(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
22 May 2003 (22.05.2003) PCT WO 03/043285 A2
(51) International Patent Classification’: HO04L 29/00 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US02/36282 CZ, DE, DK, DM, DZ, EC, EE, ES, I, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MV,

(22) International Filing Date: MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
13 November 2002 (13.11.2002) SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, US, UZ,

VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
(26) Publication Language: English KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(30) Priority Data: European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
60/333,608 13 November 2001 (13.11.2001) US ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,

TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).
(71) Applicant: EMS TECHNOLOGIES, INC. [US/US];)

2850 Colonnades Court NW, Norcross, GA 30071 (US).
Published:

— without international search report and to be republished

(72) Inventors: NEALE, Jason; 2850 Colonnades Court .
upon receipt of that report

NW, Norcross, GA 30071 (US). PETHER, Andrew,
M.; 2850 Colonnades Court NW, Norcross, GA 30071
(US). MOHSEN, Abdul-Kader; 2850 Colonnades Court For two-letter codes and other abbreviations, refer to the "Guid-
NW, Norcross, GA 30071 (US). BEGIN, Guy; 2850 ance Notes on Codes and Abbreviations" appearing at the begin-
Colonnades Court NW, Norcross, GA 30071 (US). ning of each regular issue of the PCT Gazette.

(74) Agents: CROWSON, Celine, Jimenez et al.; Hogan &
Hartson, L.L.P., 555 Thirteenth Street, N.W., Washington,
DC 20004 (US).

(54) Title: FLOW CONTROL BETWEEN PERFORMANCE ENHANCING PROXIES OVER VARIABLE BANDWIDTH SPLIT
LINKS

100

104
101 ;

A 000 N OO

105 106 /107

'/ m/ |:]

Gateway l PEP2 '

108 112 113

Server

(57) Abstract: The invention provides a method and system for dealing with the flow of data between one Performance Enhance-
ment Proxy and another in the context of split links for TCP over satellite performance improvement. The environment according
to the invention may include one or more intermediate nodes experiencing variable latency and bandwidth allocations. The method
and system manage the data flow to ensure bandwidth fairness between competing TCP/IP connections, prevention of PEP receiver
buffer overflow and near 100% usage of the available satellite bandwidth without the need for conventional TCP/IP ACK driven
probing algorithms. The near 100% usage of capacity being achieved, in part, through PEP to intermediate node message exchange.

0O 03/043285 A2

WO 03/043285 PCT/US02/36282
1

FLOW CONTROL BETWEEN PERFORMANCE ENHANCING

PROXIES OVER VARIABLE BANDWIDTH SPLIT LINKS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No.
60/333,608 to Jason D. Neale et. al., entitled “Performance Enhancing
Proxies for Satellite Transmission Control Protocols,” filed on November 13,
2001.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data telecommunications satellites, and more
specifically to the use of hardware and/or software, referred to as
Performance Enhancing Proxies (PEPs), to optimize the performance of the
Transmission Control Protocol (TCP) over satellite links with varying

bandwidth.

2. Description of Related Art

The Internet is a world-wide computer super-network, which is made
up of a large number of component networks and their interconnections.
Computer networks may consist of a wide variety of connected paths or
network links serving to transport user information in the form of data
between a diverse array of computer end systems. Different network links
are more or less suitable for different network requirements. For example, a
fiber optic cable typically provides a high bandwidth, low per bit cost, low
error rate and low delay point-to-point network link. Alternatively, for

example, a satellite link typically provides a lower bandwidth, higher per bit

WO 03/043285 PCT/US02/36282
2

cost, higher error rate and longer delay point-to-multi-point network link.
The wide variety of links and thus link characteristics encountered on the
Internet or other private Internet Protocol (IP) based networks have a variety
of effects on the behavior of protocols in the IP suite.

IP primarily provides the routing functionality for packets (bits or
bytes of data) over a network. It acts at the network layer to direct packets
from their sources to their destinations. Transmission Control Protocol (TCP)
is the reliable transport layer protocol of the IP suite of protocols and, as
such, layers on top of IP, providing reliability to applications and building on
IP’s unreliable datagram (packet) service. TCP underlies the vast majority,
estimated to be around 90%, of all the traffic on the Internet. TCP supports
the World Wide Web (WWW), electronic. mail (email) and file transfers, along
with other common applications. TCP was introduced in 1981 and since then
has evolved in many ways, but today TCP still provides reliable and largely
efficient service over a wide variety of links as evidenced by its omnipresent
nature. However, there are a variety of conditions under which TCP may
perform below expectations, its use with geosynchronous satellite links being
an example. In response to the established use of TCP and also of certain
link types, such as satellite, which are not ideal for TCP, Performance

Enhancing Proxies (PEPs) were introduced.

WO 03/043285 PCT/US02/36282
3

In any point-to-point communications system, such as PEP to PEP,
flow control between the two elements is important to prevent starvation or
over-flow of data in dny other Intermediate Device (such as the Terminal) as
well as the receiving point. For the purposes of describing the invention, a
PEP shall be described as an Intermediate Node between the endpoints of a
connection, and any network element between the PEPs, such as a Satellite

Gateway, Satellite or Satellite Terminal, shall be described as an
Intermediate Device. Furthermore, a connection refers to an end-to-end
connection between a client and a server which is broken up into three
connection segments, client to PEP, PEP to PEP and PEP to Server, such

" that the client or server remain largely aware of the splitting. Starvation of
data implies inefficient use of available communications cap acity, and
overflow of data implies packet loss and retransmissions of data. Moreover,

where the point-to-point communications system includes an intermediate
device that is required to request bandwidth based on the amount of data in
its queue, then ensuring the queue is adequately provisioned guarantees that
capacity requests will be made.

Ensuring any particular intermediate device (such as the Terminal)
between the two points (PEPs) is accurately supplied with an appropriate
amount of data is difficult if the amount of bandwidth capacity allocated to
the device is constantly changing. However a bandwidth-on-demand satellite

system scheme will naturally change the allocated capacity to a given

WO 03/043285 PCT/US02/36282
4

terminal (based on, but not limited to, Traffic conditions and Quality of
Service (QoS) agreements).

TCP performance is typically degraded to some extent in terms of
lowered throughout and link utilization by, but not limited to, the following
link characteristics; long delay, high bandwidth, high error rate, link
asymmetry and link variability, all of which may be encountered on satellite

and similar links.

PEPs may function as one or more Intermediate Nodes or pieces of
software placed in the end-to-end path that suffers TCP performance
degradation. PEP units may, for example, surround a satellite link. PEPs
modify the traffic flow to attempt to alleviate the issues of TCP trafficon a
specific link. PEPs may use many methods either alone or in concert to
enhance performénce.

A type of PEP, known as a distributed, connection splitting PEP, is
commonly chosen due to that fact that it allows for the use of a proprietary
protocol across the satellite link. This protocol can then be chosen or
designed to mitigate problems specific to the link. A distributed connection
splitting PEP uses more than one PEP in an end-to-end connection, most
commonly, two PEPs are used, although the invention can be applied to
systems using greater number of PEPs with the FP protocol of this invention.
If two PEP devices are used, the end-to-end connection may be split into 3

connection segments. The end connections must remain TCP for

WO 03/043285 PCT/US02/36282
5

compatibility, but the inter-PEP connection may be any protocol. Several
protocols are available for use on the satellite link that provide improved
performance over that of TCP. Examples of these protocols are Xpress
Transport Protocol (XTP), Satellite Transport Protocol (STP), Space Systems
Control Protocol Suite — Transport Protocol (SSCPS-TP) or even non-
standard modified TCP.

Current versions of TCP use a window mechanism and
acknowledgement (ACK) driven algorithms, such as slow-start and
congestion-avoidance algorithms, to manage the flow of data from the sender
to the receiver to mitigate the effects of congestion and prevent over-flow of
the receiver’s buffers. These algorithms often mistake transmission errors as
congestion and fail to fully-supply the satellite link with data. Although the
TCP window-scaling option helps with the later and fast-retransmission /
fast-recovery help with the former, the overall link usage often remains well
below the available capacity. The aforementioned satellite protocols and
PEPs address some of these problems by facilitating larger windows,
discriminating between congestion losses and in some cases making use of
link rate knowledge (where that rate is constant). However, all of the PEP
solutions use some form of capacity probing procedure (akin to a slow-start
technique) and thus are unable to immediately employ the full link capacity
without fear of losses (due to packet discard at an Intermediate Device).

More importantly, none of the other solutions are able to fully supply a

WO 03/043285 PCT/US02/36282
6

variable bandwidth and/or latency link for the duration of a TCP transfer.
Additionally, they are unable to communicate directly with Intermediate
Devices, relying instead on PEP-to-PEP messages to determine capacity, with
the inevitable reduction in throughput associated with a satellite round;trip
delay message exchange. As a solution to this problem, the method and
system described in this invention facilitate a near 100% usage of link
capacity for the entire duration of the PEP-to-PEP transfer without the risk

of packets being discarded or receiver buffer-overflow.

In terms of the sharing of resources to guarantee fairness while not
limiting hungry connections when satellite resources permit, conventional
TCP merely dedicates a buffer per end-to-end connection and manages those
connections independently. Thus TCP is unable to quickly make use of free
capacity for hungry connections when other connections start to slowly
supply the iink, relying instead on a slow-ramp through congestion
avoidance. Indeed, the overall throughput is often reduced as a result of a
lack of acknowledgments. Although many of the PEPs and other protocols
are able to prevent the flow from diminishing because of a lack of ACKs, none
of them include a flow fairness technique to ensure 100% supply to the link
and fairness (assuming TCP/IP traffic supplies allow). Herein, fairness is
defined as the ideal condition where each connection has an equal share of

the link, as long as it has enough traffic to use this portion of the resources.

WO 03/043285 PCT/US02/36282
7

If a connection is running more slowly, its unused share of capacity will be

provided for the use of all other connections, in a fair way.

SUMMARY OF THE INVENTION

The invention provides methods and systems for the management of
the flow of data between two PEPs where the link conditions, in terms of
bandwidth resources and latency, are changing in relation to network traffic
conditions and QoS profiles, among other things. This changing bandwidth
condition is characteristic of a Bandwidth on Demand (BOD) satellite
communications system.

The invention further provides systems and methods that enable the
fair distribution of satellite resources between a number of competing TCP
connections at a PEP, while facilitating the full usage of the available
satellite bandwidth by accurately supplying a particular Intermediate Device
with sufficient data and preventing the receiving PEP’s buffers from
overflowing. Additionally, the distribution process according to the invention
prevents slow running TCP connections, at the receiver end, from unfairly
being allocated excess link capacity whilst allowing for full usage of
bandwidth at the transmitting PEP’s end by distributing unused satellite
capacity among hungry TCP connections.

Thetmethods and systems in accordance with the invention allow
satellite resources to be fairly shared between competing TCP connections

while also facilitating the full use of the link capacity by hungry connections

WO 03/043285 PCT/US02/36282

8

should resources allow. The overall flow strategy in accordance with the
invention allows the fair sharing or satellite link resources between
connections while achieving near 100% usage and not over-flowing the
receiving end’s buffers.

The invention provides satellite communication systems where the
bandwidth between two PEPS is controlled by a Gateway and is subject to
wide variations due to competing traffic, among other things. As an example,
communication between two PEPs relies on an Intermediate Device
(Terminal)A, forward and return satellite links and a Gateway. In such a
network, numerous terminals could be operating with the Gateway, each
terminal receiving data packets from a PEP, then requesting and receiving
bandwidth allocations from the Gateway. Such a Bandwidth-on-Demand
(BoD) scheme typically facilitates a fast variation in bandwidth allocation
and substantial latency changes dependent on the number of terminals in
operation, their traffic supplies and guaranteed quality of service

agreements.

Thus, the invention provides for improved performance of TCP over a
satellite link or other large bandwidth delay network. Moreover, the
invention provides for the management of the flow of traffic from a PEP to an
Intermediate Device in a satellite environment where the bandwidth and
latency are fluctuating. This may be accomplished in part by replacing TCP

with a new transport protocol, the EMS (proprietary) Flight Protocol (FP),

WO 03/043285 PCT/US02/36282
9

over the wireless satellite link only and maintaining TCP connections over
the terrestrial portions of the end-to-end connection. TCP performance over
GEO links is tradiﬁdnally very poor from a user perspective in terms of
transfer time and throughput for web browsing and file transfer among other

applications relying on a TCP transport layer.

The above aspects of the invention are achieved by addressing and in
part accessing the characteristics of the satellite link, including available
capacity, and treating a lack of acknowledgements from the receiver as errors
and not congestion. The PEP invention described herein will improve the
throughput and transfer times and achieve a higher utilization factor of the

assigned link rates.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further
understanding of the invention and are incorporated in and constitute a part
of this specification, illustrate embodiments of the invention. Together with
the written description, these drawings serve to explain the principles of the
invention. In the drawings:

Figure 1 is an illustration showing the overall satellite network with
the location of the PEPs, as exemplary of connections and equipment in a

distributed, connection splitting PEP deployment;

Figure 2 illustrates the end-to-end satellite protocol stacks for TCP/IP

utilizing the PEPs; and

WO 03/043285 PCT/US02/36282
10

Figure 3 shows an algorithm and procedures for making a PEP-to-
intermediate device (Terminal) communication, and in particular, steps in
" making a query of the Terminal’s buffer status and determining the amount
of data to be sent to the Terminal.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention is described in the context of a bi-directional transfer of
data between a client and a server over a communications link consisting of
both terrestrial segments and up and down segments, or links, over satellite,
as generally shown in Figure 1. It is important to note that the use of a
satellite is merely illustrative of one embodiment of the invention and that
the invention is applicable to both terrestrial hard-wired and terrestrial

wireless applications.

The PEP component consists of two main parts: a TCP Emulator
(TCP¥) and a Flight Protocol (FP) Processor. While the operation of inventive
components and methods of the invention are different depending on whether
they are functioning in a Receive or a Transfer mode, i.e., depending on
whether the data is being sent by the client or server, it is to be understood
that the components and methods are reciprocal. A description of the
operation for sending data, for example, from a client to a server is
essentially equivalent to data being sent in the reverse direction, from server
to client, in this respect the PEP system is reciprocal. Figure 2 presents an

illustration generally showing where the TCP* and FP layers sitin a

WO 03/043285 PCT/US02/36282

11

conventional stack. The PEP is designed to be used in pairs, one on each

terrestrial side of the satellite link.

The TCP Emulator (TCP*) is present in the transmit and receive PEPs
and behaves as if it is a TCP connection endpoint. The TCP Emulator
transparently interrupts the TCP connection going from the client to the
server (or server to client) and acts as a TCP endpoint. It translates TCP
traffic into FP traffic, the inventive transport protocol used over the satellite)
link (or other large bandwidth * delay network) between the two PEPs.

PEP1 is the first PEP in the transfer chain (the Transmitter) and PEP2 is the
second PEP in the transfer chain (the Receiver), whichever direction of
packet is being discussed. The names PEP1 and PEP2 do not necessarily
apply to the terminal-side or gateway-side PEPs respectively. The role of the
TCP emulator depends on the function of the PEP. In the Transmit PEP, the
TCP Emulator converts TCP segments into FP packets. In the Receive PEP,
the TCP Emulator (TCP¥) receives the FP packets, converts them back to
standard TCP packets and transmits them over a new TCP connection to
their final destination: the communication’s endpoint. The client and the

server are the communication system’s endpoints or end users.

With the introduction of the two PEPs, the standard connection going
from the server to the client will be replaced with the following three

connections:

1. A TCP connection from the client to the first, terminal, PEP (PEP1)

WO 03/043285 PCT/US02/36282
12

9. A FP connection going from PEP1 to PEP2 (gateway PEP)

3. A TCP connection from PEP2 to the server

The TCP Emulator (TCP*) emulates a standard TCP connection between
the external end user, the client and server, and converts TCP/IP packets
into Flight Protocol (FP) packet ‘shells’. The TCP-Emulator filters TCP/IP
packets entering from the outside world (the real end points) and emulates
the TCP behavior of the destination transport layer. This behavior includes
the TCP three-way handshake, acknowledgements, flow control, re-
transmissions and all other TCP functionality. It also manages the flow of

traffic to the Flight Protocol Processor section of the PEP.

The Flight Protocol FP is the inventive transport protocol that is used
over the satellite link between the transmit and receive PEPs that are
connected, respectively, to a terrestrial/satellite gateway and a user terminal.
The FP is optimized to operate over this link by not using the TCP Slow Start
and Congestion Avoidance algorithms, and instead, utilizes the full available
satellite capacity immediately and consistently throughout the lifetime of the
connection, also improving link utilization efficiency. This throughput
utilization is achieved despite bandwidth fluctuations, prevalent in a BoD
satellite network, by linking the PEP with the Intermediate Device
experiencing the said fluctuations. Other future protocols may also be used,

the FP should be considered as merely one current example of such suitable

WO 03/043285 PCT/US02/36282
13

protocols. While this invention is described with reference to the FP, it is to
be understood that the invention is not limited to this protocol. It can equally

be used with and applied to a variety of other protocols.

The FP also avoids the delays associated with the TCP three-way
handshake by not using a pre-data handshaking (negotiation) mechanism of
any form. Instead, the FP connection Initiator simply informs the remote
entity that a new connection has been created and then immediately begins
to send data. The assumption is that the FP connection Wﬂl be created
successfully unless evidence demonstrates to the contrary. The alternative
rationale, as implemented by conventional TCP, assumes failure until
success 18 expliciﬂy signaled. This feature of the FP of this invention removes
an additional one-off delay (per connection) that is significant for very small
files or short duration transfers such as those typical of current web pages
that at present comprise the greatest volume of Internet traffic. This setup
mechanism may be used with either a half or full duplex connection allowing
for bi-directional data communication on a single connection or alternatively
with two associated simplex connections.

The invention involves the principle of an Intermediate Device breaking
an end-to-end TCP and splitting the connection into a TCP/IP protocol and
TCP/IP connections by the use of PEPs; and then managing the flow of data

between the PEP and the Intermediate device (Terminal) by knowledge of the

WO 03/043285 PCT/US02/36282
' 14

status of the Terminal queue. One of ordinary skill in the art will recognize
other variations, modifications, and alternatives.

The principle involves the PEP sending sufficient data to at least partially
or fully fill the Terminal queue (to a pre-defined level), and after adequate
time for some of the data to be transmitted, checking the status of the
Terminal, using some protocol, and then re-filling the Terminal queue to the
previous level. This method could be as simple as the PEP sending regular
SNMP get messages to the terminal MIB, the terminal sending SNMP traps
when its queue reaches a certain level or in the case where the PEP and
Terminal are co-located in the same device some form of direct linkage. The
flow of data from the PEP to the Terminal could be made more accurate by
the PEP having knowledge of the current and future bandwidth allocations of
the intermediate device (Terminal).

Beyond the management of the flow of data from the PEP to the
intermediate device two other functions are key to the successful flow of data
from the PEP to PEP; firstly not overflowing the receiver’s window and
secondly the fair distribution of the satellite bandwidth between competing
TCP connections. The former is dealt with by the use of conventional window
mechanisms, as in TCP, and the latter is achieved by the sharing of resources
by the number (n) of connections by the use of transmission storage. For
example where the maximum bandwidth-delay product of a communications

link is (x), the amount of capacity given to a connection, before allowance for

WO 03/043285 PCT/US02/36282

15

the PEP to Intermediate device flow, is (x/n). When the sum of all actual
capacity usage by each individual connection (n) is less than (%), then the
available capacity is shared by any connections wishing to exceed their
allocations. This allows the full capacity of the link to be employed if several
incoming TCP/IP connections (from the terrestrial side) are running slowly.

Additionally, when new connections arrive, they are guaranteed (x/n)
capacity even if the result is a temporarily over-supply of capacity; the
existing connections flows are naturally reduced to the new lower rate. This
1s achieved by the use of a buffer to manage the flow, with packets only being
allowed storage in the buffer when the afore mentioned rules are met. For
example, if 1IMb/s was previously shared between 10 connections a new
-connection would result in the over supply of 90.909Kb/s (10*100Kb/s + 1*
90.909Kb/s). However the existing connections are forced down to around
90.909Kb/s by preventing new incoming TCP/IP packets from the terrestrial
side to progress from the TCP Emulator to the FP, until sufficient buffer
space is created. Any temporary over-supply, until the system returns to the
steady-state, is achieved by allowing the new connection packets to be stored
in an output queue. The existing connections being denied further capacity
until the new connection has reached its allocation and sufficient space exists
in the output queue. The end result being a natural back-pressure to the

TCP senders of the over-supplying connections and prevention of the new

WO 03/043285 PCT/US02/36282

16

connection being starved of capacity when the link was previously fully
occupied.

The transmission of data from the PEP to the intermediate device and
onwards to the other PEP, depends on the passing of three conditions laid out
above; namely: sufficient transmission buffer space (allowing for the rules
above), sufficient space in the receiver window (allowing for the amount of
* data already transmitted since the last window update (as in TCP)) and
sufficient capacity / buffer space at the intermediate device (Terminal). If
any of these tests fail, data can be stored in an applicable Input or Output
queue within the PEP (TCP Emulator or FP) thereby creating natural back
pressure to the‘TCP sender in the regular window updates sent form the PEP
to the TCP sender.

The invention provides for a return link in the Terminal-Satellite-
Gateway direction that is shared between a number of Terminals and thus
subject to varying bandwidth conditions. Likewise the output queue in the
Terminal that is tested and then filled is a queue for all traffic. Variations
are possible, for example, the Gateway could enjoy varying bandwidth
conditions facilitating the need for such a scheme or the Intermediate Device
could have several output queues, requiring a different parameter to be
polled (e.g. the TCP/IP queue).

Referring now to the method of implementing the transfer of data in

this environment according to an embodiment of the invention, Figure 1

WO 03/043285 PCT/US02/36282
17

illustrates a simplified view of a performance enhancing proxy (PEP)
communications system 100 including equipment and links involved in a
PEP deployment in a satellite communication link environment. In Fig. 1, a
client 101 initiates a conm;ction attempt to a server 107 via a satellite 104.
The client is connected by a local area network (LAN) segment 108 to a
terminal-side PEP1 102, via another LAN segment 109 to a satellite terminal
or satellite modem of some form 103. Traffic from a terminal 103 passes over
the communications links 110 and 111 via the satellite 104 to the Gateway,
central hub equipment or other satellite modem 105. Traffic leaving the
Gateway passes via a LAN segment 112 to a gateway-side PEP2 106. The
PEP2 106 then sends the traffic via a wide area network (WAN), such as part
of the Internet, 113 to the server 107. The traffic may be a client request,
which could generate server response traffic in the reverse direction.

Data transfer from the client 101 to the terminal PEP1 102, and from
the gateway PEP2 106 to server 107 uses known TCP protocols. Data
transfer over the satellite link from the PEP1 102 to the PEP2 106 uses the
flight protqcol (FP) described in greater detail above. The data transfer is
thus sent over TCP-FP-TCP protocol links.

Figure 2 shows the stacks involved in the various elements in a TCP-
FP-TCP transfer. Fig. 2 shows the stacks of a transfer end point application
which include an application/presentation/session layer 285, a TCP layer 206,

an IP layer 212, an Ethernet or equivalent layer 222 and a UTP or

WO 03/043285 PCT/US02/36282
18

equivalent layer 233. Fig. 2 also shows the stacks in a first PEP1 (first PEP
in the transfer direction front end) which includes a UTP or equivalent layer
2384, an Ethernet or equivalent layer 228, a modified IP layer 213, a modified
TCP layer (TCP*) 207, an application/presentation/session layer 201, an FP
layer 208, a modified IP layer 214, an Ethernet or equivalent layer 224 and a
UTP or equivalent layer 285. A transfer originating from an end point 285 is
acted upon using conventional data communication rules by the TCP layer
206, the IP layer 212, the Ethernet 222, the UTP layer 233, the UTP layer
234 and the Ethernet 228 before it is grabbed by the modified IP layer 213
and passed up the stack to the modified TCP layer 207, translated by the‘
application/presentation/session layer 201 and then managed by the FP layer
208 before being sent through the modified IP layer 214, the Ethernet 224
and UTP layer 235.

Following the arrows in Figure 2 illustrates the conventional stacks of
the satellite gateway and terminal and also the stacks of a PEP2. In PEP2,
incoming FP packets are grabbed by a modified IP layer 219, after passing
through the physical UTP layer 240 and link Ethernet 229 layers, and then
managed by the FP layer 209 before passing, via
application/presentation/session/layer 204 to TCP* 210 which along with the
modified IP layer 220 manages the terrestrial TCP/IP connection.

As described earlier, the invention allows for the exchange of

information between the Intermediate Device (the “Terminal’) and PEP1.

WO 03/043285 PCT/US02/36282
19

This is to aid overall flow control and the sharing of bandwidth within the
overall flow, between incoming (terrestrial network-to-PEP) and outgoing
(PEP-to-terrestrial network) TCP connections by managing buffer resources
associated to the link Bandwidth Delay Product (BDP). Additionally, the
novel overall flow control scheme ensures near 100% throughput, assuming
sufficient TCP/IP traffic as an input, while allowing for the receiving PEPs
buffer requirements, through conventional window mechanisms, and fairly
sharing the capacity between a ﬁumber of connections. The following section
describes further aspects of the invention in greater detail.

From the PEP-Intermediate Device (Terminal) point of view, actual
return link capacity available for PEP traffic at any given time is normally an
unknown. This issue mainly relates to the ferminal population and its access
to return link capacity. When packets are queued in the terminal 103 shown
in Figure 1, capacity is requested related to the number of packets being
queued, however a capacity request may be only partially fulfilled, or not
fulfilled at all. In this case, it becomes possible for terminal PEP1 102 to
oversupply or under supply the terminal which may result in dropping or low
usage. This dropping may increase buffering at Intermediate Devices and
lead to greater jitter and latency that results in low bandwidth usage and
hence a loss of revenue potential. In brief, the PEP is unaware of the return
link capacity because of :

1. Limited knowledge about terminal queue status and size.

WO 03/043285 PCT/US02/36282
20

2. Dynamic capacity assignment to the terminal.

3. Non zero probability of loss on the local PEP-terminal link.

4. No confirmation of data transfer between PEP and terminal.

5. Unknown amount of traffic originating from the terminal itself, notably

Operations Administration & Management (OA&M) traffic.

For accurate flow control purposes, what is‘ really needed is information
concerning the status of the Intermediate Device output queue, and for the
PEP to supply data packets to fill the queue to a pre-determined level. We
note that this queue could be an output queue for all packets or purely for
TCP/IP traffic.

Tt is possible to obtain some valuable information by taking advantage of
functionality often provided for network management. What follows is a
description of how a PEP device could have knowledge of the Intermediate
Devices (Terminal) queue status, and use this information to ensure that the
queue is neither over-supplied nor under-supplied. Although the solution
uses Simple Network Management Protocol (SNMP), it should be understood
that other protocols could be used to exchange information and, moreover, the
Intermediate Device and PEP could be co-located in the same unit with some
form of direct linkage to erase the need for protocol driven communication.
Furthermore, if the PEP were located in the terminal, it could make use of
known future capacity allocations to manage the flow of incoming TCP/IP

connections more accurately. For example, if the PEP knows of any Constant

WO 03/043285 PCT/US02/36282
21

Rate Assignments (CRAs) to the Terminal PEP1 102 (i.e. not dynamic and
varying capacity) it can at least ensure that sufficient TCP/IP flow is
maintained to fill its future assignments and possibly buffer space.

The Simple Network Management Protocol (SNMP) is a request-reply
protocol running over User Datagram Protocol (UDP). SNMP is an
asymmetric protocol, operating between a-management station and an agent.
Intermediate Devices (Terminals) are expected to support SNMP messaging
for network management. The Management Information Base (MIB)
specified for Terminals incorporates several (but not all) generic MIB-II (MIB
version 2) objects.

The following assumptions are made:

1. The PEP behind the terminal can assume the role of a local management
station, thereby getting read access to MIB-II objects of the Intermediate
Device (Terminal) using the appropriate community name.

2. Buffering in the terminal is limited by number of packets rather than by
volume of data (although we note that data bytes could be used if the
Intermediate Device output queue length in bytes were known).

3. The PEP either knows (or otherwise, can determine) the maximum size
(in number of packets) of the Intermediate Device output queue. This
parameter may be called MaxQlen.

Potentially useful MIB-II objects for deriving buffer occupancy

information are in the interfaces group (the group of MIB-II objects related to

WO 03/043285 o PCT/US02/36282

22

the network interfaces of the device), specifically, for any of the interfaces

given below. While these are specific, it should be understood that one of

ordinary skill in the art would recognize possible use of other interface
variations, modifications, and alternatives.

1. IfOutQlen: is a gauge indicating the number of packets in the outbound
queue.

9. IfOutOctets: is a counter indicating the total number of octets transmitted
out of the interface including framing octets.

3. IfOutUcastpkts: is a counter indicating the number of unicast packets
whose transmission to a single address was requested.

4. TfOutNUcastpkts: is a counter indicating the total number of packets
whose transmission to a multicast or broadcast address was requested.
The basic idea for PEP to Intermediate Device communication is for the

PEP to regularly send SNMP GetRequest queries to the Intermediate Device

(Terminal) for the IfOutQlen of the satellite link interface, although it is to be

noted that the Intermediate Device could send the PEP an SNMP Set when

its IfOutQlen reaches a pre-defined limit. The returned value allows the PEP
to control the amount of data that is fed to the terminal.

From the point of view of a PEP, the algorithm is packet-driven: no
actions are performed unless there are packets to send on the satellite link.

A flow chart 800 for the algorithm is illustrated in Figure 3. The algorithm

proceeds as follows: In step 301, the variables FreeQ_i and FreeQ_(i-1) are

WO 03/043285 PCT/US02/36282
23

first initialized. The process then moves to step 302. In step 302, the PEP
then waits until there are packets to send to the terminal (Packets_to_send
>0). The process then moves to step 303. In step 303, when there are packets
to send, a test is performed to check whether the PEP is already aware of a
certain amount of buffer space available on the terminal (FreeQ_(i-1)). If
there is buffer space, the process moves to step 304, otherwise the process
moves to step 305. In step 304, the PEP sends packets up to (FreeQ_(i-1))
packets. The process then moves to step S305. In step S305, the PEP sends
a SNMP GetRequest for IfOutQlen. The terminal responds with a SNMP
GetResponse containing a value for IfOutQlen. The process then moves to
step S306. In step 306, the PEP computes FreeQ_i = (MaxQlen - OutQlen —
Margin). The process then moves to step 307. In step 307, the PEPs send the
minimum of {FreeQ_I, Packets_to_send} packets to the terminal. The process
then moves to step 308.

In step 308, the system determines whether FreeQ_i > Packets_to_send.
If yes, the process moves to step 309 where there is more buffer space
available on the terminal, and FreeQ_(i-1) is updated to the remaining space,
i.e., FreeQ_(i-1)=FreeQ_i - Packets_to_send and the process returns to step
302. If no, the process continues to step 310. In step 310, If (FreeQ_i>=
Thresh) then the process returns to step 305. Otherwise, the process moves
to step 811 to wait Query_timer and then returns to step 305.

The following parameters employed by the process above are described:

WO 03/043285 PCT/US02/36282
24

1. MaxQlen: maximum size (in number of packets) of the Intermediate
Device (Terminal) satellite link outbound queue.

2. Query_timer: a delay to avoid querying the terminal too frequently. Its
value may be set based on the time required to empty a full queue at a
given return link maximum rate.

3. Thresh: a threshold (in number of packets) for deciding whether the queue
is full enough to wait before going back to query. A suitable low value
should be used.

4. Margin: a security margin to account for an unknown amount of traffic
originating from the terminal itself, for inaccuracies in the OutQlen
values reported. This should be set in such a way that the probability of
dropping packets due to overflows at the terminal is suitably low to keep
the costs of lost FP packets low.

The following variables are also defined:

1. FreeQ_i: free satellite link buffer space maximum on the terminal.

2. FreeQ_(i-1): remaining free satellite link buffer space available.

In a situation where packets to send are few and far between, FreeQ_1 will

be much larger than Packets_to_send and the PEP will go through steps 302

to 308 each and every time a packet to send arrives. This entails one SNMP

query per run, since step 303 avoids one SNMP query when the PEP is
already aware of some buffer space available on the terminal. The PEP could

be made to wait for a certain delay before returning to step 302 after step

WO 03/043285 PCT/US02/36282
25

308, thereby avoiaing sending a certain number of SNMP queries. However,
there is no simple way to avoid this delay when a large number of packets to
send arrive in a burst. Since the delay would slow transmission down in that
very important case, it is more efficient to go back to step 302 and run
through step 308 without delay. At worst, there will therefore be one query
per packet if packets arrive one by one, but in such a case, SNMP queries will
not hamper traffic since there will be virtually no traffic to interfere with.

In step 311 the PEP will wait until the expiration of a query timer if
FreeQ_i is not greater than a threshold. This is to prevent un-necessary
SNMP queries being sent to an Intermediate Device when there is little
chance of the PEP sent packets having been sent beyond the Intermediate
Device (Terminal). Another, lower timer, could be employed between the
tests of step 810 and step 305 should FreeQ_i be greater than the threshold
to allow the Intermediate Device (Terminal) time to process the packets.

The PEP should also make use of some form of PEP rate control clocking-
out mechanism to ensure that the transmission rate from the PEP to the
Intermediate Device (Terminal) does not over run the Terminal input queue
and processing rate when sending bursts to fill up the said queue. Finally,
note that packets arriving at the PEP from the terrestrial side, while the
packet-driven algorithm is in process, are queued and subsequently drawn
from the queue when the algorithm returns to step 302, this process being

consistent with the packet driven format of the PEP.

WO 03/043285 PCT/US02/36282
26

Management of individual competing TCP/IP connection flows within
the general flow is achieved by sharing a buffer space equivalent to the
Bandwidth-Delay Product of the satellite link. In principle, every time a
packet arrives from the terrestrial side it is associated with a connection and,
before transgressing from the TCP* layer 207 to the FP layer 208 shown in
Fig. 2, three tests are undertaken. This section describes the “buffer
utilization” test that is employed to share resources among the different
connections.

The PEP includes both a Transmit and a Receive Buffer. On arrival at
the PEP, a packet from the terrestrial world is queued in the TCP* 207
layer’s buffer. This buffer is equivalent to a conventional TCP buffer at the
receiving end point, with the space in the buffer being linked to the
advertised window on the TCP connection. This ‘linkage’ allows the TCP
connection on the terrestrial link to slow down the flow of packets to the PEP
as the TCP* buffer becomes full, in much the same way as TCP would slow
down the flow of packet as the receiving ends buffers become full.

Before a packet can pass from the TCP* buffer to the FP layer it must
pass the following rules to ensure that sufficient space exists in the FP buffer:
1. If the connection buffer utilization is less than its allowed buffer space

(allowed buffer space = FP total buffer space / n connections, where the

total buffer space is sufficient space to fill one bandwidth-delay product)

then the packet can be pushed; or

WO 03/043285 PCT/US02/36282
27

2. Ifthe total buffer utilization (among all n connections) is less than the FP
total buffer space allowed, then the packet can be pushed.

3. Otherwise the packet remains in the TCP* buffers.

Once a packet is allowed to pass from the TCP* layer to the FP layer, it is

also stored in the FP buffer and associated to a connection. The FP buffer

facilitates re-transmissions if necessary and the sharing of the satellite link

resources between éompeting TCP connections, as described.

It is important to note that the FP total ’buffer space can become
artificially high. For example, if the global size is 3 Mbytes, then if three
connections are opened, each connection will be allowed 1 Mbyte for its
individual transmit buffer.

When opening a fourth connection, even if the three connections are
using their whole transmit buffer, the new connection will immediately use
its whole share of the transmit buffer. The FP global transmit buffer size will
then become 3.75 Mbytes (1 + 1+ 1 + 0.75). The buffer utilization test allows
to exceed the global transmit buffer size, but this situation will never last
very long. The buffer utilization mechanism will redistribute equally the
global transmit buffer size between the four opened connections. Each
connection will be allowed to use a new individual transmit buffer size of 0.75
Mbyte (3/4), thus pausing the flow of data on the three excessive connections.

Eventually, the global transmit buffer size will decrease to 3 Mytes (0.75 +

WO 03/043285 PCT/US02/36282
28

0.75 + 0.75 + 0.75) and therefore, the size of the global transmit buffer will
fall back to 3 Mbytes in the steady state.

When space becomes available in the FP buffer (because of an
acknowledgement signal, ACK, from the receiving ending indicating the
successful arrival of a packet and thereby removing the packet from the FP
Buffer), the PEP can pull a packet from the applicable TCP* buffer. This
mechanism ensures that when the FP Buffer and even TCP* buffers are full,
then the flow of a connection can be re-triggered by the arrival of ACKs.

(note that, althoﬁgh the mechanism is not described as it is a known
mechanism, the PEP includes a re-transmission procedure, based on timers, |
to ensure that data is re-transmitted if presumed lost, thereby guaranteeing
the arrival of ACKs to re-trigger the flow or, if the satellite link is lost, a
connection tear-down).

The following is an illustrative example for calculating default buffer
sizes for the gateway and terminal-side PEP transmit and receive buffers.
For purposes of this example, it is presumed that the total forward link rate
1s 60 mega-bits per second (Mbps) and the total return link rate is 48Mbps.
Each terminal can be assumed to operate at a maximum receive rate in the
forward link of 8Mbps and a maximum transmit rate in the return link of

2Mbps.

WO 03/043285 PCT/US02/36282
29

In the forward direction the transmit bandwidth and thus transmit
buffer should assume 60Mbps. At the terminal (forward link receiver) the
bandwidth is 8Mbps. In the return link, the transmit and receive
bandwidths are 2Mbps and 48Mbps respectively. To calculate the Bandwidth
Delay Product (BDP) and hence the buffer requirements, 2 more factors are
required: the Round Trip Time (RTT) and what can be called the utilization
factor.

The RTT is actually the time for a packet to be sent and the associated
FP ACK to be sent back and clear the packet from the transmit buffer or open
up more receive buffer space through window advertisements. This is the
RTT between the PEPs and includes any ACK delay timers used to provide a
minimum ACK frgquency. From satellite testing, a value of 600ms is
reasonable for Terminals that have been allocated a constant rate of
bandwidth (Constant Rate Assignment — CRA) for this example and a
delayed ACK timer of 500ms could be assumed. For Terminals operating in a
pure BoD environment using Variable Bandwidth Dynamic Capacity
(VBDC), the mean RTT measured was around 1400ms which would obviously
require a larger buffer.

The utilization factor adjusts the calculated buffer sizes to maintain
PEP/FP performance under heavier buffer utilization due to packet
loss/corruption. From simulation and theory, we expect transmit buffer

utilization to be around 102-105% of the calculated buffer size depending

WO 03/043285 PCT/US02/36282
30

upon error conditions and packet sizes. Each FP packet that is lost must
remain buffered for an additional RTT to allow for successful retransmission
and acknowledgement.

At the receiver, a decision must be made regarding how many
retransmissions of any individual packet must be supported before FP
performance is impacted. A single BDP sized buffer allows the link to stay
fully utilized as long as the receiver is processing the packets quickly enough
and there are no errors. If a packet loss occurs, the missing packet (hole) will
progress to the left edge of fhe receive window (as the receiver processes data)
and the buffer will begin to fill. After one RTT the receive buffer will be full
and transmission of new packets must be halted while the lost packet is
retransmitted. Effectively, a single RTT pause is inserted for any packet lost
once. If a double BDP buffer is used, then virtually any number of packets
can be lost once with the FP and the connection will still send new data at
full speed if available.

The following calculations are for example only, but an attempt has
been made to make this example as efficient as possible. The two values
given are for CRA and VBDC, respectively. It is important to note that one of
ordinary skill in the art would recognize other variations, modifications, and

alternatives

WO 03/043285 PCT/US02/36282
31

GW PEP TX BUFFER = 60Mbps / 8 bits per byte * 105% * 1.1s to 1.9s = 8.7TM
bytes to 14.9M bytes

GW PEP RX BUFFER = 48Mbps / 8 bits per byte * 200% * 1.1s to 1.9s =
13.2M bytes to 22.8M bytes

Terminal PEP TX BUFFER = 2Mbps / 8 bits per byte * 105% * 1.1s to 1.9s =
288K bytes to 499K bytes

Terminal PEP RX BUFFER = 8Mbps / 8 bits per byte * 200% * 1.1s to 1.9s =
2.2M bytes to 3.8M bytes

The description above has dealt with the use of the “buffer utilization” test to
share resources between competing TCP/IP connections in the terrestrial to
PEP direction. However, the same technique is used to manage the flow of
resources between the PEP and the terrestrial world using a Receive Buffer.
This allows for the fair sharing of resources between connections, the
distribution of free resources if one or more connections are not employing
their allocation and the prevention of slow connections dominating the link.
(In simulations it was found that if connections are not limited in their
allocation, then slow TCP/IP connections would tend to dominate the link).
The scheme works using the same rules but in reverse, this time the
intention being to decide whether or not to accept incoming FP packets from
the satellite. FP packets that are allowed to be stored in the FP Receiver
buffer are cleared by a TCP acknowledgement. In much the same way, as

TCP operates, a window mechanism is used from the receiving PEP to the

WO 03/043285 PCT/US02/36282
32

transmitting PEP to indicate the status of each connection’s buffer space and

thus prevent over-flow.

The task for an overall flow control mechanism applicable for a large
bandwidth-delay product environmént with changing bandwidth and latency,
such as a satellite system, is to achieve the following goals:

1. Maximize the flow of data from the sender to the satellite network
without under-supplying or over-supplying the intermediate node (i.e. the
terminal that requests and receives bandwidth capacity).

2. Share satellite and terrestrial bandwidth within the overall flow so as to
ensure fairness while allowing unused capacity to be employed by hungry
connections and preventing slow connections from dominating the link
capacity.

3. Prevent the overflow of the receiving end PEPs buffer associated per
connection.

As used in this section, transmission of data means the passing of a
packet from the TCP* layer to the FP layer, the re-transmission of a FP data
packet or an acknowledgment packet signaling the successful arrival of data.

In general (with the exception of re-transmissions and ACKs) packets are
pushed, upon arrival from the terrestrial world, from the TCP* 207 to the FP
layer 208 as shown on Fig. 2, and then sent via the satellite with a copy being
stored in the FP Transmit buffer. Before packets can be pushed (or re-

transmitted / acknowledged) they have to pass three tests at PEP1, the

WO 03/043285 PCT/US02/36282
33

" ‘transmitter PEP over satellite where the flow is client to server: a local
(transmit) buffer space test (Distribution of Satellite Resources amongst
TCP/IP connections at the PEP), a PEP-to-Intermediate Node
Communication test, and a sufficient buffer space test. Sufficient buffer space
at the receiving PEP is signalled using a conventional window strategy in
packets (data or ACKSs) flowing from the receiving PEP to the sending PEP.

When space becomes available (either because of a changed window
parameter or an ACK removing a packet from the FP Tx Buffer), the PEP
pulls a packet from the applicable TCP* buffer 207, providing that the three
flow control rules allow this. This technique, in combination with the above
rules and large initial windows, allows nearly 100% usage of available
capacity, while managing the distribution of bandwidth in a variable
bandwidth / latency system. Natural back pressure from the TCP* buffers
slows down the tefrestrial TCP/IP connection flow.

It will be apparent to those skilled in the art that various modifications
and variations can be made to this invention without departing from the
spirit or scope of the invention. Thus, it is intended that the present
invention covers the modifications and variations of this invention provided

that they come within the scope of any claims and their equivalents.

WO 03/043285 PCT/US02/36282
34

CLAIMS:
1. In a distributed connection splitting system, which comprises at least
two intermediate nodes, a method for managing data flow between the
intermediate nodes and through an intermediate device, comprising the steps
of:

obtaining status data of the intermediate device; and

managing the flow of data between the intermediate nodes and the
intermediate device by determining the status of an intermediate device
queue. |
2. The method of claim 1, wherein the amount of at least one of data and
packet space in the intermediate device is used to determine the quantity of
at least one of data and packets which should be sent to the intermediate
device.
3. The method of claim 1, wherein the intermediate nodes send sufficient
data to at-least partially fill the intermediate device queue to a pre-defined
level, and after a pre-determined delay to allow data to be transmitted,
checks the status of the intermediate device and then re-fills the
intermediate device queue to a previous level.
4, The method of claim 1, wherein the intermediate nodes send regular
SNMP get messages to an intermediate device MIB or the intermediate
device sends SNMP traps when a queue reaches a pre-detemined level to

indicate the current queue status.

WO 03/043285 PCT/US02/36282
35

5. The method of claim 1, wherein the flow of data from the intermediate
nodes to the intermediate device is more accurate by the intermediate nodes
having knowledge of current and future bandwidth information from the
intermediate device.

6. The method of claim 5, wherein the intermediate nodes and the
intermediate device are co-located in the same device with some form of
direct linkage between the allocated bandwidth / queue and the intermediate
nodes.

7. A method of fairly distributing bandwidth among connections in a
communications system, comprising the step of sharing of transmission
storage amongst a number N connections.

8. The method according to claim 7, wherein the step of sharing further
includes the steps of:

calculating an amount of capacity given to a connection before allowance
for any applicable intermediate node to Intermediate device flow is X/N,
where X is the maximum bandwidth-delay product of a communication and N
is the number of connections;

determining if a sum of all the actual capacity usage by each individual
connection N is less than X, wherein the available capacity is shared by any

connections wishing to exceed an allocation; and

WO 03/043285 PCT/US02/36282
36

determining, if new connections arrive, whether they are guaranteed

(X/N) capacity even if the result is a temporarily over-supply of capacity to a
link resulting in buffering at an output queue of the intermediate node.
9. A method for managing the flow of data from an intermediate node to
an intermediate device so that the transmission of data depends upon:
sufficient transmission buffer space in the sending interme‘diate node;

| sufficient space in the receiver window of the receiving intermediate node;
and sufficient capacity / buffer space at one of the intermediate devices.
10. The method of claim 9, wherein the failure of a test causes data to be
stored in an applicable input or output queue within the intermediate node
thereby creating natural back pressure to a TCP sender in the regular

window updates sent from the intermediate node to the TCP sender.

WO 03/043285 PCT/US02/36282
1/3

100

101

N 102 103
NN

Figure 1

PCT/US02/36282

WO 03/043285

2/3

..@m_t,m\fo SU1 Ul punoy 8q Ud SLIoResyipoul 18A8| | Uo s{ieteq] "8|qe|IeAE B8 SUO 11do Jeigo "Ajuo @

lduexs #

e g vz 52 8L T 9EC 2 VEL EEC
#4IN «d10 #d4LN #dLN Ay iy #A1N #4140 #d10 #d1N IS
=4 0EC &7 &ee Jr7a %z 7a vee £cC e S mum i
souoyia | seuwewa | mowswz | meweyg | gaq ana | smeweus | meweys | meweys | meweyg |1 TH
12T 0ze 61T 81z 0 alz 51Z ¥z EIZ 2z b wi ,
dl powou | peypon dl dl dl dl powpou y | paupou y dl x._oE@Z
Lz k2 60z i 10z a0z TR
) “podsuel]
L | .doL i =7 =27 dd - L oL | HOUSTEM
1 =_ 2 =_27 { | uosses
€07 0T
At v0z 10T S6C {uolejussaid
Wiod pul IO PUT [
uonedyddy uogeoddy | Weheoyddy
SOk M| o
jule pleauo

164 pug |

Figure 2

WO 03/043285

Step 1

Step 2

Step 3

3/3

300

Initialize FreeQ_i-1 and
FreeQ_l

301

No

PCT/US02/36282

Y
A

Packets_to_
send>07?

302

Yes

303

FreeQ_i+1 >
packets_to_send ?

Yes———i

Send min{FreeQ_i+1,
packets_to_send}

N]

304

Step 4

Step 5

Step 8

h 4

Query SNMP 305
ComputeFreeQ_i 306
Send min{FreeQ_|, 307
packets_to_send}

308

FreeQ_i>

FreeQ_i-1=
packets_to_send ?

* FreeQ_] - packets_to_send

No

FreeQ_i > Thresh ?

No

311
Wait QueryTimer

Figure 3

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

