup of the file system;
performing a synthetic backup operation by merging the
first full backup of the normal full backup with the second
backup dataset to create a first synthetic full dataset of
the file system and to store the first synthetic full
dataset on one or more computer storage media, wherein the
first synthetic full dataset is equivalent of what a normal
full backup would have created if executed at create time of
the first synthetic full dataset, and wherein a synthetic
backup creates a full dataset based on prior backups rather

than the file system; and

periodically performing an additional synthetic backup
operation to create a second synthetic full dataset of the
file system and any changes thereto, and to store the second
synthetic full data set on one or more computer storage
media, and such that the first full backup is the only

normal backup performed to create a full dataset.

2. The method of claim 1, wherein performing the normal

full backup comprises copying the data onto online storage.

3. The method of claim 2, wherein the data comprises
objects that are each associated with metadata and wherein
the data is copied onto online storage by obtaining metadata
associated with each object and copying the object and its

associated metadata to the online storage.

47-

23 Feb 2011

2005203663

20

25

CANRPoIBADCCWK AV4727%9_1 DOC-2327201 1

.41 -

4. The method of claim 2, wherein the file system
comprises a volume and wherein copying the data onto the
online storage comprises creating a shadow copy of a volume

and copying the shadow copy onto the online storage.

5. The method of c¢laim 4, wherein the shadow copy 1is

maintained on the volume.

6. The method of c¢laim 4, wherein the shadow copy is

maintained on the volume and another volume.

7. The method of any one of claims 1 to 6, wherein the

online storage comprises a hard disk.

8. The method of any one of claims 1 to 7, wherein the
file system comprises a volume that includes a shadow copy
and wherein data associated with the shadow copy is

preserved during each backup.

9. The method of claim 8, wherein the data associated with
the shadow copy 1is preserved by copying physical blocks of

the volume in performing each backup.

10. The method of <claim 8 or 9, further comprising
restoring the second backup dataset and the data associated
with the shadow copy preserved therein, such that the shadow

copy is accessible normally.

11. The method of any one of claims 1 to 10, wherein the
data is stored in storage divided into blocks and wherein
the first full backup and the partial backup are performed
through a physical backup of the storage.

-48-

23 Feb 2011

2005203663

20

25

30

€ WNRPorbRDCCMK AVA72T39_1DOR-2M02201 1

-42-

12. The method of claim 11, wherein the physical backup is
performed by opening a file comprised of all blocks to be

backed up and copying the blocks to be backed up.

13. The method of claim 11 or 12, further comprising
restoring the first full backup through a physical restore
comprising opening the first full backup as a file and
sequentially copying blocks in the first full backup to a

restore storage.

14. The method of claim 13, further comprising applying the
portion of the data of the file system included in the

second backup dataset to the restore storage.

15. The method of any one of claims 1 to 14, wherein the
data comprises blocks and wherein performing the partial

backup comprises compressing the portion of the data.

16. The method of claim 15, wherein compressing the portion
of the data comprises placing any blocks that have changed

in the data into a differences area.

17. The method of claim 16, wherein the blocks that have
changed in the data are placed into the differences area

through the operation of a shadow copy mechanism.

18. The method of claim 17, wherein multiple full datasets
are represented on a storage device as multiple shadow

copies created by the shadow copy mechanism.

-49-

23 Feb 2011

2005203663

20

25

30

CMRPorBEDCCMK AV 4IIT_1 DOC-2MAM |

- 43 -

19. The method of any one of claims 15 to 18 wherein
compressing the portion of the data comprises applying a

differential compression algorithm.

20. The method of any one of claims 1 to 19, wherein
performing the partial backup of the file system to create a
second backup dataset comprises copying other objects that
have changed but are not tracked by copying all blocks
associated with the other objects into the second backup

dataset.

21. The method of any one of claims 1 to 20, wherein the

data 1s a tape format dataset.

22. The method of any one of c¢laims 1 to 21, wherein
performing a partial backup of the file system to create the
second backup dataset comprises, when it is determined a
block on a disk 1is to be changed, copying an extent
containing the block to a storage location in a differential

area, before changing the block on the disk.

23. The method of any one of claims 1 to 22, wherein
performing the partial backup of the file system to create
the second backup dataset comprises:

resetting a persistent store of a filter each time a
partial backup of the file system is performed;

determining a file size of each file in the file
system;

for each file in the file system that has a size less
than the predetermined size, using a respective last modify

time to determine whether the object has changed;

-50-

23 Feb 2011

2005203663

20

25

30

CANRPoRbADCCWIK ABI72734_1 DOC- 2402301

_44-

for each file having a size less than the predetermined
size and that that has changed, copying the entire object
into the second backup dataset;

for each file in the file system that has a size
exceeding the predetermined size, tracking extents within
the file using a filter that stores, in persistent storage:

a path to a file that has been changed;

a list of a set of extents in the file that have
changed; and

contents of those extents in the set of extents in the

same order they appear in the list of the set of extents.

24. One or more computer storage media for wuse in a
computing environment, the computer-readable storage media
having stored thereon computer executable instructions that,
when executed by a computing device, cause the computing
device to perform a method for creating a synthetic full
backup of a file system of the computing environment, the
method executed by the computing device comprising:

performing a normal full backup of a file system, the
file system including data, wherein the normal full backup
uses the file system to create a normal full backup dataset
at create time and store the normal full backup dataset on
one or more computer storage media, and wherein the normal
full backup dataset is a first full backup;

subsequent to performing the normal full backup,
performing a partial backup of the file system to create a
second backup dataset and store it on one or more computer
storage media‘after changes to the file system, such that
the first full backup is out of date, the second backup
dataset including only a portion of the data of the file

system, including portions of the file system changed since

-51-

23 Feb 2011

2005203663

20

25

30

CANRPOIbRDCCWMK AV 72739_1.D0C-2%02201 |

_45 .

the normal full backup, wherein performing the partial
backup of the file system to create the second backup
dataset comprises differentiating whether to perform a full
or partial backup of all files within the file system based
on file size, wherein differentiating comprises:

for all files within the file system, determining
whether the files exceed a predetermined size, and:

for all files determined to have a size exceeding the
predetermined size, copying only changed extents within such
files, such that only changes within a file, rather than an
entire file, are included in the second backup dataset of
the partial backup of the file system; and

for all files determined to have a size less than the
predetermined size, copying the entire contents of such
files, such that the entire files, rather than merely
changes to files, are included in the second backup dataset
of the partial backup of the file system;

performing a synthetic backup operation by merging the
first full backup of the normal full backup with the second
backup dataset to create a first synthetic full dataset of
the file system and to store the first synthetic full
dataset on one or more computer storage media, wherein the
first synthetic full dataset is equivalent of what a normal
full backup would have created if executed at create time of
the first synthetic full dataset, and wherein a synthetic
backup creates a full dataset based on prior backups rather
than the file system; and

periodically performing an additional synthetic backup
operation to create a second synthetic full dataset of the
file system and any changes thereto, and to store the second

synthetic full data set on one or more computer storage

-52-

—

po—

(e}

N
0
I o
i [

N
]
!

lan)

Ne)

O 5

o

o
I
N Vg

o

o
‘(‘\1
|
‘ 10

15

C\NRPorBDCCWME A7 2739 _1 DOC-23022014

. 46 -

media, and such that the first full backup 1is the only

normal backup performed to create a full dataset.

25. In a computing system, a method for creating a
synthetic full backup of a file system, substantially as
hereinbefore described with reference to the accompanying

drawings.

26. One or more computer storage media for use in a
computing environment, the computer-readable storage media
having stored thereon computer executable instructions that,
when executed by a computing device, cause the computing

device to perform the method of any one of claims 1 to 25.

-53-

SWva90ud 001
J— no -
S8l NoILvOorddy 181 3non \ L OI4
181 F1L0WIY \/@
— 9L vr S3INAOW Srl 2
- \\N QyvoaA3y| vivQg WYHO0ud SWVHO0NY W3ILSAS
! P 5 lu WYHOO¥d (BFT waHio| NoILvoRddy | ONILY¥3O
» N -~
RECTENN e
sS¥3LNdwoD N -
ILoway @ _Il_ N -
WHMOMLIN vady 3aIM 2LL b AN \3\ -7
ml lllllllllllll Illlllu*l'l".ﬂll\.'lnlulllllllll_
081 E—— = o i
W= I _
| L 091 obL |
I — .JmU,Im“m:z_ FOVAIIIN| 3OVANILN] 7T vivg _
A¥OWa €l
g beL Nwﬂnw“n__ 1NdN| Jo>-2n_b_,_ AYOWIIAl “TOA-NON WY¥D0ud __
- MNHOMLIN | d33asn IT18VAONTY 31IVAOWIY-NON |
vaNYy Vo0
v T \, 35T S3naow _
|
| SNgG WALSAS / FET SWvaooud |
NOILYDIdd
% 18t __ N v “
| Fer WILSAS |
HILININY ' JOVIYILN| FOVINILN ONLLYY3dO _
| vy3HdIN3d J Py ! i ZEL (Nva) |
1NdLNO \ IIIIIIII ~
! J \\ LINA ONISS300ud — _
0gl
_ sel | os ozu ¢l som h
" - —_ JEr_(wow |,
| H AMOWI W3LSAS |

S00C 8Ny 97

£99¢0¢500¢

-54-

217

(START 205

Y

FIG. 2

16 Aug 2005

CREATE NEW EMPTY DATASET k210

2005203663

A
SET POINTERS By TO By TO
FIRST ENTRY IN EACH DATASET

NN215

ADVANCE POINTERS B
THROUGH By, AS NECESSARY kU220
(FIG. 3)

y

Y

ADD To NEw DATASET FROM FIRST
DATASET THAT INCLUDES METADATA

AND DATA FOR THE ENTRY 225
(FIG. 4)
y
ADVANCE POINTER B, 230

235

Bo
PAST LAST ENTRY
OF DATASET?2

240

-55-

16 Aug 2005

2005203663

37

FIG. 3 (BesiN Y305

A

LET X = 310

4

> SELECT POINTER By 315

320

IS ENTRY
POINTED TO BY By >=
ENTRY POINTED TO BY By OR
DOES Bx POINT PAST
LAST ENTRY OF
DATASET?

/325

INCREMENT POINTER By TO
POINT TO NEXT ENTRY

330

X=X+1

335

RETURN

-56-

16 Aug 2005

2005203663

417

(BEGIN kN405

FIG. 4

LETX =0 ~N410

14

> SELECT POINTER By kN 415

420

DATASET ASSOCIATED

WITH ENTRY POINTED TO BY By
CONTAIN METADATA AND

DATA FOR THE
ENTRY?

Y

A
ADD ENTRY AND METADATA
AND DATA TO NEw DATASET

430

A

(RETURN f"440

-57-

16 Aug 2005

2005203663

5I7

FIG. 5

ORIGINAL
VOLUME

DIFFERENTIAL
AREA

510 515

/ \
/ \ \

\
‘e e
S 2

506 506 507

-58-

16 Aug 2005

2005203663

6/7

FIG. 6

{ START L "\B05

Y

CREATE SHADOW COPY OF
VOLUME INVOLVED IN BACKUP

610

ACCESS SHADOW COPY AS
RAW VOLUME

NN6B15

y

BAackup SHaDow Copy

/620

END 625

-59-

16 Aug 2005

2005203663

FIG. 7

717

OPERATING SYSTEM

710

FILE SYSTEM FILTER

~J
N

>

FILE
715 SYSTEM

PERSIS-
TENT
STORE

-60-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

