PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/20445
06F 12/00, 13/00 Al

G ’ (43) International Publication Date: 4 July 1996 (04.07.96)

(21) International Application Number: PCT/US95/16016 | (81) Designated States: AU, JP, European patent (AT, BE, CH, DE,

(22) International Filing Date: 20 December 1995 (20.12.95)

(30) Priority Data:

08/372,380 us

23 December 1994 (23.12.94)
(71) Applicant: NEW MEDIA CORP. [US/US]; One Technology,
Building A, Irvine, CA 92718 (US).

(72) Inventor: POLLARD, Thomas, G.; 13930 Carmel Ridge Road,
San Diego, CA 92128 (US).

(74) Agents: GARMONG, Gregory, O.; P.O. Box 12460, Zephyr
Cove, NV 89448 (US) et al.

DK, ES, FR, GB, GR, [E, IT, LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title: METHOD FOR START-UP AND BINDING OF A COMPUTER TO A NETWORK
S
e e T2
! INTEREACE A
_”i‘jzﬁ" ' COMNECTOR o
20 COMPUTLER SOCKET 22
N a2, ! il
CARD AND OTHE
AET
.i’:fecm:s MF/;'USOﬂOA’S
26 z8 ;
o
1 AR Bl
NETWORXK pROTOCOL| INIE \ | cerenrs +ARDWARE
SOFTVNE \aol STACK ool | DC/VER o DOIVER RESOURCE
PEOGEAM nelvee || RovTINE || TABLE
]
: i | ~e0 ez
28 " mt;{ng: |
AERE T ELCUPT
]
| eourIvE 748L5 %
:/wc M;;'tt ! \ :
"_“_“'__ DG TI NV \
L= T mrz:‘/wf ”»
S~ Mt;faznr/a/v
TLE

(57) Abstract

A portable computer (20) is configured to receive a network interface connector (24) (such as the connector to a local area network)
but initially has no network interface connector (24) connected thereto. A network interface connector reset and configuration protocol are
established, preferably at computer start-up. At a later time, the network interface connector (24) is connected to the portable computer
(20). The network interface connector (24) is automatically reset and configured using the protocol previously established, without having
to restart the computer (20) or otherwise interrupt its ongoing operations.

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cbee d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

F:

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 96/20445 PCT/US95/16016

10

15

20

25

METHOD FOR STARTUP AND BINDING
OF A COMPUTER TO A NETWORK

BACKGROUND OF THE INVENTION

This invention relates to computer systems, and, more particularly, to the
interfacing of a portable computer to a network.

Portable computers are now available to perform a wide range of
computing activities. The smaller the computer in size, the less its internal
capability in most cases. Hand-held (also called palmtop) computers therefore
rely to a significant degree on external capabilities such as plug-in memories,
plug-in computational aids, and the interconnection to a network. The ability
to connect to a data network is particularly important for such small computers,
because it provides them access not only to other small computers at other
locations, but also to data and computational capabilities available at a large
central computer.

As an example, a hand-held computer may be used to perform
remote-site engineering calculations using a first plug-in computational card.
The first card is thereafter removed, and a second plug-in computational card
installed in the same slot to aid in cost estimating or other functions. The user
next removes the second computational card and inserts a plug-in network
interface connector that provides access to a large network. This alternating of
plug-in cards and connectors is required because there is usually one interface
socket slot (or, at most, two slots) on the computer due to size and weight
limitations. Once established, the network interface is used to communicate
intermediate or final results to other hand-held computers or to a central
facility, to receive additional information, to utilize a central computer facility
to perform other calculations which are too complex for the hand-held
computer even with plug-in aids, to interface with input/output devices, or other
functions. '

When the hand-held computer is to be connected to the network, the

WO 96/20445 PCT/US95/16016

10

15

20

25

30

2-

network interface connector, typically in the form of a network interface card,
must be reset to a known initial state and communications protocols must be
established between the computer and the network. At the present time, the
network interface card must be inserted into the socket (slot) on the hand-held
computer in order to accomplish these initializing functions, which are
sometimes termed network startup and binding. If the network interface card
is not plugged into the socket, there is an error message when network startup
and binding is attempted.

In some cases, the requirement of the physical presence and connection
of the network interface connector poses no difficulty. In other instances, the
inventor has recognized that it creates a significant problem. If the computer
user brings the hand-held computer to the location of the connector in a
computational (e.g., a large spread sheet occupies the memory) or interfacing
(e.g., the necessary interrupt states for the network are not available due to
prior use of the computer) configuration such that the requisite initializing
cannot be performed, the user is precluded from connecting to the network until
some solution can be found. This obstacle is particularly difficult to overcome
where the user is not knowledgeable about the technical features of
computer/networking interface, and therefore does not understand the
requirements of the interface, as is often the case.

There thus exists a need to provide users more flexibility in their use of
personal computers to connect to networks. This need is most acute for small
personal computers such as hand-held computers, which have limited memory
and interface connector sockets. The present invention fulfills this need, and
further provides related advantages.

SUMMARY OF THE INVENTION

The present invention provides a method for accomplishing network
startup and binding of a personal computer without connection to the network
at the time the startup and binding are performed. The approach is particularly
valuable when used in conjunction with hand-held computers which require the

swapping of various types of plug-in capabilities in their available (usually one

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-3-

or at most two) sockets during the normal course of operations. The method
of the invention allows the user to freely work back and forth between
stand-alone plug-in cards, such as memory or specialized computational cards,
and network interface connectors to the network.

In accordance with the invention, there is provided a method for
accomplishing network startup and binding of a portable computer having a
connector socket which can receive a network interface connector. The method
includes the steps of providing network interface connector driver means for
communicating data with the connector socket, and providing client driver
means for establishing a configuration for the connector socket, which
configuration is to be implemented at such time as a network interface
connector is introduced into the connector socket. The client driver means
determines that no network interface connector is connected to the connector
socket and provides that information to the network interface connector driver
means. The network interface connector driver means and the client driver
means cooperate to establish a hardware resource information set within the
portable computer sufficient to operate the network interface connector at such
time as the network interface connector is introduced into the connector socket.

The client driver means preferably includes a capability to sense the
presence of a network interface connector (e.g., a card) plugged into the
connector socket (which is normally in the form of a slot) provided in the
computer. Where a connector has been plugged in and communication with an
external network is possible through the connector, complete startup, binding,
and operation can occur in the normal manner. However, where the client
driver means senses that no network interface connector is present and plugged
in, the client driver means simulates the presence of the connector to the extent
of permitting the necessary reset and configuration protocol to be established
which will support the network interface connector when it is later plugged in.
Consequently, it is not necessary to repeat these procedures at a later time
when the network connection is made, avoiding disruption of activities then
underway or the possibility that the required structure will not be available.

The details of the network startup and binding procedure of the
invention can vary somewhat according to specific computers, networks, and

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-4-

network software. Typically, however, the network interface connector driver
program provides to the client driver program the location of the reset routine
that is used to initialize the network interface connector when it is plugged in,
and requested network hardware resources such as the interrupt request level
structure and the input/output address of the network interface connector. The
network interface connector driver program stores the locations of the interrupt
routines in the software interrupt table, so that later interrupts generated through
the network interface connector are properly handled by the network interface
connector driver routines. The hardware resources are reserved so that they
will be available to the network when the connection is made. The node
identification of the network interface connector is also placed into a
configuration table for later access. Finally, in this setup portion of the
methodology, the network program and the client driver are notified that the
setup has been completed.

At a later time, after the network interface connector has been plugged
into the socket to establish a communication path between the computer and the
network, the client driver program configures the connector socket according
to the preestablished configuration. The client driver program reads from the
network interface connector any hardware-specific information required by the
computer for communication and provides this information to the network
interface connector driver program. Lastly, the client driver program calls the
hardware reset routine using the address provided during setup, and this routine
is executed to place the network interface connector into a known state suitable
for subsequent communication.

When this final portion of the procedure is executed, all of the required
information for performing the hardware reset and establishing the
configuration is available to the client driver. It is not necessary to interfere
with any other operations of the computer, nor is there any possibility that
required information, memory locations, or the like will not be available
because all such hardware-support information was previously defined,
established, and res;crved.

The present invention provides an advance in the art of computers, and
particular the small hand-held computers that rely heavily on external support

WO 96/20445 PCT/US95/16016

10

15

20

25

-5

but have limited numbers of external connector ports. Other features and
advantages of the present invention will be apparent from the following more
detailed description of the preferred embodiment, taken in conjunction with the
accompanying drawings, which illustrate, by way of example, the principles of
the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic block diagram of the interrelation of hardware
and software components of the invention;

Figure 2 is a flow diagram of the approach of the invention;

Figure 3 is a program flow chart for the pre-card-insertion phase of
startup and binding; and

Figure 4 is a program flow chart for the post-card-insertion phase of
startup and binding.

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 schematically depicts the interrelation of the information flows
for the pertinent portions of the hardware and software elements of a personal
computer 20 that utilizes the present invention. The computer 20 is a portable
computer and is preferably a hand-held computer. The computer 20 includes
a socket 22, sometimes known as a slot or port, that can receive plug-in
connectors to various types of external functions. In the case of interest, a
network interface connector 24 can be plugged into the socket 22 when the user
of the computer 20 seeks to connect to and utilize an external network. The
network interface connector 24 is typically a local area network (LAN)
connector in the form of a card.

Within the central processor and random access memory of the computer
20 are a number of software program components to be described next. A
network interface connector (NIC) driver program 26 communicates with the
socket 22, and more specifically the network interface connector 24 when
plugged into the socket 22. The NIC driver 26 includes a network interface

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-6-

connector (NIC) driver routine 28 that accomplishes the communication of data
(information) and signals between the socket 22 and network interface
connector 24 (when properly configured), on the one hand, and a network
software program 30, on the other hand. Communication with the network
software program 30 is accomplished through one or more protocol stack driver
programs 32. The NIC driver program 26 accomplishes low-level control of
the network interface card 24, and the protocol stack driver programs 32
accomplish higher-level interpretation and formatting of the data.

Information flowing through the network interface connector 24 is in the
form of a bidirectional binary information stream containing the data that is to
be communicated, and also various types of interrupt and other signalling
pulses that notify the computer (if generated by the network) or the network (if
generated by the computer) of important events that are to occur. The NIC
driver program 26 controls the physical operation of the card, and provides
transmit and receive functionality. The protocol stack driver 32 program
exchanges data with the NIC driver program 26 for transmission and reception
(dialog control), and provides higher-level data encoding, formatting, and
interpretation. The NIC driver program 26 and the protocol stack driver
programs 32 remain resident within the computer, but are called for use only
when required to perform networking interfacing functions.

Within the NIC driver program 26, a hardware reset routine 38 is a set
of instructions that, upon execution, resets the hardware of the network
interface connector 24. The NIC driver program 26 also accesses files of
particular relevance to the present invention. Specifically, a configuration file
34 stores the user's preferred configuration for the NIC.

The NIC driver program 26 communicates with elements of the
operating system 39 (such as DOS/Windows). In the operating system 39, an
interrupt table 36 contains the addresses of specific software routines stored
within the computer 20 to respond to network interrupts received through the
network interface connector 24 (when plugged in) from the network. One
interrupt vector stored in the interrupt table 36 corresponds to the NIC interrupt
service routine of the NIC driver program 26.

The NIC driver program 26 communicates with a client driver program

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-7-

40. The client driver program 40 utilizes card and socket services programs 42
to configure the hardware socket 22. This configuring establishes hardware
resources for the network interface connector 24 (when plugged in) from a
hardware resource table 43. Such hardware resources include, for example, the
interrupt request level (IRQ) and the input/output (I/O) registers. These
resources are identified by the NIC driver program 26 in conjunction with the
known requirements of the network software program 30. The NIC driver
program 26, network software program 30, protocol stack driver 32, and client
driver 40 provide one source of hardware resources to be used in conjunction
with the card and socket services program 42. Other configurations, indicated
at numeral 44, are supplied by other programs in the computer 20. These other
configurations, used in relation to other types of plug-in connectors such as
extended memory or computational aids, are not pertinent to the present
invention, and are not described in detail.

Some elements of the structures and software depicted in Figure 1 are
known in the art and available commercially. Examples of the basic computer
20, preferably a hand-held computer, include the IBM Thinkpad, the NEC
Versa, and the Hewlett Packard Omnibook. Such computers 20 typically have
one or two built-in sockets 22, with a standard arrangement to receive a
standard network interface connector such as an Ethernet or Token Ring LAN
connector. The network software program is supplied by the network that is
to be used or can be purchased commercially. Examples of currently available
network software programs include NetWare 4.x and Microsoft Windows for
Workgroups 3.x. The card in socket services program 42 is available
commercially and is a standard component for hand-held computers to service
the other configurations 44 available in such computers. Examples of card in
socket services programs 42 include System Soft CardSoft™ and Phoenix Card
Manager programs.

Figure 2 depicts a preferred embodiment for practicing the startup and
binding technique of the invention. The client driver program 40 and NIC
driver programs 26 'are provided, numerals 60 and 62, respectively. These
programs have the capabilities discussed in relation to Figure 1, and perform
the functions discussed subsequently. There is an interaction between the client

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-8-

driver program 40 and the NIC driver program 26 during their execution.
Figures 3 and 4 depict this interaction at a program logic flow-chart level of
detail for a preferred embodiment of the invention that has been implemented.
Figure 3 shows the detailed approach corresponding to the steps 64-72
performed prior to insertion of the network interface connector card 24, and
Figure 4 shows the detailed approach for the steps 80-84 wherein the connector
card 24 is inserted and binding is completed.

Referring to Figure 2, the client driver program 40, acting through the
card and socket services program 42, senses the physical presence of a network
interface connector 24 plugged into the socket 22, numeral 64. This sensing
can be accomplished in any operable manner. For example, a separate pin
could be provided within the connector 24 to mate with a pin receiver in the
socket 22. In another approach, electrical continuity between two contacts
within the socket 22 could be sensed, with that continuity provided through the
corresponding pins of the connector 24 when present. If the network interface
connector 24 is already inserted into the socket 22, the standard setup and
binding routine is followed and the present invention need not be implemented.
If the network interface connector is not already inserted into the socket 22, the
approach of the present invention is utilized, and the next-described steps are
followed. The client driver program 40 provides the connector insertion status
to the NIC driver program 26.

The NIC driver program 26 provides several types of information,
numeral 66. The NIC driver program 26 provides the memory address of the
hardware reset routine 38. The client driver 40 stores this address so that this
routine 38 can be later located and executed. Upon card insertions or
extractions, the client driver 40 calls this hardware reset routine 38. The NIC
driver program 26 also provides to the client driver program 40 the categories
of hardware resources required by the card for proper operation, typically
including an interrupt request level (IRQ), inputjoutput (I/O) address range,
and/or a memory address range. The NIC driver program 26 also provides to
the client driver program 40 any specific hardware resource values that the user
of the computer has requested for the card, this information having been
previously stored in the configuration file 34.

WO 96/20445 PCT/US95/16016

10

15

20

25

30

9.

The client driver program 40 receives this information from the NIC
driver program 26 and uses it in the appropriate manner, numeral 68. The
memory address of the hardware reset routine 38 is stored for later accessing
and execution. The client driver program 40 reserves any specifically requested
hardware resources provided in the configuration file 34. The client driver
program 40 reserves these hardware resources for later use when the computer
is connected to the network and notifies the NIC driver program 26 so that the
resources are acceptable.

During typical operation of a NIC, an interrupt service routine (ISR)
resides in the NIC driver routine 28. The client driver program 40 reserves a
hardware IRQ from the card and socket services programs 42. If there is a
specific IRQ value provided in the configuration file 34, this IRQ is reserved
by the client driver program 40. If no specific IRQ value is requested in the
configuration file 34, the client driver program 40 reserves the first available
IRQ provided by the card and socket services program 42.

The reserved IRQ has a corresponding entry in the system interrupt
vector table 36. The NIC driver program 26 places the address of the ISR into
the system interrupt vector table 36 at the entry corresponding to the IRQ
reserved by the client driver program 40, numeral 70. When the network
connection is later established, this ISR routine will be called when the
hardware IRQ signals that communication is to occur. The NIC driver program
26 places the node identification of the network interface connector 24, which
is provided in the configuration file 34, into a configuration table. The
network/protocol programs use the node identification during transmission to
identify the source.

Lastly, the NIC driver program 26 notifies the client driver 40 that it is
loaded and initialized, and is ready for connector insertion, numeral 72. The
NIC driver program 26 also notifies the network software program 30 that
loading and initializing are complete. At this point, the setup initialization is
complete, but no hardware reset or initialization has occurred because the
network interface connector 24 has not been inserted into the socket 22.
However, at such time as the connector 24 is inserted and requires its reset
prior to network communication, the software of the computer requires no data

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-10-

or program loading that might interfere with ongoing processes, although some
functions are performed as described next.

Figure 3 depicts the stepwise implementation of these procedures. When
the present approach is activated, a call is made from the NIC driver program
26 to the client driver program 40, numeral 100, for its entry point. The client
driver program 40 returns its entry point, numeral 102, which is stored by the
NIC driver program 26, numeral 104.

As depicted generally in step 64 of Figure 2, the NIC driver program 26
requests the insertion status of the network interface connector card 24 from the
client driver program 40, numeral 106. The insertion status is determined by
the client driver program 40, numeral 108, and returned to the NIC driver
program 26. The NIC driver program 26 tests the connector card insertion
status, numeral 110. If the connector card 24 is already inserted into the socket
22, the standard startup and binding sequence is followed, numeral 112, and the
present approach is not required.

The NIC driver program 26 provides addresses and hardware resources
(step 66 of Figure 2). The NIC driver program 26 first determines whether the
requested hardware resources were specifically requested in the configuration
file 34, numeral 114. If so, those values are set, numeral 116. If not, the first
available values are selected, numeral 118. These established values are
communicated to the client driver program 40, numeral 120.

The client driver program 40 stores the addresses of the reset routines
and reserves hardware resources (step 68 of Figure 2). The client driver
program 40 determines whether a specific IRQ was requested, numeral 122.
If so, that value is reserved, numeral 124. If not, the first available IRQ is
reserved, numeral 126.

The client driver program 40 determines whether a specific I/O and/or
memory range has been requested for later use in the network application,
numeral 128. If so, that I/O and/or memory range is reScrved, numeral 130.
If not, no specific action is required, and any available memory range will be
used at the later time.

The client driver program 40 stores the hardware reset routine address,
numeral 132. The client driver program 40 then returns the status and reserved

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-11-

resource values to the NIC driver program 26, numeral 134. The NIC driver
program 26 stores the ISR address in the interrupt vector table 36 (step 70 of
Figure 2), numeral 136. The NIC driver program 26 notifies the client driver
of completion (step 72 of Figure 2), numeral 138, and the client driver program
40 sets a "NIC driver started” flag, numeral 140. The startup routine of steps
64-72 is complete.

Figure 2 also depicts the events that occur after the network interface
connector 24, preferably in the form of a card, is inserted, numeral 80,
following steps 60-72. The client driver program 40 configures the socket 22
for the required hardware resources, numeral 82. Hardware resources reserved
by the client driver program 40 in numeral 68 are configured for use. The IRQ
to be used will always have been reserved, and the reserved IRQ will be
configured for use. If other hardware resources have been reserved as a result
of being specified in the configuration file 34, specifically I/O base address and
range and/for memory base address and range, these resources will be
configured. If these resources have not been reserved, the client driver
configures any available bases and ranges for these resources. The client driver
program informs the NIC driver program 26 of the [/O and/or memory ranges
selected and configured.

The client driver 40 reads any hardware specific information memory
on the network interface connector 24, numeral 82. The client driver 40
configures the socket and informs the NIC driver program 26 of the hardware
resources configured. That is, the connector 24 may be far more than simply
a conventional pin connector, and may have onboard memory that is used to
store hardware specific information required by the computer such as onboard
buffer memory. This information is read into the computer and passed to the
NIC driver program 26.

Lastly, the client driver 40 calls the hardware reset routine 38 at the
address previously provided to-it (at numeral 66), numeral 84. The routine 38
is executed to reset the hardware network interface connector 24 to an initial
state. At this point, the connector 24 and the NIC driver program 26 are fully
prepared and configured for commencing communication between the computer

and the network.

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-12-

Figure 4 depicts the program logical flow sequence for the steps 80-84
of Figure 2. Upon insertion of the network interface connector card 24 into the
socket 22, a notification is generated in the client driver program 40, numeral
150. The client driver program 40 checks as to whether the prior startup steps
have been performed, numeral 152. If the “NIC driver started” flag was set in
step 140, the process proceeds. If not, the computer is not configured for
binding according to the invention, and connector card insertion is ignored,
numeral 154.

Previously reserved IRQ and memory are next unreserved so that they
can be called during the resetting. The IRQ previously reserved in steps 124
and 126 is unreserved, numeral 156. The client driver program 40 also checks
to see if specific I/O or memory ranges were reserved in step 130, numeral 158.
If so, they are unreserved, numeral 160.

The client driver 40 configures the socket 22, numeral 162, and provides
the configuration information to the NIC driver program 26, numeral 164 (step
82 of Figure 2). The client driver 40 further calls upon the NIC driver program
26 to initiate the hardware reset routine (step 84 of Figure 2) in step 164.

The NIC driver program 26 enters the hardware reset routine, numeral
166. It stores the hardware configurations that are to be used, numeral 168,
and requests, from the client driver program, any parameters that may be stored
on the connector card 24, numeral 170. The client driver program 40 obtains
any such necessary information stored on the connector card 24, numeral 172.
This information is provided to the NIC driver program 26, which resets and/or
initializes the connector card 24 to the desired configuration, numeral 174, to
complete the startup and binding.

The approach depicted in Figures 2-4 has the advantage over prior
practice that the initial portion (steps 60-72) of the setup and binding is
completed prior to insertion of the connector 24. This initial portion is
preferably performed when the-computer-is first- turned on, so that the inidial
portion can be completed in a manner that is consistent with the loading of the
operating system and other programs. The computer startup is typically
performed well before the user seeks to connect to the network. The user can
then use the computer for any desired functions, including the use of plug-in

WO 96/20445 PCT/US95/16016

10

-13-

cards of various types in the socket 22. When the user wishes to communicate
with the network, the connector 24 is inserted into the socket 22, hardware
reset and initialization are performed, and network communications can begin
without interfering with other operations of the computer. In the prior approach
it was necessary to have the network interface connector inserted into the
socket at the time of startup and binding. This approach could interfere with
the other operations of the computer because the computer had to be turned off
and then back on when the connector was inserted, potentially interfering with
ongoing operations.

Although a particular embodiment of the invention has been described
in detail for purposes of illustration, various modifications and enhancements
may be made without departing from the spirit and scope of the invention.
Accordingly, the invention is not to be limited except as by the appended

claims.

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-14-

CLAIMS
What is claimed is:

1. A method for accomplishing network startup and binding of a
portable computer, comprising the steps of:

providing a portable computer configured to receive a network interface
connector but having no network interface connector connected thereto;

establishing a network interface connector reset and configuration
protocol, without the network interface connector connected to the portable
computer;

connecting the network interface connector to the portable computer; and

resetting and configuring the network interface connector using the
protocol established in the step of establishing.

2. A method for accomplishing network startup and binding of a
portable computer having a connector socket which can receive a network
interface connector, the method comprising the steps of:

providing network interface connector driver means for communicating
data with the connector socket; '

providing client driver means for establishing a configuration for the
connector socket, the configuration to be implemented at such time as a
network interface connector is introduced into the connector socket;

the client driver means determining that no network interface connector
is connected to the connector socket and providing that information to the
network interface connector driver means; and

the network interface connector driver means and the client driver means
cooperating to establish a hardware resource information set within the portable
computer sufficient to operate the network interface connector at such time as
the network interface connector is introduced into the connector socket.

3. The method of claim 2, including the additional steps, after the step
of the network interface connector driver means and the client driver means

cooperating to establish, of

WO 96/20445 PCT/US95/16016

10

15

20

25

30

-15-

connecting the network interface connector to the computer; and
resetting and configuring the network interface connector using the
protocol established in the step of cooperating to establish.

4. A method for accomplishing network startup and binding of a
portable computer having a connector socket which can receive a network
interface connector, the method comprising the steps of:

providing a network interface connector driver program stored in the
portable computer, the network interface connector driver routine being
operable to communicate data between a network software program stored in
the personal computer and the connector socket;

providing a client driver program stored in the portable computer, the
client driver program being operable to configure the connector socket for use
by a network interface connector at such time as a network interface connector
is introduced into the connector socket;

the client driver program determining that no network interface
connector is connected to the connector socket and providing that information
to the network interface connector driver program;

the network interface connector driver program providing to the client
driver program the locations of interrupt-driven communications routines within
the network interface connector driver program, the location of a network
interface connector driver hardware reset routine within the network interface
connector driver program, and the nature of a set of network hardware
resources requested by a user of the portable computer, the set of network
hardware resources including at least an interrupt request level,

the client driver program placing the locations of the interrupt-driven
communications routines into an interrupt table, storing the location of the
network interface connector driver hardware reset routine, and reserving for
later use the network hardware resources provided by the network interface
connector driver program;

the network interface connector driver program placing the node
identification of the network interface connector into a configuration file and
providing the node identification to the network software program; and

the network interface connector driver program notifying the client

WO 96/20445 PCT/US95/16016

10

-16-

driver program and the network interface connector driver program of the
completion of loading.

5. The method of claim 4, including the additional steps, after the step
of notifying, of

connecting the network interface connector to the socket;

the client driver program configuring the connector socket;

the client driver program reading from the network interface connector
any hardware specific information required for communication between the
network interface connector driver program and the network interface connector
and providing this information to the network interface connector driver
program; and

the client driver program calling the hardware reset routine using the
address provided during the step of the network interface connector driver

program providing.

PCT/US95/16016

WO 96/20445

Z/5

CEN Samribezeo

WV IULSAS”

L asnia o/n! o
A (74 _
LIS TLAY e
FHEMIYH
“ | L_{%.m.
£ o8~ _ “ |
FTEEU _ ML O | DINIFT WEX50 |
FOINOSTY D INIIT (] D INDT |l MOUUS (o> FXMLFOS
FAOMaTIet INTIT72 | | DIN “ 7020L O MIOMLITN
_
ﬁ L ﬁ.. - 1 /] S
1 H 8z LY cE %3
- 4
SnNo/L %W&w@kk% PN .m.ww .W\Q.WQ“M.
“o ane axeo| g
J 4 4
s ! AN m
22~ e * 2.T.L IO oz
- T | _|| - T T e w
DOLIINNOD aoy
" FOLTATING MIOMLIN | N7 577
L2~ _ T — — — —
\J

T 7/
NO/LEXI?E/(FAOD

~bE

I
]
—_—

™ weodbosy |

PCT/US95/16016

WO 96/20445

cOl4

2/5

aIINS/(INOD S 7D/10S T acdyo
FNLLIOY LTS.T TFYEMaAY bt SO I IAIYT YOLDITNNOD
FYOMayers 77O |a—- DIN SWXOINT AN \a— FOHSITUNIT
Y INDT LN.F/7D LINO0S S TINE/FNOD MYOMLIN
INAT LNMNF/TP LTSN
27 9%’ #°
F786L FOLDIA ©
LIPS TULNI N/ S F02/70S7Y wy
NO/L T ToWVO2 sIssIyaal Isr FYOMTIH 5
ST/ A/ LON [+ SIS aNE FTTFCL < SITNIISIY ANE [+ =
I IFNIT /N NOILEXNEIINOD OLN/ SIN/LINCY LTSTY SO T
NO/ILEOSUNITIAL FAON SISSITNATEY SITYOLS z
STOU 7S LTINS 2N X TAIXT _LNZFI7D s
s)
4) J =
7 oz £ 2
@
SIOINOSTY XOLOINNOD
FXOMaTrt AN aITLY TSN/ ON A INIXT YINXT
SISSITIATEY [a— S ININY.TLITIT la— OIN (a—— UNT/TO
S FTT/IANOYS IINaT FaINCDS FAINCYS
A/ 2IMN LNTI7D
5) J {
22 L9 22 09

WO 96/20445

3/5

PCT/US95/16016

N/C DeIVER CLIENT DRIVER
26~ Cs0
N/C DRIVER
TMTTALIZATION
ROUTINE
/00~ FIND CLIENT RETURYN | oz
L e CLIENT DRIVER
p,e/vze‘f/vr,ev/ LIENT DSV
104~ sroes
CLIENT DRIVER =
ENTRY POINT
[0b | erouEST cARD RETURN CARD /08
INSERT/ION |———w INSER7LED/
S7TATUS EXTRACTED
|
S7ANDARD ~//2
TNITIALIZATION

PESOURCES
YES A REQUESTED /N S8
CONF /G
FILE

/6 - /‘/ g
{

SET SET
REQUESTED LEQUESTED
RESOURCES CESOURCES
70 CONFI§ 70 F/@ST

FILE AVPYLABLE
VALUES VALUES

!

L2O0-] pars CLIENT DRIVER WITH

REQUESTED RESOURCES
AND HW BESE 7 ADDRESS

F1G.3 (sneeT 1)

SUBSTITUTE SHEET (RULE 26)

WO 96/20445 PCT/US95/16016

4/5
/2‘4
RESERVE RESERVE
EEQUESTED FIRST
ZRQ AVIAILABLE
ZRQO
L .]

/3;0
LESERVE REDYESTED
Z/0 AND/OR MEMORY
RANG E
|
STORE HW RESET |—/322
LPOUTINE ADDRESS
! /34
LBETLRNY STATYUS AND
136 RESERVED RESOURCE
(l VALUES
S70RE TSR ADDRESS/N
INTERRUPT VECTOR TABLE
/38 ‘ /F0
TELL CLIENT DRIVER SE7 NIC DRIVER
N/C DRIVER STARTED [| STARTED FLAG
RETURIN

F/G.3(5ﬁ££rz)

SUBSTITUTE SHEET (RULE 26)

WO 96/20445

PCT/US95/16016

S/5

N/E DRIVER CLIENT DRIVER
Lze < <0
CARD INSERTION
NOTIFICA r/oD’ 750
/54
TENORE
/56 INSERTION
)
UNVRESERVE ZoQ
/58
/ 6S0
UNRESERVE EPUESTED
Z/0 AND OR MEMORY
RONGE
' 162
CONFIGURE SOCKET PER
N/C DRIVER BEQUICEMENTS
/44\ ‘

/66
S

CALL NIC DRIVER HWN RESET
LOUTINE AND PASE CONFIGURED

Y M RESOURCES
e)
z /68
S70RE HW CONF/GURATION 172
{
70 !
IO rauEsT PARAMETERS | \ICCESE STOCED, e
STORED ON crARD AND PASS 70 N/C DRIVER
]
/74 Y
\ KESET/INIT/RLIZE
cARD
RETURN 7O ‘
CLIENT DRIVER | "| RETYRN

sussTiute sHeeT (ULEe) [G, 4

-iternational application No.

INTERNATIONAL SEARCH REPORT
PCT/US95/16016

A. CLASSIFICATION OF SUBJECT MATTER

[PC(6) :GOGF 12/00. 13/00
US CL : 395/200.10, 800, 700
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbois)

U.S. : 395/200.10, 800, 700

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and. where practicable. search terms used)

Dialog database, internet linux sites at tsx-11.mit.edu

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication. where appropriate. of the relevant passages Relevant to claim No.

X "Linux Ethernet HOWTO", Part 2/2, chapter 5, posted 16| 1-5
March 1994 at tsx-11.mit.edu internet site. Page 2 (lines 1-
25) and page 2 (line 35) through page 4 (line 16).

X "A 3c589 Etherlink 3 Ethernet driver for Linux" published| 1-3
electronically by tsx-11.mit.edu internet site by Donald
Becker, dated 3 May 1994. Page 2 (lines 30-32) and page
3 (lines 5-17)

E] Further documents are listed in the continuation of Box C. D See patent family annex.

fater document published afier the international filing date or prionty
L date and not 1n conflict with the application but cited to understand the
A document defining the general state of the art which 15 not considered principle or theory underlying the invention
1o be part of parucular reievance)

* Special categories of cited documents: T

- : : X" document of parucular relevance: the claimed nvention cannot be
E earlier document published on or afiet the internauonal filing date considered novet or cannot be considered to involve an invenuve step
"Lt document which may throw doublts on priority claim(s) or which is when the document 1s taken alone
cied 10 establish the publicauon date of another cuation or other X
special reason (as specified) Y document of parucular relevance; the claimed invention cannot be
considered to invoive an inventive step when the document s
"0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents. such combination
means being obvious to a person skilled in the an
P" document published prior to the international filing date but later than -g - document member of the same patent family
the prionity date claimed
Date of the actual completion of the international search Date of mailing of the international search report
28 FEBRUARY 1996 1 8\MAR 1996
d A
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT MEHMET GECKIL
Washington, D.C. 20231
Facsimile No. (703) 305-3230 Telephone No. (703) 305-

Form PCT/ISA/210 (second sheet)(July 1992)x \ J ‘ ~J

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

