Office de la Proprieté Canadian CA 2525731 C 2014/04/22

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 525 731
Findustrie Canada Industry Canada 12 BREVET CANADIEN
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2005/11/07 (51) CLInt./Int.Cl. GO6F 77/00(2006.01),

(41) Mise a la disp. pub./Open to Public Insp.: 2006/06/20 GO6F 9/445(2006.01)
(72) Inventeurs/Inventors:

(45) Date de delivrance/lssue Date: 2014/04/22 JONES. BRIAN M., US:

(30) Priorte/Priority: 2004/12/20 (US11/018,914) LIU CAROL L., US:
ROTHSCHILLER, CHAD B., US;
MCCAUGHEY, ROBERT R., US;
VILLARON, SHAWN A., US;
WU, SU-PIAO BILL, US

(73) Proprietaire/Owner:
MICROSOFT CORPORATION, US

(74) Agent: SMART & BIGGAR

(54) Titre : METHODE ET SUPPORT LISIBLE PAR ORDINATEUR PERMETTANT DE CHARGER LE CONTENU D'UN

FICHIER DE DONNEES
54) Title: METHOD AND COMPUTER-READABLE MEDIUM FOR LOADING THE CONTENTS OF A DATA FILE

..--.-.-...-----.--.
- ' ’ ‘
26A FEATURES A-C FEATURES A-C ! s
. L e S L L A L S ST A i 4 v e ST T L L O B T A A A o 2
I R S Sl S P iy O A o o e ot o o O P s S .
26B ; /,-) - ;t. “(5 ... o i . - N o o~ ‘f -~ ? . ~ .:\ .::,.' \ -’"\‘*:e\;"w - 1_9 L’ . ;.« 3 o 2 A, .Ax £ - PRy —~) o o % o(ﬁ’ .4.‘ . .
- o ol o & 5 ¢ I ' i ¥ O S PR 5wt K .’ Ef 4 v F A
- E Rg v e o g 3 K~ Fe ZErael PPN 3 P ! > 5 ra 75 RN
(“ - R, i / e P ,‘“ AT " T AT & P A ,J”,. A L5 8 . - ¢ ‘ .:§ A e AT PAaf o i Lol Ry | Fo
o g AT A A% R N R P s
il IS EN S E ¥ G G T R AR DAl A s §°4,{' e S e e e - . .
26C FEATURES E-G 2%6C FEATURES E-G . ’
-e USER DATA ONLY '
PPN - &7 .
FEATURES I-N FEATURES I-N '
(57) Abréegée/Abstract:

A method and computer-readable medium are provided for loading the contents of an electronic data file. According to the
method, corrupted portions of a data file are identified and an attempt iIs made to repair these portions. If the corrupted portions
cannot be repaired, the loading of these portions Is skipped. The uncorrupted and repaired portions of the data file are then loaded
Into memory. If portions of the data file cannot be repaired or skipped, an attempt is made to load only the user data contained In
the data file. In this manner, the user data contained in the data file may be loaded even In cases of severe corruption.

SRS ER VNN
R RN N
: "c‘:‘? R - e
AR =0y g s ¥, "..’
' h_ N .

SRR /S S
ey CIPO
3 DR _'\Q;?&_.‘a\g«?l
SRR ‘-g;}::q
4

» . _
‘ l an a dH http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C
OPIC - CIPO 191

10

15

20

CA 02525731 2005-11-07

METHOD AND COMPUTER-READABLE MEDIUM FOR
LOADING THE CONTENTS OF A DATA FILE

ABSTRACT OF THE DISCLOSURE
A method and computer-readable medium are provided for loading the
contents of an electronic data file. According to the method, corrupted portions of a data
file are identified and an attempt is made to repair these portions. If the corrupted
portions cannot be repaired, the loading of these portions is skipped. The uncorrupted
and repaired portions of the data file are then loaded into memory. If portions of the data
file cannot be repaired or skipped, an attempt is made to load only the user data contained

in the data file. In this manner, the user data contained in the data file may be loaded

even in cases of severe corruption.

27488

PATENT TRADEMARK OFFICE

CA 02525731 2010-11-08

91028-73

15

20

25

M&G No. 60001.0448US01 -

METHOD AND COMPUTER—READABLE MEDIUM FOR
LOADING THE CONTENTS OF A DATA FILE

BACKGROUND OF THE INVENTION
' Computers are utilized pervasiizely in today’s society to perform a wide
variety of tasks and for entertainment p'urpOSf.'s- For instance, c;)mputers today are
utilized for gaming, communications, research, and a virtually endless variety of other
applications. One of the most common uses of computers, by both businesses and

individuals alike, is the creation of electronic and printed documents.. Computer

application programs exist for creating all kinds of electronic documents, including

spreadsheeté, presentations, word processing documents, graphical documents such as
diagrams and digital images, computer-aided design docmnents, and many other types
of electronic documents.

Electronic documents often include content that 1s very important.
Moreover, the content of an electronic document in many cases would be difficult or
1mpossible to recreate if lost. For instance, highly complicafed' légal business,
marketing, and technical documents are often created that could not easily be recreated
1f the data file storing the document were corrupted or destroyed Even in cases where
the contents of a document could be easily be recreated, it can be very frustraung for a
user to lose even a small portion of their data. Accordingly, if is very important that the
data contained in electronic documents be p r-..,tected against destruction and con'upuon

Modem computer systems include error checking and other mechmusms

to protect against the inadvertent destruction or cotruption of data files. Unfortupately,

1

CA 02525731 2010-11-08

51028-73

even with these mechanisms in place, it is quite common for the data files in which

electronic documents are stored to become corrupted. Corruption may occir while the

data file 15 being saved to mass storage or may occur as a result of a faulty storage

device or controller hardware, Data files may also become corrupted during network

5 transmission or by the occurrence of many other types of events. Because the loss of

any amount of data can be frustrating to a user énd because the time and effort

necessary to recreate a corrupted document is often very high, it is important that as
much data as possible be recovered from a corrupted data file.

It is with respect to these considerations and others that the various

10 embodiments of the present invention have been made.

BRIEF SUMMARY OF THE INVENTION
In accordance with some aspects of the present invention, the above and

other problems are solved by a method and computer-readable medium for loading the
contents of an electronic data file. Through the use of the various embodiments of the
15 present invention, during the load of a data file corrupted portions, or records, of the file are
identified and an attempt is made to repair these portions. If the corrupted portions
cannot be repaired, the loading of these portions is skipped. The uncoxrup;ted and
repaired portions of the data file are then loaded into memory. If portions of the data
file cannot be repaired or skipped, an attempt can also be made to load only the user
20 data contained in the data file. In this manner, the user data contained in the data file
- may be loaded even in cases of severe corruption to the remainder of the data file.
According to one aspect of the invention, a method 1s provided for
loading a data file that includes one or more portions. According to the method, a
number of load modes ate provided. In the “normal” Joad mode an attempt 1s made to
25 load each portion of the data file in & normal fashion. The normal load mode includes
minimal integrity checking on each of the portions of the data {ile so that the file can be
loaded quickly. If a portidn of the data file is encountered that is missing or comupt
while in the nommal mode, a second mode, called the “safe” load mode, 15 utilized to

atternpt to load the portions of the data file. A portion of the data file may be

2

10

15

CA 02525731 2010-11-08

51028-73

- considered corrupt and therefore unloadable if it causes an error in or crash of the

application program attempting to load it, if the portion includes an unexpected data
value, if the portion is missing data, if the portion includes invalid tecords or invalid
extensible markup language (“XML™), and for other causes.

In the safe load mode extensive integrity checking is performed on each
portion of the data file, In the safe Joad mode an attempt may also be made to repair the
corrupted portions of the data file. Any portions that can be repaired are then loaded. If
a portion of thie data file is encountered in the safe load mode that is missing or corrupt
and which is also unrepairable, the loading of the unrepairable portion is skipped. If
portions of the data file are encountered that are not repairable and for which loading
cannot be skipped, a third load mode, called the “recovery” load mode, is utilized to
attempt to load the portions of the data file.

In the recovery load mode only the portions of the data file that include
user data are loaded. For instance, user data may comprise text data or numerical data
that was entered by a user. As an example, if the data file contains a spreadsheet, an
attempt 18 made in the recovery load mode to load only the data contained in the cells of
the spreadsheet. No attempt 1s made in the recovery mode to load other types of data
that may be contained in the data file, such as pivot tables, list objects, named ranges,

auto filters, styles, formatting, and application or user preferences.

10

15

20

29

30

CA 02525731 2013-07-26

51028-73

According to another aspect of the present invention, there is provided a
method for loading a data file including at least one portion, the method comprising:
attempting to load the at least one portion of the data file in a first loading mode, wherein
attempting to load the at least one portion comprises; initializing a skip counter variable to
identify each of the at least one portions that can be skipped, and performing integrity
checking on each of the at least one portions; determining in the first loading mode whether a
portion of the at least one portion is unloadable, wherein determining in the first loading mode
whether the portion of the at least one portion is unloadable comprises determining whether
the first loading mode is at least one of the following: normal loading mode and sate loading

mode; and in response to determining that the portion of the at least one portion is unloadable

" and that the first loading mode is the normal loading mode: flagging the skip counter variable

to indicate that the unloadable portion can be skipped; switching to a second loading mode,
the second loading mode being the safe loading mode; and attempting to load the data file in
the second loading mode wherein additional integrity checking is performed on each of the at
least one portions, wherein loading of each unloadable portion and loading of each portion
related to each unloadable portion are skipped, wherein while attempting to load the data file
in the second loading mode, determining whether the unloadable portion may be repaired, and
in response to determining that the unloadable portion may be repaired, repairing the

unloadable portion, unflagging the skip counter variable, and loading a repaired portion.

According to another aspect of the present invention, there is provided a

computer-readable storage medium having computer-executable instructions stored thereon

which, when executed by a computer, will cause the computer to: provide a normal loading
mode for loading a data file having at least one portion, and initialize a skip counter variable
to identify each of the at least one portion that can be skipped, wherein integrity checking is
performed on each of the at least one portions when loading in the normal loading mode;
provide a safe loading mode for loading the at least one portion of the data file, wherein
additional integrity checking is performed on each of the at least one portions and wherein
loading of each unloadable portion, and loading of each portion related to an unloadable
portion are skipped; begin loading the data file in a first loading mode, wherein while loading

the data file, determine whether the first loading mode 1s at least one of the following: the

3a

10

15

20

25

30

CA 02525731 2013-07-26

51028-73

normal loading mode and the safe loading mode; determine when operating in the first

loading mode whether a portion of the data file 1s unloadable and 1n response to determining
that the portion is unloadable and that the first loading mode 1s the normal loading mode, tlag
the skip counter variable to indicate that the unloadable portion can be skipped and switch to a
second loading mode, the second loading mode being the safe loading mode; and to attempt to
load the data file in the second loading mode, wherein while attempting to load the data file in
the second loading mode, determine whether the unloadable portion may be repaired, and 1n
response to determining that the unloadable portion may be repaired, repair the unloadable

portion, unflag the skip counter variable, and load the repaired portion.

According to still another aspect of the present invention, there 1s provided a
method for loading a data file including at least one record, the method comprising: selecting
a first loading mode by a user; initializing a skip counter variable to indicate that no records
can be skipped; loading the data file in the first loading mode, wherein loading the data file
comprises performing integrity checking on each of the at least one record; determining 1n the
first loading mode whether a record of the data file 1s unloadable; in response to determining
that the record of the data file is unloadable, determining in the first loading mode whether the
first loading mode is a normal loading mode, flagging the skip counter variable to indicate
that the unloadable record can be skipped; in response to determining that the first loading
mode 1s the normal loading mode, switching the first loading mode to a sate loading mode and
loading the data file from a beginning of the data file; in response to determining in the first

loading mode that the first loading mode is not the normal loading mode, determining whether

the first loading mode is the safe loading mode, and returning an error 1f the first loading
mode is not the safe loading mode; attempting to load the data file in a second loading mode,
the second loading mode being the safe loading mode, wherein while attempting to load the

data file in the second loading mode, determining whether the unloadable record can be
repaired; in response to determining that the unloadable record can be repaired, repairing the

unloadable record, unflagging the skip counter variable and loading the record; and 1n

response to determining that the unloadable record cannot be repaired: determining the
number of records to be skipped in response to determining that the number of records to be

skipped is equal to zero, flagging the skip counter variable; and in response to determining

3b

10

CA 02525731 2013-07-26

51028-73

that the number of records to be skipped is not equal to zero attempting to skip loading of the

record.

According to other embodiments of the invention, a computer-readable
medium is also provided on which is stored computer-executable instructions. When the
computer-executable instructions are executed by a computer, they cause the computer to
provide a first loading mode for loading a data file that has one or more portions. In the first
loading mode minimal integrity checking is performed on the portions of the data file as they
are loaded. The computer-executable instructions also cause the computer to provide a
second loading mode for loading the data file in which more extensive integrity checking i1s
performed on the portions of the data file than in the first loading mode. In the second loading
mode an attempt may also be made to repair portions that are unloadable. Moreover, in the

second loading mode the loading of any unloadable portions is skipped.

3c

10

15

20

235

CA 02525731 2005-11-07

The computer-executable instructions also cause the computer to begin
loading a data file in the first loading mode. If a portion of the data file 1s determined to
be unloadable in the first loading mode, the computer switches to the second loading
mode and attempts to load the data file in this loading mode. If, in the second loading
mode, an unloadable portion is encountered that may be repaired, the unloadable
portion is repaired and loaded. If the unloadable portion cannot be repaired, loading of
the unloadable portion 1s skipped.

According to an embodiment of the invention, the computer-executable
instructions also cause the computer to provide a third loading mode wherein only the
portions of the data file that include user data are loaded. If, in the second loading
mode, it is determined that a portion of the data file is unloadable and that the
unloadable portion cannot be repaired or skipped, an attempt is made to load the
contents of the data file in the third loading mode.

The invention may be implemented as a computer process, a computing
system, or as an article of manufacture such as a computer program product or
computer readable media. The computer program product may be a computer storage
media readable by a computer system and encoding a computer program of instructions
for executing a computer process. The computer program product may also be a
propagated signal on a carrier readable by a computing system and encoding a computer
program of instructions for executing a computer process.

These and various other features, as well as advantages, which

characterize the present invention, will be apparent from a reading of the following

detailed description and a review of the associated drawings.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIGURE 1 1s a computer system architecture diagram illustrating a
computer system utilized in and provided by the various embodiments of the invention;
FIGURE 2 1s a block diagram illustrating aspects of a data file and the

various loading modes provided by the embodiments of the invention; and

10

15

20

235

CA 02525731 2005-11-07

FIGURES 3A-3B are flow diagrams showing an illustrative process for

loading a data file according to the various embodiments of the invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings, in which like numerals represent like
elements, various aspects of the present invention will be described. In particular,
FIGURE 1 and the corresponding discussion are intended to provide a brief, general
description of a suitable computing environment in which embodiments of the invention
may be implemented. While the invention will be described in the general context of
program modules that execute on an operating system on a personal computer, those
skilled in the art will recognize that the invention may also be implemented in
combination with other types of computer systems and program modules.

Generally, program modules include routines, programs, components,
data structures, and other types of structures that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system configurations, including hand-
held devices, multiprocessor systems, microprocessor-based or programmable
consumer electronics, minicomputers, mainframe computers, and the like. The
invention may also be practiced in distributed computing environments where tasks are
performed by remote processing devices that are linked through a communications
network. In a distributed computing environment, program modules may be located in

both local and remote memory storage devices.

Referring now to FIGURE 1, an illustrative computer architecture for a
computer 2 utilized in the various embodiments of the invention will be described. The
computer architecture shown in FIGURE 1 illustrates a conventional desktop or laptop
computer, including a central processing unit 5 ("CPU"), a system memory 7, including
a random access memory 9 ("RAM") and a read-only memory ("ROM") 11, and a
system bus 12 that couples the memory to the CPU 5. A basic input/output system

containing the basic routines that help to transfer information between elements within

the computer, such as during startup, is stored in the ROM 11. The computer 2 further

S

10

15

20

235

CA 02525731 2005-11-07

includes a mass storage device 14 for storing an operating system 16, application
programs, and other program modules, which will be described in greater detail below.

The mass storage device 14 is connected to the CPU 5 through a mass
storage controller (not shown) connected to the bus 12. The mass storage device 14 and
its associated computer-readable media provide non-volatile storage for the computer 2.
Although the description of computer-readable media contained herein refers to a mass
storage device, such as a hard disk or CD-ROM drive, it should be appreciated by those
skilled in the art that computer-readable media can be any available media that can be
accessed by the computer 2.

By way of example, and not limitation, computer-readable media may
comprise computer storage media and communication media. Computer storage media
includes volatile and non-volatile, removable and non-removable media implemented 1n
any method or technology for storage of information such as computer-readable
instructions, data structures, program modules or other data. Computer storage media
includes, but 1s not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other
solid state memory technology, CD-ROM, digital versatile disks (“DVD”), or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the desired
information and which can be accessed by the computer 2.

According to various embodiments of the invention, the computer 2 may
operate 1n a networked environment using logical connections to remote computers

through a network 18, such as the Internet. The computer 2 may connect to the network

18 through a network interface unit 20 connected to the bus 12. It should be
appreciated that the network interface unit 20 may also be utilized to connect to other
types of networks and remote computer systems. The computer 2 may also include an
input/output controller 22 for receiving and processing input from a number of other
devices, including a keyboard, mouse, or electronic stylus (not shown in FIGURE 1).
Similarly, an input/output controller 22 may provide output to a display screen, a

printer, or other type of output device.

CA 02525731 2013-07-26

51028-73

' As mentioned briefly above, a number of program modules and data files
may be stored in the mass storage device 14 and RAM 9 of the computer 2, including an
operating system 16 suitable for controlling the operation of a networked personal
computer, such as the WINDOWS XPm operating system from MICROSOFT.

5 CORPORATION of Redmond, Washington. The mass storage device 14 and RAM 9
may also store ene or more program modules. In particular, the mass storage device 14
and the RAM 9 may 'store a spreadsheet application program 10. As known to those
skilled in the art, the- spreadsheet application pro gram 10 is operative to provide
functionality for creating and editing electronic spreadsheets, '

10 According to one embodiment of the inventiorr, the spreadsheet
application program 10 comprises the EXCEI![,M Spreadsheet application program from
MICROSOFT CORPORATION. It should be appreciated, however, that other
spreadsheet application programs from other manufacturers may be utilized to embody
the various aspects of the present invention. It should also be appreciated that although

15 the embodiments of the invention described herein are presented in the context of a
spreadsheet application program, the invention may be utilized with any other type of
application program that loads data from a data file. For instance, the embodiments of
the invention described herein may be utilized within a word processing application

- program, a presentation application program, a drawing or computer-aided design

20 application program, or a database application program.

In conjunction with the creation and editing of a spreadsheet document,
the spreadsheet application program 10 provides functionality for -saving the
spreadsheet document in a data file 24 on the mass storage device 14. The data file 24
contains data representing the various aspects of a spreadsheet document, such as user

25 data including the contents of the spreadsheet cells, application preferences, formatting
information, and other data corresponding to the various features provided by the
spreadsheet application program 10. Additional details regarding the structure of the
data file 24 will be provided below with respect to FIGURE 2.

According to the embodiments of the invention, the spreadsheet

30 application program 10 provides functionality for restoring the contents of a spreadsheet

7

10

15

20

25

30

CA 02525731 2005-11-07

document by loading the data file 24 from the mass storage device 14 into the random
access memory 9 of the computer 2. As will be described in greater detail below with
respect to FIGURES 2-3B, a method for loading the data file 24 is utilized by the
spreadsheet application program 10 that accounts for the possibility of corruption in the
data file 24 and that attempts to maximize the amount of data that is loaded from the
data file 24 even if the data file 24 becomes corrupted.

Turning now to FIGURE 2, additional details will be provided regarding
the structure of the data file 24 and the operation of the loading mechanism utilized by
the spreadsheet application program 10. As shown in FIGURE 2, the data file 24 is
subdivided into a number of portions 26A-26N. Each of the portions 26A-26N 1s
utilized to store information relating to one or more features supported by the
spreadsheet application program 10. Moredver, the information for different but related
features may be stored in a single one of the portions 26A-26N. For instance, as shown
in FIGURE 2, the data for features A-C are stored in the portion 26A. The data for
feature D is stored in portion 26B. The data for features E-G are stored in the portion
26C, and so on. User data may be stored in any of the portions 26A-26N.

As described briefly above, and shown in FIGURE 2, it 1s possible for
the data contained within the portions 26A-26N to be corrupted. Corruption may occur
while the data file is being saved to mass storage or may occur as a result of a faulty
storage device or controller hardware. Data files may also become corrupted during
network transmission or by the occurrence of many other types of events. The data for
a particular portion may also be determined to be missing. A portion of the data file
may be considered corrupt and therefore unloadable if it causes an error in or crash of
the application program attempting to load it, if the portion includes an unexpected data
value, if the portion is missing data, if the portion includes invalid records or invalid
extensible markup language (“XML”), and for other causes. In the illustrative data file
24 shown in FIGURE 2, the portions 26B and 26D have become corrupted.

As described herein, portions of the data file 24 are loadable by the
spreadsheet application program 10 despite the corruption of the portions 26B and 26D.
FIGURE 2 also illustrates this loading process utilizing the illustrative data file 24. In

8

10

15

20

25

30

CA 02525731 2005-11-07

particular, the spreadsheet application program 10 begins loading the data file 24 1n a
normal loading mode. In the normal loading mode, minimal integrity checking 1is
performed on the portions 26A-26N of the data file. If a corrupted portion of the data
file 24 is encountered while loading in the normal mode, the spreadsheet application
program 10 switches to a safe loading mode and begins loading the data file 24 from the
beginning. For instance, as shown in FIGURE 2, when the corrupted portion 26B is
encountered in the normal loading mode, the loading mode is changed to the safe
loading mode and loading begins again at the beginning of the data file 24.

In the safe loading mode, additional integrity checking is performed on
the portions 26A-26N of the data file 24 as compared to the normal loading mode.
Additionally, if a corrupted portion is encountered while loading in the sate mode, an
attempt is made to repair the corrupted portion. If the corrupted portion can be repaired,
that portion is loaded. If the corrupted portion cannot be repaired, then the loading of
the corrupted portion is skipped. For example, as shown in FIGURE 2 the portion 26B

is corrupted and cannot be repaired. Therefore, the loading of the portion 26B 1is

- skipped and the portion 26C is loaded.

After the portion 26C has been loaded, an attempt i.s then made to load
the portion 26D. However, as shown in FIGURE 2, the portion 26D 1s corrupt.
Accordingly, an attempt is made to repair the portion 26D. If the portion 26D cannot be
loaded, the loading of the portion 26D is skipped and this process continues until the
remaining portions have been loaded or skipped. According to an embodiment of the

invention, the loading of the data file 24 may return to the beginning of the data file 24

after an unloadable portion has been encountered and determined to be unrepairable.
This is illustrated in FIGURE 2. Returning to the beginning of the data file 24 in this
manner allows the loading of other portions of the data file 24 that are related to an
unloadable portion to be skipped even though the related portions may not be corrupt.

If, during the loading of the data file 24, a portion is encountered that is
unloadable and unrepairable, the spreadsheet application program 10 may switch to a
third loading mode, called the recovery loading mode. In the recovery loading mode,

an attempt is made to load only the user data from the data file. In particular, with

9

CA 02525731 2013-07-26

51028-73

10

15

20

235

30

regard to a text document an attempt is made to load only the text of the document.
With regard to a spreadsheet document, an attempt is made to load the contents of the
spreadsheet cells, including data input by a user, formulas, and formula generated data.
In this manner, even if portions of the data file are corrupt, some or all of the user data
may be recovered and loaded. This process is illustrated by the dotted line in F IGURE
2 and would be performed if the portion 26D was determined to be unloadable and
unrepairable, and that the file should not be loaded at all without it. Additional details
regardihg this process are provided below with respect to FIGURES 3A-3B.

Referring now to FIGURES 3A-3B, the routine 300 will be described
illustrating a process performed by the spreadsheet application program 10 for loading
the contents of a data file 24. When reading the discussion of the routines presented
herein, it should be appreciated that the logical operations of various embodiments of
the present invention are implemented (1) as a seqﬁence of computer implemented acts
or program modules running on a computing system and/or (2) as interconnected
machine logic circuits or circuit modules within the computing system. The
implementation is a matter of choice dependent on the performance requirements of the
computing system implementing the invention. Accordingly, the logical operations
illustrated in FIGURES 3A-3B, and making up the embodiments of the present
invention described herein are referred to variously as operations, structural devices,
acts or modules. It will be reco gnized by one skilled in the art that these operations,
structural devices, acts and modules may be implemented in software, in firmware, in
special purpose digital logic, and any combination thereof without deviating from the
scope of the present invention as recited within the claims set forth herein.

It should be appreciated that the routine 300 utilizes several variables in
its operation. In particular, the “mode” variable keeps track of the current loading
mode. This variable may be set to either “safe,” “normal,” or “recovery.” The “skip
counter” variable 1s a data structure used to identify individually each of the portions
that should be skipped during loading. A “number of records to skip” variable
describes the current number of sections that should be skipped on the current load

attempt. A “current record” variable identifies the current section within the data file

10

10

15

20

25

30

CA 02525731 2005-11-07

being processed. It should be appreciated that more or fewer variables may be utilized
to perform the same task. Moreover, it should be appreciated that the routine 300
illustrated in FIGURE 3 represents but one possible implementation of the invention
and that many other implementations will be apparent to those skilled in the art.

The routine 300 begins at either operation 302, 304, or 306. In
particular, according to embodiments of the invention, a user interface may be provided
that allows a user to select whether a data file is loaded normally (operation 304), is
loaded in the safe loading mode (operation 302), or is loaded in the recovery loading
mode (306). This user interface may be presented to a user when the user requests that
a file be loaded. Based on the user’s selection within the user interface, the routine 300
begins its operation at either operation 302, 304, or 306.

If loading is to begin in the safe loading mode, the routine 300 begins at
operation 302, where the mode variable is set to “safe.” The routine 300 then continues
to operation 308. If loading is to begin in the normal loading mode, the routine 300
begins at operation 304, where the mode variable is set to “normal.” The routine 300
then continues from operation 304 to operation 308. If loading is to begin in the
recovery loading mode, the routine begins at operation 306, where the mode variable 1s
set to “recovery.” From operation 306, the routine 300 continues to operation 348,
described below.

At operation 308, the skip counter variable is initialized to indicate that
no records should be skipped. The routine 300 then continues to operation 310 where
the current record is set to the first record in the data file. The number of records to skip
variable is initialized as well. On the first pass, this sets the number of records to skip
equal to zero. From operation 310, the routine 300 continues to operation 312.

At operation 312, an attempt is made to load the current record in the
current mode. For instance,.if the mode variable is equal to “normal,” minimal integrity
checking is performed on the section being loaded. If the mode variable 1s equal to
“safe,” additional integrity checking is performed. From operation 312, the routine 300
continues to operation 314, where a determination is made as to whether the current

record is unloadable (i.e. either corrupt or missing). If the current record is loadable,

11

10

15

20

25

CA 02525731 2005-11-07

the routine 300 branches to operation 316 where a determination is made as to whether
more records remain to be loaded. If more records exist, the routine 300 branches from
operation 316 to operation 318 where the current record variable is set to the next
record in the data file. The routine 300 then continues to operation 321, where the next
record is loaded. If, at operation 316, it is determined that no additional records remain
to be loaded, the routine 300 branches to operation 320 where it ends. In this manner,
all records are loaded in the current mode if no corrupt or missing records exist.

It should be appreciated that, in embodiments of the invention, some
integrity checks may be performed at the feature level as opposed to the record level.
To perform such feature level integrity checking, all of the records for a particular
feature are loaded. Then, a determination is made as to whether the data for the feature
is valid. If the data is invalid, the skip data structure is updated with the records for the
feature to be skipped and the file is reloaded. File-level consistency checks may also be
made 1n a similar manner.

If, at operation 314, it is determined that the current record is unloadable,
the routine 314 continues to operation 322 where a determination is made as to whether
the current mode is the normal mode. If the current mode is the normal mode, the
routine 300 branches to operation 324, where the record is flagged in the skip counter
variable indicating that a portion of the data file has been identified that may need to be
skipped. The routine 300 then continues to operation 326, where the mode variable 1s
set to “safe.” In this manner, the loading mode is switched from normal to sate upon
encountering an unloadable portion of the data file. The routine 300 then returns back
to operation 310, where the processing the of the data file returns to the beginning.

If, at operation 322, it is determined that the current loading mode is not
the normal mode, the routine 300 continues to operation 328 where a determination 1s
made as to whether the current loading mode is the safe mode. Because only the
normal or safe loading modes should be possible values in this portion of the routine
300, the routine branches to operation 330 where an error is returned 1f the current

loading mode is not the safe mode. The routine 300 then continues from operation 330

12

10

15

20

25

30

CA 02525731 2005-11-07

to operation 320, where it ends. If, however, at operation 328 it is determined that the
current mode is the safe mode, the routine 300 continues to operation 332.

At operation 332, an attempt is made to repair the current record. At
operation 334, a determination is made as to whether the current record was repairable.
If the record was repairable, the routine 300 branches to operation 336, where the
current record is loaded. At operation 336, the skip counter variable is also updated to
indicate that loading of the current record should not be skipped because the record was
repairable. From operation 336, the routine 300 branches back to operation 316, where
the remainder of the records of the data file are processed in the manner described
above.

If, at operation 334, it is determined that the current record could not be
repaired, the routine 300 branches to operation 338. At operation 338, a determination
is made as to whether the number of records to skip is equal to zero. This would be the
case where loading was started in the normal mode and where the first corrupt record
was encountered and the record is unrepairable. In this case, the routine 300 branches
to operation 340, where the skip counter variable is updated to indicate that the record
should be skipped. The routine 300 then returns to operation 310, where processing of
the data file returns to the beginning in the manner described above.

If, at operation 338, it is determined that the number of records to skip 1s
not equal to zero, the routine 300 continues to operation 342, where an attempt 1s made
to skip the loading of the current record. At operation 344 a determination is made as to

whether the loading of the current record may be skipped. If loading of the current
record can be skipped, the routine 300 branches to operation 346 where the record 1s
flagged in the skip record variable. The routine then continues to operation 316,

described above.

If, at operation 344, it is determined that the current record cannot be
skipped, the routine 300 continues to operation 306 where the mode variable 1s set to
“recovery.” The routine 300 then continues to operation 348, where an attempt is made
to load the data file in the recovery mode. As described above, only user data is loaded

in the recovery mode. Moreover, an attempt is made to load as much of the user data as

13

CA 02525731 2013-07-26

51028-73

possible if the user data also is corrupted. The routine 300 then continues to operation

320, where 1t ends.

Based on the foregoing, it should be appreciated that the various

embodiments of the invention include a method, system, apparatus, and computer-

5 readable medium for loading the contents of a data file. The above specification,
examples and data provide a complete description of the manufacture and use of the
composition of the invention. Since many embodiments of the invention can be made

without departing from the scope of the invention, the invention resides in the

claims hereinafter appended.

10

14

10

15

20

25

CA 02525731 2013-07-26

51028-73

CLAIMS:

1. A method for loading a data file including at least one portion, the method

comprising:

attempting to load the at least one portion of the data file in a first loading

mode, wherein attempting to load the at least one portion comprises;

initializing a skip counter variable to identify each of the at least one portions

that can be skipped, and

performing integrity checking on each of the at least one portions;

determining in the first loading mode whether a portion of the at least one
portion 1s unloadable, wherein determining in the first loading mode whether the portion of
the at least one portion 1s unloadable comprises determining whether the first loading mode is

at least one of the following: normal loading mode and safe loading mode; and

in response to determining that the portion of the at least one portion is

unloadable and that the first loading mode is the normal loading mode:

tlagging the skip counter variable to indicate that the unloadable portion can be

skipped;

switching to a second loading mode, the second loading mode being the safe

loading mode; and

attempting to load the data file in the second loading mode wherein additional
integrity checking is performed on each of the at least one portions, wherein loading of each
unloadable portion and loading of each portion related to each unloadable portion are skipped,
wherein while attempting to load the data file in the second loading mode, determining
whether the unloadable portion may be repaired, and in response to determining that the
unloadable portion may be repaired, repairing the unloadable portion, unflagging the skip

counter variable, and loading a repaired portion.

15

10

15

20

CA 02525731 2013-07-26

51028-73

2. The method of claim 1, further comprising in response to determining that the

unloadable portion may not be repaired, skipping the loading of the unloadable portion.
3. The method of claim 2, further comprising:
determining whether the loading of the unloadable portion may be skipped; and

in response to determining that the loading of the unloadable portion cannot be
skipped, attempting to load the data file in a third mode, wherein in the third mode only

portions of the data file corresponding to user data are loaded.

4, The method of claim 3, wherein the user data comprises text data entered by a
user.

5. The method of claim 3, wherein the user data comprises numerical data entered
by a user.

6. A computer-readable storage medium having computer-executable instructions

stored thereon which, when executed by a computer, will cause the computer to:

provide a normal loading mode for loading a data file having at least one
portion, and 1nitialize a skip counter variable to identify each of the at least one portion that
can be skipped, wherein integrity checking is performed on each of the at least one portions

when loading in the normal loading mode;

provide a safe loading mode for loading the at least one portion of the data file,
wherein additional integrity checking is performed on each of the at least one portions and
wherein loading of each unloadable portion, and loading of each portion related to an

unloadable portion are skipped;

begin loading the data file in a first loading mode, wherein while loading the
data file, determine whether the first loading mode is at least one of the following: the normal

loading mode and the safe loading mode;

16

10

15

20

25

CA 02525731 2013-07-26

>1028-73

determine when operating in the first loading mode whether a portion of the

data file 1s unloadable and in response to determining that the portion is unloadable and that
the first loading mode 1s the normal loading mode, flag the skip counter variable to indicate
that the unloadable portion can be skipped and switch to a second loading mode, the second

loading mode being the sate loading mode; and

to attempt to load the data file in the second loading mode, wherein while
attempting to load the data file in the second loading mode, determine whether the unloadable
portion may be repaired, and in response to determining that the unloadable portion may be
repaired, repair the unloadable portion, unflag the skip counter variable, and load the repaired

portion.

7. The computer-readable storage medium of claim 6, wherein in the second

loading mode the loading of the unloadable portion is skipped in response to determining that

an unloadable portion may not be repaired,

8. The computer-readable storage medium of claim 7 comprising further

computer-readable instructions which, when executed by the computer, cause the computer to:

provide a third loading mode wherein in the third loading mode only portions

of the data file corresponding to user data are loaded:;

to determine while operating in the second loading mode whether the loading

of an unloadable portion may be skipped; and

In response to determining that the loading of an unloadable portion cannot be

skipped, switching to the third loading mode.

9. The computer-readable storage medium of claim 8, wherein the user data

comprises text data entered by a user.

10. The computer-readable storage medium of claim 9, wherein the user data

comprises numerical data entered by a user.

17

10

15

20

CA 02525731 2013-07-26

51028-73

11. A method for loading a data file including at least one record, the method

comprising:
selecting a first loading mode by a user;
initializing a skip counter variable to indicate that no records can be skipped;

loading the data file in the first loading mode, wherein loading the data file

comprises performing integrity checking on each of the at least one record;

determining 1n the first loading mode whether a record of the data file is

unloadable:

in response to determining that the record of the data file is unloadable,
determining 1n the first loading mode whether the first loading mode is a normal loading

mode, flagging the skip counter variable to indicate that the unloadable record can be skipped;

in response to determining that the first loading mode is the normal loading
mode, switching the first loading mode to a safe loading mode and loading the data file from a

beginning of the data file;

in response to determining in the first loading mode that the first loading mode
1s not the normal loading mode, determining whether the first loading mode is the safe loading

mode, and returning an error 1f the first loading mode 1s not the safe loading mode;

attempting to load the data file in a second loading mode, the second loading
mode being the sate loading mode, wherein while attempting to load the data file in the

second loading mode, determining whether the unloadable record can be repaired;

in response to determining that the unloadable record can be repaired, repairing

the unloadable record, untlagging the skip counter variable and loading the record; and

in response to determining that the unloadable record cannot be repaired:

18

10

15

CA 02525731 2013-07-26

51028-73

determining the number of records to be skipped in response to determining

that the number of records to be skipped is equal to zero, flagging the skip counter variable;

and

in response to determining that the number of records to be skipped is not

equal to zero attempting to skip loading of the record.

12. The method of claim 11, further comprising in response to determining that an

unloadable record may not be repaired, skipping the loading of the unloadable record.
13. The method of claim 12, further comprising:
determining whether the loading of an unloadable record may be skipped; and

in response to determining that the loading of an unloadable record cannot be
skipped, attempting to load the data file in a third mode, wherein in the third mode only record

of the data file corresponding to user data are loaded.

14. The method of claim 13, wherein the user data comprises text data entered by a
user.
15. The method of claim 13, wherein the user data comprises numerical data

entered by a user.

19

d1Id VIVU Ve

L[l

NWVIO0dd avid
NOILLVOI'lddV 01

IITHSAVIAS AJOWIN p
~ SSIDIV
; BT 1JIAId 9 | |WOANVi
- TOVIOILS SSVIN WIISAS
; ONILVIIdO ALOIWIN
2 / WIILSXS
: NS
S
o
= 0
S IINN L LINDN
AdTIOALNOD TIVINLINI ONISSTDONUd

INdINO/LNdNI SNMOMIIN TVIINID

Lo

cC

AT

-

CA 02525731 2005-11-07

AINO VILVU 351

JAOW AdIAODTH

Dy .~ 9,

p—

To

2 T W N I A T T T P . & . T A

- - - I. . o . o .o - . - . e v . - K

o . WF & vl
S . Al : RN e . IS -
& . - S A s - O
@ e e, PR .
. ro s :

JAOWN J1VS

4

=I STINLVI]

Ra
L » T

) ' v
o i B
" -~
- ' v
-- l!. -.’

o - Y
o . S o
. .u-. ..”\. oo - " o - > R . oy ..vv.. . -'f. \\ o \.. - w' O o -~ o ..'v. \-.u -
R W s - . IR s .o o - B . . . - R
[. *e® . - o . al ' . v . --'- ..) - . " . - . --
N - . -’ o’ - . 0 - - am® - B . *e e - e e o
£ S F T E R A A T R A

K s

e . =~ = - i s\. .o.-l f- ..“.. u-. ..f.r iyt \. \.-.] - - .L-a.. L\ Ys] : vr.. = Xl . .4“ R -4. .o.... .. ol s-n.. .r.h-. - Iy -c.. 44|..

dvol
NIOJd

ot .- B ’ Io.... .f-'- .l'-a.. .pv.-.)cfl

JAON TVINION

MR . . - o

O

9¢¢e

dAININOO
dDIS NI dJdOO3d OV'IINII
/@MIOITY INFHIND AVO'T

S3X Fee ON o

CEE

AAOOTY INTHAINO
dIVdIAd OL LdWNILLV

SdA

0€E

AOWIA NINLTI é
| uowmNwE [+o3
0ZE

ON L4

Vel

dDIS NI Q3OJ23M OV'Id
ON
¢ONISS =442
o € _SAAOITA AOWN JqO LdNHAOD A4VS = AAdON 1L3S

SLE SA
AAO0OTA LXIN
= (TAO0IDTA INJ A AT

JAOW INJH A1 NI
AODTA INJHAND AdVO'1
0LE

CA 02525731 2005-11-07
3/4

IS = AIODTI INTHIND o

80¢

¥ZINNOD dIS IZITVILINI
0T c0¢

TVINION = JAOWN LIS ddVS = ddOW L3S

JAON TVINION

dJJOW ddVS
NIFHIVIVAdAdVYOl

JAON AHdIAOITH
NITIIIVIVAd AdVO'l

NI VIVA dVO1

ddONW
AdIAOOT A NI INIWNOOd

dvO1l10lL LdWILLY

AAdIAOOTH = AAOWN LIS e

9 €

dAININOO
dDIS NI dJdOOT
ANITJANO OVId

cddddDIS 39

SdA dAOITA NVO

CA 02525731 2005-11-07

dAO00dd J0 ONIAVO'T
dDIS OL LdWALLV

Ov¢

00€ H

¢0=dDIS OL
SAAOIOTA 40 #
8EE

SIX |dDIS NI dJdODIIA OV'Id

BEGIN

LOAD NORMAL MODE

FEATURES A-C

e o i A .

.'o’c' Pl f&' &'° PP LT R L U

S S P AP
-~ . D

PR
A

Ve

26C

26D

FEATURES I-N

26

24

24

SAFE MODE RECOVERY MODE

.---.---..---------.
’ ’
| l

'
! ’
' s
FEATURES A-C : :
| |
S | ‘
F -.of;i;g,{g;gg{f;rﬁ;é A ’ [
e o 8 0
| |
s ’
e ’
‘ '
¢ '
-e USER DATA ONLY :
’
|
’
i
'
!
’
FEATURES I-N :
26 .
!
|
|
|
1

24

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - abstract drawing

