US 20030114075A1

a2 Patent Application Publication (o) Pub. No.: US 2003/0114075 A1

a9 United States

Moll et al.

43) Pub. Date: Jun. 19, 2003

(549) TOY VEHICLE WIRELESS CONTROL
SYSTEM

(76) Inventors: Joseph T. Moll, Prospect Park, PA
(US); James M. Dickinson, Haddon
Township, NJ (US); Frank W.
Winkler, Mickleton, NJ (US); David V.
Helmlinger, Mt. Laurel, NJ (US);
Charles S. McCall, San Francisco, CA
(US); Stephen N. Weiss, Philadelphia,
PA (US)

Correspondence Address:

AKIN GUMP STRAUSS HAUER & FELD

L.L.P.

ONE COMMERCE SQUARE

2005 MARKET STREET, SUITE 2200

PHILADELPHIA, PA 19103-7013 (US)
(21) Appl. No.: 10/284,046

(22) Filed: Oct. 30, 2002

{120

Related U.S. Application Data

(60) Provisional application No. 60/340,591, filed on Oct.
30, 2001.

Publication Classification

(51) Int. CL7 oo A63H 30/04
(52) US.CL ... 446/456
(7) ABSTRACT

A toy vehicle remote control transmitter unit wirelessly
controls the movements of a programmable toy vehicle. The
toy vehicle includes a motive chassis having a plurality of
steering positions. A microprocessor in the transmitter unit
emulates manual transmission operation of the toy vehicle
by being in any one of a plurality of different gear states
selected by an operation of manual input elements on the
transmitter unit. Forward propulsion control signals repre-
senting different toy vehicle speed ratios associated with
each of the gear states are transmitted from the transmitter
unit to the toy vehicle. The motive chassis has a steering
feedback sensor with a plurality of defined steering positions
to vary rate of steering position change to avoid overshoot.

Patent Application Publication

Jun. 19, 2003 Sheet 1 of 25

US 2003/0114075 A1

D

L~ 120

\v
VNN

|- 125

VN

FIG. 1A

\/\le\l\l\l

U4 »
\I\’\I\/ N

Patent Application Publication Jun. 19,2003 Sheet 2 of 25 US 2003/0114075 A1

PWM
Vdc | Vhi
Vio
N R wrwrerararseer —
One Period

FiG.2

Velocity . Maximum
[_ﬂ_ g

FIG.3

Time

Patent Application Publication Jun. 19,2003 Sheet 3 of 25 US 2003/0114075 A1

440
—~ 435

=

FiG.4

~-430
< rmT—
-I“ r—' [

v v

US 2003/0114075 A1

Jun. 19, 2003 Sheet 4 of 25

Patent Application Publication

G'9l4
SoT 44 L
y 1o
S0 ——rs 84)
ayymyo4 mﬁ Qt HIWYIS
eoLL-— ~ | 62l
0 aNog "
g anv R &
2l v any "M
(9 q0l!
| K 09 VS
el 3L, £143 94 INS e e 1 Ik _
G |pgy | M| =
+6/0 =pl " =
vid gt N &0 199 0g YT —4! T+
1X 13534 X TTzms(Gosg | -
#0 o 0 | L, 901 gy | A4ILLYG
) "“ @ a7 by 2 asil 6
“e1 2l . it P AN
- 207 0¢€! ’ 1
1019 64
0i4 =p0) 80 »2q F2I=xlI K]
~_ 02] & 1.1, |
440/' NO
3arns
YNNTINY (o]} wﬁﬁm
AN
005 "

Patent Application Publication Jun. 19,2003 Sheet 5 of 25 US 2003/0114075 A1

Initialize Variables e 600

- 604
Turning Mode
Output Tone Selected - /
@ ? PWM Service
(1 of4x)

Time to Check
Bit Bogndary

Start Bit Boundary Window

Bit Boundary
Dete?cted

Bit Boundary
Window Timed Qut
?

Start Timer

Time to Perform
Bit Rgad 1

Last

Element
?

Current
Elen?'lent

Current
Element

0

Set Current Bit Set Error Flag Set Current Bit
lo Last Bit to Last Bit

Clear Data Buffer

®

FIG.6A

Patent Application Publication

604

PWM Service (2 of 4x)
Get Drive 'Command
Set Drive’Direction
Set Dri;e PWM

Steering

Jun. 19, 2003 Sheet 6 of 25

US 2003/0114075 A1

Motor Con??mand Valid

I Note Error |

Near
Right

Read Current Position
: Steer Motor Off
Current I e
'Steering?Position

Far
Right

What is What is What is What is
Command Command Comg7and Coml?nand
L R R
Steer Steer Steer Steer Steer Steer
Right Right Left Right Left Left
Steer Steer Steer Steer Steer
| Leer Right off Left Rignt]| |
Steer Steer] |
off off
|
Set PWM Hi l SetPWM Lo || SetPWMHi || Set PWM Lo || Set PWM Hi
[I | |
@ FIG.6B

Patent Application Publication Jun. 19,2003 Sheet 7 of 25 US 2003/0114075 A1

@ 604

PWM Service(3 of 4x)

] 600
Perform Bit Read 2 4

N Bit Read Y
2=Bit Read 1
2

Bit Read
1 Error Previously

Detected
?

Store Bit as "1" | Store Bit as "0"

Shift Dala into Data Buffer

Has Full
Packet Been Received
into Data Buffer

Is

Checksz;m Good

Clear Rx Data Buffer
Data is Good
Data
N_—~Packet Same as

Last Time
2

604 Record Data
\ — FIG.6C
PWM Service Dissect Data to
(4of4x) Determine Commands

T d

Patent Application Publication Jun. 19,2003 Sheet 8 of 25 US 2003/0114075 A1

Inc PWM Counter

4’

Counter
Reachgd Max

Rest Counter

Counter < PWM
Drive §etting

Drive Motor On Drive Motor Off

Counter < PWM
Steer getting

Steer Motor On ~ Steer Motor Off
|

End

FIG.6D

Patent Application Publication Jun. 19,2003 Sheet 9 of 25 US 2003/0114075 A1

Waking N
From Sleep
4 Initialize Variables

i
Configure Ports

{
Set Mode 1 as Default

<
LED Off LED On

Mode
Selection
TimgUp

Joystick

Joystick
Still ;—Ield

Still ;-Ield

N Mode
Select ;ime Up

Mode 1 Selected] |Mode 2 Selected Mode 3 Selected

l
Play Gear Sound | |Play Horn Sound

B FIG.7A

Patent Application Publication Jun. 19,2003 Sheet 10 of 25 US 2003/0114075 Al

Y Inc Sleepy Counter

Rest Sleepy Counter Rest Sleepy Counter

Sleepy Counter
Time Reached

Turn Off DAC

Turn Off Radio

Go To Sleep

Any

Butto?n Hit

Service Sounds

®

FIG.7B

Patent Application Publication

First Which Second
Bit Half is Ne);t To Transmit
2 0

®

Decrement
Bit Index

Jun. 19, 2003 Sheet 11 of 25 US 2003/0114075 A1

Current 1
Bit To Tgansmi

0 Firs 1 0 Firs
Bit Haéf Was Bit Haéf Was
Set - -

(Rotates through 4 Main Program

Decide Tx Pacet

Last Set Set
0K Bit ;-Ialf T\ Line Lo Line Hi Line Lo
Set Set
Line Hi Line Lo Comp/ete?Byte Sent
1 1 '
[Set to Second Bit Half | Y
) Flag
[Set Current Byte to Flag| Set Current Byte to Data |
L ‘ { I
Set First [Reset Bit Index | ,
Bit Half] Determine State
1 Decide Sounds
or
Which Play Sounds/
Subroutine This Time? Control LED

Branches)

3: No Shitting

1: Shifting And Sounds What is Mode or Sounds
? :
3-13< What is State 2: Sounds, What is State
2 77— |No Shifting 213
Packet= | 2 Packet=] 01| 07 __{ Packet=
Steering Packet=| | Steering Packet= Steering
Dir. and Steering| | Dir. and | | Packet=] | Steering| |Dir. and Full
PWM Fwd Dir. Rev. Cmd. Blank Dir. PWM Fwd
i 1 1 1 1 J
C(;‘lomlz(aute
ecksum
; ®
— Add Flag to Checksum) FIG.7C

Patent Application Publication Jun. 19,2003 Sheet 12 of 25 US 2003/0114075 Al

)

Determine State

2: Sounds, No Shifting

3: No Sounds or Shifting

[1: Sounds and Shifting

0: Waiting

Set to State 1:
Starting Up Set To State2:

1:

Sounc; Done

Starting Up

2: ldling

What Is
Curre/;tState
‘Fw.
or Re?v. Hit u
Y Tdie
Timer Up
N2

Motor Start

Set to State 0:

Idling

Waiting

Set to State 3: Set to State 5:

Peeling Out First Gear
I |

Finished
Peel Ou?t Sound

3: Peeling

Wheels
Turning for
> 1 ?Sec.

Set to State 5:
First Gear

Set to State 12:| |Set to State 13:} |Set to State 11:
Grinding Gear Squealing Turn Braking

Wheels
Turning for
> 1 Sec.

Set to State 8:
Ready to
Shift Ramp

Set fo State 12:} | Set to State 13:] | Set to State 11:
Grinding Gears | | Squealing Turn Braking

FIG.7D @

Patent Application Publication Jun. 19,2003 Sheet 13 of 25 US 2003/0114075 Al

Wheels
Turning for
> 1 ?Sec.

Set to State 8: Set to State 12: | | Set to State 13:] | Set to State 11:
Ready to Shift Ramp Grinding Gears | | Squealing Turn Braking
|] |]
Wheels N
Turning for
> 1 Sec,
2 Y
Y

Set to State 13: Set to State 11:
Squealing Turn Braking
I]

8: Ready to
Shift, Ramp

Ramp
Shift Sound
Finis?hed

N~ Wheels
Turning for
> 1?Sec.

Set to State 9: Set to State 10: Set to State 13: | | Set to State 11:
Ready to Shift Const Shifting Squealing Turn Braking

9: Ready to
Shift, Const

Wheels
Turning for
> 15ec/

Set to State 10: Set to State 13:

ift : Set to State 11:
Sh/;‘t/ng Squealllng Turn Braking
1

FIG.7E

Patent Application Publication Jun. 19,2003 Sheet 14 of 25 US 2003/0114075 Al

®
10:

Shifting

Wheels
Turning for
> 1?Sec.

Shifting
Sound I;'inished

Set to State 2: Set to State 7: | | Set to State 13: Set to State 11:
ldle Second Gear Squealing Turn Braking
| | I]

12: Grinding

Gears
Grinding

Sound ginished

Set to State 11: || Set to State 5: Setto State 11: | Set to State 5:
Braking First Gear Braking First Gear
| [| |

heels
Turning for

> 1 Sec.
?
Y
Set to State 13: Set to State 15: || Set to State 11:
Squealing Turn Reverse Drive Braking
]

15:
Reverse

16: Reverse
Turning

Turning for

Set to State 11:| | Set to State 15: Set to State 13: Set to State 11:
Braking Reverse Squealing Turn Braking
T | I]

FIG.7F

Patent Application Publication Jun. 19,2003 Sheet 15 of 25 US 2003/0114075 Al

©

Mode 2: Sounds, No Shifting

What
is Curre?nt State

0: Waiting

1: Starting
U

Motor Start
Sound Done

Set to _State 1: Setto State 2
Starting Up Idling el fo Stale 0
Waiting
Set to State 3: Set to State 4:
Peeling Out Moving Fwd

3: Peeling

4: Moving
Forward

Set to State 11: Set to State 13: Set to State 4: Set to State 11:
Braking Turning Moving Fwd Braking

I l I |

Set to State 4: || Set to State 15:| | Set to Slate 2: Set to State 4:
Fwd Reverse Idling Moving Fwd

I | I I
FIG. 76 D

Patent Application Publication Jun. 19,2003 Sheet 16 of 25 US 2003/0114075 Al

® P

[13: Squealing 11: Brake
Turn

Fwd. or
Rev. S?till Hit

Set to State 11:| | Set to State 4: Set to State 6: Set to State 5:
Decide Brake Fwd Chirp Braking
| I |

14: Reverse
Peel Qut

Set to State 13: Setto State 15:| | Set to State 11:
Squealing Turn Reverse Drive Brakiﬁg
| |]

16: Reverse 15:

Set to Slate 11: || Set to State 15: Set to State 13: Set to State 11:
Braking Reverse Squealing Turn Braking
I l ' | |

 FIG.7H

Patent Application Publication Jun. 19,2003 Sheet 17 of 25 US 2003/0114075 Al

Decide Sounds

1: Sounds and Shifting 2: Sounds, No Shifting

Which?Mode

State 3: No Sounds or Shifting
N 8, 10, 1?1 ori12 @

Set Sound Not Set Sound
to Interrupt to Interrupt

Set Sound not Set Sound
to Interrupt to Interrupt

l

Set Sound to Set Sound to
Horn Shift

l I

||
Sound#
= Slate #

®

FIG.71

Patent Application Publication Jun. 19,2003 Sheet 18 of 25 US 2003/0114075 Al

1: Sounds and Shifting or a

2: Sounds, No Shifting

3: No Sounds
or Shifting

Sound

In State 8 or 9
Ready ;o Shift

FIG.7J

US 2003/0114075 A1

Jun. 19, 2003 Sheet 19 of 25

Patent Application Publication

Ve "9id
aNag anNod agN9gd anod GN9a
[T T 1
9y
. SL
aNsa .
A oY §91 9 l20T |
3 3 64 Jys PHS + A_w 3y
219 7 e/ 21
Il N ¢ 1 1
| €07 e m%mo anNaa mi HS .
GNoa anwa = QII%Q. Hmm I i
M QU = - 1
HMGNBH oo | 997 4T6L0 T910 -
ﬁ_u Emw% pLY 2 QEW 8Y : 173
XY w - -
0 —" oA
0c "
008 —" | A
e

US 2003/0114075 A1

Jun. 19, 2003 Sheet 20 of 25

Patent Application Publication

g8 9i4
buyaa)s —
T 40Jo3uU0G)) nm
Josuas buiiaa)s
| 98 94 \mﬁ
2d o— er
b o4 _ i
T = l2H3 3824
aNnosa ﬁ
. o Ly ﬂ |
. wms)| #ean ¢ ?4Q U/
T ©% |l T B
peHs | sS4 60 Ieds . sey ___ocqg W
¢lO 80 h — 00
110 JA ..Iullm mw
£y a2y aNoa
—0&) 20y
010 10 629 zns
608 —" I o
negn og—" 306y
008 —"
i A
o0g—"

Patent Application Publication

Jun. 19, 2003 Sheet 21 of 25

US 2003/0114075 A1

800
’/—

o Vbatt
RLT RL2
7 —
3
D2 ':\,:@4 c2s C29 E';:C p3 | 04
N It zs ray
- 5 @
420
Q14 R R36
D11 i &) a5
£RI5 o 1S RIT;
= ~ sz D6
SL&J—Z_I if
815~ 016 3l1__ R10 o Vbatt
jmz RAT $ R38
R39
= = Q17 c2
(3
2 R44 SR47 sR49
£ pas L i
$pss 1% Qi8¢ ¢ D8
! —10ut Pwri | R4 Lt
71— 20ut I
=+ , 1+ 2- DGND
=C30 $R4
6 HGnd 2+—-|
| 8U3
GND DGND Drive
FIG. 8D

o
DGND D

DGND

Patent Application Publication Jun. 19,2003 Sheet 22 of 25 US 2003/0114075 Al
800

f-
Vdd Vit
o |
=022 J‘ C23 J‘ C24

1
DGND DGND DGND
840~ | vud Ri6 Vbatt
A or |

4
‘?_ 9.6V
=18 == =020 7 C21 2R19 | =

D1 T 435

i1
1
Ay

]l
I
o
L 8
N
——e
oD
S
©
]! -

o
DGND DGND $R18

FiG. 8E 231

US 2003/0114075 A1

Jun. 19, 2003 Sheet 23 of 25

Patent Application Publication

o016 -{l0C 86°014
0Ll < M4 $S O
1 4016 N 0 m{.w = =
: vmu_u | P— i : . wy
Pl = r—| H
2, S L +T 90 gogeldy _vOp HOF #I0
\\tsmw,._ o | ey Loigtey ._. i x| i
{ Lo T3 T
o1y {57 4 A .
PPA .m | eam|\\
3 I4dS -
0 —
ar Gzl #egn V694 Lo
.. oy TV o
._ seiY 2 11y] T T
6 | 0% 3.4
8l = 643 394 = = v = 99
- & 1 9143
614 S I 0 — —
0 Pz leh ¢ 2 [eo] imwix
1a77 © B apgya 60
uegA HEGA €d A 13 £13 +90
1EGA ~ | 1Y
006 —" 02l A HA HA

Patent Application Publication Jun. 19,2003 Sheet 24 of 25 US 2003/0114075 Al

\ 1100
1130~ \ | LRCOM L y

.
o .
L P
1134 ~J[5<<
T . Y
;5 /
> 7N
SN
[
i ! i
=
-~
’\\/’
-
k4 -~
1132 17
~d -

P

S
\ cmmmm e a————
Pl /‘\

~~~~~

[ A 3
1120 1104 1102

FIG. 10A

1010 1110

=

ILHTTTHLTTT L I PR T e .lll””l Jatauftl

FIG. 10B



Patent Application Publication Jun. 19,2003 Sheet 25 of 25  US 2003/0114075 Al

1066

| \ | \
1060 1022 1032 1042

FIG. 11



US 2003/0114075 Al

TOY VEHICLE WIRELESS CONTROL SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 60/340,591, filed Oct. 30, 2001,
entitled “Toy Vehicle Wireless Control System,” which is
incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] This invention relates to toy vehicles and, in par-
ticular, to remotely controlled, motorized toy vehicles.

SUMMARY OF THE INVENTION

[0003] The invention is in a toy vehicle remote control
transmitter unit including a housing, a plurality of manual
input elements mounted on the housing for manual move-
ment, a microprocessor in the housing operably coupled
with each manual input element on the housing, and a signal
transmitter operably coupled with the microprocessor to
transmit wireless control signals generated by the micropro-
cessor to a toy vehicle. The invention is characterized in that
the microprocessor is configured for at least two different
modes of operation. One of the modes emulates manual
transmission operation of the toy vehicle by being in any one
of a plurality of different gear states and transmitting through
the transmitter forward propulsion control signals represent-
ing different speed ratios for each of the plurality of different
gear states. The microprocessor is further configured to
consecutively advance through the different gear states in
response to successive manual operations of at least one of
the manual input devices.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0004] The following detailed description of preferred
embodiments of the invention, will be better understood
when read in conjunction with the appended drawings. For
the purpose of illustrating the invention, there is shown in
the drawings embodiments which are presently preferred. It
should be understood, however, that the invention is not
limited to the precise arrangements and instrumentalities
shown. In the drawings:

[0005] FIG. 1A is a top plan view of an exemplary remote
control/transmitter used in accordance with the present
invention;

[0006] FIG. 1B is an exemplary toy vehicle remotely
controlled by the remote control/transmitter of FIG. 1A;

[0007] FIG. 2 is a timing diagram showing an analog
output of a control circuit used to drive different motor
speeds of the toy vehicle of FIG. 1B in accordance with a
preferred embodiment of the present invention;

[0008] FIG. 3 is a diagram showing a trapezoidal velocity
profile of a steering finction of the toy vehicle of FIG. 1B;

[0009] FIG. 4 is a schematic diagram of a control circuit
in the toy vehicle of FIG. 1B, which is directly responsive
to steering commands received in accordance with the
present invention;

Jun. 19, 2003

[0010] FIG. 5 is a schematic diagram of a speed shifter
remote control/transmitter circuit which sends steering com-
mands to the control circuit of FIG. 4;

[0011] FIGS. 6A, 6B, 6C and 6D, taken together, is a flow
chart illustrating the operation of the vehicle control circuit
of FIG. 4,

[0012] FIGS. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7TH, 71 and 77,
taken together, is a flow chart illustrating the operation of the
speed shifter remote control/transmitter circuit of FIG. 5;

[0013] FIGS. 8A, 8B, 8C, 8D and 8E, taken together, is a
schematic diagram of a toy vehicle control circuit which
processes received steering commands based on current
steering position of the toy vehicle in accordance with an
alternate embodiment of the present invention;

[0014] FIGS. 9A and 9B, taken together, is a schematic
diagram of a speed shifter remote control/transmitter circuit
in accordance with an alternate embodiment of the present
invention;

[0015] FIG. 10A depicts a steering output assembly;

[0016] FIG. 10B depicts the assembly of FIG. 10A with
the output member and reduction gearing removed; and

[0017] FIG. 11 depicts the stationary portion or contact
member of a steering sensor.

DETAILED DESCRIPTION OF THE
INVENTION

[0018] Related U.S. Application No. 60/340,591 filed Oct.
30, 2001 is incorporated by reference herein. The present
invention is a toy vehicle wireless control system which
includes a remote control/transmitter 100 (FIG. 1A) with a
speed shifter remote control/transmitter circuit 500 (see
FIG. 5) or 900 (see FIGS. 9A, 9B), and a remotely
controlled toy vehicle 20 (FIG. 1B) with a receiver/micro-
processor based toy vehicle control circuit 400 (see FIG. 4)
or 900 (see FIGS. 9A-9E), also hereinafter referred to as a
speed shifter receiver circuit.

[0019] The remote control/transmitter 100 depicted in
FIG. 1A includes a housing 105 and a plurality of manual
input elements 110, 115 mounted on housing 105 and used
for controlling the manual movement of a toy vehicle 20.
The manual input elements 110, 115 are conventionally used
to supply propulsion or movement commands and steering
commands, respectively. They also enable selection among
three different modes of operation or usage (hereinafter
referred to as “Mode 1,”“Mode 2,” and “Mode 3”), each
having a different play pattern. Power is selectively provided
to circuitry in the remote control/transmitter 100 via
ON/OFF switch 135 (in phantom in FIG. 1A).

[0020] Car 20 is shown in FIG. 1B and includes a chassis
22, body 24, rear drive wheels 26 operably coupled to
drive/propulsion motor 420 (phantom) and front free rotat-
ing wheels 28 operably coupled with steering motor 410
(phantom). An antenna 30 receives command signals from
remote control/transmitter 10 and carries those signals to the
vehicle control circuit 400 (phantom) or 800 (not shown in
FIG. 1B). An on-off switch 450 turns the circuit 400 on and
off, and a battery power supply 435 provides power to the
circuit 400 and motors 410, 420.



US 2003/0114075 Al

[0021] FIG. 4 shows a schematic diagram of a vehicle
control circuit 400 in the toy vehicle 20. The vehicle control
circuit 400 includes a steering motor control circuit 405
which controls steering motor 410, and a propulsion motor
control circuit 415 which controls drive motor 420. Micro-
processor 4U1 is in communication with steering motor and
drive motor control circuits 405, 415, and controls all other
functions executed within the toy vehicle 20. A vehicle
receiver circuit 430 receives control signals sent by remote
control/transmitter 100 and amplifies and sends the control
signals to microprocessor 4U1l for processing. A power
supply circuit 440 powers the vehicle control circuit 400 in
toy vehicle 20 and the steering and propulsion motors 410,
420, respectively.

[0022] FIG. 5 shows a transmitter circuit 500 in the
remote control/transmitter 100 (see FIG. 1A) that is pow-
ered by a battery 505 in communication with a two-position
switch 135 that is used to turn the device 100 on and off and
for selecting one of the modes. The transmitter circuit 500
also includes a microprocessor SU1. The microprocessor
5U1 is operably coupled with each of the manual input
elements 110, 115. The remote control/transmitter 100 must
first be turned off via switch 135 to change the mode used.
Manual input element 110 is preferably a center biased
rocker button operating momentary contact switches 110a
and 110b, as shown in FIG. 5. When pressed, the manual
input element 110 causes one of contact switches 110a and
1105 to change states. This is sensed by the microprocessor
5U1 which responds by transmitting a signal via antenna
120 to cause remotely controlled toy vehicle 20, which
includes receiver/microprocessor 4U1, to move forward or
backward. Manual input element 115 is also preferably a
center biased rocker button operating momentary contact
switches 1154 and 115b in FIG. § which, when pressed,
causes the remote control/transmitter 100 to transmit via
antenna 120 a command to receiver/microprocessor 4U1
causing the toy vehicle 20 to steer to the left or to the right.
When manual input element 115 is not pressed (i.e. in center
position), the toy vehicle 20 travels in a straight path. When
the manual input element 110 is not pressed, the vehicle 20
stops.

[0023] Mode 1, a first mode of operation or usage, is the
default mode achieved when the remote control/transmitter
100 is activated from a deactivated state by moving on-off
switch 135 in FIG. 5 from an “off” position to an “on”
position. This mode has a multiple-speed (3-speed in the
present embodiment) manual gear-shifting play pattern in
which the microprocessor SU1 emulates a manual transmis-
sion operation of the toy vehicle 20 and in which corre-
sponding sounds are generated by the microprocessor SU1
and played on a speaker 125 in the remote control/transmit-
ter 100. Mode 1 has the following features and character-
istics:

[0024] (1) The motionless toy vehicle 20 is put into motion
by pressing manual input element 110 to a “forward” button
position, closing or otherwise changing the nominal state of
switch 110a on the remote control/transmitter 100. The
microprocessor SU1 is configured (i.e., programmed) to
respond to the depressions of manual input element 110 by
entering a first gear state of operation and generating a first
forward movement command signal transmitted to the toy
vehicle 20. Initially, the toy vehicle 20 responds to the first
signal and moves forward at a first top speed which is less

Jun. 19, 2003

than a maximum speed the toy vehicle 20 is capable of
running. The microprocessor SU1 generates a first sound,
which is outputted by speaker 125, to simulate first gear
operation of the toy vehicle 20.

[0025] (2) Once the toy vehicle 20 is moving forward for
a while in a first gear state (as timed by microprocessor
5U1), a visual indication (e.g., red flashing LED 130) and/or
an audible sound (e.g., single horn beep) can be outputted by
the microprocessor SU1 from the remote control/transmitter
100 to signal to a user that it is OK to shift to the second gear.
Shifting into a higher gear is performed by momentarily
releasing and re-engaging the forward button position of
manual input element 110, which closes switch 110a within
a predetermined time window. If the time window elapses,
the toy vehicle 20 will return to first gear state when the
forward button position of manual input element 110 is
activated (i.e., switch 110g is closed). Once in the second
gear state, the microprocessor 4U1 commands the vehicle 20
to move forward at a second top speed that is faster than the
first top speed but less than maximum speed, and preferably
the microprocessor SU1 generates a second sound which is
outputted by speaker 125 to simulate second gear operation
of the toy vehicle 20. Once the toy vehicle 20 is moving
forward for a while in a second gear state, a visual indication
(e.g., red flashing LED 130) and/or an audible sound (e.g.,
single horn beep) can be outputted by microprocessor SU1
from speaker 125 of the remote control/transmitter 100 to
signal to a user that it is OK to shift to the third gear. The
forward button position of input element 110 closing switch
1104 is again momentarily released and re-engaged within a
predetermined time window. If the time window elapses, the
toy vehicle 20 will return to first gear when the forward
button position of manual input element 110 is activated.
Once in the third gear state, the toy vehicle 20 moves
forward at a third top speed that is faster than the second top
speed, and preferably the microprocessor SU1 generates a
third sound that is outputted by speaker 125 to simulate third
gear operation of the toy vehicle 20. The movement of the
toy vehicle 20 is terminated by releasing the forward button
position of manual input element 110 closing switch 110a or
by pressing and then releasing reverse button position of
manual input element 110 closing switch 110b.

[0026] (3) In the three-speed embodiment, preferably the
top speed of the toy vehicle 20 may be 62.5% of maximum
speed when in the first gear state, 75% of maximum speed
when in the second gear state, and 100% of maximum speed
when in the third gear state. Other ratios and/or additional
ratios to provide four, five, six or more speeds can be used
to simulate other car and truck shifting.

[0027] (4) If the gear state of the toy vehicle 20 is changed
before the toy vehicle 20 reaches its top speed for the
previous gear by momentarily releasing and re-engaging the
forward button position of manual input element 110, before
the microprocessor 5U1 opens the predetermined time win-
dow to shift, the microprocessor SU1 generates a different
audible sound (e.g., grinding noise), which is preferably
outputted by the speaker 125 of the remote control/trans-
mitter 100, to signal that the user shifted too early. Top speed
is not increased.

[0028] (5) Various audible sounds (e.g., peel out, squeal-
ing tire, hard braking, accelerating motor, etc.) are prefer-
ably outputted by the remote control/transmitter 100 in



US 2003/0114075 Al

response to activating the manual input elements 110, 115 on
the remote control/transmitter 100. For example, transmit-
ting a steering command by causing manual input element
115 to close switch 115a while the toy vehicle 20 is moving
(e.g., forward position of manual input element 110 being
pressed changing the state of switch 110a) causes the
microprocessor 5U1 to output an audible sound (e.g., the
squealing of tires) through speaker 125. There is a small
delay in producing the audible sound so that small steering
corrections do not cause the audible sound to be outputted by
speaker 125. Releasing either the forward and reverse posi-
tion of manual input element 110 preferably causes the
microprocessor SU1 to output an audible sound (e.g., hard
breaking, tire screeching) through speaker 125. An “idling”
sound is then preferably outputted by microprocessor SU1
through speaker 125 until a next propulsion/drive command
is transmitted.

[0029] (6) Speed of the toy vehicle 20 is controlled by the
remote control/transmitter 100 outputting propulsion control
signals having PWM (Pulse Width Modulation) character-
istics with duty cycles approximate for the speed ratios
selected, e.g., 56%, 75%, and 100% (see FIG. 2). Preferably,
the remote control/transmitter 100 outputs a binary signal
with two or more values allocated to propulsion commands.
Two binary bits can be used to identify stop and three
forward speed values (e.g., first, second and third speeds).
The vehicle microprocessor 4U1 is preferably programmed
to power each motor 410, 420 according to a duty cycle
identified by the binary bits. Referring to FIG. 2, a fixed
time period (e.g. sixteen milliseconds) can be broken up into
fractions (e.g., sixteen, one millisecond parts) and power (V
hi) supplied to the motor for the fraction of the time period
(e.g., %s, %is, %6, 1%16) commanded by the two binary bits.
An %6 duty cycle is depicted, with V hi provided for eight
parts and V low (i.e. 0 Volts) provided for the remaining
eight parts of the period constituting the cycle. If three bits
are allocated to propulsion commands, a stop command and
seven different forward and reverse speed commands can be
encoded. Preferably, reverse speed is at a ratio of less than
100% for ease of vehicle control and realism.

[0030] Mode 2 is achieved by turning on switch 135 of the
remote control/transmitter 100 while holding manual input
element 110 in a “forward” movement position (changing
the state of switch 1104) on the remote control/transmitter
100 until the microprocessor SU1 acknowledges the com-
mand by causing the speaker 125 to output an audible sound
(e.g., horn beeps) and/or the red LED 130 to flash. This
mode allows the user to maneuver the toy vehicle 20 in the
usual manner with sounds being generated but no gear
shifting operation. The microprocessor SU1 is preferably
preprogrammed for a desired default speed, e.g., 100%
forward and 50% or 100% reverse.

[0031] Mode 3 is achieved by turning on switch 135 of the
remote control/transmitter 100 while holding manual input
element 110 in a “reverse” movement position (i.e. changing
state of the switch 110b) on the remote control/transmitter
100 until the microprocessor SU1 causes speaker 125 to
output an audible sound (e.g., horn beeps) and/or the red
LED 130 to flash. This mode allows the user to maneuver the
toy vehicle 20 in the usual manner with no sound generation
by microprocessor 5U1 or gear shifting operation. The
microprocessor SU1 is preprogrammed for a desired default
speed, e.g., 100% forward and 50% or 100% reverse.

Jun. 19, 2003

[0032] A “Try Me Mode” may be provided, if desired,
allowing only sound effects of the remote control/transmitter
100 to be produced while still in its packaging. Sound effects
are generated by pressing any button on the transmitter.
Pushing the manual input element 110 to the “forward”
position can cause the start-up sound to play followed by a
peel-out sound with both motor and shifting sounds. Pushing
the manual input element 110 to the “reverse” position can
cause the horn sound to play with the motor running sound.
Pushing the manual input element 15“left” and “right” can
activate the squealing tire sound accompanied by the engine
downshift sound. The “Try Me Mode” preferably is deac-
tivated automatically when the toy is taken out of its
packaging and a pull-tab is removed from the remote
control/transmitter 100, allowing the transmitter 100 and toy
vehicle 20 to be operated in one of the three modes described
above.

[0033] FIGS. 7A-7J depict the various steps of an oper-
ating program 700 contained by the transmitter circuit 500,
such as by firmware or software in the microprocessor SU1,
to operate the remote control/transmitter 100 in the multiple
modes of operation and in the different shift states in the first
mode of operation. Again, the microprocessor SU1 is pref-
erably configured to transmit commands in binary form with
propulsion and/or steering commands encoded as binary bits
or sets of such bits.

[0034] FIGS. 6A-6C depict the various steps of an oper-
ating program 600 contained by the vehicle control circuit
400, such as by firmware or software in the microprocessor
4U1, to operate the toy vehicle 20 in the multiple modes and
in the different shift states in the first mode of operation.
FIG. 6D depicts the steps of a subroutine 604' which is
entered four different times at steps 604 in the main program
600 (FIGS. 6A-6C) to increment and test the state of a pulse
width modulator (PWM) timer (i.e. counter) to power or turn
off power to either motor 410, 420. The operating program
600 must be cycled through four times to increment the
PWM counter a total of sixteen times to complete one PWM
power cycle (sixteen parts) for either motor 410, 420.

[0035] FIGS. 8A-8E collectively represent a schematic
diagram for a second embodiment toy vehicle control circuit
indicated generally at 800 in the Figure in which FIG. 8A
depicts a vehicle receiver circuit 830 which receives control
signals sent by the remote control/transmitter 100 and ampli-
fies and sends those signals to microprocessor 8U2 in FIG.
8B. Outputs D4 and D5 from the microprocessor 8U2 are
sent to a steering motor control circuit 805 depicted in FIG.
8C while outputs C0-C3 are transmitted from the micropro-
cessor 8U2 to a propulsion motor control circuit 815
depicted in FIG. 8D. Circuit element 8U3 is a dual operating
amplifier chip. Power is supplied to both the steering motor
410 in FIG. 8C and drive motor 420 in FIG. 8D as well as
the other components of circuit 800 via a power supply sub
circuit 430 depicted in FIG. 8E which include both the
ON/OFF switch and a battery powered supply 435. One
difference between circuit 800 and circuit 400 is the provi-
sion of a steering feedback through connector 860 in FIG.
8B to the vehicle microprocessor 8U2. The purpose of this
will be described shortly.

[0036] FIGS. 9A and 9B collectively depict a second
embodiment remote control/transmitter circuit indicated
generally at 900 which is shown essentially in FIG. 9A and



US 2003/0114075 Al

indicated at 910. The only missing element is a power supply
circuit 920 shown in FIG. 9B which provides two outputs
Vdd and Vbatt. Again, manual input elements 110 and 115
control momentary contacts switches 910a, 9105 and 9154,
915b respectively. These switches are located on a board
separate from the board supporting a microprocessor 9U1
and are mechanically and electrically coupled together
through connectors J6 and J7.

[0037] FIG. 10A depicts part of a steering sensor indi-
cated generally at 1000 in a steering output assembly
indicated generally at 1100. Output assembly 110 includes a
housing 1102 containing steering motor 410, a plurality of
compound reduction gears indicated in phantom generally at
1102, 1104 driving a shaft 1110 (phantom) keyed with a
rotary output member 1120 on the housing 1102. Output
member 1120 rotates in an arc, moving from side to side a
wire member 1130 defining a pair of steering arms 1132,
1134 operably coupled with separate ones of the pair of front
wheels 28 of the vehicle 20 to pivot those wheels side to side
about vertical axes in a conventional manner to steer wheel
20. FIG. 10B shows the output assembly 1100 with the gears
1102, 1104 and a top cover carrying the rotary output
member 1120 removed. The left side of assembly 1100
includes steering sensor 1000 while the right side includes
steering motor 420. Sensor 1000 includes a stationary mem-
ber or portion, which is indicated generally at 1010 and seen
separately in FIG. 11, and a rotary member or rotating
portion indicated generally at 1050. The rotary member
1050 includes a plurality of connected concentric ring
portions 1052, 1054, 1056 cach containing one or more
dimples 10524, 10544 and 10564, 1056b for the innermost
ring. These dimples ride over the upper surface of the
stationary portion 1010. Referring to FIG. 11, the stationary
portion 1010 includes a circuit board 1012 on which are
mounted three electrically conductive, generally concentric
tracks 1020, 1030 and 1040. Each track includes an output
terminal 1022, 1032, 1042, respectively on one edge of the
board 1012. These three terminals connect via a suitable
electrical connection (e.g. connector 860 in FIG. 8B) to
microprocessor 8U2. Each track 1020, 1030, 1040 is con-
tinuous around a central opening 1014 in the circuit board
1012 through which the output shaft 1110 extends. Rotating
portion 1050 is keyed with shaft 1110 to rotate with the shaft.
Rotating portion 1050 is a continuous piece of electrically
conductive material such as metal and electrically couples
one or more of the two outer tracks 1020 and 1030 with the
innermost track 1040. A high level voltage is applied by the
microprocessor 8U2 through the connecter 860 to the ter-
minals 1022 and 1032. Terminal 1042 is connected to
common or ground. The contacting dimples 1056a 10565
are in constant contact with the ring portion 1044 of inner-
most track 1040. In contrast, dimples 1054a of ring portion
1054 only contact wiper portions 1034 and 1036 of central
track 1030 at certain angular positions of rotating portion
1050. Similarly, dimples 1052a of ring 1052 only contact
wiper portions 1024 and 1026 of the outermost track 1020.

[0038] Referring to FIG. 1, dimples 10524, 10544, 10564,
1046b of rotating contact member 1050 come in contact
with the tracks 1020, 1030, 1040 in five different steering
positions (far left indicated at 1060, near left 1062, center
1064, near right 1066, far right 1068) on printed circuit
board 1010 as member 1050 turns clockwise from far left to
far right. When the rotating member 1050 is turned fully left
or right, dimples 10524, 1054a loose contact with tracks

Jun. 19, 2003

1020, 1030 and logic bits “1,1” are outputted from electrical
contacts 1022, 1032. When the rotating member 1050 is
turned clockwise from far left to left of center 1062, logic
bits “0,1” are outputted from electrical contacts 1022, 1032.
When the rotating member is in the center position 1064,
logic bits “0,0” are outputted from electrical contacts 1022,
1032. When the rotating member is turned to the right of
center but not fully right, logic bits “1,0” are outputted from
electrical contacts 1022, 1032. When fully right, logic bits
“1, 17 are again output from contacts 1022, 1032.

[0039] The states of electrical contacts 1022, 1032 are
monitored by processor 8U2 and the speed of steering motor
410 is preferably controlled based on the outputted logic bits
(i, i) which indicate the position of the front wheels 28.
Normally the steering motor 410 operates at top speed
(100%). However, with feedback provided by sensor 1000,
the motor 410 can be operated to prevent overshoot. FIG. 3
shows a trapezoidal velocity profile of speed versus time for
the steering function of a toy vehicle 20 according to a
preferred embodiment of the present invention. Steering
motor 410 may be controlled like propulsion motor 420 by
a PWM duty cycle to prevent overshoot of the steering
system. For example, the steering motor 410 may be driven
by microprocessor 8U2 (or 4U1) at a higher duty cycle when
going from a left or right turn to a turn in the other direction
(e.g., from far left to far right) and at a lesser duty cycle
when going from a center position to right or left and vice
versa. When logic bits “0, 1” are detected as the rotating
member 1120 turns from center position (0, 0) to the left and
passes the near left wipers 1024, 1026, or when logic bits “1,
0” are detected as the output member 1120 and rotary
member 1050 turn to the right and pass the near right wipers
1034, 1036, the rate of the steering motor and front wheel
rotation is reduced to 50% to avoid overshooting its desti-
nation (far left or far right). Preferably too, the speed of the
propulsion motor 420 can further be reduced automatically
by the processor 8U2 when the processor 8U2 detects that a
turn of the toy vehicle 20 is in progress to automatically slow
the vehicle to a speed less than maximum while making the
turn.

[0040] With a start and end point considered in a closed
loop system, speed of the steering motor 410 in the toy
vehicle 20 can be varied so that steering follows a trapezoi-
dal profile as shown in FIG. 3, i.e. start from zero and reach
a maximum turning rate, and then slowed to reduce its rate
of rotation so that steering system momentum is dissipated
and the steering system does not overshoot its target. When
the command to steer to a new position is given, firmware
operating in conjunction with microprocessor 8U2 (or 4U1)
will identify the current steering position and move at a
higher rate and duty cycle (e.g., 100% duty cycle) when the
commanded steering position is more than one steering
position away from (i.e., other than adjacent to) its current
position. For example, in going from a left turn to a right turn
through consecutive outputs (1, 1), (0, 1), (1, 1), (1, 0) to (1,
1), the motor 410 may be driven at high speed (100% duty
cycle) until center position (0, 0) or near right (1, 0) is
encountered and the motor 410 then driven at a lower speed
(e.g., 50% duty cycle) until far right (1, 1) is sensed.

[0041] Steering control can be further refined if the steer-
ing function is spring centered, i.e. a single torsion spring or
pair of compression or tension springs (none depicted) used
to drive the rotary output member 1120 to the straight



US 2003/0114075 Al

forward position. Then the microprocessor 8U2 (or 4U1) can
be configured by programming to account for action of the
spring(s). For example, turning from left to right, the micro-
processor 8U2 may drive at high level and low level in
moving more than one steering position (e.g. left-right) or
only one steering position (e.g. center left/right), respec-
tively, from the present position and at different speeds if
moving with or against a spring. For example, movement
left to right or vice versa can begin at full speed (100% duty
cycle) and transfer to first low speed (e.g. 50% duty cycle)
from the center position (0, 0) to the far right position to
drive against the centering spring in the latter part of the
movement. In going from right or left to center with spring
assistance, the motor 410 is operated at a second, lower
speed (e.g., 37.5% duty cycle), whereas, while going from
center to left or right against a spring, the motor 410 is
operated at the first low speed (e.g., 50%).

[0042] A spring loaded steering function of the toy vehicle
20 may also incorporate a target pad timeout period which
monitors the time it takes for the sensor 1000 to reach a
particular steering position (center, near left, far left, near
right, far right). If the position is not reached within a
predetermined period of time, the power to the motor 410 is
turned off and the spring(s) will return the steering output
number 1120 to the center position. If the steering position
does not return to the center position, the microprocessor
8U2 (or 4U1) is alerted that the steering is misaligned and
electromechanically re-centers the steering.

Jun. 19, 2003

[0043] Preferred transmitter code used in a remote control/
transmitter 100 operating in accordance with the present
invention is located on pages A-1 through A-53 of the
attached Appendix incorporated by reference herein. Pre-
ferred receiver code used in a toy vehicle 20 operating in
accordance with the present invention is located on pages
A-54 through A-77 of the Appendix.

[0044] In addition to duty cycle control in the vehicle 20,
speed control of the vehicle 20 could be performed by the
remote control/transmitter 100 by duty cycle transmission of
a propulsion or steering signal (i.e. transmit the signal(s)
several times followed by a period with no signal) or by
varying the rate at which the propulsion signal is transmitted
(e.g., every 10, 15 or 20 millisecond). Of course, the
microprocessor of the toy vehicle 20 would also have to be
appropriately configured to operate with such a duty cycle
arrangement.

[0045] 1t will be appreciated by those skilled in the art that
changes could be made to the embodiments described above
without departing from the broad inventive concept thereof.
It is understood, therefore, that this invention is not limited
to the particular embodiments disclosed, but it is intended to
cover modifications within the spirit and scope of the present
invention.



US 2003/0114075 Al Jun. 19, 2003

APPENDIX

Transmitter Code

.LINKLIST
. SYMBOLS
.CODE

; /¥EEER System parameters ¥EEw

SystemClock: EQU 2000000
SPC41A: EQU 1 ; select body (hardware.inh)
; /¥**** sound details (ver3.42a or later)
ADPCM_TABLE_65: EQU 1 ;1T use ADPCM65 or later
_ADPCM_H_: EQU 1 ;If no limit

.Include Hardware.Inh

; ¥FEEE Addresses SunPlus forgot *¥#x

P_Multirhase EQU $37 ; register that controls Multi Phase
settings on 81A

; ¥E¥EE CONSTANTS/DEFINES *#*#%#*%
; sound stuff

D_RampDownvalue: EQU 00H ;If CurrentDAC->00H, PWM->80H
D_Maxword: EQU 16 ;number of speech pieces
D_MaxMelody: EQU 1 snhumber of melodies
D_MaxRhythm; EQU 0 yhumber of rhythms
D_SamplePreload: EQU O0H ;should be 6 for 8kHz or 0 for 6 Khz
; my sounds

;D_Snd_Accel EQU 0

D_snd_sraking EQU 1

D_Snd_chirp EQU 2

D_snd_bnshift EQU 3

D_Snd_Eng_strt EQU 4

D_Snd_Gear EQU 5

D_sSnd_Grind EQU 8

D_Snd_Horn EQU 9

D_snd_1dle EQU 10

D_Snd_preelout EQU 11

D_Snd_squeel EQU 12

pD_snd_upshift EQU 13

D_snd_wnhine_C EQU 14

D_snd_whine_R EQU 15

D_Snd_None EQU ffh

; within loop timiers
; sound Service Timers
D_TmBH_SS0 EQU 00h



Jun. 19, 2003

shft96Tx.ASM

US 2003/0114075 A1l
D_TmBL_SSO EQU 96h
D_TmBH_SS1 EQU 01h
D_TmBL_SS1 EQU doh
D_TMBH_SS2 EQU 02h
D_TmBL_SS2 EQU f6h
D_TmBH_SS3 EQU 04h
D_TmBL_SS3 EQU 4ah
D_TmBH_SS4 EQU 0Sh
D_TmBL_SS4 EQU 82h
D_TmBH_SS5 EQU 06h
D_TmBL_SS5 EQU bch
D_TmBH_SS6 EQU 07h
D_TmBL_SS6 EQU f8h
D_TmBH_SS7 EQU 09h
D_TmBL_SS7 EQU 32h
D_TmBH_SS8 EQU OfFh
D_TmBL_SS8 EQU D5H
D_TmBH_Tx0 EQU 09h
D_TmBL_Tx0 EQU D8h
D_TmBH_Tx1 EQU 02h
D_TmBL_Tx1 EQU 76h
D_TmBH_Tx?2 EQU 04h
D_TmBL_Tx2 EQU ech -
D_TmBH_Tx3 EQU 07h
D_TmBL_Tx3 EQU 62h

; large timers-small timer ticks each loop. (1260 uS).
S

5 us
232 us
379us
549us
705us
862us

1020us
1177us

only for standby horn sound
2 ms

1260 us

315 us
630 us

945 us

Large timer ticks every .32

D;Sma11_Squee1_Timer_Pre1oad
D_Large_squeel_Timer_Preload

EQU
EQU

; for qrototyp1ng a short medium or
D_small_shift_Timer_Preload EQU
D_Large_shift_Timer_Preload EQU

D_small_rwd_Release_Timer_rreload
D_Large_rFwd_Release_Timer_Preload

D_small_sound_Check_Timer_preload
D_targe_sound_check_Timer_rreload

D_small_1dle_Timer_prreload EQU
D_Large_Idle_Timer_preload EQU
D_small_chirp_Timer_Preload EQU
D_Small_LED_Timer_Preload EQU
D_Peelout_Time EQU

#8ch
#01h

; 018ch =0.5 seconds

Tong shift time can be selected
#

33h
#06h

EQU
EQU

EQU
EQU

#80h
#2eh

#c6h
#ffh
#28h

; 0633=2.0 seconds

#19h
#03h ;

#8ch
#03h

0319h = 1 second

; 2e80h=15 seconds
00c6h =0.25 seconds
; ffh =.3 seconds

; when idle timer has gotten here



US 2003/0114075 Al Jun. 19, 2003

Shft96Tx.ASM
; 2eh-28h=2 seconds

; Timers which run off of interrupts (interrupts used only during mode selection)
; both run off of clock/65536 interrupt. For 2 Mhz clock this is 31 hz

D_Mode_Check_Timeout EQU #93 ; 93=3 seconds
D_Mode_Select_Time EQU #62 ; 62=seconds
D_LED_Flash_Timer EQU #8

i Inputs

; buttons

D_Pin_Fwd: EQU 00001000b ; PortD bit of motor pin output
D_Pin_Rev: EQU 00000100b ;
D_Pin_Left: EQU 00000010b H
D_Pin_Right: EQU 00000001b ;

; outputs

D_Pin_Tx: EQU 00000010b ; POrt C
D_Pin_LED: EQU 00000001b ;
D_Pin_Tx_Enable EQU 00000100b

; PACKET BITS

D_Fwd_Bits EQU 00110000b ; 2 bit pwm level
D_Rev_Bits EQU 00001100b 7 2 bit pwm level
D_Left_Bit EQU 00000010b

D_Right_Bit EQU 00000001b

D_Turns_Bit EQU 00000011b

D_PwWM_LoO EQU 00001000b

D_PwM_Med EQU 00010000b

D_PWM_H1 EQU 00011000b

D_TX_Flag EQU 01111100b ; First six bits are the flag
; mode selection

D_Mode_2_Command EQU 00000111b ; fw  pull down
D_Mode_3_Command EQU 00001011b ; rev pull down

H dede ek VARIABLES ThkkE
.PAGEO
.ORG D_RamTop

; variables used in all modes

; interrupts related

R_IntFiags: DS 1
R_IntTemps: DS 1
R_TempA: DS 1
R_TempX: DS 1
; sound related
R_SongNo: DS 1
R_volume: DS 1
R_Templ: DS 1
R_Next_Sound DS 1 ; sound to be played next
R_Current_Sound DS 1 ; sound being played
R_Sounds_Array DS 17
R_Sound_Interrupt DS 1



US 2003/0114075 Al Jun. 19, 2003

Shft96Tx.ASM

R_Sound_Repeat DS 1

; mode related
R_Mode DS 1 ; 3 modes- shifting, sounds, no sounds
R_Mode_Timer DS 1
R_Mode_check_Timer DS 1
R_Command_To_check DS 1
R_Mode_To_Check DS 1
R_State DS 1

; tx related
R_Tx_Flag_And_ck DS 1
R_TX_Commands DS 1
R_Tx_Data_current DS 1
R_Current_Tx_Byte_Num DS 1
R_Tx_Bit_Index DS 1
R_Second_Tx_Bit_Half DS 1
R_First_Tx_Bit_Half DS 1
R_Bit_Half DS 1
; variables Specific to Mode 1
R_Gear DS 1
R_shift_Legal DS 1
; variables Specific to Mode 2
R_Turning DS 1
R_Dir DS 1
R_Peelout_Enable DS 1
R_Large_shift_Timer DS 1
R_Small_shift_Timer DS 1
R_Lar?e_Gear_Timer DS 1
R_Small_Gear_Timer DS 1
R_Large_Idle_Timer DS 1
R_Small_idle_Timer DS 1
R_Small_chirp_Timer DS 1
R_Large_sSqueel_Timer DS 1
R_Small_squeel_Timer DS 1
R_Small_LED_Timer DS 1
R_small_rwd_release_Timer DS 1
R_Large_Fwd_Release_Timer DS 1
R_Fwd_Ack_ok DS 1
R_Rev_Ack_ok , DS 1
R_Gear_Bits DS 1
R_First_start DS 1
R_SS_Time_H DS 8
R_SS_Time_L DS 8
R_TX_Time_H DS 4
R_TX_Time_L DS 4
R_Wait_Time_H DS 1
R_wait_Time_L DS 1
R_Horn_Plays DS 1
R_Small_sound_check_Timer DS 1
R_Large_sSound_check_Timer DS 1

R_Sound_check_bDelay_Complete DS 1



US 2003/0114075 Al

R_Peeled_out DS 1
R_Shifted DS 1
R_Sleepy_Counter DS 1
R_Standby_Counter DS 1
R_MS_Timer_Hi DS 1
R_MS_Timer_Lo DS 1
R_Sound_wait_Index DS 1

.PAGEQ

.Include channel.Inh

.CODE

.ORG 000H

DB FFH

.ORG 600H

= ARTATAAN RS A D kb dekdd
’

; V_ is by convention a vector.
micro is reset

V_Reset:

SEI

; (From Demo Code)

LDX
TXS

;wake from sleep stuff

;lda
;sta
s lda
s Tdx
1Sstx
;and
ibeq
;imp

1da
sta
sta
sta
sta
sta
sta
sta
sta
sta
sta
sta
sta
sta
sta
sta
sta
sta

#FFH ;

Jun. 19, 2003
10

Shft96Tx.ASM

Begin Main Code *ir¥kkkdkhkhhddhtn

The reset vector is where the code goes when the

load ff into the x reg (H means hex)

; transfer x reg contents to stack

#CO ; turn off and clear all interrupt
$0D ; disable watchdog

$08 ; Acc <- wake up status

#00

$08

#01

L_Init_variables ; if starting from power up
L_wake_Up ; 1f starting from sleep

. . ; *FEE* Initialize variables
L_Init_variables:

#0

R_IntFlags
R_IntTemps

R_TempA

R_TempX

R__SongNo

R_volume

R_Templ
R_Sounds_Array
R_Sound_Interrupt
R_Sound_Repeat
R_Mode
R_Mode_Timer
R_Mode_check_Timer
R_Command_To_Check
R_Mode_To_Check
R_State
R_Tx_Flag_And_ck



US 2003/0114075 Al

sta
sta
sta
sta
sta
sta
sta
sta
Sta
sta
sta
sta

sta
sta

sta
sta
sta
sta
sta
sta
sta
sta
Sta
sta
sta
sta
sta
sta
sta

1da
sta

Tdx
1da
sta
1da
sta

Tdx
lda
sta
1lda
sta

1dx
1da
sta
1da
sta

Tdx
1da
sta
1da
sta

Tdx
Tda
sta

11

Shft96Tx.ASM
R_Tx_Commands
R_Tx_Data_current
R_Current_TX_Byte_Num
R_Tx_Bit_Index
R_Second_Tx_Bit_Half
R_First_Tx_Bit_Half
R_Bit_Half
R_Gear
R_Shift_Legal
R_Turning
R_Dir
R_Horn_Plays

R_Large_Shift_Timer
R_Small_shift_Timer

R_Large_Gear_Timer
R_Small_Gear_Timer
R_Large_Idle_Timer
R_small_Idle_Timer
R_Smal1_chirp_Timer
R_Lar?e_Squee1_Timer
R_Small_squeel_Timer
R_Gear_Bits
R_First_Start
R_Shifted
R_Peeled_out
R_Sleepy_cCounter
R_Standby_Counter
R_Fwd_Ack_ok
R_Rev_Ack_ok

#1
R_Peelout_Enable

#0
#D_TmBH_SSO
R_SS_Time_H,X
#D_TmBL_SSO
R_SS_Time_L,X

#1
#D_TmBH_SS1
R_SS_Time_H, X
#D_TmBL_SS1
R_SS_Time_L,X

#2
#D_TmBH_SS2
R_SS_Time_H,X
#D_TmBL_SS2
R_SS_Time_L,X

#3
#D_TmBH_SS3
R_SS_Time_H,X
#D_TmBL_SS3
R_SS_Time_L,X

#4
#D_TmBH_SS4
R_SS_Time_H, X

Jun. 19, 2003



US 2003/0114075 Al

1da
sta

Tdx
1da
sta
lda
sta

Tdx
1da
sta
1lda
sta

T1dx
lda
sta
1da
sta

1dx
1da
sta
1da
sta

Tdx
Tda
sta
lda
sta

Tdx
1da
sta
1da
sta

Tdx
Tda
sta
1da
sta

1da
sta
sta

#D_TmBL_SS4
R_SS_Time_L,X

#5
#D_TmBH_SSS
R_SS_Time_H,X
#D_TmBL_SS5
R_SS_Time_L,X

#6
#D_TmBH_SS6
R_SS_Time_H,X
#D_TmBL_SS6
R_SS_Time_L,X

#7
#D_TmBH_SS7
R_SS_Time_H,X
#D_TmBL_SS7
R_SS_Time_L,X

#0
#0_TmBH_Tx0
R_TX_Time_H,X
#D_TmBL_Tx0
R_TX_Time_L,X

#1
#D_TmBH_Tx1
R_TX_Time_H,X
#D_TmBL_Tx1
R_Tx_Time_L,X

#2
#D_TmBH_Tx2
R_TX_Time_H,X
#D_TmBL_Tx?2
R_Tx_Time_L,X

#3
#D_TmBH_Tx3
R_TX_Time_H,X
#D_TmBL_Tx3
R_Tx_Time_L,X

#D_snd_None

R_Current_Sound

R_Next_Sound

12

Shft96Tx.AsSM

; *kxk% External initializations
%ChannelPlayerInitial

1da
and
nop
nop
nop
nop
sta

P_Stop
#%11110000

P_Stop

; in Channel.inh

i set volume

Jun. 19, 2003



US 2003/0114075 Al

LDA
STA

1da
sta
sta

. dddhh
'

LDA
STA
LDA
STA

LDA
STA
duty

o hhfhd
1

STA
STA

SEI
; ¥FERE preload

LDA
STA
LDA
STA

LDA
STA
LDA
STA
L_Main:

ISR
jsr

L_wake_Up:
Tda
and
sta

L_Main_Loop:

sej

Jun. 19, 2003

13

Shft96Tx.ASM

#00000000b
P_Portc

#0
P_POrts
P_POrtA

Port configuration

#10111111b
P_PortIo_ctril
#00000000b
P_Port_Attrib

#00000010b
P_MultipPhase

Configure interrupts
#%11000010

P_Ints
R_IntFlags

Timers

#00h
P_TmAL
#00h
P_TmAH

#00h
P_TmBL
#00h
P_TmBH

F_Get_mode
F_Init_Mode

P_POrtC
#.NOT.D_Pin_Tx_Enable
P_PortC

; all off (low)

D-C-B-A, high-Tow, l=output

outputs buffer; pL pull down

turn off multi-phase on A2, but set 1/3

in case it does turn on for diagnosis

disable watchdog

disable nmi

enable TimerA interrupt

enable TimerB 1interrupt

disable 4 khz interrupt

disable 500 Hz and

enable 62.5 Hz interrupts

disable external interupt

store interrupt settings

store interrupt settings here, too

disable interrupts

preload: D58h = 315 us

above and mode bits

; enable radio



US 2003/0114075 Al

Shft96Tx.ASM

14

Jun. 19, 2003

; tx line should be serviced every 315 us, sound every 157 us

LDA
STA
LDA
STA

jsr

L_Set_Tx_Line:

JSR

JSR
JSR
Tdx
jsr
JSR
Tdx
jsr

JSR
Tdx
jsr

JSR

jsr

Tdx
jsr

JSR

Tdx
jsr
JSR
Tdx
jsr
JSR
JSR
JSR

ldx
jsr

JSR

Tdx
jsr
JSR
Tdx
jsr

JSR

#00h ; preload timers

P_TmBL
#00h
P_TmBH

F_Check_Time_To_Standby

F_Set_Tx_Line

F_IntChlService
F_Decide_Packet

#1
F_wait_Sound_Service
F_IntChlservice

#1
F_wait_Tx_Line

F_Set_Tx_Line
#2
F_wait_Sound_Service

F_IntChlservice

F_Determine_State

#3
F_wait_sound_service

F_IntcChlService

#2

F_Wait_Tx_Line
F_Set_Tx_Line

#4
F_wait_sound_Service

F_IntChlService
F_ServiceChannelprlayer
F_Decide_Sounds

#5
F_wait_Sound_Service

F_IntChlService
#3
F_Wait_Tx_Line
F_Set_Tx_Line
#6

F_Wait_sSound_sService

F_IntChlservice

; state determines packet, sounds



US 2003/0114075 Al

J5R

1sr
dx
jsr
JSR

Tdx
jsr
aMP

15

Shft96Tx.ASM
F_Play_Sounds
F_Control_LED
#7

F_wait_Sound_Service
F_IntChlservice
#0

F_Wait_Tx_Line
L_Main_Loop

ek fddededed Frdhhhhhdehkk 1 L3233
H o Fedde ke ke Functions#**s#sdddddhhhdddhdddohiotohix LR R

; as an alternate to sleeping, the micro remains on, but shuts off radio

transmission

; and the DAC when nothing is doing

F_Check_Time_To_standby:

1da R_Mode

cmp #3

beq L_CSt_Mode_3

; in modes 1 or 2 (these modes have sound)
%TestSpeechchl ; sets carry if playing
bcs L_CSt_Clear_standby_Counter

L_CSt_Mode_3:

1da
and
cmp
bne

inc
Tda

cmp
bne

P_PortD

#0Fh

#0Fh

L_CSt_Clear_standby_Counter ; button pressed
R_Standby_Counter ; getting sleepier

R_Standby_cCounter
#9

L_CSt_Dbone

L_CSt_Prepare_To_Standby:

1da
sta

Tda
and
sta

1da
sta
sta

1da
sta

jsr

#0 ; clear standby counter
R_Standby_Counter

P_PortC ; turn off radio transmission
#.NOT.D_Pin_Tx_Enable
P_PortcC

#0 ;turn off dac
R_DacChl
P_DacChl

#0
R_Sound_wait_Index

F_Standby

L_CSt_Clear_standby_cCounter:

Jun. 19, 2003



US 2003/0114075 Al Jun. 19, 2003
16

Shft96Tx.ASM

Tda #0

sta R_Standby_Counter
L_CSt_Done:

rts
; F_Standby

; wait until a button is hit. 1In the meantime play a sound occasionally
; to suggest to user that he turn off device.

F_Standby:
L_S_Start:
1da #0 ; clear timer A
sta P_TmBH
sta P_TmBL
sta R_MS_Timer_Hi ; clear
sta R_MS_Timer_Lo
sta R_Sound_wait_Index
L_S_Loop: ; checks to see if any button hit or
jsr F_ServicechannelPlayer ; if waiting time has expired.
Tdx R_Sound_wait_Index
jsr F_Wait_sSound_service
jsr F_IntChlService
Tda P_PortD ; check button
and #0fh
cmp #0th
bne L_S_Done ; button hit
. ; no button hit
inc R_Sound_wait_Index
1da R_Sound_wait_Index
cmp #09
bne L_S_Loop
; finished hw timer laop )
lda #0 ; clear hw timers for next time
sta P_TmBH
sta P_TmBL
1da #0 . ; reset index for next time
sta R_Sound_wait_Index
inc R_MS_Timer_Lo
1da R_MS_Timer_Lo
cmp #ffh .
beg L_S_Inc_MS_Timer_Hi
' jmp L_S_Loop ; MS_Timer_Lo not at max, keep looping

L_S_Inc_MS_Timer_Hi:

1da #0 .

sta R_MS_Timer_Lo
inc R_MS_Timer_Hi
1da R_MS_Timer_Hi

cmp #ffh



US 2003/0114075 Al Jun. 19, 2003
17

Shft96Tx.AsM .
bne L_S_Loop ; MS_Timer_Hi not at max, keep looping

L_S_Set_Sound:

1da #0

sta R_Sound_Interrupt
1da #0

sta R_Sound_Repeat

L_Playing_Sound:

T1da #3

sta R_Current_Sound

Tda #9

sta R_Next_Sound

jsr F_Play_sSounds

jmp L_S_Start
L_S_Done:

rts

(WAL LR EE RS EE 2 R R L LR R R L R R R R R R R X ]

E_B1ip_BO:
Tda P_POrtB
ora #00000001b
sta P_POrtB
1da P_PortB
and #11111110b
sta P_PoOrtB
rts
F_Blip_Bl:
Tda P_Ports
ora #00000010b
sta P_Ports
1da P_PortB
and #11111101b
sta P_Ports
rts
F_Get_Mode:
1da #1
sta R_Mode ; set mode 1 as new default
sei ; disable ints momentarily since were
fooling
; with a variable that's changed in the int
1da #0
sta R_Mode_Timer
cli

L_GM_check_Modes_Loop:



US 2003/0114075 Al

ida
and
cmp
beq

1da

ora

sta

jmp
L_GM_CK_LED_Off:

1da

and
sta

18

Shft96Tx.ASM

P_PortD

#0fh

#0fh
L_GM_CK_LED_off

P_Portc
#D_Pin_LED
P_PortC
L_GM_Check_Timer

P_PortC
#.NOT.D_Pin_LED
P_PortC

L_GM_Check_Timer:

sei
1da
cli
cmp
bcs

Tda
and
cmp
bne

R_Mode_Timer

#D_Mode_Check_Timeout
L_GM_Store_Mode_1; use default

P_PortD

#0fh
#D_Mode_2_command
L_GM_Check_Mode_3

;mode 2 selected initially--keys need to be held

Tda
ora
sta

Tda
sta
Tda
sta
jmp

P_PortcC
#D_Pin_LED
P_pPortcC

#D_Mode_2_Command
R_Command_To_cCheck
#2

R_Mode_To_cCheck
L_GM_Wwait_Modes

L_GM_Check_Mode_3:

cmp
bne

#D_Mode_3_Command
L_GM_Check_modes_Loop

; mode 3 selected--keys need to be held

1da
ora
sta

1da
sta
1da
sta

jmp

P_PortcC
#D_Pin_LED
P_PortC

#D_Mode_3_Command
R_Command_To_Check
#3

R_Mode_To_Check
L_GM_Wait_Modes

; 3 seconds

Jun. 19, 2003

; wait to see if the buttons are pressed long enough for either mode 2 or 3 to be

selected
L_GM_Wait_Modes:

sei

; start timer



US 2003/0114075 Al

1da
sta
cli

#0 _
R_Mode_Check_Timer

L_GM_wait_Mode_Loop:

1da
and
cmp
beq

1da

and
sta

jmp

P_PortD

#0fh
R_Command_To_Check
L_GM_Still_Pressed

P_PortC
#.NOT.D_Pin_LED
P_Portc

L_GM_Check_Modes_Loop

L_GM_Stil1_Pressed:

Tda
cli
cmp
bcc
mp

R_Mode_check_Timer
3
#D_Mode_Select_Time
L_GM_wait_Mode_Loop
L_GM_Store_Mode

L_GM_Store_Mode_1:

lda
sta

#1
R_Mode_To_Check

; mode selected

L_GM_Store_Mode:

1da
sta
cmp
beq

cmp
beq

imp

R_Mode_To_Check
R_Mode
#1

L_GM_Setup_shift_sound

#2
L_GM_Setup_Horn_Sound

19

shft96Tx.ASM

; see if buttons still pressed

; turn led off

; button no longer pressed

L_GM_wait_For_loystick_Release

L_GM_Setup_Shift_Sound:

lda
imp

#D_Snd_upshift
L_GM_Setup_Sound

L_GM_Setup_Horn_Sound:

1da
imp

#D_Snd_Horn
L_GM_Setup_sSound

L_GM_Setup_Sound:

sta
sta

LDX
JSR

R_Current_sound
R_Next_Sound

#D_SamplePreload
F_Playspeechchl

L_GM_Wait_For_Joystick_Release:

sei
1da

#0

; the setting for sample frequency
; play

Jun. 19, 2003



US 2003/0114075 Al

sta
cli

Jun. 19, 2003
20

Shft96Tx.ASM

R_Mode_Timer

L_GM_Wait_For_Release:

; flash

sei
1da
cmp
bcc

led
1da
eor
sta
1da
sta
cli

R_Mode_Timer
#D_LED_Flash_Timer
L_GM_Check_Release

P_PortcC
#D_Pin_LED
P_PortC

#0
R_Mode_Timer

L_GM_Check_Release:

clid

1da
and
cmp
bne

Jmp

L_GM_Done:

sei
Tda
STA
STA
rts

F_Init_Mode:

L_IM_1:

Tda

cmp
beq

cmp
beq
jmp
jsr

; setup

L_LD_SND:

Tdx
1da
sta

Tdx
1da

P_PortD
#0fh

#0fh
L_GM_wait_For_Release

L_GM_Done

#%11000000
P_Ints
R_IntFlags

R_Mode

#1
L_Im_ 1

#2
L_IM_2

L_IM_3

F_Load_shared_sounds
the sound array

#4
#D_snd_Gear
R_Sounds_Array, X

#5
#D_Snd_Gear

disable interrupts

disable c1k/65536 interrupt

store interrupt settings

store interrupt settings here, too

; several sounds are shared by modes 1 and 2

; acceleration mode no longer exists



US 2003/0114075 Al

L_IM_2:

L_IM_3:

sta

Tdx
1da
sta

Tdx
Tda
sta

Tdx
T1da
sta

Tdx
1da
sta

Tdx
1da
sta

Tdx
1da
sta

rts

R_sounds_Array, X

#6
#D_snd_gGear

R_Sounds_Array, X

#7
#D_snd_Gear

R_Sounds_Array,X

#8
#D_Snd_Horn

R_Sounds_Array,X

#9
#D_Snd_Gear

R_Sounds_Array,X

#11
#D_snd_Braking

R_Sounds_Array,X

#12
#D_Snd_Grind

R_Sounds_Array,X

;setup the sound array

jsr

Tdx
Tda
sta

Tdx
1da
sta

Tdx
T1da
sta

Tdx
1da
sta

Tdx
Tda
sta

rts

Tda
sta
sta
rts

F_toad_shared_sounds

#4
#D_snd_Gear

R_Sounds_Array,X

#5
#0_sSnd_Braking

R_Sounds_Array,X

#6
#0_sSnd_chirp

R_Sounds_Array, X

#9
#D_Snd_Horn

R_Sounds_Array,X

#11
#D_sSnd_Gear

R_Sounds_Array,X

#0
R_Dacchl
P_paccChl

21

Shft96Tx.ASM

Jun. 19, 2003

; several sounds are shared by modes 1 and 2

;turn off dac so we're not leaking current



US 2003/0114075 Al Jun. 19, 2003
22

Shft96Tx.ASM
F_Load_Shared_Sounds:

Tdx #0

1da #D_Snd_None

sta R_Sounds_Array,X

Tdx #1

Tda #D_Snd_Eng_strt

sta R_Sounds_Array,X

Tdx #2

Tda #D_snd_Idle

sta R_Sounds_Array, X

Tdx #3

Tda #D_Snd_Peelout

sta R_Sounds_Array,X

Tdx #10 ; shift plays occasional when in mode2,
state 4

1da #D_snd_upshift

sta R_sounds_Array, X

Tdx #13

Tda #D_Snd_squeel

sta R_Sounds_Array, X

Tdx #14

Tda #D_Snd_Peelout

sta R_Sounds_Array, X

Tdx #0fth

lda #D_sSnd_Gear

sta R_Sounds_Array,Xx

Tdx #10h

Tda #D_snd_squeel

sta R_Sounds_Array,X

r
;*********#******************************************************************-
’

set the tx line

2 Bytes are sent. The first contains the flag and the checksum. The second
contains the actual data.

every bit has 2 halves they will either be the same (0) or different (1).

The first bit half will always be different than the Brevious second bit half
(that is the tx line state always changes at the Bit boundry

; 1':-k*********'k*s’r***********************************1‘:**-k************************
F_Set_Tx_Line:

; 1da P_PortB

; ora #02h

; sta P_POrtB

; 1da P_PortB

; and #.NOT.02h

H sta P_Ports
T1da R_Bit_Half

bne L_ST_Second_Half



US 2003/0114075 Al

23

Shft96Tx.ASM

; first bit half

dec

R_TX_Bit_Index

; check to see start of packet (for debugging)

lda
bne

; doing
1da

cmp
bne

R_Current_Tx_Byte_Num
L_ST_Check_Last_Second_Half

flag/checksum byte currently
R_Tx_Bit_Index

#7
L_ST_Check_Last_Second_Half

; blip A0 to show start of packet

1da
ora
sta

1da
and
sta

P_POrtA
#00000001b
P_POrtA

P_POrtA
#11111110b
P_PortA

L_ST_check_Last_Second_Half:

1da
bne

R_Second_Tx_Bit_Half .
L_ST_Lo_First_Half ; last was hi, we'll set next to lo s.t.
; there's change across the bit boundary

; last w?s no, we'll set to hi

da P_PortC
ora #D_PIn_Tx
sta P_PortcC
Tda #1 !
sta R_First_Tx_Bit_Half
jmp L_ST_Done_First_Half
L_ST_Lo_First_Half:
Tda P_PortC
and #.NOT.D_Pin_Tx
sta P_PortC
Tda #0 .
sta R_First_Tx_Bit_Half

L_ST_Done_First_Half:

1da #1 ; set flag to do second half of bit next
time f_ is called

sta R_Bit_Half

jmp L_ST_Done

; Second half of bit
L_ST_Second_Half:

roi
bcec

R_Tx_Data_cCurrent ; shifts bit of interest into carry bit
L_ST_Tx_Zero

; We want to transmit a "1"

Tda

R_First_Tx_Bit_Half

Jun. 19, 2003



US 2003/0114075 Al Jun. 19, 2003
24

Shft96Tx.ASM

beq L_ST_Tx_Hi_second_Half ; since first half was lo, making second
half hi will make a "1"

jm, L_ST_Tx_Lo_Second_Half ; since first half was hi, making second
half 1o will make a "1"

; We want to transmit a "0Q"
L_ST_Tx_Zero:

1da R_First_Tx_Bit_Half

beq L_ST_Tx_to_Second_Half ; since first half was lo, making second half
To will make a "0O"

L_ST_Tx_Hi_second_Half: ; since first half was hi, making second half hi will make a

wn
Tda P_PortcC
ora #D_Pin_Tx
sta P_PortcC
1da #1 ] ;record
sta R_Second_Tx_Bit_Half
jmp L_ST_cCheck_Finished_Byte

L_ST_Tx_Lo_Second_Half:

Tda P_PortcC

and #.NOT.D_Pin_Tx

sta P_PortcC

1da #0

sta R_Second_Tx_Bit_Half

; check to see if all bits of current byte have been sent
L_ST_Check_Finished_syte:

Tda R_Tx_Bit_Index

bne L_ST_Done_Second_Half

% index is zero...all bits have been sent in current data byte

da #8 .

sta R_TX_Bit_Index

lda R_Current_Tx_Byte_Num
bne L_ST_Set_Tx_Flag_And_ck

; current byte is flag+ck --> set to commands

1da R._Tx_Commands

sta R_Tx_Pata_current

1da #1

sta R_Current_Tx_Byte_Num
jmp L_ST._Done_Second_Half

; long name, T know. It sets the byte to the flag and ck byte
L_ST_Set_Tx_Flag_And_ck:

Tda R_Tx_Flag_And_ck

sta R_Tx_Data_cCurrent

T1da #0

sta R_Current_Tx_Byte_Num

L._ST_Pbone_Second_Half:



US 2003/0114075 Al Jun. 19, 2003
25

Shft96Tx.ASM

Tda #0

sta R_Bit_Half
L_ST_Dbone:

rts

Gedefekfdfrhd el kAR A Edh T hhhh kb hdhhthddtsk

*hEE Determine State FAwwkE«
sEEAERAEE AT h A AT h Ak b h kSt Sk hd kit bk hhhk®
,

F_Determine_State:

Tda R_Mode

beq L_Get_State_MO

cmp #1

beq L_Get_State_ml

cmp #2

beq L_Get_State_m2_Dummy
jmp L_Get_State_M3

L_Get_State_M2_Dummy:
jmp L_Get_State_M2

L_Get_State_MO:
rts
;**************************************

;Determine state for mode 1
;**************************************

L_Get_State_M1:

1da R_State

beq L.GS1_State_0_Dummy ; same for modes 1 and 2
cmp #1

beq L_GS1_State_1_Dummy ; same for modes 1 and 2
cmp #2

beq L_GSl_state_2_Dummy ; same for modes 1 and 2
cmp #3

beq L_GS1_State_3

cmp #4

beq L_GS1_State_4_Dummy

cmp #5

beq L_GS1_State_5_Dummy

cmp #6

beq L_GS1_state_6_Dummy

cmp #7

beg L_GS1_State_7_Dummy

cmp #8

beq L_GS1_State_8_Dummy

cmp #9

beq L_GS1_State_9_Dummy



US 2003/0114075 Al Jun. 19, 2003
26

Shft96Tx.ASM

cmp #10

beq L_GS1_State_10_Dummy
cmp #11

beq L.GS1_state_11_Dummy
cmp #12

beq L_GS1_State_12_Dummy
cmp #13

beq L_Gsl_state_13_Dummy
cmp #14

beq L_GS1_State_14_bpummy
cmp #15

beq L_GS1_state_15_bDummy
jmp L_GS_State_16

L_GS1_State_0O_Dummy:

jmp L_GS_state_0
L_GS1_state_1_Dummy:

jmp L_GS_State_1
L_GS1_State_2_Dummy:

jmp L_GS_State_2
L_GS1_state_4_bDummy:

jmp L.GS1 _state_4
L_GS1 _State_5_bDummy:

jmp L_GS1 _State_5
L_GS1_state_6_Dummy:

jmp L_GS1_state_6
L_GS1_State_7_Dummy:

jmp L_GS1 State_7
L_GS1_state_8_bDummy:

jmp L_GS1_state_8
L_GS1_State_9_bummy:

jmp L_GS1 State_ 9
L_GS1_state_10_Dummy:

jmp L_GS1_state_10
L_GS1 State_11_Dummy:

jmp L_GS1 State_11

L_GS1 State_12_Dummy:
jmp L_GS1 _State_12

L_GS1_State_13_Dummy:
jmp L_GS1_State_13

L_GS1_state_14_Dummy:
jmp L_GS_state_14



US 2003/0114075 Al Jun. 19, 2003
27

Shft96Tx.ASM

L_GS1_State_l15_Dummy:
jmp L_GS_State_15

; ******Model State JrFkkddbkdddhfhhdddhhhdhhdhhhdhhhhhhhhhhhrhhhhhhd

;General: Peelin' out

;Gear 1

;Sound: Peel oOut

;To Change State: state 4 (Accel): peel out sound complete

; state 11(Braking): Rev Hit
H State 12(Grind Gears): trying to shift too soon (Fwd only)
H State 13 (squeeling): Turning for a long time

L_GS1_State_3:

jsr F_GS1_check_Fw_still_prressed
jsr F_GS1_check_Fwd_ack_ok
Tda #1
sta R_Peeled_out
jsr F_GS1_Check_shift_Legal
1da R_Sound_check_pelay_Complete
bne L_GS1_3_sound_chec
; decrement timer
dec R_sSmall_Sound_check_Timer
Tda R_small_sound_Check_Timer

0 beq L_GS1_3_Dec_Big_sound_Check_Timer ; 1F small timer has run to
jmp L_GS1_3_check_squee]

L_GS1_3_bec_Big_Sound_cCheck_Timer:
1da #ffh ; reload small timer

sta R_smal1_sound_check_Timer

Dec R_Large_Sound_Check_Timer

LDA R_Large_sound_check_Timer H

Bne L_GS1_3_check_squeel ; not  yet
1da #1

sta R_Sound_cCheck_bpelay_complete

L._GS1_3_Sound_check:

%TestSpeechchl ; which will set the carry if actively
playing .

bcs L_GS1_3_check_sSqueel ; still playing

jsr F_GS1_Set_State_5

jmp L_GS_Done

L_GS1_3_check_Squeel:
jsr F_GS_Check_squeel



US 2003/0114075 Al Jun. 19, 2003
28

Shft96Tx.ASM
;jsr F_GS1_Check_Premature_shift
jsr F_GS1_check_Braking

jmp L_GS_Done

;******Model State 4**********************************************

;General: Just jumps to state 5. Used to be accellerating state, but
1t was eliminated
; It is kept to avoid excessive rework in the code. Also,
seems possible

; that client might ask for it back.
;Gear: -

;Sound: -

;To Change State: State 5 (gearl). instantly, more or less

; going fwd. or reverse plays motor running sound, or occasionally gear shift-allow
car to move.

L_GS1_state_4:

; %TestSpeechChl
H bcs L_GS1_4_Done
jsr F_GS1_Set_state_5
L_GS1_4_pone:
jmp L_GS_Done
;*****#Model State S**********************************************
;General: Gear 1 .
;Movement : Fwd possibly turning
;Sound: Gear 1 . .
;To Change State: state 8 (ready to shift) Timeout (Fwd only)

; state 11(Braking): Rev Hit if going fwd, or rev released if
going rev

: State 12(Grind Gears): trying to shift too soon

; State 13 (squeeling): Turning for a Tong time (Fwd only)

L_GS1 _State_5:

isr F_GS1_check_Fw_Still_Pressed
isr F_GS1_check_Fwd_Ack_ok
jsr F_GS_check_squeel .
isr F_GS1_Check_Premature_shift
jsr F_GS1 _Check_shift_Legal
jsr F_GS1_cCheck_Braking
jmp L_GS_Done
;******Model State 6**********************************************
;General: Gear 2
;Movement : Fwd, possibly turning
; Sound: Gear 2
;To Change State: State 8 (ready to shift) Timeout

H State 11(Braking): Rev Hit
; State 12 (Grind Gears): trying to shift too soon
State 13 (Squeeling): Turning for a Tong time

»
L
L_GS1_State_6:



US 2003/0114075 Al Jun. 19, 2003
29

Shft96Tx.ASM
; traveling fwd currently

jsr F_GS1_Check_Fw_still_pressed
jsr F_GS1_check_Fwd_Ack_ok

jsr F_GS_Check_squeel .
jsr F_GS1_Check_Premature_shift
jsr F_GS1_check_shift_Legal

isr F_GS1_check_Braking

jmp L_GS_Done
-**************************************************************
’

H *kkkitMode] State 7%¥Ffhhhhkdvfhh bk ddihhd ki hhhhhhhhhh bk hdhhhsr

;General: Gear 3 ] .
yMovement: Fwd, possibly turning
;sound: Gear 3

;To Change State:
H State 11(Brakin?): Rev Hit
; state 13 (squeeling): Turning for a long time

[_Gs1_state_7
; traveling fwd currently

isr F_GS1 _check_Fw_stil1_Pressed
Isr F_GS_Check_squeel
jsr F_GS1_Check_Braking

Jmp L_GS_Done
;*******k******************************************************

;******Model State 8********************************************#*

;General: ready to shift ramp whining noise
;Movement: Fwd o .
;Sound: ramp whining noise

;To Change State:

H Sstate 9 (Ready to shift, const sound),

H state 10 (shifring) Fwd hit legally

; State 11(Brakin?): Rev Hit or timeout

; State 13 (squeeling): Turning for a long time

L_GS1_State_8:

isr F_GS1_check_Fw_still_pressed
jsr F_GS1_Check_Fwd_Ack_ok

; a delay in the sound check timer is apparently necessary. If I try to check the

; sound right away, it doesn’'t think a sound is playing. ~So you wait some arbitrary
; amount ot time (maybe half a second), then check to see if the sound is playing.

; at the time of writing this, I don't understand why this is necessary.

lda R_Sound_Check_De1a{_Comp1ete

bne L_GS1_8_sound_chec
; decrement timer

dec R_Small_sound_Check_Timer

1da R_Small_Sound_check_Timer .

beq L_GS1_8_Dec_Big_sound_Check_Timer ; 1f small timer has run to
0

jmp L_GS1_8_check_squeel

L_GS1_8_pec_Big_sound_cCheck_Timer:
1da #ffh ; reload small timer
sta R_Smal1_Sound_check_Timer

Dec R_Large_sound_Check_Timer
LDA R_Large_Sound_Check_Timer ;



US 2003/0114075 Al Jun. 19, 2003
30

Shft96Tx.ASM

Bne L.GS1_8_check_squeel ; hot yet
Tda #1
sta R_Sound_check_Delay_complete

L_GS1_8_sSound_check:

%TestSpeechchl
BCS L_GS1_8._check_squeel

; done playing ramping whining noise

jsr F_GS1_set_State_9
jmp L_GS_Done

L_GS1_8_check_squeel:

jsr F_GS_cCheck_squeel
isr F_Gs1_cCheck_shift
jsr F_GS1_check_graking
Jjmp L_GS_Done

;******Model State 9****************************ﬁ*****************

;General: ready to shift
iMovement: Fwd . ]
;Sound: constant whining noise

;To Change State:

; state 10 (shifting) Fwd hit legally

; State ll(Brakin?): Rev Hit or timeout

State 13 (squeeling): Turning for a Tong time

1
(_GS1_state_9:

jsr F_GS1_Check_Fw_still_rressed
jsr F_GS1_check_Fwd_aAck_ok
jsr F_GS_check_squeel
jsr F_GS1 Check_shift
jsr F_GS1_check_Braking
Jmp L_GS_Done
;******Model State 10*****************************************k****
;General: shifting
;Movement: Fwd
;Sound: shifting

;To Change State:

; State 6, 7 (Gear 2,3) Sound finishes

H State 11(Brakin?): Rev Hit

; State 13 (squeeling): Turning for a long time

L_GS1_state_10:

jsr F_GS1_cCheck_Fw_stil1_pPressed

jsr F_GS1_check_Fwd_Ack_ok

jsr F_GS1_check_shift_Legal

%TestSpeechchl ; which will set the carry if actively
playing

BCS t_GS1_10_check_squeel ; still playing shift

1da R_Gear

cmp #3 ; shifting into gear 3



US 2003/0114075 Al Jun. 19, 2003
31

Shft96Tx.ASM

beq L_GS1 10_Set_state_7
jsr F_GS1_Set_State_6 ; shifting from gear 1 to 2
mp L_GS_Done
L_GS1 _10_Set_State_7: L
jsr F_GS1_Set_State_7 ; shifting from gear 2 to 3
jmp L_GS_Done
L_GS1_10_check_Squeel:
isr F_GS_Check_squeel
jsr F_GS1_check_Braking
Jmp L_GS_Done
;******Model State 11*******?**********k***************************
;General: braking
;Movement: none
;Sound: braking . . ]
;To Change State: State 2 (idle) braking sound finishes

[_GSl_state_11:

Tavi %TestSpeechchl ; which will set the cCarry if actively
piaying . .

bcs L_GS1_11_bpone ; still playing braking

jsr F_GS_Set_State_2
L_GS1_11_Done:

o jmp L_GS_Done

;******Model State 12*****?**?**********k**************************
;General: grinding gears
;Movement: unchanged
;Sound: grinding %ears
;To Change State: State 5

gear 1) braking sound finishes

; state 11 (braking) hit rev

L_GS1 State_12:

jsr F_GS1 _Check_Fw_stil1_Pressed
Tavi %TestSpeechChl ; which will set the carry if actively
playing

BCS L_GS1_12_check Braking ; still playing squeeling

jsr F_GS1_Set_State_5

jmp L_GS_Done
L_GS1_12_check_Braking: )

jsr F_GS1_Check_Braking

jmp L_GS_Done

;******Model State 13**********************************************

;General: squeel
;Movement: turning, and going forward
;Sound: squeel
;To Change State: state 11 (braking) hit rev

H State 5 (gear 1) no longer turning
L_GS1_State_13:

1da #0
sta R_Shifted



US 2003/0114075 Al
32
Shft96Tx.ASM
jsr F_GS1_check_Fw_still_pressed
; check to see if turning
1da P_PortD
and #D_Pin_Left
beq L_GS1_13_check_Braking ; still turning
; check right turn
lda P_PortD
and #D_Pin_Right
beg L_GS1_13_check_Braking ; still turning

; no longer turning

jsr
jmp

F_GS1_Set_State_5
L_GS_Done

L_GS1 13_check_Braking:

jsr
jmp

F_GS1 check_Braking
L_GS_Done

shdrfrdedhdedededededihhkhde ok kR hhhhrkdhkrhdhhdhd®

%_GSl_Check_Braking:

y

s

L_GS1CB_Done:

checks braking when moving fwd

see if1rev hit (Causes braking)

da
and
bne
jsr
mp

rts

P_Portp
#D_Pin_Rev
L_GS1CB_Done

F_GS_Set_State_11 ; braking
L_GS_Done

-********************************************8

ﬁ_GSl_Check_Premature_shift:

L_GS1PS_Done:

1da
beq

R_Fwd_Ack_ok
L_GS1PS_Done

; has returned to neutral

1da
and
bne

jsr
Jmp

rts

P_PortD
#D_Pin_Fwd .
L_GS1PS_Done ; fwd not hit

F_GS1_Set_State_12
L_GS_Done

shdedeh R kde ke hdehkhrh kbbb vty

F_GS1_check_shift_Legal:

; decrement timer

dec

R_Small_shift_Timer

Jun. 19, 2003



US 2003/0114075 Al Jun. 19, 2003
33

Shft96Tx.ASM

1da R_smali_shift_Timer
beq L_Ds_bec_Big_Shift_Timer ; if small timer has run to O
jmp L_CSL_Done
L_DS_Dec_Big_Shift_Timer:
1da #ffh i .5 reload small timer
sta R_small_shift_Timer
Dec R_Large_shift_Timer
LDA R_Large_shift_Timer ;
Bne L_CSL_Done ; not legal yet
; shift is Tlegal
jsr F_GS1_Set_state 8
jmp L_GS_Done
L_CSL_Done:

rts
sk RRA T K h R AN A A AL ARk hhdh bk h ek dedh ki dd

F_GS1_check_shift:
1da

R_Fwd_Ack_ok
beq L_GS1CS_Done
Tda P_Portpb
and #D_Pin_Fwd . .
bne L_GS1CS_Done ; i.e. fwd pin is hi
; shift
jsr F_GS1_Set_State_10

L_GS1CS_Done:
rts

ehkfkdkfhhdhhhhhhhhdhhdeh e dhhehit

’
; checks if jogstick has rtned to neutral position. It must
; return here before a new fwd (or rev.) is acknowledged

F_GS1_check_Fwd_Ack_ok:

1da R_Fwd_Ack_o0k

bne L_GS1CF_Done ;already okay
1da P_Portb

and #D_Pin_Fwd

beq L_GS1CF_Done ; button pressed

; not pressed

lda #1
sta R_Fwd_Ack_ok

L_GS1CF_Done:
rts

F_GS1_cCheck_Rev_aAck_ok:

1da R_Rev_Ack_ok

bne L_GS1CR_Done ;already okay
1da P_PortpD

and #D_Pin_Rev

beq L_GS1CR_Done ; button pressed



US 2003/0114075 Al Jun. 19, 2003
34

Shft96Tx.ASM
; not pressed

Tda #1
sta R_Rev_Ack_0k

L_GS1CR_Done:
rts

sk hhdede kxR v nn
1

; checks to see if fwd is still pressed, or if or it has only recently released

é directs a state change (braking) if fwd is no longer pressed, and if it has not
een

; pressed for more than .5 seconds

F_GS1_Check_Fw_still_Pressed:

lda P_POrtD
and #D_Pin_Fwd . .
beq L_GSICFS_Init_rFwd_Release_Timer ; fwd still pressed
; decrement timer .
dec R_Small_Fwd_Release_Timer
1da R_small_Fwd_Release_Timer . . .
beq L_GS1CFS_bec_Big_Fwd_Release_Timer ; 1f small timer has run to
0
jmp L_GS1CFS_Done
L_GS1CFS_Dec_Big_Fwd_Release_Timer:
Tda #fth ; reload small timer
sta R_Small_Fwd_Release_Timer
Dec R_Large_Fwd_Release_Timer
LDA R_Large_Fwd_Release_Timer .
Bne L_GS1CFS_Done ; time not up yet
; time up
isr F_GS_Set_State_11
jmp L_GS1CF_Done

L_GS1CFS_Init_Fwd_Release_Timer:

1da #D_small_rFwd_Release_Timer_pPreload
sta R_Small_Fwd_Release_Timer
1da #D_Large_Fwd_Release_Timer_rreload
sta R_Large_Fwd_Release_Timer

L_GS1CFS_Done:
rts

;***********************************
; some set state functions are shared by modes 1 and 2, some are not.

F_GS1l_set_state_5:



US 2003/0114075 Al Jun. 19, 2003
35

Shft96Tx.AsM

lda #0

sta R_Fwd_aAck_ok

lda #1

sta R_Sound_Repeat

1lda #1

sta R_Gear

1da #5

sta R_State

1da R_Peeled_out

bne L_GS15_Clear_P_And_S ; get it? P_and_s
lda R_shifted

bne L_GS15_Clear_P_And_S

jsr F_GS_Preload_shift_Timer ; didn't peel out or shift (both

would

. . ; (have already started timer),
start shift timer

; peeled out, so shift timer already

started
L_GS15_Clear_P_And_S:
lda #0
sta R_Peeled_out
sta R_shifted
res

F_GS1_Set_State_6:

1da #0

sta R_Fwd_Ack_ok
1da #1

sta R_Sound_Repeat
lda #2

sta R_Gear

Tda #6

sta R_State

rts

F_GS1_Set_State_7:

1da #1

sta R_Sound_Repeat
Tda #3

sta R_Gear

1da #7

sta R_State

rts

F_GS1_Set_State_8:



US 2003/0114075 Al

1da
sta
sta

1da
sta
1da
sta

; gear u

1da
sta
rts

36

shft96Tx.ASM

#0
R_Sound_Repeat
R_Sound_cCheck_belay_complete

#D_Small_sound_cCheck_Timer_prreload
R_Small_Sound_check_Timer
#D_Large_sound_check_Timer_preload
R_Large_sound_check_Ttimer

nchanged

#8
R_State

F_GS1_Set_State_9:

lda
sta

; gear u

1da
sta
rts

#1
R_Sound_Repeat

nchanged

#9
R_State

F_GS1_Set_State_10:

1da #0

sta R_Sound_Repeat

1da #10

sta R_State

1da #1

sta R_Shifted

jsr F_GS_pPreload_Shift_Timer

1da R_Gear

cmp #1

beq L_SS10_G2

1da #3

sta R_Gear

jmp L_SS10_Done
L_SS10_G2:

1da #2

sta R_Gear
L_SS10_Done:

rts
F_GS1_Set_State_12:

Tda #0

sta R_Sound_Repeat

; gear unchanged

lda

Jun. 19, 2003



US 2003/0114075 Al

sta
rts

37

R_State

Shft96Tx.ASM

;**********************************************************
F_GS_pPreload_shift_Timer:

1da
sta
1da
sta

rts

#0_sSmall_shift_Timer_pPreload

R_Small_shift_Timer

#D_Large_sShift_Timer_prreload

R_Large_Shift_Timer

;**************************************************k*******
;**************************************

;Determine state for Mode 2
;**************************************

L_Get_sState_M2:

1da
beq

cmp
beq

cmp
beq

cmp
beq

cmp
beg

cmp
beq

cmp
beq

cmp
beq

cmp
beq

cmp
beq

cmp
beq

jmp

R_State
L_GS2_state_0_bummy

#1
L_GS2_State_1_bDummy

#2
L_GS2_State_2_Dummy

#3
L_GS2_State_3

#4
L_GS2_State_4

#5
L_GS2_State_5_Dummy

#6
L_GS2_State_6_Dummy

#11
L_GS2_State_11 Dummy

#13
L_GS2_sState_13_Dummy

#14
L_GS2_State_14_Dummy

#15
L_GS2_State_15_Dummy

L_GS_State_16

L_GS2_state_0_bummy:
L_GS_State_0 ; same for modes 1 and 2

jmp

L_GS2_State_1_Dummy:
L_GS_State_1 ; same for modes 1 and 2

jmp

L_GS2_State_2_Dummy:

Jun. 19, 2003



US 2003/0114075 Al Jun. 19, 2003
38

Shft96Tx.ASM
jmp L_GS_State_2 ; same for modes 1 and 2

L_GS2_State_5_Dummy:
jmp L_GS2_State_5

L_GS2_state_6_Dummy:
jmp L_GS2_State_6

L_GS2_State_11 Dummy:
jmp L_GS2_State_11

L_GS2_state_13_Dummy:
jmp L_GS2_State_13

L_GS2_State_14_pummy:
jmp L_GS_State_14

L_GS2_state_15_Dummy:
jmp L_GS_State_15

;******Modez State 3IxFkkhhddhhrhfhhhhhdhdhhhddhhhdhhhhhhdhrhdrhdhhhd

;General: Peelin' out

;Movement: Fwd

;Sound: Peel out

;To Change State: State 4: Peel Out sound complete

; State 11: Fwd Tet go

; plays peelout-allow car to move
L_GS2_State_3:

Tlda #0
sta R_Sound_Repeat
; see if fwd still pressed
Tlda P_Portp
and #D_Pin_Fwd
beq L_GS2_3_check_sound_Finished
1da #D_Pin_Fwd
sta R_Dir
jsr F_GS_Set_State_11
jmp L_GS_Done
L_GS2_3_check_Sound_Finished: ; see if sound finished
%TestSpeechchl ; which will set the Carry 1if actively
playing
BCS L_GS2_3_Done ; still playing peelout

jsr F_GS_Set_State_4

L_GS2_3_Done:
jmp |._GS.Done

:******Modez State 4#Fddekhdhhhdhdhhhhdhdhd b hhhdhdhhhdhfhdheht i

;General: Cruisin'

;Movement: Fwd, possibly turning

;sound: Motor Running

;To Change State: State 5: Turning for some time

; State 11: Fwd no longer pressed



US 2003/0114075 Al
39

Shft96Tx.ASM

Jun. 19, 2003

; going fwd. plays motor running sound, or occasionally gear shift-allow car to

move.
L_GS2_State_4:
Tda #D_Pin_Fwd
sta R_Dir
jsr F_GS_check_squeel
1da P_PortD
and #D_Pin_Fwd .
beq L_GS2_4_Done ; fwd still pressed
Tda #D_Pin_rwd
sta R_Dir
jsr F_GS_Set_state_11 ; no longer moving

L_GS2_4_Done:

jmp L_GS_Done

; *kkk¥*tModea? State SR*FFFFAXAAAAA NS A AR h ket hdtedh ek flehddhhrhhhhhthh®

;General: Hard Braking

;Movement : Neutral

;Sound: Hard Braking Sound -

;To Change State: State 4: Movement re-initiated before sound ends

; State 2: No Movement re-initiated before sound ends

; see if fwd and rev commanded

L_GS2_State_5:

1da
and
beq

P_Portbp
#D_Pin_Fwd
L_GS2_5_Set_state_4

L_GSZ_S_gheck_Reverse:

da
and
bne

jsr
jmp

P_PoOrtD
#D_Pin_Rev .
L_GS2_5_cCheck_sound_Finished

F_GS_Set_State_15
L_GS_Done

L_GS2_5_Set_state_4:

jsr
Jmp

F_GS_Set_State_4
L_GS_Done

L_GS2_5_check_sound_Finished:

. %TestSpeechchl ; which will set the cCarry if actively
playing . .
BCcC L_GS2_5_Set_State_2 ; still playing sound
jmp L_GS_Done
L_GS2_5_set_state_2 ; Done playing sound
isr F_GS_Set_State_2

jmp

L_GS_Done



US 2003/0114075 Al

40

Shft96Tx.ASM

;******Modez State 6**********************************************

;General: chirp

;Movement : Fwd or Rev, can be turning

1 Sound: Chirp

;To change State: State 4: At timeout if previous1¥ going reverse
; State 15: At timeout if previously going forward

L_GS2_State_6:

lavi %TestSpeechchl ; which will set the carry if actively
playing . . .

BCC L_GS_6_Check_Dir ; still playing sound

ﬂmp . L_GS_Done
L_GS_6_Check_pir:

1da P_Portp

and #D_Pin_Fwd

bne L_GS2_6_Rev

jsr F_GS_Set_state_4

mp L_GS_Done
L_GSZ2_6_Rev:

jsr F_GS_Set_State_15

Jmp L_GS_Done
;******Modez State 11**********************************************
;General: Fwd or Rev just released-wait to happens next
;Movement: Neutral
;Sound: None . . .
;To Change State: State 5: If not slammed into opposite direction

s

L_GS2_State_11:

State 6: Slammed into reverse

; check timer

dec R_Small_chirp_Timer
Tda R_small_chirp_Timer .
beq L_GS2_11_chirp_Timeout ; if small timer has run to O
jmp L_GS2_11 check_Slam ; timer not run out yet
L_GS2_11_chirp_Timeout ; timer has run out .
1da #D_small_chirp_Timer_preload; reload small timer
sta R_small_cChirp_Timer
jsr F_GS2_Set_State_5
jmp L_GS_Done
L_GS2_11_check_STam:
Tda R_Dir
cmp #0_Pin_Fwd
beq L_GS2_11_check_FR_Slam
; check slam from reverse into fwd
Tda P_PortD
and #D_Pin_Fwd
bne L_GS_Done ; reverse not pressed
jmp L_GS_2_Slam

Jun. 19, 2003



US 2003/0114075 Al

L_GS2_11_check_F
Tda

and
bne

L_GS_2_Slam:

jsr
Jmp

41

Shft96Tx.ASM
R_STam:
P_Portbd
#D_Pin_Rev
L_GS_Done

F_GS2_Set_State_6
L_GS_Done

;******Modez State 13#*Fkkdddhddhddddddhhddhhhhhhtdhhhiehihhhhddddddk

;General:
;Movement:
;sound:

;To Change State:

L_GS2_State_13:

1da
and
beq

1da
and
beq

Tda
sta
jsr
not moving
imp

squeeling

Fwd turn1n?

Squeeling like a stuck pig
State 4: No Longer turning
State 11: Fwd or Rev let go

P_PortD
#0_Pin_Fwd
L_GS2_13_check_Turning

P_Portp
#D_Pin_Rev .
L_GS2_13_check_Turning

#D_Pin_rFwd
R_Dir
F_GS_Set_sState_11 ;no longer going either fwd or rev-no squeel if

L_GS_Done

L_GS2_13_check_Turning:
; check to see if turning

Tda
and
bne

jmp

P_PortD
#D_Pin_Left .
L_GS2_13_check_Right_Turn

L_GS_Done ; still turning

L_GS2_13_check_Right_Turn:

1da
and
bne

jmp

P_PortD
#D_Pin_Right
L_GS2_13_Set_State_4

L_GS_bone ;still turning

L_GS2_13_Set_State_4:

Jsr
Jjmp

F_GS_Set_state_4
L_GS_Done

Jun. 19, 2003

F_GS2_Set_State_5:
1da #0
sta R_Sound_Repeat

1da #5



US 2003/0114075 Al Jun. 19, 2003
42

Shft96Tx.ASM
sta R_State
rts

F_GS2_Set_State_6:
1da #0

sta R_Sound_Repeat
1da #6
sta R_State
rts
L_GS_Done:
rts

L_Get_State_M3:
rts

;*k**********************************k***********

; General Get State Stuff

Al R R R 2 s AR AL L]
'

:***Modes 1 or 2 State 0*******************************************

yGeneral: waiting to be played with
;Gear 0

;Sound: None

;To Change State: State 1: Move any joystick

L_GS_State_0O:

1da P_PortD ; check activity on joysticks
and #0fh
cmp #0th
beq L_GSO_Done
jsr F_GS_Set_State_1
L_GSO_Done:
jmp L_GS_Done

;******Modes 1 or 2 State 1*******************#*************************

;General: Starting up

yGear 0

;Sound: Motor Starting

;To Change State: State 2: Finished startup sound

L_GS_State_1:

jsr F_GS1_cCheck_rwd_Ack_ok

jsr F_GS1_check_Rev_ack_ok

%TestSpeechChl ; which will set the carry if actively
playing i .

bcs L_GS_Done ; still playing motor start sound

; sound finished

isr F_GS_Set_State_2

Jmp L_GS_Done

;******Modes l aor 2 State 2T**********************************k**********
;General: Idling



US 2003/0114075 Al Jun. 19, 2003
43

Shft96Tx.ASM

;Movement: Neutral
;sound: Motor Idlin
;To Change State: State 0: Idle Timer Runs Out

; State 3: Fwd or Rev Pressed (after sitting idle for a few
seconds)

; State 4: Fwd or Rev Pressed (after sitting idle for less
than a few seconds)

L_GS_State_2:

Tda #0

sta R_shifted

jsr F_GS1 Check_Fwd_Ack_ok

jsr F_GS1_cCheck_Rev_Ack_ok

dec R_Small_1dle_Timer

1da R_Small_Idle_Timer

beq L_GS_2_bec_Big_Idle_Timer i 1f small timer has run to 0

jmp L_GS_2_check_Fwd
L_GS_2_bec_Big_Idle_Timer:

1da #ffh ; reload small timer

sta R_Small_1dle_Timer

Dec R_Large_Idle_Timer

LDA R_Large Idle_Timer

Bne L_GS_2_Check_Peel_out_Timer
; timer run to 0--back to mode 0

jsr F_GS_Set_state_0

Jmp L_GS_Done

; peel out only sounds enabled if we've been in state 2 for a couple seconds

L_GS_Z_C?ECLPee'I_Out_T'i mer:

da R_Peelout_Enable
bne L_GS_2_check_Fwd
1da R_Large_Idle_Timer
cmp #D_Peelout_Time
. bcs L_GS_2_Check_Fwd ; idle timer greater or equal to peelout
time
%da couple of seconds have passed--enable peel out sound
a #1
sta R_Peelout_Enable
L_GS_2_Check_Fwd:
Tda P_PortD
and #D_Pin_Fwd
bne L_GS_2_check_Reverse
i fwd hit
Tda R_Fwd_ack_ok
beq L_GS_Done ; Joystick has not returned to center yet
Tda R_Peelout_Enable
beq L_GS_2_Set_State_4
jsr F_GS_Set_state_3
Jjmp L_GS_Done

L_GS_2_Set_State_4:



US 2003/0114075 Al Jun. 19, 2003
44

. Shft96Tx.ASM
jsr F_GS_Set_State_4
jmp L_GS_Done

L_GS_2_Check_Reverse:

1da R_Rev_ack_0k

beq L_GS_Done

Tda P_PortD

and #D_Pin_Rev

beq L_GS_2_check_preelout
jmp L_GS_Dbone

L_GS_2_cCheck_preelout:

Tda R_pPeelout_Enable

beq L_GS_2_Set_State_15

jsr F_GS_Set_State_14

jmp L_GS_Done
L_GS_2_set_State_15:

jsr F_GS_Set_State_15

jmp L_DS_Done

(R LA AN LR TR LT LR R R )
’

;******Mode 1 or 2 State 14#**#dddhhhddhdhddlhhdddhhhhdhhdhhhdiedidfoddedddid

;General: Reverse Peel Out
;Movement: Reverse

;sound: squeel

;To Change State: state 11 (braking) hit rev

H state 15 (Rev, normal) Peelout timer times out
; State 16 (rev peel out) turns for some time
L_GS_State_14:

%TestSpeechchl ; which will set the carry if actively
playing
BCS L_GS_14_check_squeel ; still playing peel out
jsr F_GS_Set_State_15 ; peel out timer timed out
jmp L_GS_Done
L_GS_14_check_squeel:
jsr F_GS_Check_squeel
1da P_PortD
and #D_Pin_Rev
beq L_GS_14_Done ; rev pin still pressed
Tlda #D_Pin_Rev
sta R_Dir
jsr F_GS_Set_sState_11

L_G5_14_Done:
jmp L_GS_Done

;******Model or 2 State 15**********************************************



US 2003/0114075 Al

;General:
;Movement:
;Sound:

;To Change State

L_Gs_state_15:
jsr
Tda

and
beq

Tda
sta
jsr

L_GS_15_Done:
jmp

jFEEEEEMgde]l or

;General:

;Movement:

;sound:

;To Change State

L_GS_State_16:

; check
da
and
beqg

; check right tu
1da
and
beqg

; ho lon
isr
jmp
Check_Br

1da
and
beq

Tda
sta
jsr

L_GS_16_

L_GS_16_Done:
jmp

;***************

Jun. 19, 2003

45

Shft96Tx.ASM
Reverse
Reverse
gear 1
State 11 (Brake) let go of of reverse
State 16 (Squeeling) turn for some time

F_GS_Check_squeel

P_PortD
#D_Pin_Rev
L_GS_15_Done

still going in reverse

#D_Pin_Rev
R_Dir
F_GS_Set_State_11

L_GS_Done

2 State 16********************ﬁ*************************

Turning in Reverse

Turning in Reverse

squeeling

gu11 joystick out of reverse

rake
to see if turning
P_PortD
#D_Pin_Left
L_GS_16_check_Braking

; still turning

rn
P_PortD

#D_Pin_Right
L_GS_16_check_Braking

2

still turning
ger turning

F_GS_Set_State_15
L_GS_Done

aking:
P_PortD
#D_Pin_Rev
L_GS_16_Done
#D_Pin_Rev

R_Dir
F_GS_Set_State_11

L_GS_Done

********************************8



US 2003/0114075 Al Jun. 19, 2003
46

Shft96Tx.ASM

e R e H VeV AR AR R Rk A Ak kR n
’

F_GS_Set_State_0:

1da #0

sta R_Sound_Repeat
sta R_Gear

1da #0

sta R_State

rts

F_GS_Set_State_1:

Tda #0

sta R_Sound_Repeat

sta R_Gear

sta R_Fwd_Ack_ok

sta R_Rev_Ack_ok

Tda #1

sta R_First_start

sta R_State

rts
F_GS_Set_State_2:

1da #1

sta R_Sound_Repeat

lda #0

sta R_Gear

lda R_First_start ; flag if 1st start since being off

beq L_GS2_Disable_reelout

Tlda #1

sta R_Peelout_gEnable

1da

sta R_First_start

jmp L_GS_2_prreload_Idle_Timer
L_GS2_Disable_Peelout:

1da #0

sta R_Peelout_Enable
L_GS_2_Preload_Idle_Timer: ; preload idle timer

lda #D_small_TIdle_Timer_Preload

sta R_Small_Idle_Timer

1da #D_Large_Idle_Timer_Preload

sta R_Large_Idle_Timer

1da #2

sta R_State

rts

F_GS_Set_State_3:

1da #0
sta R_Fwd_aAck_ok



US 2003/0114075 Al Jun. 19, 2003
47

Shft96Tx.ASM

Tda #D_small_sound_check_Timer_Preload
sta R_Small_sound_check_Timer

Tda #D_Large_sound_check_Timer_Preload
sta R_Large_sound_Check_Timer

lda #0

sta R_Sound_cCheck_Delay_Complete

1da #0

sta R_Sound_Repeat

1da #1

sta R_Gear

jsr F_GS_preload_shift_Timer

1da #3

sta R_State

rts

F_GS_Set_State_4:

Tda #0

sta R_Fwd_Ack_ok

sta R_Rev_Ack_ok

1da R_Mode

cmp #2

beq L_GSSS_4_Repeat

1da #0

sta R_Sound_Repeat

jmp L_GSSS_4_Store_Gear
L_GSSS_4_Repeat:

1da #1

sta R_Sound_Repeat

L_GSSS_4_Store_Gear:
1da

sta R_Gear
Tlda #4

sta R_State
rts

F_GS_Set_State_11:

Tda #0

sta R_Sound_Repeat

; preload ch1rq timer

Tda #D_small1_chirp_Timer_Preioad
sta R_small_chirp_Timer

1da #11

sta R_State

rts

F_GS_Set_State_13:



US 2003/0114075 Al

1da
sta

Tda
sta

1da
sta
rts

#1
R_Sound_Repeat

#1
R_Gear

#13
R_State

F_GS_Set_State_14:

1da
sta

; 1da
; sta

1da
sta
rts

#0
R_Sound_Repeat

#fth
R_Gear

#14
R_State

F_GS_Set_State_15:

1da
sta

; 1da
H sta

1da
sta
rts

#1
R_Sound_Repeat

#feh
R_Gear

#15
R_State

F_GS_Set_State_16:

1da
sta

; 1da
; sta

1da
sta
rts

#1
R_Sound_Repeat

#feh
R_Gear

#16
R_State

48

Shft96Tx.ASM

sk hhhhdhhh ek fedehhhhdohdh ekt hhhix
1

F_GS_Check_squeel:

1da
and
beq

Tda
and
beq

1da
sta

rts

P_POrto
#D_Pin_Left
L_GSCS_Turning

P_POrtD
#D_Pin_Right
L_GSCS_Turning

#0
R_Turning

; not turning

Jun. 19, 2003



US 2003/0114075 Al
49

Shft96Tx.ASM

L_GSCS_Turning:

lda R_Turning
bne L_GSCS_Still_Turning

; not previously turning preload timer

; preload squeel timer
da #D_sSmal1_squeel_Timer_prreload

sta R_small_squeel_Timer

Tda #D_Large_squeel_Timer_Preload
sta R_Large_squeel_Timer

Tda #1

sta R_Turning

rts

L_GSCS_Still_Turning:

dec R_Small_Squeel Timer
Tda R_Small_squeel_Timer .
beq L_GS_Dec_Big_Squeel_Timer ; if small timer has run to O
rts

L_GS_Dec_Big_Squeel_Timer: .
Tda #ffh ; reload small timer
sta R_Small_squeel_Timer
Dec R_Large_squeel_Timer
LDA R_Large_squeel_Timer H
Beq L_GS_Set_sSqueel
rts

L_GS_Set_sSqueel:

Jun. 19, 2003

lda P_PortD
and #D_Pin_Rev . ) . .
beq L_GSSS_Reverse ; only going in reverse if reverse button is pressed
jsr F_GS_Set_State_13
Jmp L_GSCS_Done
L_GSSS_Reverse:
jsr F_GS_Set_State_16
Jmp L_GSCS_Done
L_GSCS_Done:
rts

edrdrkvedhdedededdehh Nk bk kb hkhk
tl

;*************************************************************

H drdededededededede R h RN A kS bt b kv dhd
;*******************************



US 2003/0114075 Al

50

Shft96Tx.ASM

;¥***decides which 2 byte packet to send*®®#®wsssstuix

F_Decide_Packet:

L_DP_Mode_1:

1da
cmp
beq
cmp
beg
jmp

R_Mode
#1
L_DP_Mode_1

L_DP_Mode_2
L_DP_Mode_3

****Mode 1 AN AR KRR R ARA AR EEL TSR T AT etk eh btk
; Tx Command Depends on state

Tda
cmp
bcc

beq

cmp
beq

cmp
bcc

R_State

fEDP“B1ank_Packet ; state is 0 1
L_DP_Pass_Steer_Only ; state 2

#11

L_DP_Set_Brake

#14 ; ingear 012 3

L_DP1_Set_Gear_Bits_Fwd

; in reverse

jmp

L_DP1_Set_Gear_Bits_Rev

L_DP1_Set_Gear_Bits_Fwd:

; moving the gear bits to the left puts em in the the
%dpwm position of the tx packet
a

R_Gear

clc

rol a

rol a

rol a

rol a

sta R_Gear_Bits
jmp L_DP_Set_Tx

L_DP1_Set_Gear_Bits_Rev: ; reverse normal or peel out

Tda #00001000b
sta R_Gear_Bits
jmp L_DP_Set_Tx

[l
’
?
’

L_DP_Mode_2:

Tda

****Mode 2 Vedededededehdehde ke hdhhdhddhdhkdhdddddhk

Tx Command Depends on state
In some modes sends nothing, others passes through
commands while making pwm a1l the way 1 or all the way 0

R_State

Jun. 19, 2003



US 2003/0114075 Al Jun. 19, 2003
51

Shft96Tx.AsSM

cmp #2 ; state is 0 1
bcc L_DP_Blank_Packet

beq L_DP_Pass_Steer_only
cmp #5

beq L_DP_Set_Brake

cmp #6

beq L_DP_Set_Brake

cmp #11

beq L_DP_Set_Brake

; allow movement

jsr F_DP_Set_Data_Full_pwm
jmp L..DP_Done_command

;***********ﬁ***ﬁ*********

; Shared by modes 1 and 2

;**************************
L_bpP_Blank_pracket:

1da #0
sta R_Tx_Commands
jmp L_DP_Done_command

L_DP_Set_Brake:

1da #00100100b ; set brake secret code
sta R_Gear_Bits
jmp L_DP_Set_Tx
L_DP_Pass_Steer_Only:
1da #0 ]
sta R_Gear_Bits
L_DP_Set_Tx:
1da P_PortD

eor #00000011b
and #00000011b

ora R_Gear_Bits
sta R_Tx_Commands
jmp L_DP_Done_Command

****Mode 3 Fhkdehkd Rk hdhddhdhhhhdhdhhthhhhihdddek i

; Passes through commands while making pwm all the way 1 or all the way 0
L_DP_Mode_3:

jsr F_DP_set_pata_Full_pwm

; keep going to done command
;****************** *********************************8

L_DP_Done_Command:

jsr F_DP_Flag_And_cCksum
L_DP_Done:

; debug--put tx commands to led's
H 1da R_Tx_Commands
; sta P_PartB

rts



US 2003/0114075 Al

52

Jun. 19, 2003

Shft96Tx.ASM

jRFE% Transmit Subroutines *¥kdikiwisk

F_DP_Set_Data_Full_pwm:
Tda

P_Portp
eor #03h
and #03h
sta R_Tx_Commands
Tda P_PortDp
and #D_Pin_Fwd
bne L_DPSD_cCheck_Rev_Command

; if fwd button is down, set pwm to max

Tda R_Tx_Commands

ora #D_Fwd_Bits

sta R_Tx_Commands

aMP L_DPSD_Tx_Commands_End
L_DPSD_Check_Rev_command:

1da P_PortD

and #D_Pin_Rev

bne L_DPSD_Tx_Commands_gnd

1da R_Tx_Commands

ora #D_Rev_Bits

sta R_Tx_Commands

L_DPSD_Tx_Commands_End:
rts

F_DP_Flag_And_cCksum:

; Loads RX_dataz with the flag and checksum in the
; bottom two bits.

; Checksum: counts the number of 1 bits in data

LDX #8

LDA #0

STA R_Tx_Flag_and_ck
LDA R_Tx_Commands

L_FB_Compute_cChecksum:
; compute checksum

ROL A

BCC L_FB_CS_LoopEnd

INC R_Tx_Flag_And_ck
checksum

L_FB_CS_LoopEnd:

DEX

BNE L_FB_Compute_cChecksum

LDA R_TX_Flag_And_ck
three bits

AND #00000011b
bits

ORA #D_TX_Flag

STA R_Tx_Flag_aAnd_ck

X will be the Toop counter

clear

use to compute checksum

shift out MsB . o
and don't add one if that bit is zero

; but if it's a 1, increment the

loop

; which has the checksum in low
so strip it down to just the bottom two

paste in the Flag



US 2003/0114075 Al Jun. 19, 2003
53

Shft96Tx.ASM
RTS

xAhhATA AT hhFhdhhhdhhdokdrdddodedededefedetefededhfedede kW fdehdd
F_wait functions

These all are versions of "while (TmB < Limit);"
where the Limit is different for each one. It's
faster with separate functions, each using #def'ed
numbers instead of variables.

Note that you_shouldn't do the second Toop, the lower
byte, by itself. If you do, it can get stuck if it's
waiting for P_TmBL to exceed Fbh, for example.

F_wait_sound_Service:

lda R_SS_Time_H,X
sta R_wait_Time_H
Tda R_SS_Time_L,X
sta R_Wait_Time_L
L_WS_Loop:
LDA P_TmBH H i
AND #OFh . ; strip away top nibble L . .
cMP R_Wait_Time_H ; and see if we're still within time Timit
BCC L_WS_Loop 7 loop if still within time Timit
BNE L_WS_Sound_Done ; but if above 1imit, get out
LDA P_TmMBL ; and if we're at the right TmBH, check TmBL
cMp R_Wait_Time_L ; . ) o
BCC L_WS_Loop ; Toop if still within time Timit

L_ws_sound_Done: .
RTS ; and now the time has elapsed

o Sededede ekt etk dedede deded de ko de S dededede e de ke de dede dede e ke R e e R R R R R R R A R e de A
\
F_Wailt_Tx_Line:

1da R_Tx_Time_H,X
sta R_Wait_Time_H
T1da R_Tx_Time_L,X
sta R_wait_Time_L
L_WT_Loop:
LDA P_TmBH ; . .
AND #OFh _ . ; strip away top nibble L . .
cMp R_Wait_Time_H ; and see if we're still within time limit
BCC L_WT_Loop ; loop if still_within time limit
BNE L_WT_Done ; but if above limit, get out
LDA P_TmBL ; and if we're at the right TmBH, check TmBL
cMP R_Wait_Time_L H

BCC L_WT_Loop ; loop if still within time Timit



US 2003/0114075 Al

54

Shft96Tx.ASM

L_WT_Done:
RTS

F_DecideSounds

will be Tooked at by F_PlaySounds.

F_Decide_Sounds:

; and now the time has elapsed

Thbhwhkhhhhhdefhhdehhhhdhhhhdendehdekdekdehkhkdhffhdhdkdky

Chooses what value to load into R_NextSound, which

fhhfdhhhhidhhhhdhhhddhkdohhddede Rkt hbhhhhridtsd

1da R_Mode

cmp #1

beq L_DS_Mode_1_Sounds

cmp #2

beq L_DS_Mode_2_Sounds

jmp L_DS_Done ; No sounds for mode 3

********************Dec1de SOundS for Mode ] wEEkEEkdkdk ko kdhh kil hw

L _DS_Mode_1_Sounds:

lda R_State

cmp #11

beq L_DS1_Set_sSound_Interrupt
cmp #12

beq L_DS1_Set_Sound_Interrupt
cmp #8

beq L_DS1_sSet_sound_Interrupt
cmp #10

beq L_DS1_Set_Sound_Interrupt
1da #0

sta R_Sound_Interrupt

jmp L_DS1_Load_Sound

L_DS1_Set_Sound_Interrupt:
Tda #1

sta R_Sound_Interrupt

Tda :

sta R_Sound_Repeat
L_DS1_Load_sound:

Tdx R_State

T1da R_Sounds_Array,X

sta R_Next_Sound

L_DS_bone

;brake

; grind
; ready to shift

; upshift

new code 9.26.01

m
*******%*g****oec1de SOUndS for Mode 2 whikkkkhhkhhhhhhhhhhkhhhik

L _Ds_Mode_2_sounds:

1da R_State
cmp #11

Jun. 19, 2003



US 2003/0114075 Al Jun. 19, 2003
55

Shft96Tx.AsSM .
beg L_DS_Done i m2 s11 is a short "deciding state” --don't change
motor running

; sound until decided

cmp #5

beq L_DS2_Set_Sound_Interrupt ;brake
cmp #6

beq L_DS2_Set_Sound_Interrupt ; chirp
Tda #0

sta R_Sound_Interrupt

jmp L_DS2_Random_Horn

L_DS2_Set_Sound_Interrupt:
1da #1

sta R_Sound_Interrupt

L_bS2_Random_Horn:

Tda R_State

cmp #3

beq L_DS2_check_Random_Horn_3

cmp #4

beq L_DS2_check_Random_shift_4

jmp L_DS2_Set_Sound_Index
L_DS2_cCheck_Random_Horn_3:

Tda P_TmBL

and #0Fh

bne L_DS2_Set_Sound_Index

Tdx #9

jmp L_DS2_Set_Sound
L_DS2_check_Random_Shift_4:

1da P_TmBL

and #0Fh

bne L_DS2_Set_Sound_Index

Tdx #10

jmp L_DS2_Set_Sound

L_DS2_set_sound_Index:
Tdx R_State
L_DS2_Set_sound:
1da R_Sounds_Array, X
sta R_Next_Sound

L_DS_Done:
rts

Tedededede Rk RN ARk bk h T kbt deddrdhde kst dhddion
F_PlaySounds

Looks at R_NextSound and handles the starting
and repeating of sounds.

Tedhidedhdhdehded bk R d bk b hhhhdededhefehderhhdrdhdthhdhdtyd



US 2003/0114075 Al

F_Play_Sounds:

Tda R_Mode

cmp #3

beq L_PS_Done

1da R_Sound_Interrupt
sounds is set

bne L_PS_Check_Repeat

. %TestSpeechchl

playing

BCS L_PS_Done

L_PS_cCheck_Repeat:

Tda
bne

T1da
cmp
beq

R_Sound_Repeat

L_PS_Start_New_Sound

R_Current_Sound
R_Next_Sound
L_PS_Done

L_PS_Start_New_Sound:

1da
sta

cMpP
BEQ

LDX
ISR

JMP
L_PS_NoSound:

LDA
STA

L_PS_Done:
RTS

R_Next_Sound
R_Current_Sound

#D_Snd_None
L_PS_NoSound

#D_samplePreload
F_PlaySpeechChl

L_PS_Done

#D_snd_None
R_Current_sound

Jun. 19, 2003
56

Shft96Tx.ASM

; no sounds for mode 3

; see if flag for immediate interruption of
; don't wait til sound is finished

; which will set the carry if actively

; don't interrupt the sound

; sound loaded already

; the setting for sample frequency
; play

; set NoSound as current
; just do nothing to let the sound run out

[EAEEEEL LRSS RS RS E I T TR R LR TR LR R R R R R R T L R R

ﬁ_contro]_LED:

1da R_Mode

cmp #1

bne L_CL_Normal
; mode 1

Tda R_State

cmp #8

beq L_CL_Flash

cmp #9

bne L_CL_Normal

L_CL_Flash:

; decrement timer

dec

R_Small_LED_Timer

; flashes when ready to shift, whining

; and when ready to shift, constant



US 2003/0114075 Al Jun. 19, 2003

L

L

L_

L

L_

57

Shft96Tx.ASM

1da R_Small_LED_Timer
beq L_DS_F1lip_LED ; if small timer has run to 0
jmp L_CL_Done
DS_FT1ip_LED:
lda P_PortcC
eor #D_Pin_LED
sta P_PartcC

note that since we want a relatively short time cycle, we deal only with the
small timer, .
; preload timer

da #D_smal1_LED_Timer_Preload
sta R_Small_LED_Timer
jmp L_CL_Done
CL_Normal:
Tda P_PoOrto
and #0Fh
cmp #0Fh
beq L_CL_off
CL_On:
1da P_PortC
ora #D_Pin_LED
sta P_Portc
jmp L_CL_Done
CcL_off:
lda P_PortC
and #_NOT.D_Pin_LED
sta P_PortcC
CL_Done:
rts

TRk kkkdhdk ks dkdok Tnterrupt Service Routine

1
LR AR S E R R R R R LR L R R R TR

V_

Irq:

STA R_TempA ; save accumulator value

STX R_TempX ; save x value

LDA P_Ints ; read the interrupt register and store

STA R_IntTemps ; this variable is our working copy of the
interrupt register

1da #COH Hd

STA P_Ints

LDA R_IntFlags ; load original interrupt settings and store

STA P_Ints

LDA R_INtTemps ; check to see if timer A is the cause of
the interrupt

AND #TimeBase62_5Hz

BEQ L_Done_Int

; €1k/655536 Service



US 2003/0114075 Al Jun. 19, 2003
58

Shft96Tx.ASM

inc R_Mode_Timer
inc R_Mode_check_Timer
L_Done_Int:
V_Nmi: ; non maskable interrupt--sunplus does not support
this code
; very well, and we have been warned not to use any
or mess . .
; with it
LDA R_TempA
LDX R_TempX
RTI
.Include Channel.Asm . o
.DB 'PEND',0 ; no idea what this is

; Vectors settings - do not change (from Sunplus Demo Code)

.ORG 7FFAH

oW V_Nmi
oW V_Reset
DW v_Irg
.ORG FFFAH
DwW V_Nmi
oW V_Reset
DW v_Irq

END



US 2003/0114075 Al

.LINKLIST
-SYMBOLS
. CODE

3 /FF¥RY Sygtem parameters F¥rkd

systemClock: EQU
SPC21A: EQU
.Include Hardware.Inh

; *rErr Addresses sunPlus forgot #x##%

P_MultipPhase
settings on 81A

ADPCM_TABLE_65:
_ADPCM_H_:

; *HREE CONSTANTS/DEFINES *##%%

; sound stuff
D_RampDownvalue:
D_Maxword:
D_MaxMelody:
D_MaxRhythm:
D_SamplePreload:

3 RX SETTINGS
D_RX_Flag:

D_RxbitCount_Limit
before command erased

until” timers

; wait times for different functions.

D_Wait_DPLL

D_Wait_BR1
D_Wait_BR2
D_wait_PwM3
D_Wait_Tune

D_TmBH_Bit_Readl:
D_TmBL_Bit_Readl:
D_TmBH_Bit_Read2:
D_TmBL_Bit_Read?2:

EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

Jun. 19, 2003
59

Receiver Code

2000000

1

$37
1
0O0H
6

1
0
OO0H

; select body (hardware.inh)

; register that controls multi Phase

; If use ADPCM65 or later
; If no limit

;If currentbAC~>00H, PwWM->80H
;number of speech pieces

;number of melodies

;number of rhythms

;should be 6 for 8kHz or 0 for 6 khz

01111100b ; Flag, in first six bits
250 ;

; limit for bits received w/o good packet
7 128 = 50 ms
; The TmB constants are used for "wait

; L us = 2 timer ticks at 2mhz osc

157 us
472 us



US 2003/0114075 Al

D_TmBH_DPLLmMinN:
D_TmBL_DPLLmMin:

D_TmBH_DPLLmax:
D_TmBL_DPLLmMax:

D_TmBH_PwWM3 :
D_TmBL_PWM3 :

D_TmBH_Tune:
D_TmBL_Tune:

;D_Far_L_R_Motor_Timeout

D_Startup_Motor_cCounts
; OUTPUTS

D_Pin_Tune_out
D_Pin_Forward:
D_Pin_Reverse:
D_Pins_Drive
D_Pin_Drive_gEnable
D_Pin_Qvercurrent
D_Pin_Left:
D_Pin_Right:
D_Pins_Steer

; INPUTS

D_Pin_RX:
D_Pin_Tune_Switch

; PACKET BITS
D_Fw_Bits
D_Rev_Bits
D_teft_Bit
D_Right_Bit

s pwm

D_PWM_Max: )
fraction of this

D_Drive_PWM_Low:
2.18.02
D_Drive_PWM_Medium:
2.18.02
D_Drive_PWM_High:
2.18.02

D_Steer_PWM_Hi_w_Spring
2.18.02
D_Steer_PWM_Lo_W_Spring
D_Steer_PWM_Hi_A_Spring
2.18.02
D_Steer_PWM_Lo_A_Spring

D_PwWM_On_belay_Time
; steering control

D_Steer_Pos_Bits

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU

EQU

EQU
EQU

EQU
EQU

EQU

04h
24h

05h
B4h

02h
8ch

04h
ECh

EQU
2

60

Shft96Rx . ASM

00000100b
00000001b
00000010b
00000011b
00000100b
00001000b
00010000b
00100000b
00110000b

00000100b
00001000b

00110000b
00001100b
00000010b
00000001b

16;

10
12
14

16

6
16

12
15

normally 16

00000011b

: 424h

Sb4h

2BCh

4ech

10 for initial release,
13 for initial release,

16 for initial release,

12 for initial release,

1l

1060 = 530 us

730

350 us

630 us

4%255%.0006= 06 seconds

PortC
PortC
PortC
Portc
PartcC
PortcC
Portd
Portop
PortpD

R/C RX pin, D2
d3

; 15%.00063=10ms

; numbers

Jun. 19, 2003

below are a

10 for
12 for
14 for

16 for

release
release

release

release

; 5 for initial release, 12 for release



US 2003/0114075 Al Jun. 19, 2003
61

Shft96Rx. ASM

D_Steer_Left_Cmd EQU 00000010b

D_Steer_Right_cmd EQU 00000001b

D_Steer_Near_Left_Pos EQU 00000010b

D_Steer_Near_Right_Pos EQU 00000001b

D_Steer_Ctr_°Pos EQU 00000000b

D_Steer_Far_Pos EQU 00000011b

7 Drive

D_Relay_off_pelay_Hi EQU 04h ; =seconds/(630us)

D_Relay_off_Delay_Lo EQU A6h ; 04A6h=1193. 1193*,00063=0.75 seconds

; this needs to be kept longer than the fwd
release timer

; in the tx code. The fwd release timer
dictates how long

; the joystick may be in neutral when a kid
is shifting the

. ; vehcile. when it is in this state we want
the vehicle to

; coast. Making the Relay Off Timer shorter
than the fwd

; release timer would mean that the vehicle
would start to

; brake during the window in which it still
allowable to

; shift. This isn't what we want.

H Tdekdek VARIABLES ¥¥%%¥%
. PAGEQ
.ORG D_RamTop

R_IntFlags: DS

R_IntTemps: DS

R_TempA: DS

R_TempX: DS

R_Templ: DS

R_temp: DS

R_Rxdata: DS ; data received (reception complete)

R_Rxdata2T: DS ; data2 temp

R_RXdatalT: DS ; datal temp (during reception)

R_RX1astTE: DS ; record of the last half-bit or transmit element

R_RXdata_Last DS
R_RXbitCount: DS

R ; count of bits received since last good command
(like error count)

R_Drive_PwM DS ; programmed PWM - O=stop
R_Drive_Dir DS ; programmed direction
R_Steer_PwM DS

R_Steer_Dir DS

R_PWM_Counter DS ; rolling counter used for PwM

R_Rx_Error_Flag DS

R_Drive_cmd DS
R_Steer_Cmd DS
R_Wait_Time_Array_H
R_wait_Time_Array_L
R_Wait_Time_H DS
R_Wait_Time_L DS

RREORRE R R PR RE RRRRERRRRSRRE
vien -



R_Tuning
R_Last_Mid_pPos

US 2003/0114075 Al

DS 1
DS 1

R_Relay_Off_cCounter_Hi DS
R_Relay_off_cCounter_Lo DS
R_PWM_On_Delay_Counter DS

R_Drive_PWM_On

R_Been_To_Center
R_Startup_Steer

DS

B
DS

R_Startup_Motor_Counter_Small
R_Startup_Motor_Counter_Large

R_Motor_Toggle

R_Current_Steer_Pos

.PAGEQ

.CODE
.ORG
DB
-ORG

Yk fde ek h kb kR hthy Beg-in Ma-in Code *ffflhdhhhthhhwhh

000H
FFH
600H

; V_ is by convention a vector.

micro is reset
V_Reset:

; (From Demo Code)

LDX
TXS

1da
Tdx

sta
sta
sta
sta
sta
sta
STA
STA
STA
STA
sta
STA
sta
sta
sta
sta
sta
sta
sta
sta

#FFH

*&%%% Tnitialize variables

#0
#0

R_INtFlags
R_IntTemps
R_TempA
R_TempX
R_Templ
R_temp
R_RXdata
R_RXdata?2T
R_RXdatalT
R_RX1astTE
R_RXdata_tLast
R_RXbitCount
R_Drive_PwWM
R_Drive_Dir
R_PWM_Counter
R_RX_Error_Flag
R_Drive_cmd
R_Steer_cmd
R_Wait_Time_H
R_Wait_Time_L

[ R Y

DS
Ds

DS
Ds

Shft96Rx.ASM

R e

Jun. 19, 2003

The reset vector is where the code goes when the

; load ff into the x reg
; transfer x reg contents to stack



Jun. 19, 2003
63

ShTft96Rx.ASM

Hi
Lo

US 2003/0114075 Al

sta R_Tuning

sta R_Last_Mid_Pos

sta R_Relay_off_counter_

sta R_Relay_off_cCounter_

sta R_PWM_On_Delay_Counter

sta R_Drive_PwM_On

sta R_Been_To_Center

sta R_Startup_Steer
H sta R_Far_R_Motor_Counter_small
; sta R_Far_R_Motor_Counter_Large
; sta R_Far_L_Motor_Counter_Small
; sta R_Far_L_Motor_Counter_Large

sta R_Startup_Motor_Counter_smal)

sta R_Startup_Motor_Counter_Large

sta R_Current_Steer_Pos

sta R_Motor_Toggle

1dx #D_Wait_DPLL

Tda #D_TmBH_DPLLm1in

sta R_Wait_Time_Array_H,X

Tda #D_TmBL_DPLLMin

sta R_Wait_Time_Array_L,X

Tdx #D_Wait_BR1

1da #D_TmBH_B1t_Readl

sta R_Wait_Time_Array_H,X

Tda #D_TmBL_B1t_Readl

sta R_Wait_Time_Array_L,X

1dx #D_wait_BR2

1da #D_TmBH_B1 t_Read?2

sta R_Wait_Time_Array_H,X

Tda #D_TmBL_Bit_Read?2

sta R_Wait_Time_Array_L,X

Tdx #D_wait_PwMm3

1da #D_TmBH_PWM3

sta R_Wait_Time_Array_H,X

Tda #D_TmBL_PWM3

sta R_Wait_Time_Array_L,X

Tdx #D_Wait_Tune

lda #D_TmBH_Tune

sta R_wWait_Time_Array_H,X

Tda #D_TmBL_Tune

sta R_Wait_Time_Array_L,X

wxk*k port configuration

Tda
sta
sta

LDA

#0
P_PortbD
P_PortcC

#10111111b

output for debug

STA

P_PortIo_ctrl

; D-C-B-A, high-Tow, l=output D: out C: b



US 2003/0114075 Al Jun. 19, 2003
64

Shft96Rx.ASM

LDA #00000000b ; outputs buffer, except pull bl Tow; Inputs
Pure

STA P_Port_Attrib

LDA #00000010b ;
p STA p_Multiphase ; turn off multi-phase on A2, but set 1/3
uty

; in case it does turn on for diagnosis

; ¥**%% Configure interrupts

1da #%11000000 ; disable watchdog

disable nmi

enable TimerA interrupt
enable TimerB interrupt
disable 4 khz interrupt
enable 500 Hz and

enable 62.5 Hz interrupts
disable external interupt

STA P_Ints store interrupt settings
STA R_IntFlags store interrupt settings here, too
SEI . ; disable interrupts
; *¥#%%*% preload Timers
LDA #00h H
STA P_TmAL ; preload: p58h = 315 us
LDA #00h ; ]
STA P_TmAH ; above and mode bits
LDA #00h H
STA P_TmBL :
LDA #00h ;
STA P_TmBH H

; FEFFFY gat port values

L_Main:
; check to see if in tuning mode
lda P_PortDp .
and #D_Pin_Tune_sSwitch
beg L_Tuning_Mode

L_Main_Loop:

lda #0 .
sta R_Tuning
; T1dx #D_Wait_DPLL
H ISR F_wWait H
JSR F_DPLL
ISR F_PwM ;
Tdx #D_wait_BR1
jsr F_wait
JSR F_BitReadl ;
ISR F_PWM ;
jsr F_Service_Motors . . .
JSR F_CheckBitCount ; inc RXbitCount and see if it's been too

long



US 2003/0114075 Al

Fl

65

Shft96Rx.ASM

T1dx #D_wait_PwM3

jsr F_Wait

JSR F_PwWM H

Tdx #D_Wait_BR2

JSR F_Wwait H
JSR F_BitRead?2 ;

1da P_PortB

ora #00001000b

sta P_Ports

ISR F_PWM

lda P_PortB

and #11110111b

sta P_PortB;

IMP L_Main_Loop ;

*%% Tuning Mode .
Used to tune the oscillator frequency during product manufacture
with the right oscillator, a pin on port D will blip every 630 us

L_Tuning_Mode:

LDA #00h

STA P_TmBL

LDA #0

STA P_TmBH

Tda #1

sta R_Tuning ; for debug
Tda P_PortcC

ora #D_Pin_Tune_out

sta P_PortC

1da P_PortC

and #.NOT.D_Pin_Tune_out
sta P_PortC

Tdx #D_Wait_Tune

isr F_wWait

jmp L_Tuning_Mode

s dedekdokdededede ke dd Rt otk ke ddede 3 LR A T e S T T T AT
) Functions

Yededefede e dede e o de K defedede Ve e devede e dedede e fededeve e e e e e e ek h R
F_wait functions

This is a generic while (TmB < Limit);" function
where the Limit is different for each one.

Note that you shouldn't do the second loop, the lower

byte, by itself. If you do, it can get stuck if it's
waiting for P_TmBL to exceed FDh, for example.

Jun. 19, 2003



US 2003/0114075 A1l
66
Shft96Rx.ASM
F_wait:
1da R_Wait_Time_Array_H,X
sta R_wait_Time_H
Tda R_Wait_Time_Array_L,X
sta R_Wait_Time_L
L_WT_Loop:
LDA P_TMBH ; . .
AND #0OFh ; strip away top nibble L
CcMP R_Wait_Time_H ; and see if we're still within time Timit
BCC L_WT_Loop ; loop if sti1l_within time Jimit
BNE L_WT_Done ; but if above Timit, get out
LDA P_TmBL ; and if we're at the right TmBH, check TmBL
cMp R_Wait_Time_L H ) . L o
BCC L_WT_Loop ; loop if still within time limit
L_WT_Done: .
RTS ; and now the time has elapsed

v

L

Ikt ARk R R AR KRR TR BT TR T h bkt ded kel ke de ke dhdhehhtedh®

F_DPLL

Syncs up to between-bit edges. If a transition

isn't seen in time, it resets the timer anyway

and lets things go on. This allows it to not cry
"error” if it doesn’t see a transition, in the event
of good data with a missing transition, but it also
can gradually get synced up with a new data stream.
If there was a transition Eefore this was called,

it resets the timer right away, to also try to get
on sync with the data stream.

_DPLL:
; DIAGNOSTIC
LDA P_Ports .
ORA #00000100b ; B2 during DPLL
STA P_PortB
LDA R_RX1astTE . ; .
BEQ L_DPLL_WaitFarHigh ; if it was Tow, watch for high, and vice
ersa
_DPLL_WaitForLow:
1da P_PortB
ora #00100000b ; on bS
sta P_Ports
LDA P_Portp H
AND #D_Pin_RX ; .
BEQ L_DPLL_Foundgdge ; BEQ b/c looking for "low"
LDA P_TmBH ;

AND #0Fh ; strip away top nibble

Jun. 19, 2003



US 2003/0114075 Al

CcMP #D_TmBH_DPLLmax

Shft96Rx . ASM

’

Jun. 19, 2003
67

and see if we're still within time Timit
loop if still within time limit

but if above 1imit, get out

and if we're up to the TmBH, check TmBL

and loop if still within time

; 50 the time did expire...

BCC L_DPLL_WaitForLow
BNE L_DPLL_FoundEdge
LDA P_TmBL

CMP #D_TmBL_DPLLmax
BCC L_DPLL_WaitForLow
Jmp L_DPLL_FoundEdge

L_DPLL_WaitForHigh:

BNE b/c looking for "high"

strip away top nibble

and see if we're still within time limit
Joop if still within time limit

but if above 1imit, get out

and if we're up to the TmBH, check TmBL

and loop if still within time

; so the time did expire...

; 1da P_PortB
; ora #01000000b
H and #11011111b
M sta P_PortB
LDA P_PortD
AND #D_Pin_RX
BNE L_DPLL_FoundEdge
LDA P_TmBH
AND #0Fh
cmp #D_TmBH_DPLLMax
BCC L_DPLL_WaitForHigh
BNE L_DPLL_Foundtedge
LDA P_TmBL
CMP #D_TmBL_DPLLmMaXx
BCC L_DPLL_WaitForHigh
; MpP L_DPLL_FoundEdge

L_DPLL_Foundgdge:

LDA #00h

STA P_TmBL

LDA #0

STA P_TmBH

; DIAGNOSTIC

LDA P_PortB

AND #.NOT.00000100b
STA P_PortB

RTS

F_BitReadl

e e er e

F_BitReadl:

; go ahead and reset timer

B2 during entire DPLL window

and you're done

Feh R AT Ak hhhhhhdehhhdedfdehddehhhhhhhhde kbt hhhhhhdhs

Takes one look at Pin_RX to see if it has changed
across the bit boundary, as it should, and records
the new state. If not, sets R_RXerror

#D_Error_NoBitBoundary



68

Shft96Rx .ASM

US 2003/0114075 A1l
; DIAGNOSTIC
LDA P_Ports
ORA #00000100b
STA P_PortB
LDA P_POrtB
AND #.NOT.00000100b
STA P_Ports
LDA R_RX1astTE
BEQ L_BR1_LastwasLow

0/1

L_BR1_tLastwasHigh:

LDA
AND
BNE

LDA
STA

present state

RTS

P_POrtD
#D_Pin_RX
L_BR1_Error

#0
R_RX1astTE

L_BR1_LastwasLow:

LDA P_PortD
AND #D_Pin_RX
BEQ L_BRI_Error
LDA #1
STA R_RXTastTE
present state
RTS
L_BR1_Error:
; DIAGNOSTIC
; LDA P_PortD
; AND #.NOT.10000000b
; STA P_PortD
; DIAGNOSTIC
;LDA P_PortB
; ORA #00010000b
;STA P_PortB
; AND #.NOT.00010000b
;STA P_POrtB
LDA #0
STA R_RXdatalT
STA R_RXdata2T
;LDA #D_Error_NoBitBoundary
;STA R_RXerror
1da #1
sta R_RX_Error_Flag

; blip B2 for bit read

; D7 off to show failure

B4 to show any error

; clear the data buffer

Jun. 19, 2003

; B2 during entire DPLL window

; main branch based on whether last TE was

; check PinRX -- it should be low now
; and if not, it's an error

; and now RX1astTE is reassigned with

; check PinRX -- it should be high now
; and if not, it's an error

; and now RX1astTE is reassigned with



US 2003/0114075 Al

RTS

69

Shft96Rx .ASM

s hhhR kR Ak kS dedededede R kAR U KR T h AR kT AR R ke kikk

'
’
’
1
]
’
]
’
’
’
’
]

F_BitRead2

; doing redundant Pin_RX reads.

F_BitRead2:
; DIAGNOSTIC
NOP
LDA P_POrtB
ORA #00000100b
STA P_POrtB
AND #11111011b
STA P_Ports
LDA R_RX1astTE
BEQ L_BR2_LastwWasLow
0/1
L_BR2_LastwasHigh:
LDA P_Portp
AND #D_Pin_RX
BNE L_BR2_BitIsQ
LDA #0
STA R_RX1astTE
SEC o
JMP L_BR2_ShiftBitIn

L_BR2_LastwasLow:

LDA P_Portp

AND #D_Pin_RX

BEQ L_BR2_BitIs0

LDA #1

STA R_RX1astTE

SEC . ]
e L_BR2_ShiftBitIn

L_BR2_BitIs0:

CLC

L_BR2_ShiftBitIn:

LDA R_RX_Error_Flag

; Takes one look at Pin_RX to see if it has changed
; from the first TE of the bit. If it has, the bit
; is a 1. If not, it's a 0. As such, there's no

; error detection here, though it could be added by

; The end of the routine does packet-Tlevel checks,
; looking for the flag and then computing the checksum
; and comparing it.

blip B2 for bit read
b1ip B2 for bit read

Jun. 19, 2003

main branch based on whether last TE was

check Pin_RX

if still high, it's a 0

and else it's a 1

record the change in Pin_RX

check PinRXx

if still Jow, it's a 0

and else it's a 1

record the change in Pin_rX

clear carry, which will be shifted in



US 2003/0114075 Al Jun. 19, 2003
70

. Shft96Rx.ASM
don’ BNE " ETBRZ_Ear11erError_Dummy ; if an error was detected by now,
on't count the bit

ROL R_RXdatalT H

ROL R_RXdata2T ;

LDA R_RXdata2T o

AND #11111100b ; strip off bottom two bits

CMP #D_RX_Flag ; and check for Flag

BNE L_BR2_Done ; and if not found, just keep receiving

; Flag found, now calculate and compare checksum

; Checksum: counts the number of 1 bits in data

LDA #0 ;

STA R_temp ; R_temq will be our checksum count
LDX #8 ; X will be the loop counter

LDA R_RXdatalT ; A will be the rotated byte

L_BR2_Checksum:

ROL A ; shift out MSB
BCC L_BR2_CS_toopEnd ; and don't add one if that bit is zero
INC R_temp ; but if dit's a 1, increment the checksum

L_BR2_CS_LoopEnd:

DEX ; end of loop
BNE L_BR2_Checksum ;
; and now compare the checksums

LDA R_temp ; .

AND #00000011b ; clear flag bits

ORA #D_RX_Flag ; paste in the Flag so that it _should_
equal data2T

CcMP R_Rxdata2T ;

BNE L_BR2_Badchecksum ;

; So it's good!

3 DIAGNOSTIC
; LDA P_POrtB
; ORA #00000010b ; Bl on to show success
’ STA P_PortB

7 DIAGNOSTIC
H LDA P_Portpb
H ORA #10000000b ; D7 on to show success
H STA P_PortD

LDA #0 ; .

STA R_RXbitCount ; reset the bit count b/c success

LDA R_RXdatalT ;

cmp R_RXdata_Last

beq L_BR2_Good_Data

; data bit is different than last time

L_BR2_Store_Rx_Reading:
Tda R_RXdatalT
sta R_RXdata_Last ; store the received data for next time.
jmp L_BR2_Done



US 2003/0114075 Al Jun. 19, 2003
71

Shft96Rx.ASM

L_BR2_EarlierError_pummy:
jmp L_BR2_EarlierError

L_BR2_Good_bata:

. STA R_RXdata ; data is same 2 times in a row, so count
it.

sta R_RXdata_Last

LDA R_RXdata ; store for external consumption (steer and
drive)

AND #00000011b ; Took at steering bits

STA R_Steer_Cmd ; and store them as SteercCmd

LDA R_RXdata H . .

AND #00111100b ; strip away non-drive bits_

STA R_Drive_Cmd ; and store for drive function
L_BR2_Done:

RTS

L_BR2_BadChecksum:

; DIAGNOSTIC
H LDA P_PortD
; AND #.NOT. 10000000b ; D7 off to show failure
; STA P_Portp
s DIAGNOSTIC
; LDA P_Ports
; ORA #00010000b ; B4 to show any error
H STA P_POrts
H AND #.NOT.00010000b ;
H STA P_PortB
L_BR2_Earliererror:
LDA #0 H
STA R_Rx_Error_Flag ; clear the error flag for next bit
LDA #0 H
STA R_RXdatalT ;
STA R_RXdata2T ; clear the data buffer
sta R_RXdata

3 Checksum: counts the number of 1 bits in data

; So it's good!

AR AER KRR ERAERE RS AT AR AR SN bk k kb hhkhhhkhdieh®
F_CheckBitCount

If_the RxbitCount since the Tast good packet exceeds
a limit, the last good packet is orgotten and the
motors are given default "off" commands.

This func gets called every bit. The counter gets reset
when a good packet is received.



US 2003/0114075 Al Jun. 19, 2003
72

. Shft96Rx . ASM
F_CheckBitCount:

INC R_RXb1itCount ; increment every time through

LDA R_RxbitCount

cMP #D_RXbitCount_Limit ; o

BCC L_CBC_Done ; if count < 1imit, exit

; over limit

; DIAGNOSTIC
; LDA P_PortB _
H AND #.NOT . 00000010b ; turn off Bl as command is erased
H STA P_PortB

LDA #00b ; )

STA R_RXdata i drive=3, steer=3, twist=0

sta R_RXdata_Last

sta R_Steer_Cmd

sta R_Drive_Cmd

STA R_RXbitCount ; and reset the bit count
L_CBC_Done:

RTS

F_Service_Motors: . . ]
; alternate btwn service of drive and steering motors

1da R_Motor_Toggle
beq L_SM_Drive .
sr F_Service_Steering_Motor
da #0
sta R_Motor_Toggle
jmp L_SM_Done
L_SM_Drive:
?sr F_Service_Drive_motor .
da #1 ; set for steering motor for next time
sta R_Motor_Toggle
L_SM_Done:
rts

R AN TR R AT A A AR AN RN TR RN AE R 2ARE AN Bhhhhnhn
F_ServiceSteeringMotor

Manages the steering motor servo-style.
The commands are:

H 00000001b Steer Right

; 00000010b Steer Left

; 00000000b Steer Straight

; 00000011b Error-Invalid command

; The measured positions are:

; 00000010b Near Right

; 00000001b Near Left

H 00000000b Center

; 00000011b Either Far Right or Far Left

; since there is not a direct mapping btwn the commands and the positions,



US 2003/0114075 Al Jun. 19, 2003
73

Shft96Rx.ASM
; the code is a little more lengthy and a little less slick.

F_Service_Steering_Motor:

1da R_Been_To_Center

bne L_SSM_Normal

Tda P_POrtD :

and #D_Steer_Pos_Bits

cmp #D_Steer_rar_Pos

beq L_SSM_Init_Motor_Move

1da #1

sta R_Been_To_Center ;(or near r or L)
jmp L_SSM_Normal

; in the case that the vehicle is turned on and doesn't know if it is far r or far L
L_SSM_Init_Motor_Move:

; move motor fast for 0.5 s Right, if it doesn't get to ctr, move for 0.5 S

Left . .

; 1f it's still not at center turn motors off

1da R_Startup_Steer .

beq L_SSM_Motor_Right_Init

cmp #1 .

beq L_SSM_Motor_Left_Init

jmp L_SSM_Motor_off

L_SSM_Motor_Right_Init:

inc R_Startup_Motor_Counter_small

1da R_Startup_Motor_Counter_small

cmp #ffh ] . .

?ge L_Dummy_SSM_Motor_Right_Fast_A_sSpring ; still not time
a #0

sta R_Startup_motor_Counter_Small

inc R_Startup_Motor_Counter_Large

Tda R_Startup_Motor_Counter_Large

cmp #D_Startup_Motor_Cognts .

bne L_Dummy_SSM_Motor_Right_Fast_A_Spring ; still not time

; try moving left now

1da #1

sta R_Startup_sSteer

1da #0

sta R_Startup_Motor_cCounter_small

sta R_Startup_Motor_Counter_Large

L_SSM_Motor_Left_Init:

inc R_Startup_Motor_Counter_small

ida R_Startup_Motor_Counter_Small

cmp #ffh . .

?Ee ;6Dummy_SSM_Motor_Left_Fast A_Spring ; still not time
a

sta R_Startup_Motor_cCounter_small

inc R_Startup_Motor_counter_Large



US 2003/0114075 Al Jun. 19, 2003
74

Shft96RxX.ASM

1da R_Startup_Motor_Counter_Large

cmp #D_Startup_Motor_Counts .

bne L_Dummy_SSM_Motor_Left_Fast_A_Spring ; still not time

Tda #2

sta R_Startup_Steer

jmp L_SSM_Motor_off ; never got out of far 1 or r something is

wrong

L_Dummy_SSM_Motor_Left_Fast_A_Spring:
jmp L_SSM_Motor_Left_Fast_A_Spring

L_Dummy_SSM_Motor_Right_Fast_A_Spring .
jmp L_SSM_Motor_Right_Fast_A_Spring

L_SSM_Normal:
; check for command error

1da R_Steer_Cmd
and #00000011b
cmp #00000011b
bne L_SSM_Get_Current
jmp L_SSM_Error

; get the current position
L_SSM_Get_Current:

1da P_Portp ]

and #D_Steer_Pos_Bits

cmp #D_Steer_Ctr_Pos

beq L_SSM_Cur_cCenter

cmp #D_Steer_Near_Left_Pos
beq L_SSM_Cur_Near_L

cmp #D_Steer_Near_Right_Pos
beq L_SSM_Cur_Near_R

; current position bits indicate it's either far left or far right
; check where it was Tast time to see where it must be now

1da R_Last_Mid_Pos

cmp #D_Steer_Near_Left_Pos

beg L_SSM_Cur_Far_L

cmp #D_Steer_Near_Right_ros

beq L_SSM_Cur_Far_R

jmp L_SSM_Error ; if sensor is broken or unplugged it will

go here . .
; since last mid pos was always center

; compare to command and decide which way to move and at what pwm
L_SSM_Cur_Center:

1da #0
sta R_Current_Steer_Pos

sta R_Last_Mid_pos



US 2003/0114075

Tda
beq

cmp
beq

jmp

Al
75

Shft96Rx.ASM
R_Steer_Cmd
L_SSM_Motor_off

#D_Steer_Left_Cmd .
L_SSM_Motor_Left_Fast_A_Spring

L_SSM_Motor_Right_Fast_A_Spring

L_SSM_Cur_Near_L:

Tlda
sta

sta
1da
; cmp
beq

cmp
beq

jmp

#2
R_Current_steer_Pos

R_Last_Mid_Pos

R_Steer_Cmd

#0
L_SSM_Motor_Rright_Slow_w_spring

#D_Steer_Left_Cmd .
L_SSM_Motor_Left_STow_A_Spring

L_SSM_Motor_Right_Fast_w_spring

L_SSM_Cur_Near_R:

1da
sta

sta
1da
; cmp #0
beq

cmp
beq

jmp

L_SSM_Cur_Far_R:

1da
sta

1da
cmp
beq
mp

L_SSM_Cur_Far_L:

1da
sta
Tda
cmp
beq

jmp

#1
R_Current_Steer_Pos

R_Last_Mid_ros
R_Steer_Cmd
L_SSM_Motor_Left_STow_W_Spring

#D_Steer_Left_Cmd
L_SSM_Motor_Left_Fast_wW_Spring

L_SSM_Motor_Right_Slow_A_Spring

#3
R_Current_Steer_Pos

R_Steer_Cmd
#D_Steer_Right_cCmd
L_SSM_Motor_off
L_SSM_Motor_Left_Fast_W_Spring

#4
R_Current_Steer_Pos
R_Steer_Cmd
#D_Steer_teft_Cmd
L_SSM_Motor_off

L_SSM_Motor_Right_Fast_w_spring ;

Jun. 19, 2003

commanded straight

; commanded left

; commanded right

; commanded straight

; commanded left

; commanded right

; commanded straight

; commanded left

; commanded right

commanded right

; steer command is straight or left

commanded left

command is right or straight



US 2003/0114075 Al Jun. 19, 2003
76

Shft96Rx .ASM

; set the directions and pwm rates

L_SSM_Motor_off:

Tda #0 .
sta R_Steer_Dir
jmp L_SSM_Set_PWM_Done

L_SSM_Motor_Left_Slow_w_Spring:

1da #D_Pin_Left

sta R_Steer_Dir

Tda #D_Steer_PwWM_Lo_W_Spring
jmp L_SSM_Set_PwWM_Done

L_SSM_Motor_Left_rast_w_spring:

lda #D_Pin_Left

sta R_Steer_Dir

1da #D_Steer_PWM_Hi_w_sSpring
jmp L_SSM_Set_PwM_Done

L_SSM_Motor_Right_Slow_W_Spring:

1da #D_Pin_Right

sta R_Steer_Dir

1da #D_Steer_PwWM_Lo_w_Spring;
Jjmp L_SSM_Set_PwM_Done

L_SSM_Motor_Right_Fast_W_spring:

Tda #D_Pin_Right

sta R_Steer_Dir

Tda #D_Steer_PWM_Hi_W_Spring
jmp L_SSM_Set_PwM_Done

L_SSM_Motor_Left_Slow_A_Spring:

1da #D_Pin_Left

sta R_Steer_Dir

1da #D_Steer_PWM_LO_A_Spring
jmp L_SSM_Set_PwWM_Done

L_SSM_Motor_teft_rast_A_Spring:

1da #D_Pin_Left

sta R_Steer_Dir

1da #D_Steer_PWM_Hi_A_Spring
jmp L_SSM_set_PwWM_Done

L_SSM_Motor_Right_STow_A_Spring:

1da #D_Pin_Right
sta R_Steer_Dir



US 2003/0114075 Al Jun. 19, 2003
77

Shft96Rx.ASM
1da #D_Steer_PWM_Lo_A_Spring;
jmp L_SSM_Set_PWM_Done

L_SSM_Motor_Right_Fast_A_Spring:

Tda #D_Pin_Right

sta R_Steer_Dir

Tda #D_Steer_PWM_Hi_A_Spring
jmp L_SSM_Set_PWM_Done

L_SSM_Set_PwM_Done:

sta R_Steer_PwM
jmp L_SSM_Done

L_SSM_Error:

Tda P_PortD ; steering motor off
and #11111100b
sta P_PortD
L_SSM_Done:
rts

bR st s L a2 et R 2 R R R TR TR E LR LSRR LR R R TR TR X R
F_ServiceDriveMotor

The motor driver circuit is a little different than the usual H-Bridge
configuration.

;. h Because of the high drive current, the cicuit uses relays which are enabled
wit

H a FET. The FET is PwMed, while the relays are just turned on whenever the
motor is on

H all the way or just at some PwWM rate. Also, a Current sense enable pin is
brought high

H whenever the vehicle is driven.

F_Service_Drive_Motor:

1da R_Drive_cCmd

CcMp #00001100b ;
BEQ L_SDM_Reverse_High ;

CMp #00001000b ;
BEQ L..SDM_Reverse_Medium H

cMP #00000100b ;
BEQ L_SDM_Reverse_Low ;

cMP #00110000b ;
BEQ L_SDM_Forward_High H

CMP #00100000b H
BEQ L_SDM_Forward_medium ;

cMP #00010000b H
BEQ L_SDM_Forward_Low ;

; stop by default



US 2003/0114075 Al

LDA
STA

Jun. 19, 2003
78

Shft96Rx.ASM

#0
R_Drive_PwM

; turn off pwm

; A delay is required before switching the relays. This keeps from damaging

the relays

; check to see if the relays have already been shut off

Tda
and
bne

jmp

P_PortcC .
#D_Pins_Drive

L_SDM_Inc_Relay_off_cCounter

L_SDM_Done ; relays have already been shut off.

; inc counter for turning off drive pins--should wait x seconds to turn

relays after

; turning off pwm.

L_SDM_Inc_Relay_off_counter:

inc
lda
cmp
bne

1da
sta

inc

R_Relay_off_counter_Lo
R_Relay_off_Counter_Lo
#ffh

L_SDM_check_Limit

#0
R_Relay_off_Counter_Lo
R_Relay_off_Counter_Hi

L_SDM_check_Limit:

1da
cmp
beq

jmp

R_Relay_oOff_cCounter_Hi
#D_Re]az_off_De]ay_Hi
L_SbM_check_Low_belay

L_SDM_Done

L_SPM_check_Low_Delay:

1da
cmp
beq

jmp

R_Relay_off_Counter_Lo
#D_Re]aﬁ_off_De1a¥_Lo
L_SDM_shut_off_Relays

L_SDM_Done

; rollover

; and inc the hi counter

; not there yet

; time to_shut off relays which will activate dynamic braking
L_SDM_Shut_off_Relays:

1da
sta
sta

Tlda
and
and
sta

JMp

#0
R_Relay_off_Counter_Lo
R_Relay_off_counter_Hi

P_PortcC
#.NOT.D_Pins_Drive
#.NOT.D_Pin_oOvercurrent
P_PortC

L_SDM_Done

L_SDM_Reverse_High:

; reset counters for next time

; brakes



US 2003/0114075 Al
LDA #D_Drive_PWM_High
STA R_Drive_PwM
LDA #D_Pin_Reverse
STA R_Drive_Dir
JMP L_Set_Direction

L_SDM_Reverse_medium:

LDA
STA

LDA
STA
aMpP

#D_Drive_PwWM_Medium
R_Drive_PwM

#D_Pin_Reverse
R_Drive_bir
L_Set_Direction

L_SDM_Reverse_Low:

LDA
STA

LDA
STA
IMP

#D_Drive_PwM_Low
R_Drive_pPwM

#D_Pin_Reverse
R_Drive_Dir
L_Set_Direction

L_SDM_Forward_iow:

LDA
STA

LDA
STA
JMP

#D_Drive_PWM_Low
R_Drive_PwM

#D_Pin_Forward
R_Drive_Dir
L_Set_Direction

L_SDM_Forward_medium:

LDA
STA

LDA
STA
mp

L_SDM_Forward_Hi

LDA
STA

LDA
STA
JMp

L_Set_Direction:

Tda
and
ora
ora
sta

1da

#D_Drive_PwM_Medium
R_Drive_PwM

#D_pin_Forward
R_Drive_Dir
L_Set_Direction

gh:
#D_Drive_PWM_High
R_Drive_PwM

#D_Pin_Forward
R_Drive_Dir
L_Set_Direction

P_PortcC
#.NOT.D_Pins_Drive
R_Drive_Dir
#D_Pin_Overcurrent
P_PortcC

#0

79

Shft96Rx.ASM

’
’
El

is this necessary?

switch relay

and overcurrent enble pin

keep clear

Jun. 19, 2003



Jun. 19, 2003
80

Shft96Rx . ASM

US 2003/0114075 A1
sta R_Relay_off_Counter_Hi
sta R_Relay_off_cCounter_Lo
jmp L_SDM_Done '

L_SDM_Done:
RTS

;¥ PWM MOTORS *

; pwm drive and steering motors . . .
; Note that the drive motors use relays (in place of where the power transistors in

an

turning pwm on

; H-bridge usually are) along with a drive enable pin. The relays are connected

first, then

; motor is PWM with some non-zero frequency some finite (~.1 second?) This is done

to ﬁrotect
; the relay.

F_PwWM:

; increment counter; will be used

determination

INC
LDA
cMP
BNE

LDA
STA

R_PWM_Counter
R_PWM_Counter
#D_PWM_Max
L_PWM_Drive_Service

#0 H
R_PWM_Counter H

L_PWM_Drive_Service:

1da
bne

; motors are comggnded off (pwm=0)

da
sta

jmp

R_Drive_PwM
L_PwM_check_Delay

R_PWM_On_belay_Counter
L_PWM_Drive_off

; pwm is non-zero

L_PwM_cCheck_bDelay:

Tda R_Drive_PwM_On

bne L_PWM_Drive_bDecide ;
passed)

; still in delay btwn when relays
on FET

inc R_PWM_On_Delay_cCounter ;
we can turn

1da R_PWM_On_Delay_Counter

cmp #D_PWM_On_Delay_Time

bne L_PWM_Drive_bone ;

; it's time

for both drive and steering pwm

don't reset counter until it matches "Max"

rollover reset

reset counter

pwm turned already turned on (on delay has

are turned on and when it is time to turn

increment and check the counter to see if

not yet

A-T75



US 2003/0114075 Al

lda
sta

#1
R_Drive_PWM_On

L_PWM_Drive_Decide:

of the FET

H LDA
; BEQ

LDA
CMP
BCC

L_PWM_Drive_off:

LDA
and
transistor o
STA
IMP

L_PWM_Drive_
LDA
ora
STA

n

on:

R_Drive_PwM
L_PwM_Drive_off ;

R_PWM_Counter

R_Drive_PwM
L_PWM_Drive_On

P_PortcC

81

Shft96Rx.ASM

#.NOT.D_Pin_Drive_Enable

P_POrtc
L_PWM_Drive_Done

P_PortcC
#D_Pin_Drive_Enable
P_PortcC

L_PWM_Drive_Done:

; PWM fo; steering motor

da
beq

1da
cmp
bcc

L_PWM_Steer
1da

and
sta

jmp
L_PWM_Steer_

1da

and

ora
sta

off:

on:

R_Steer_PwMm
L_PwWM_Steer_Off

R_PWM_Counter
R_Steer_PuM
L_PWM_Steer_on

P_PortbD
#.NOT.D_Pins_Steer
P_Porto

L_PWM_Steer_Done

P_PortD
#.NOT.D_Pins_Steer
R_Steer_pir
P_PortD

L_PWM_Steer_bDone:

RTS

if set t

if Count

Jun. 19, 2003

; now that it's okay to turn FET on, this routine will do the actual PwMing

o0 zero, stop the motor

er less than setting, turn on

else turn off

set pin

Wl tehdh Rkt hhhhhhhhhn Interrupt service R_qutine

hi for pwMm off
and OR in the motor pin to turn

and motor off



US 2003/0114075 Al

Jun. 19, 2003
82

Shft96Rx .ASM

Khddhhdekdhhhhhhdhhhhdhhvhhdehihkdthhhhdedis

v._.Irq:
STA R_TempA
STX R_TempX
Tda #COH
STA P_Ints

V_Nm1i:

this code

or mess
LDA R_TempA
LDX R_TempX
RTI
; . Include
.DB

; save accumulator value

; save x value

; clear the 1interrupt flags
; non maskable dinterrupt--Sunplus does not support
; very well, and we have been warned not to use any

; with it

Channel.asm

'PEND',0 ; no idea what this is

; Vectors settings - do not change (from Sunplus Demo Code)

.ORG
Dw
DwW
Dw

.ORG
DwW
DW
Dw
END



US 2003/0114075 Al

What is claimed:
1. A toy vehicle remote control transmitter unit compris-
ing:

a housing;

a plurality of manual input elements mounted on the
housing for manual movement;

a microprocessor in the housing operably coupled with
each manual input element on the housing;

a signal transmitter operably coupled with the micropro-
cessor to transmit wireless control signals generated by
the microprocessor; and

wherein the microprocessor is configured for at least two
different modes of operation, the microprocessor being
configured in one of the at least two different modes of
operation to emulate manual transmission operation of
the toy vehicle by being in any of a plurality of different
gear states and to transmit through the transmitter
forward propulsion control signals representing differ-
ent toy vehicle speed ratios for each of the plurality of
different gear states, the microprocessor further being
configured to be at least advanced through the plurality
of different consecutive gear states by successive
manual operations of at least one of the manual input
devices.

2. The remote control transmitter unit of claim 1 wherein
the microprocessor is configured to further generate the
forward propulsion control signals for the toy vehicle in
response to manual operations of the one manual input
device.

3. The remote control transmitter unit of claim 2 wherein
the microprocessor is further configured to respond to two
successive changes of state of the one manual input element
within a predetermined period of time to change a current
gear state of the microprocessor to a next consecutive gear
state.

4. The remote control transmitter unit of claim 1 further
comprising a sound generation circuit with a speaker con-
trolled by the microprocessor and wherein the microproces-
sor is programmed to generate sound effects controlled at
least in part by the current gear state of the microprocessor.

33

Jun. 19, 2003

5. The remote control transmitter unit of claim 1 wherein
the microprocessor is configured to respond to a propulsion
input element of the plurality of manual input elements to
generate the forward propulsion control signals for the toy
vehicle and wherein the microprocessor is configured for at
least a second mode of operation wherein the microproces-
sor responds to the propulsion input element to generate
only a single forward propulsion control signal with a
maximum forward speed ratio of the toy vehicle under any
mode of operation of the remote control transmitter unit.

6. The remote control transmitter unit of claim 14 wherein
the forward propulsion control signals generated by the
microprocessor include at least a variable duty cycle com-
ponent, each transmitted duty cycle component correspond-
ing to one of a plurality of predetermined speed ratios of the
toy vehicle.

7. The remote control transmitter unit of claim 6 in
combination with the toy vehicle, the toy vehicle including
a receiver circuit, a toy vehicle microprocessor coupled with
the receiver circuit, a variable speed steering motor and a
variable speed propulsion motor, each motor being operably
coupled with the vehicle microprocessor, and the vehicle
microprocessor being configured to operate the variable
speed propulsion motor at a duty cycle corresponding to the
variable duty cycle component of the propulsion control
signals.

8. The combination of claim 7 wherein the remote control
unit microprocessor is configured to generate and transmit
steering control signals to the toy vehicle and wherein the
toy vehicle microprocessor is configured to control the
steering motor in response to the steering command signals
and to a current steering position of the toy vehicle.

9. The combination of claim 8 wherein the microproces-
sor is further configured to control the steering motor at a
first speed where a new steering position in a steering control
signal is adjacent to a current steering position of the toy
vehicle and at second speed greater than the first speed
where the new steering position is other than adjacent to the
current steering position.



