
(19) United States
US 20030114075A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0114075A1
Moll et al. (43) Pub. Date: Jun. 19, 2003

(54) TOY VEHICLE WIRELESS CONTROL
SYSTEM

(76) Inventors: Joseph T. Moll, Prospect Park, PA
(US); James M. Dickinson, Haddon
Township, NJ (US); Frank W.
Winkler, Mickleton, NJ (US); David V.
Helmlinger, Mt. Laurel, NJ (US);
Charles S. McCall, San Francisco, CA
(US); Stephen N. Weiss, Philadelphia,
PA (US)

Correspondence Address:
AKIN GUMPSTRAUSS HAUER & FELD
L.L.P.
ONE COMMERCE SQUARE
2005 MARKET STREET, SUITE 2200
PHILADELPHIA, PA 19103-7013 (US)

(21) Appl. No.: 10/284,046

(22) Filed: Oct. 30, 2002

Related U.S. Application Data

(60) Provisional application No. 60/340,591, filed on Oct.
30, 2001.

Publication Classification

(51) Int. Cl. ... A63H 30/04
(52) U.S. Cl. .. 446/456
(57) ABSTRACT
A toy vehicle remote control transmitter unit wirelessly
controls the movements of a programmable toy vehicle. The
toy vehicle includes a motive chassis having a plurality of
Steering positions. A microprocessor in the transmitter unit
emulates manual transmission operation of the toy vehicle
by being in any one of a plurality of different gear States
Selected by an operation of manual input elements on the
transmitter unit. Forward propulsion control Signals repre
Senting different toy vehicle Speed ratioS associated with
each of the gear States are transmitted from the transmitter
unit to the toy vehicle. The motive chassis has a steering
feedback Sensor with a plurality of defined Steering positions
to vary rate of Steering position change to avoid overshoot.

Patent Application Publication Jun. 19, 2003 Sheet 1 of 25 US 2003/0114075A1

FIG 1A

Patent Application Publication Jun. 19, 2003 Sheet 2 of 25 US 2003/0114075A1

PWM

One Period

FIG.2

VeloCity

FIG.3

US 2003/0114075A1 Jun. 19, 2003 Sheet 3 of 25 Patent Application Publication

US 2003/0114075A1 Jun. 19, 2003 Sheet 4 of 25 Patent Application Publication

Patent Application Publication Jun. 19, 2003 Sheet 5 of 25 US 2003/0114075A1

Initialize Wariables 1. 600

N 604

PWM Service
(1 of4x)

y w

Output Ione luggage
2

(A)

- Time to Check

Bit Boundary
Delegted

y

Start Timer

Time to Perform s
Bit Read 1

2

Bit Boundary
Window Timed Out

p

Current
Element

p

Set Current Bit
to LaSt Bit

Current
Element

2

Set Current Bit
to Last Bit

Set Error Flag

Clear Data Buffer

FIG.6A

Patent Application Publication Jun. 19, 2003 Sheet 6 of 25 US 2003/0114075A1

604 600
PWM Service (2 of 4x) 1.

Get Drive Command

Set Drive Direction

Set Drive PWM

Steering
Motor Command Walid

Steer Motor Off
Current

Steering position

What is
COImmand

What is
COmmand

Patent Application Publication Jun. 19, 2003 Sheet 7 of 25

C
604

PWM Service(3 of 4x)

Perform Bit Read 2

W Bit Read
2

St0re Bit as "1"

y

= Bit Read 1
2

Bit Read
1 Error Previously

Detected
2

1.
Shift Data into Data Buffer

HaS Full
Packet Been Received

into Data Buffer

Perform Checksum

IS
Checksum GOOd

2
Clear RX Data Buffer

604

PWM Service
(4of4x)

(A)

y
Data is G000

Data
PaCket Same aS

LaSt Time
2

Record Data

DiSSect Data to
Determine Commands

US 2003/0114075A1

1. 600

StOre BitaS "O"

FIG.6C

Patent Application Publication Jun. 19, 2003 Sheet 8 of 25 US 2003/0114075A1

InC PWM COLInter

y Counter
ReSt Counter Reached MaX

as N. 2
y COLInter < PWM

Drive Setting
Drive MOtOr On

4."

Drive MOtOr Off

COLInter < PWM
Steer Setting

Steer Motor On Steer MOtOr Off

FIG.6D

Patent Application Publication Jun. 19, 2003 Sheet 9 of 25 US 2003/0114075A1

Waking N

Eom Sleep

Set MOde 1 aS Default

'3d LED Off LED On

y-S Selection
Time Up

2.

ReV
Joystik Hit

Joystick JoyStick
Still fielg Still leg

y

Mode Mode
Select Time Up Select lime Up

y

MOde 1 Selected Mode 2 Selected Mode 3 Selected

Play Gear Sound Play Horn Sound

(A) (B) C)

Initialize WariableS

Configure Ports

FIG-7A

Patent Application Publication Jun. 19, 2003 Sheet 10 of 25 US 2003/0114075A1

Sleepy Counter
Time Reached

Patent Application Publication

(D)

Bit Index

Set to SeCOnd Bit Half

Set First
Bit Half

Subroutine This Time?
(Rotates through 4 Main Program

Jun. 19, 2003 Sheet 11 of 25

(E)

First Which SeCOnd
Bit Half is Nest TO TranSmit

Current 1
BitTO lansp

Firs - Firs f
Bit Half WaS Bit Half WaS

last Set 2 Set 2
0 Bit fall Line Hi

Line Hi Line LO

ReSet Bit Index

Which

Branches)
DeCide IX PaCet

1. Shifting And Sounds-What is Mode
2

What is State 3-13

Packet=
Steering
Dif and
PWM. FWC

Packet=
Steering

Dir.

Compute
Checksum

Add Flag to Checksum

Rev. Cmd.

2: Sounds,
No Shifting

Packet=
Steering
Dir and

Packef=
Steering

Dif,

FIG.70

ES13.
complete pyle Sent

Flag
y

guey Byte
Set Current Byte to Flag Set Current Byte to Data

What is State

Packet=

Dir and Full
PWMFWol

US 2003/0114075A1

Set
Line LO

Determine State
Decide SOLInds

O
PlaySounds/
Control LED

3. No Shifting
Or SOunds

Steering

Patent Application Publication Jun. 19, 2003 Sheet 12 of 25 US 2003/0114075A1

Determine State
(F)

What IS
Mge

1: Sounds and Shifting
What IS

guesge
1: Starting Up

2: Sounds, No Shifting

3: No Sounds Or Shifting

0: Waiting

Or ReV. Hit
2 Motor Start

Sound DOne

Finished
Peel Ou, SOund Turning for

> 1 SeC.

Turning for
> 1 SeC.

p

Set to State 13:
Squealing Turn

Set to State 8:
Ready to

Shift Ramp

Set to State 12:
Grinding Gears

FIG.7D

Set to State 11:
Braking

Patent Application Publication

Ramp
Shift SOLInd
50isheg

Jun. 19, 2003

Wheels
Iurning for
> 1 SeC/

FIG.7E

Sheet 13 0f 25

Wheels
Turning for
> 1 Sg

Wheels
Turning for
> 1 SeC.

W1Wheels
Turning for

US 2003/0114075A1

8. Ready to
Shift, Ramp

9: Ready to
Shift, Const

Patent Application Publication Jun. 19, 2003 Sheet 14 of 25 US 2003/0114075A1

11: Braking

Wheels
Turning for Shifting

SOund finishg > 1 SeC.

12: Grinding
Gears

Grinding
SOUnd finishg

heels
Turning for
> 1 SeC.

16. ReVerSe 15.
Turning ReverSe

Y1Rev.
Still leg

y
Set to State 11:

Braking

FIG.7F

Patent Application Publication Jun. 19, 2003 Sheet 15 of 25 US 2003/0114075A1

G
Mode 2: Sounds, No Shifting

1: Starting
Up

Activity
OI Joystics

67

4: Moving
FOrWard

Turning
for > 1 SeC

p

Braking N1Previously
Going Forway SOUnd finisty

Set to State 4: Set to State 15: Set to State 2: Set to State 4.
FWO ReverSe ldling Moving FW0

Patent Application Publication Jun. 19, 2003 Sheet 16 of 25 US 2003/0114075A1

13 Squealing
Turn

11: Brake
DeCide

FWod. Or
Rev. Stil Hit

SettO State 11:
DeCide Brake

Set to State 11. Set to State 15: Set to State 13: Set to State 11:
Braking ReWerSe Squealing Turn Brakind

FIG.7H

Patent Application Publication Jun. 19, 2003 Sheet 17 of 25 US 2003/0114075A1

Decide SOunds

1: Sounds and Shifting <25> Sounds, No Shifting

State 3: No Sounds or Shifting

W 8, 10, l, Or 12 <>

Set SOUnd Not
to Interrupt

Number
Selegleg

Number
Selegleg

Patent Application Publication Jun. 19, 2003 Sheet 18 of 25 US 2003/0114075A1

3: No SOUnds

s: or Shifting
1: Sounds and Shifting or
2: Sounds, No Shifting

W

Currently
Flying Soupg

SOund
Set to Interrupt
gen, Sound

SOUnd
Set to fegg

SOUnd
LOadedAlgy
LOad NeWSOund

NeW

Start SOund

1

2 In State 8 Or 9
y Ready p Shift

FIG.7

US 2003/0114075A1 Jun. 19, 2003 Sheet 20 of 25 Patent Application Publication

fiu[190]S

Patent Application Publication Jun. 19, 2003 Sheet 21 of 25 US 2003/0114075A1

800 1.
Watt

R44 R47 R49

(S R50
R43 i 018 Y D8

T 8U3 DiD
DGND DGND DGND Drive

FIG. BD

Patent Application Publication Jun. 19, 2003 Sheet 22 of 25 US 2003/0114075A1

8

Wod Vff

R29

in in fe
DGMD DGND DGND

840N vdd R16
R17

C17 SC19 = C18 2. D1 C20 - C21

DGND DGND

FIG. 8E

Patent Application Publication Jun. 19, 2003 Sheet 24 of 25 US 2003/0114075A1

1110 1000

1134

1132

1120 1104 1102

FIG. 10A

1010 1110

T

FIG 10B

Patent Application Publication Jun. 19, 2003 Sheet 25 of 25 US 2003/0114075A1

1068

1066

1060 1022 1032 1042

FIG 11

US 2003/0114075 A1

TOY VEHICLE WIRELESS CONTROL SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001) This application claims the benefit of U.S. Provi
sional Application No. 60/340,591, filed Oct. 30, 2001,
entitled “Toy Vehicle Wireless Control System,” which is
incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

0002 This invention relates to toy vehicles and, in par
ticular, to remotely controlled, motorized toy vehicles.

SUMMARY OF THE INVENTION

0003. The invention is in a toy vehicle remote control
transmitter unit including a housing, a plurality of manual
input elements mounted on the housing for manual move
ment, a microprocessor in the housing operably coupled
with each manual input element on the housing, and a signal
transmitter operably coupled with the microprocessor to
transmit wireleSS control signals generated by the micropro
ceSSor to a toy vehicle. The invention is characterized in that
the microprocessor is configured for at least two different
modes of operation. One of the modes emulates manual
transmission operation of the toy vehicle by being in any one
of a plurality of different gear States and transmitting through
the transmitter forward propulsion control Signals represent
ing different speed ratios for each of the plurality of different
gear States. The microprocessor is further configured to
consecutively advance through the different gear States in
response to Successive manual operations of at least one of
the manual input devices.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0004. The following detailed description of preferred
embodiments of the invention, will be better understood
when read in conjunction with the appended drawings. For
the purpose of illustrating the invention, there is shown in
the drawings embodiments which are presently preferred. It
should be understood, however, that the invention is not
limited to the precise arrangements and instrumentalities
shown. In the drawings:

0005 FIG. 1A is a top plan view of an exemplary remote
control/transmitter used in accordance with the present
invention;

0006 FIG. 1B is an exemplary toy vehicle remotely
controlled by the remote control/transmitter of FIG. 1A;
0007 FIG. 2 is a timing diagram showing an analog
output of a control circuit used to drive different motor
speeds of the toy vehicle of FIG. 1B in accordance with a
preferred embodiment of the present invention;

0008 FIG. 3 is a diagram showing a trapezoidal velocity
profile of a steering finction of the toy vehicle of FIG. 1B:

0009 FIG. 4 is a schematic diagram of a control circuit
in the toy vehicle of FIG. 1B, which is directly responsive
to Steering commands received in accordance with the
present invention;

Jun. 19, 2003

0010 FIG. 5 is a schematic diagram of a speed shifter
remote control/transmitter circuit which sends Steering com
mands to the control circuit of FIG. 4;

0011 FIGS. 6A, 6B, 6C and 6D, taken together, is a flow
chart illustrating the operation of the vehicle control circuit
of FIG. 4;

0012 FIGS. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I and 7J,
taken together, is a flow chart illustrating the operation of the
speed shifter remote control/transmitter circuit of FIG. 5;

0013 FIGS. 8A, 8B, 8C, 8D and 8E, taken together, is a
Schematic diagram of a toy vehicle control circuit which
processes received Steering commands based on current
Steering position of the toy vehicle in accordance with an
alternate embodiment of the present invention;

0014 FIGS. 9A and 9B, taken together, is a schematic
diagram of a speed shifter remote control/transmitter circuit
in accordance with an alternate embodiment of the present
invention;

0015 FIG. 10A depicts a steering output assembly;

0016 FIG. 10B depicts the assembly of FIG. 10A with
the output member and reduction gearing removed; and
0017 FIG. 11 depicts the stationary portion or contact
member of a Steering Sensor.

DETAILED DESCRIPTION OF THE
INVENTION

0018. Related U.S. Application No. 60/340,591 filed Oct.
30, 2001 is incorporated by reference herein. The present
invention is a toy vehicle wireleSS control System which
includes a remote control/transmitter 100 (FIG. 1A) with a
speed shifter remote control/transmitter circuit 500 (see
FIG. 5) or 900 (see FIGS. 9A, 9B), and a remotely
controlled toy vehicle 20 (FIG. 1B) with a receiver/micro
processor based toy vehicle control circuit 400 (see FIG. 4)
or 900 (see FIGS. 9A-9E), also hereinafter referred to as a
Speed shifter receiver circuit.

0019. The remote control/transmitter 100 depicted in
FIG. 1A includes a housing 105 and a plurality of manual
input elements 110, 115 mounted on housing 105 and used
for controlling the manual movement of a toy vehicle 20.
The manual input elements 110, 115 are conventionally used
to Supply propulsion or movement commands and Steering
commands, respectively. They also enable Selection among
three different modes of operation or usage (hereinafter
referred to as “Mode 1,”“Mode 2,” and “Mode 3”), each
having a different play pattern. Power is Selectively provided
to circuitry in the remote control/transmitter 100 via
ON/OFF switch 135 (in phantom in FIG. 1A).
0020 Car 20 is shown in FIG. 1B and includes a chassis
22, body 24, rear drive wheels 26 operably coupled to
drive/propulsion motor 420 (phantom) and front free rotat
ing wheels 28 operably coupled with steering motor 410
(phantom). An antenna 30 receives command Signals from
remote control/transmitter 10 and carries those signals to the
vehicle control circuit 400 (phantom) or 800 (not shown in
FIG. 1B). An on-off switch 450 turns the circuit 400 on and
off, and a battery power Supply 435 provides power to the
circuit 400 and motors 410, 420.

US 2003/0114075 A1

0021 FIG. 4 shows a schematic diagram of a vehicle
control circuit 400 in the toy vehicle 20. The vehicle control
circuit 400 includes a steering motor control circuit 405
which controls Steering motor 410, and a propulsion motor
control circuit 415 which controls drive motor 420. Micro
processor 4U1 is in communication with Steering motor and
drive motor control circuits 405, 415, and controls all other
functions executed within the toy vehicle 20. A vehicle
receiver circuit 430 receives control signals sent by remote
control/transmitter 100 and amplifies and sends the control
Signals to microprocessor 4U1 for processing. A power
supply circuit 440 powers the vehicle control circuit 400 in
toy vehicle 20 and the steering and propulsion motors 410,
420, respectively.

0022 FIG. 5 shows a transmitter circuit 500 in the
remote control/transmitter 100 (see FIG. 1A) that is pow
ered by a battery 505 in communication with a two-position
Switch 135 that is used to turn the device 100 on and off and
for selecting one of the modes. The transmitter circuit 500
also includes a microprocessor 5U1. The microprocessor
5U1 is operably coupled with each of the manual input
elements 110, 115. The remote control/transmitter 100 must
first be turned off via Switch 135 to change the mode used.
Manual input element 110 is preferably a center biased
rocker button operating momentary contact Switches 110a
and 110b, as shown in FIG. 5. When pressed, the manual
input element 110 causes one of contact Switches 110a and
110b to change states. This is sensed by the microprocessor
5U1 which responds by transmitting a signal via antenna
120 to cause remotely controlled toy vehicle 20, which
includes receiver/microprocessor 4U1, to move forward or
backward. Manual input element 115 is also preferably a
center biased rocker button operating momentary contact
switches 115a and 115b in FIG. 5 which, when pressed,
causes the remote control/transmitter 100 to transmit via
antenna 120 a command to receiver/microprocessor 4U1
causing the toy vehicle 20 to steer to the left or to the right.
When manual input element 115 is not pressed (i.e. in center
position), the toy vehicle 20 travels in a straight path. When
the manual input element 110 is not pressed, the vehicle 20
Stops.

0023 Mode 1, a first mode of operation or usage, is the
default mode achieved when the remote control/transmitter
100 is activated from a deactivated state by moving on-off
switch 135 in FIG. 5 from an “off” position to an “on”
position. This mode has a multiple-speed (3-speed in the
present embodiment) manual gear-shifting play pattern in
which the microprocessor 5U1 emulates a manual transmis
sion operation of the toy vehicle 20 and in which corre
sponding Sounds are generated by the microprocessor 5U1
and played on a speaker 125 in the remote control/transmit
ter 100. Mode 1 has the following features and character
istics:

0024 (1) The motionless toy vehicle 20 is put into motion
by pressing manual input element 110 to a “forward” button
position, closing or otherwise changing the nominal State of
Switch 110a on the remote control/transmitter 100. The
microprocessor 5U1 is configured (i.e., programmed) to
respond to the depressions of manual input element 110 by
entering a first gear State of operation and generating a first
forward movement command Signal transmitted to the toy
vehicle 20. Initially, the toy vehicle 20 responds to the first
Signal and moves forward at a first top speed which is leSS

Jun. 19, 2003

than a maximum speed the toy vehicle 20 is capable of
running. The microprocessor 5U1 generates a first Sound,
which is outputted by Speaker 125, to Simulate first gear
operation of the toy vehicle 20.

0.025 (2) Once the toy vehicle 20 is moving forward for
a while in a first gear State (as timed by microprocessor
5U1), a visual indication (e.g., red flashing LED 130) and/or
an audible Sound (e.g., Single horn beep) can be outputted by
the microprocessor 5U1 from the remote control/transmitter
100 to signal to a user that it is OK to shift to the second gear.
Shifting into a higher gear is performed by momentarily
releasing and re-engaging the forward button position of
manual input element 110, which closes switch 110a within
a predetermined time window. If the time window elapses,
the toy vehicle 20 will return to first gear state when the
forward button position of manual input element 110 is
activated (i.e., switch 110a is closed). Once in the second
gear State, the microprocessor 4U1 commands the vehicle 20
to move forward at a Second top speed that is faster than the
first top speed but leSS than maximum speed, and preferably
the microprocessor 5U1 generates a Second Sound which is
outputted by Speaker 125 to Simulate Second gear operation
of the toy vehicle 20. Once the toy vehicle 20 is moving
forward for a while in a Second gear State, a Visual indication
(e.g., red flashing LED 130) and/or an audible Sound (e.g.,
Single horn beep) can be outputted by microprocessor 5U1
from speaker 125 of the remote control/transmitter 100 to
signal to a user that it is OK to shift to the third gear. The
forward button position of input element 110 closing Switch
110a is again momentarily released and re-engaged within a
predetermined time window. If the time window elapses, the
toy vehicle 20 will return to first gear when the forward
button position of manual input element 110 is activated.
Once in the third gear state, the toy vehicle 20 moves
forward at a third top speed that is faster than the Second top
Speed, and preferably the microprocessor 5U1 generates a
third sound that is outputted by speaker 125 to simulate third
gear operation of the toy vehicle 20. The movement of the
toy vehicle 20 is terminated by releasing the forward button
position of manual input element 110 closing Switch 110a or
by pressing and then releasing reverse button position of
manual input element 110 closing Switch 110b.

0026 (3) In the three-speed embodiment, preferably the
top speed of the toy vehicle 20 may be 62.5% of maximum
Speed when in the first gear State, 75% of maximum speed
when in the Second gear State, and 100% of maximum speed
when in the third gear State. Other ratioS and/or additional
ratioS to provide four, five, Six or more speeds can be used
to Simulate other car and truck shifting.

0027 (4) If the gear state of the toy vehicle 20 is changed
before the toy vehicle 20 reaches its top speed for the
previous gearby momentarily releasing and re-engaging the
forward button position of manual input element 110, before
the microprocessor 5U1 opens the predetermined time win
dow to shift, the microprocessor 5U1 generates a different
audible Sound (e.g., grinding noise), which is preferably
outputted by the speaker 125 of the remote control/trans
mitter 100, to signal that the user shifted too early. Top speed
is not increased.

0028 (5) Various audible sounds (e.g., peel out, squeal
ing tire, hard braking, accelerating motor, etc.) are prefer
ably outputted by the remote control/transmitter 100 in

US 2003/0114075 A1

response to activating the manual input elements 110, 115 on
the remote control/transmitter 100. For example, transmit
ting a steering command by causing manual input element
115 to close switch 115a while the toy vehicle 20 is moving
(e.g., forward position of manual input element 110 being
pressed changing the State of Switch 110a) causes the
microprocessor 5U1 to output an audible Sound (e.g., the
Squealing of tires) through speaker 125. There is a small
delay in producing the audible Sound So that Small Steering
corrections do not cause the audible Sound to be outputted by
Speaker 125. Releasing either the forward and reverse posi
tion of manual input element 110 preferably causes the
microprocessor 5U1 to output an audible Sound (e.g., hard
breaking, tire Screeching) through speaker 125. An "idling”
sound is then preferably outputted by microprocessor 5U1
through speaker 125 until a next propulsion/drive command
is transmitted.

0029 (6) Speed of the toy vehicle 20 is controlled by the
remote control/transmitter 100 outputting propulsion control
signals having PWM (Pulse Width Modulation) character
istics with duty cycles approximate for the Speed ratioS
selected, e.g., 56%, 75%, and 100% (see FIG.2). Preferably,
the remote control/transmitter 100 outputs a binary signal
with two or more values allocated to propulsion commands.
Two binary bits can be used to identify stop and three
forward Speed values (e.g., first, Second and third speeds).
The vehicle microprocessor 4U1 is preferably programmed
to power each motor 410, 420 according to a duty cycle
identified by the binary bits. Referring to FIG. 2, a fixed
time period (e.g. Sixteen milliseconds) can be broken up into
fractions (e.g., Sixteen, one millisecond parts) and power (V
hi) Supplied to the motor for the fraction of the time period
(e.g.,946, 1946, 1%6, 1%6) commanded by the two binary bits.
An 8/16 duty cycle is depicted, with V hi provided for eight
parts and V low (i.e. 0 Volts) provided for the remaining
eight parts of the period constituting the cycle. If three bits
are allocated to propulsion commands, a Stop command and
Seven different forward and reverse Speed commands can be
encoded. Preferably, reverse Speed is at a ratio of less than
100% for ease of vehicle control and realism.

0030 Mode 2 is achieved by turning on switch 135 of the
remote control/transmitter 100 while holding manual input
element 110 in a “forward” movement position (changing
the state of Switch 110a) on the remote control/transmitter
100 until the microprocessor 5U1 acknowledges the com
mand by causing the Speaker 125 to output an audible Sound
(e.g., horn beeps) and/or the red LED 130 to flash. This
mode allows the user to maneuver the toy vehicle 20 in the
usual manner with Sounds being generated but no gear
shifting operation. The microprocessor 5U1 is preferably
preprogrammed for a desired default Speed, e.g., 100%
forward and 50% or 100% reverse.

0031) Mode 3 is achieved by turning on switch 135 of the
remote control/transmitter 100 while holding manual input
element 110 in a “reverse' movement position (i.e. changing
state of the Switch 110b) on the remote control/transmitter
100 until the microprocessor 5U1 causes speaker 125 to
output an audible Sound (e.g., horn beeps) and/or the red
LED 130 to flash. This mode allows the user to maneuver the
toy vehicle 20 in the usual manner with no Sound generation
by microprocessor 5U1 or gear shifting operation. The
microprocessor 5U1 is preprogrammed for a desired default
speed, e.g., 100% forward and 50% or 100% reverse.

Jun. 19, 2003

0032. A “Try Me Mode” may be provided, if desired,
allowing only Sound effects of the remote control/transmitter
100 to be produced while still in its packaging. Sound effects
are generated by pressing any button on the transmitter.
Pushing the manual input element 110 to the “forward”
position can cause the Start-up Sound to play followed by a
peel-Out Sound with both motor and shifting Sounds. Pushing
the manual input element 110 to the “reverse” position can
cause the horn Sound to play with the motor running Sound.
Pushing the manual input element 15"left” and “right” can
activate the Squealing tire Sound accompanied by the engine
downshift sound. The “Try Me Mode” preferably is deac
tivated automatically when the toy is taken out of its
packaging and a pull-tab is removed from the remote
control/transmitter 100, allowing the transmitter 100 and toy
vehicle 20 to be operated in one of the three modes described
above.

0033 FIGS. 7A-7J depict the various steps of an oper
ating program 700 contained by the transmitter circuit 500,
such as by firmware or software in the microprocessor 5U1,
to operate the remote control/transmitter 100 in the multiple
modes of operation and in the different shift states in the first
mode of operation. Again, the microprocessor 5U1 is pref
erably configured to transmit commands in binary form with
propulsion and/or Steering commands encoded as binary bits
or sets of Such bits.

0034 FIGS. 6A-6C depict the various steps of an oper
ating program 600 contained by the vehicle control circuit
400, such as by firmware or software in the microprocessor
4U1, to operate the toy vehicle 20 in the multiple modes and
in the different shift states in the first mode of operation.
FIG. 6D depicts the steps of a subroutine 604 which is
entered four different times at steps 604 in the main program
600 (FIGS. 6A-6C) to increment and test the state of a pulse
width modulator (PWM) timer (i.e. counter) to power or turn
off power to either motor 410, 420. The operating program
600 must be cycled through four times to increment the
PWM counter a total of sixteen times to complete one PWM
power cycle (sixteen parts) for either motor 410, 420.
0035 FIGS. 8A-8E collectively represent a schematic
diagram for a Second embodiment toy vehicle control circuit
indicated generally at 800 in the Figure in which FIG. 8A
depicts a vehicle receiver circuit 830 which receives control
signals sent by the remote control/transmitter 100 and ampli
fies and sends those signals to microprocessor 8U2 in FIG.
8B. Outputs D4 and D5 from the microprocessor 8U2 are
sent to a steering motor control circuit 805 depicted in FIG.
8C while outputs C0-C3 are transmitted from the micropro
cessor 8U2 to a propulsion motor control circuit 815
depicted in FIG. 8D. Circuit element 8U3 is a dual operating
amplifier chip. Power is Supplied to both the Steering motor
410 in FIG. 8C and drive motor 420 in FIG. 8D as well as
the other components of circuit 800 via a power supply sub
circuit 430 depicted in FIG. 8E which include both the
ON/OFF switch and a battery powered supply 435. One
difference between circuit 800 and circuit 400 is the provi
sion of a steering feedback through connector 860 in FIG.
8B to the vehicle microprocessor 8U2. The purpose of this
will be described shortly.

0036 FIGS. 9A and 9B collectively depict a second
embodiment remote control/transmitter circuit indicated
generally at 900 which is shown essentially in FIG. 9A and

US 2003/0114075 A1

indicated at 910. The only missing element is a power supply
circuit 920 shown in FIG. 9B which provides two outputs
Vdd and Vbatt. Again, manual input elements 110 and 115
control momentary contacts Switches 910a, 910b and 915a,
915b respectively. These switches are located on a board
Separate from the board Supporting a microprocessor 9U1
and are mechanically and electrically coupled together
through connectors J6 and J7.
0037 FIG. 10A depicts part of a steering sensor indi
cated generally at 1000 in a steering output assembly
indicated generally at 1100. Output assembly 110 includes a
housing 1102 containing Steering motor 410, a plurality of
compound reduction gears indicated in phantom generally at
1102, 1104 driving a shaft 1110 (phantom) keyed with a
rotary output member 1120 on the housing 1102. Output
member 1120 rotates in an arc, moving from Side to Side a
wire member 1130 defining a pair of steering arms 1132,
1134 operably coupled with separate ones of the pair of front
wheels 28 of the vehicle 20 to pivot those wheels side to side
about vertical axes in a conventional manner to Steer wheel
20. FIG. 10B shows the output assembly 1100 with the gears
1102, 1104 and a top cover carrying the rotary output
member 1120 removed. The left side of assembly 1100
includes steering sensor 1000 while the right side includes
steering motor 420. Sensor 1000 includes a stationary mem
ber or portion, which is indicated generally at 1010 and seen
Separately in FIG. 11, and a rotary member or rotating
portion indicated generally at 1050. The rotary member
1050 includes a plurality of connected concentric ring
portions 1052, 1054, 1056 each containing one or more
dimples 1052a, 1054a and 1056a, 1056b for the innermost
ring. These dimples ride over the upper Surface of the
stationary portion 1010. Referring to FIG. 11, the stationary
portion 1010 includes a circuit board 1012 on which are
mounted three electrically conductive, generally concentric
tracks 1020, 1030 and 1040. Each track includes an output
terminal 1022, 1032, 1042, respectively on one edge of the
board 1012. These three terminals connect via a Suitable
electrical connection (e.g. connector 860 in FIG. 8B) to
microprocessor 8U2. Each track 1020, 1030, 1040 is con
tinuous around a central opening 1014 in the circuit board
1012 through which the output shaft 1110 extends. Rotating
portion 1050 is keyed with shaft 1110 to rotate with the shaft.
Rotating portion 1050 is a continuous piece of electrically
conductive material Such as metal and electrically couples
one or more of the two Outer tracks 1020 and 1030 with the
innermost track 1040. A high level voltage is applied by the
microprocessor 8U2 through the connecter 860 to the ter
minals 1022 and 1032. Terminal 1042 is connected to
common or ground. The contacting dimples 1056a 1056b
are in constant contact with the ring portion 1044 of inner
most track 1040. In contrast, dimples 1054a of ring portion
1054 only contact wiper portions 1034 and 1036 of central
track 1030 at certain angular positions of rotating portion
1050. Similarly, dimples 1052a of ring 1052 only contact
wiper portions 1024 and 1026 of the outermost track 1020.
0038) Referring to FIG.1, dimples 1052a, 1054a, 1056a,
1046b of rotating contact member 1050 come in contact
with the tracks 1020, 1030, 1040 in five different steering
positions (far left indicated at 1060, near left 1062, center
1064, near right 1066, far right 1068) on printed circuit
board 1010 as member 1050 turns clockwise from far left to
far right. When the rotating member 1050 is turned fully left
or right, dimples 1052a, 1054a loose contact with tracks

Jun. 19, 2003

1020, 1030 and logic bits “1,1” are outputted from electrical
contacts 1022, 1032. When the rotating member 1050 is
turned clockwise from far left to left of center 1062, logic
bits “0,1' are outputted from electrical contacts 1022, 1032.
When the rotating member is in the center position 1064,
logic bits “0,0” are outputted from electrical contacts 1022,
1032. When the rotating member is turned to the right of
center but not fully right, logic bits “1,0” are outputted from
electrical contacts 1022, 1032. When fully right, logic bits
“1, 1” are again output from contacts 1022, 1032.
0039. The states of electrical contacts 1022, 1032 are
monitored by processor 8U2 and the Speed of Steering motor
410 is preferably controlled based on the outputted logic bits
(i, j) which indicate the position of the front wheels 28.
Normally the steering motor 410 operates at top speed
(100%). However, with feedback provided by sensor 1000,
the motor 410 can be operated to prevent overshoot. FIG. 3
shows a trapezoidal Velocity profile of Speed verSuS time for
the Steering function of a toy vehicle 20 according to a
preferred embodiment of the present invention. Steering
motor 410 may be controlled like propulsion motor 420 by
a PWM duty cycle to prevent overshoot of the steering
system. For example, the steering motor 410 may be driven
by microprocessor 8U2 (or 4U1) at a higher duty cycle when
going from a left or right turn to a turn in the other direction
(e.g., from far left to far right) and at a lesser duty cycle
when going from a center position to right or left and Vice
versa. When logic bits “0, 1' are detected as the rotating
member 1120 turns from center position (0,0) to the left and
passes the near left wipers 1024, 1026, or when logic bits “1,
O” are detected as the output member 1120 and rotary
member 1050 turn to the right and pass the near right wipers
1034, 1036, the rate of the steering motor and front wheel
rotation is reduced to 50% to avoid overshooting its desti
nation (far left or far right). Preferably too, the speed of the
propulsion motor 420 can further be reduced automatically
by the processor 8U2 when the processor 8U2 detects that a
turn of the toy vehicle 20 is in progreSS to automatically slow
the vehicle to a Speed less than maximum while making the
turn.

0040. With a start and end point considered in a closed
loop System, Speed of the Steering motor 410 in the toy
vehicle 20 can be varied so that steering follows a trapezoi
dal profile as shown in FIG. 3, i.e. start from Zero and reach
a maximum turning rate, and then slowed to reduce its rate
of rotation So that Steering System momentum is dissipated
and the Steering System does not overshoot its target. When
the command to Steer to a new position is given, firmware
operating in conjunction with microprocessor 8U2 (or 4U 1)
will identify the current Steering position and move at a
higher rate and duty cycle (e.g., 100% duty cycle) when the
commanded Steering position is more than one Steering
position away from (i.e., other than adjacent to) its current
position. For example, in going from a left turn to a right turn
through consecutive outputs (1,1), (0, 1), (1,1), (1,0) to (1,
1), the motor 410 may be driven at high speed (100% duty
cycle) until center position (0, 0) or near right (1, 0) is
encountered and the motor 410 then driven at a lower speed
(e.g., 50% duty cycle) until far right (1, 1) is sensed.
0041) Steering control can be further refined if the steer
ing function is Spring centered, i.e. a single torsion Spring or
pair of compression or tension springs (none depicted) used
to drive the rotary output member 1120 to the straight

US 2003/0114075 A1

forward position. Then the microprocessor 8U2 (or 4U1) can
be configured by programming to account for action of the
Spring(s). For example, turning from left to right, the micro
processor 8U2 may drive at high level and low level in
moving more than one steering position (e.g. left-right) or
only one Steering position (e.g. center left/right), respec
tively, from the present position and at different Speeds if
moving with or against a Spring. For example, movement
left to right or vice versa can begin at full speed (100% duty
cycle) and transfer to first low speed (e.g. 50% duty cycle)
from the center position (0, 0) to the far right position to
drive against the centering Spring in the latter part of the
movement. In going from right or left to center with Spring
assistance, the motor 410 is operated at a Second, lower
Speed (e.g., 37.5% duty cycle), whereas, while going from
center to left or right against a Spring, the motor 410 is
operated at the first low speed (e.g., 50%).
0.042 Aspring loaded steering function of the toy vehicle
20 may also incorporate a target pad timeout period which
monitors the time it takes for the sensor 1000 to reach a
particular steering position (center, near left, far left, near
right, far right). If the position is not reached within a
predetermined period of time, the power to the motor 410 is
turned off and the Spring(s) will return the steering output
number 1120 to the center position. If the steering position
does not return to the center position, the microprocessor
8U2 (or 4U1) is alerted that the steering is misaligned and
electromechanically re-centers the Steering.

Jun. 19, 2003

0043 Preferred transmitter code used in a remote control/
transmitter 100 operating in accordance with the present
invention is located on pages A-1 through A-53 of the
attached Appendix incorporated by reference herein. Pre
ferred receiver code used in a toy vehicle 20 operating in
accordance with the present invention is located on pages
A-54 through A-77 of the Appendix.

0044) In addition to duty cycle control in the vehicle 20,
speed control of the vehicle 20 could be performed by the
remote control/transmitter 100 by duty cycle transmission of
a propulsion or Steering Signal (i.e. transmit the signal(s)
several times followed by a period with no signal) or by
varying the rate at which the propulsion Signal is transmitted
(e.g., every 10, 15 or 20 millisecond). Of course, the
microprocessor of the toy vehicle 20 would also have to be
appropriately configured to operate with Such a duty cycle
arrangement.

0045. It will be appreciated by those skilled in the art that
changes could be made to the embodiments described above
without departing from the broad inventive concept thereof.
It is understood, therefore, that this invention is not limited
to the particular embodiments disclosed, but it is intended to
cover modifications within the Spirit and Scope of the present
invention.

US 2003/0114075 A1

... LINKLIST
SYMBOLS
CODE

Jun. 19, 2003

APPENDIX
Transmitter Code

; /* * * * * System parameters * * * * *
SystemClock:
SPC41A:

EQU

EQU

2OOOOOO

1. ; select body (hardware. inh)
; /* * * * * sound details (Ver3.42a or later)
ADPCMTABLE 65: EQU
ADPCMH: EQU

. Include Hardware. Inh

; * * *** Addresses sun Plus forgot * * * * *

P_MultiPhase settings on 81A
EQU

1.
1

$37

; * * * * * CONSTANTS/DEFINES * * * * *
; Sound stuff DRampDownValue:
D MaxWord:
D. MaxMelody:
D Max Rhythm:
D. SamplePreload:

; my sounds
; D Snd Accel
DSnd Braking
D Snd Chirp
DSnd Dnshift
D. Snd Eng Strt
D. Snd Gear
DSnd Grind
D. Snd Horn
D Snd Idle
D. Snd Peel out
DSnd Squeel
D. Snd Upshift
D. Snd whine C
D. Snd Whine R
DSnd None

; within loop timiers
; Sound Service Timers
D TmBHSSO

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

10
11
12
13
14
15
ffh

OOh

;If use ADPCM65 or later
;If no limit

; register that controls Multi Phase

;If CurrentDAC->00H, PWM->80H
; number of speech pieces
; number of melodies
; number of rhythms
; should be 6 for 8KHZ or O for 6 Khz

US 2003/0114075 A1

D TmBLSS0

D. TmBHSS1
D. TmBL SS1

D. TmBHSS2
D TmBL SS2

D TmBHSS3
D TmBSS3

D TmBHSS4
D. TmBLSS4

D TmBHSS5
D. TmBLSSS

D TmBHSS6
D TrnBLSS6

D. TmBHSS7
D. TmBLSS7

D. TmBHSS8
D. TmBLSS8

DTmBH Tx0
D. TmBLTX0

D. TmBHTX1
D. TmBTX1

DTmBH Tx2
D. TimBL Tx2

D. TmBHTx3
D. TmBL Tx3

EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

01h
dOh

OSh
82h

OFh
D5

Shift:96.x. ASM
; 75 uS

; 232 uS

; 379uS

; 549 uS

; 705uS

; 862uS

; 1020uS

; 1177uS

; only f
; 2 ms

; 1260 u

; 315 uS

; 630 uS
ech .

; 945 uS

Jun. 19, 2003

or standby horn sound

S

; large timers-small timer ticks each loop. (1260 uS). Large timer ticks every .32
DSmall Squeel-Timer Preload
D. Large Squeel Timer-Preload

; for Frgy Pig a short medium or
Shift Timer Preload D. Smal

D. Large Shift Timer Preload

EQU
EQU

EQU
EQU

D-Small-Fwd. Release Timer Preload D_Large Fwa Release Timer Preload

D-Small-Sound check Timer Preload D. Large Sound Check Timer Preload

D-Small-Idle Timer Preload D. Large Idle Timer Preload
D Small Chirp Timer Preload
D-Small LED Timer Preload

D. Peel out Time

EQU
EQU

EQU

EQU

EQU

#8ch
i01.h

long shift t
#33h
#06h

EQU
EQU

EQU
EQU

; 018 ch =0.5 seconds

ime can be selected
; 0633=2.0 seconds

#19h
#03h ; 0319h = 1 second

; 2e80h=15 seconds
00c6h =0.25 seconds

; ffh = 3 seconds

; when idle timer has gotten here

US 2003/0114075 A1 Jun. 19, 2003

Shift 95TxASM
; 2eh-28 h=2 seconds

; Tinters which run off of interrupts (interrupts used only during mode selection)
; both run off of clock/65536 interrupt. For 2 Mhz clock this is 31 h2
D Model Check TimeOut EQU i93 ; 93=3 seconds
D. Mode Select Time EQU 62 ; 62=seconds
D LED Flash Timer EQU if8
; Inputs

; buttons
D_Pin Fwd: EQU OOOOOOOb ; PortD bit of motor pin output
D. Pin Rew: EQU 000001OOb
D_Pin Left: EQU OOOOOO10b
DPin Right: EQU OOOOOOO1b.

; outputs

D. Pin Tx: EQU OOOOOO1Ob ; Port C

D. Pin ED: EQU OOOOOOO1
DPix Enable EQU OOOOOOO

; PACKET BITS
DFwd. Bits EQU OO1OOOOb ; 2 bit pwm level
D Rev. Bits EQU OOOOOOb ; 2 bit pam level
D. Left Bit EQU OOOOOO1Ob
D_Right Bit EQU OOOOOOO.o
D. Turns Bit EQU OOOOOO.

DPWMLO EQU OOOOOOO
DPWM Med EQU OOOOOOOb
DPWMHi EQU OOOOOOb

D_TXFlag EQU O1111100b ; first six bits are the flag
; mode selection
D. Mode2 Command EQU OOOOOL1b ; fW pull down
D. Mode 3 Command EQU OOOOOb ; rew pull down

WARIABLES
PAGEO
ORG D. RamTop

variables used in all modes

; interrupts related
RIntFlags: DS 1.
RIntTemps : DS
R TempA: DS
R TempX: DS 1.

; sound related
RSongNo: DS 1.
RVolume: DS l
R. Temp1: DS 1.

RNext Sound DS 1. ; sound to be played next
R. Current Sound DS 1. , sound being played
RSounds. Array DS 17
R Sound Interrupt DS 1

US 2003/0114075 A1 Jun. 19, 2003

Shift:96Tx. ASM
RSound Repeat DS 1

; mode related
RMode DS 1. ; 3 modes- shifting, sounds, no sounds
R. Mode Timer DS 1.
R. Mode Check Timer DS l
R Command To Check DS
R-Mode. To Check DS 1.

RState DS 1.

; tx related R-TX-Flag-And-Ck DS 1.
R-TX Commands DS 1.

RTxData Current DS 1.
R. Current Tx Byte Num DS 1.
R. TX. Bit Index DS 1.

R Second TxBit Half DS l
R. First Tx Bit Half DS
R Bit Half DS 1.

; variables Specific to Mode 1
R. Gear DS 1.

RShift Legal DS

; variables Specific to Mode 2
R-Turning DS 1.
R Dir DS
RPeel out Enable DS 1
R. Large Shift Timer DS 1.
R. Small Shift Timer DS 1
R-Large-Gear Timer DS 1.
R. Small Gear Timer DS 1.
R_Large Idle Timer DS 1.
R. Small Idle Timer DS
R. Small Chirp Timer DS
- SSSIs DS 1 RSmall Squeel Timer DS 1.

R. Small LED Timer DS 1.
R. Small Fwd. Release Timer DS 1.
RLarge Fwd. Release Timer DS 1.

RFwd. Ack. Ok DS 1
RRev. Ack-Ok w DS 1.

R. Gear Bits DS 1.
R. First Start DS 1.
RSS TimeH DS 8
RSS. Time L DS 8
RTX Time H DS 4
R-TX TimeL DS 4
R. Wait Time H DS 1.
R. Wait Time-L DS 1.
R Horn Plays DS 1.
R. Small Sound Check Timer DS l
R. Large Sound Check Timer DS 1.
R-Sound-Check Delay Complete DS 1.

US 2003/0114075 A1

RPeeled Out OS 1.
RShifted DS 1.
R. Sleepy Counter DS 1.
R Standby Counter DS 1.

RMS Timer. Hi DS 1.
RMS Timer Lo DS 1.

R Sound Wait Index DS 1.

. PAGEO

. Include Channel. In

CODE
.ORG OOOH
DB FPH
, ORG 6OOH

y

; V is by convention a vector.
micro is reset
WReset:

SEI
; CFrom Demo Code)
LOX
TXS

; wake from sleep stuff
;lda
; Sta
lda
ldx
St.X.

; and
; beq
; Jmp

y

L. Init. Variables:

lda
Sta.
sta
Sta.
Stal
Stal
Stal
Sta.
Stal
Stal
Stal
Sta.
Stal
Stal
Stal
Stal
Sta.
Stal

$08
#O1
L-Init. Variables
L. Wake-Up

k k kic Initialize

RIntFlags
RIntTemps
R. TempA
R TempX
RSongNo.
R Volume
R Temp1
RSounds. Array
RSound Interrupt
RSound. Repeat
R Mode
R. Model Timer
RModeCheck Timer
R Command. To Check
RMode. To Check
R State
RTX Flag-And-Ck

10

Shift:96x. ASM

load ff into the x reg CH means hex)
transfer x reg contents to stack

turn off and clear all interrupt

... A A & & & & Begin Main Code errs

disable watchdog
Acc <- Wake up status

; if startin if starting

variables

from power up
om sleep

Jun. 19, 2003

The reset vector is where the code goes when the

US 2003/0114075 A1

Sta.
Stal
Stal
sta
Sa
Stal
sta
Stal
Stal
Sta.
Stal
Sta

Sta
Stal

Sa
Sta
Sta.
Sta.
Sta.
Sta
Stal
Sta
Sta.
Stal
Sta
Stal
Stal
Sta.
Sta

lda
Sta

ldx
lda
Sta.
lda
sta

dx
da

Sita
da

Stal

dx
lda
Stal
lda
Sta.

dx
lda
Sta.
lda
Sta.

ldx
lda
Sta

11

Shift.06x. ASM
R TX Commands
RTXData Current
R-Current TX. Byte Num
RTX. Bit Index
R. Second TX. Bit Half
R. First TX. Bit Half
R Bit Half
R. Gear
R Shift Legal
R-Turning
R Dir
RHorn Plays
R. Large Shift Timer
R. Small Shift Timer

R.Large Gear Timer
R Small Gear Timer
R. Large Idle Timer
R. Small Idle Timer
R. Small Chirp Timer
SSSSSS-S. R. Small Squee Timer
R. Gear Bits
R. First Start
R Shifted
R. Peeled Out
RSleepy Counter
R Standby Counter
RFwd. Ack-Ok
RRev. Ack Ok

#1
RPeel out Enable

iO
#DTmBH_SSO
RSS-Time H, X
#D TmBSSO
RSS Time L, X

#1
iDTmBHSS1
RSS Time HX
#DTmBLSS1
RSS Time-L, X
#2
#D TmBHSS2
RSS Time HX
#D TmBLSS2
RSS Time LX
#3
#D TmBHSS3
RSS Time. HX
#DTBLSS3
RSS Time LX
i4
#D TmBH SS4
RSS Time HX

Jun. 19, 2003

US 2003/0114075 A1 Jun. 19, 2003
13

Shift36TX. ASM

LDA #00000000b all off (low)
STA P PortC

lda #0
Sta P PortB
Sta P PortA

; * * * * * Port configuration
LDA #10111111b ; D-C-B-A, high-low, 1=output
STA PPortIO Ctrl
LDA #00000000b ; outputs buffer; DL pull down
STA PPort Attrib

d STA P MultiPhase ; turn off multi-phase on A2, but set 1/3
uty

; in case it does turn on for diagnosis
***** configure interrupts

da #%11000010 ; disable watchdog
disable nmi
enable TimerA interrupt
enable TimerB interrupt
disable 4 khz interrupt
disable 500 Hz and
enable 62.5 Hz interrupts
disable external interupt

STA P Ints store interrupt settings
STA R IntPlags store interrupt settings here, too
SE ; disable interrupts

; * * * * * Preload Timers
LDA #00h
SA PTmAL ; preload: D58 h = 315 us
LDA iOOh
STA PTmAH ; above and mode bits

LDA #OOh
SA PTmBL
LDA #00h
STA PTmBH

L. Main:

JSR F_Get_Mode
JSr F Init. Mode

L. Wake-Up:

lda P-Portc . ; enable radio
and #. NOT. D. Pin Tx Enable
Stal P PortC

L. Main Loop:
sei

US 2003/0114075 A1

Shift:96TX. ASM

14
Jun. 19, 2003

; tx line should be serviced every 315 us, sound every 157 us

LDA
STA
LDA
STA

jsr

LSet-TX Line:

SR

JSR
JSR
dx

jsr
JSR

ldx
jSr

SR
dx

jsr

JSR

jsr

dx
jsr

SR

ldx
jSr
JSR
dx

jsr

JSR
SR
SR
ldx
jsr

SR

dx
jsr
SR
ldx
jsr

SR

#OOh ; preload timers
PTmBL
#OOh
P TmBH

FCheck Time. To Standby

F Set TX Line

F IntCh1Service
FDecide Packet
i1.
F wait sound Service
F IntCh1Service

#1
F. Wait TX Line

F Set TX Line
2

F. Wait Sound Service

F IntCh1Service

FDetermine State

#3
F. Wait Sound Service

F IntCh1Service

F. Wait TX Line
F-Set TX Line
#4
F. Wait Sound Service

F IntCh1Service
FServiceChannel Player
FDecide Sounds
#5
F. Wait Sound Service

F IntCh1Service

F. Wait-Tx-Line
F Set TX Line
i5
F. Wait Sound Service

F IntCh1Service

; state determines packet, sounds

US 2003/0114075 A1
15

Shift:96TX. ASM
JSR F-Play-Sounds
3. F. Control LED
dx #7
jsr F. Wait Sound Service

SR F IntChlService

ldx #0
Sr F. Wat TX Line
MP L. Main Loop

. A re. R. y Functions Ark k . . k

; as an alternate to sleeping, the micro remains on, but shuts off radio
transmission
; and the DAC when nothing is doing
F. Check Time. To Standby:

lda R. Mode
Cmp #3
beq LCSt. Mode 3

; in modes 1 or 2 (these modes have sound)
%TestSpeechchl ; sets carry if playing
bcs LCSt. Clear Standby Counter

LCSt. Mode 3:

lda PPortD
and #OFh

bne LCSt. Clear Standby Counter ; button pressed

inc R Standby Counter ; getting sleepier
lda R. Standby Counter

bne LCSt. DOne

L-CSt. Prepare. To Standby:

lda #O ; clear standby counter
Stal R. Standby Counter

lda PPortC ; turn off radio transmission
and #. NOT. D. Pin Tx Enable
5ta PPortC

da #0 turn off dac
Stal R. Dacchl
Sta. PDacCh1

Stal RSound Wait Index

jsr F Standby

LCSt. Clear Standby Counter:

Jun. 19, 2003

US 2003/0114075 A1 Jun. 19, 2003
16

Shift:96Tx. ASM

lda itO
Sta RStandby Counter

CSt DOne:
tS

; F Standby
; wait until a button is hit. In
; to suggest to user that he turn

F Standby:

S-Start:

lda #0
Sta PTmBH
sta PTmBl
Sta RMS Timer Hi
Sta RMS Timer Lo
Sta RSound Wait Index

LSLOOp:

jsr F-ServiceChannel Player ;
ldx R-Sound Wait Index
jsr F. Wait-Sound Service
JSr F IntCh1Service

lda PPortD
and #Ofh
Cmp #Ofh
bne SDOne

; no button hit
C R-Sound Wait Index

da RSound Wait Index
cmp #09
bne L. S. LOOp

; finished hw timer loop
da #O

Sta. P TmBH
Sta. Pm3

da #0
Sta RSound Wait Index

inc RMS Timer Lo
da RMS Time LO

Cmp #ffh
beq LS Inc. MS Timer. Hi

y jmp --S-Loop

LS Inc. MS-Timer. Hi:

lda #0
Sta RMS Timer O

inc RMS Timer. Hi
da RMS Timer Hi

the meantime play a sound occasionally
off device.

clear timer A

clear

; checks to see if any button hit or
if waiting time has expired.

check button

; button hit

clear hw timers for next time

reset index for next time

MS Timer Lo not at max, keep looping

US 2003/0114075 A1 Jun. 19, 2003
17

shiftg8TxASM
bne L-S-Loop ; MS Timer Hi not at max, keep looping

LS-Set Sound:

Sta RSound Interrupt
lda #0
Sta. RSound Repeat

L-Playing Sound:
lda #3
Sta R. Current Sound

Sta R Next Sound

jsr F PlaySounds

jmp S. Start

SDOne:
rts

;/ sks is it is t t t t e i t y

F. Blip B0:
lda PPortB
O #OOOOOOO1b
Sta PPorts

da P Portb
and #11111110b
sta PPorts

rts

F. Blip B1:
lda PPortB
Ora #00000010b
Sta PPOrtB

lda PPorts
and it 11111101b.
Sta P PortB

rts

F. Get Mode:

lda #1
Sta R Mode ; set mode 1 as new default

sei ; disable ints momentarily since were fooling
; with a variable that's changed in the int

lda iO
sta R. Mode Timer
Ci

LGM-Check Modes_Loop:

US 2003/0114075 A1 Jun. 19, 2003
18

Shift:96Tx. ASM

da PLPortD
and #Ofh

bed LGM-CKLED Off

lda PPortC
Oa. #DPin LED
Stal PPortC
jmp L. GM Check Timer

L. GM CKLED Off:
lda PPortC
and #. NOT. D. Pin LED
Stal P PortC

L. GM Check Timer:
sei
da R Mode Timer
Ci
Cmp #D Mode Check Timeout ; 3 Seconds
bcs LGM Store Model; use default
lda PPortD
and #Ofh
Cmp #D Mode 2 Command
bne LGM-Check Mode 3

; mode 2 selected initially--keys need to be held
lda P PortC
O3 #DPin-LED
Sta P PortC

lda #D Mode 2 Command
Sta R. Command. To Check
lda #2
sta R. Mode. To Check
Jmp LGM Wait Modes

LGMCheck Mode 3:

Cmp #D Mode 3 Command
bne LGMCheck Modes_Loop

; mode 3 selected--keys need to be held
lda PPortC
O #DPin LED
Stal P PortC

lda #D Mode 3 Command
Stal R Command. To Check
lda h3
Stal R. Mode. To Check
jmp LGM Wait Modes

Yi o see if the buttons are pressed long enough for either mode 2 or 3 to be
Selecte
LGM. Wait Modes:

sei ; start timer

US 2003/0114075 A1 Jun. 19, 2003
19

Shift26Tx. ASM
lda #O

R-Mode. Check Timer
C

LGM-Wait Mode Loop:

lda PPort) ; see if buttons still pressed

Cmp R Command. To Check
beq L. GM Still Pressed

lda P_Portc . ; turn led off
and it. NOT.DPin LED
Sta. PPortC

jmp LGMCheck Modes. Loop ; button no longer pressed
L. GM Still Pressed:

lda R. Mode check Timer
ci
cmp #D Mode select Time
bcc L. GM Wait Mode Loop
Jmp L. GM Store Mode

LGM Store Mode 1:
lda if1
Stal R. Mode To Check

; mode selected
L-GM Store. Mode:

lda R. Mode. To Check
Stal R Mode
Cmp if
beq L-GM Setup Shift Sound
Cmp it2
beq LGM-Setup. Horn Sound

jmp LGM Wait For Joystick Release
LGM-Setup. Shift Sound:

lda #D Snd Upshift
jmp LGM-Setup Sound

L. GM Setup. Horn Sound:

lda iD Snd Horn
imp LGM-Setup Sound

LGM-Setup Sound:
Stal R. Current Sound
Stal R Next Sound

LDX #D SamplePreload ; the setting for sample frequency
SR F PlaySpeechch1. ; play

LGM Wait-For-Joystick Release:
sei
lda iO

US 2003/0114075 A1 Jun. 19, 2003
20

a Shift:96Tx. ASM
RMode Timer

C

LGM Wait For Release:

sei
lda R Mode Timer
Crip #D LED Flash Timer
bcc LGMCheck-Release

; flash ed
lda PPortC
Or #DP in LED

Sta P PortC
lda #O
Sta. RMode Timer
ci

LGM-Check Release:
ci

da PPortD
and iOfh
Cmp #Of
bne LGM Wait For Release

jmp GMDOne

GMDOne:
sei ; disable interrupts
lda #%10OOOOO disable clk/65536 interrupt
STA P.Its store interrupt settings
STA RIntFlags store interrupt settings here, too
rts

F. Init Mode:

da R. Mode

CMp i1.
beq LIM 1.

Cmp i2
beq LIM2

jmp LIM 3

LIM-l:

jsr F. Load Shared Sounds ; several sounds are shared by modes 1 and 2

; setup the sound array
LDSND

dx #4 ; acceleration mode no longer exists
da #D Sind Gear

Sta RSounds Array, X

dx #5
da #D Snd Gear

US 2003/0114075 A1

LIM2:

LIM3:

Stal

dx
lda
Stal

ldx
lda
Sita

ldx
lda
sta

ldx
da

Sta.

ldx
lda
Stal

ldx
lda
Stal

rts

R-Sounds Array, X
#6
#DSnd Gear
RSounds Array X
#7
#D_Snd Gear
RSounds Array, X
#8
#DSnd Horn
RSounds Array, X
#9
#D Snd Gear
RSounds Array, X
if1
#D Snd Braking
RSounds Array, X
#12
#D Snid Grind
RSounds Array, X

setup the sound array

ldx
lda
Sta.

ldx
lda
Stal

ldx
lda
Stal

ldx
lda
Sta.

ldx
lda
Sta.

rts

lda
Sta.
Stal
rts

F. Load Shared Sounds

#4
#D Snd Gear
RSounds Array X
#5
#DSnd Braking
R-Sounds-Array, X

#6
#D Snd Chirp
RSounds-Array, X

#9
#D Snd Horn
RSounds Array, X
#11.
#D Snd Gear
RSounds Array, X

RDacCh1.
P. DacCh1.

21

Shift:96Tx. ASM

Jun. 19, 2003

; several sounds are shared by modes 1 and 2

; turn off dac so we're not leaking current

US 2003/0114075 A1

F-Load Shared Sounds:

ldx
lda
Sta

dx
lda
Sta

ldx
lda
Stal

ldx
lda
Sta

dx
State 4

da
Sta

ldx
lda
Stal

dx
lda
Sta.

ldx
lda
Sta

ldx
lda
Stal

rts

#O
#D Snd None
RSounds. Array, X
#1
#DSnd Eng Strt
R-Sounds Array, X
#2
#D Snd Idle
RSounds Array, X
#3
#DSnd Peel out
RSounds Array, X
#10

#D Snd Upshift
RSounds Array, X
#13
#DSnd Squeel
RSounds Array, X
#14
#D Snd Peel out
RSounds. Array, X
#Ofh
#D Snd Gear
RSounds Array, X
#1 Oh
#D Snd Squeel
RSounds Array, X

22

Shift:96Tx. ASM

Jun. 19, 2003

; shift plays occasional when in mode2,

it its k + k is k . ; y
; set the tx line
; 2 Bytes are sent.
: contains the actual data.

: The first bit half will always be different than the
: every bit has 2 halves they will either be the same CO) or different (1).
; (that is the tx line state always changes at the Bit

The first contains the flag and the checksum. The second

revious second bit half
oundry

y

F Set TX Line:

lda
O3
Sta

da
and
sta

lda
bne

PPortB
#02h
PPortB

PPortB
#. NOT, 02h
P Port B

R-Bit Half
LST Second Half

US 2003/0114075 A1

; first bit half
dec R TX. Bit Index

Jun. 19, 2003
23

Shift:96TX. ASM

; check to see start of packet (for debugging)
lda
bne

R. Current Tx Byte Num
LST Check Last Second Half

; doing flag/checksum byte currently
lda
cmp
bne

R Tx Bit Index
#7
LST Check Last Second Half

; blip AO to show start of packet
lda
Ora
Sta

da
and
Sta.

P PortA
iOOOOOOO1b
PPortA

P PortA
#11111110b
PPortA

LST Check. Last Second Half:

lda
bne

R. Second TX. Bit Half
LST-Lo-First Half

; last was no, we'll set to hi
lda
Ora
Sta.

lda
Sta.
jmp

P_PortC
iD Pin Tx
P PortC

#1
R_First Tx_Bit Half
LST DOne First Half

LST-Lo-First Half:
lda
and
Sta.

lda
Sita

P Portc .
#. NOT. D. Pi X
P PortC

#0 R. First Tx Bit Half

LST. Done-First Half:

da #1
time f is called

Stal R Bit Half
jmp LSTDOne

; Second half of bit
LST-Second Half:

O
bcc

RTxData Current
LST TX. Zero

; We want to transmit a "1"
lda R First Tx. Bit Half

; last was hi, we'll set next to lo s.t. ; there's change across the bit boundary

; set flag to do second half of bit next

; shifts bit of interest into carry bit

US 2003/0114075 A1 Jun. 19, 2003
24

Shift:96Tx. ASM
beq LSTTX-Hi Second Half ; since first half was o, making second

half his will make a "1"
LSTTX-Lo Second Half ; since first half was hi, making second half lo will make a '1"

; We want to transmit a "0"
LSTXZero:

da R First TxBit Half
bed LST-Tx Lo Second Half ; since first half was lo, making second half

lo will make a 'O'

ST_TX_Hi-Second Half: ; since first half was hi, making second half his will make a "1

lda P PortC
O3. iDPin TX
Sta. P PortC

lda #1 ; record
sta R Second TxBit Half

jmp LST Check Finished Byte
LST-TX-Lo-Second Half:

lda P PortC
and #. NOT. D. Pin Tx
Stal PPortC

lda EO
Sta R Second Tx Bit Half

; check to see if all bits of current byte have been sent
L-ST. Check-Finished Byte:

lda RTxBit. Index
bne LST Done Second Half

; index is zero...all bits have been sent in current data byte
lda i8
Stal RTX-Bit Index

lda R. Current Tx_Byte Num
bne LST-Set-Tx-Flag-And-Ck

; current byte is flag+ck --> set to commands
lda R-TX_Commands
Stal RTxData Current
lda #1
Sta. R. Current TX-Byte Num
jmp LST. Done Second Half

; long name, I know. It sets the byte to the flag and ck byte
LST-Set-TX Flag And Ck:

lda RTX-Flag And Ck
Sta RTxData Current
da EO

Sta. R. Current TX. Byte. Num

LST. Done Second Half:

US 2003/0114075 A1 Jun. 19, 2003
25

Shift36Tx. ASM

Stal R Bit Half

LSTDOne:
rts

r r A irr y

; * * * * Determine state * * * * * * *
is .

F. Determine State:

lda RMode
bed Get State MO

Cmp #1
bed L. Get State M1

Cmp #2
bed L. Get State M2 Dummy
jmp L. Get State M3

L. Get State M2 Dummy:
mp L. Get State M2

L. Get State M0:
rts

, , kir rer Art & Ark &

;Determine state for Mode 1
k .

L. Get State M1:

lda R State
bed L-GS1-State 0 Dummy ; same for modes 1 and 2
Cmp #1.
bed L-GS1-State-1-Dummy ; same for modes 1 and 2
Cmp #2
bed L-GS1-State 2 Dummy ; same for modes 1 and 2
Cmp #3
bed LGS1 State 3

CMp #4
bed LGS1-State-4-Dummy
Cmp #5
bed L-GS1-State-5-Dummy
Cmp i
beq L-GS1-State-6. Dummy
Cmp #7
bed LGS1 State-7. Dummy
Cmp #8
beq L-GS1 State 8. Dummy
Cmp #9
bed L-GS1-State 9 Dummy

US 2003/0114075 A1 Jun. 19, 2003
26

Shift:96Tx. ASM

Cmp #10
bed L. GS1 State-10 Dummy
Cmp #11
beq L-GS1-State-11-Dummy
cmp #12
bed L. GS1 State 12 Dummy
Cmp #13
bed L-GS1-State 13 Dummy
Cmp #14
beq L-GS1-State 14 Dummy
Cmp #15
beq L-GS1-State 15 Dummy
jmp L. GS State 16

L-GS1-State-0 Dummy:
jmp L-GS-State 0

L-GS1-State 1 Dummy:
Jmp L-GS-State-1

L-GS1-State 2 Dummy:
jmp LGS State 2

L-GS1 State 4-Dummy:
imp L-GS1-State-4

L-GS1-State-5-Dummy:
jmp L-GS1-State 5

L-GS1-State-6-Dummy:
Jmp GS1 State 6

GSl-State 7 Dummy:
jmp L. GS1 State 7

L-GS1-State 8-Dummy:
Jmp L. GS1-State 8

L-GS1 State 9 Dummy:
Jmp L. GS1 State 9

L-GS1-State 10 Dummy:
Jmp L-GS1-State 10

L. GS1-State 11 Dummy:
jmp L. GS1-Statell

L-GS1-State-12-Dummy:
jmp L-GS1-State 12

Li GS1-State 13 Dummy:
jmp L. GS1-State 13

L-GS1-State-14 Dummy:
imp L-GS-State 14

US 2003/0114075 A1 Jun. 19, 2003
27

Shift:96TxASM

L-GS1-State 15 Dummy:
Jmp L-GS-State-15

* * * * * *Model State 3. it is et k . ;
; General: Peelin' Out
; Gear 1.
;Sound: Peel Out
; To Change State: State 4 (Accel): Peel Out sound complete
y State 11 (Braking): Rev Hit

State 12(grind Gears); trying to shift too soon (Fwd only) State 13 (squeeling): Turning for a long time

LGS1 State 3:

jsr FGS1 Check FWStill Pressed

jsr F. GS1 Check Fwd. Ack Ok

lda #1
Sta. RPeeled Out

jsr F-GS1 Check-Shift Legal
lda R Sound Check Delay Complete
bne LGS1-3-Sound Chec

; decrement timer
dec R. Small Sound Check Timer
lda R. Small Sound Check Timer

O beq LGS13 Dec. Big Sound Check Timer ; if small timer has run to
jmp Li GS1 3 Check Squee

L-GS1 3-Dec. BigSound Check-Timer:
lda #ffh ; reload small timer
Sta R. Small Sound Check Timer

DeC R_Large Sound Check Timer
DA RLarge Sound CheckTimer

Bre LGS13 Check Squeel ; not yet

lda #1
sta RSound Check Delay Complete

LGS13 Sound Check:

%TestSpeechCh1 ; which will set the Carry if actively
playing

bCS L-GS1-3_Check Squeel ; still playing

jsr F. GS1-Set State 5
Jmp LGS-DOne

L. GS1 3 Check Squee:
Jsr FGS. Check Squee

US 2003/0114075 A1 Jun. 19, 2003
28

Shift:96TxASM
jsr F. GS1 Check Premature Shift

jsr FGS1 Check Braking
jmp LGS-DOne

* * * * * *Model State 4t it it is k is k frk k + k . . k & k is kei ek is led k
;General: Just jumps to state 5. Used to be accellerating state, but
it was eliminated
y It is kept to avoid excessive rework in the code. Also, seems possible

that client might ask for it back.
; Gear: -
; Sound: -
; To Change State: State 5 (gear 1). instantly, more or less

; going fivd. or reverse plays motor running sound, or occasionally gear shift-allow
Car to move.

L. GS1-State-4:

%Testspeechch1
bcs L. GS1-4 DOne

jsr F. GS1 Set State 5

LGS14 Done:
jmp LGSDOne

; * * * * * *Mode 1 State 5* k + k + k + k + k + k is it k
; General : Gear 1
;Movement: Fwd possibly turning
; Sound: Gear 1
; To Change State: State 8 (ready to shift) Timeout (Fwd only)
y State 11(Braking): Rev Hit if going find, or rev released if going rev

State 12(Grind Gears): trying to shift too soon
State 13 (Squeeling): Turning for a long time (Fwd only)

L-GS1-State. 5:

jSr F. GS1 Check Fw Still Pressed
Sr FGS1 Check-Fwd. Ack-Ok
Sr FGS Check Squeel o
Sr FGS1-check Premature shift Sr FGS1 Check Shift Legal

Jsr FGS1 Check-Braking

jmp LGS-DOne
; : * * * * *Mode1 State 6k he k is k + k is let k k l k k k k & k + k + k is it k . . it is k
; General: Gear 2
;Movement: Fwd, possibly turning
; Sound: Gear 2
; To Change State: State 8 (ready to shift) Timeout
y State 11(Braking) : Rey Hit

state 12 (Grind gears): trying to shift too soon State 13 (Squeeling): Turning for a long time
LGS1-State 6:

US 2003/0114075 A1
29

Shift:96Tx. ASM
; traveling find currently

jSr F. GS1 Check Fw Still Pressed
Sr F-GS1 Check Fwd. Ack-Ok

Jsr FGS Check Squeel
Sr F GS1 Check Premature Shift

Jsr F. GS1 Check-Shift-Legal
Sr F. GS1 Check Braking
imp GSDOne

Jun. 19, 2003

Arr Ars Ar A rar .

; : * * * * *Mode1 state 7 tekk & dr & k k + k k + k + k k k kk & k kirk ski; ; ; ; kick & k k + k is it k + k is
; General: Gear 3
;Movement:
;Sound: Gear 3
; To Change State:

State cgi? Rev Hit
ing): Turning for a long time State 13 (Squee

l_GS1-State 7
; traveling fivd currently

jsr F GS1 Check Fw Still Pressed
Sr F-GScheck Squee
Sr F. GS1 Check Braking

Jmp LGS-DOne

Fwd, possibly turning

it k . k + k is .
A & & . Model State 8 r

; General : ready to shift ramp whining noise
;Movement: Fwd
; Sound: ramp whining noise
; To Change State:

State 9 (Ready to shift, const sound), State 10 (Shifting) Fwd hit legally
State Egg: Rev Hit or timeout
State 13 (Squee

L. GS1-State 8:

jsr F. GS1 Check FWStill Pressed
Sr F. GS1 Check Fwd. Ack Ok

amount O

lda Syngeila-complete bne LGS18 Sound Chec

; decrement timer
dec R. Small Sound Check Timer
lda R. Small Sound Check Timer
bed L-GS18 Dec. Big Sound Check Timer

O
jmp L-GS18. Check Squeel

L-GS18 Dec. BigSound Check Timer:
da #ffh y

Stal R. Small Sound Check Timer

Dec. R-Large Sound Check Timer
LDA R_Large Sound Check Timer

reload small timer

ing) turning for aiong time

a delay in the sound check timer is apparently necessary. If I try to check the
sound right away, it doesn't think a sound is playing.

time (maybe half a second), then check to see if the sound is playing.
at the time of writing this, I don't understand why this is necessary.

So you wait some arbitrary

if small timer has run to

US 2003/0114075 A1 Jun. 19, 2003
30

Shift:96Tx. ASM
Bre LGS1-8 Check Squeel ; not yet

lda #1
Sta RSound Check Delay Complete

L-GS18. Sound Check:

%TestSpeechchl
BCS LGS18. Check Squeel

; done playing ramping whining noise
sr F. GS1-Set State 9
Jmp LGS DOne

LGS18. Check Squeel :

jsr F. GScheck Squeel
Sr F. GS1 Check Shift

Jsr F. GS1 Check-Braking
Jmp GS DOne

; k kkk **Mode1 State g: it is k-k-k-k-k it k k is ess & k is it is it is kick ki ki k is
; Genera: ready to shift
;Movement: Fwd
; Sound: constant whining noise
; To Change State:

State 10 (shifting) Fwd hit legally
State (g: Rev Hit or timeout
State 13 (Squeeling): Turning for a long time

t_GS1-State 9:
jsr F. GS1 Check FW Still Pressed
JSr F. GS1 Check Fwd. Ack-Ok

jsr FGS. Check Squeel
Sr F GS1 check shift Jsr F. GS1 Check-Braking

Jmp LGS-DOne

; * * * * * *Model State 10: k + k + k . . k k + k is . . . k + k is k * * * * * *
; General: shifting
; Movement: Fwd
; Sound: shifting
; To Change State:

State 6, 7 (Gear 2, 3) Sound finishes
State g; Rev Hit
State 13 (Squeeling) : Turning for a long time

LGS1 State 10:

jSr F. GS1 Check FW Still Pressed
Sr F. GS1 Check-Fwd. Ack_Ok
Sr F GS1 Check Shift Legal

%TestSpeechch1 ; which will set the Carry if actively playing
BCS GS1-10 Check Squeel ; still playing shift
lda R. Gear
Cmp #3 ; shifting into gear 3

US 2003/0114075 A1 Jun. 19, 2003
31

Shift:96Tx. ASM
bed LGS1-10 Set State 7

jsr F. GS1 Set State 6 ; shifting from gear 1 to 2
imp LGS-DOne

L. GS110 Set State 7: -
jSr F. GS1 Set State 7 ; shifting from gear 2 to 3
imp LGS-DOne

L-GS1-10 Check-Squeel:
Sr F GS Check Squee Sr F. GS1 Check-Braking

imp LGS-DOne

; * * * * * *Model State 11:.
; General : braking
;Movement: One
;Sound: braking
; To Change State: State 2 (idle) braking sound finishes
l_GS1-State 11:

avi %TestSpeechch1 ; which will set the Carry if actively
playing s

bcs LGS1-11-DOne ; still playing braking
jsr F GS Set State 2

L-GS1-11 Done:
imp LGS-DOne

; * * * * * *Model State 12 k + k + k + k + k kick k + k + k + k l k k is is k + k + k & k + k + k k + k sk
; General: grinding gears
; Movement: unchanged
; Sound: grinding gears
; To Change State: State 5 3. 1) braking sound finishes
y State 11 (braking) hit rev

L. GS1 State 12:

jsr F. GS1 Check Fw Still Pressed

%TestSpeechCh1 ; which will set the Carry if actively playing
BCS LGS1-12 Check Braking ; still playing squeeling
jsr F. GS1 Set State 5
Jmp GSDOne

LGS1-12 Check-Braking:
jsr F. GS1 Check Braking
mp LGS-DOne

; * * * * * *Model State 13: kirk it k h is k let e i s is .
; General: squeel
;Movement: turning, and going forward
; Sound: Squeel
; To Change State: State 11 (braking) hit rev
y State 5 (gear 1) no longer turning
LGS1 State 13:

lda #O
Sta RShifted

US 2003/0114075 A1 Jun. 19, 2003
32

Shift:96TxASM

jSr F. GS1 Check-FW Still Pressed

; check to see if turning
da PPortD

and #DP in Left
beq L-GS1-13 Check-Braking ; still turning

; check right turn
lda P PortD
and #D Pin Right
beq L-GS1-13 Check Braking ; still turning
; no longer turning

jsr FGS1 Set State 5
Jmp GSDOne

L. GS113 Check Braking:
jSr F. GS1 Check Braking
Jmp LGS-DOne

a ri re rese .

F_GS1_check-Braking:
checks braking when moving fwd
see if rev hit (Causes braking)

lda P_PortD
and #D Pin Rev
bne GS1CB Done

jsr F GS Set State 11 ; braking
jmp GSDOne

GS1 CB Done:
rts

; : k kick k kick k h : h : h is is is it is is ties it is set e i t 8
F. GS1 Check Premature Shift:

lda RFWod Ack-Ok
beq LGS1PS Done

; has returned to neutral

lda PPortD
and #D Pin Fwd
bne LGS1PS-DOne ; fivd not hit

jSr F GS1-Set State 12
Jmp LGS-DOne

GS1PS DOne:
rts

; : kick k & k is ess is est k
F GS1 Check-Shift Legal:
; decrement timer

dec R. Small Shift Timer

US 2003/0114075 A1 Jun. 19, 2003
33

Shift 96tx. ASM
lda R-small shift Timer
beq LDS Dec. Big Shift Timer ; if small timer has run to 0
Jmp LCSLDOne

LDS. Dec. Big Shift Timer:
lda #ffh ; reload small timer
Sta R. Small Shift Timer

DeC R_Large shift Timer
LDA RLarge-shift Timer
Bne LCSDOne ; not legal yet

; shift is legal
Sr FGS. Set State 8

Jmp LGS-DOne

LCSDOne:
rts

is is .
F. GS1 Check Shift:

lda RFwd. Ack Ok
beq LGS1CS DOne

lda PPortD
and #D-Pin Fwd
bne LGS1CS DOne ; i.e. fswd pin is hi

; shift
jsr F. GS1 Set State 10

LGS1CSDOne:
rtS

is k + k .
; checks if has rtned to neutral position. It must
; return here before a new find (or rev.) is acknowledged
F. GS1 Check Fwd. Ack-Ok:

lda RFwd. Ack-Ok
bne LGS1CFDOne ; already okay

lda P PortD
and #D Pin Fwd
beq L. GS1CF DOne ; button pressed

; not pressed
lda #1
Sta. RFwd. Ack-Ok

LGSCFDOne:
rts

FGS1 Check-Rev.Ack-Ok:

lda RRev. Ack Ok
bne Li GS1CR DOne ; already okay

lda P PortD
and #DPin Rev
beq LGS1CR Done ; button pressed

US 2003/0114075 A1 Jun. 19, 2003
34

Shift:96TX. ASM

; not pressed
lda #1.
Sta RRev. Ack Ok

L-GSCRDOne:
rts

a is

; checks to see if fivd is still pressed, or if or it has only recently released
5 directs a state change (braking) if fivd is no longer pressed, and if it has not
eer

; pressed for more than .5 seconds
FGS1 Check Fw Still Pressed:

lda P-PortD
and #DPin-Fwd
beq L-GS1CFS Init. Fwd. Release Timer ; fwd still pressed

; decrement timer
dec R. Small Fwd. Release Timer
lda R Small Fwd_Release Timer
beq L-GS1CFS Dec. Big Fwd. Release Timer ; if small timer has run to

O
jmp Li GS1CFS DOne

GS1CFS Dec. Big Fwd. Release Timer:
lda if Fh ; reload small timer
Stal R Small Fwd. Release Timer

De R_Large Fwd_Release Timer
DA RLarge Fwd. Release Timer

Bnei GS1CFS Done ; time not up yet
; time up

jsr F. GS Set State 11
Jmp LGS1CFDone

L-GS1CFS. Init. Fwd. Release Timer:

lda #DSmall Fwd. Release Timer Preload
Sta. R. Small Fwd. Release Timer
lda #D Large Fwd. Release Timer Preload
sta R. Large Fwd. Release Timer

LGS1CFS DOne:
rts

; eit * * * * .
; some set state functions are shared by modes 1 and 2, some are not.
F GS1-Set State 5:

US 2003/0114075 A1

lda
Sta.

lda
sta

lda
Stal

da
Sta.

da
bne

lda
bne

jsr
would

#O
RFwd. Ack-Ok

1.
RSound Repeat

i.
R. Gear

i5
RState

RPeeled Out
LGS15 Clear P.And S

RShifted
LGS15 Clear P And S

35

Shift:96TxASM

F GS Preload Shift Timer

Start shift timer

started
L-GS15 Clear P.And S:

lda
Sta
Sta.

rts

#0
RPeeled Out
R Shifted

F. GS1 Set State 6:

lda
Sta.

lda
Sta.

lda
Stal

lda
Sita

rts

#0
RFwd. Ack. Ok

if1
R-Sound Repeat
2

R Gear

6
RState

FGS1 Set State 7:

lda
Stal

lda
Sta.

lda
sta
rts

#1.
RSound Repeat
#3
R. Gear

7
RState

F. GS1 Set State 8:

get it? P. and S

Jun. 19, 2003

didn't peel out or shift (both

Chave already started timer),

peeled out, so shift timer already

US 2003/0114075 A1 Jun. 19, 2003
36

Shift:96Tx. ASM

lda #0
Stal RSound Repeat
Stal R-Sound Check Delay Complete

lda #D-Small-Sound Check Timer Preload
Stal R. Small Sound Check Timer
lda #D Large Sound Check-Timer Preload
Stal R-Large Sound Check-Timer

; gear unchanged
lda #8
Sta. R State
rts

F. GS1-Set State 9:
lda #1
Sta. R-Sound Repeat

; gear unchanged
lda #9
Sta. R State
rts

FGS1 Set State 10:

da iO
Stal R-Sound Repeat

lda #10
Stal R State

lda f
Stal RShifted
jsr F GS Preload Shift Timer

lda R. Gear
cmp #1
bed LSS10 G2

lda #3
Stal R. Gear

jmp LSS.10 DOne

LSS10 G2:
lda #2
Sta. R. Gear

LSS10 Done:
rts

F. GS1 Set State 12:

lda O
Stal RSound Repeat

; gear unchanged
lda #12

US 2003/0114075 A1 Jun. 19, 2003
37

Shift:96TX. ASM
Sta. R State
rts

. Ar Arr r is .

F_GS Preload Shift Timer:
lda #D Small Shift Timer Preload
Sta. R. Small Shift Timer
lda #D Large Shift Timer Preload
Sta R-Large Shift. Timer

rts

it k + k + k + k k + k + k l k l k
is k + k
;Determine state for Mode 2
; : k + k + k is esses sess is t t t t c s set is
L. Get State M2:

lda R State
bed t-GS2-State-O Dummy
Cmp i1
beq LGS2 State 1 Dummy
Cmp #2
bed L-GS2 State 2 Dummy
Cmp #3
bed L-GS2-State 3

Cmp i4
bed LGS2 State-4

Cmp #5
bed L-GS2 State 5- Dummy
Cmp i5
bed GS2 State 6 Dummy
Cmp #11
bed L-GS2 State 11 Dummy
Cmp #13
beq GS2-Statel3Dummy

Cmp i4
beq LGS2-State 14 Dummy
Cmp i15
beq LGS2 State 15 Dummy

jmp LGS-State 16

L-GS2 State_0_Dummy:
Jmp LGS State 0 ; same for modes 1 and 2

L-GS2 State 1 Dummy:
Jmp L-GS-State-1 ; same for modes 1 and 2

L-GS2 State 2 Dummy:

US 2003/0114075 A1 Jun. 19, 2003
38

Shift 96Tx. ASM
jmp LGS-State-2 ; same for modes 1 and 2

LGS2-State 5 Dummy:
jmp L GS2 State 5

L-GS2 State 6 Dummy:
jmp LGS2 State 6

LGS2 State 11 Dummy:
jmp LGS2 State 11

L-GS2 State-13-Dummy:
imp L. GS2 State 13

LGS2 State 14 Dummy:
jmp LGS-State-14

LGS2 State 15 Dummy:
jmp LGS-State-15

; * * * * * *Mode2 State 3t it is is kirk is k + k l k k + k + k k l k + k is kick k k h if k
; General: Peelin' out
;Movement: Fwd
; Sound: Peel Out
; To Change State: State 4: Peel Out sound complete
y State 11: Fwd let go

; plays peel out-allow car to move
L-GS2 State 3:

lda #O
Sta. RSound Repeat

; see if f(wd still pressed
lda P PortD
and #D Pin Fwd
beq L-GS23 Check Sound Finished

lda #D Pin Fwd
Sta. R Dir
jsr FGS. Set State 11
Jmp GSDOne

LGS23 Check Sound Finished: ; see if sound finished
%Testspeechch1 ; which will set the Carry if actively

playing
BCS L GS23 DOne ; still playing peel out

jsr FGS. Set State-4

L-GS23. Done:
Jmp LGS-DOne

; * * * * * *Mode2 State 4; it is it is it is kirk k l k l k l k l k . k is tes
; General: Cruisin'
;Movement: Fwd, possibly turning
;Sound: Motor Running
; To Change State: State 5: Turning for some time

State 11: Fwd no longer pressed

US 2003/0114075 A1 Jun. 19, 2003
39

Shift 96Tx. ASM
; going fivd. plays motor running sound, or occasionally gear shift-allow car to
mOve
L. GS2 State 4:

lda #D Pin. Fwd
Sta R Dir

jsr F. GS Check Squeel
lda PLPortD
and #DP in Fwd
beq L. GS2-4 Done ; find still pressed

lda #D Pin Fwd
Sta R Dir
jsr F. GS Set State 11 ; no longer moving

L-GS2-4-Done:

jmp LGS-DOne

* * * * * *Mode2 State 5* + k is . . k it it is k + k + k l k + k is .
; General: Hard Braking
;Movement: Neutral
; Sound: Hard Braking Sound
; To Change State: State 4: Movement re-initiated before sound ends
y State 2: No Movement re-initiated before sound ends

; see if fwd and rev commanded
L. GS2 State 5:

da PPortD
and #DP in Fwd
beq L. GS25 Set State-4

L. GS25 Check Reverse:
lda PPortD
and #DP in Rev
bne LGS25 Check Sound Finished

is r FGS. Set State 15
Jmp GSDOne

L-GS25 Set-State-4:
Sr F. GS Set State-4
mp GSDOne

LGS25 Check Sound Finished:

%Testspeechch1 ; which will set the Carry if actively playing
BCC L. GS25 Set State 2 ; still playing sound

jmp LGS-DOne

L-GS25-set-State-2 ; Done playing Sound
sr FGS. Set. State 2
mp GSDOne

US 2003/0114075 A1 Jun. 19, 2003
40

Shift 96Tx. ASM
; : k is kMode2 state 6* * * * * + k + k + k + k kirk is test k . . . kick kick kick kick k + k if it it is
; Genera: chirp
;Movement: Fwd or Rev, can be turning
; Sound: Chirp
; To Change State: State 4: At timeout if PEX;Y going reverse

State 15: At timeout if previously going forward

LGS2 State 6:

%Testspeechch1 ; which will set the carry if actively playing
BCC LGS-6 Check Dir ; still playing sound

E. L. GS_Done LGS-6 Check Dir:
da PPortD

and #D Pin Fwd
bne L-GS26 Rev

jsr FGS. Set State 4
Mp LGS-DOne

LGS2 6 Rev :
jsr FGS. Set State-15
mp GSDOne

!ck kk Mode2 State 11t k . kirk k + k is
; General: Fwd or Rev just released-wait to happens next
;Movement: Neutral
;Sound: NOe
; To change State: State 5: If not slammed into opposite direction
y State 6: Slammed into reverse

L-GS2 Statell:

; check timer

dec R. Small Chirp Timer
lda R. Small Chirp Timer
bed L. GS211 Chirp Timeout ; if small timer has run to 0
jmp L. GS211 Check Slam ; timer not run out yet

LGS211 Chirp. Timeout ; timer has run out
lda #D Small chirp Timer Preload; reload small timer
Sta R. Small Chirp Timer
jsr F GS2 Set State 5
imp LGS-DOne

LGS211 Check. Slam:

lda R Dir

beq LGS211 Check-FR-Slam

; check slam from reverse into find
lda PPort)
and #D Pin Fwd
bne LGS-DOne ; reverse not pressed

jmp L. GS-2Slam

US 2003/0114075 A1 Jun. 19, 2003
41

Shift:96Tx. ASM
LGS211 Check-FRSlam:

lda P PortD
and #D Pin Rev
bne GSDOne

LGS-2-Slam:
sr FGS2 Set State-6
Jmp GSDOne

; * * * * * * Mode2 State 13th k l is t t t t , ; ; ; ; cf. k is it k .
; General: Squeeling
;Movement: Fwd YEng
; Sound: Squeeling like a stuck pig
; To Change State: State 4: No Longer turning
y State 11: Fwd or Rev let go

L-GS2 State 13:

lda P PortD
and #D Pin Fwd
beq L-GS2-13 Check Turning
lda PPortD
and #DPin Rev
beq LGS213 Check Turning
lda #D Pin Fwd
Sta RDir
jsr FGS. Set State 11 ; no longer going either fwd or rev-no squeel if

not moving
jmp GSDOne

LGS213 Check Turning:
; check to see if turning
lda P PortD
and #D Pin Left
bne LGS213 Check Right Turn

jmp LGS-DOne ; still turning

L-GS213 Check Right Turn:
lda P PortD
and #D_Pin Right
bne L-GS2-13 Set State-4

jmp GSDOne ;still turning

L-GS213 Set State 4:
Sr F GS Set State 4

Jmp GSDOne

FGS2 Set State 5:
lda iO
Sta. RSound Repeat

lda i5

US 2003/0114075 A1 Jun. 19, 2003
42

Shift 96tx. ASM
Sta RState
rts

F GS2 Set State 6:
lda O
sta RSound Repeat

lda #6
Sta RState
rts

GSDOne:
rts

L. Get State M3:
rts

. A .

General Get State Stuff
r is A . y

; * * *Modes 1. O 2 State 0 yew kx k is k + k k.k. k.k kick kick is set is tex is k k + k l k & k + k it
; General: Waiting to be played with
; Gear O
; Sound: None
; To Change State: State 1: Move any joystick
LGS State O:

lda PPortD ; check activity on joysticks
and #Ofth
Cmp #Ofh
beq LGSODOne

jsr FGS. Set Statell

LGSO. Done:
jmp GSDOne

; * * * * * *Modes 1. O 2 State 1st it it it it is k k-k-k-k-k-kit it we k is
; General : Starting up
; Gear 0.
; Sound: Motor Starting
; To Change State: State 2: Finished startup sound

LGS State 1:

jsr F. GS1 Check-Fwd. Ack-Ok
sr F. GS1 Check Rev. Ack. Ok

%Testspeechch1 ; which will set the Carry if actively playing
bcs GSDOne ; still playing motor start sound
; sound finished
jsr FGS. Set State 2
Jmp GS DOne

; * * * * * *Modes or 2 state 2 k let k h it is eye is k & k + k + k k k l k + k kleir k k k is frk is k k is tex xx k + k ex
; General: Idling

US 2003/0114075 A1

;Movement:
;Sound:
; To change State:

seconds)
than a few seconds)
LGS-State 2:

Jun. 19, 2003
43

Shift 96 x. ASM
Neutral
Motor Idin
State O: Idle Timer Runs Out
State 3: Fwd or Rev Pressed (after sitting idle for a few
State 4: Fwd or Rev Pressed Cafter sitting idle for less

lda iO
Stal R Shifted

jsr F. GS1 Check Fwd. Ack Ok
Jsr F. GS1 Check Rev. Ack Ok

dec R. Small Idle Timer
da R. Small Idle Timer
bed LGS-2 Dec. Big Idle Timer ; if small timer has run to O
jmp LGS-2 Check-Fwd

LGS-2-Dec. Big Idle Timer:
; reload small timer

Stal R. Small-Idle Timer

DeC R-Large Idle Timer
LDA R Large Idle Timer .
Bne LGS-2 Check Peel Out Timer

; timer run to 0--back to mode 0
Sr FGS. Set State, 0

Jmp GSDOne

; peel out only sounds enabled if we've been in state 2 for a couple seconds
LGS 2 Check Peel Out Timer:

lda RPeel out Enable
bne LGS-2 Check Fwd

lda R. Large Idle Timer
Cmp #D Peel out Time
bcs LGS-2-CheckFwd ; idle timer greater or equal to peel out

time

id couple of seconds have passed--enable peel out sound
al #1

Stal RPeel out Enable

LGS-2 Check Fwd:
lda P_PortD
and #D Pin Fwd
bne LGS-2 Check-Reverse

fwd hit
lda RFwd. Ack Ok
bed GSDOne ; joystick has not returned to center yet
lda RPeel out Enable
beq LGS-2-Set State-4

jsr FGS. Set State 3
Jmp LGS-DOne

LGS-2 Set State-4:

US 2003/0114075 A1 Jun. 19, 2003
44

Shift:96TxASM
Sr FGS. Set State-4

Jmp LGS-DOne

LGS-2 Check Reverse:

lda R. Rev. Ack Ok
bed GSDOne

lda P PortD
and #D Pin Rev
bed LGS-2 Check Peel out

jmp LGS-DOne

L-GS-2 Check Peel out:

lda RPeel out. Enable
beq LGS-2-Set State 15

jsr FGS. Set State 14
Jmp GSDOne

LGS-2 Set State 15:
sr FGS. Set State 15
Jmp OSDOne

; : x s set k .

; * * * * * *Mode 1 Or. 2 State 14& k + k + k + k + k is test k is le k + k . . k l k + k is k + k is it is k + k + k . . k is is
; General: Reverse Peel Out
;Movement: Rever Se
; Sound: squeel
To Change State: State 11 (braking) hit rev

y State 15 (Rev, normal) Peel out timer times out
y State 16 (rev peel out) turns for some time
LGS State 14:

%TestSpeechch1. ; which will set the Carry if actively
playing

BCS LGS-14 Check Squee ; still playing peel out

isr F GS Set State 15 ; peel out timer timed out
Jmp LGS-DOne

LGS-14 Check Squeel :
jSr FGS-Check Squeel
da P PortD

and #DPin Rev
bed LGS-14DOne ; rev pin still pressed

lda #D_Pin Rev
Sta. R Dir
jsr FGS. Set State 11

L-GS-14DOne:
jmp GSDOne

; * * * * * *Mode1 or 2 State 15* * : *k eye k it is let k k h is test k + k left k .

US 2003/0114075 A1

; Genera:
;Movement:
; Sound:
; To Change State:

L-GS State 15:

jsr

lda
and
beq

lda
sta
Jsr

L-GS-15_Done:
imp

45

Shift 96Tx. ASM
ReVerse
ReVerse
gear 1

FGS Check Squeel

PPortD
#D Pin Rev
LGS-15 DOne

#DPin Rev
R Dir
FGS. Set State 11

LGS DOne

State 11 (Brake) let go of of reverse
State 16 (Squeeling) turn for some time

; still going in reverse

Jun. 19, 2003

; * * * * * *Model Or 2 State 16k k h k l k k k k + k is k + k + k is k k is k h it is left kick kye i ki ki ke k is
Turning in Reverse
Turning in Reverse

; General :
;Movement:
; Sound:
; To Change State
y

LGS-State 16:

squeeling
E. joystick out of reverse
rake

; check to see if turning
lda P PortD
and #D Pin Left
bed LGS-16 Check Braking

; check right turn
da P_PortD

and #D Pin Right
beq LGS-16 Check-Braking

; no longer turning

jsr FGS. Set State 15
Jmp L. GS-DOne

L-GS-16 Check Braking:
lda P PortD
and #DPin Rev
beq LGS-16 Done

lda #DPin Rev
Stal R. Dir
jsr FGS. Set State 11

L. GS16 Done:
mp GS-DOne

; still turning

; still turning

; : . k h eit * : * * * * * * * #8

US 2003/0114075 A1 Jun. 19, 2003
46

Shift:96Tx. ASM

. Arr Arr
y

FGS. Set State 0:

Sta. RSound Repeat

Sta R. Gear

da #0
Sta RState
rts

FGS. Set State 1:

Sta. RSound Repeat
Sta R. Gear
Sita RFwd. Ack Ok
Sta RRev. Ack-Ok

lda #1
Sta RFirst Start
Sta RState
tS

FGS. Set State 2:

lda #1
Sta R-Sound Repeat

Sta R. Gear

da R First Start ; flag if 1st start since being off
beq L-GS2 Disable Peel out
da #1

Sita RPeel out Enable

Sta. RFirst Start
jmp LGS-2. Preload Idle Timer

LGS2 Disable Peel out:

Sta. RPeel out Enable

LGS-2. Preload. Idle Timer: ; preload idle timer
lda #D Small Idle Timer Preload
Stal R. Small Idle Timer
lda #D Large Idle Timer Preload
Sta. R. Large Idle Timer

lda #2
sta R State
rts

FGS. Set State 3:

lda #0
Sta. R-FWCAck-Ok

US 2003/0114075 A1

lda
Sta.
lda
Sta

lda
Sta

da
Sta.

lda
sta

jSr

lda
Stal
rts

47

Shift26.x. ASM
#DSmall Sound Check Timer Preload
R. Small Sound Check Timer
#D Large Sound Check Timer Preload
R-Large Sound Check Timer
#O
RSound Check Delay Complete

iO
RSound Repeat
#1
R. Gear

F. GS Preload Shift Timer

#3
RState

FGS. Set State 4:

lda
Sta.
Sa

lda
Cmp
beq

lda
Sta.
jmp

GSSS-4 Repeat:
lda
Sta.

O
RFWCAck_Ok
R Rev. Ack Ok

R. Mode
2
LGSSS-4 Repeat

#O
RSound Repeat
L. GSSS4 Store Gear

i1.
R_Sound Repeat

L-GSSS-4 Store Gear:
da

Sta.

lda
Sta.
rts

i1.
R. Gear

i4
R State

FGS. Set State 11:

lda
Sta

da
Sta.

lda
sta
rts

#O
RSound Repeat

preload city. #D-Small-chirp Timer Preload
R. Small Chirp. Timer
#11
R State

FGS. Set State 13:

Jun. 19, 2003

US 2003/0114075 A1

lda
Sta

lda
Sta.

lda
Sita
rts

#1
R Sound Repeat
#1
R. Gear

#13
R State

FGS. Set State 14:

da
Sta.

lda
Sta

da
Sta
rts

#O
RSound Repeat
#ffh
R. Gear

#14
R State

F. G.S. Set State 15:

da
sta

da
Sta.

da
Sta
tS

it.
RSound Repeat
ifeh
R. Gear

iF15
R State

FGS. Set State 16:

da
Sta

lda
Sta.

da
Sta.
rts

it1.
RSound Repeat
#feh
R. Gear

it1.6
R State

48

Shift:96TX. ASM

s irr

FGS. Check Squeel:
lda
and
beq

lda
and
beq

lda
Sa

rts

PPortD
#DP in Left
L-GSCS Turning

PPortD #DPin Right
L-GSCS Turning
#O
R. Turning

; not turning

Jun. 19, 2003

US 2003/0114075 A1 Jun. 19, 2003
49

Shift:96tx. ASM

L-GSCS-Turning:
lda R-Turning
bne L-GSCS. Still Turning
; not previously turning preload timer
preload squeel timer

lda #D-Small Squeel-Timer Preload
Sta. R-Small Squeel Timer
lda #D Large Squeel Timer Preload
sta R-Large Squee Timer

lda #1
Sta R-Turning

rts

L-GSCS Still Turning:

dec R. Small Squee Timer
lda R_Small Squee Timer
beq LGS. Dec. Big Squeel Timer ; if small timer has run to 0
rts

LGS-Dec. Big Squee Timer:
lda iffh ; reload small timer
Stal R. Small Squeel Timer
Dec R-Large Squeel-Timer
LDA R-Large Squeel-Timer
Beq LGS. Set Squeel

rts

L-GS-Set Squeel:

lda PPortD
and #DPiRev
beq LGSSS Reverse ; only going in reverse if reverse button is pressed
jsr FGS. Set State 13
Jmp LGSCS-DOne

L-GSSS Reverse:
Sr FGS. Set State 16

Jmp LGSCSDOne

GSCSDOne
rts

rare fee & A. Y. & A. A k is rar r A

; : k-k-k-k-k-k-k-k-k-k-k-
. Arr
y

US 2003/0114075 A1 Jun. 19, 2003
50

Shift:96Tx. ASM

; * * * * decides which 2 byte packet to send: * * * * * * * * * * * *
F Decide Packet:

lda R-Mode
Cmp #1
bed LDP Mode 1
Cmp #2
beq LDP Mode 2
jmp LDP Mode 3

it left Mode 1 kick k + k xxx x k is kick k k + k l k is kick kick k k + k k & k & 8 k Oce
; Tx Command Depends on state
LDP Mode 1:

lda RState
Cmp #2
bCC LDP Blank Packet ; state is 0 1

beq LDP Pass. Steer. Only ; State 2
cmp #11.
beq LDP Set Brake

Cmp #14 ; in gear 0 1 2 3
bcc LDP1. Set Gear Bits. Fwd

; in reverse
jmp LDP1 Set Gear Bits Rev

L DP1 Set Gear Bits. Fwd:

; moving the gear bits to the left puts em in the the ; pwm position of the tx packet
lda R. Gear
clc
rol d
rol d
rol 3.
rol d
Sta. R. Gear Bits
jmp LDP Set X

L DP1-Set Gear Bits. Rev: ; reverse normal or peel out
lda #00001000b
Sta R. Gear Bits
jmp LDP Set TX

* * * * Mode 2 er errrrrrrrrrrrr
Tx Command Depends on state

; In some modes sends nothing others passes hog, ; commands while making pwm all the way 1 or all the way 0
LDP Mode 2:

lda R State

US 2003/0114075 A1 Jun. 19, 2003
51

Shift:96Tx. ASM
Cmp #2 ; state is 0 1
bcc LDP Blank Packet

bed LDP Pass-Steer. Only
Cmp #5
bed LDP Set Brake

Cmp #6
bed LDP Set Brake

Cmp #11.
beq LDP Set Brake

; allow movement
Jsr FDP Set Data-Full Pwm

jmp LDP Done Command
. is rer

Shared by modes 1 and 2
; , , * * * * *
LDP Blank Packet:

lda #0
Sta RTx. Commands

jmp LDP Done Command

LDP Set Brake:

lda #001001OOb ; set brake secret code
Stal R. Gear Bits

jmp LDP Set TX

LDP Pass Steer. Only:
lda #0
Stal R. Gear Bits

LDP. Set TX:
lda P PortD
eO #00000011b
and #00000011b.
O R. Gear Bits
sta RTX Commands
Jmp LDP Done Command

kic kleM d 3 . ; Arrer tre Oce
; Passes through commands while making pWm all the way 1 or all the way 0
LDP. Mode 3:

jsr FDP. Set Data-Full PWm
; keep going to done command is E.E.E.E.S.E. 8 y

LDPDOne Command:
jsr FDP Flag And Cksum

LDPDOne:
; debug--put tx commands to led's
lda R TX. Commands
Sta P PortB
rts

US 2003/0114075 A1 Jun. 19, 2003
52

Shift:96Tx. ASM

; * * *k Transmit subroutines * * * * * * * * * * * *
FDP Set Data Full PWm:

lda P Port

and #03h
Sta R Tx Commands

lda P PortD
and #DPin Fwd
bne LDPSD Check Rev. Command

; if find button is down, set pwm to max
lda RTX Commands
Ora #D Fwd. Bits
Sta R Tx Commands
MP LDPSD TX Commands End

LDPSD Check Rev Command:
lda PPortD
and #DPin Rev
bne LDPSDTX Commands-End

lda RTX Commands
Ora #D Rev. Bits
Stal R TX Commands

LDPSD, TX Commands End:
rts

FDP-Flag And Cksum: ; Loads RX data2 with the flag and checksum in the
; bottom two bits.

; Checksum: counts the number of 1 bits in data

LDX #8 ; X will be the loop counter
LDA #O ; clear
STA RTx-Flag-And-Ck

LDA RTX Commands ; use to compute checksum

LFB Compute Checksum:
; Compute checksum

ROL A ; shift out MSB - a
BCC LFBCS Loop End ; and don't add one if that bit is zero

INC RTXFlag And Ck ; but if it's a 1, increment the
checksum

L-FB_CS Loop End:
DEX ; loop
BNE L-FB Compute Checksum

LDA RTX_Flag And Ck ; which has the checksum in low
three bits
bi AND iOOOOOO11b. ; so strip it down to just the bottom two

tS
ORA #D TX-Flag ; paste in the Flag
STA R-TX-Flag. And Ck

US 2003/0114075 A1 Jun. 19, 2003
53

Shift26Tx. ASM

RTS

riri kirk kiri i krikirk kirk rare kirk ree

F. Wait functions

These all are versions of "while (TmB < Limit);"
where the Limit is different for each one. It's
faster with separate functions, each using #defed
numbers instead of variables.

Note that you shouldn't do the second loop, the lower
byte by itself. If you do, it can get stuck if it's
waiting for P TmBL to exceed FDh, for example.

F. Wait Sound Service:

lda R-SS Time_H,X
Sta R. Wait Time. H

lda RSS Time L, X
Sta R. Wait TimeL

WSloop:
LDA PTmBH
AND #OFh. ; strip away top nibble V
CMP R. Wait Time ; and see if we're still within time iimit
BCC WSLOOp ; loop if still within time limit
BNE WS-Sound Done ; but if above limit, get out

DA P. TmBL ; and if we're at the right TmBH, check TmB.
CMP R. Wait Time
BCC LWS Loop ; loop if still within time limit

LWS Sound Done:
RTS ; and now the time has elapsed

; ; ; ; ; ; kirk is kirk are rear ree k is a series irr is rig

F. Wait TX line:

da R TX Time H, X
sta R. Wait Time H

lda R-TX-Time L, X
Stal R. Watmel

LWT LOOp:
LDA PTmBH
AND #OFh ; strip away top nibble
CMP R. Wat Timeh ; and see if we're still within time limit
BCC LWT Loop ; loop if still within time limit
BNE LWT done ; but if above limit, get out

DA PTmBl ; and if we're at the right TmBH, check TmBL
CMP R. Wait Time L
BCC L WT LOOp loop if still within time limit

US 2003/0114075 A1 Jun. 19, 2003
54

Shift:96TX. ASM

LWT. Done: s
RS ; and now the time has elapsed

irr is .

F DecideSounds

Chooses what value to load into R. NextSound, which
will be looked at by F PlaySounds.

risk Rese see

F Decide Sounds:

da R. Mode

Cmp #1
bed LDS Mode 1 Sounds

Cmp 2
bed LDS Mode2 Sounds

jmp DS. DOne ; No sounds for mode 3

; k k + k + k kick k + k & k + k is k & Decide Sounds for Mode 1 see it
LDS Mode 1 Sounds:

da R State
Cmp 1.
beq LDS1-Set Sound Interrupt ; brake
Cmp #12
beq LDS1-Set Sound Interrupt ; grind
Cmp #8 ; ready to shift
beq LDS1-Set-Sound Interrupt
cmp #10 ; upshift
bed LDS1 Set Sound Interrupt
da iO

Sta. RSound Interrupt
imp LDS1. Load Sound

LDS1-Set Sound Interrupt:
lda #1
sta RSound Interrupt
lda #0 new Code 9. 26.01
Stal R_Sound Repeat

LDS1 Load Sound:
dx R State

lda RSounds. Array, X
stal R. Next Sound

jmp LDSOOne
; : kick is kick kick kick Decide Sounds for Mode 2
LDS Mode2 Sounds:

lda RState
Cmp i.

US 2003/0114075 A1 Jun. 19, 2003
55

Shift 6Tx. ASM
beq LDS-DOne ; m2 s11 is a short "deciding state" --don't change

motor running
; sound until decided

Cmp #5
beq LDS2 Set Sound Interrupt ; brake
Cmp #6
bed LDS2 Set Sound Interrupt ; chirp
lda #O
Sta. RSound Interrupt
imp LDS2-Random Horn

LDS2 Set-Sound Interrupt:
lda i1.
sta RSound Interrupt

LDS2 Random Horn:

lda RState
Cmp #3
beq LDS2 Check-Random Horn 3
Cmp #4
bed LDS2 Check Random Shift 4

jmp LDS2 Set-Sound-Index

LDS2 Check Random Horn-3:
lda Plms
and iOh
bne LDS2 Set Sound Index

jmp LDS2 Set Sound

LDS2 Check Random Shift 4:
lda PTmBl
and #Oh
bne LDS2 Set Sound Index

dx #10
Jmp LDS2-Set-Sound

LDS2 Set-Sound Index:
dx R State

LDS2 Set Sound:
lda RSounds Array, X
Sta. R Next Sound

LDS-DOne:
rts

first f : A & Ar Arr if A & Arre

F-PlaySounds

Looks at R. NextSound and handles the starting and repeating of sounds.
r & Art is r & r see

US 2003/0114075 A1

F PlaySounds:

lda R Mode
cmp i
beq PSDOne

da RSound Interrupt
sounds is set

bne LPS Check Repeat

%TestSpeechch1
playing

BCS PSDOne

LPS Check Repeat:
lda
bne

lda
cmp
beq

RSound Repeat
LPS Start New Sound

R. Current Sound
R. Next Sound
PSDOne

LPS Start New Sound:
lda
Sta

CMP
BEQ

DX
SR

JMP

LPS. NoSound:

DA
SA

PSDOne:
RTS

R Next Sound
R. Current Sound

#D. Snd None
LPS NOSound

#D SamplePreload
F PlaySpeechCh1.

PSDOne

#D Snd None
R. Current Sound

Jun. 19, 2003
56

Shift:96Tx. ASM

; no sounds for mode 3

; see if flag for immediate interruption of
; don't wait till sound is finished

; which will set the Carry if actively
; don't interrupt the sound

; Sound loaded already

; the setting for sample frequency
; play

; set NoSound as current ; just do nothing to let the sound run out

F Control LED:

lda RMode

Cmp #1
bne LCL Normal

; mode 1
lda R State
cmp #8
beq LCL. Flash
Cmp if 9
bne LCL. Normal

LCL. Flash:

; decrement timer
dec R. Small-LED. Timer

; flashes when ready to shift, whining
; and when ready to shift, constant

US 2003/0114075 A1 Jun. 19, 2003
57

Shift:96Tx. ASM
lda R_Small-LED Timer
beq LDS Flip LED ; if small timer has run to 0
jmp CDOne

LDS-Flip LED:

lda PLPortC
eor #D Pin LED
Sa PLPortC

; note that since we want a relatively short time cycle, we deal only with the
; small timer.

; preload timer
#D. Small-LED Timer Preload da

Sta.

jmp

L-CL-Normal :

da
and
Cmp
bed

C On:
da
Oa
Sta.
jmp

LCL Off:
lda
and
Stal

LCDOne:
rts

R. Small-LED Timer

LCL-DOne

PPort
#OFh
#OFh
LCL Off

PPortC
#D Pin-LED
P PortC
CDOne

PLPortC
#. NO. DLP in LED
PPortC

Art A. A Interrupt Service Routine g
sers rare are .

V-Irq:

STA R TempA
STX R Tempx

DA PInts
STA RIntTemps

interrupt register
lda #COH
STA PInts
LDA RIntFlags
STA PInts

DA R IntTemps
the interrupt

AND #TimeBase625Hz
BEQ DOne Int

; clk/655536 Service

save accumulator value
save x value

read the interrupt register and store
this variable is our working copy of the

load original interrupt settings and store

check to see if timer A is the cause of

US 2003/0114075 A1 Jun. 19, 2003
58

Shift:96TX. ASM
inc R-Model Timer

C R. Mode Check Timer

LDOne Int:

V. Nmi: ; non maskable interrupt.--Sunplus does not support
this code

; very well, and we have been warned not to use any
O meSS

; with it
DA R TempA
LDX R TempX
RT

. Include Channel. Asm
DB "PEND'O ; no idea what this is

; vectors settings - do not change (from Sunplus Demo Code)
ORG 7FFAH
OW V. Nmi
OW WReset
DW V Ira

ORG FFFAH
OW V. Nmi
OW VReset
OW V Ira
END

US 2003/0114075 A1

LINKLIST
SYMBOS
CODE

; A * * * * System parameters * * * * *
SystemClock: EQU
SPC21A: EQU

. Include Hardware. Inh

; ***** Addresses SunPlus forgot * * * * *
P MultiPhase
settings on 81A

ADPCMTABLE65:
ADPCMH:

; * * * * * CONSTANTS/DEFINES k + k k *
; sound stuff
D RampDownvalue:
D MaxWord:
D. MaxMelody:
D. MaxRhythm:
D. SamplePreload:

; RX SETTINGS

D_RXFlag:
D RXbitCount Limit
before command erased

until" timers

; wait times for different functions.

D. Wait. DPLL

D. Wait BR1
D. Wait BR2
D. Wait PWM3
D_Wait Tune

D. TmBH Bit Read1:
D. TmBL Bit Read1:
D TmBH-Bit Read2:
DTmBL Bit Read2:

EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

Jun. 19, 2003
59

Receiver Code

2OOOOOO
l

S37

1.

OOH
6
1.
O
OOH

; select body (hardware. inh)

; register that controls Multi Phase

; If use ADPCM65 or later
; If no limit

; If Current AC->OOH, PWM->8OH
; number of speech pieces
; number of melodies
; number of rhythms
; should be 6 for 8KHZ or 0 for 6 Khz

01111100b Flag, in first six bits
250 ; limit for bits received w/o good packet

; 128 = 50 ms

; The TmB constants are used for "wait

; 1 us = 2 timer ticks at 2Mhz osc

157 uS

472 uS

US 2003/0114075 A1

D. TmBHDPLLmin: EQU
D. TmBLDPLLmin: EQU

DTrnBHDPllmax: EQU
Dm3LDPLLmax: EQU

D TmBHPWM3: EQU
D TmBLPWM3: EQU

D TrnbH Tune EQU
DTmBi-Tune: EQU

; D Far-L R Motor Timeout
D Startup Motor Counts EQU
; OUTPUTS

D_Pin-Tune Out EQU
D. Pin Forward: EQU
D_Pin-Reverse: EQU
D_Pins-Drive EQU
D_Pin_Drive Enable EQU
D_Pin_overcurrent EQU
D_Pin_Left: EQU
D_Pin Right: EQU
DPins. Steer EQU

; INPUTS

D. Pin RX: EQU
D_Pin Tune Switch EQU

; PACKET BITS
D_FW-Bits EQU
DRev. Bits EQU
D_Left Bit EQU
D. Right Bit EQU

; pWm

D_PWM Max: EQU
fraction of this

D Drive PWM Low: EQU
2.18:02
D. Drive PWM Medium: EQU
2.18.02
D Drive PWM High: EQU
2. 18.02

D. Steer PWM_Hi W. Spring EQU
2. 18.02
D Steer PWM Lo WSpring EQU
D Steer PWM_Hi A. Spring EQU
2. 18.02
D Steer PWM Lo A-Spring EQU

D_PWMOn Delay Time EQU

; steering control

D. Steer Pos Bits EQU

60

Shift:96Rx, ASM

24h ; 424h = 1060 = 530 us

02h
8Ch ; 2BCh = 350 us

ECh 4ech = 630 us

squ 4 ; 4255*.0006= 06 seconds

00000100b ; PortC
OOOOOOO1b ; PortC
0000001Ob ; PortC
OOOOOO11b ; PortC
00000100b ; PortC
00001000b ; PortC
00010000b ; PortD
OO1OOOOOb ; PortD
00110000b ; PortD

OOOOO10Ob ; R/C RX pin, D2
00001000b ; d3

OO110000b
00001100b
OOOOOOOb
00000001b.

16; normally 16 ; numbers below a

10 ; 10 for initial release, 10 for

12 ; 13 for initial release, 12 for

14 ; 16 for initial release, 14 for

16 ; 12 for initial release, 16 for
6
16 ; 5 for initial release, 12 for r
12

1S ; 15.00063=10ms

0000001b.

Jun. 19, 2003

re a

release

release

release

release

elease

US 2003/0114075 A1

D_Steer Left. Cmd D_Steer Right Cmd
D Steer Near Left Pos
D Steer Near Right. Pos
D Steer Ctpos
D Steer Far Pos

; Drive
D Relay Off Delay Hi
D Relay Off Delay Lo

release timer

dictates how long
is shifting the
the vehicle to

than the fwd

would start to

allowable to

WARIAELES
. PAGEO
ORG D Ram Top

RIntFlags: DS
RIntTemps : DS
R. TempA: DS
R Tempx: DS
R Temp: DS
R temp: DS
R RXdata: DS
RRXdata2T: DS
RRXdata1T: DS
R RXlastTE: DS
R_RXdata Last DS
RRXbitCount: DS
(like error count)
R_Drive PWM DS
R drive Dir DS

R_Steer PWM DS
RSteer Dr DS

RPWM Counter DS

RRx-Error Flag DS
RDrive Crd DS
R. Steer Cmd DS
R. Wait Time Array H
R_wait TimeArray-L
R. Wait Time H DS
R. Wait Time L DS

EQU
EQU

EQU
EQU
EQU
EQU

ECU
EQU

Jun. 19, 2003
61

ShiftS6Rx. ASM
OOOOOOOb
00000001b.

00000010b
OOOOOOOb
OOOOOOOOb
00000011b.

=seconds/C63OuS)
04A6h=1193. 1193*. O0063=0.75 seconds
this needs to be kept longer than the fwd
in the tx Code. The fwd release timer

the joystick may be in neutral when a kid
vehicile. When it is in this state we want

coast. Making the Relay Off Timer shorter
release timer would mean that the vehicle

brake during the window in which it still
shift. This isn't what we want.

data received (reception complete)
data2 temp
datal temp (during reception)
record of the last half-bit or transmit element

; count of bits received since last good command
; programmed PWM - Q=stop
; programmed direction

; rolling counter used for PWM

R-Tuning
R Last MidPos

US 2003/0114075 A1

DS 1
DS 1.

RRelay-Off Counter Hi DS
R. Relay Off Counter Lo DS
RPWMOn Delay Counter DS
R Drive PWM On

RBeen TO Center
R. Startup Steer

DS

DS
DS

RStartup Motor Counter Small
RStartup Motor Counter Large

RMotor. Toggle
R. Current Steer POS

PAGEO

... CODE

...ORG
DB
ORG

; V is by Convention a vector.
micro is reset
WReset:

; CFrom Demo Code)

lda
ldx

Sta
Sta
Sta
Sta
Sta.
Sta
STA
STA
SA
STA
Sta.
STA
Sta
Sta.
Sta
Sta
Sta.
Sta.
Sta.
Sta

62

Shift 96Rx. ASM

OS

DS
DS

. is Begin Main Code r A

Jun. 19, 2003

The reset vector is where the code goes when the

; load ff into the x reg
; transfer x reg contents to stack

; * * * * * Initialize variables

RIntFlags
RIntTemps
R. TempA
R TempX
R Temp1
R temp
RRXdata
RRXdata2T
RRXdatalT
R. RXTastTE
RRXdata Last
RRXbitCount
R. Drive PWM
RDrive Dir
RPWM Counter
RRx-Error Flag
R Drive. Cmd
R. Steer cmd
R. Wait time. H
R. Wait Time L.

US 2003/0114075 A1

Shift:96Rx. ASM
Stal R_Tuning
Sta. R. Last Mid Pos
Sta. R. Relay Off Counter-Hi
Stal R. Relay-Off-Counter-lo
Sta RPWMOn Delay Counter
Sta R Drive PWMOn
Sta. R. Been to Center
Sta. R Startup Steer
Sta. R. Far R Motor Counter Small
Sta RFar-R Motor Counter Large
Sta R-Far. Motor Counter Small
Sta. R Farl Motor Counter-Large
Sta R Startup Motor Counter Small
Sta R-Startup. Motor Counter-Large
Sta RCurrent Steer Pos

sta R. Motor Toggle

dx #D. Wait. DPLL
Sta R. Wait-Time Array H, X

lda #D TmBLDPLLmin
Sta R. Wait Time Array-L, X

lda #D TmBHBit Read1 Sta R. Wait-TimeArray-H,X

lda #D. TmBL Bit Read1
Stal R. Wait TimeArray L, X

lda #D TmBH_Bit Read2
Stal R. Wait Time Array HX

lda #D_TmBL Bit Read2
Stal R. Wait TimeArray L, X

dx #D. Wait PWM3

Sta R. Wait TimeArray H, X

Stal R. Wait-Time Array L, X

dx #D. Wait Tune
lda #D-TmBH-Tune
Stal R. Wait TimeArray H, X

lda #D_TmBL-Tune
Sta R. Wait Time Array L, X

Port configuration
lda
Sta
Sta.

DA

iO
PPortd.
PPortC

Jun. 19, 2003

#10111111b ; D-C-B-A high-low, 1=output D: out C: b output for debug
STA P PortIO Ctrl

US 2003/0114075 A1 Jun. 19, 2003
64

Shift:96Rx. ASM
DA #OOOOOOOOb ; outputs buffer, except pull b1 low; Inputs

Pue
STA P Port Attrib

DA #00000010b
d STA P MultiPhase ; turn off multi-phase on A2, but set 1/3
uty

; in case it does turn on for diagnosis
; * * * * * configure interrupts
lda #%110OOOOO ; disable watchdog

; disable nmi ; enable TimerA interrupt
; enable TimerB interrupt
; disable 4 khz interrupt
; enable 500 Hz and
; enable 62.5 Hz interrupts
; disable external interupt

STA P Ints ; store interrupt settings
STA RIntFlags ; store interrupt settings here, too

SEI ; disable interrupts
; * * * * * Preload Timers

LDA #OOh
STA PTmAL ; preload: D58h = 315 us
LDA #00h
STA P TmAH ; above and mode bits

LDA iOOh
STA P. TmBL
LDA #OOh
STA PTmBH

; * * * * * set port values
L. Main:

; check to see if in tuning mode
lda PPortD
and #DPin Tune Switch
beq LTuning Mode

L-Main_Loop:

lda #0
Stal R. Tuning

ldx #D_Wait. DPLL
JSR F. Walt
JSR FDPLL

JSR FPWM

ldx #D. Wait_BR1
Sr F. Wait
JSR F. BitRead1

SR F PWM

jsr F-Service Motors
JSR F. CheckBitCount ; in C RXbitCount and see if it's been too long

US 2003/0114075 A1

L-Tuning Mode:

dix
jsr
SR

dx
JSR
JSR

da
Ora
Sta.
SR
lda
and
Stal

MP

*** Tuning

#D Wait PWM3
F. Wait
FPWM

#D. Wait BR2
F Wait
F BitRead2

PPOrtB
#OOOOOOOb
PPOrtB
F PWM
PPorts
#111101.11b.
P PortB;

L. Main-loop
Mode

65

Shift)6Rx. ASM

Used to tune the oscillator frequency during

LDA
STA
LDA
STA

da
Sta.

lda
Ora
Stal

lda
and
Sta

dx
sr
Jmp

frk is

iOOh
P TmBL
O

P. TmBH

i
RTuning

PPortC
#DPin Tune Out
P PortC

PPortC
#. NOT.D. Pin Tune. Out
P PortC

#D. Wait Tune
F. Wait L-Tuning Mode

F. Wait functions

This is a generic while CTmB < Limit); ' function

; for debug

k is kick kk. Yekk kick k k k & k l k : kunctionsk k is kick k k & 8 k k + k kick is kick & 8 k k + k + k + k + k is

where the Limit is different for each one.

Note that you shouldn't do the second loop, the lower
byte, by itself. If you do, it can get stuck if it's
waiting for P. TmBL to exceed FDh, for example.

product manufagture
With the right oscillator, a pin on port D will blip every 630 Us

Jun. 19, 2003

US 2003/0114075 A1 Jun. 19, 2003
66

Shift:96Rx. ASM
F. Wait:

da R_Wait-Time Array HX
Sta. R. Wait Time H

lda R. Wait TimeArray LX
Sta R. Wait-Time-L

LWT LOOp:
LDA PTmBH
AND #OFh ; strip away top nibble
CMP R. Wait Time. H ; and see if we're still within time limit
BCC WTLoop ; loop if still within time limit
BNE WDOne ; but if above limit, get out

LDA P. TmBL ; and if we're at the right TmBH, check TmBL
CMP R. Wait-Time L
BCC LWT LOOp ; loop if still within time limit

LWT DOne:
RTS ; and now the time has elapsed

r is a sers are Arr;

FDPL

Syncs up to between-bit edges. If a transition
isn't seen in time, it resets the timer anyway
and lets things go on. This allows it to not cry
'error" if it doesn't see a transition, in the event
of good data with a missing transition, but it also
can gradually get synced up with a new data stream.
If there was a transition before this was called, it resets the timer right away, to also try to get
on sync with the data stream,

FDPLL:

; DIAGNOSTIC
DA PLPortB

ORA #000001OOb ; B2 during DPLL
STA PPortB

LDA RRX lastTE
BEQ LDPLL. WaitForhigh ; if it was low, watch for high, and vice

werSa

LDPLL. WaitForLow:

lda PPorts
Oa. #00100000b ; on b5
Sta. PPortB

LDA P_PortD
AND iDPin RX
BEQ LDPLL-FoundEdge ; BEQ b/c looking for "low"
LDA P TmBH
AND #0Fh ; strip away top nibble

Jun. 19, 2003
67

Shift:96Rx. ASM
and see if we're still within time limit loop if still within time limit
but if above limit, get out
and if we're up to the TmBH, check TmBL
and loop if still within time

; so the time did expire. . .

US 2003/0114075 A1

CMP #D-TmBHDPLlmax
BCC LDPLL. Walt FOLOW
BNE LDPLL-FoundEdge

LDA P TmBL
CMP #D-TmBLDPLLmax
BCC LDPLL. WaitFOLOW

JMP L. DPLL-FoundEdge

LDPLL. WaitForhigh:

lda
dra
and
Sta.

LDA
AND
BNE

LDA
AND
CMP
BCC
BNE

DA
CMP
BCC

JMP

PPortB
#01.000000b
#11011111b
P PortB

P_PortD
#DPin RX
LDPLL-FoundEdge
P TmBH
#OFh
#D Trn BHDPL Limax
LDPLL. Wait For high
LDPLL FoundEdge
Plm BL
#D TmBLDPLLmax LDPLL. WaitForhigh

BNE b/c looking for "high"

strip away top nibble
and see if we're still within time limit
loop if still within time limit
but if above limit, get out
and if we're up to the TmBH, check TmBL

and loop if still within time
; so the time did expire...

LDPLL-FoundEdge
LDPLL FoundEdge:

LDA
STA
LDA
SA

#OOh
P. TmBL
iO
P TmBH

; DIAGNOSTIC
LDA
AND
STA

RTS

F. BitRead1

F. BitRead1:

PPortB
it. NOT 00000100b
PPortB

; go ahead and reset timer

B2 during entire DPLL window

and you're done

ir irr r r is .

Takes one look at Pin RX to see if it has changed
across the bit boundary, as it should, and records
the new state. If not, sets RRXerror = #DError NoBitBoundary

US 2003/0114075 A1 Jun. 19, 2003
68

Shift 96Rx. ASM

; DIAGNOSTIC
LDA P PortB
ORA #00000100b ; blip B2 for bit read
STA P PortB

LDA P PortB -
AND it. NOT. OOOOO1OOb ; B2 during entire DPLL window
STA PPortB

LDA RRXlastTE
BEQ LBR1 LaStWaSLOW ; main branch based on whether last TE was

O/1

L. BR1 LastWashigh:

DA P_PortD
AND #D Pin RX ; check PinRX - it should be low now
BNE LBR1 Error ; and if not, it's an error
DA #0

STA RRXlastTE ; and now RXlastTE is reassigned with
present state

RTS

LBR1 LastWasLOW:

LDA P_PortD
AND #DPin RX ; check PinRX - it should be high now
BEQ LBR1 Error ; and if not, it's an error
LDA 1.
SA RRX lastTE ; and now RXlastTE is reassigned with

present state

RTS

LBR1 Error:

DIAGNOSTIC
LDA P PortD
AND #. NOT 10000000b ; D7 off to show failure

s STA P PortD

; DIAGNOSTIC
LDA PPortB

; ORA #00010000b ; B4 to show any error
;STA PPortB
; AND it. NOT. O0010000b
; STA P PortB

LDA #O
STA R RXdata1T
STA RRXdata2T ; clear the data buffer

;LDA #DError NoBitBoundary
;STA RRXerror
lda #1
Stal RRX Error Flag

US 2003/0114075 A1

RTS

69

Shift:96Rx. ASM

kr .

F BitRead2

; Lakes one look at Pin-RX to see if it has changed
; from the first TE of the bit. If it has, the bit

; error detection here, though it could be added by
; doing redundant Pin RX reads.

; The end of the routine does packet-level checks,
; looking for the flag and then computing the checksum
and comparing it.

F-BitRead2:

; DIAGNOSTIC
NOP
LDA PPOrtB
ORA i00000100b
SA P PortB
AND #11111011b
STA PLPortB

LDA RRXlastTE
BEQ LBR2-LastWaSLOW

0/1

L. BR2 LastWashigh:

LDA PPortD
AND #DPin-RX
BNE LBR2 Bitlis0

LDA #O
STA RRXlastTE

SEC -

JMP LBR2. ShiftBitlin

LBR2 LastWas LOW:

LDA
AND
BEQ

LDA
STA

SEC
JMP

L. BR2 Bits0:

CLC

PPort)
#D-Pin-RX
LBR2 Bits0

i1.
RRXastTE

LBR2. ShiftBitLn

LBR2. ShiftBitLn:

LDA RRX Error Flag

: is a 1. If not, it's a 0. As such, there's no
y

blip B2 for bit read
blip B2 for bit read

Jun. 19, 2003

main branch based on whether last TE was

check Pin RX
if still high, it's a 0 and else it's a 1

record the change in Pin RX

check PinRX
if still low, it's a 0
and else it's a 1.

record the change in Pin RX

clear Carry, which will be shifted in

US 2003/0114075 A1 Jun. 19, 2003
70

Shift:96RX. ASM
don' BNE h R2 EarlierError Dumy ; if an error was detected by now, on't count the ot

ROL RRXdata1T
ROL RRXdata2T

LDA RRXdata2T
AND #111100b ; strip off bottom two bits
CMP #DRXFlag ; and check for Flag
BNE LBR2 Done ; and if not found, just keep receiving

; Flag found, now calculate and compare checksum
; Checksum: counts the number of 1 bits in data
DA #0
STA R temp ; R temp will be our checksum count
DX #8 ; X will be the loop counter

LDA RRXdata1T ; A will be the rotated byte

LBR2 Checksum:

ROL A ; shift out MSB
BCC LBR2CS Loopend ; and don't add one if that bit is zero
INC R temp ; but if it's a 1, increment the checksum

LBR2CS-Loop End:

DEX ; end of loop
BNE LBR2 Checksum

, and now compare the checksums

LDA R temp
AND #OOOOOO11b ; clear flag bits
ORA #DRX Flag ; paste in the Flag so that it should

equal data2T
CMP RRXdata2T
BNE LBR2 BadChecksum

; So it's good

; DIAGNOSTIC
LDA PPorts
ORA #OOOOOO1Ob ; B1 on to show success
SA P Ports

DIAGNOSTIC
LDA PPort)
ORA #1OOOOOOOb ; D7 on to show Success
STA P PortD

LDA O
STA RRXbitCount reset the bit Count b/c success

LDA RRXdata1T
Cmp RRXdata-Last
bed L-BR2 GoodData

; data bit is different than last time
LBR2Store RX-Reading:

lda RRXdata1T
Sta. RRXdata Last Store the received data for next time.
Jmp L. BR2-DOne

US 2003/0114075 A1

LBR2Earlier Error Dummy:
jmp LBR2 earlierError

L. BR2 GoodData:

STA
t

Sta.

LDA
drive)

AND
STA

DA
AND
SA

L. BR2 DOne:

RTS

RRXdata

RRXdata Last

RRXdata

#OOOOOO11
R. Steer Cmd

RRXdata
iOOL1100b
R Drive Cmd

LBR2 BadChecksum:

; DIAGNOSTIC
LDA PPortD
AND it. NOT LOOOOOOOb
STA PPort

; DIAGNOSTIC
LDA PPorts
ORA iOOOOOOOb
STA PPorts
AND it. NOT, OOO10000b
STA PPorts

L. BR2 Earlier Error:

DA
STA

LDA
STA
STA
Sta.

; Checksum: Counts the number of 1 bits in data

This func
when a goo ge

#O
RRX Error Flag
#O
RRXdata1T
RRXdata2T
RRXdata

71

Shift:96Rx. ASM

Jun. 19, 2003

; data is same 2 times in a row, so count

; store for external consumption (steer and
; look at steering bits
; and store them as SteerCmd

; strip away non-drive bits
; and store for drive function

; D7 off to show failure

; B4 to show any error

; clear the error flag for next bit

; clear the data buffer

; So it's good!

If the RXbitCount since the last
a limit, the last good packet is
motors are given default "off" commands.

The counter gets reset ts called every bit.
packet is received.

keikkirk killer r is .

FCheckBitCount

ood packet exceeds
orgotten and the

US 2003/0114075 A1

F CheckBitCount:

Jun. 19, 2003
72

Shift:96RX. ASM

NC RRXbitCount ; increment every time through

LDA R_RXbitCount
CMP #D RXbitCount Limit
BCC CBCDOne ; if count < limit, exit

; over limit
; DIAGNOSTIC
LDA PPortB
AND it. NOOOOOOO1Ob ; turn off B1 as command is erased
STA P Ports

LA #OOb
SA RRXdata ; drive=3, steer=3, twist=0
Sta RRXdata Last
Sta. RSteer Cmd
Sta. R Drive Cmd

STA RRXbitCount ; and reset the bit count

LCBC DOne

RS

F-Service Motors:
; alternate btwin service of drive and steering motors
lda
beq
is r
da

Sta.
jmp

LSM Drive:

Sta.

LSM DOne:
rts

R Motor. Toggle
LSM Drive ra
F-Service. Steering Motor
O

R. Motor Toggle
LSM DOne

F Service Drive Motor
i ; set for steering motor for next time
R. Motor. Toggle

r k l k k .

F ServicesteeringMotor

Manages the steering motor servo-style.
The commands are:

OOOOOOOb Steer Richt
OOOOOO10b Steel left
OOOOOOOOb steer straight
OOOOOO11b Error-Invalid command

The measured positions are:
OOOOOO10b Near Richt
OOOOOOO1b Near Left
OOOOOOOOb Center
00000011b Either Far Right or Far Left

since there is not a direct mapping bitwin the commands and the positions,

US 2003/0114075 A1 Jun. 19, 2003
73

Shift:96Rx. ASM
; the code is a little more lengthy and a little less slick.

F-Service Steering Motor:
lda RBeen TO Center
bne LSSM Normal

lda PPortD
and #D Steer POS Bits
Cmp #D Steer Far Pos
beq LSSM Init Motor Move

lda E1
sta R Been-To Center ; (or near r or L)
Jmp LSSMNormal

; in the case that the vehicle is turned on and doesn't know if it is far r or far L
LSSM Init. Motor Move:

; move motor fast for 0.5 s Right, if it doesn't get to ctr, move for 0.5 s Left
; if it's still not at center turn motors off
lda R_Startup Steer
beq LSSM Motor Right Init
Cmp h
beq LSSM Motor Left Init

jmp LSSM Motor Off

LSSM Motor Right Init:
inc RStartup Motor Counter Small
lda RStartup Motor Counter Small

s LDummy SSM Motor Right Fast-A-Spring ; still not time
a #O

sta RStartup Motor Counter Small
inc RStartup Motor. Counter-Large

lda R-Startup Motor Counter-Large
Cmp #D Startup Motor Counts
bne LDummy SSM Motor Right-Fast A Spring ; still not time
try moving left now
da #1

Sta RStartup Steer

Sta RStartup Motor Counter Small
Sta RStartup Motor Counter-Large

LSSM Motor Left Init:

inc RStartup Motor Counter-Small
da RStartup Motor Counter Small

g pummy SSM Motor-Left Fast A Spring ; still not time d
Sta RStartup Motor Counter Small
inc RStartup Motor Counter Large

US 2003/0114075 A1 Jun. 19, 2003
74

Shift:96Rx. ASM
lda RStartup Motor Counter-Large
Cmp #D Startup Motor Counts
bne LDummy. SSM Motor Left Fast A-Spring ; still not time
lda i2
Sta. R Startup Steer

jmp LSSM Motor Off ; never got out of far l or r something is
Wrong

LDummy SSM Motor-Left Fast-A Spring:
Jmp LSSM Motor Left Fast A Spring

L. Dummy-SSM Motor-Right Fast A Spring
imp LSSM Motor Right Fast A Spring

LSSM Normal:
; check for command error

lda R Steer Cmd
and #OOOOOO11b
Cmp #00000011b
bne SSM Get Current

jmp SSMLError

; get the current position
SSM Get Current:

lda PPorto r
and iD Steer Pos Bits

cmp iD Steer Ctrl Pos
bed LSSM Cur. Center

Cmp #D Steer Near Left Pos
bed LSSM Curnear

Cmp #D Steer. Near Right-Pos
beq SSM Cunear R

; current position bits indicate it's either far left or far right
; check where it was last time to see where it must be now
da RLast Mid-Pos
Cmp #D. Steer Near Left Pos
bed LSSM Curlfar

Cmp #D Steer. Near Right-Pos
beq LSSMCur. Far R

jmp LSSMLError ; if sensor is broken or unplugged it will
go here

; since last mid pos was always center
; compare to command and decide which way to move and at what pwm
SSM Cur. Center:

lda #O
Sta. R. Current Steer POS

Stal R. Last Mid-Pos

