(12) 发明专利申请

(10) 申请公布号 CN 104634314 A
(43) 申请公布日 2015.05.20

(21) 申请号 201510087082.2
(22) 申请日 2010.09.15
(30) 优先权数据
 12/560,176 2009.09.15 US
(62) 分案原申请数据
 201080041854.4 2010.09.15
(71) 申请人 高通股份有限公司
 地址 美国加利福尼亚州
(72) 发明人 M・玛哈简
(74) 专利代理机构 上海专利商标事务所有限公司
 代理人 云云

(51) Int.Cl.
 G01C 3/08(2006.01)
 G01C 15/00(2006.01)
 G01S 17/42(2006.01)
 G01S 17/46(2006.01)

(54) 发明名称
 小形状因子的距离传感器

(57) 摘要
 本文中所公开的主体内容涉及小形状因子的距离传感器，确定从移动设备到远程物体的距离或者该远程物体的大小。
1. 一种由非驻定移动设备执行的测量沿远程表面的距离的方法，包括：
 从所述移动设备的第一位置将第一能量束定向至远程表面上的第一点；
 从所述移动设备的第二位置将第二能量束定向至所述远程表面上的第二点；
 测量所述移动设备的所述第一位置与所述移动设备的所述第二位置之间的位置位移；
 以及
 基于所述位置位移来确定沿所述远程表面的所述距离。
2. 如权利要求1所述的方法，其特征在于，在将所述第一能量束定向至所述远程表面上的所述第一点之后，所述移动设备从所述第一位置移至所述第二位置。
3. 如权利要求1所述的方法，其特征在于，进一步包括：
 测量从所述第一位置到所述远程表面上的所述第一点的第一距离；以及
 测量从所述二位置到所述远程表面上的所述第二点的第二距离，
 其中所述确定包括基于所述位置位移、所述第一距离和所述第二距离来确定沿所述远程表面的距离。
4. 如权利要求1所述的方法，其特征在于，进一步包括：
 测量所述第一能量束与所述第二能量束之间的重定向的角度，
 其中所述确定包括基于所述位置位移和所述重定向的角度来确定沿所述远程表面的距离。
5. 如权利要求4所述的方法，其特征在于，所述重定向的角度通过用户旋转所述移动设备来引起。
6. 如权利要求4所述的方法，其特征在于，所述重定向的角度通过旋转置于所述移动设备中的可旋转的微反射器来引起。
7. 如权利要求4所述的方法，其特征在于，所述重定向的角度是使用置于所述移动设备中的测角器和/或罗盘来测量的。
8. 如权利要求1所述的方法，其特征在于，所述移动设备基于卫星和/或地面定位系统来确定所述第一位置和所述第二位置。
9. 如权利要求1所述的方法，其特征在于，所述第一能量束和所述第二能量束包括声波。
10. 如权利要求1所述的方法，其特征在于，所述第一能量束和所述第二能量束包括光波。
11. 如权利要求1所述的方法，其特征在于，所述移动设备包括手握式设备。
12. 一种用于测量沿远程表面的距离的装置，包括：
 反射体，其被配置成在所述装置位于第一位置时将第一能量束定向至远程表面上的第一点，并在所述装置位于第二位置时将第二能量束定向至所述远程表面上的第二点；以及
 处理器，其被配置成测量所述装置的所述第一位置与所述装置的所述第二位置之间的位置位移，并基于所述位置位移来确定沿所述远程表面的所述距离。
13. 如权利要求12所述的装置，其特征在于，在将所述第一能量束定向至所述远程表面上的所述第一点之后，所述装置从所述第一位置移至所述第二位置。
14. 如权利要求12所述的装置，其特征在于，所述处理器被进一步配置成：
 测量从所述第一位置到所述远程表面上的所述第一点的第一距离；
权利要求书

测量从所述第二位置到所述远程表面上的所述二点的第二距离；以及
基于所述位置位移、所述第一距离和所述第二距离来确定沿所述远程表面的距离。
15. 如权利要求 12 所述的装置，其特征在于，所述处理器被进一步配置成：
测量所述第一能量束与所述第二能量束之间的重定向的角度；以及
基于所述位置位移和所述重定向的角度来确定沿所述远程表面的距离。
16. 如权利要求 15 所述的装置，其特征在于，所述重定向的角度通过用户旋转所述装置来引起。
17. 如权利要求 15 所述的装置，其特征在于，所述重定向的角度通过旋转置于所述装置中的可旋转的微反射体来引起。
18. 如权利要求 15 所述的装置，其特征在于，所述重定向的角度是基于从置于所述装置中的测角器和 / 或罗盘接收到的数据来测量的。
19. 如权利要求 12 所述的装置，其特征在于，所述装置基于卫星和 / 或地面定位系统来确定所述第一位置和所述第二位置。
20. 如权利要求 12 所述的装置，其特征在于，所述第一能量束和所述第二能量束包括声波。
21. 如权利要求 12 所述的装置，其特征在于，所述第一能量束和所述第二能量束包括光波。
22. 如权利要求 12 所述的装置，其特征在于，所述装置包括手持式设备。
23. 一种用于测量沿远程表面的距离的设备，包括：
用于从所述设备的第一位置将第一能量束定向至远程表面上的第一点的装置；
用于从所述设备的第二位置将第二能量束定向至远程表面上的第二点的装置；
用于测量所述设备的所述第一位置与所述设备的所述第二位置之间的位置位移的装置，以及
用于基于所述位置位移来确定沿所述远程表面的距离的装置。
24. 一种用于测量沿远程表面的距离的非瞬态计算机可读介质，包括：
用于从移动设备的第一位置将第一能量束定向至远程表面上的第一点的至少一条指令；
用于从移动设备的第二位置将第二能量束定向至远程表面上的第二点的至少一条指令；
用于测量所述移动设备的第一位置与所述移动设备的所述第二位置之间的位置位移的至少一条指令；以及
用于基于所述位置位移来确定沿所述远程表面的距离的至少一条指令。
小形状因子的距离传感器

[0001] 本申请是国际申请日为2010年9月15日，国际申请号为PCT/US2010/048983，中国申请号为201080041854.4，发明名称为“小形状因子的距离传感器”的专利申请的分案申请。

[0002] 背景

[0003] 领域:

[0004] 本文中所公开的主题内容涉及确定从移动设备到远程物体的距离或者该远程物体的大小。

[0005] 信息:

[0006] 设备可以通过测量投射到远程表面并反射回该设备的声能、光能、红外线（IR）能和/或射频（RF）能的传播时间来测量至该远程表面的距离。例如，手持式设备可以向数米外的表面投射光束以测量其距离。缺点的是，此类设备对准该表面的角度典型情况下会影响距离测量。另外，此类设备典型情况下测量至该设备所对准的表面上的点的点的距离，该点未必是该表面上最接近该设备的点。

[0007] 附图简述

[0008] 将参照以下附图来描述非限定性和非穷尽性的特征，其中相近参考标号贯穿各附图始终指代相近部分。

[0009] 图1A是根据一实现示出用于测量至表面的距离的距离传感器的示意图。

[0010] 图1B是根据一实现示出以相对于距离可被测量的表面呈一角度的方式握持的距离传感器的示意图。

[0011] 图2是根据一实现描绘测量至表面的数个距离的 handheld 设备的示图。

[0012] 图3是根据一实现的用于确定至表面的最短距离的过程的流程图。

[0013] 图4是根据一实现示出表面上用于最短距离确定的距离测量点的示意图。

[0014] 图5是根据一实现示出用于测量至表面上的多个测量点的距离的距离传感器的示意图。

[0015] 图6是根据一实现示出用于同时向多个方向发送光能的发射器系统的示意图。

[0016] 图7是根据一实现描绘测量至表面的数个距离的手持式设备的示图。

[0017] 图8是根据一实现示出测量至表面的数个距离的手持式设备的详图。

[0018] 图9是根据一实现的用于确定远程表面上的距离的过程的流程图。

[0019] 图10是根据另一实现的用于确定远程表面上的距离的过程的流程图。

[0020] 图11是根据一实现示出用于测量至表面上的多个测量点的距离的距离传感器的示意图。

[0021] 图12是根据一实现示出用于测量至表面上的测量点的距离的距离传感器的示意图。

[0022] 图13是根据一实现描绘测量至表面的数个距离的非驻定的手持式设备的示图。

[0023] 概述

[0024] 在一个特定实现中，一种方法包括旋转可旋转的微反射体以将能量定向至远程表
面，其中该可旋转的微反射体可被置于移动设备中，并且其中该旋转是相对于该移动设备的，以及至少部分地基于来自该远端表面的源于定向能量的反射能量来测量距离。然而，应当理解，这仅仅是一种示例实现，且所要求保护的主题内容不限于此特定实现。

[0025] 详细描述

[0026] 贯穿本说明书引述的“一示例”、“一特征”、“示例”或“特征”意指结合该特征和/或示例所描述的特定特征、结构或特性包含在所要求保护的主题内容的至少一个特征和/或示例中。由此，短语“在一个示例中”、“一示例”、“在一个特征中”或“一特征”贯穿本说明书在各处的出现并非必然全部引述相同特征和/或示例。此外，具体特征、结构、或特性在一个或更多示例和/或特征中可被组合。

[0027] 在一实现中，诸如蜂窝电话、PDA 及类似设备的手持式设备可包括用于确定至远程表面的最短距离的距离传感器。例如，此类距离传感器可包括用于发射和接收声能、光能、IR 能和/或 RF 能的发射器和接收器，用于当发射能量来往于远程表面时确定该发射能量的传播时间的时间模块，以及适配成确定至该表面上的多个点的距离的处理器。具体地，此类距离传感器可确定至该表面的多个确定距离中的最近距离或最短距离。另外，此类距离传感器可具有充分小的形状因子以嵌合在诸如诸如便携式和/或 PDA 之类的手持式设备中。在特定实现中，距离传感器可以能够沿多个角度发射声能、光能、IR 能和/或 RF 能。例如，角度可以对应于远程表面的上的特定距离测量点。沿个别角度确定至远程表面的距离可能会产生多个距离测量。此类测量的最短距离可以对应于至远程表面的最短距离，如以下更详细地解释的那样。例如，如果以对远程表面呈倾斜角度的方式来握持包括作出此类距离测量的距离传感器的手持式设备，那么此类实现可以是有效的。在此情形中，由于该倾斜角度的距离测量可能未必包括至远程表面的最短距离。以下参照图1A和1B来讨论这个想法。

[0028] 图1A是根据一实现示出用于测量至表面140的距离的距离传感器100的示意图。此类距离传感器可置于诸如便携式和/或 PDA 之类的手持式设备中，如以上所提及的那样。在一个特定实现中，距离传感器100可以传送并接收包括基本上定向的具有次音频或超音频的声波的声能。在另一特定实现中，距离传感器100可以传送并接收包括 RF 辐射和/或具有可见波长或 IR 波长的激光的电磁（EM）能。当然，此类对声能和 EM 能的描述仅是示例，并且所要求保护的主题内容并不被如此限定。距离传感器100可以向表面140上的点130发射此类能量110。能量110可包括能量脉冲，例如，具有开始和结束时间的声能和/或 EM 能的相对较短的波列。例如，此类脉冲可被编码以提供用于将多个收到脉冲彼此区分开来的手段。随后，从表面140反射的能量120可返回到距离传感器100，其中可以执行对发射与接收器的接收之间所流逝的时间的测量。此类流逝时间可被称为传播时间。使用关于由距离传感器发射和接收的声能和/或 EM 能的速度以及测得的传播时间的知识，可以确定从距离传感器到远程表面的距离。如图1B中所示，可以通过相对于表面140呈倾斜角度125的方式来握持距离传感器100。例如，此类角度可以不垂直于远程表面140。在此类角度下，距离传感器100可能将能量150发射到表面140上的点170处，尽管点180可能是表面140至距离传感器100的最近点。相应地，沿角度125的发射能量150和反射能量160可能相对于来往最近点180的距离而言行进较大的距离。遗憾的是，结果得到的至表面140的测得距离可能大于至表面140的最近距离。在特定实现中，用户可能以倾斜角度来操作
此类用于手持式设备中的距离传感器而不知此类倾斜角度时，因为即使难以觉察的相对较小的倾斜角度也可以引入显著的测量误差。在另一特定实现中，距离传感器可以能够沿多个角度发射声波和 / 或 EM 能，以使得无论是否以相对于表面呈倾斜角度的方式来握持距离传感器均可确定至方程表面的最近距离，如以下详细讨论的那样。

图 2 是根据实现描绘测量至表面 220 的数个距离的手持式设备 210 的示意图。手持式设备 210 可包括蜂窝电话、PDA 及类似设备并且包含距离传感器 230。如以上所提及的此类距离传感器可以具有小形状因子以使其距离传感器能够嵌合在手持式设备 210 中。如图 2 中所示，此类距离传感器 230 可以沿多个角度向表面 220 上的多个距离测量点发射声能够 / 或 EM 能。在特定实现中，距离传感器 230 可以包括安装在半导体器件上的一个或更多个可旋转的微反射体。以下更详细地解释的此类可旋转的微镜可以例如提供以上所提及的小形状因子。当然，此类结合手持式设备 210 对距离传感器的描述仅是示例，并且所要求保护的主题内容并不被如此限定。在一示例中，用户 240 可能无意地以相对于表面 220 呈倾斜角度的方式握持手持式设备 210 以将能量束 D1 导向表面 220。然而，能量束 D1 可能并不导向表面 220 上最接近手持式设备 210 的点，以使得结果得到的距离测量可能大于此类至最近点的测量。

在设想此类至最近点的距离中，距离传感器 230 可以随后将能量束 D2 重新导向表面 220 上的另一点以将能量束 D2 的方向来测量至表面 220 的距离。此类重定向过程可以持续下去，诸如举例而言针对能量束 D3 和 D4。在此类过程之后，距离传感器 230 可以已沿多个方向测量了多个至表面 220 的距离。相应地，最短测得距离可以对应于表面 220 的最短距离。在特定实现中，测量至表面的最短距离的准确性可以通过在藉由较小的角度来重定向能量束的同时增加该表面的距离测量的次数的方式来提高，如以下更详细地讨论的那样。当然，距离传感器的此类过程仅是示例，并且所要求保护的主题内容并不被如此限定。

图 3 是用于确定此表面的最短距离的过程 300 的流程图，并且图 4 是根据一个实现示出表面 400 上用于最短距离确定的距离测量点的示意图。诸如举例而言图 1 中所示的距离传感器 100 之类的距离传感器可以顺序地向沿着线 410 基本上按线性安排的点 430A、430B、430C 和 430D 发射诸如声能和 / 或 EM 能之类的能量。第一点 430A 和线 410 所位于的方向可以至少部分地基于距离传感器的取向，该距离传感器可由可选择此类方向的用户握持。图 2 可以例如描绘此情形，其中由于用户可手动地握持距离传感器，因而可以至少部分随机地选择此类方向。线 410 的特定方向在过程 300 中不需要是重要的，如下详细解释的那样。在框 310 处，线 410 上的初始点 430A 可被选择并且其距离可被测量。在框 320 处，距离传感器的诸如发射器部分之类的部分可以旋转步进角度以向后续点 430B 发射能量。此类旋转的步进角度以及表面 400 上的点 430A 与 430B 之间的相应间距可以至少部分地基于特定过程 300 的合意分辨率和 / 或精确性来选择，如以下详细讨论的那样。此类步进角度可以包括被用于发射能量的后续旋转直至此类旋转的方向反向的常数值，如以下详细描述的框 360 处那样。

随后，在框 330 处，向点 430B 发射的能量的至少一部分可以反射回距离传感器，在距离传感器处反射能量可被接收。至点 430B 的距离可以至少部分地基于发射 / 收到能量的测得传播时间来确定。在框 340 处，可以作出关于随后测得的例如至点 430B 的距离是否
大于先前测得的例如至点 430A 的距离的确定。如果不是，那么过程 300 可以返回框 320，
在此距离传感器的一部分可以再次旋转与前一旋转的步进角度相同的步进角度以将能量
导向后续点 430C。再一次，在箱 340 处，可以作出关于随后测得的例如至点 430C 的距离是
否大于上一次测得的例如至点 430B 的距离的确定。如果不是，那么过程 300 可以再次返回
框 320，在此距离传感器的发射器部分可以再次旋转与前一旋转的步进角度相同的步进角
度以将能量导向后续点 430D。此类将能量导向表面上的点、旋转步进角度、将能量导向表面
上的另一点等的过程可以在每当随后测得的距离小于先前测得的距离时重复。此类重复过
程可以允许距离传感器的发射角的决定直至表面 400 上沿着线 410 最接近距离传感器的点。
此类点的测得距离可被称为相对最小值，因为该测得距离可能是至沿着线 410 的点的测得
距离中的最小值。相反，如果最新增测得的距离大于先前测得的距离，那么可能出现出现关于距
离传感器的发射角已通过线 410 上的此类点的指示。
[0033] 在图 4 中所解说的当前示例中，在框 330 处测得的至点 430D 的距离大于至点 430C
的测得距离，如在框 340 处所确定的那样。相应地，在框 350 处，可以例如作出关于旋转的
角度是否对应于加诸于距离传感器的分辨率限制的确定。如果不是，那么可以执行对至表
面 400 上的点的距离比至点 430D 的距离更短的距离的搜索。此类对应于一更短距离的点
可被假定为在点 430C 与 430D 之间的点 410 上。相应地，如在框 360 处那样，距离传感器的
发射器部分可以使其旋转方向反向并且将其步进角度例如减小一半或者每来自先前步进角
度的其他分数。当然，其他步进角度减小是可能的，并且所要求保护的主题内容并不被如
此限定。以此方式，可以如在框 330 处那样确定至点 430E 的距离。在框 340 处，可以作出
关于随后测得的例如至点 430E 的距离是否大于先前测得的例如至点 430D 的距离的确定。
如果是，那么在框 350 处，可以例如作出关于旋转的当前角度是否对应于加斩于距离传感
器的分辨率限制的确定。如果不是，那么可以执行对至表面 400 上的点的距离比至点 430E 的距离
更短的距离的搜索。然而，如果达到此类分辨率限制，那么可以随后如框 370 处那样执行用于
搜寻表面 400 上沿基本上与线 410 正交的线 420 的最近点的过程。
[0034] 在特定实现中，与在其中线 420 与线 410 呈斜角的情形相比，基本上与线 410 正交的
线 420 可以例如导致相对较快的用于确定表面 400 上的最近点的过程。此类正交性可以提
供用于按试错法的方式来测量表面 400 上的点直至确定最近距离的高效率过程。框 370
处的过程可以例如包括类似于框 310 到 360 的那些的动作的动作。具体地，发射器可以旋转
以将能量导向点 440A，以使得可以确定至该点的距离。继续图 4 中所描绘的示例，发射器可
以在确定至点 440A 的距离大于至点 430E 的距离之后旋转步进角度以将能量导向点 440B。
如以上针对用于确定至点 430C、430D 和 430E 的距离的过程所描述的，可以测量至点 440C、
440D 和 440E 的距离以确定表面 400 上沿着线 420 的最近点。至此类点的测得距离可被称
为相对最小值，因为该测得距离可能是至沿着线 420 的点的测得距离中的最小值。由于线
420 可包括已被确定为表面 400 上沿着线 410 的最近点的点 430E，因而沿着线 420 的最近
点可以如框 380 处那样被选择为表面 400 上落在测量分辨率限制之内的最近点。在图 4 中
所描绘的示例中，点 440E 是最近点。
[0035] 图 5 是根据一个实现示出用于测量至表面 550 上的多个距离测量点的距离的距离
传感器 500 的示意图。一旦接收到从发射器 510 发射的能量，可旋转的反射体 520 可以经
过开口 530 将能量 540 导向表面 550 上的各个距离测量点。处理器 508 可以向旋转控制器
525 传送信息，该旋转控制器 525 可以向可旋转的反射体 520 发送至少部分地确定该可旋转的反射体的角位置的信号。在一个特定实现中，可旋转的反射体 520 可以包括用于反射由发射器 510 发射的 EM 能的反射体。此类反射体可以例如由从旋转控制器 525 接收信号的步进电机来旋转。在另一特定实现中，可旋转的反射体 520 可以包括用于反射由发射器 510 发射的 EM 能的微反射体阵列。此类阵列的反射角度可以例如由至少部分地由来自旋转控制器 525 的对该阵列中的多个微反射体进行操作的信号来确定。旋转控制器 525 可以一致地对此类微反射体阵列进行操作，以使得多个微反射体具有相同的反射角或者个体微反射体可以具有彼此不同的反射角，如以下将讨论的那样。在又一特定实现中，可旋转的反射体 520 和发射器 510 可被组合成旋转发射器（未示出）以按各种角度来指引声波。此类旋转发射器的角度可以例如由至少部分地由来自旋转控制器 525 的可以对诸如步进电机之类的电机进行操作的信号来确定。当然，此类发射器仅是示例，并且所要求保护的主题内容并不被如此限定。

[0036] 在一实现中，可旋转的反射体 520 可以包括两个或更多个彼此正交的旋转自由度。例如，如图所示，可旋转的反射体 520 可以包括图 5 的平面中的旋转自由度。另外，可旋转的反射体 520 可以包括垂直于图 5 的平面的旋转自由度（未示出）。相应地，可旋转的反射体 520 可以沿跨表面 550 的诸如举例而言图 4 中的表面 400 上的正交线 410 和 420 之类的一个或更多个方向反射能量 540。

[0037] 接收器 515 可以在能量 540 被从发射器 510 发射时算起的传播时延之后接收从表面 550 反射的能量 545。此类延迟可以由时间模块 505 计量，后者可以例如监视从处理器 508 向发射器 510 传送的使该发射器发出发射能量 540 的信号。相应地，时间模块 505 可以测量能量 540 被发射与能量 545 被接收之间的时差。当然，此类用于测量能量的传播时间的方法仅是示例，并且所要求保护的主题内容并不被如此限定。返回图 5，用户 1/0 518 可以经由处理器 508 向距离传感器 500 提供用户访问和 / 或控制。

[0038] 在一实现中，发射器可以例如包括可机械地旋转的能够沿多个角度将声能、光能、IR 能和 / 或 RF 能导向待测量的表面的反射体。此类可旋转的反射体可以包括微反射体器件，诸如举例而言安装在半导体器件上的亦被称为数字镜器件的微镜阵列。取决于哪种类型的能量被反射，此类可旋转的反射体可以包括各种涂层和 / 或处理以提高反射率。此类可旋转的反射体还可包括各种反射表面形状，诸如平面的、球形的、抛物线形的、凹的、凸的反射表面形状等。此类可旋转的反射体可以具有相对较小的形状因子，从而例如尤其允许可旋转的反射体嵌合在手持式设备中。当然，此类微反射体器件仅是小形状因子的可旋转反射体的示例，并且所要求保护的主题内容并不被如此限定。

[0039] 图 6 是根据一个实现示出用于同时向多个方向发射光能的发射器系统 600 的示意图。此类系统可以例如被包括在诸如图 5 中所示的距离传感器 500 之类的距离传感器中。发射器系统 600 可以包括配置成发射光能 615 的发射器 610。该光能 615 包括诸如举例而言第一波长和第二波长之类的多个波长。来自发射器 610 的光能 615 可遇到配置成将光能划分成相异波长的波长分离器 618。相应地，光能 615 可被划分成具有第一波长的光束 630 和具有第二波长的光束 640。微反射体阵列 620 可以包括微镜，诸如举例而言数字镜器件的其角度可个体地设定的那些微镜。此类经划分的光束可以沿基本上相同的路径或者分叉的路径行进，尽管在任一种情形中，此类光束可以入射到微反射体阵列 620 的一个或更多个
部分上。

[0040] 在特定实现中，例如，微反射体阵列 620 的一部分可被设定在第一角度处而同时另一部分可被设定在第二角度处。作为结果，光束 630 可以按第一角度反射，从而导致光束 635，并且光束 640 可以按第二角度反射，从而导致光束 645。光束 635 可被投射到表面 650 上沿第一线的距离测量点上，并且光束 645 可被投射到表面 650 上沿与第一线正交的第二线的距离测量点上。第一和第二线可以例如类似于图 4 中的表面 400 上的可被用于图 3 中的路径 300 的正交线 410 和 420。以此方式，可以同时测量至第一和第二线的点的距离，从而缩短了测量至表面 650 的最近距离可能花费的时间。光束 635 和 645 的多个波长和 / 或经编码脉冲可以允许接收器（未出示）将光束 635 的来自表面 650 的反射与光束 645 的来自表面 650 的反射区分开来。此类接收器可以测量光束 635 和 645 的传播时间，如以上所述的那样。当然，此类用于划分能量以从表面反射的多个能量束中进行区分的方法仅是示例，并且所要求保护的主题内容并不被如此限定。

[0041] 在另一实现中，诸如蜂窝电话、PDA 及类似设备的手持式设备可包括用于确定远程物体的表面上的两点之间的距离的大小传感器。如果这两点对应于此类远程物体的诸边缘，那么这两点之间的距离可以例如包括该物体的大小。此类大小传感器可以包括距离传感器，后者包括用于发射和接收声能、光能、IR 能和 / 或 RF 能的发射器和接收器以及用于当发射能量来往于远程表面时确定该发射能量的传播时间的间隔模块。大小传感器还可包括专用处理器，后者被适配成确定至表面上的点的距离以及使用此类确定距离来演算两个此类点之间的距离。另外，此类大小传感器可具有充分小的形状因子以嵌合在诸如举例而言蜂窝电话或 PDA 之类的手持设备中。在特定实现中，距离传感器可以能够沿多个角度发射声能、光能、IR 能和 / 或 RF 能。个体角度可以分别对应于远程表面上的特定距离测量点。沿个体角度确定至远程表面的距离可以产生多个距离测量。例如，两个此类测量可被用来演算远程表面上两个对应点之间的距离。

[0042] 图 7 是描绘离远程表面 750 一距离处握持手持式设备 740 的用户 720 的示图。根据一实现，该手持式设备可以包括测量至表面 750 的数个距离的距离传感器 730。此类距离传感器可以包括置于诸如举例而言蜂窝电话之类的手持式设备 740 中的距离传感器的一部分，如以上所提及的那样。在一个特定实现中，类似于图 1 中所示的距离传感器 100，距离传感器 730 可以传送并接收包括基本上定向的具有次音频或超音频的声波的声能。在另一特定实现中，距离传感器 730 可以传送并接收包括 RF 辐射和 / 或具有可见波长或 IR 波长的激光的电磁（EM）能。当然，此类对声能和 EM 能的描述仅是示例，并且所要求保护的主题内容并不被如此限定。同样，类似于图 1 中所示的距离传感器 100，距离传感器 730 可以向表面 750 上的点 705 和 / 或 710 发射此类能量。此类能量可以包括能量脉冲，例如，具有开始和结束时间的声能和 / 或 EM 能的相对较短的波列。例如，此类脉冲可被编码以提供用于将多个收到脉冲彼此区分开来的手段。随后，从表面 750 反射的能量可返回到距离传感器 730，其中可以执行发射与接收器处的接收之间所流逝的时间的测量。此类流逝时间可被称为传播时间。使用关于由距离传感器发射和接收的声能和 / 或 EM 能的速度以及测得的传播时间的知识，可以确定从距离传感器到远程表面的距离。如图 7 中所示，可以按相对于表面 750 呈倾斜角度 725 的方式来握持距离传感器 730。例如，此类角度不需要垂直于远程表面 750。在此类角度下，距离传感器 730 可被适配成向表面 750 上的点 705 或 710 发射能
量，而无需用户改变距离传感器 730 的位置。换言之，距离传感器 730 可以向各个方向重定向发射能量，而无需旋转手持式设备 740。

图 8 是根据一实现示出测量至表面 850 的数个距离的手持式设备 840 的详图。手持式设备 840 可包括蜂窝电话、PDA 及类似设备并且包含距离传感器 830。如以上所述的此类传感器可以具有小形状因子以便该传感器能够嵌合在手持式设备 840 中。如图 8 中所示，此类距离传感器 830 可以沿多个角度向表面 850 上的多个距离测量点发射声能和/或 EM 能。在特定实现中，距离传感器 830 可以安装在半导体器件上的一个或更多个可旋转的微反射体。以下更详细地解释的此类可旋转的微镜可以例如提供以上所提及的小形状因子。当然，此类结合手持式设备 840 对距离传感器的描述仅是示例，并且所要求保护的主题内容并不被如此限定。在一示例中，用户 820 可以朝表面 850 转动手持式设备 840 以沿着至表面 850 上的点 805 的距离 D1 来指引能量束以测量距离 D1。距离传感器 830 可以随后沿着至表面 850 上的另一点 810 的距离 D2 来重定向能量束以测量沿 D2 方向至表面 850 的距离。此类重定向的角度 825 可以由距离传感器 830 测量，如以上详细解释的那样。在此类用于测量距离 D1 和 D2 的过程之后，距离传感器 830 可以计算表面 850 上的两点 805 与 810 之间的距离 D3。此类计算可以涉及测得距离 D1 和 D2 以及测得角度 825。当然，涉及距离传感器的此类过程仅是示例，并且所要求保护的主题内容并不被如此限定。

图 9 是根据一实现的用于确定至远程表面的距离的流程图。返回图 8 中所示的实现，此类表面可以例如包括表面 850。在框 910 处，握持手持式设备 840 的用户 820 可以将能量导向表面上的第一点 805。此类能量可以例如由握持在手持式设备机载的发射器 830 中的发射器来发射。如以上所描述的，该发射器可以朝第一点发射能量束。相应地，在框 920 处，可以测量至第一点的距离 D1。在一个特定实现中，用户 820 可以选择沿物体的边缘（未示出）的第一点并且随后选择沿物体的对边的第二点以测量该物体的大小。在另一特定实现中，用户可以在物体表面上的任何地方选择第一和第二点以测量两点之间的距离。返回过程 900，在框 930 处，距离传感器 830 可以一个或更多个微反射体（图 11 和图 12），其可被旋转以朝第二点重定向测量方向。此类旋转可以例如通过用户 820 激活手持式设备 840 上的一个或更多个控件（未示出）的方式执行。此类控件可以启动该一个或更多个微反射体的旋转。诸如举例所示角度 825 之类的旋转角度可以由距离传感器来测量和存储。在特定实现中，用户可以在用来将手持式设备对准第一点的位置中基本地握持手持式设备。在框 940 处，用户可以使用经重定向的能量来测量至第二点的距离。在框 950 处，使用至第一和第二点的测得距离以及微反射体从第一点对向第二点的旋转角度，可以使用诸如举例而言余弦定理之类的几何关系来演算第一点与第二点之间的距离。
能器，可以测量手持式设备840从第一点的方向旋转到第二点的方向的诸如举例而言角度825之类的角度。距离传感器830可以随后存储此类角度。在框1040处，用户可以使用经重定向的能量来测量至第二点的距离。在框1050处，使用至第一和第二点的测得距离以及手持式设备从第一点对向第二点的旋转角度，可以使用诸如余弦定理之类的几何关系来演算第一点与第二点之间的距离，如上所提及的那样。

图11是根据一个实现示出包括用于测量至表面1150上的多个距离测量点的距离的距离传感器的移动设备1100的示意图。此类移动设备可包括可经由天线1122传送和接收信号的双向通信系统1128，诸如蜂窝通信系统、蓝牙、RFID和/或WiFi，仅列举几个示例。一旦接收到从发射器1110发射的能量，可旋转的反射体1120可经由开口1130将能量1140导向表面1150上的各自距离测量点。专用处理器1108可包括旋转控制器1125传送信息，该旋转控制器1125可以向可旋转的反射体1120发送至少部分确定该可旋转的反射体的角位置的信号。在一个特定实现中，可旋转的反射体1120可以包括用于反射由发射器1110发射的EM能的反射体。此类反射体可以例如由从旋转控制器1125接收信号的步进电机来旋转。在另一特定实现中，可旋转的反射体1120可以包括用于反射由发射器1110发射的EM能的微反射体阵列。此类阵列的反射角度可以例如至少部分地由来自旋转控制器1125的操作该阵列中的多个微反射体的信号来确定。旋转控制器1125可以一致地操作此类微反射体阵列，以使得每个微反射体具有基本相同的反射角或者个体微反射体可以具有彼此不同的反射角，如以下将讨论的那样。在又一特定实现中，可旋转的反射体1120和发射器1110可被组合成旋转发射器（未示出）以按各种角度来指引声能。此类旋转发射器的角度可以例如至少部分地由来自旋转控制器1125的可以操作诸如步进电机之类的电机的信号来确定。当然，此类发射器仅是示例，并且所要求保护的主题内容并不被如此限定。

接收器1115可以在能量1140被从发射器1110发射时算起的传播时延之后接收来自表面1150反射的能量1145。此类延迟可以由时间模块1105测量，后者可以例如监视从处理器1108向发射器1110传送的使该发射器发出发射能量1140的信号。相应地，时间模块1105可以测量能量1140被发射与能量1145被接收之间的时间差。当然，此类用于测量能量的的传播时间的方法仅是示例，并且所要求保护的主题内容并不被如此限定。返回图11，用户I/O1118可以经由处理器1108向距离传感器1100提供用户访问和/或控制。例如，此类控制可以包括对可旋转的反射体1120的旋转控制以将能量1140从表面上的某一点重定向至该表面上的第二点，如以上所描述的那样。

在一实现中，诸如发射器1110之类的发射器可以例如包括可机械地旋转的能够沿多个角度将声能、光能、IR能和/或RF能导向待测量的表面的反射体。此类可旋转的反射体可以包括微反射体器件，诸如举例而言安装在半导体器件上的亦被称为数字镜器件的微镜阵列。取决于哪种类型的能量要被反射，此类可旋转的反射体可以包括各种涂层和/或处理以提高反射率。此类可旋转的反射体还可包括各种反射表面形状，诸如平面的、球形的、抛物线形的、凹的、凸的反射表面形状等。此类可旋转的反射体可以具有相对较小的形状因子，从而例如允许可旋转的反射体嵌合在手持式设备中。当然，此类微反射体器件仅是小形状因子的可旋转反射体的示例，并且所要求保护的主题内容并不被如此限定。

图12是根据一个实现示出包括用于测量至表面1250上的多个距离测量点的距离的距离传感器的移动设备1200的示意图。此类移动设备可包括可经由天线1222传送和接
收信号的双向通信系统 1228，诸如蜂窝通信系统、蓝牙、RFID 和/或 WiFi，仅列举几个示例。一旦接收到从发射器 1210 发射的能量，可关于移动设备固定的反射体 1220 就可以经由开口 1230 将能量 1240 导向表面 1250 上的各个距离测量点。专用处理器 1208 可从适配成测量各种运动平面中的角度的一个或更多个换能器 1260 接收信息。例如，换能器 1260 可以包括一个或更多个罗盘和/或测角器。相应地，从换能器 1260 向处理器 1208 传送的此类信息可以包括移动设备 1200 的旋转角度。在特定实现中，反射体 1220 可以包括用于反射由发射器 1210 发射的 EM 能的微反射体阵列。当然，此类对移动设备的描述仅为示例，并且所要求保护的主题内容并不被如此限定。

【0050】类似于针对图 11 所描述的过程，接收器 1215 可以在能量 1240 被从发射器 1210 发射时算起的传播时延之后接收从表面 1250 反射的能量 1245。此类延迟可以由时间模块 1205 测量，后者可以例如监视从处理器 1208 向发射器 1210 传送的使该发射器发起发射能量 1240 的信号。相应地，时间模块 1205 可以测量能量 1240 被发射与能量 1245 被接收之间的时间差。当然，此类用于测量能量的传播时间的方法仅是示例，并且所要求保护的主题内容并不被如此限定。返回图 12，用户 I/O 1218 可以经由处理器 1208 向距离传感器 1330 提供用户访问和/或控制。

【0051】图 13 是根据一实现描绘测量至表面 1350 的数个距离的非驻定的手持式设备 1340 的示图。例如可能在从测量至表面上的第一点 1305 的距离时到测量至该表面上的第二点 1310 的距离时，发生手持式设备的此类运动。或许用户不平稳地握持该手持式设备会导致此类运动，和/或用户可能在运动中而同时执行距离测量。关于图 8 中所示的实现，手持式设备 1340 可以包括蜂窝电话、PDA 及类似设备，并包含距离传感器 1330。如以上所提及的此类传感器可以具有小形状因子以使该传感器能够嵌合在手持式设备 1340 中。此类距离传感器 230 可以沿多个角度至表面 1350 上的多个距离测量点发射声能和/或 EM 能，如以上所描述的那样。

【0052】在特定实现中，距离传感器 1330 可包括安装在半导体器件上的一个或更多个可旋转的微反射体。以上所解释的此类可旋转的微镜可以例如提供以上所提及的小形状因子。当然，此类结合手持式设备 1340 对距离传感器的描述仅为示例，并且所要求保护的主题内容并不被如此限定。在一示例中，用户 1320 可以朝表面 1350 持握手持式设备 1340 以沿着至表面 1350 上的点 1305 的距离 D4 来指引能量束以测量距离 D4。距离传感器 1330 可以随后沿着至表面 1350 上的另一点 1310 的距离 D5 来重定向能量束以测量沿 D5 方向至表面 1350 的距离。在另一实现中，用户 1320 可以通过旋转手持式设备 1340 来将能量束重定向至另一点 1310，其中手持式设备例如不需要包括可旋转的反射体。此类重定向的角度可以由手持式设备 1340 可包括的诸如测角器和/或罗盘之类的测量角度和/或方向的换能器来测量。换言之，此类换能器可以测量手持式设备 1340 被从第一点的方向旋转到第二点的方向的角度。距离传感器 1330 可以随后存储此类角度。

【0053】手持式设备 1340 可被适配成使用各种定位系统来测量其位置，包括诸如举例而言可提供位置、速度、和/或时间信息的全球定位系统（GPS）、广域授时系统（WAAS）和全球导航卫星系统（GLONASS）之类的卫星定位系统（SPS）。在特定实现中，可以通过捕获 SPS 信号或者来自不同于 SPS 的定位技术（诸如 WiFi 信号、蓝牙、RFID、超宽带（UWB）、广域网（WAN）、数字 TV 和/或蜂窝电话塔 10，仅列举几个示例）的信号来向手持式设备 1340 提
供位置信息。此类信号可以例如经由图12中所述的天线1222来接收。相应地，手持式设备1340可被适配成测量从D4被测量的位置到D5被测量的位置的位移ΔXYZ。在所述用于测量距离D4和D5、ΔXYZ以及从第一点1305到第二点1310的重定向角度的过程之后，距离传感器1330可以演算表面1350上的两点1305与1310之间的距离D6。当然，涉及距离传感器的此类过程仅是示例，并且所要求保护的主题内容并不被如此限定。

【0054】本文中描述的方法体系取决于根据特定特征和/或示例的应用可以藉由各种手段来实现。例如，此类方法体系可在硬件、固件、软件、和/或其组合中实现。在硬件实现中，例如，处理单元可在一个或更多个专用集成电路（ASIC）、数字信号处理器（DSP）、数字信号处理器件（DSPD）、可编程逻辑元件（PLD）、现场可编程门阵列（FPGA）、处理器、控制器、微控制器、微处理器、电子设备、设计成执行本文中所描述的功能的其他设备单元、和/或其组合内实现。

【0055】对于固件和/或软件实现，这些方法体系可以用执行本文中所描述功能的模块（例如，规程、函数、等等）来实现。任何有形地实施指令的机器可读介质可被用来实现本文中所描述的方法体系。例如，表示诸如数字电子信号之类的电子信号的软件代码可被存储在例如移动站的存储器之类的存储器中并分别由诸如图5或图11中的处理器508或1108之类的专用处理器执行。存储器可以实现在处理器内部或处理器外部。如本文中所使用的术语“存储器”是指任何类型的短期、长期、易失性、非易失性或其他存储器，且其不限于任何特定的存储器类型或存储器数目，或基于存储于其上的介质的类型。

【0056】在一个或更多个示例性实施例中，所描述的功能可以在硬件、软件、固件、或其任何组合中实现。如果在软件中实现，则各功能可被存储为表示计算机可读介质上的信号的一条或多条指令或代码。计算机可读介质包括物理计算机存储介质。传输介质包括物理传输介质。存储介质可以是能被计算机访问的任何可用介质。作为示例而非限制，此类计算机可读介质可包括RAM、ROM、EPPROM、CD-ROM或其他光盘存储、磁盘存储或磁存储设备，或能被用来存储指令或数据结构形式的合意程序代码且能被计算机访问的任何其他介质；如本文中所使用的盘（disk）和碟（disc）包括压缩碟（CD）、激光碟、光碟、数字多用碟（DVD）、软盘和蓝光碟；其中盘常常磁性地再现数据，而碟用激光光学地再现数据。上述的组合也应被包括在计算机可读介质的范围内。

【0057】虽然已解说和描述了目前认为是示例特征的内容，但是本领域技术人员将理解，可作出其他各种改动并且可换用等效技术方案而不会脱离所要求保护的主题内容。此外，可作出许多改动以使特定境况适应于所要求保护的主题内容的教导而不会脱离本文中所描述的中心思想。因此，所要求保护的主题内容并非旨在被限定于所公开的特定示例，相反，如所要求保护的主题内容还可包括落入所附权利要求及其等效技术方案的范围内的所有方面。
图 7
图9
开始

将能量束对准第一点

测量第一距离

旋转移动站

测量第二距离

演算表面距离

结束

图 10
图 11