PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/04960
GO6F A2 . c

(43) International Publication Date: 16 February 1995 (16.02.95)

(21) International Application Number: PCT/US94/08585 | (81) Designated States: CA, JP, European patent (AT, BE, CH, DE,
DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 29 July 1994 (29.07.94)
Published
(30) Priority Data: Without international search report and to be republished
08/101,385 . 2 August 1993 (02.08.93) Us upon receipt of that report.

(71) Applicant: PERSISTENCE SOFTWARE, INC. [US/US]; Suite
100, 1650 Sotith Amphlett Boulevard, San Mateo, CA 94402
USs).

(72) Inventors: JENSEN, Richard, H.; 548 Flynn Avenue, Redwood
City, CA 94063 (US). HENNINGER, Derek, P.; 22461-A
Walnut Circle, Cupertino, CA 95014 (US).

(74) Agents: ALLEN, Kenneth, R. et al.; Townsend and Townsend
Khourie and Crew, One Market Plaza, 20th floor, Steuart
Street Tower, San Francisco, CA 94105 (US).

(54) Title: METHOD AND APPARATUS FOR MANAGING RELATIONAL DATA IN AN OBJECT CACHE
(57) Abstract

- In an object-oriented application being executed in a digital computing system comprising a processor, a method and apparatus are
provided for managing information retrieved from a structured database, such as a relational database, wherein the processor is used to
construct a plurality of object instances, each of these object instances having its own unique object ID that provides a mapping between
the object instance and at least one row in the structured database. The processor is used to construct a single cohesive data structure,
called an object cache, that comprises all the object instances and that represents information retrieved from the structured database in a
form suitable for use by one or more object-oriented applications. A mechanism for managing the object cache is provided that has these
three properties: first, through a technique called key swizzling, it uses explicit relationship pointers between object instances in the object
cache to reduce the volume of queries to the structured database. Second, it ensures that only one copy of an object instance is in the cache
at any given time, even if several different queries return the same information from the database. Third, the mechanism guarantees the
integrity of data in the cache by locking data appropriately in the structured database during a database transaction, flushing cache data at
the end of each transaction, and transparently re-reading the data and reacquiring the appropriate locks for an object instance whose data
has been flushed.

applications under the PCT.

AT
AU
BB

-]
]

CRABRERA22RARICEFEES

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgimm
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

GB
GE
GN
GR

BERARHEE

BES85<EkFRE

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

32358

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugat

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

METHOD AND APPARATUS FOR MANAGING RELATIONAL DATA
IN AN OBJECT CACHE

BACKGROUND OF THE INVENTION
The invention relates to the interrelationship of

.databases, particularly relational databases, and object-

oriented systems. More particularly, the invention relates to
relationships between objects in object-oriented systems and
descriptions of objects storable in field-delimited database
structures. Field-delimited databases can structure data into
fields which have common attributes. For example, relational
databases can structure data into tables, each with columns
and rows (in "n" dimensions) forming tuples, upon which
certain operations in set algebra can be performed very
conveniently.

Object-oriented applications (i.e., application
programs) organize data and routines together into
encapsulated units referred to as objects. Object-oriented
applications lead to modular software systems which have:
increased flexibility and are easy to alter and maintain.

The difference between a relational database
management system (RDBMS) and an object-oriented application
is that an object "knows" what operations can be performed on
its daﬁa, whereas an RDBMS only has a set of generic
operations which can be performed on its tuples. For example,
a "snow tire" object knows that it is related to an "axle"
object and inherits from a "tire" object. 1In contrast, a
relational datébase represents this information in three
separate data tables with no explicit representation of the
relationships between the tables. The tire table in a
relational database might have foreign key information
referring to the axle table, but this representation of the
relationship between tire and axle is implicit. It is up to

-the application developer (i.e., computer programmer) to know

about these relationships, what they mean, and how to handle
them.

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

2

A relational database is stateless. One database
query has no connection to the next query and no memory of the
previous query. Thus there is a desire to provide in the
application explicit references between different database
queries, by grouping these results in a unified data structure
in the application. More particularly, there is a desire to
manage a unified, cohesive data structure of object instances,
a data structure that represents the results of multiple
queries to a structured database. It is further desired that
this structure represent the relationships between these
objects such that these relationships can be followed without
the need to query the database for this information. sStill
further, it is desired that this structure be managed in such
a way that the data in the structure is at all times
consistent with the corresponding information in the database.

In known systems, the developer of an application
program that communicates with a structured database typically
hand-codes routines which store the information retrieved from
database queries in small data structures. These data
structures typically have no connection to one another. For
example, a developer retrieves invoice information from the
database in a first qgquery and then retrieves the line items
for that invoice from the database in a second query, and
stores the results of these two queries in a single data
structure, such as an array, in the application program. This
data structure has no relation to any other data structure
built as the result of other database queries. In particular,
if another query had previously been made for some of the same
information, there would be two copies of this information in
the application program, thus providing a potential for
inconsistent versions of the data in the program and in the
database. That is, the two copies of the information in the
program could be inconsistent with one another and both copies
could be inconsistent with the information in the database.
There would be no explicit reference between the program's two
copies of the information.

As another example, suppose that a database contains

personnel records for a company, and in particular contains

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

3

tables that represent company departments and other tables
that represent company employees. 1In Kknown systems, a
developer issues a separate database query each time he or she
wishes to follow the relationship between an employee and
department. Suppose the developer issues a database query
which retrieves the department that is located in San Mateo.
The result of this query is stored in a data structure, such
as an array, in the application program. Next, suppose the
developer issues a database query to determine which employees
work in the department that is located in San Mateo. Suppose
further that this query returns two rows from the Employee
table, "Jane Smith" and "Sue Horn." These rows are placed
into a data structure, such as an array, in the application
program. Next, suppose that at some later time the developer
wishes to determine what department Jane Smith works in.
Because there are no references between the department data
structure and the employee data structure, there is no link
between Jane Smith and the San Mateo department. The
developer will need to issue a third, separate query to the
database to once again retrieve the San Mateo department.

In known systems, it is common to have hundreds or
even thousands of such data structures in an application, each
such structure having several potential relationships with -
other structures. This can lead to hundreds or thousands of
unnecessary database queries. It will be appreciated that a
mechanism for managing such structures which provides
efficient performance and ensures consistency of data between
such structures and the corresponding data in the database is
desirable.

It is by no means a straightforward task to group
the results of disparate queries into a cohesive data
structure in an application. Among the principal problems are
avoiding duplication of data within such a structure, ensuring
consistency between data in the structure and data in the
database by using database locks, and resolving the data
integrity (coherency) issues associated with losing database
locks when a database transaction is committed (i.e., when
data is changed in the database). These problems are

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

4

sufficiently complex that they have not been solved in the
prior art. In known systems, developers typically work with
small, atomic units of data which they create and then delete
within the same routine to minimize such consistency problenms.

If these problems of duplication avoidance,
consistency, and data integrity can be solved, the cohesive
data structure can provide a powerful tool for improving
application performance. In particular, certain requests
issued by the application can be resolved immediately by
reference to the cohesive structure without any need to query
the database. ,

What is needed is an automated method and system to
manage information retrieved from a structured database (such
as a relational database or other field-delimited database) in
a format suitable for use by an application program (such as
an object-oriented application) that works with the structured
database, in a manner that speeds performance and improves
robustness of the application.

Systems are known for manual mapping between objects
in knowledge bases and database management systems. One
approach is to employ a static class library as an interface
between an object-oriented system and a relational database.
An example is METHOD FOR INTEGRATING A KNOWLEDGE—BASED SYSTEM
WITH AN ARBITRARY RELATIONAL DATABASE SYSTEM, U.S. Patent No.
4,930,071 issued 5/29/90 and assigned to IntelliCorp, Inc. of
Mountain View, Ccalifornia. In static-type systems,‘objects
can be extended to handle concepts such as relationships and
inheritance, but they must be manually extended if they are to
model complex real world structures. This limits their
usefulness to building relatively simple object models from
existing data, such as those used in rapidly building
prototype systems. It is believed that there are commercial
systems which use the static-type class approach. Among the
candidates include "ProKappa" from IntelliCorp, "DB.H++" from
Rogue Wave of Corvallis, Oregon, and possibly "Open ODB" from
Hewlett Packard Company of Cupertino, California and "UniSQL
from UniSQL of Austin, Texas.

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

5

In known relational databases, the technique of
"page caching" can be used to speed performance by keeping
certain frequently referenced pages in program memory rather
than on a storage device. (A page is a unit of information;
in Unix systems, for example, a page is typically 2048 bytes.)
Page caching has several limitations. First, pages are cached
without any understanding of their semantic content. Second,
cached pages are independent'and cannot refer to other cached
pages. Often, a database query must be performed in order to
discover that a needed page is already in the cache. Third,
database rows often take up only a small portion of a page, so
that the memory allocated to the page cache is used
inefficiently.

In known object-oriented databases, the concept of
"swizzling" can be used in conjunction with page caching. In
object-oriented databases, object instances can point to one
another through virtual memory pointers. 1In "swizzling,"
virtual memory pointers between object instances are converted
into physical memory pointers between cached pages. This
technique is used, for example, by the ObjectStore system from
Object Design of Burlington, Mass. In ObjectStore, object
inétances are identified by object IDs, representing virtual
memory addresses which are generated by the system; the
developer has no flexibility in defining these object IDs. As
each page is brought into program memory, these object IDs are
converted into physical memory references. Swizzling as
taught in known systems is not applicable to relational
databases, because rows in a database are identified by
arbitrarily defined primary key values rather than by system-
defined virtual memory address.

SUMMARY OF THE INVENTION
According to the invention, in an object-oriented
application being executed in a digital computing system
comprising a processor, a method and apparatus are provided
for managing information retrieved from a structured database,
such as a relational database, wherein the processor is used

to construct a plurality of object instances, each of these

10

15

20

25

30

35

WO 95/04960 o PCT/US94/08585

6

object instances having its own unique object ID that provides
a mapping between the object instance and at least one row in
the structured database. The processor is used to construct a
single cohesive object cache comprising all the object
instances.

The method and apparatus of the invention provide a
cohesive data structure, called an object cache, that
represents information retrieved from a structured database in
a form suitable for use by one or more object-oriented
applications. Typically the object cache is stored in memory
or in a storage device. A mechanism for managing the object
cache is provided that has these three properties: First,
through a technique called key swizzling, it uses explicit
relationship pointers between object instances in the object
cache to reduce the volume of queries to the structured
database. Second, it ensures that only one copy of an object
instance is in the cache at any given time, even if several
different queries return the same information from the
database. Third, the mechanism guarantees the integrity of
data in the cache by locking data appropriately in the
structured database during a database transaction, flushing
caéhe data at the end of each transaction, and transparently
re-reading the data and reacquiring the appropriate locks for
an object instance whose data has been flushed.

The technique of key swizzling according to the
invention converts foreign key information from the structured
database into pointers in the object cache, thereby improving
the performance of object-oriented applications that access
the cache. 1In key swizzling, information requests from an
object-oriented application are mapped into queries to the
structured database, and the results of those queries are
converted into object instances in the object cache. More
particularly, implicit primary and foreign key references from
the structured database are converted into explicit pointers
between object instances contained in the object cache.
Requests from an object-oriented application to navigate

relationships between object instances in the cache are

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

7

resolved by following these pointers. This reduces the volume
of queries to the structured database.

The invention will be better understood by reference
to the following detailed description in connection with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a computer system in
accordance with the invention.

Fig. 2 is a schematic diagram representing the
correspondence between a structured database and an object
cache.

Fig. 3 is a schematic diagram representing an
example of a mapping between a database schema and an object
model by means of a transform.

Fig. 4 is a flow chart representing an overview of
the method steps.

Fig. 5 is a flow chart representing the process for

lretrieving information from the object cache.

Fig. 6 is a flow chart representing the process for

retrieving an object instance from a structured database.

| Fig. 7 is a flow chart representing the process for
navigating a relationship between two instances in the object
cache.

Fig. 8 is a flow chart representing the process for
deleting a reference to an object instance in the object
cache.

Fig. 9 is a flow chart representing the process for
committing a transaction in a structured database.

DESCRIPTION OF A SPECIFIC EMBODIMENT

_ Following is a description of a specific embodiment
of the method of the present invention. Section 1 sets forth
terminology that is used in the remainder of the description.
Section 2 provides a description of a computing system that
can be used to support the steps of the method. Section 3
illustrates an example mapping between a structured database
and an object cache according to the method. Section 4

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

8

describes an example of a mechanism for mapping information
between a structured database and object instances of an
object-oriented application according to a transform. Section
5 describes an overview of the method steps. Sections 6
through 9 give more detailed descriptions of certain method
steps. Section 10 concludes the description.

1. Terminology
It is helpful to clarify the general meanings of

terms used in connection with object-oriented systems.

1.1 Terminology relating to object-oriented systems

An "object class" is a set of data (attributes) and
functional capabilities (routines) encapsulated into a single
logical entity. For example, an employee class may be
characterized by a telephone number attribute and a
"hire_employee" routine.

An "object instance" is an embodiment
(instantiation) of an object class. Instances are
differentiated from one another by their attribute values, but
not their routines (capabilities). For example, Jane Smith
may be a first person-object instance and John Doe may be a
second person-object instance. The term "object" is often
used by itself to refer loosely to either an object class or
an object instance, the difference being understood in
context.

An "object-oriented application" is an operational
computer program which when employed on an appropriate
computer system uses a set of object instances that work in
cooperation to perform useful work. For example, an object-
oriented application could be built to manage personnel
records for a company, including such operations as hire new
employee or add an employee to a department.

An "object model" is a set of object classes that
together form a blueprint for building an object-oriented
‘application. Each object class of an object model can have
attributes, inheritances, and relationships.

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

9

A "relationship" defines a link between two object
classes. For example, an employee class may be related to the
department class. Each specific employee, for example, "Jane
Smith," would have a relationship with a specific department,
such as "engineering." Relationships can be one-to-one, one-
to-many, or many-to-many. An example of a one-to-one
relationship can be a relationship between employee and
parking place such that each employee can have a single
parking place. An example of a one-to-many relationship can
be a relationship between department and employee such that
each department can employ multiple employees. An example of
a many-to-many relationship can be a relationship between
employee and project such that each employee serves on
multiple projects, and each project consists of multiple
employees.

"Attributes" are data elements of object classes
which are expressed through particular values in object
instances. For example, a person class can have the attribute
"name", and a particular person instance can have the name
value "Jane Smith."

An "object ID" is used to uniquely identify each
object instance. The object ID can generated in one of two
ways. It can be generated by the application, which can
automatically assign a unique object ID for each new object
instance. Alternatively it can comprise a set of attributes
that are guaranteed in the object model to always form a
unique set of values for an instance. 1In this case, the
create routine will require a unique set of attributes in
order to create a new object instance.

A "routine" is a functional capability associated
with an object class. For example, the routine
"hire employee" could be used to create a new employee
instance.

"Inheritance" represents a specialization of an
object class in which the specialized class shares all of the
attributes and routines of parent classes. Thus the employee
class can inherit certain attributes, such as name, from the
person class. In this case, the person class is called the

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

10

"parent" of the employee class, and the employee class is
called the "child" of the person class.

1.2 Terminology relating to structured databases

A "structured database" comprises tables, each table
consisting of a set of rows, each row being delimited into a
set of columns. One example of a structured database is a
relational database containing an employee table. This
employee table can further contain a set of rows, each row
consisting of two data columns: social security number and
name.

Within each database table are columns that can be
of three types: primary key, foreign key, and data. A primary
key column is employed to uniquely identify each row in a
table. Multiple primary key columns can also be used in
combination to uniquely identify each row in the table; an
example is a combination of a first name column and a last
name column. A foreign key column (or columns) can be
employed to logically connect a row in a given table to a
unique or specific row in another table. A data column is
employed to store information that is neither a primary key
nof a foreign key.

A v"database schema" defines a particular
configuration of tables and columns for each table.

A "transform" describes a mapping between elements
of an object model and elements of a database schema.

A "query" is an operation on a structured database
which returns information from the database based on some

criteria. For example, the query
SELECT * FROM employee WHERE location = 'California’

can return all rows from the employee table of a relational
database whose Location column has a value of 'California'.
Queries can be, for example, written in the SQL (Structured
Query Language) syntax, which is most commonly used with
relational databases.

A "transaction" is a mechanism provided by the
structured database to ensure that a specified group of
operations upon the database either succeed as a unit or fail

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

11

as a unit. The developer begins a transaction with a "begin"
command, can issue a number of other database commands within
the transaction, such as queries, updates, inserts, and
deletes, and explicitly ends a transaction with a "commit"
command.

A database "lock" is a mechanism provided by the
structured database to prevent two applications from
simultaneously updating the same rows in the database. A lock
is "acquired" during a query, for example by appending the
clause "FOR UPDATE" to the query. For example, the query

SELECT * FROM employee WHERE location = 'California’
FOR UPDATE

locks all rows in the employee table of a relational database
whose Location column has a value of 'California'. Locks are
valid only within a transaction. When a transaction is
committed, all locks acquired within that transaction are
released.

1.3 Terminology relating to object cache

An "object cache" is a data structure that comprises
one or more object instances mapped from a structured database
and used by an object-oriented application. The object
instances in the object cache can explicitly refer to each
other through pointers. A "pointer" is an object instance
attribute which contains the address, such as a physical
memory address, of another object instance. Additionally, an
object cache can further comprise a cache dictionary in some
embodiments.

"Navigate" means to follow the relationship link
between two object instances.

A "request" is a operation or action initiated by an
object-oriented application. The method of the invention
converts requests into operations on the object cache in the
case of a navigational request, or into queries to the
database. For example, an object-oriented application can

issue a request to navigate the relationship between an

employee instance and its related department instance.

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

12

"Key swizzling" refers to a step in the method of
the invention that converts an implicit reference between rows
of a structured database, as represented by a foreign key in
one database table and a primary key in another database
table, into explicit pointers between related object instances

in an object cache.

2. System Overview
Fig. 1 illustrates a digital computing system

suitable to implement the method of the present invention in a
typical embodiment. The system comprises computing hardware
and related system software that together support the
execution of method software 15, which is software that
carries out the steps of the method of the invention. More
particularly, the system of Fig. 1 comprises a processor 1
that is coupled to a memory 2, a storage device 3 (such as a
hard disk), and a user interface such as a graphical user
interface 5.

The processor 1 can also be coupled to one or more
structured databases comprising software and associated data.
In the illustrated embodiment there is one structured database
76. Structured database 70 has its own associated hardware
including a database processor 10 which communicates via
network 7 with processor 1. In other embodiments the
structured database 70 is a software entity that is executed
by processor 1, and network 7 is not present. It will be
appreciated by those of skill in the art that a wide range of
computing system configurations can be used to support the
method of the present invention including; for example,
configurations that employ multiple processors and multiple
databases.

Method software 15 is incorporated in object-
oriented application 80 which is executed by processor 1.
Method software 15 implements capabilities for mapping between
structured database 70 and object cache 60. In particular,
method software 15 processes requests from object-oriented
application 80 to retrieve information from structured
database 70 and map that information into object cache 60; to

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

13

navigate relationships between objects in object cache 60; to
delete references to object instances in object cache 60; to
commit transactions in structured database 70; and to begin
transactions in structured database 70.

Method software 15 makes use of certain components
that are also shown in Fig. 1. Among these components are an
object cache 60 and a cache dictionary 90.

. The method uses pointers between object instances in
object cache 60 to follow relationships between object
instances rapidly in response to requests from object-oriented
application 80. Using the object cache 60, the method reduces
the number of queries sent to structured database 70, thereby
increasing performance. Object cache 60 can be stored in
memory 2, in storage device 3, or in some combination of
memory 2 and storage device 3. Typically, access to object
cache 60 is much faster than access to structured database 70.
It will be appreciated that in some embodiments additional
object-oriented applications besides object-oriented
application 80 can share object cache 60.

The method uses cache dictionary 90 to locate object
instances in object cache 60 based on the object ID for a
particular object instance. As each new object instance is
added to object cache 60, the object instance is registered in
cache dictionary 90. More particularly, the object instance's
object ID is stored in the cache dictionary 90 along with the
location at which the object instance is stored in object
cache 60. The cache dictionary can, for example, be organized
in a hash table. Given an object ID, the method uses the
cache dictionary 90 to determine whether the object instance
corresponding to that object ID is currently present in object
cache 60. If so, the method returns a reference, for example
a pointer, to the object instance's location in object cache
60.

3. Mapping Between Structured Database and Object Cache

Fig. 2 is a schematic diagram representing the
correspondence between structured database 70, object cache
60, and cache dictionary 90 for an example object-oriented

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

14

application. Object cache 60 contains three object instances,
department instance 201 and employee instances 211 and 218
The object cache also contains an employee collection 207,
which contains references to all the employee instances
related to department instance 201.

In this example, each object instance can be
referenced through a pointer to its memory location. For
example, department instance 201 is physically located in
memory location 25236 as shown by label 202 of Fig. 2.
Employee instance 211 is stored at memory location 27543
(label 212), and employee instance 218 is stored at memory
location 28364 (label 219), and employee collection 207 is
stored at memory location 26137 (label 208).

Each object instance contains an object ID which is
an attribute or set of attributes that uniquely define that
object instance. For example, department ID 204, which has a
value of 5, is the object ID for department instance 201, and
SSNum 214, which represents a social security number and has a
value of 1001, is the object ID for employee instance 211.

Each object instance contains a pointer for each of
its relationships. For the one-to-many relationship between
department instance 201 and its related employee instances,
department attribute 206 points to (contains the memory
address of) employee collection 207. (An attribute that
contains the address of another data structure, such as an
object instance, is called a pointer.) Employee instance 211
contains an attribute 217 that points to department instance
201, and employee instance 218 contains an attribute 224 that
points to department instance 201.

In the illustrated embodiment, each object instance
also contains a reference count and state. Department
instance 201 has attribute 203 which contains a reference
count of 2, indicating that two variables in the object-
oriented application refer to department instance 201, and a
state of 1, indicating that the data associated with
department instance 201 is valid, i.e., has been read since
the last database transaction was committed. Employee

instance 211 contains a reference count of 1 and a state of 1

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

15

in attribute 213. The reference count of 1 indicates that
only one variable in the object-oriented application refers to
employee instance 211. Employee instance 218 contains a
reference count of 1 and a state of 0 in attribute 220. The
state of 0 indicates that the data associated with employee
instance 218 has been flushed, i.e., has not been read since
the last database transaction was committed. The reference
count and state can be omitted in some embodiments.

Fig. 2 further illustrates key swizzling in which
foreign key 231 ("DeptID") in employee table 228 of structured
database 70 is mapped to pointers 206, 209, 210, 217, and 224.
The method uses these pointers to process requests for
navigation between object instances in object cache 60,
thereby reducing the number of queries made to structured
database 70.

The method swizzles, or converts, foreign key
information from structured database 70, which represents
implicit information about a relationship, into pointers
between object instances stored in object cache 60. Because
these pointers are bi-directional, the relationship can be
traversed in either direction without requiring a database
qﬁery. For example, foreign key column 231 in employee table
228 acts as an implicit "one-way pointer" between each row in
employee table 228 and a corresponding row in department table
225,

Key swizzling can provide significant performance
benefits for data-intensive applications, for example a
personnel records management application in which each person
and department of a company can be represented by an object
instance in the object cache. Here is an example of how this
can work:

1. The developer logs into the database and
retrieves an object instance (that is, retrieves database
information about an object instance), for example, the
San Mateo department instance 201 as shown in Fig. 2.
When the object instance is retrieved, pointers (in this
case, pointer 206 for department instance 201) are set up

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

16

that point to related objects. Since those objects have
not yet been read, the pointers are initialized to NULL.
2. Next, the developer retrieves additional
object instances related to the first object, for
example, employee instances 211 and 218 related to
department instance 201. At this point, pointer 206 of
department instance 201 is set to point to employee
collection 207, which in turn points to employee
instances 211 and 218. Also at this point, pointer 217
of employee instance 211 is set to point to department
instance 201 and pointer 224 of employee 218 is set to
point to department instance 201. Thus bi-directional
pointers are set up between the department instance and
its related employee instances. In effect, the foreign
key attributes that identify a relationship in the
database are converted, or "key swizzled," into pointers
between object instances in the object cache 60.
3. The pointers between object instances 201,
211, and 218 can be navigated very quickly, producing
performance gains of 10 to 100 times when compared to the
performance of the structured database standing alone.
Cache dictionary 90 contains pairs of object ID
values 233 and memory locations 234 organized according to the
hash values 232 obtained by performing a hash function on each
object ID. Each object class defines its own hash function
based on the attributes that make up its object ID. In the
example of Fig. 2, the object ID value "4062" corresponding to
employee instance 218 is assigned the hash value of 1 by its
hashing function. Given an object ID of "4062," the method of
the invention can perform a lookup in the cache dictionary 90
to determine whether the corresponding object instance is in
the object cache 60. In this example, the result of this
lookup is a reference to employee instance 218, in particular,
a pointer of value 28364. It will be appreciated by those of
skill in the art that many other implementations can be used
for the dictionary, including but not limited to implemen-
tations that handle hash collisions, implementations that use

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

17

extensible hashing, and implementations that do not use a hash
table.

4. Mapping Mechanism

The present invention presupposes that there is some
mechanism in object-oriented application 80 for mapping
information between structured database 70 and object
instances of object-oriented application 80. One such
mechanism is described in U.S. Patent application serial no.
08/095,322, METHOD AND APPARATUS FOR GENERATION OF CODE FOR
MAPPING RELATIONAL DATA TO OBJECTS, Attorney Docket No.
16186-1, filed July 21, 1993, invented by Derek P. Henninger,
Richard H. Jensen, and Christopher T. Keene. This mechanism
uses an object model, database schema, and transform to define
a mapping between the structured database and object instances
of the application. Given these three inputs, it is possible
to construct an object-oriented application that can retrieve
information from the structured database according to the
semantics of the object model. 1In particular, the application
can retrieve a single object instance (that is, retrieve

. database information corresponding to a single object

instance) using an object ID value, and can retrieve object
instances related to a given object instance by following the
relationship semantics of the object model and using foreign
key mappings as specified by the transform. Construction of
the object-oriented application according to the object model,
database schema, and transform can be automated as is further
disclosed in the above-mentioned patent application, or can be
carried out manually by a developer.

Fig. 3 is a schematic diagram representing the
correspondence between a database schema 30 and an object
model 20 by means of a transform 50 for an example object-
oriented application. The object model 20 is used to describe
the structure of the object-oriented application, including
the structure of each object in the application and the
relationships and inheritances between objects. In Fig. 3,
object model 20 represents the structure of a personnel

records management application. For purposes of this example,

10

15

20

25

30

35

WO 95/04960 . PCT/US94/08585

18

the object model 20 has two object classes, department class
101 and employee class 105. The object model 20 contains
attributes 102, 103 for the department class 101, and
attributes 106, 107 for the employee class 105. The object
model 20 also contains one relationship, called works_in
(relationship example 104). The works_in relationship
expresses the idea that each department has some number of
related employees that work in the department.

The transform 50 describes a mapping between
elements of the object model 20 and elements of the database
schema 30. Specifically, the transform 50 describes four
kinds of mappings. First, there is the mapping between the
attributes that make up an object ID for an object instance
and the primary key columns in one or more database tables.
For example the transform 50 maps the objecf ID attribute 102
to primary key column 109. Second, there is a mapping between
an object class attribute in a object model and a column or
columns in a database. For example, the transform 50 maps
attribute 107 to column 113. Third, there is the mapping
between a relationship in an object model and a foreign key
column or columns in a database table. For example, the
trénsform 50 maps relationship 104 to column 114.

In other embodiments of the invention, the mechanism
for mapping information between a structured database and
object instances of an object-oriented application can
comprise appropriate code written by a developer who is
familiar with object-oriented systems and structured
databases, using appropriate programming language tools such
as the C++ language. Such code can be written without the
benefit of an abstract object model, database schema, and
transform. Still other embodiments will be apparent to those
of skill in the art.

5. Method Overview

The flow chart of Fig. 4 provides an overview of the
operation of the method of the invention. The method can, for
example, be embodied in code organized into routines for an
object-oriented application.

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

19

According to the invention, the method accepts a
request from object-oriented application 80 (Step A). This
request can, for example, be in the form of calls to the
routines that embody the method. These calls can, for
example, be issued by object-oriented application 80 in
response to a command or commands from the developer.

Next the method determines the kind of request that
has been accepted (Step B). The method supports the following
operations: retrieving object instances, navigating
relationships between object instances, deleting references to
object instances, committing database transactions, and
beginning database transactions.

The request is then processed according to its kind.

If the request is a request to retrieve an object instance or
instances (Step C), the method transparently makes the
appropriate query or queries to structured database 70, and
maps the resulting information from structured database 70
into a corresponding object instance or instances in object
cache 60.

If the request is a request to navigate a
relationship between object instances (Step D), the method
first attempts to follow pointers between instances in the
object cache 60. If these pointers have been set, the method
returns the related object instance or instances directly from
object cache 60 without querying structured database 70. If
these pointers have not been set, the method queries
structured database 70 for the appropriate information, maps
the resulting information from structured database 70 into a
corresponding object instance or instances in object cache 60,
and sets bi-directional pointers between the related object
instances.

If the request is a request to delete a reference to
an object instance (Step E), the method decrements a reference
counter within the object instance. 1If, after decrementing,
this reference counter is zero, the method removes the object
from the object cache and from the cache dictionary.

If the request is a request to commit a transaction
(Step F), the method sets the state of all object instances in

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

20

the object cache to flushed, indicating that the data for
these instances must be re-read from the database and the
corresponding locks reacquired to ensure consistency of the
data in the cache.

If the request is a request to begin a transaction
(Step G), the method sets the default type of locking to be
used within that transaction. This default locking mode will
be applied to appropriate queries to the database to ensure
that rows in the database remain consistent with their
corresponding object instances in the object cache.

Step C is more fully described with reference to
Figs. 5 and 6 below. Steps D, E, and F are described more
fully below with reference to Figs. 7, 8, and 9, respectively.

The result of processing a request to retrieve an
object instance, navigate a relationship between object
instances, delete a reference to an object instance, or commit
a transaction is a modified object cache 60. For example,
object instances can be added to or deleted from the cache.
As another example, reference counts for object instances in
the cache can be changed. In some cases the cache dictionary
90 is modified as well by these requests. A reguest to begin
a fransaction has no effect on individual object instances in
the object cache, but it does affect the cache as a whole, in
that affects subsequent database operations.

6. Object Instance Retrieval _

The code to retrieve an object instance comprises a
routine that maps information requests from an object-oriented
application into lockups in the object cache. Lookups that
fail force queries to the structured database.

Fig. 5 illustrates how the method processes a
request to retrieve an object instance from object cache 60
(Step CA) in one embodiment. The method first determines
whether the object instance is already in object cache 60 by
performing a lookup on cache dictionary 90 (Step CB). This
lookup can, for example, take the form of a lookup in a hash
table. The result of this lookup is either a reference to an
existing object instance in the object cache which corresponds

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

21

to the object ID used in the lookup, or a NULL value, which
indicates that the requested object instance is not present in
the cache.

In the case that the lookup is successful (Step CC),
the method increments a reference counter associated with the
object instance returned by the dictionary lookup. This
reference counter indicates the number of variables within the
object-oriented application 80 which refer to or depend upon
this particular object instance. Through the use of a
reference counter, the method allows multiple variables in the
application to refer to the same object instance in the cache,
thereby avoiding having duplicate information in the object
cache.

Next, the method determines the state of the
retrieved object instance (Step CD). If the state is flushed
(Step CE), indicating that the data in the object instance has
not been updated since the last database transaction was
committed, the method queries the database using the default
locking mode as specified by the most recent request to begin
a transaction. The query (or queries) retrieves the
appropriate information to update the data in the object
inétance and reacquires the appropriate database locks. The
method then uses the row or rows returned to update the
information in the object instance (Step CF) and sets
(assigns) the state of the object instance to valid (Step CG),
indicating that the data in the object instance is valid, that
is to say, guaranteed to be consistent with the corresponding
information in the database.

In the case that the dictionary lookup is
unsuccessful, the object instance is registered in the cache
dictionary 90 (Step CH). For example, the object ID of the
object instance can be inserted into a hash table along with a
reference to the memory location at which the object instance
is stored. Next, the method queries the structured database
to retrieve information that will be used to add a new object
instance to the object cache (Step CI). This is more fully
described below with reference to Fig. 6. Once the object

instance has been retrieved (that is, the information has been

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

22

retrieved from the database and used to create a new object
instance in the cache), the method sets the reference counter
for this object instance to 1 (Step CJ), indicating that only
one program variable in the application refers to this
instance, and sets (assigns) the state of the object instance
to valid, indicating that the data in the object instance is
valid.

Once the object instance has been retrieved from the
cache, the method returns a reference to that object instance
(Step CK) for further processing by the object-oriented
application. The result of these steps is a modified object
cache 60, either through changes to existing instances in the
cache or through addition of a new instance to the cache and

its registration in the cache dictionary 90.

6.1 Retrieval from Structured Database

Fig. 6 illustrates in more detail the step of
retrieving a new object instance from the structured database
(Step CI in Fig. 5). The method accepts an object ID for the
object instance to be retrieved from the database (Step CIa).
The attributes that make up the object ID map to one or more
cofresponding primary key columns in the database.

The method sends a query or queries to the
structured database using the object ID and using the
appropriate locking mode as specified by the most recent
request to begin a transaction (Step CIB). The resulting rows
are converted into an object instance in the cache (Step CIC),
for example, by using the mapping mechanism described above
with reference to Fig. 3.

For each relationship that the new object instance
can be involved in, the method adds a corresponding
relationship pointer attribute to the new instance,
initializing this relationship pointer attribute to NULL to
indicate that the corresponding relationship information has
not yet been read from the database (Step CID). Examples of
such relationship pointer attributes are shown in Fig. 2, for
example, attribute 206 of department instance 201, which
represents the relationship between a department and a

WO 95/04960 PCT/US94/08585

23

collection of employees, and attribute 217 of employee
instance 211, which represents the reciprocal relationship
between an employee and a department.

In an embodiment in which the mapping mechanism
described above with reference to Fig. 3 is used, the mapping
mechanism itself can determine what relationships the new
object instance can be involved in, and thus can determine
what pointer attributes are to be added to the object instance
by referring to the object model 20. In embodiments in which
the mapping mechanism comprises appropriate code written by a
developer, the developer must specify in the code what
relationship attributes are to be added. Other embodiments
will be apparent to those of skill in the art.

Once the new object instance has been created, a
reference to the instance is returned to the calling routine
(Step CIE).

7. Object Relationship Navigation

The process of navigating relationships between
object instances in the object cache uses key swizzling to
convert implicit primary and foreign key references from the
structured database into explicit pointers between object
instances contained in the object cache. Navigational
requests from an object-oriented application are resolved by
following these pointers, thereby providing improved
performance by reducing queries to the structured database.

Relationship navigation presupposes that there is
some mechanism in object-oriented application 80 for mapping
information between structured database 70 and object
instances of object-oriented application 80. In one
embodiment, this mechanism can be as described in U.S. Patent
application serial no. 08/095,322, METHOD AND APPARATUS FOR
GENERATION OF CODE FOR MAPPING RELATIONAL DATA TO OBJECTS,
Attorney Docket No. 16186-1, filed July 21, 1993, invented by
Derek P. Henninger, Richard H. Jensen, and Christopher T.
Keene. This mechanism uses an object model, database schema,
and transform to define a mapping between the structured

database and object instances of the application. 1In

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

24

particular, the transform describes how to map foreign and
primary key columns in the database into relationships in the
object model. An example of such a mapping has been
illustrated above with reference to Fig. 3. It will be
appreciated that other embodiments are possible.

More specifically, as shown in Fig. 7, the method of
the invention accepts a request from the object-oriented
application to navigate a particular relationship for a
particular input object instance (Step DA). For example, this
can be a request to navigate the relationship between a given
employee and the employee's department, e.g., a request to
retrieve the department that employee Jane Smith works in. As
another example; this can be a request to navigate the
relationship between a department and all of its employees,
e.g., a request to retrieve all the employees who work in the
San Mateo department.

The method first determines whether the relationship
pointer attribute for the object instance given as input is
set to NULL (Step DB). If the pointer is not NULL, this
indicates that the related object instance or collection of
instances that are to be retrieved is already in the object
caéhe (e.g., has already been returned in response to a prior
query to the structured database 70). 1In this case, the
method simply returns a reference to the related instance or
collection of instances (Step DP), thereby avoiding having to
query the structured database again for this information.

If the pointer is NULL, this indicates that the
relationship information has not yet been read from the
database. In this case, the method determines the cardinality
of the relationship (Step DC). That is, the method determines
the maximum number of object instances that can be related to
the input object instance. 1In particular, the input object
instance can be related a maximum of one other object
instance, implying that the relationship pointer will refer to
a single object instance, or to a maximum of many (i.e., more
than one) other object instances, implying that the
relationship pointer will refer to a collection of related
object instances. For example, in Fig. 2, the Jane Smith

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

25

employee instance 211 can be related to a maximum of one
department instance, for example, through a relationship
pointer 217 which refers to the San Mateo department instance
201, whereas the San Mateo department instance 201 can be
related to a maximum of many employee instances, for example,
through its relationship pointer 206 which refers to employee
collection 207 of employee instances 211 and 218.

Continuing in Fig. 7, if the cardinality of the
relationship is one, the method first determines whether the
object instance is already in object cache 60 by performing a
lookup on cache dictionary 90 (Step DD). This lookup can, for
example, take the form of a lookup in a hash table. The
result of this lookup is either a reference to an existing
object instance in the object cache which corresponds to the
object ID used in the lookup, or a NULL value, which indicates
that the requested object instance is not present in the
cache. The object instance in the dictionary, if any, could
have been returned from a previous, unrelated query. Thus the
dictionary lookup, if successful, saves a query to the
structured database.

‘ In the case that the lookup is successful (Step DE),
the method increments a reference counter associated with the
object instance returned by the dictionary lookup, and checks
the object instance state, retrieving the appropriate data
from the structured database if the state is flushed. Step DE
is substantially identical to steps CC through CG of Fig. 5.

In the case that relationship cardinality is one and
the dictionary lookup is unsuccessful, the method queries the
structured database to retrieve information that will be used
to add a new object instance to the object cache (Step DF).
The query is performed using the default locking mode as
specified by the most recent begin transaction request. The
query is based on an understanding or mapping between
relationships between object instances in the object cache and
how these relationships map to primary and foreign keys in the
structured database. For example, in Fig. 2, the relationship
between department instance 201 and its related employee
instances 211 and 218 maps to foreign key column 231

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

26

("DeptID") of table 228 in structured database 70. That is,
the DeptID column 231 of employee table 228 provides an
implicit pointer between each row of employee table 228 and a
corresponding row in department table 225. To retrieve the
department instance related to Jane Smith employee instance
211, for example, the method sends a query such as the

following:
SELECT * FROM department WHERE DeptID = '5°

This query returns the information for the San Mateo
department instance from department table 225. More
generally, the method creates the appropriate query based on a
pre-existing mapping between the object instances and
relationships and the corrésponding information in the
database.

Continuing further in Fig. 7, the method converts
the row or rows returned from the query into a new object
instance in object cache 60 (Step DG). This new object
instance is then registered in cache dictionary 90, its
reference counter is set to 1, and its state is set to valid
(Step DH).

Oonce the object instance is retrieved, the pointers
between the object instance and the object instance to which
it is related are set (Step DI). This is the "key swizzling"
operation which converts the implicit foreign keys in the
structured database into pointers between object instances in
the object cache. According to the invention, subsequent
navigational requests will be resolved by following these
pointers rather than by making additional database queries.

It will be appreciated by those of skill in the art that
setting bi-directional pointers enables the relationship to be
traversed from either side after performing just one query.

If the cardinality of the relationship is many, the
method queries the database to read the appropriate related
rows (Step DJ). The query is performed using the default
locking mode as specified by the most recent begin transaction
request. The query is based on an understanding or mapping
between relationships between object instances in the object
cache and how these relationships map to primary and foreign

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

27

keys in the structured database. For example, in Fig. 2, to
retrieve the employee instances related to San Mateo
department instance 201, for example, the method sends a query
such as the following:

SELECT * FROM employee WHERE DeptID = '5'!

This query returns the information for the Jane Smith and Sue
Horn employee instances (employee instances 211 and 218) from
employee table 228.

Continuing in Fig. 7, for each row returned from the

query (Step DK), the method first determines whether an object
instance corresponding to this row has already been registered
in cache dictionary 90 (Step DL). If the object instance has
already been registered, this indicates that it is already in
the object cache, and its reference counter is incremented.
If the object instance has not been registered, a new object
instance is added to the object cache and registered in the
cache dictionary, its reference counter is set to 1, and its
state is set to valid.

Next, the related object instance (that is, the
object instance that was already registered or newly added in
step DL) is added to a collection of object instances related
to the input object instance (Step DM). A pointer is set from
the related object instance to the input object instance (Step
DN) .

After all of the related object instances created as
a result of the query to the structured database have been
added to the collection, a pointer is set from the input
object instance to the collection (Step DO). This is another
instance of the "key swizzling" operation which converts the
implicit foreign keys in the structured database into pointers
between object instances in the object cache. According to
the invention, subsequent navigational requests will be
resolved by following these pointers rather than by making
additional database queries.

Once the pointers have been appropriately set, the
method returns a reference to the related instance or

collection of instances (Step DP).

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

28

8. Object Reference Deletion
Fig. 8 illustrates the process for deleting a

reference to an input object instance which is in object cache
60 (Step EA). The method first decrements the reference
counter for the input object instance (Step EB). Next, the
method determines whether the decremented reference counter
has a value of zero, indicating that no program variables in
object-oriented application 80 reference this object instance
(Step EC).

If the value is zero, the method deletes the object
instance from object cache 60 (Step ED), for example, by
freeing program memory allocated to this object instance
(e.g., in C++, using the delete operator). The delete
operation does not affect the information in the structured
database; that is, the delete operation affects the state of
the object cache only. After the object instance is deleted,
its corresponding reference in cache dictionary 90 is removed
as well (Step EE), for example, by removing an entry from a
hash table.

If the value of the decremented reference counter is
not zero, this indicates that there are still variables in the
object-oriented application which depend on the input object
instance. Consequently, the object instance is not deleted’
from the object cache.

9. Committing a Transaction

Fig. 9 illustrates the process for commitfing a
transaction (Step FA). First, the method sends a commit
command to the structured database 70 (Step FB). For example,
in a relational database, the command

COMMIT

will cause the database to make permanent all changes which
have been made since the last commit command was sent. The
commit command to the database also causes all of the locks
which have been set by object-oriented application 80 to be
released. Therefore, there is a danger that other
applications that are also in communication with the database
can begin to change in the database information that is

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

30

ensure that items in the cache are locked appropriately in the
database during a transaction, so that a user is guaranteed
that the data in the cache is consistent with the data in the
database. When a database transaction is committed, the
database locks are released, allowing other users to access
and change the database information. To ensure that the cache
remains consistent with the database across transactions, data
associated with an object instance in the cache can be flushed
when a transaction is committed. A mechanism is provided for
transparently re-reading the data for object instances in the
cache as required by the application, thereby reacquiring the
locks.

The object cache of the invention adds the notion of
state to relational and other structured databases, so that
subsequent requests can benefit from previous information
retrieval. Bi-directional pointers between objects in the
object cache provide for reusability of database information.
In effect, the object cache eliminates a level of indirection
that is present in prior art systems and methods.

The invention has been explained with reference to
specific embodiments. Other embodiments are contemplated
without departing from the spirit and scope of the invention.
For example, the invention can be used not only with
relational data, but also any field-delimited data, such as
spreadsheet databases, hierarchical databases or flat file
databases which are field delimited. 1In some embodiments of
the invention, a single object cache is shared among multiple
object-oriented applications. In other embodiments of the
invention, an object-oriented application with an object cache
can communicate with multiple databases, transparently to the
developer or user of the object-oriented application. 1In
still other embodiments of the invention, the cache dictionary
and reference counters can be omitted. In yet other
embodiments of the invention, applications that are not
themselves object-oriented but that work with a structured
database can use cohesive data structure analogous to an
object cache in which pointers or other explicit references
are maintained between elements that store information (and

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

29

represented in the object cache. This can cause object
instances in the object cache to contain data that is
inconsistent with the data in the database, thereby
compromising the integrity of the object-oriented application
itself.

After issuing the commit command, the method
performs a loop for each object instance in the object cache
(Step FC), for example, by using cache dictionary 90 to obtain
a reference for each object instance in object cache 60. For
each object instance in the cache, the state of the object
instance is set to a value of flushed (Step FD). This
indicates that the data in the object instance is not
guaranteed to be consistent with the corresponding information
in the structured database. Typically, the object
application re-reads the information for a flushed object
instance and reacquires the appropriate locks in the database
before using the object instance in any further processing.

10. Conclusion

The method and apparatus of the invention provide a
cohesive data structure, called an object cache, that
represents information retrieved from a structured database in
a form suitable for use by one or more object-oriented
applications. Object-oriented applications that use or
incorporate an object cache according to the invention can
reduce their volume of database gqueries as compared with
similar applications that do not use the cache, and thus can
benefit from improved performance. Because the cache provides
a unified, cohesive structure in which all information
retrieved from the database is stored, certain types of
requests by the object-oriented application or applications
can be performed in the cache rather than in the database,
thereby speeding performance.

The object cache simplifies data management, because
all information retrieved from the database is stored in one
place. In particular it is possible to "register" the items
in the cache to prevent having two copies of the same item
present in the application. Additionally it is possible to

WO 95/04960 PCT/US94/08585

31

multiple copies of information) retrieved from the database,
thereby rendering explicit relationships that are represented
only implicitly through foreign keys in the database itself.
Still further variations and extensions will be apparent to
those of skill in the art within the scope of the invention.
It is therefore not intended that this invention be limited,
except as indicated by the appended claims.

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

32

WHAT IS CLATMED TIS:

1. A method for coupling an application program to
a structured database comprising the steps of:

using a digital computing system to retrieve, from
at least one structured database, foreign key information that
"represents an implicit link between rows in tables of said at
least one structured database; and

using a digital computing system to convert said
foreign key information into at least one pointer between data
structures of said application program being executed in said
digital computing systenm.

2. A method for coupling an object-oriented
application program to a structured database comprising the
steps of:

using a digital computing system to retrieve, from
at least one structured database, foreign key information that
represents an implicit link between rows in tables of at least
one structured database; and

using said digital computing system to convert said
fdreign key information into at least one pointer between
object instances of said object-oriented application program,
said object-oriented application program being executed in
said digital computing system.

3. A method for coupling an object-oriented
application to a structured database, said object-oriented
application being executed in a digital computing system
comprising a processor, said method comprising the steps of:

using said processor to generate a request in the
object-oriented application, said request being selected from
the group consisting of a request for information about an
object instance in said object-oriented application and a
request to navigate a relationship between object instances of
said object-oriented application;

using said processor to determine whether said
request can be resolved with reference to an object cache

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

33

comprising object instances of said object-oriented
application, and without reference to said structured
database;

if said request can be resolved with reference to
said object cache and without reference to said structured
database, using said processor to resolve said request by
refefring to said object cache; and

if said request cannot be resolved with reference to
said object cache and without reference to said structured
database, using said processor to resolve said request by
querying said structured database to obtain results and

modifying said object cache according to said results.

4, In an object-oriented application being
executed in a digital computing system comprising a processor,
a method for managing information retrieved from a structured
database, said method comprising the steps of:

using said processor to construct a plurality of
object instances, each of said object instances having its own
unique object ID that provides a mapping between said object
instance and at least one row in said structured database; and

| using said processor to construct a single cohesive
object cache comprising all object instances of said
plurality.

5. The method of claim 4 further comprising the
step of using said processor to delete from said cache a

reference to an object instance having an object ID.

6. The method of claim 5 wherein said step of
using said processor to delete a reference to an object
instance having an object ID comprises:

using said processor to decrement a reference
counter in said object instance; and

if said reference counter is equal to 0, using said
processor to delete said object instance and to delete a
reference to said object instance from a cache dictionary.

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

34

7. The method of claim 4 further comprising the
step of using said processor to resolve navigational requests
from said object-oriented application by following bi-
directional pointers between related object instances in said

object cache.

8. The method of claim 4 further comprising the
step of using said processor to resolve a navigational request
from said object-oriented application by following a pointer
involving an input object instance in said object cache.

9. The method of claim 8 wherein said step of
using said processor to resolve a navigational request further
comprises the step of:

using said processor to follow a relationship
pointer from said input object instance to at least one

related object instance in said object cache.

10. The method of claim 8 wherein said step of
using said processor to resolve a navigational request further
comprises the steps of:

| using said processor to construct a relationship
pointer from said input object instance to a related object
instance in said object cache; and

using said processor to follow said relationship
pointer thus constructed.

11. The method of claim 8 wherein said step of
using said processor to resolve a navigational request further
comprises the steps of:

using said processor to query said structured
database to retrieve information required to construct at
least one related object instance;

” using said processor to add said at least one
related object instance to said object cache;

using said processor to construct a relationship
pointer from said input object instance to said at least one

related object instance; and

5

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

35

using said processorto follow said relationship
pointer thus constructed.

12. The method of claim 4 further comprising the
step of using said processor to resolve a navigational request
from said object-oriented application by using said processor

to perform a lookup in a cache dictionary of a
related object instance in said object cache,

to construct a relationship pointer from said
input object instance to said related object
instance, and

to follow said relationship pointer thus
constructed.

13. The method of claim 4 further comprising the
step of using said processor to resolve a request from said
object-oriented application to navigate a relationship
involving a first object instance in said object cache, said
relationship being selected from the group consisting of a
one-to-one relationship, a one-to-many relationship, and a
many-to-many relationship, said first object instance having a
reiationship pointer corresponding to said relationship, said
request being resolved by said processor by following said
relationship pointer.

14. The method of claim 13 wherein said
relationship is a one-to-one relationship between said first
object instance and a second object instance, and wherein the
step of using said processor to resolve a request to navigate
said relationship comprises:

(a) using said processor to determine whether said
relationship pointer is null;

(b) if said relationship pointer is not null, using
said processor to return said a reference to said second
object instance;

(c) if said relationship pointer is null, using said
processor to determine whether said second object instance is

10

15

20

25

30

35

WO 95/04960

PCT/US94/08585

36

in said object cache by performing a lookup in a cache

dictionary;

(d) if said lookup returns a reference to said

second object instance, using said processor

and

to set a first relationship pointer from said
first object instance to said second object
instance,

to set a second relationship pointer from said
second object instance to said first object
instance, and

to return a reference to said second object

instance;

(e) if said lookup does not return a reference,

using said processor

to query said structured database to retrieve
information,

to construct said second object instance using
said information thus retrieved, and

to register the object ID for said second
object instance in said cache dictionary,

to set a first‘relationship pointer from said
first object instance to said second object
instance,

to set a second relationship pointer from said
second object instance to said first object
instance, and

to return a reference to said second object
instance.

15. The method of claim 13 wherein said

relationship is a one-to-many relationship between said first

object instance and a collection of additional object

instances, and wherein the step of using said processor to

resolve a request to navigate said relationship comprises:

(a) using said processor to determine whether said

relationship pointer is null;

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

37

(b) if said relationship pointer is not null, using
said processor to return said a reference to said collection
of additional object instances; and

(c) if said relationship pointer is null, using said
processor _

to query said structured database to retrieve
information,

to construct said additional object instances
using said information thus retrieved,

to register the object ID for each said
additional object instance in a cache dictionary,

to add each said additional object instance to
said collection,

to set a pointer from each said additional
object instance to said first object instance,

to set a first relationship pointer from said
first object instance to said collection, and

to return a reference to said collection.

16. The method of claim 13 wherein said
relationship is a many-to-many relationship involving said
first object instance and a collection of additional object
instances, and wherein the step of using said processor to
resolve a request to navigate said relationship comprises:

(a) using said processor to determine whether said
relationship pointer is null;

(b) if said relationship pointer is not null, using
said processor to return said reference to said collection of
additional object instances; and

(c) if said relationship'pointer is null, using said
processor

to query said structured database to retrieve
information, »

to construct said additional object instances
using said information thus retrieved,

to register the object ID for each said

additional object instance in a cache dictionary,

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

38

to add each said additional object instance to
said collection,

to set a first relationship pointer from said
first object instance to said collection, and

to return a reference to said collection.

17. The method of claim 4 wherein said step of
using said processor to construct a plurality of object
instances further comprises using said processor to assign to
each said object instance a state, said state having a value
indicating whether the information contained in said object
instance is guaranteed to be consistent with corresponding
information in said structured database.

18. The method of claim 17 further comprising the
steps of:
using said processor to accept a request from said
object-oriented application to begin a database transaction
with a default locking mode for subsequent database queries;
using said processor to lock certain database rows
as specified by said default locking mode as said certain
database rows are accessed in retrieving information to be
used in the creation of object instances in said object cache;
using said processor to accept a request from said
object-oriented application to commit a database transaction,
said step including using said processor to set the state for
each object instance in said object cache associated with said
transaction to flushed;
upon accessing an object instance whose state is
flushed, using said processor
to re-read information corresponding to said
object instance from said structured database,
to reacquire appropriate database locks, and
to set the state for said object instance to
valid.

19. The method of claim 4 further comprising the
steps of:

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

39

using said processor to generate a request in said
object-oriented application;

using said processor to determine whether said
request can be resolved with reference to said object cache
and without reference to said structured database;

if said request can be resolved with reference to
said object cache and without reference to said structured
database, using said processor to resolve said request by
referring to said object cache; and

if said request cannot be resolved with reference to
said object cache and without reference to said structured
database, using said processor to resolve said request by
querying said structured database to obtain results and

modifying said object cache according to said results.

20. The method of claim 19 wherein said step of
using said processor to resolve said request by referring to
said object cache further comprises using said processor to
perform a lookup in a cache dictionary which returns a

reference to an object instance in said object cache.

21. The method of claim 19 wherein said step of
using said processor to resolve said request by referring to
said object cache further comprises using said processor to
follow a relationship pointer between an object instance in

said object cache and at least one related object instance.

22. In a system comprising a plurality of object-
oriented applications and at least one processor, a method for
managing information retrieved from a structured database,
said method comprisinq the steps of:

using said processor to construct a plurality of
object instances, each of said object instances having its own
unique object ID that provides a mapping between said object
instance and at least one row in said structured database; and
A using said processor to construct a single cohesive
object cache comprising all object instances of said plurality

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

40

of object instances, said object cache being shared by said

object-oriented applications.

23. The method of claim 22 further‘comprising the
steps of:

' using said processor to accept a request from an
object-oriented application of said plurality of object-
oriented applications;)

using said processor to respond to said request

using said object cache.

24. In a system comprising an object-oriented
application and at least one processor, a method for managing
information retrieved from a plurality of structured
databases, said method comprising the steps of:

using said processor to construct a plurality of
object instances, each of said object instances having its own
unique object ID that provides a mapping between said object
instance and at least one row in at least one structured
database of said plurality of structured databases; and

using said processor to construct a single cohesive
obﬁect cache comprising all object instances of said plurality
of object instances.

25. An apparatus for an object cache comprising a
processor, memory coupled to said processor, a storage device
coupled to said processor, an application being executed by
said processor, and a structured database coupled to said
application, and:

means associated with said processor for
constructing a plurality of object instances, each of said
object instances having its own unique object ID that provides
a mapping between said object instance and at least one row in
said structured database;

means associated with said processor for
constructing a single cohesive object cache comprising all
object instances of said plurality; and

means for storing said object cache.

10

15

20

25

30

35

WO 95/04960 PCT/US94/08585

41

26. The apparatus of claim 25 wherein said means
for storing said object cache is selected from the group
consisting of physical memory, virtual memory, and hard disk

storage.

27. The method of claim 4 wherein
the step of using said processor to construct a single
cohesive object cache further comprises using said processor
to construct a cache dictionary, said cache dictionary
containing the object ID and location of every object instance
in said object cache.

28. The method of claim 4 further comprising the
step of using said processor to retrieve from said object

cache an object instance having an object ID.

29. The method of claim 28 wherein the step of
using said processor to retrieve from said object cache an
object instance having an object ID further comprises the
steps of:

_ using said processor to perform a lookup in a cache
dictionary, said lookup being based on the object ID of an
object instance to be retrieved from said object cache;

if said lookup returns a reference to an object
instance in said object cache whose object ID is the same as
the object ID of the object instance to be retrieved, using
said processor to increment a reference counter in said object
instance and to return a reference to said object instance;
and

if said lookup does not return a reference to an
object instance in said object cache, using said processor

to query said structured database based on said
object ID to retrieve information,

' to construct a new object instance using said

information thus retrieved, said new object instance

having an object ID, said new object instance having

a reference counter set to 1,

WO 95/04960 PCT/US94/08585

42

to register the object ID for said new object
instance in said cache dictionary, and

to return a reference to said new object

instance.

PCT/US94/08585

WO 95/04960

1/8

© Areuonojqg eyoed

AN M

ejemyos pouiey

s1-
uopeoyjdde
pejuelo 106

‘1L e4nbiy

og” _

105S6301d esegejeq
eseqeleq — painmons
o1 9 e
MIOMI9
MON 1919]
J
L H o
8diAe(]
L ——D JOSSO00ld (=P gﬂ;Oum
7 g/
Aowepy
4

SUBSTITUTE SHEET (RULE 26)

WO 95/04960

PCT/US94/08585

2/8

Location: 25236
|, |[_Location: 25236 |

Count: 2 State: 1
DeotiD: 5
ton: San Mateo

207 .- [Table: Employee
Empioyee Coilection : - | 229 230 231
[Tocaton: 26137 _J{ 208 S lSSNU'"‘ (Name] [DentiD]
_2.9_9.. : . |¥7001° || ‘Jane Smith* 5"
emp{1]: 28364 210 : . |"3721° || ‘JoeBoggs® T
. © | "4082° || *Sue Hom' 5t

T

ll

/21 1 : : :
Employ% 'nstarwe ! | ' e e e s e s s e e e e e e e se e s e e e s e

Tocaton 27543 1212

213 e .
Cwn‘: 1 State: 1 : :

214 :

SSNum: 1001 215 Dictionary f232 f233 f234 :
Name: Jane Smith I}, - : - [Hasnvaiue | [Obiect!D | [Location | :
DeptiD: 5 . . .

217 *4062° 28364
Rel_Dept: 25236

1001 27543
) 25236

\
N
b
[0}

(3 I <N ¥5 I \S B

Tocation: 28364 |29

Count: 1 State: 0
SSNum: 4062
Name: NULL

8

X
n
n
w

SUBSTITUTE SHEET (RULE 26)

WO 95/04960

.........................

Class: Department ,"102
[Aftr: DeptlD |
[At Location |

works_in | -
104

: [Relationship

f105
Class: Empioyee
[Attr: SSNum
Attr: Name

06

|

<103

107 .

Transtonn 50

...............

Figure 3.

WJeotlDl “ fLoqation

3/8

Database schema 30

PCT/US94/08585

..............................

f108

- Table Depanment

A110

!

|

|

f‘”
Table: Employee .
| 112 113 JlLA
. * |lsSNumi || [Name | [DeptiD}| :

WO 95/04960

Requests from
object oriented
application 80

Y

AA

Accept request from object
oriented application -

Kind of
request? .

PCT/US94/08585
4/8
C
Retrieve Retrieve object instance
information trom object cache
D
Navigate . |Navigate relationship between o
related object instances ”
rE
Delete > Delete reference to object
instance in object cache 4
/F
Commit »|Commit transaction —>-
-G
Beain . |Set detauit lock mode tor
~Istructured database
A
/" Moditied object

/ cacne 60, cache

/
L

Figure 4.

dictionary 80

WO 95/04960 PCT/US94/08585

5/8

Obiject ID for nstance
to retrieve

rCA'

Y

Method to retrieve an obiect
instance trom object cache 60

v CC v
increment object instance Register Object ID in cache |~CH
reterence counter dictionary

"N

Flushed . Valid]
nsttaatnt;a Retneve naw instance rom Ci
\ states structured database
| !
- CE Set object instance reference |~ &J
Retrieve instance data trom :
counterto 1. Set state to valid
structured database
Convert rows retumed into |~ CF
object instance
|
v
Set object instance stats to l-ca
valid (
|
i r CK
Modified object
‘ Retum ratneved obiect Instance cache 60. cache

| | dictionarv 90

Figure S.

SUBSTITUTE SHEET (RULE 26)

WO 95/04960

6/8

Object ID for

/ instance to retrieve /

fCIA

\.

(Method to retrieve a new

O

object instance from

structured database y

rCIB

database using object ID. Lock

rows at appropriate level. |
,I, fClC

Send query to structured

Convert rows retumed into
in-memory object instance

l KCID

L__Initialize pointers to NULL
l, KCIE

For eacn reiationsnip, add
pointer attribute to instancs.

Retum new object instance

-

PCT/US94/08585

Modified object
cache 60

/

Figure 6.

SUBSTITUTE SHEET (RULE 26)

WO 95/04960

PCT/US94/08585
7/8
. Object instance.
relation to navigate
v
’ DA
Method to navigate relationsnip
between object instance A and
related object instances
|
OB
No Relation Yes
ponter=NULL?
Many
4
Send database query to related
table using aporcpnate locking ¢~ oy
v
y _F Y OF DK
For eacn row retumed
y e Send database query 1o related | r
coun i:v';',ud table using appropnate locking Y ¢
y 0e I11D not registarea, convent o |
Conver rows rewmedinto | in-memory object instance. Set
in-memoty object instance Lreference countor
Y
. OH Add Instance to collection DM
Redqister Object 1D in aictionary. |~
Set reterence counter to 1, set +
L statetovalid |
| | : Set ponter trom instanceto |~ ON
{ | oI | instance A
X v r !
[| Set pointer trom Iinstance A to
| instance B. Set pointer trom #
| ! Set pointer trom nstance A to 00
l i ! cotiection
i .
v v v
!
v - OP

Retum reiated instance or |

|
il cotlection of Instances 1 7

/" Moditiea abject
cache 60. cacne
dictionarv 0

Figure 7.

 SUBSTITUTE SHEET (RULE 26)

WO 95/04960

PCT/US94/08585

8/8
/Object instance / Object cache 60 /
rDelet \{ to object f h
e reference to
ins Commit transaction
\ Y, Y,
¢ fEB ¢ /FB
Send commit command to the
Decrement reference counter structured datat
l fFC
For each instance in object
cache 60
EP 4
Delets instancs trom object Yy FP
cache
Set state to tiushed
v [FF
I
Remove instance reterence in
cache dictionary |
| v
t 1
Y Vv / Modified obiect
/ Modified obiect y, cache 60
cache 60. cache /
dictionary 80)
Figure 8. Figure 9.

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

