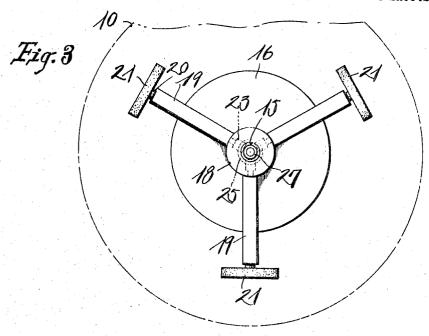
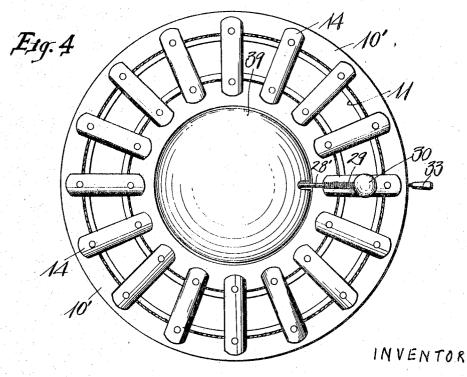

Filed Sept. 2, 1966

4 Sheets-Sheet 1

INVENTOR

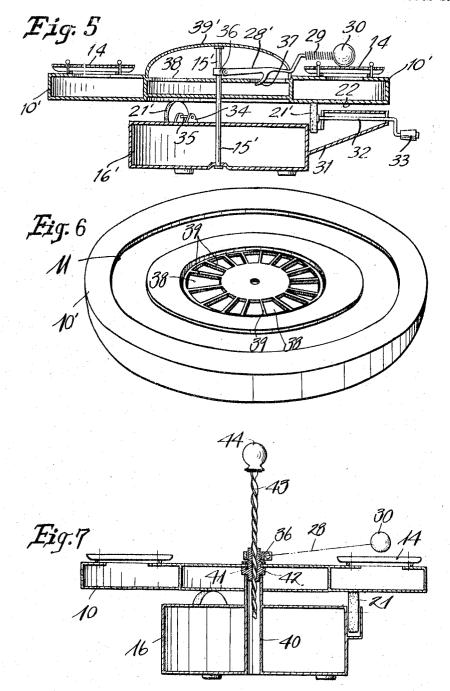

MATSUZO KOSUGE


By Muller and Torriv

afformays

Filed Sept. 2, 1966

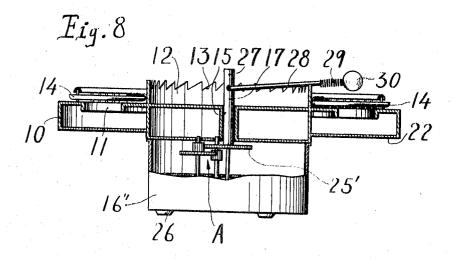
4 Sheets-Sheet 2

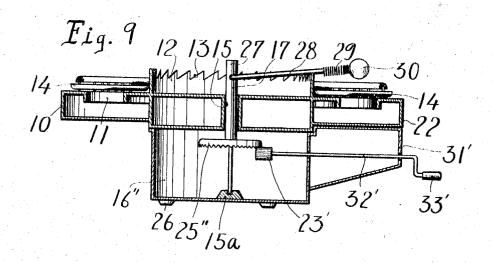


MATSUZO KOSUGE By Mullew and Total assumey

Filed Sept. 2, 1966

4 Sheets-Sheet 3


INVENTOR


MATSUZO KOSUGE

By Monglaw and Toren .

Filed Sept. 2, 1966

4 Sheets-Sheet 4

INVENTOR.
MATSUZO KOSUGE
BY
MGleur+Toren
ATTORNALYS

3,456,543
Patented July 22, 1969

1

3,456,543
TOY XYLOPHONE PLAYING DEVICE
Matsuzo Kosuge, 1516, Okudo-honmachi, Katsushika-ku,
Tokyo, Japan
Filed Sept. 2, 1966, Ser. No. 576,949
Claims priority application Japan May 2, 1966

Claims priority, application Japan, May 2, 1966, 41/40,811

Int. Cl. G10f 1/08

U.S. Cl. 84—102

8 Claims

ABSTRACT OF THE DISCLOSURE

A toy xylophone playing device comprises a hollow disk formed with an annular slot or groove in its upper surface near its outer periphery, and xylophone bars, each 15 corresponding to a respective scale note, arranged radially across the slot. Radially inwardly of the slot, the disk has an upwardly extending cylindrical wall with a serrated upper edge, the number of serrations corresponding to the number of bars. A shaft extends axially upwardly of the disk and pivotally supports an arm engaging the serrations and having an orb hammer connected to its outer end by a coil spring. As relative rotation is effected between the arm, on the one hand, and the bars and the serrations as a unit, on the other hand, the ball is caused to strike against successive bars, which are arranged in order to play a melody. The rotation may be effected by a motor by manual means such as a crank. In place of the serrated cylindrical wall, the radially inner portion of the upper wall of the hollow disk may be formed with a grating defined by radial bars equal in number to the number of xylophone bars, the hammer arm carrying a projection movable over this annular grating.

Summary of the invention

This invention relates to a musical toy, and more particularly relates to a toy xylophone playing device capable of endlessly playing a certain melody.

It is an object of the present invention to provide entertainment and amusement for children by providing a toy xylophone playing device capable of mechanically and endlessly playing a certain melody.

Another object of the present invention is to provide 45 a toy xylophone playing device of the kind adapted for automatically playing a xylophone associated therewith by the operation of a power unit mounted therein.

It is a further object of the present invention to provide a toy xylophone playing device of the kind adapted for mechanically playing a xylophone associated therewith by the operation of a manually operated means.

25 fixedly mounted on a shaft 24 projecting from the central portion of the base casing 16.

The base casing 16 is provided with a playing the operation of a manually operated means.

It is still further object of the present invention to provide a device of the kind described above which can be used as a toy for musical education of children.

It is also an object of the present invention to provide a device of the kind described above which is portable, simple in operation, and which can be manufactured and sold at a reasonable cost.

These and other objects and advantages will appear 60 more clearly from the following description in connection with the accompanying drawings in which:

FIGURE 1 is a plan view of one embodiment of the present invention as operated by means of a power unit, such as an electric motor, spring motor, etc.;

FIGURE 2 is a partly sectioned side elevation view of the embodiment shown in FIGURE 1;

FIGURE 3 is a plan view of the embodiment shown in FIGURES 1 and 2, from which a xylophone carrying disc has been removed, illustrating a portion of the disc 70 driving means employed therein;

FIGURE 4 is a plan view of another embodiment of

2

the present invention wherein a crank mechanism is provided so that the xylophone carrying disc can be rotated manually;

FIGURE 5 is a sectional side elevation view of the embodiment shown in FIGURE 4;

FIGURE 6 is a perspective view of a disc element employed in the embodiment shown in FIGURE 5;

FIGURE 7 is a sectional side elevation view of another embodiment of the present invention wherein a manually operated spiral push-rod is provided so that the xylophone carrying disc can be rotated by manual pressure on said rod;

FIGURE 8 is a side elevation view, partly in section, of another embodiment of the invention; and

FIGURE 9 is a vertical diametric sectional view through a further embodiment of the invention.

Description of the preferred embodiments

A preferred embodiment according to the invention will be set forth in the following description with references being made to FIGURES 1 to 3. In these figures, like portions or parts are designated with like numerals.

Referring now to the drawings, there is shown a hollow disc 10 which is provided with an annular slot or groove 11 on its upper surface adjacent its circumference, and which is provided, inwardly of said groove, with a cylindrical portion 12 formed with an upwardly projecting wall having serrations 13 on its upper edge. A number of replaceable iron xylophone elements 14 are radially arranged and mounted, to traverse annular groove 11, at predetermined intervals on the disc 10, in accordance with predetermined respective scale notes for a certain melody. The number of the xylophone element bars 14 corresponds with that of the serrations 13, and the ele-35 ments 14 carried by the disc 10 are rotated together with said disc. The disc 10 is provided with an axial bore 15 for a supporting shaft 17. The shaft 17 extends upwardly through the axial bore 15 of the disc 10, and is secured at its lower end to an annular bracket 18 mounted on the central portion of a base casing 16. The bracket 18 has, on its circumference, three sleeves 19 which extend radially, sleeves 19 receiving respective shafts 20, the outer end of which is provided with a roller 21 made from rubber material, each of the rollers 21 being in frictional contact with the bottom surface 22 of the disc 10. The inner ends of the three shafts 20 extend into the bracket 18 and are provided with respective pinions 23, pinions 23 being engaged, in the bracket 18, with a crown gear 25 fixedly mounted on a shaft 24 projecting upwardly

The base casing 16 is provided with a plurality of rests at its bottom and has therein a power unit, such as a dry cell operated motor, spring motor etc. (not shown), and the shaft 24 is mechanically rotated in one direction by means of the power unit. The upper end portion 27 of the shaft 17 extends upwardly along an axis of the cylindrical portion 12 of the disc 10, and pivotably supports a swingable hammer arm 28 which can be swung vertically, arm 28 extending in the radial direction of the disc 10 and having at its free end a coiled spring joint 29 having an orbicular or spherical hammer-head 30. The hammer-head 30 is maintained in a position to strike the middle portion of each of the xylophone elements 14.

In operation, when the power unit provided in the base casing 16 is actuated, the shaft 24 starts to rotate and rotates the rollers 21 which turn the hollow disc 10 in one direction, such as the direction indicated by the arrow shown in FIGURE 1. As the disc 10 turns, the cylindrical portion 12 thereof turns simultaneously therewith, and the hammer arm 28, which rests by its weight on a bottom portion of the serrations 13 formed at the top of said

cylindrical wall 12, is repeatedly moved up and down in accordance with the shape of the teeth or serrations 13. Accordingly, when the arm 28 is lifted by means of a projection or serration 13, the hammer-head 30 is detached upwardly from the xylophone element 14 that the hammer-head 30 has just struck, and, when it falls into the bottom recesses between each projection 13 and the next projection 13, the hammer-head strikes the next xylophone element 14. In this case, the spring joint 29 imparts to the hammer-head 30 a spring action.

It is noted that the position recess of the each bottom of teeth, that is to say, the lowest position at which said arm 28 rests must be considered and designed such that the hammer-head 30 can be dropped down to the most suitable portion of each xylophone element 14 during 15 rotation of the disc 10. Such relationship between each recess of the teeth and each xylophone element 14 is of fundamental importance, and must be applied to any embodiment according to the present invention.

It is further noted that the foregoing embodiment may 20 be modified variously. For example, disc 10 can be fixedly supported by an appropriate means, while supporting shaft 15 can be rotatably mounted in the axial bore of said disc so that the hammer-head 30 can be adapted for successively striking said xylophone elements by the rotation of said shaft 15.

Referring now to FIGURES 4 to 6, there is shown another embodiment of the present invention wherein a power unit is not provided. This embodiment has the same mechanism as that of the foregoing embodiment except for the means for imparting the hammer arm up-anddown motion and such description as might overlap the description made with respect to the foregoing embodiment will be omitted.

As may be seen from FIGURE 5, the bracket 31 secured to a side portion of a base casing 16 pivotally supports a crank arm 32 having, at its free end, a handle 33 and, at its inward end, a driving roller 21' made from rubber material. The bracket 34 mounted on a portion of the upper surface of said casing 16' pivotally supports the shaft 35 having at its outward end a guide roller 21' made from rubber material. It is to be noted that another guide roller (not shown) is provided in the same manner as aforementioned. Indicated by numeral 10' is a hollow disc having thereon a number of xylophone elements 14 as in the foregoing embodiment. The disc 10' 45 is pierced through its center by a supporting shaft 15' projecting upwardly from the center of the bottom wall of base casing 16 and is rotatably supported by the three rollers 21 at its bottom wall 22. Indicated by numeral 28' is a hammer arm pivotally secured at its base to a con- 50 necting member 36 fixedly mounted on an upper portion of shaft 15' as projected above disc 10', arm 28' having connected to its free end a hammer-head 30, through the medium of a spring joint 29, and at its middle portion a resilient sledge-shaped tail piece 37 extending downward- 55 ly. Tail piece 37 is designed such that it can be dropped into wedge-shaped apertures 38 of the annular grating defined between frames 39. This grating is formed in the inner portion of the upper wall of hollow disk 10'. The frames or bars 39, which extend radially, are relatively narrow and the number of the frames 39 corresponds with that of the xylophone bars or elements 14. When the tail piece 37 is lifted on a frame 39, the hammer arm 28' is raised, and, as the tail piece 37 falls into a wedgeshaped hole 38', hammer-head 30 drops and a xylophone element 14 is struck thereby. A cap 39' is fixedly mounted on the upper end of the shaft 15' and covers a central portion of the upper surface of the disc 10'.

In operation, as the handle 33 is manually operated, the driving roller 21' is rotated and the disc 10' is driven 70 for rotation. Accordingly, as long as the handle 33 is kept operated manually, the xylophone is kept played mechanically.

Turning now to FIGURE 7, there is shown another

proved manual driving means for rotating the disc is provided. As shown in the drawing, the embodiment includes a tubular supporting shaft 40, an annular nut 42 having a threaded bore 41, a spiral rod 43 of low pitch and a knob 44. Shaft 40 projects upwardly from the center of the bottom wall of a base casing 16 and pivotably supports, at its upper end, a xylophone carrying disc 10 through the medium of the nut 42 fixedly mounted in the center portion of the upper wall of the disc 10, spiral rod 43 being engageable with the thread of nut 42. When the user inserts rod 43 into bore 41 and depresses it with the knob 44, the disc 10 is forced to rotate in one direction and then keeps turning by inertia, thereby enabling the xylophone to be mechanically played. As for hammer driving means, any one of the aforementioned two hammer driving means can be used for this embodiment. In this connection, it is noted that to keep the disc 10 rotating even after the inertia has been weakened, it is necessary to provide a known pawl and ratchet mechanism (not shown) between the nut 42 and the disc 10. Also, it is to be noted that any one of the aforementioned base casings 16 and 16' does not need to be shaped cylindrically, and that the rollers 21 and 21' may be of elastic materials such as nylon, plastic etc. instead of rubber. It is further noted that the exterior surfaces of the device according to the present invention can be ornamented with various designs such as colorful flowers, birds, butterflies etc.

Referring now to FIG. 8, there is illustrated another embodiment of the present invention including a power unit in the same manner as in the embodiment shown in FIGS. 1, 2 and 3. The embodiment shown in FIG. 8 differs from the embodiment of FIGS. 1, 2 and 3 in that the hollow disk 10 is fixedly supported by a base casing 16", while supporting shaft 17 is rotatably mounted in an axial bore in the disk so that hammer-head 30 can be revolved to successively strike the xylophone bars or elements 14, by rotating shaft 17. Except for the omission of such parts as the rollers 21, etc., the embodiment of FIG. 8 has substantially the same components as the embodiments shown in FIGS. 1, 2 and 3, so that detailed description thereof is believed unnecessary. In FIG. 8, parts or portions identical with those of FIGS. 1, 2 and 3 have been designated by the same numerals as used in FIGS. 1, 2 and 3.

The arrow A indicates a gear train which transmits power from the power unit (not shown) provided in base casing 16" to the shaft 17, the power being transmitted through a gear 25 fixed to shaft 17. When shaft 17, hammer-head 30 successively strikes the xylophone elements or bars 14 do to such rotation.

FIG. 9 illustrates a further embodiment of the invention which is manually operated and has, other than the substitution of the manual operating means for a power operating means, the same construction of the embodiment shown in FIG. 8 so that detailed description of certain parts of FIG. 9 is not necessary. In FIG. 9, those parts or portions identical with the parts or portions shown in FIG. 8 have been designated by the same reference numerals as used in FIG. 8.

The embodiment of the invention shown in FIG. 9 includes a bracket 31' which is secured to a side wall of a base casing 16" and rotatably supports a crank arm 32" having, at its free end, a handle 33' and, at its inner end, a pinion 23'. This pinion 23' meshes with a crown gear 25" fixedly secured on shaft 17. Shaft 17 is rotatably supported, at its lower end, by a bearing 15a at the center of the bottom wall of casing 16". Disk 10 is fixedly supported by casing 16", in the same manner as in FIG. 8.

As handle 33' is manually operated, pinion 23', meshing with crown gear 25", is rotated and thus shaft 15 is rotated. The xylophone is kept playing mechanically as long as handle 33' is manually rotated.

As may be seen from the foregoing description, the embodiment of the present invention, wherein an im- 75 device according to the present invention can not only

5

amplify the sound produced from the xylophone elements, but also can produce a very beautiful tone by a resonant action effected by said hollow disc which serves as a resonant box. Furthermore, the xylophone elements can be replaced by another set of xylophone elements for a different melody and, when the user wishes to enjoy another melody, he has only to replace the elements with another set of elements.

It is also noted that the device can be handled very easily by children and is attractive in appearance.

Thus, the various objects of the present invention as aforementioned may be effectively attained by the features and advantages of the device as described above.

What I claim is:

- 1. Toy xylophone playing device comprising, in com- $_{15}$ bination, a disk having an annular groove in its upper surface; a plurality of xylophone bar elements positioned on said disk to extend radially across said groove on the upper surface of said disk, and spaced from each other along said annular groove; said xylophone bar elements 20 each corresponding to a respective scale note and said xylophone bar elements being arranged serially in accordance with a predetermined melody; a base casing; a supporting shaft projecting upwardly from the center of said base casing and rotatably through a central portion of 25 said disk; a hammer arm pivotally connected at its inner end to the upper end of said shaft for swinging movement upwardly and downwardly relative to said xylophone bar elements; a hammer head mounted at the free end of said arm to strike said xylophone bar elements; said disk 30 and said shaft being relatively rotatable; means operable to effect such relative rotation; and means operable, responsive to such relative rotation, to swing said hammer arm to cause said hammer head to strike said xylophone bar elements successively to play said melody repetitively 35 during such relative rotation.
- 2. Toy xylophone playing device, as claimed in claim 1, in which said disk is rotatable and said shaft is fixed against rotation; a plurality of rollers mounted on said base casing and supporting said disk for rotation; said means operable to effect such relative rotation comprising motor means in driving relation with said rollers.
- 3. Toy xylophone playing device, as claimed in claim 1, in which said disk is rotatable and said shaft is fixed against rotation; a plurality of rollers mounted on said base casing and supporting said disk for rotation thereof; said means operable to effect such relative rotation comprising a manually operable crank mechanism in driving connection with one of said rollers to rotate said disk.

6

- 4. Toy xylophone playing device, as claimed in claim 1, including means mounting said disk for rotation relative to said shaft; a nut secured centrally of said disk and having an axially extending spirally threaded bore; a spiral push rod, of low pitch, engaged in said bore of said nut; said spiral push rod being manually reciprocable axially of said nut to rotate said disk.
- 5. Toy xylophone playing device, as claimed in claim 1, in which said means operable to swing said hammer arm during such relative rotation comprises a cylindrical wall extending coaxially upwardly from the upper surface of said disk, the upper edge of said cylindrical wall being formed with a plurality of serrations equal in number to the number of said xylophone bar elements.
- 6. Toy xylophone playing device, as claimed in claim 1, in which said means operable to swing said hammer arm during such relative rotation comprises a resilient tail piece on said arm; and an annular grating formed in the upper surface of said disk and including a plurality of radially extending grating bars bounding wedge-shaped apertures equal in number to the number of said xylophone elements; said tail piece swinging said arm, during said relative rotation, as it passes over said grating bars and into said apertures.

7. Toy xylophone playing device, as claimed in claim 1, including means supporting said disk fixed against rotation; and means rotatably supporting said shaft.

8. Toy xylophone playing device, as claimed in claim 7, in which said means effecting swinging of said hammer arm during rotation of said shaft comprises a cylindrical wall extending upwardly and coaxially from the upper surface of said disk; the upper edge of said cylindrical wall being formed with a plurality of serrations equal in number to the number of said xylophone bar elements.

References Cited

UNITED STATES PATENTS

		· ·	
2,038,741 2,950,641	4/1936 8/1960	KrattBruetting	84—97 84—97

FOREIGN PATENTS

907,488 3/1954 Germany.

45 RICHARD B. WILKINSON, Primary Examiner LAWRENCE R. FRANKLIN, Assistant Examiner

U.S. Cl. X.R.

50 46-191; 84-404