»UK Patent .,GB

2049974

(13)B

(45)Date of B Publication 11.11.2020

(54) Title of the Invention: €chniques for handling interrupts in a processing unit using
virtual processor thread groups and software stack levels

(51) INT CL: GO6F 9/48 (2006.01) GO6F 9/54 (2006.01)
(21) Application No: 1618921.9
(22) Date of Filing: 09.11.2016

(30) Priority Data:

(31) 62255766 (32) 16.11.2015 (33) US
(31) 15334857 (32) 26.10.2016 (33) US
(43) Date of A Publication 05.07.2017

(56) Documents Cited:

US 6430643 B1 US 20050080969 A1

(58) Field of Search:

As for published application 2545974 A viz:

INT CL GO6F

Other: WPI, EPODOC, Patent Full-Text, XPSPRNG,
XPI3E, XPIPCOM, XPMISC, XPRD, XPESP, TDB,
INSPEC

updated as appropriate

Additional Fields
Other: None

GO6F 13/24 (2006.01)

(72) Inventor(s):

Richard Louis Arndt
Florian Alexander Auernhammer

(73) Proprietor(s):
International Business Machines Corporation
(Incorporated in USA - New York)
New Orchard Road, Armonk, New York 10504,
United States of America

(74) Agent and/or Address for Service:

IBM United Kingdom Limited
Intellectual Property Law, Hursley Park,
WINCHESTER, Hampshire, SO21 2JN,
United Kingdom

d V.64%5C dO

117

0Ll

¢0l

9poN DuIssan0.d

001

[unbiy

PYOL Nun
bUISS9204-

ay0l Wun
PUISS3201d

142

201 9pON buissa00.1d

S¥01 HuN
pUISS920.d

Ev01 HUM
puISS820.4

2117

7 aunbuy,

¥¢C 191105U0)
92IN0S 1dn.Jiau|

9¢¢ 9lqel
JUBWUDISSY JUsA3

WQc¢¢ 19[104U0Y O/

]

00¢

Qg (8)181depy O
WpLZ sng O/

1447

1opodag I ...
Jo)OEd

|

N 2107 L-N 8109

717 Saur uondsox3

0L¢ sng O/l

Yz 19]|04u0)
92.n0S 1dnJJa)u]

9¢¢ 9ldel
JUSWUDISSY JUSAT

00¢
7 3100

Y01 Nun buissasoid

B0Z¢ J9|053u0D Q]

BOEC (S)18)depy O]

—EyLe sng8 O/l

474
o|JE |
JX2JU0)
JdnuJa)u|

1447
19p023(]

JONIEd

O%Z 19]|04U0)
uonejuasaid
Janlia)u|

00¢
| 9100

317

D¢ unbig
HY 10l

JaquINN 82JN0S JUSAT

00¢ abessay (|03J) 1Jdnuaju| Jo pu3

D¢ uUnbLy

NV JOId

JaquInNN 92.n0S JUaAT

70€ (IWHN) 9bessa|y uonaaley uonealoN

AJlIoU4 JUBA3

¢0t

A

AN

y'¢ anby
P Joid

JaquINN 824N0S JUSAJ

(JaquinN peaiy | J0ssad0.ld [edisAyd)

JaquinN JabJe | JusA3

) 90BSSO|\ UONBIIINON JUSAT

417

90

1ap0oou]
abesso
Janliau|

t ainbuy,

L7 Sng O/] MOWaW T 10U

GOp saur 108ley % 103

I

70
18p099(]

obesso

II

TP le— 717 18 O/
L NS4S [447
JaquinN —3— Jop0d(
Aoud | 92inos 0 NS3-S L }JONIEd _ -

JUSAJ

JUSAT

c0P saul Jabbu | 1dnuia)u
(821n0S JUBAT Jad MOy BuQ)
Og¥ (Lv3) 2|qe L juswubissy juen3
¥ ¥ 19]|03U0)) 92In0S JdnLS)u|

5/17

¢ aunby 705 o0essajy |03 JoBbu L

1Y JOld GOG abessa 10aley Jabbl | —

HIIIIIE

S SR I A S S

SR N U N A N

BRI U I R R

SN2 AN N N N N 5
_\,_mu_-n_.ll

LI N N N N B o KT

JaquInN JaquINN

L7 sng O/ Mows

90G
Japoou]

obBSSO

¥0S O/

18p029(]
obBSSO

pealy | Aol 92.N0S Aond (_ oywwh_h,ow
1eoISAUd JUSA3 JUSAJ paubIsSy | bunelsadp DIIEA
(aur7 uondaox3g Jad Moy auQ) €0G saur 4eb6u | ydnusul

2GS (101) @1ge xsjuo) Jdnusju

G (7d]) 19]]0J3u0n) uoneuasald Jdnuajul

/17

SO

719 ¢ 20essawl

(103) 1dnusjul Jo pua
OAI09Y

9 aunbiy

HY J0lg

19 pouad

g} a|geJnbiuo JIepp

019 ¢obessow
J03() BAI908Y

SO\

209 (1d]) J19]]023u09 uoneussaid
Jdnusiul 0} N3 pueS

909 (INN3J) ebessaw
uo1ed}OU JUusAS pPfing

SO\

%09 ¢.19001)) 1dn.ig)u|

ON

¢09 uibsg

N7

/ unbuy,
TV 101

91/ IWN3 Ul paioads

90Jn0S 0} \AMN aNnss|

ON

Y1/ INN3 Jad Ajuoud Jusas
PUB JBqWNU 82JN0S JUBAS
J0S pue plol} paubisse JUassy

Z 1/ buIssaoold Jol3

004

SO\

01/ ¢AloLd ydnuaiul Bulpuac
< IAN3 ul Aidoud Jusa3

SO A

90/ ¢ paubisse
JdnJisul buipusd

SO A

70/ ¢INNT SAI808Y

¢0/ uibsg

ql/ ldnusul
puipuad UlIm paJeIoosse

90JN0S 0} NN anss|

02/ WN3 Jad Ajuoud
JUSAS pue Jaqunu

92JN0S JUSAS AJIPOIA

3/17

018 MOJ UlIm pa)eloosse
aul| Uondaoxa 19s9Y

9 aunbuy,
1V J0Iid

008 ¢,Aliold bunelado
< Aluoud buipusd

08

oN ¢,9NJ) = paubIssSy

¢08 uibag

SO\

908 MOJ Y)lIMm pa)eloosse

aul| uondaoxs 19S

917

6 UnbLy,

1Y 1014

Q16 welboisd paydnuaul
0) MO[} [0JJUOD uJn}aJ pue anu)
0] JIq 3|geus uondaoxs 189S A|[eoIwo)y

016 9NnjeA
JdnJia)ul-a1d 0) pa)eIooSSE
MOJ Ul Ajliold Bunelado 1osay

716 103 [eubis
0} Dd| 0} 810}S Q| anss|

Z 16 24n0S woJ} sydnuisjul
g|puey 0] palajsibal welboid aynoex3

016 Od| 8u} 0} peo)
OININ & buinssi Aq 1dnua)ul

pulpuad abpajmoudy

906 Ja|puey 1dnusjul
0] MOJ} |0JJU0D 8buey)

00R)Iq 3|geua uondaoxs Josay

SO\

Y06 ¢,9N1] =
JIq 3|qeuUa uondaoxs pue
aul| uondaox3

206 uibag

10/17

[anbry

NV JOld

0l 1| 92Jn0S uonealjnou
puipuad 0) abessawl 10alal anss|

6011 Aoud buipuad
pue paubIsSse MOJ 19Say

8011
¢,Ajuold buipuad
> AJliold buneladp

9011 eyep 210is QNI
Jad Alioud bunelado 189

7Ol 1
¢,SSalppe Allioud bunelado e

210}S O|ININ SAI899Y

0I aunbif

Y J0ld

000 | elep asuodsal peo| se ydnusjul buipuad
aU] JOJ Jaquinu 82In0S JusAs ay) uin)a.
pue ‘1dnuid)ul buipuad ay) Joj pjall paubisse

1J9sseap ‘1dnJisyul buipuad Jo Ajuoud
JusAs 0) Ajuold buneiado abueys Aj[eaiwuo)y

00| ¢SS3IppE
abpajmouyde Jdnua)ul e

PEO] ONIIN SAI999Y

. 2001 uibeg

1117

c] aunbiy

2Joubl 0] S)Ig (18pJO-Jamo)) 10 Jaquinn
14 9 4 | 0

spealy |
7 10SS32014 [ENUIA

= ———e===== 8

AN —— . 1

00t1

2] unbry

("ON peaiy| J0SS8201d [BNMIA)

Ao JUSAT | "ON 824n0S JusAT | aJoubi 0) S)Ig Jo JaquinN | ‘ON 18ble] JusAT | 19Ae] | | $S890.4

2021 (INN3) abessapy uonedljoN Jusa3

12117

90vL

Japoou3
obBSSON
Jdn.aisu|

pI aunbLy

01¢ sng O/| MOwa

$5900.d

A NWS4S [,
N 7
18p023(]

S S I N I
.... T v
-

0 INS3-S -IL Jox0ed
aJouDl
0} S}q JO AJIold
[OAS7] | JaqWInNN

(821n0S JUSAT Jad MOY BUQ)
0¢¢ (Ly3) 2|qe | Juswubissy Jusa3

Y (DS]) J9)|0u0n) 824n0S Jdnuis)u

jaquinN | €01 saui Jabbu | 1anusju
90IN0S

JUSAT

L¢ SNd Ol

ﬂ-

1317

I

II

JaqUINN

pealy |
[BOISAU

Aol
JUSAT

JoqUINN
90IN0S
JUSAT

g

S

ST unbip

Aol
ubissy | Bunesedp

o\
=
D
i
Al

dl
$S900.d

(3UIT uondaox3 Ja4 moy auQ)
¢v¢ (101) 919e | 1xajuo) Jdnusiu|

0Lz shg O/ Aowa\
/0G| abessay |03 Jabbu |

GOG| obessa|y J0aley Jabb1 | (—)

N INSdd

9061
19pooUT

obeSSa

70G1 O/l
padde

AIOWSN

¢0G1
18p099(]

obRSSON

EI
P

80G1
10)099S

#dA | PIEA

O

EI
%
'-'—I'-'.-
o || o

0G| Saulq Jabbu | 1dnu8)u

0%z Ja||05uon) uonejuasald ldnual

1417

0C1¢ Saul
uondaox3 Jasn

acle
SauI uondaox3 SO

ECLC
SaulT uondsox3
JOSINBAAH

K9] anbLy

9ZYZ 1D 1987 %0B]IS Jas)

azig 101 19h7 19818 SO

BZvZ 10| [9A8T YOEIS JOSIAIBdAH

1517

99] aunbif

2Joubl 0) Sl JO JaquInN

— NS 0T
0G1 obessauw 10s[e) Jabbu | (| $58901d AN

#190.Je | JUSA WOl

N Jabbu) 1anua)u
| v00!
U0I)03|8S
Alepuooag
Z 1900l Jdnia)u
L Jobbu) 1dnua)u
0 JabbLy Jdnua)u|

304 | J0}I9I95

(| SS92014
{

¢¥¢ 10| WO

16/17

/] unbiy

777 | MOJ P3)09as
10 92Jn0S UONEIIOU paubisse

0] abessaw 10alal anss| ON

b1/ ¢ MO AUE
J0} Ajlioud Bunelsado
< Ajlioua ydnusu

02/ 120011
0] MOJ 199|098

SO

ON

¢L/1 ¢paubisse
jdnuJajul buipuad
Inoyim sy Auy

91/ 8601
0] MOJ 109|985

SO\

81/l AN
Jad moJ pa1o9|es Jo Ajlold

pUB ‘# 824n0s ‘paubisse
Jayng buipuad Januiajul 189S

L/ | @bessauwl Joalal anss

SO\

3041 ¢SHY ON
ON

0.1 S# d/\ buiydjew aney
Jeyl SMOJ JO (] SS820.4 Ylim
q] ss820.d NNJ 2/edwo)

V0L ¢I9AS] J9S(]
ON

€0/ (S)qg Jamoj Jo # pauoads
3y} bulioubl) S# A PIfeA e

UM # 180Je) JusAs aledwo)

SO

¢0LL ¢IANS SAI909Y

10/ uibag

17117

2181 (S)mol Jo

}J PIEA 19594

0081

O

N

9] unbiy

0081 ¢.paubisse (S)MoY

SO A

708}
¢)Q PlleA 19sai 0)

310]S O|ININ 9AIB09

SO\

2081 (S)moJ paubisse
UIIM P3JRIDOSSE 824N0S JUBAS
0] abessauw Jo9(al anss|

0181 (S)mo.
10 pIleA pue paubisse
JoSal A|[RoIWO)Y

TECHNIQUES FOR HANDLING INTERRUPTS IN A PROCESSING UNIT USING
VIRTUAL PROCESSOR THREAD GROUPS AND SOFTWARE STACK LEVELS

BACKGROUND

[0001] The present disclosure 1s generally directed to data processing systems and, more
specifically, to techniques for handling interrupts in a processing unit of a data processing

system using virtual processor thread groups and software stack levels.

[0002] In data processing systems, an interrupt signal (interrupt) 1s generated to indicate to a
processor that an event requires attention. Depending on a priority of an interrupt, a processor
may respond by suspending current activities, saving state, and executing a function (1.e., an
interrupt handler) to service the event. For example, hardware interrupts may be generated by
an input/output (I/O) device, e.g., disk drive controller, a keyboard, a mouse, or other peripheral
device. In contrast, software interrupts may be caused either by an exception condition in a
processor or a special instruction in an instruction set architecture (ISA) that, when executed,
causes an interrupt to be generated. Following interrupt servicing, a processor resumes

suspended activities.

[0003] An interrupt handler, also known as an interrupt service routine (ISR), 1s a callback
function (e.g., implemented 1n firmware, an operating system (OS), or a device driver) whose
execution 1s triggered by an interrupt. Interrupt handlers perform various interrupt dependent
functions. For example, pressing a key on a computer keyboard or moving a computer mouse
triggers interrupts that call respective interrupt handlers to read a key or a mouse position and
copy associated information into memory of a computer. In data processing systems, an
interrupt controller may be implemented to combine multiple interrupt sources onto one or
more processor exception lines, while facilitating the assignment of priority levels to different

interrupts.

SUMMARY

[0004] A technique for handling interrupts 1n a data processing system includes receiving, at an
interrupt presentation controller (IPC), an event notification message (ENM). The ENM
specifies a level, an event target number, and a number of bits to ignore. The IPC determines a
agroup of virtual processor threads that may be potentially interrupted based on the event target
number, the number of bits to 1gnore, and a process 1dentifier (ID) when the level specified in
the ENM corresponds to a user level. The event target number 1dentifies a specific virtual
processor thread and the number of bits to 1gnore 1dentifies the number of lower-order bits to
1gnore with respect to the specific virtual processor thread when determining a group of virtual

processor threads that may be potentially interrupted.

BRIEF DESCRIPTION OF THE DRAWINGS

[000S] Embodiments of the invention will now be described, by way of example only, with
reference to the accompanying drawings in which:

Figure 1 1s a high-level block diagram of an exemplary data processing system in accordance
with one embodiment of the present disclosure;

Figure 2 1s a more detailed block diagram of an exemplary processing unit in accordance with
one embodiment of the present disclosure;

Figure 3A 1s a diagram of exemplary fields of a conventional event notification message
(ENM);

Figure 3B 1s a diagram of exemplary fields of a conventional notification rejection message
(NRM);

Figure 3C 1s a diagram of exemplary fields of a conventional end-of-interrupt (EOI) message;
Figure 4 1s a block diagram of relevant components of an exemplary conventional interrupt
source controller (ISC);

Figure 5 1s a block diagram of relevant components of an exemplary conventional interrupt
presentation controller (IPC);

Figure 6 1s a flowchart of an exemplary process implemented by a conventional ISC to handle

interrupts;

Figure 7 1s a flowchart of an exemplary process implemented by a conventional IPC to handle
interrupts:;

Figure 8 1s a flowchart of another exemplary process implemented by a conventional IPC to
handle interrupts;

Figure 9 1s a flowchart of an exemplary process implemented by a conventional processor core
to handle interrupts;

Figure 10 1s a flowchart of yet another exemplary process implemented by a conventional IPC
to handle interrupts;

Figure 11 1s a flowchart of still another exemplary process implemented by a conventional IPC
to handle 1nterrupts;

Figure 12 1s a diagram of exemplary fields of an ENM that 1s configured according to one
embodiment of the present disclosure;

Figure 13 1s a graph that depicts a relationship between the number of lower-order bits to 1ignore
and virtual processor (VP) threads that may service an associated interrupt according to an
embodiment of the present disclosure;

Figure 14 1s a block diagram of relevant components of an exemplary ISC configured according
to the present disclosure;

Figure 15 1s a block diagram of relevant components of an exemplary IPC configured according
to the present disclosure;

Figure 16A 1s a block diagram that 1llustrates that the IPC of Figure 15 1s configured according
to one embodiment of the present disclosure to implement three interrupt context tables (ICTs),
1.€., a hypervisor stack level ICT, an operating systems (OS) stack level ICT, and a user stack
level ICT;

Figure 16B 1s a block diagram of relevant components of an exemplary selector of the IPC of
Figure 15;

Figure 17 1s a flowchart of an exemplary process implemented by an IPC, configured according
to the present disclosure, to handle interrupts; and

Figure 18 1s a flowchart of another exemplary process implemented by an IPC, configured

according to the present disclosure, to handle interrupts.

DETAILED DESCRIPTION

[0006] With reference now to the figures, wherein like reference numerals refer to like and
corresponding parts throughout, and 1n particular with reference to Figure 1, there 1s 1llustrated a
high level block diagram depicting an exemplary data processing system 100 that implements
one or more interrupt presentation controllers (IPCs) and multiple interrupt source controllers
(ISCs) configured 1n accordance with one or more embodiments of the present disclosure. In the
depicted embodiment, data processing system 100 1s a cache coherent symmetric multiprocessor
(SMP) data processing system including multiple processing nodes 102 for processing data and
instructions. Processing nodes 102 are coupled to a system interconnect 110 for conveying
address, data and control information. System interconnect 110 may be implemented, for

example, as a bused interconnect, a switched interconnect or a hybrid interconnect.

[0007] In the depicted embodiment, each processing node 102 1s realized as a multi-chip
module (MCM) containing four processing units 104a-104d, each which may be realized as a
respective integrated circuit. The processing units 104 within each processing node 102 are
coupled for communication to each other and system interconnect 110 by a local interconnect
114, which, like system interconnect 110, may be implemented, for example, with one or more
buses and/or switches. System interconnect 110 and local interconnects 114 together form a

system fabric.

[0008] Processing units 104 each include a memory controller (not shown) coupled to local
interconnect 114 to provide an interface to a respective system memory 108. Data and
instructions residing 1n system memories 108 can generally be accessed, cached, and modified
by a processor core 1n any processing unit 104 of any processing node 102 within data
processing system 100. System memories 108 thus form the lowest level of memory storage in
the distributed shared memory system of data processing system 100. In alternative
embodiments, one or more memory controllers (and system memories 108) can be coupled to

system interconnect 110 rather than a local interconnect 114

[0009] Those skilled in the art will appreciate that SMP data processing system 100 of Figure 1

can 1nclude many additional non-illustrated components, such as interconnect bridges, non-

volatile storage, ports for connection to networks or attached devices, etc. Because such
additional components are not necessary for an understanding of the described embodiments,
they are not 1llustrated 1n Figure 1 or discussed further herein. It should also be understood,
however, that the enhancements described herein are applicable to data processing systems of
diverse architectures and are 1n no way limited to the generalized data processing system

architecture illustrated in Figure 1.

[0010] Referring now to Figure 2, a more detailed block diagram of an exemplary processing
unit 104, 1n accordance with one embodiment of the present disclosure, 1s depicted. In the
depicted embodiment, each processing unit 104 1s an integrated circuit including multiple
processor cores 200 for processing instructions and data. In a preferred embodiment, each
processor core 200 supports simultaneous multithreading (SMT) and thus 1s capable of

independently executing multiple hardware threads of execution simultaneously.

[0011] Each processor core 200 1s coupled to an interrupt presentation controller (IPC) 240 via
memory I/0 bus 210. In one or more embodiments, IPC 240 includes a single interrupt context
table (ICT) 242 that maintains various information for physical processor (PP) threads. In one
or more other embodiments, a different ICT 242 1s implemented for each software stack level
that 1s dispatched on a PP thread (see, for example, Figure 16A). As is illustrated in Figure
16A, ICT 242a 1s implemented for a hypervisor (Hyp) stack level, ICT 242b 1s implemented for
an operating system (OS) stack level, and ICT 242¢ 1s implemented for a user stack level. It
should be appreciated that an IPC configured according to the present disclosure may
implement more than three different software stack levels. In one or more embodiments, IPC
240 1s coupled to each processor core 200 via respective exception lines 212, which are utilized
to notify each processor core 200 of an associated interrupt for an assigned virtual processor
thread. In embodiments 1n which a different ICT 242 1s implemented for each software stack
level, different exceptions lines 212 are implemented for each software stack level. IPC 240 1s
also coupled to I/O controllers 220 via memory I/0 bus 210. IPC 240 1s configured to
recetve/send information via memory I/0 bus 210 from/to I/O controllers 220 and/or processor

cores 200.

[0012] Each I/O controller 220 includes a packet decoder 222 and an interrupt source controller
(ISC) 224 that includes an event assignment table (EAT) 226, whose values may be set via
software (e.g., by a hypervisor). Each I/O controller 220 1s coupled to an I/O adapter 230 via
an I/0 bus 214. A device or devices (not shown), e.g., disk drive, keyboard, mouse, may
1nitiate interrupt generation by I/O controller 220 by signaling I/O adapter 230 to send a packet
to packet decoder 222 of I/0 controller 220 via I/O bus 214. Event assignment table (EAT) 226
includes information that I/O controller 220 uses to create event notification messages (ENMs)
that are sent to IPC 240 via memory I/O bus 210. While only a single interrupt presentation
controller 1s 1llustrated 1n Figure 2, 1t should be appreciated that a processing unit configured

according to the present disclosure may include more than one interrupt presentation controller.

[0013] With reference now to Figure 3 A, a structure of an exemplary conventional event
notification message (ENM) 302 1s illustrated. ENM 302 includes an ‘event target number’
field, an ‘event source number’ field, and an ‘event priority’ field, as well as a field (not shown)
that identifies the message as an event notification message. A value in the ‘event target
number’ field 1identifies a physical processor thread that 1s to be interrupted to facilitate
servicing of an associated interrupt by an associated processor core. A value in the ‘event
source number’ field 1dentifies a notification source that generated the interrupt. A value 1n the
‘event priority’ field identifies a priority level of the interrupt. ENM 302 1s generated and
1ssued by a conventional ISC 424 (see Figure 4) to indicate that a notification source (1dentified
by the ‘event source number’ field has generated the interrupt) and 1s received and processed by

a conventional IPC 540 (see Figure 5).

[0014] With reference now to Figure 3B, a structure of an exemplary conventional notification
rejection message (NRM) 304 1s illustrated. NRM 304 includes an ‘event source number’ field,
as well as a field (not shown) that identifies the message as a notification rejection message.
NRM 304 1s generated and 1ssued by IPC 540 (see Figure 5) and 1s received and processed by
ISC 424 (see Figure 4) to indicate, to ISC 424, that the requested interrupt was rejected and

needs to be reissued.

[001S] With reference now to Figure 3C, a structure of an exemplary conventional end-of-

interrupt (EOI) message 306 i1s illustrated. EOI message 306 includes an ‘event source number’

field, as well as a field (not shown) that identifies the message as an EOI message. EOI
message 304 1s generated and 1ssued by IPC 540 (see Figure 5) and sent to ISC 424 (see Figure
4) to indicate, to ISC 424, that an interrupt requested by a device associated with the event

source number has been serviced.

[0016] With reference to Figure 4, relevant components of conventional ISC 424 are 1llustrated.
It should be appreciated that ISC 424 1s replaced by ISC 224 1n a processing unit configured
according to the present disclosure. ISC 424 1s included within an interrupt controller that also
includes a packet decoder 422 that 1s coupled to an I/O bus 414 (similar to I/O bus 214 of
Figure 2), a message decoder 404 (that 1s used to decode EOI messages 306 and/or NRMs 304
received via memory I/0 bus 410 (similar to memory I/O bus 210 of Figure 2)), an event
assignment table (EAT) 426, and an interrupt message encoder 406 that utilizes appropriate
information 1n EAT 426 to generate ENMs 302 for an interrupt source. Packet decoder 422 1s
configured to decode packets received via I/O bus 414 and select a finite state machine (FSM)
to process a recetved packet based on an event source number of a source of the packet. Asis
1llustrated, ISC 424 includes an FSM for each row (i.e., S-FSM 0 through S-FSM N) in EAT
426 that 1s configured to write information into EAT 426 to facilitate building ENMs 302. It
should be appreciated that the event source number illustrated in EAT 426 1s not a field, but 1s
only used to indicate a row number. For example, source number ‘0’ 1s assigned to row number
‘0’ of EAT 426, source number ‘1’ 1s assigned to row number ‘1’ of EAT 426, etc. In EAT
426, each row has an associated ‘event priority’ field and an ‘event target number’ field, whose
values are utilized to populate corresponding fields in an ENM 302, which 1s generated by

interrupt message encoder 406 when an interrupt 1s requested by an associated I/0 device.

[0017] With reference to Figure 5, relevant components of conventional IPC 540 are 1llustrated.
It should be appreciated that IPC 540 1s replaced by IPC 240 1n a processing unit configured
according to the present disclosure. IPC 540 includes a message decoder 502, a memory
mapped I/O (MMIO) unit 504, and a message encoder 506 coupled to memory I/O bus 410.
Processor cores communicate with IPC 540 via MMIO unit 504, using MMIO loads and MMIO
stores. IPC 540 receives messages from ISC 424 via message decoder 502. IPC 540 generates
messages for ISC 424 via message encoder 506. MMIO unit 504 i1ssues a trigger EOI message

507 to message encoder 506 to cause message encoder 506 to generate and send an EOI

message 306 on memory I/0 bus 410 to ISC 424. Message decoder 502 1s coupled to selector
522, which 1s configured to select an FSM (i.e., one of P-FSM 1 through P-FSM M) based on
an event target number associated with a recetved ENM 302. FSMs of IPC 540 access interrupt
context table (ICT) 542 to initiate generation of an exception to a physical processor thread
executing on a processor core and to 1nitiate generation of a trigger reject message 505 to

message encoder 506, which generates an NRM 304 1n response to trigger reject message 5035.

[0018] It should be appreciated that the physical thread number 1llustrated in ICT 542 1s not a
field, but 1s only used to indicate a row. For example, physical thread number ‘0’ 1s assigned to
row number ‘0" of ICT 542, physical thread number ‘1’ 1s assigned to row number ‘1’ of ICT
542, etc. In ICT 542, each row has an associated ‘valid’ field, an ‘operating priority’ field, an
‘assigned’ field, an ‘event source number’ field, and an ‘event priority’ field, whose values are

set by FSMs and may be accessed to return values to a processor core 1n response to an MMIO

load.

[0019] It should be appreciated that various blocks of the processes described herein as being
executed by an ISC (both conventionally and per embodiments of the present disclosure) may
run simultaneously per row of an associated EAT and that various blocks of the processes
described herein as being executed by an IPC (both conventionally and per embodiments of the
present disclosure) may run simultaneously per row of an associated ICT. As examples, at least
portions of the various processes may be performed by FSM logic associated with a given row
of an EAT and/or ICT or an engine may be implemented to perform the various processes while

sequencing through all rows of an EAT and/or ICT.

[0020] With reference to Figure 6 an exemplary process 600 1s 1llustrated that 1s implemented
by ISC 424 to handle interrupts. Process 600 may, for example, be 1nitiated 1n block 602 when
ISC 424 receives input via I/O bus 414. Next, in decision block 604, ISC 424 determines
whether the received input corresponds to an interrupt trigger (or interrupt trigger pulse). In
response to the recerved input not being an interrupt trigger control loops on block 604. In
response to the received input being an interrupt trigger in block 604 control transfers to block
606. In block 606, ISC 424 builds an ENM 302 based on associated information in EAT 426.
Next, 1n block 608, ISC 424 sends ENM 302 to IPC 540 via memory I/O bus 410.

[0021] Then, 1n decision block 610, ISC 424 determines whether a reject message (1.e., an
NRM 304) has been recetved from IPC 540. For example, IPC 540 may generate an NRM 304
1n response to a physical processor thread that 1s designated to be interrupted to service the
interrupt having a higher operating priority than an event priority of the interrupt. In response
to ISC 424 receiving an NRM 304 for ENM 302 in block 610 control transfers to block 614,
where process 600 waits a configurable time period before returning control to block 606 where
another ENM 302 1s built for the interrupt. In response to ISC 424 not receiving an NRM 304
for ENM 302 1n block 610 control transfers to decision block 612. In block 612, ISC 424
determines whether an EOI message 306 has been received from IPC 540. In response to ISC
424 receiving an EOI message 306 for ENM 302 1n block 612 control returns to block 604. In
response to ISC 424 not recerving an EOI message 306 for ENM 302 1n block 612 control
returns to block 610.

[0022] With reference to Figure 7 an exemplary process 700 1s 1llustrated that 1s implemented
by IPC 540 to handle interrupts. Process 700 maybe initiated in block 702 when IPC 540
receives input via memory I/0 bus 410. Next, in decision block 704, IPC 540 determines
whether an ENM 302 was received. In response to the received input not being an ENM 302
control loops on block 704. In response to the received input being an ENM 302 1n block 704
control transfers to decision block 706. In block 706, IPC 540 determines whether a valid bit
for a row 1n ICT 542 that 1s assigned to an event target number (1.e., physical processor thread)
specified in ENM 302 1s asserted (1.e., whether the specified physical processor thread 1s

populated and operational, as specified by a valid field of the physical processor thread in ICT
542).

[0023] In response to the valid bit not being asserted 1n block 706 control transfers to block
712, where error processing 1s initiated, and then returns to block 704. In response to the valid
bit being asserted in block 706 control transfers to decision block 708. In block 708, IPC 540
determines whether a pending interrupt 1s already assigned to a physical processor thread
associated with the event source number (by examining a value of an ‘assigned’ field of the
specified physical processor thread in ICT 542). In response to a pending interrupt not already
being assigned to the specified physical processor thread in block 708 control transfers to block

714. In block 714 IPC 540 asserts the “assigned’ field, and sets the ‘event source number’ field,

10

and the ‘event priority’ field for the specified physical processor thread based on values

included in ENM 302. Following block 714 control returns to block 704.

[0024] In response to a pending interrupt already being assigned to the physical processor
thread 1n block 708 control transters to decision block 710. In block 710 IPC 540 determines
whether an event priority of a new interrupt, as specified in the ‘event priority’ field of ENM
302, 1s greater than an event priority of an already pending interrupt, as specified 1n the ‘event
priority’ field of the physical processor thread in ICT 542. In response to the event priority of
the new interrupt not being greater than the event priority of the pending interrupt control

transfers trom block 710 to block 716. In block 716 IPC 540 1ssues an NRM 304 to the event

source number specified in ENM 302 (1.e., the source associated with the new interrupt).

[0025] In response to the event priority of the new interrupt being greater than the event
priority of the pending interrupt control transters from block 710 to block 718. In block 718
IPC 540 1ssues an NRM 304 to the event source number specified in ICT 542 (1.e., the source
associated with the pending interrupt). Next, in block 720, IPC 540 modifies the event source
number and the event priority, as specified in ENM 302, for the physical processor thread in
ICT 542. Following block 720 control returns to block 704.

[0026] With reference to Figure 8 an exemplary process 800 1s 1llustrated that 1s implemented
by IPC 540 to assert/deassert exception lines based on associated ‘assigned’ fields being
asserted (1ndicating a pending interrupt) and an event priority for the pending interrupt being
areater than (or less than or equal to) an operating priority of a physical processor thread that 1s
to be interrupted to facilitate servicing the interrupt by an associated processor core. Process
800 may be periodically 1nitiated 1n block 802 by IPC 540 to determine whether exceptions
lines to respective processor cores require assertion or de-assertion. Next, in decision block
804, IPC 540 determines whether an assigned field for each row 1n ICT 542 1s asserted (1.e.,

true), which indicates that an interrupt 1s pending for an associated physical processor thread.

[0027] In response to an ‘assigned’ field not being asserted in a row of ICT 542 control
transfers from block 804 to block 810. In block 810 IPC 540 deasserts an exception line

associated with a row that was recently unassigned or maintains the exception line in a

11

deasserted state for a row that 1s unassigned, but not recently unassigned. Following block 810
control returns to block 804. In response to an assigned field being asserted in a row of ICT
542 control transfers from block 804 to decision block 806. In block 806, IPC 540 determines
whether an event priority of a pending interrupt 1s greater than an operating priority of an

associated physical processor thread.

[0028] In response to the event priority of a pending interrupt not being greater than an
operating priority of an associated physical processor thread 1n block 806 control transfers to
block 810, where associated exception lines remain deasserted. In response to the event
priority of a pending interrupt being greater than an operating priority of an associated physical
processor thread 1n block 806 control transfers to block 808, where associated exception lines

are asserted. Following block 808 control returns to block 804.

[0029] With reference to Figure 9, an exemplary process 900 that 1s implemented by a
processor core to handle interrupts 1s 1llustrated. It should be appreciated that each processor
core maintains an exception enable bit (e€.g., 1n an internal register) for each associated
exception line. Process 900 may be periodically executed by a processor core to determine
whether a physical processor thread should be interrupted to facilitate executing, by the
processor core, an interrupt handler to service an interrupt. Process 900 1s 1nitiated in block 902
at which point control transtfers to decision block 904. In block 904 the processor core
determine whether both an exception line and an exception enable bit are asserted. A processor

core masks interrupts by deasserting the exception enable bit.

[0030] In response to the exception line and/or the associated exception enable bit not being
asserted control loops on block 904. In response to both the exception line and the associated
exception enable bit being asserted control transfers from block 904 to block 906. In block 906
the processor core resets the exception enable bit (to prevent subsequent interrupts from
interrupting the current interrupt). Next, in block 908, the processor core changes control flow
to an appropriate interrupt handler. Next, the processor core acknowledges the pending
interrupt by 1ssuing a MMIO load to IPC 540. Then, 1n block 910, the processor core executes
a program that 1s registered to handle interrupts from the source (specified by a value 1n the

‘event source number’ field).

12

[0031] Next, in block 914, following completion of the program, the processor core 1ssues a
MMIO store to IPC 540 to signal an EOI. Then, 1in block 916, the processor core, resets the
operating priority 1n the row 1n ICT 542 that 1s associated with the physical processor thread to
a pre-interrupt value. Next, 1n block 918, the processor core atomically asserts the exception
enable bit and returns control flow to a program that was interrupted to service the interrupt.

Following block 918 control returns to block 904.

[0032] With reference to Figure 10, an exemplary process 1000 that 1s implemented by IPC 540
to handle interrupts 1s 1llustrated. Process 1000 may be periodically executed by IPC 540 to
determine whether IPC 540 has received a communication (e.g., MMIO load or a MMIO store)
from a processor core with respect to a pending interrupt. Process 1000 1s 1nitiated in block
1002 at which point control transfers to decision block 1004. In block 1004 IPC 540

determines whether a MMIO load has been received at an interrupt acknowledge address.

[0033] In response to a MMIO load not being received at the interrupt acknowledge address
control loops on block 1004. In response to a MMIO load being received at the interrupt
acknowledge address control transfers to block 1006. In block 1006 IPC 540 atomically sets an
operating priority to the pending interrupt priority and resets the assigned field for the interrupt

in ICT 542, and returns the pending interrupt source number as response data to the MMIO

load. From block 1006 control returns to block 1004

[0034] With reference to Figure 11, an exemplary process 1100 that 1s implemented by IPC
540, to handle changes 1n operating priority for a physical thread, 1s i1llustrated. Process 1100
may be periodically executed by IPC 540 to determine whether IPC 540 has received a
communication (e.g., a MMIO load or a MMIO store) from a processor core with respect to a
pending interrupt. Process 1100 1s imitiated 1in block 1102 at which point control transfers to

decision block 1104. In block 1104 IPC 540 determines whether a MMIQO store has been

received at an operating priority address.

[0035] In response to a MMIO store not being received at the operating priority address control

loops on block 1104. In response to a MMIO load being received at the operating priority
address control transfers from block 1104 to block 1106. In block 1106, IPC 540 sets an

13

operating priority for each row in ICT 542 per data associated with the MMIO store. Next, in
decision block 1108, IPC 540 determines whether the operating priority 1s less than the pending
priority for each row in ICT 542. In response to the operating priority being less that a pending
event priority control transfers from block 1108 to block 1104. In response to the operating
priority not being less than a pending event priority control transfers from block 1108 to block
1109 where the row assigned bit 1s reset along with the pending priority. Next, in block 1110,
IPC 540 1ssues a reject message to a notification source associated with the pending interrupt.

From block 1110 control returns to block 1104,

[0036] According to an embodiment of the present disclosure, techniques are implemented that
may increase the number of virtual processor threads that are available to be interrupted by a
given interrupt and, thus, increase the likelthood of a given interrupt being serviced in a more
ttimely manner. In various embodiments, the techniques also specity a software stack level
(e.g., a user level, an OS level, or a hypervisor level) to interrupt and, when a user level 1s to be

interrupted, a process i1dentifier (ID).

[0037] With reference to Figure 12, a structure of an exemplary event notification message
(ENM) 1202, that 1s configured according to the present disclosure, 1s illustrated. ENM 1202
includes a ‘process ID’ field, a ‘level’ field, an ‘event target number’ field, a ‘number of bits to
1ignore’ field, an ‘event source number’ field, and an ‘event priority’ field, as well as a field (not
shown) that 1dentifies the message as an event notification message. A value in the ‘process
ID’ field (when user level interrupt 1s specified) identifies a user process to interrupt (e.g.,
thirty-two different user processes may be specified). A value in the ‘level’ field specifies
whether the interrupt 1s a user level interrupt, an OS level interrupt, or a hypervisor level
interrupt. A value in the ‘event target number’ field 1dentifies a virtual processor (VP) thread
that 1s designated to be interrupted to facilitate servicing of an associated interrupt by an
associated processor core. A value in the ‘number of bits to 1ignore’ field specifies the number
of lower-order bits to 1ignore in the ’event target number’ when determining which VP threads
may potentially be interrupted to service the interrupt. A value in the ‘event source number’
field identifies a notification source that generated the interrupt. A value 1in the ‘event priority’

field 1dentifies a priority level of the interrupt.

14

[0038] ENM 1202 1s generated by an interrupt source controller (ISC) 224 that 1s configured
according to the present disclosure (see Figure 14) and 1ssued to an interrupt presentation
controller (IPC) 240 that 1s configured according to the present disclosure (see Figure 15) to
indicate that a notification source, identified by the ‘event source number’ field, has generated
the interrupt. It should be appreciated that ENM 1202 1s similar to ENM 302, with some
exceptions being that ENM 1202 includes an additional field that specifies a “process ID’ for a
user level interrupt, an additional field that specifies a ‘level’ (1.e., a user level, an OS level, or a
hypervisor level) of an interrupt, an additional field that specifies a ‘number of bits to 1gnore’
that 1s used when selecting a virtual processor (VP) thread to interrupt and that the ‘event target

value’ field identifies a virtual processor thread, as contrasted with a physical processor thread.

[0039] For example, assuming that sixteen VP threads are implemented (i.e., VP threads 0000
through 1111) the number of VP threads that may be considered for interruption may be
specified as a single VP thread or all sixteen VP threads depending on a value specified in the
‘number of bits to 1ignore’ field. As one example, assuming that VP thread eight, 1.e., “1000’, 1s
specified 1n the ‘event target number’ field and that three 1s specified in the “number of bits to
1gnore’ field, then eight VP threads (1.e., ‘1000’ through ‘1111°) may be considered for
interruption to service an associated interrupt. As another example, assuming that VP thread
eight, 1.e., ‘1000, 1s specified 1n the ‘event target number’ field and that zero 1s specified 1n the
‘number of bits to 1gnore’ field, then only VP thread eight (1.e., “1000°) may be considered for

interruption to service an associated interrupt.

[0040] With reference to Figure 13, a graph 1300 1s 1llustrated that depicts a relationship
between the number of (lower-order) bits to 1gnore and virtual processor (VP) threads that may
potentially service an associated interrupt for a data processing system that deploys up to
sixteen VP threads, according to an embodiment of the present disclosure. It should be
appreciated that the disclosed techniques are applicable to data processing systems that deploy
more or less than sixteen VP threads. As i1s illustrated in graph 1300, when the ‘“number of bits
to 1ignore’ 1s four all sixteen VP threads are potentially available to service an associated
interrupt. When the ‘number of bits to 1ignore’ 1s three, eight VP threads are potentially
available to service an associated interrupt. When the “number of bits to 1gnore’ 1s two, four

VP threads are potentially available to service an associated interrupt. When the ‘number of

15

bits to 1ignore’ 1s one, two VP threads are potentially available to service an associated interrupt.
When the ‘number of bits to 1gnore’ 1s zero, one VP thread 1s potentially available to service an
associated interrupt. In general, where the ‘number of bits to 1ignore’ 1s ‘n’ bits, a specified

virtual processor thread and 2"-1 other virtual processor threads may be potentially interrupted.

[0041] With reference to Figure 14, relevant components of ISC 224 of Figure 2, which 1s
configured according to the present disclosure, are further illustrated. As previously mentioned,
interrupt controller 220 includes packet decoder 222, which 1s coupled to I/0 bus 214, and ISC
224. ISC 224 includes a message decoder 1404 (that 1s used to decode conventional EOI
messages 306 and/or NRMs 304 received via memory I/0 bus 210), event assignment table
(EAT) 226, and an interrupt message encoder 1406 that utilizes appropriate information in EAT
226 to generate ENMs 1202 for a source. Packet decoder 222 1s configured to decode packets
recetved via I/0 bus 214 and select a finite state machine (FSM) to process the received packet

based on an event source number for a source of the packet.

[0042] As i1s illustrated, ISC 224 includes an FSM for each row (1.e., S-FSM 0 through S-FSM
N) in EAT 226 that 1s configured to maintain information in EAT 226 to facilitate building
ENMs 1202. It should be appreciated that the event source number 1llustrated in EAT 226 1s
not a field, but 1s only used to indicate a row number. For example, source number ‘0’ 1s
assigned to row number ‘0’ of EAT 226, source number ‘1’ 1s assigned to row number ‘1’ of
EAT 226, etc. In EAT 226, each row has an associated ‘event priority’ field, an ‘event target
number’ field, a ‘number of bits to 1gnore’ field, a ‘level’ field, and a ‘process ID’ field, whose
values are utilized to populate corresponding fields in an ENM 1202, which 1s generated by

interrupt message encoder 1406 when an interrupt 1s requested by an associated I/O device.

[0043] With reference to Figure 15, relevant components of IPC 240 are further illustrated.

IPC 240 includes a message decoder 1502, a memory mapped I/O (MMIOQO) unit 1504, and a
message encoder 1506 coupled to memory I/0 bus 210. Processor cores 200 communicate with
IPC 240 via MMIO unit 1504, using MMIO loads and MMIO stores. IPC 240 receives
messages from ISC 224 via message decoder 1502. IPC 240 generates messages for ISC 224
via message encoder 1506. MMIO unit 1504 1ssues a trigger EOI message 1507 to message

encoder 1506 to cause message encoder 1506 to generate and send an EOI message 306 on

16

memory I/O bus 210 to ISC 224. Message decoder 1502 1s coupled to selector 1508, which 1s
configured to select an FSM (i.e., one of P-FSM 1 through P-FSM M) for packet processing
based on an event target number associated with a recetved ENM 1202. FSMs of IPC 240
access interrupt context table (ICT) 242 to initiate generation of an exception to a physical
thread executing on a processor core 200 and to generate a trigger reject message 1505 to

message encoder 1506, which generates an NRM 304 1n response to trigger reject message

1505.

[0044] It should be appreciated that the physical processor thread number 1llustrated in ICT 242
1s not a field, but 1s only used to indicate a row. For example, physical (processor) thread
number ‘0’ 1s assigned to row number ‘0’ of ICT 242, physical thread number ‘1’ 1s assigned to
row number ‘1’ of ICT 242, etc. In ICT 242, each row has an associated ‘valid’ field, virtual
processor number (VP #’) field, ‘process ID’ field (used for user level interrupts), an
‘operating priority’ field, an ‘assigned’ field, a ‘source number’ field, and an ‘event priority’
field, whose values may be retrieved by a processor core using a MMIO load 1n response to an
exception line being asserted by IPC 240. The ‘valid’ field indicates whether a processor 1s
installed and powered on and whether a VP 1s dispatched and operating on an associated
physical processor thread. The ‘VP #’ field specifies a number of the VP that 1s dispatched on
the associated physical processor thread. The ‘process ID’ field specifies a process ID for a
user level interrupt. The ‘operating priority’ field specifies a priority level of a program

currently running on the associated physical processor thread.

[004S5] With reference to Figure 16A, ICT 242 1s further illustrated as including three different
ICTs (1.e., a hypervisor stack level ICT 242a, an OS stack level ICT 242b, and a user stack level
ICT 242c¢), each of which has different associated exception lines 212a, 212b, and 212¢ routed

to processor cores 200. In at least one embodiment, only ICT 242¢ has a ‘process ID’ field.

[0046] With reference to Figure 16B, relevant components of selector 1508 of IPC 240 of
Figure 15 are further illustrated, according to one embodiment of the present disclosure. As s
depicted, selector 1508 include comparators (CMP 0 through CMP M), 1.e., one for each row in
ICT 242, that compare an ‘event target number’, a ‘process ID’ for user level interrupts, a

‘level’, and ‘number of bits to 1gnore’ provided in ENM 1202 and ‘valid’, ‘process ID’ and ‘VP

17

values stored 1n respective rows of one of ICTs 242a, 242b, or 242¢. Outputs of the
comparators are provided to a ‘no hits’ unit 1602 which determines whether any VP threads are
available to be interrupted (when the interrupt 1s a user level interrupt the process IDs are also
compared). In the event zero VP threads are available to be interrupted, ‘no hits’ unit 1602
1ssues trigger reject message 1505 to message encoder 1506 (see Figure 15). In the event more
than one VP thread 1s available to be interrupted, ‘secondary selection’ unit 1604 determines
which VP thread should be interrupted and 1ssues an appropriate interrupt trigger to trigger an

interrupt on an associated physical processor thread.

[0047] ‘Secondary selection’” unit 1604 may implement various secondary selection criteria in
determining which available VP thread to select for interruption. For example, ‘secondary
selection’ unit 1604 may select a VP thread to interrupt based on ‘event priority’ relative to
‘operating priority’, least recently used (LRU), and/or random, etc. It should be appreciated
that the various selection criteria may be implemented 1n series to select a single VP thread

when multiple VP threads are still available after a given selection process.

[0048] With reference to Figure 17 an exemplary process 1700 1s 1llustrated that 1s
implemented by IPC 240 to handle interrupts. It should be appreciated that IPC 240 handles
event notification messages differently from how IPC 540 handles event notification messages
(see Figure 7). Process 1700 1s imitiated 1n block 1701 when IPC 240 receives input via
memory I/O bus 210. Next, in decision block 1702, IPC 540 determines whether an event
notification message (ENM) 1202 was received. It should be appreciated ISC 224 operates
similarly to ISC 424 (see Figure 6) and that ENM 1202 1s built by ISC 224 1n a manner that 1s
similar to the manner described for ISC 424 to build ENM 302, with the exception that ENM
1202 1s built to include an additional ‘process ID’ field, an additional ‘level’ field, an additional
‘number of bits to 1gnore’ field and the ‘event target number’ field provides a virtual processor
thread number, as contrasted with a physical processor thread number. In response to the
received input not corresponding to an ENM 1202 control loops on block 1702. In response to
the received 1input corresponding to an ENM 1202 1n block 1702 control transtfers to block
1703.

18

[0049] In block 1703, IPC 240 compares the “event target number’ from ENM 1202 with all
valid VP numbers, 1gnoring the number of lower-order bits specified (in the “number of bits to
1gnore’ field) by ENM 1202. Next, in decision block 1704, IPC 240 determines whether the
‘level’ field 1indicates that the interrupt 1s a user level interrupt. In response to the interrupt
being a user level interrupt control transfers from block 1704 to block 1706. In block 1706 IPC
240 compares the ‘process ID’ of ENM 1202 with ‘process IDs’ of rows 1n ICT 242¢ with
matching valid VP numbers. From block 1706 control transfers to decision block 1708. In

response to the interrupt not being a user level interrupt in block 1704 control transfers directly

to block 1708.

[0050] In block 1708 IPC 240 determines whether a hit occurred for at least one VP thread. In
response to no hits (1.e., no VP threads being available to be interrupted due to no VP thread
being valid that meets the VP selection criteria (1.e., specified 1n the ‘event target number’ field
and the ‘number of bits to 1ignore’ field) with the specified process ID) occurring in block 1708
control transfers to block 1710, where IPC 240 1ssues a reject message (1.e., NRM 304) to a
notification source specified by the ‘event source number’ field in ENM 1202. It should be
appreciated that various techniques may be employed to ensure that an associated interrupt that
1s rejected 1s eventually serviced. Following block 1710 control returns to block 1702. In
response to at least one hit occurring in block 1708 control transfers to decision block 1712,
where IPC 240 determines whether there are any hits that do not have a pending interrupt

already assigned.

[0051] In response to IPC 240 determining that there 1s at least one hit that does not already
have a pending interrupt assigned in block 1712 control transfers to block 1716. In block 1716,
IPC 240 selects a row 1n ICT 242 to trigger an interrupt. Next, in block 1718, IPC 240 sets an
‘assigned’ field, a ‘source number’ field, and an ‘event priority’ field of the selected row per
ENM 1202. Following block 1718 control returns to block 1702. In response to IPC 240
determining that there are no hits that do not already have a pending interrupt assigned in block
1712 control transters to decision block 1714. In block 1714, IPC 240 determines whether an
interrupt priority (1.e., the event priority) of ENM 1202 1s greater than an operating priority of

any row with a hit that has a pending interrupt.

19

[0052] In response to the interrupt priority not being greater than an operating priority of any
row with a hit that has a pending interrupt control transfers from block 1714 to block 1710. In
response to the interrupt priority being greater than an operating priority of at least one row
with a hit that has a pending interrupt control transfers from block 1714 to block 1720. In block
1720, IPC 240 selects a row 1n ICT 242 to trigger an interrupt. Next, in block 1722, IPC 240
1ssues a reject message to an assigned notification source of the selected row in ICT 242. Then,
1in block 1718, IPC 240 sets an ‘assigned’ field, a ‘source number’ field, and an ‘event priority’
field of the selected row 1n ICT 224 per ENM 1202. Following block 1718 control returns to
block 1702.

[0053] With reference to Figure 18 an exemplary process 1800 1s 1llustrated that 1s
implemented by IPC 240 to handle certain MMIO stores received from a processor core. For
example, a processor core 200 may 1ssue a MMIO store to IPC 242 to invalidate all associated
VPs. Process 1800 1s 1nitiated 1n block 1802 when, for example, IPC 240 recetves a MMIO
store from a given processor core 200. Next, 1n decision block 1804, IPC 240 determines
whether the MMIO store 1s directed to deasserting a valid bit in one or more rows 1n ICT 242,
In response to the recetved MMIO store not being directed to deasserting a valid bit in one or
more rows 1n ICT 242 control loops on block 1804. In response to the recetved MMIO store

being directed to deasserting a valid bit 1n one or more rows in ICT 242 control transfers from

block 1804 to decision block 1806.

[0054] In decision block 1806, IPC 240 determines whether the assigned bit 1s asserted 1n a
row, 1.€., whether an interrupt 1s pending for a row whose valid bit 1s to be deasserted. In
response to the assigned bit being asserted for a row control transfers to block 1808. In block
1808 IPC 240 1ssues a reject message to a notification source (specified by a value 1in an ‘event
source number’ field of a row 1n ICT 242) associated with the row to which the valid bit 1s to be
deasserted. Next, in block 1810 IPC 240 atomically deasserts values 1n the ‘assigned’ field and
the ‘valid’ field associated with the row (to indicate that an interrupt 1s no longer pending for
the row or rows and that the row or rows do not have a valid VP). Following block 1810
control returns to block 1804. In response to the assigned bit not being asserted for a row or
rows 1n block 1806 control transfers to block 1812. In block 1812 IPC 240 deasserts the valid

bit for the row or rows. Following block 1812 control returns to block 1804

20

[00SS] Accordingly, techniques have been disclosed herein that generally improve the servicing
of interrupts and allow an I/O device to specity a level (e.g., a user level, an OS level, a
hypervisor level) of an interrupt. It should be appreciated that aspects of the present disclosure
may be implemented 1n a design structure that 1s tangibly embodied 1n a computer-readable

storage device for designing, manufacturing, or testing an integrated circuit.

[0056] In the flow charts above, the methods depicted in the figures may be embodied 1n a
computer-readable medium as one or more design files. In some implementations, certain steps
of the methods may be combined, performed simultaneously or in a different order, or perhaps
omitted, without deviating from the spirit and scope of the invention. Thus, while the method
steps are described and 1llustrated in a particular sequence, use of a specific sequence of steps 1s
not meant to imply any limitations on the invention. Changes may be made with regards to the
sequence of steps without departing from the spirit or scope of the present invention. Use of a
particular sequence 1s therefore, not to be taken 1n a limiting sense, and the scope of the present

invention 1s defined only by the appended claims.

[0057] As will be appreciated by one skilled 1n the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a

"circuit,” "module"” or "system".

[00S8] Any combination of one or more computer-readable medium(s) may be utilized. The
computer-readable medium may be a computer-readable signal medium or a computer-readable
storage medium. A computer-readable storage medium may be, for example, but not limited to,
an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus,
or device, or any suitable combination of the foregoing, but does not include a computer-
readable signal medium. More specific examples (a non-exhaustive list) of the computer-
readable storage medium would include the following: a portable computer diskette, a hard
disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable
read-only memory (EPROM or Flash memory), a portable compact disc read-only memory

(CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination

21

of the foregoing. In the context of this document, a computer-readable storage medium may be
any tangible storage medium that can contain, or store a program for use by or 1n connection

with an 1nstruction execution system, apparatus, or device.

[0059] While the invention has been described with reference to exemplary embodiments, it
will be understood by those skilled 1n the art that various changes may be made and equivalents
may be substituted for elements thereof without departing from the scope of the invention. In
addition, many modifications may be made to adapt a particular system, device or component
thereof to the teachings of the invention without departing from the essential scope thereof.
Theretfore, 1t 1s intended that the invention not be limited to the particular embodiments
disclosed for carrying out this invention, but that the invention will include all embodiments
falling within the scope of the appended claims. Moreover, the use of the terms first, second,
etc. do not denote any order or importance, but rather the terms first, second, etc. are used to

distinguish one element from another.

[0060] The terminology used herein 1s for the purpose of describing particular embodiments
only and 1s not intended to be limiting of the invention. As used herein, the singular forms "a",
"an" and "the" are intended to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the terms "comprises" and/or
"comprising," when used 1n this specification, specity the presence of stated features, integers,
steps, operations, elements, and/or components, but do not preclude the presence or addition of

one or more other features, integers, steps, operations, elements, components, and/or groups

thereof.

[0061] The corresponding structures, materials, acts, and equivalents of all means or step plus
function elements 1n the claims below, 1f any, are intended to include any structure, material, or
act for performing the function in combination with other claimed elements as specifically
claamed. The description of the present invention has been presented for purposes of
1llustration and description, but 1s not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will be apparent to those of ordinary
skill 1n the art without departing from the scope and spirit of the invention. The embodiments

were chosen and described 1in order to best explain the principles of the invention and the

22

practical application, and to enable others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are suited to the particular use

contemplated.

23

CLAIMS

1. A method of handling interrupts 1n a data processing system, the method comprising:

recerving, at an interrupt presentation controller (IPC), an event notification message
(ENM), wherein the ENM specifies a level, an event target number, and a number of bits to
1gnore; and

determining, by the IPC, a group of virtual processor threads that may be potentially
interrupted based on the event target number, the number of bits to 1ignore, and a process
identifier (ID) when the level specified in the ENM corresponds to a user level, wherein the
event target number 1dentifies a specific virtual processor thread and the number of bits to
1gnore 1dentifies the number of lower-order bits to 1ignore with respect to the specific virtual
processor thread when determining a group of virtual processor threads that may be potentially

interrupted.

2. The method of claim 1, wherein the process ID 1s not used when the level corresponds

to an operating system (OS) level.

3. The method of claim 2, wherein the process ID 1s not used when the level corresponds

to a hypervisor level.

4. The method of claim 1, wherein the number of bits to 1gnore 1s ‘n’ bits and the specific
virtual processor thread and (2"-1) other virtual processor threads may be potentially

interrupted.

5. The method of claim 1, wherein the number of bits to 1gnore 1s not equal to zero and the
method further comprises:

determining whether one or more virtual processor threads within the group of virtual
processor threads are dispatched and operating on an associated physical processor; and

1n response to no virtual processor thread within the group of virtual processor threads
being dispatched and operating on an associated physical processor, 1ssuing a reject message to

a notification source designated by an event source number specified in the ENM.

24

6. The method of claim 1, wherein the number of bits to 1gnore 1s not equal to zero and the
method further comprises:

determining whether multiple virtual processor threads within the group of virtual
processor threads are dispatched and operating on an associated physical processor; and

1n response to the multiple virtual processor threads within the group of virtual
processor threads being dispatched and operating on an associated physical processor, selecting
one of the multiple virtual processor threads to interrupt that does not already have a pending

interrupt.

7. The method of claim 6, further comprising:
1n response to more than one of the multiple virtual processor threads not already having
a pending interrupt, selecting one of the multiple virtual processor threads to interrupt that does

not already have a pending interrupt based on secondary selection criteria.

8. The method of claim 7, wherein the secondary selection criteria includes one or more of
an event priority, specified in the ENM, relative to an operating priority for each of the multiple
virtual processor threads, a least recently used (LRU) one of the multiple virtual processor

threads, and a random one of the multiple virtual processor threads.

9. The method of claim 1, wherein the number of bits to 1gnore 1s not equal to zero and the
method further comprises:

determining whether multiple virtual processor threads within the group of virtual
processor threads are dispatched and operating on an associated physical processor;

1n response to the multiple virtual processor threads within the group of virtual
processor threads being dispatched and operating on an associated physical processor,
determining whether all of the multiple virtual processor threads have pending interrupts;

1n response to determining that all of the multiple virtual processor threads have pending
interrupts, determining whether an event priority specified in the ENM 1s greater than an
operating priority of any of the multiple virtual processor threads; and

1n response to determining that the event priority 1s not greater than the operating
priority of any of the multiple virtual processor threads, 1ssuing a reject message to a

notification source designated by an event source number specified in the ENM.

25

10. The method of claim 9, further comprising:
1n response to determining that the event priority 1s greater than the operating priority of
any of the multiple virtual processor threads, selecting one of the multiple virtual processor

threads to interrupt with the operating priority less than the event priority.

11. The method of claim 9, further comprising;

1n response to determining that the event priority 1s greater than the operating priority of
more than one of the multiple virtual processor threads, selecting one of the multiple virtual
processor threads to interrupt with the operating priority less than the event priority based on

secondary selection criteria.

12. The method of claim 11, wherein the secondary selection criteria includes one or more
of the event priority relative to the operating priority for the multiple virtual processor threads,
a least recently used (LRU) one of the multiple virtual processor threads, and a random one of

the multiple virtual processor threads.

13. A processing unit for a multithreaded data processing system, the processing unit
comprising:

an interrupt source controller (ISC); and

an interrupt presentation controller (IPC) coupled to the ISC, wherein the IPC 1s
configured to:

recerve an event notification message (ENM) from the ISC, wherein the ENM specifies
a level, an event target number, and a number of bits to 1gnore; and

determine a group of virtual processor threads that may be potentially interrupted based
on the event target number, the number of bits to 1gnore, and a process 1dentifier (ID) when the
level specitied in the ENM corresponds to a user level, wherein the event target number
1dentifies a specific virtual processor thread and the number of bits to 1gnore 1dentifies the
number of lower-order bits to 1ignore with respect to the specific virtual processor thread when

determining a group of virtual processor threads that may be potentially interrupted.

14. The processing unit of claim 13, wherein the number of bits to ignore 1s not equal to

zero and the IPC 1s further configured to:

26

determine whether one or more virtual processor threads within the group of virtual
processor threads are dispatched and operating on an associated physical processor; and

1n response to no virtual processor thread within the group of virtual processor threads
being dispatched and operating on an associated physical processor, 1ssue a reject message to a

notification source designated by an event source number specified in the ENM.

15. The processing unit of claim 13, wherein the number of bits to ignore 1s not equal to
zero and the IPC 1s further configured to:

determine whether multiple virtual processor threads within the group of virtual
processor threads are dispatched and operating on an associated physical processor; and

1n response to the multiple virtual processor threads within the group of virtual
processor threads being dispatched and operating on an associated physical processor, select
one of the multiple virtual processor threads to interrupt that does not already have a pending

interrupt.

16. The processing unit of claim 15, wherein the IPC 1s further configured to:
1n response to more than one of the multiple virtual processor threads not already having
a pending interrupt, select one of the multiple virtual processor threads to interrupt that does not

already have a pending interrupt based on secondary selection criteria.

17. The processing unit of claim 16, wherein the secondary selection criteria includes one or
more of an event priority, specified in the ENM, relative to an operating priority for each of the
multiple virtual processor threads, a least recently used (LRU) one of the multiple virtual

processor threads, and a random one of the multiple virtual processor threads.

18. The processing unit of claim 13, wherein the number of bits to 1ignore 1s not equal to
zero and the IPC 1s further configured to:

determine whether multiple virtual processor threads within the group of virtual
processor threads are dispatched and operating on an associated physical processor;

1n response to the multiple virtual processor threads within the group of virtual
processor threads being dispatched and operating on an associated physical processor,

determine whether all of the multiple virtual processor threads have pending interrupts;

27

1n response to determining that all of the multiple virtual processor threads have pending
interrupts, determining whether an event priority specified in the ENM 1s greater than an
operating priority of any of the multiple virtual processor threads; and

1n response to determining that the event priority 1s not greater than the operating
priority of any of the multiple virtual processor threads, 1ssue a reject message to a notification

source designated by an event source number specified in the ENM.

19. The processing unit of claim 18, wherein the IPC 1s further configured to:
1n response to determining that the event priority 1s greater than the operating priority of
any of the multiple virtual processor threads, selecting one of the multiple virtual processor

threads to interrupt with the operating priority less than the event priority.

20. A design structure tangibly embodied in a computer-readable storage device for
designing, manufacturing, or testing an integrated circuit, the design structure comprising;

an interrupt source controller (ISC); and

an interrupt presentation controller (IPC) coupled to the ISC, wherein the IPC 1s
configured to:

recerve an event notification message (ENM) from the ISC, wherein the ENM specifies
a level, an event target number, and a number of bits to 1gnore; and

determine a group of virtual processor threads that may be potentially interrupted based
on the event target number, the number of bits to 1gnore, and a process identifier (ID) when the
level specified in the ENM corresponds to a user level, wherein the event target number
1dentifies a specific virtual processor thread and the number of bits to 1gnore 1dentifies the
number of lower-order bits to 1ignore with respect to the specific virtual processor thread when

determining a group of virtual processor threads that may be potentially interrupted.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DRAWINGS
	Page 11 - DRAWINGS
	Page 12 - DRAWINGS
	Page 13 - DRAWINGS
	Page 14 - DRAWINGS
	Page 15 - DRAWINGS
	Page 16 - DRAWINGS
	Page 17 - DRAWINGS
	Page 18 - DRAWINGS
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - CLAIMS
	Page 42 - CLAIMS
	Page 43 - CLAIMS
	Page 44 - CLAIMS
	Page 45 - CLAIMS

