(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization /g5 1IN AN VA 00 O OO R RO O 1
International Bureau W U
(43) Int tional Publication Dat \P'/ (10) International Publication Number
nternational Fupication pate s
ey
20 January 2011 (20.01.2011) PCT WO 2011/009078 Al
(51) International Patent Classification: (74) Agents: MADDEN, Robert, B. et al.; SCHWEGMAN,
GOG6F 17/50 (2006.01) LUNDBERG & WOESSNER, P.A., P.O. Box 2938, Min-
. .. neapolis, MN 55402 (US).
(21) International Application Number:
PCT/US2010/042329 (81) Designated States (unless otherwise indicated, for every
. - kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, I{T, AU, Ai BA, BB, BG, BP{, BR, BW, BY, BZ,
16 July 2010 (16.07.2010) CA., CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L. ) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
12/505,296 17 July 2009 (17.07.2009) US NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(71) Applicant (for all designated States except US): TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
ACHRONIX SEMICONDUCTOR CORPORATION . o
[US/US]; 333 West San Carlos Street, Suite 1050, San 84) D.e51gnated. States (unle.ss othemzse indicated, for every
Jose, California 95110 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(72) Inventors; and ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(75) Imventors/Applicants (for US only): MANOHAR, Rajit TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
[US/US]; 427 E. Seneca Street, Ithaca, New York 14850 EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(US). GANUSOV, Ilya [RU/US]; 1550 Technology LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
Drive, Unit 3118, San Jose, California 95110 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
EKANAYAKE, Virantha [CA/US]; 350 N. 2nd Street, GW, ML, MR, NE, SN, TD, TG).
Apt. 303, San Jose, California 95112 (US). CHAUD- Published
ubli :

HARY, Kamal [US/US]; 18991 Harleigh Dr., Saratoga,
California 95070 (US). KELLY, Clinton, W. [US/US];
1550 Technology Drive, Apt. 3001, San Jose, California
95110 (US).

with international search report (Art. 21(3))

(54) Title: NON-PREDICATED TO PREDICATED CONVERSION O

F ASYNCHRONOUS REPRESENTATIONS

08

PREDICATED
ASYNCHRONOUS
IMPLEMENTATION

100 BACK-ANNOTATED
VERLOG ¢_| SIHULATION/PERFORMANGE |_., SHULATION
NATION
PLACEMENT HINTS
WL FOR RE-SINTHESIS
STRTHESS
C-LIKE INPUT —"{ (MENTOR SIMPLICITY) }* EDIF VO SYNcﬁRloFN(T)?Js NETLIST
WAJB LW EASTNG F v B
T00LS o | |
DESIGN DESCRIPTION SYNTHESIZED SPECIFICATION
SYNTHESIS ANNOTATIONS NETLIST OF EDF FLVOR
FIG. ]

NON-PREDICATED
ASYNCHRONOUS
(MPLEMENTATION

2011/009078 A1 |1 00 O O 010 O O O 0

S
=

(57) Abstract: Methods, circuits and systems for converting of a non-predicated asynchronous netlist to a predicated asyn-
chronous netlist are described. These may operate to identify one or more portions of an asynchronous netlist corresponding to a
partially utilized portion of an asynchronous circuit. The asynchronous netlist may be modified to control the partially utilized
portion. Additional methods, circuits, and systems are disclosed.



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

NON-PREDICATED TO PREDICATED CONVERSION
OF ASYNCHRONOUS REPRESENTATIONS

This application claims the benefit of priority to U.S. Patent Application
Serial No. 12/505,296, filed on July 17, 2009, which is incorporated herein by

reference in its entirety.

BACKGROUND

Traditional synchronous circuit designs may be represented using a
variety of hardware description languages, higher level description languages,
netlists, and schematics. All of these synchronous circuit representations may
define functionality in the presence of a clock signal or with a master timing
signal used to synchronize operations. Synchronous operations have several
advantages, including deterministic behavior, simplified design and testing, and
portability. However, there are also occasions when it is desirable to make use

of asynchronous operations

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the disclosed technology are illustrated by way of
example and not limitation in the figures of the accompanying drawings in
which:

FIG. 1 is a block diagram illustrating a system for converting of a non-
predicated asynchronous netlist to a predicated asynchronous netlist, according
to various embodiments of the invention;

FIG. 2 is a diagram illustrating some asynchronous dataflow blocks for
converting a non-predicated asynchronous netlist to a predicated asynchronous
netlist, according to various embodiments of the invention;

FIG. 3 is a diagram illustrating asynchronous dataflow computation
graphs formed by the asynchronous dataflow blocks of FIG. 2, according to

various embodiments of the invention;



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

FIG. 4 is a diagram illustrating predicating an asynchronous dataflow
computation block of FIG. 3, according to various embodiments of the
invention;

FIG. 5 is a diagram illustrating predicating an asynchronous dataflow
computation block that implements conditional execution, according to various
embodiments of the invention;

FIG. 6 is a diagram illustrating merging a predicated multi-region
asynchronous dataflow computation block, according to various embodiments of
the invention;

FIG. 7 is a diagram illustrating moving split blocks from the fan-in to the
fan-out of an asynchronous dataflow computation block, according to various
embodiments of the invention;

FIG. 8 is a block diagram illustrating an asynchronous integrated circuit
implementation based on a predicated asynchronous netlist, according to various
embodiments of the invention;

FIG. 9 is a block diagram illustrating a system for converting a non-
predicated asynchronous netlist of an asynchronous circuit to a predicated
asynchronous netlist, according to various embodiments of the invention;

FIG. 10 is a flow diagram illustrating a method of converting a non-
predicated asynchronous netlist to a predicated asynchronous netlist, according
to various embodiments of the invention; and

FIG. 11 shows a diagram illustrating a representation of a machine,

according to various embodiments of the invention.

DETAILED DESCRIPTION
Example methods and systems for converting a non-predicated
asynchronous netlist to a predicated asynchronous netlist will now be described.
In the following description, numerous examples having example-specific
details are set forth to provide an understanding of example embodiments. It
will be evident, however, to one of ordinary skill in the art, after reading
this disclosure, that the present examples may be practiced without these

example-specific details, and/or with different combinations of the details than

2



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

are given here. Thus, specific embodiments are given for the purpose of
simplified explanation, and not limitation.

Some example embodiments described herein may comprise a method
including identifying one or more portions of an asynchronous netlist
corresponding to a partially utilized portion of an asynchronous circuit. The
asynchronous netlist may be modified to control the partially utilized portion.
The partially utilized portion may be a portion of the asynchronous circuit that
generates results that can be discarded during the operation of the asynchronous
circuit. The modification may involve a logic circuit that controls the partially
utilized portion.

Asynchronous circuit designs are represented using a variety of hardware
description languages, higher level description languages, netlists, and
schematics. Any representation of asynchronous computation is eventually
decomposed into elementary operations that can be efficiently mapped onto
hardware resources. Such decompositions may lead to discarding some
computation results during operation of the circuit. Even though the results of
these computations may sometimes be discarded, the corresponding circuits that
implement these computations inevitably consume power, which may result in
increasing power consumption of the circuit.

To avoid computations that produce unused results, the asynchronous
representation will be translated into a predicated asynchronous representation, a
discussed in more detail below, where additional logic circuits may dynamically
turn off one or more portions of the design that can produce unused results.
Predicated asynchronous circuit designs that can be formed in this way, and in
other ways, will now be described.

FIG. 1 is a block diagram illustrating a system 100 for converting of a
non-predicated asynchronous netlist to a predicated asynchronous netlist,
according to various embodiments of the invention. The system 100 shown in
FIG. 1 comprises a tool flow, which may include tools and/or executable
modules that can be executed by one or more processors such as a processor 910
of FIG. 9 or a processor 1160 of FIG. 11. Inputs for the tool flow may be

described in an existing hardware description language (HDL) such as Verilog,

3



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

very high-speed integrated circuits (VHSIC) HDL (VHDL), or any other
language that is supported by synchronous synthesis tools.

Existing tools 110 can be used to simulate the operation of a high-level
circuit description, as well as to synthesize the high-level description into an
asynchronous netlist in a variety of formats, such as electronic design
interchange format (EDIF) including EDIF 2 0 0. An EDIF reader tool 101 has
been implemented that takes the EDIF, as well as a table, as input. The table
may specify “black-box” modules in the EDIF (e.g., the fact that the EDIF cell
name “AND2” comprises a two-input AND gate, etc.) and some details about
the EDIF format that may vary from one synthesis tool to the other.

Converting from EDIF into a netlist format may be performed using
known methods. The final output of the EDIF reader tool 101 comprises the
synchronous netlist 102 (denoted by extension .ANF in FIG. 1). The
synchronous netlist 102 may then be converted to an asynchronous netlist 104
using the synchronous to asynchronous conversion tool 103. The asynchronous
netlist 104 may be equivalent to the synchronous netlist102 in terms of
computations that can be performed. The asynchronous netlist 104 may then be
converted to a predicated asynchronous netlist 106 using the conversion tool 105
as will be described in more detail below.

The predicated asynchronous netlist 106 may be equivalent to the
asynchronous netlist 104 in terms of computation results. However, the
predicated asynchronous netlist 106 may contain additional logic circuitry (see
for example, MUX 420 in FIG. 4 or logic circuit 840 in FIG. 8) to turn off
activity of some portions of the asynchronous netlist 104 that may not contribute
to computations that are utilized by other circuits in the asynchronous netlist
104. Methods of converting the un-predicated asynchronous netlists into
corresponding predicated implementations will be discussed below. The
predicated asynchronous netlist 106 may be fed into an annotation generator
107, which can generate annotations that translate the performance
characteristics of the asynchronous implementations back into the synchronous
domain for simulation by the existing tools 110.

The asynchronous netlist 104 may represent circuits that can be

4



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

implemented efficiently as fine-grained asynchronous pipelines. The
asynchronous netlist 104 may be represented as an asynchronous dataflow
graph. Nodes in the asynchronous dataflow graph may operate on data values,
referred to as tokens. A token may comprise a data item that can flow through
an asynchronous pipeline. A token may comprise a one-bit value or a multi-bit
value.

Operators in the dataflow graph receive input tokens on their inputs and
produce output tokens on their outputs. The change in path may be specified by
arrows that correspond to communication channels along which tokens can be
sent and received. The communication channels may have no buffering, and
sending and receiving a token on one or more channels may correspond to
rendezvous synchronization between a sender and a receiver. The basic building
blocks of an asynchronous dataflow graph are shown and discussed below with
respect to Figure 2.

FIG. 2 is a diagram illustrating asynchronous dataflow blocks for
converting a non-predicated asynchronous netlist 104 to a predicated
asynchronous netlist 106 (see FIG. 1), according to various embodiments of the
invention. The dataflow blocks in FIG. 2 may also be referred to as “functional
blocks”. Alternatively, the word “functional” may be replaced with a
corresponding functionality word such as “source”, “sink”, “copy” and the like.
For example, those of ordinary skill in the art will realize that the replacement
term “sink block” can be used in place of the term the “sink functional block”,
and that “source block” is a specific kind of block taken from the general
category of “functional” blocks.

A computational unit comprises a function block 201, which has an
arbitrary number of inputs and one output. The function block 201 may receive
tokens from at least some of its inputs, compute a specified function, and
produce the result of the function as an output token on its output. There can be
many different types of function blocks that vary in the number of inputs they
have, and in the operations they perform.

A source block 204 comprises an operator that may generate a stream of

unlimited number of tokens on its output. The tokens generated by the source

5



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

block 204 may have the same value. A sink block 205 comprises an operator
that consumes an input token. A copy block 206 may replicate the token
received on its input to all its outputs. An initial block 207 may begin by
transmitting a token on its output, and thereafter copying an input token to its
output. The blocks 201, 204, 205, 206, and 207 repeatedly receive one token on
their respective inputs (if any), and send one token on each of their outputs (if
any).

The merge block 202 has two types of inputs: data inputs (similar to
other blocks), and a control input 208. The value of the control input 208 may
specify the data input from which a token is received. The received token may
then be sent to the output of the merge block 202. A split block 203 has a dual
function. It receives a control value on its control input 209, and a data value on
its data input. It sends the data value on the output channel specified by the value
of the control input.

FIG. 3 is a diagram illustrating asynchronous dataflow computation
blocks formed by the asynchronous dataflow blocks of FIG. 2, according to
various embodiments of the invention. FIG. 3 shows an example dataflow
computation graph 300 that corresponds to an arithmetic operation that receives
values for a variable X and two input tokens 4 and B and replaces X with an
updated value X + 4*B. Input tokens A and B may be received at inputs 312 and
314 of a multiplication function block (MULT) 310, and a token A *B is
generated at the output 318. The token 4 *B may then be added to the current
value of X using an addition function block (ADD) 320. This updated value is
produced on the output 330 of the ADD 320 and is fed back into the input 316 of
the ADD 320 through an initial block 340.

A modified version of this operation that takes an additional token C at
an input 324 is shown in a dataflow computation graph 302. In dataflow
computation graph 302, when the value of the token C is zero, a current value of
X may be replaced with a value of 0, because the merge block 360 passes a 0 to
the input 316 of the ADD 320. Otherwise, when the value of the token Cis 1, a
merge block 370 and the merge block 360 pass the output of the initial block 340
to the input 316 of the ADD 320 and the dataflow computation graph 302

6



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

behaves like the dataflow computation graph 300.

The proposed conversion method from an original un-predicated
asynchronous netlist, (e.g., the asynchronous netlist 104 of FIG. 1) to a
predicated asynchronous netlist (e.g., the predicated asynchronous netlist 106 of
FIG. 1) may comprise two phases. In the first phase, the original netlist may be
analyzed (e.g., by the processor 910 of FIG. 9), and one or more portions of the
netlist associated with computations, of which the results may sometimes be
discarded (e.g., may be partially utilized), are identified. This analysis may also
operate to determine specific conditions under which such unused computations
may be performed. The processor may implement this first phase as discussed
below with respect to FIG. 4

The second phase may use the results of the analysis performed in the
first phase to modify the asynchronous netlist by incorporating, in the original
asynchronous netlist, an additional netlist portion. The additional netlist portion
may correspond to a logic circuit (e.g., a logic circuit 840 of FIG. 8), which
controls portions of the partially utilized portion by, for example, conditional
execution.

FIG. 4 is a diagram illustrating predicating an asynchronous dataflow
computation block of FIG. 3, according to various embodiments of the
invention. A predicate analysis module (e.g., the predicate analysis module 950
of FIG. 9) may inspect edges and nodes of the asynchronous dataflow
computation graph to identify one or more functional blocks or edges of the
dataflow graph that may correspond to a partially utilized portion of the
asynchronous circuit represented by the dataflow graph (e.g., dataflow
computation blocks shown in FIG. 3). The predicate analysis module 950 may
mark the identified one or more functional blocks or edges with predicate marks
(e.g., labels) that indicate a controlling signal.

FIG. 4 shows an example dataflow computation graph 400 that
sometimes produces unused computation results. Input tokens 4 and B received
at inputs (also sometimes called input edges by those of ordinary skill in the art)
411 and 412 of an ADD 410 are added using the ADD 410. A multiplexer block
(MUX) 420 may receive at its inputs a result token from an output 415 of the

7



WO 2011/009078

10

15

20

ADD 410 and a constant value 0 generated by a constant source 416. The MUX
420 propagates the result token or the constant value 0, based on the value of a
control token C at its condition input 430. When the control token C is zero, the
output 440 of the MUX 420 may be equal to the result token at output 415.
Otherwise, when C is 1, the output 440 of the MUX 420 may be equal to 0.
Based on the above analysis, when C is 1, the ADD 410 may produce an unused
result.

The predicate analysis module 950 may operate to mark edges that can
carry ignored values with labels that show when edge values may be ignored.
These labels may be referred to as “predicates.” The edges that have associated
predicates may be referred to as “predicated edges,” and blocks (also sometimes
called nodes by those of ordinary skill in the art) that conditionally ignore input
values may be said to “generate predicates”.

A dataflow graph 402 shows an example of predicates used to predicate
the dataflow computation graph 400. As described above, the output (also
called output edge) 415 of ADD 410 may produce unused result when control
token Cis 1. Thus, the input edges 411 and 412 and the output edge 415are
marked with {C}, whereas the output 418 of the constant source 416 may be
labeled with {-C} to show that constant source 416 sends unused data when C is

0.

PCT/US2010/042329



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

The MUX 420 may generate predicate {C} for output edge 415 of the
ADD 410 and predicate {-C} for the output edge 418 of the constant source 416.
Since the value of the output edge 415 of the ADD 410 is unused when C is 1,
input values for the ADD 410 can also be ignored. Therefore, input edges
411and 412 may also be marked with predicate C (e.g., {C}). The absence of a
predicate for a given edge may be taken to be equivalent to a predicate which
always evaluates to 0. In an example embodiment, the predicate sense may be
changed to indicate when an edge value is used, rather than not used. In other
words the {C} and {-C} marks in the dataflow graph 402 may be replaced with
{-C} and {C}, respectively, to mean that, for example, the value of the output
edge 415 is unused when C is 0.

The predicate analysis module 950 may find some or all function nodes
that operate to ignore at least some values of their input edges and label such
edges with corresponding predicates as described above. In some embodiments,
the predicate analysis module 950 may inspect predicates on the output edges of
computation nodes (e.g., output edge 415 of ADD 410) and propagate them to
one or more inputs of the computation nodes (e.g., input edges 411 and 412).
When a node has multiple output edges with different predicates, they can be
merged by applying the following rule: tokens on input edges may be ignored
only when tokens on all output edges are ignored. For example, if the ADD 410
had an extra output edge with predicate D, then inputs edges 411 and 412 would
be ignored only when both C and D were equal to 1. In other words, input edges
411 and 412 would be labeled with predicate {C & D}.

In some embodiments, the predicate analysis module 950 can process
dataflow graph nodes and edges in any order, as long as the resulting predicates
satisfy the propagation and generation rules outlined above. When a dataflow
graph has cycles, the same nodes may be processed multiple times until edge
predicates converge to a stable value. Different ways of processing graph nodes
to achieve a convergence point are well-known to those of ordinary skill in the
art and will not be discussed here. The second phase of converting of an

asynchronous dataflow graph to a predicated asynchronous dataflow graph



WO 2011/009078 PCT/US2010/042329

involves modifying the predicated asynchronous dataflow graph to prevent
computation of ignored results, as discussed below.
FIG. 5 is a diagram illustrating predicating an asynchronous dataflow
computation block 500 that implements conditional execution, according to
5 various embodiments of the invention. Modification of the asynchronous
dataflow computation block 500 may be performed in two stages. The first stage
may involve generating additional predication logic corresponding to a logic
circuit (e.g., the logic circuit 840 of FIG. 8). In the second stage, the additional
predication logic may be connected to the original asynchronous netlist (e.g., an
10 asynchronous dataflow computation block 500). The additional predication
logic may comprise function blocks that compute predicate expressions and
merge/split blocks that prevent the flow of tokens into predicated regions of the
asynchronous netlist.
The asynchronous dataflow computation block 500 shows a modified
15  version of the dataflow computation graph 400 of FIG. 4. Propagation of the
input tokens A and B may now be controlled by split blocks 530 and 540. When
the split control input C is 0, data tokens 4 and B are propagated to the inputs of
an ADD 510. When Cis 1, input tokens are consumed by the split blocks 530
and 540, but not propagated, effectively preventing the ADD 510 from receiving
20 any inputs. Since MUX 520 consumes all input tokens, netlist modification may
involve insertion of merge and source blocks such as merge block 515 and
source blocks 521 and 522 to provide MUX 520 with an input token whenever
input tokens A and B are dynamically turned off.
FIG. 5 also includes an asynchronous dataflow computation block 502,
25  which shows an alternative example implementation of conditional execution of
the asynchronous dataflow computation block 500. This implementation
replaces MUX 520 with a merge block 525, which chooses between consuming
tokens from the ADD 510 and source block 523. Both implementations as
shown in the asynchronous dataflow computation blocks 500 and 502 have
30 equivalent functionality and either one can be chosen; however, the

asynchronous dataflow computation block 502 may sometimes be implemented

10



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

with fewer logic blocks as compared to the asynchronous dataflow computation
block 500.

In some embodiments, modifying an asynchronous netlist, such as one
associated with the asynchronous dataflow computation blocks shown in FIG. 5,
may involve generating an additional netlist portion corresponding to the logic
circuit that corresponds to a split block. In general, split blocks may be inserted
on an output edge of a block if the block has no input edges with the same
predicate. In other words, a split block may be inserted at an output edge of a
predicated functional block that lacks an input edge that has a first predicate
mark similar to a second predicate mark associated with the output edge. For
example, the assumption in FIG. 5 is that blocks producing tokens 4 and B (not
shown in FIG. 5) have input predicates which may be not equal to {C}.

Modifying an asynchronous netlist, such as one associated with the
asynchronous dataflow computation blocks shown in FIG. 5, in some
embodiments, may comprise generating an additional netlist portion
corresponding to the logic circuit that corresponds to a merge block. Merge
blocks may be inserted for predicated input edges of blocks which have no
output edges with the same predicate. In other words, merge blocks may be
inserted at one or more input edges of a predicated functional block that lacks an
output edge that has a first predicate mark similar to a second predicate mark
associated with the one or more input edges. For example, in FIG. 5, the output
edge of MUX 520 has no predicate; therefore, the coupling of the predicated
edge from ADD 510 to MUX 520 involves the merge block 515. On the other
hand, the input control edge C has no predicate, and therefore it does not have a
split block. Sources and sinks represent special cases, and therefore, their
output/input edges are usually not modified.

Inserted splits and merges that dynamically turn off unused operations
may consume extra hardware resources and may negatively impact power
consumption and performance. For example, after the un-predicated dataflow
graph 400 (FIG. 4) was converted into the predicated dataflow graph 402, the
fan-out for the control input token C increased from one to three. This result

may require extra routing resources that negatively impact the speed of the

11



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

design and increase power consumption because of extra activity on the routing
channels.

Below, we will discuss techniques that can operate to reduce these
overhead results, specifically when some splits and merges separate predicated
regions from unpredicted portions of the netlist, and others separate predicated
regions with different predicates. The inter-region merges/splits may sometimes
be removed, as shown in example embodiments below, by merging predicated
regions into one region with a merged predicate.

FIG. 6 is a diagram illustrating merging a predicated multi-region
asynchronous dataflow computation block, according to various embodiments of
the invention. Shown in FIG. 6 are examples of dataflow graphs 600 and 605
that implement conditional execution for two predicated regions 601 and 602,
Here it is assumed that all input and output tokens are non-predicated (e.g.,
puts 612, 622 and output 654), the region 601 is predicated by a predicate {4
OR C} and the region 602 may be predicated by predicate {4}. Under this
assumption, the regions 601 and 602 may be merged into one merged region 603
with the predicate {4}. Also, a split 620 and a merge block 640 that control
conditional execution between the regions 601 and 602 may be removed, as
shown in dataflow graph 605.

A person of ordinary skill in the art will realize, after reading this
disclosure, that the merged region 603 may have a lower probability of being
turned off than individual regions 601 and 602. For example, when predicates
{4} and {C} have individual toggle rates of 50%, the original predicate {4 OR
C} has a 75% probability of being true (i.e., resulting in consuming the input 612
by a sink block 631 and effectively turning off region 601). After regions 601
and 602 are merged into the merged region 603, the merged region 603 will have
probability of being turned off of 50%. Therefore, this technique can result in
saving less power than when using separate predicated regions.

Information about operational probabilities for each token in a realistic
environment may be collected and used to guide conditional execution
adjustments like the one performed in dataflow graph 605. Such information

may be referred to as profile feedback. In the case of region merging, we can

12



WO 2011/009078

10

15

20

25

30

use profile feedback to get probabilities for the operation of predicates {A} and
{A OR C}, and then use these probabilities to decide whether it is beneficial to
merge regions and reduce the overhead of extra merge and split blocks. For
example, when the profile feedback indicates that predicates {A OR C} and {A}
have the same probability, then it may be more beneficial to merge regions and
remove extra merge and split blocks between them. On the other hand, if
predicate {A OR C} has substantially higher probability than {A}, it may be
more beneficial to keep these two regions separate, rather than merging them.

The proposed modification techniques can reduce the number of inserted
samplers (e.g., merge blocks or split blocks) by selectively giving up some
predication opportunities. For example, the modification technique can estimate
how a predicated netlist will impact performance and power consumption,
providing a basis for choosing to refrain from inserting split and merge blocks
for predicated regions with high implementation overhead. In some
embodiments, the modification technique may reduce overhead by moving one
or more split function blocks to a location in the asynchronous netlist that
reduces routings used by control signals, as discussed below with respect to FIG.
7, reduces changes to the netlist, or better match underlying asynchronous
architecture.

FIG. 7 is a diagram illustrating moving split blocks 710 and 720 from the
fan-in to the fan-out of an asynchronous dataflow computation block, according
to various embodiments of the invention. A dataflow graph 700 shows an
example of implementing conditional execution. The predicated region includes
ADD 740 and a computation sub-graph 750. The inputs 4 and B for ADD 740
are down-sampled by two split blocks 710 and 720. The output from the
computation sub-graph 750 is upsampled by a merge block 770. Since both
inputs 712 and 722 and the output 742 of ADD 740 have the same predicate, we
can down-sample the output 742 of ADD 740 instead of the inputs 712 and 722.

This transformation may give up the opportunity to execute ADD 740
conditionally, but it may also reduce the number of splits and preserve

conditional execution of computation sub-graph 750 after ADD 740.

13

PCT/US2010/042329



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

A dataflow graph 702 shows the result of moving splits from the fan-in
to the fan-out of ADD 740. In this example, the transformation may reduce the
total number of splits from two to one. More sophisticated versions of this
modification can move splits to one or more locations that will reduce the
routing used for the control signals.

We can also utilize profile feedback to automatically calculate how often
a predicated region will be turned off during operation. When profile feedback
shows that results of the predicated computations are used most of the time, it is
possible that better power conservations results will accrue if such computations
are not predicated. For example, profile feedback could indicate that in a
realistic environment token values produced by the predicated region in the
dataflow graph 700 may not be discarded 90% of the time. In this case, extra
split blocks, merge blocks, and routing resources for conditional execution might
operate to unnecessarily burn power 90% of the time. As a result, non-
selectively optimizing conditional execution may result in burning more power
than the original unmodified design. Thus, the proposed predication algorithm
can take this type of profile information into account and choose not to
implement conditional execution for predicated regions that are rarely be turned
off, perhaps based on the simulation of ultimate power consumption results.

Predication overhead can also be reduced by introducing new hardware
resources. For example, a certain type of split block may be introduced that uses
one control signal to manage the merging of multiple inputs to multiple outputs.
This may in turn reduce power overhead of predicated execution. Many other
modifications may be possible, including designing special computation blocks
with conditional inputs, conditional outputs, or both. However, the mechanism
for making the tokens conditional remains the same.

FIG. 8 is a block diagram illustrating an asynchronous integrated circuit
800 implementation based on a predicated asynchronous netlist, according to
various embodiments of the invention. The asynchronous integrated circuit 800
may comprise a partially utilized portion 820 and a logic circuit 840. The
partially utilized portion 820 may correspond to partially utilized portions of the
asynchronous netlist 104 of FIG. 1 identified by the processor 910 of FIG. 9.

14



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

The non-conditional portion 830 of the asynchronous circuit 800 may
correspond to other portions of the asynchronous netlist 104 of FIG. 1 not
including the partially utilized portion 820 and the logic circuit 840. The
partially utilized portion 820 may generate results that can be discarded during
the operation of the asynchronous integrated circuit 800.

The asynchronous netlist 104 (see FIG. 1) may be modified to control the
partially utilized portions of the netlist 104. The modification may be related to
the addition of a netlist corresponding to the logic circuit 840 that controls the
partially utilized portion 820. The logic circuit 840 may control the partially
utilized portion 820 by dynamically turning off blocks that generate unused
results. The logic circuit 840 may perform conditional executions of logic
blocks that can dynamically disable the blocks, which produce computational
results that are not used by other segments of the integrated circuit 800. In some
embodiments, the additional netlist portion corresponding to the logic circuit 840
may comprise predicated dataflow graphs as described above, produced by
modules of an example system 900 shown in FIG. 9.

FIG. 9 is a block diagram illustrating a system 900 for converting a non-
predicated asynchronous netlist of an asynchronous circuit (e.g., asynchronous
integrated circuit 800 of FIG. 8) to a predicated asynchronous netlist, according
to various embodiments of the invention. The system 900 may include one or
more of any one of the following elements: a processor 910, a memory 920, the
logic circuit 840, a netlist generator 940, and a predicate analysis module 950.
The processor 910 may operate to identify one or more portions of the
asynchronous netlist 104 (see FIG. 1) that corresponds to a number of partially
utilized portions of the asynchronous integrated circuit 800 of FIG. 8.

In example embodiments, the processor 910 may operate to modify the
asynchronous netlist 104. The modification may be related to the logic circuit
840. The logic circuit 840 may control the partially utilized portion of the
asynchronous integrated circuit 800. The processor 910 may determine that the
asynchronous netlist 104 (see FIG. 1) is associated with a portion of an
asynchronous integrated circuit 800 that generates a result that may be unutilized

under identifiable conditions. The identifiable conditions may be identifiable

15



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

based on dynamic profile information. The dynamic profile information may
contain real-time information regarding utilization of results produced by

predicated portions of the predicated asynchronous netlist 106 of FIG. 1. The
processor 910 may store the dynamic profile information in the memory 920.

The logic circuit 840 may control the partially utilized portion 820 of the
asynchronous integrated circuit 800, based on the identified conditions, for
example, a condition under which certain logic blocks may produce unused
results. The netlist generator 940 (e.g., EDIF reader tool 101 of FIG. 1) may
generate the asynchronous netlist 104 (see FIG. 1) corresponding to the
asynchronous circuit and an additional netlist portion corresponding to the logic
circuit 840. The predicate analysis module 950 may predicate a dataflow graph
corresponding to the asynchronous circuit (e.g., dataflow computation graph 400
of FIG. 4). The predicate analysis module 950 may operate to identify one or
more functional blocks or edges of the dataflow graph that correspond to the
partially utilized portion 820 of the asynchronous integrated circuit 800.

The predicate analysis module 950 may operate to mark the one or more
functional blocks or edges with a predicate mark, such as {C} and {-C} marks
shown in FIG.4, to indicate a controlling signal and a condition under which the
controlling signal may exert control. For example, the mark {C} may indicate
that the marked edge is controlled by the value of the control signal C, for
example, in the sense that it may be turned off when C is true. The predicate
analysis module 950 may also operate to propagate a predication of a predicated
output edge (e.g., output edge 415 of FIG. 4) of a functional block (e.g., ADD
410 of FIG. 4) to one or more input edges of the functional block (e.g., input
edges 411 and 412 of FIG. 4).

In some example embodiments, the logic circuit 840 may correspond to
an additional netlist portion associated with a functional block that includes one
or more split or merge functional blocks. The logic circuit 840 may also
correspond to an additional netlist portion associated with a predicated
asynchronous netlist 106 (see FIG. 1) that includes one or more computational
blocks that may have a number of conditional inputs or outputs (see, for

example, FIG. 5).
16



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

FIG. 10 is a flow diagram illustrating a method 1000 of converting a non-
predicated asynchronous netlist to a predicated asynchronous netlist, according
to various embodiments of the invention. The method 1000 may start at
operation 1010, where the processor 910 of FIG. 9 may operate to identify one
or more portions of an asynchronous netlist (e.g., asynchronous net list 104 of
FIG. 1) that corresponds to some partially utilized portions of the logic circuit
840 of FIG. 8. The processor 910 may operate to determine that the
asynchronous netlist 104 is associated with a portion (e.g., some computational
blocks) of an asynchronous integrated circuit 800 that generates a result that is
unutilized under conditions that may be identifiable based on the dynamic
profile information, as discussed above with respect to FIG. 9.

At decision block 1020, when it is determined that the asynchronous
netlist 104 (see FIG. 1) is not associated with some computational blocks that
generate unused results, the method 1000 may come to an end. Otherwise, at
operation 1030, the asynchronous netlist 104 (see FIG. 1) is modified to
incorporate additional netlist portion corresponding to a control logic such as the
control circuit 840 of FIG. 8, to control the partially utilized portion 820 of the
asynchronous integrated circuit 800, as described above with respect to FIGs. 8
and 9.

FIG. 11 shows a diagram illustrating a representation of a machine 1100,
according to various embodiments of the present invention. The machine 1100
comprises a set of instructions that can be executed to cause the machine 1100 to
perform any one or more of the methodologies discussed herein. In alternative
embodiments, the machine 1100 may operate as a standalone device or may be
connected (e.g., networked) to other systems. In a networked deployment, the
machine 1100 may operate in the capacity of a server or a client system in a
server-client network environment or as a peer system in a peer-to-peer (or
distributed) network environment. Machine 1100 may be realized as a specific
machine in the form of a computer having a display and/or multiple processors,
as well as a network interface. The machine 1100 may operate to implement any
one or more of the elements illustrated in FIG. 1.

The machine 1100 may comprise a server computer, a client computer, a

17



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

personal computer (PC), a tablet PC, or any system capable of executing a set of
instructions (sequential or otherwise) that specify actions to be taken by that
system. Further, while only a single machine is illustrated, the term “machine”
shall also be taken to include any collection of systems that individually or
jointly execute a set (or multiple sets) of instructions to perform any one or more
of the methodologies discussed herein.

The example machine 1100 may include the processor 1160 (e.g., a
central processing unit (CPU), a graphics processing unit (GPU) or both), a main
memory 1170 and a static memory 1180, all of which communicate with each
other via a bus 1108. The machine 1100 may further include a video display
unit 1110 (e.g., a liquid crystal display (LCD) or cathode ray tube (CRT)). The
machine 1100 also may include an alphanumeric input device 1120 (e.g., a
keyboard), a cursor control device 1130 (e.g., a mouse), a disk drive unit 1140, a
signal generation device 1150 (e.g., a speaker), and a network interface device
1190. The machine 1100 may include one or more of any of these elements.

The disk drive unit 1140 may include a machine-readable medium 1122
on which is stored one or more sets of instructions (e.g., software) 1124
embodying any one or more of the methodologies or functions described herein.
The instructions 1124 may also reside, completely or at least partially, within the
main memory 1170 and/or within the processor 1160 during execution thereof
by the machine 1100, with the main memory 1170 and the processor 1160 also
constituting machine-readable media. The instructions 1124 may further be
transmitted or received over a network 1182 via the network interface device
1190.

While the machine-readable medium 1122 is shown in an example
embodiment to be a single medium, the term "machine-readable medium" should
be taken to include a single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers) that store the one or
more sets of instructions. The term "machine-readable medium" shall also be
taken to include any medium capable of storing, encoding, or carrying a set of
instructions for execution by the machine and that cause the machine to perform

any one or more of the methodologies of the present technology. The term

18



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

"machine-readable medium" shall accordingly be taken to include, but not be
limited to tangible media, including solid-state memories and optical and
magnetic media.

Various embodiments for converting of a non-predicated asynchronous
netlist to a predicated asynchronous netlist have been described. Implementing
such circuits may result in reduced power consumption, reduced die area, and
increased processing speed. The described embodiments may reduce power
consumption of asynchronous circuits by providing an automated, non-
interactive algorithm to convert non-predicated asynchronous circuit designs to
and from predicated asynchronous circuit designs. This technology allows
reducing power consumption of asynchronous designs without changing
electronic design automation (EDA) tools that provide optimal computation
mapping of a design onto asynchronous hardware resources. The technology
described herein also facilitates taking advantage of dynamic profile information
to provide power savings for a given design. The proposed methods may also
operate to modify designs without interfering with the work of the circuit
designers.

Although the present embodiments have been described, it will be
evident, after reading this disclosure, that various modifications and changes
may be made to these embodiments. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a restrictive sense.

The abstract of the Disclosure is provided to comply with 37 C.F.R.
§1.72(b), requiring an abstract that allows the reader to quickly ascertain the
nature of the technical disclosure. It is submitted with the understanding that it
will not be used to interpret or limit the claims. In addition, in the foregoing
Detailed Description, it may be seen that various features are grouped together in
a single embodiment for the purpose of streamlining the disclosure. This
method of disclosure is not to be interpreted as limiting the claims. Thus, the
following claims are hereby incorporated into the Detailed Description, with

each claim standing on its own as a separate embodiment.

19



WO 2011/009078 PCT/US2010/042329

CLAIMS

L. A method comprising:
identifying, by a processor, at least one portion of an asynchronous
5  nmnetlist corresponding to a partially utilized portion of an asynchronous circuit;
and
modifying, by the processor, the asynchronous netlist to generate an
additional netlist portion corresponding to a logic circuit that operates to control
the partially utilized portion.
10
2. The method of claim 1, wherein identifying the at least one portion of the
asynchronous netlist that corresponds to the partially utilized portion of the
asynchronous circuit comprises:
determining that the asynchronous netlist corresponds to a portion of the
15  asynchronous circuit that generates a result that is discarded under identifiable

conditions.

3. The method of claim 2, further comprising:
identifying, by the processor, the identifiable conditions, the identifiable
20 conditions including profile conditions identifiable based on dynamic profile

information.

4. The method of claim 3, further comprising:
controlling the partially utilized portion of the asynchronous circuit based

25  on the profile conditions.

5. The method of claim 1, further comprising:

predicating a dataflow graph corresponding to the asynchronous circuit.

30 6. The method of claim 5, wherein the predicating of the data-flow graph
comprises:

identifying at least one functional block or edge of the data-flow graph
20



WO 2011/009078 PCT/US2010/042329

that corresponds to the partially utilized portion of the asynchronous circuit; and
marking the at least one functional block or edge with a predicate mark,

the predicate mark indicating a controlling signal.

5 T The method of claim 6, wherein the marking of the at least one functional
block or edge further comprises:
indicating by the predicate mark a condition under which the controlling

signal controls the at least one functional block or edge.

10 8. The method of claim 6, wherein the controlling signal causes a signal

associated with the at least one functional block or edge to be discarded.

9. The method of claim 6, wherein the marking of the at least one functional
block or edge further comprises:
15 propagating a predication of a predicated output edge of a functional

block to at least one input edge of the functional block.

10. The method of claim 1, wherein the modifying of the asynchronous
netlist comprises:

20 generating the additional netlist portion corresponding to a merged
region resulting from merging of at least two predicated regions of the

asynchronous circuit.

1. The method of claim 1, wherein the modifying of the asynchronous
25  netlist comprises:
moving at least one split function block from a predicated region of the
asynchronous netlist to a location in the asynchronous netlist that reduces

routings used by control signals.

30 12.  The method of claim 1, wherein the logic circuit corresponds to a
predicated asynchronous netlist that includes at least one computational block
having at least one of a plurality of conditional inputs or a plurality of

21



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

conditional outputs.

13. A system comprising:
a processor;
memory coupled to the processor, the memory storing instructions,
which when executed by the processor, perform following operations:
identifying at least one portion of an asynchronous netlist that
corresponds to a partially utilized portion of an asynchronous circuit; and
modifying the asynchronous netlist to generate an additional netlist
portion corresponding to a logic circuit that operates to control the partially
utilized portion.; and

a display unit to display the additional netlist portion.

14.  The system of claim 13, wherein the processor is to determine that the
asynchronous netlist is associated with a portion of an asynchronous circuit that
generates a result that is unutilized under identifiable optional conditions

including conditions identifiable based on dynamic profile information.

15.  The system of claim 13, wherein the processor is further to identify
identifiable conditions including conditions identifiable using dynamic profile

information.

16. The system of claim 13, further comprising:
a netlist generator to generate a netlist corresponding to the asynchronous

circuit and an additional netlist portion corresponding to the logic circuit.

17.  The system of claim 13, further comprising:

a predicate analysis module to predicate a dataflow graph corresponding
to the asynchronous circuit, wherein the predicate analysis module is to identify
at least one functional block or edge of the data-flow graph that corresponds to
the partially utilized portion of the asynchronous circuit, and to mark the at least

one functional block or edge with a predicate mark, the predicate mark

22



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

indicating a controlling signal.

18.  The system of claim 17, wherein the predicate analysis module is further
to indicate by the predicate mark a condition under which the controlling signal

controls the at least one functional block or edge.

19.  The system of claim 17, wherein the predicate analysis module is further
to propagate a predication of a predicated output edge of a functional block to at

least one input edge of the functional block.

20. A machine-readable medium comprising instructions, which when
executed by one or more processors, perform a method, the method comprising
the following operations:
identifying at least one portion of an asynchronous netlist that
corresponds to a partially utilized portion of an asynchronous circuit; and
modifying the asynchronous netlist to generate an additional netlist
portion corresponding to a logic circuit that operates to control the partially

utilized portion.

21.  An asynchronous integrated circuit comprising:

a partially utilized portion, including at least one portion that generates at
least one output, the at least one output being unutilized under identifiable
conditions optionally including conditions identifiable based on dynamic profile
information; and

a logic circuit to control the partially utilized portion, including to turn

off the partially utilized portion under an identified condition.
22.  The asynchronous integrated circuit of claim 21, wherein the logic circuit

corresponds to a functional block that includes at least one of a split or a merge

functional block.

23



WO 2011/009078 PCT/US2010/042329

10

15

20

25

30

23.  The asynchronous integrated circuit of claim 21, wherein the logic circuit
corresponds to a split functional block inserted on an output edge of a predicated
functional block lacking an input edge that has a first predicate mark similar to a

second predicate mark associated with the output edge.

24.  The asynchronous integrated circuit of claim 21, wherein the logic circuit
corresponds to a merge functional block inserted on at least one input edge of a
predicated functional block lacking an output edge that has a first predicate mark

similar to a second predicate mark associated with the at least one input edge.

25.  The asynchronous integrated circuit of claim 21, further comprising a
logic circuit to control the partially utilized portion of the asynchronous circuit

based on the conditions identifiable using dynamic profile information.

26.  The asynchronous integrated circuit of claim 21, wherein the logic circuit
corresponds to an additional netlist portion associated with a merged region
resulting from merging of at least two predicated regions of the asynchronous

netlist.

27.  The asynchronous integrated circuit of claim 21, wherein the logic circuit
corresponds to an additional netlist portion associated with a predicated region
of the asynchronous netlist that includes at least one split function block moved

to a location in the asynchronous netlist.

28.  The asynchronous integrated circuit of claim 21, wherein the logic circuit
corresponds to an additional netlist portion associated with a predicated
asynchronous netlist that includes at least one computational block that has at
least one of a plurality of conditional inputs or a plurality of conditional

outputs.

24



PCT/US2010/042329

WO 2011/009078

o
~

-«

[ OIA

SNOLLVLONNY SISIHINAS

NOLLdI¥IS30 NOIS40

\|/I\|
MIAEYT BYILVN

— e

\/l.\\
INdNI -3

\/I\
10HA

NOILVININT 1dAI
40AVTd dI03 40 ISMEN
SNONQYHONASY
CIT-NON NOLLYOLI93dS [3ZISIHINAS
(34d 0L JNASY . .
e I X[ N0 T~ 51001
(3-NON OL NS \\/|__\/|_ N T ST
v\ + - 0 + 0
NOLLYININT TdK T~
ISNIN ISNEN SNONOYHINAS (ALOMANIS ¥OINIW)
SNONOYHONASY | 40V NV e OA 410 [t
0 A SSINIS- 3 403
SINH N3OV Y
»|  JOLVIINDD NOLLYAILS
NOLLYLONNY NOLLYINAIS JONVWHORL3d/NOLLYINWIS
101 [IIVIONNY-XOVE Q1

\/I\
Q0TR3A




WO 2011/009078 PCT/US2010/042329

2/9

+ +”'+ 2 + *"’* /_L\T‘&E
+...++

201 FUNCTION 202 MERGE 203 SPLT

+

204 SOURCE 205 SINK 206 COPY 207 INMAL

FiG. 2

A B
%NBS.’*‘ r%\ﬂc

MULT
A B 02
‘m~+ rm | X WA
we, L W
Y
U —e ADD 32
0
OUTPUT
Y

FIG. 3



WO 2011/009078 PCT/US2010/042329

3/9
AR AP Mo bk |
R OO
ADD ADD — A0
MG M6 (8
M5 0 13 0
{0 T g
MUX
A4Q 8 -ue
OUTPUT OUTPUT
") (B)

FiIG. 4



PCT/US2010/042329

WO 2011/009078

4/9

084G —

1nd1n0 1nd1Nn0
| 0
I N
0
aay
+ 7% +
0 0 ]
0¥ 085 d
1S
W 48 + + +
J g Y _ 0 0 _
O%S 088
088 — W [




WO 2011/009078 PCT/US2010/042329

5/9

INPUT C

B2 622
610 6520
/jw c
1 0 1 0
+ b4 +

60t

B3l —

640

—_— ——

0

FiIG. 6



WO 2011/009078

6/9

()

PCT/US2010/042329

A B
r“‘& r'T&Z 0
ADD 140

160
0

4

1

C

—

FIG.

0




WO 2011/009078

7/9

PCT/US2010/042329

0
A 30
LD RORTON LOGIC CRCUT
R
NON~CONDITIONAL
PORTION
FIG. &
30
A0 20
PROCESSOR EMORY
R 3
LG NET-LIT
CRUT GENERATOR
950
PREDICATE
ALYSIS
NODULE

FIG. 9



WO 2011/009078 PCT/US2010/042329

8/9

1
START

A0

IDENTIFY A PORTION OF AN ASYNCHRONOUS
NET-LIST CORRESPONDING TO A PARTIALLY
UTILIZED PORTION OF AN ASYNCHRONOUS CIRCUIT

PARTIALLY
UTILIZED?

A0

MODIFY THE ASYNCHRONQUS NETLIST T0
CONTROL THE PARTIALLY UTILIZED PORTION

END

FiG. 10



WO 2011/009078 PCT/US2010/042329

9/9
V/ 100
PROCESSOR

DISPLAY UNIT

1124 1| INSTRUCTIONS

MAN MEMORY

170 — D

124 -1 INSTRUCTIONS

ALPHA-NUMERC |
NPUT DEVICE [ W0

W8 —

STATIC MEMORY
U — ol | CURSOR CONTROL [ _yyqy

DEVICE
1124 -1 INSTRUCTIONS

DISK DRIVE_ UNIT

NETWORK_INTERFACE WACHNE= | [ 10
1190 —{ VIR NIERACE o) e |READABLE MEDION 1122
INSTRUCTIONS HH-1124

)

T
|

SIGNAL
~—={  GENERATON  [—1150
DEVICE




INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 10/42329

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 17/50 (2010.01)
USPC - 716/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC: 716/12

Minimum documentation searched (classification system followed by classification symbols)

USPC: 716/11; 716/1 (keyword limited - see search terms below)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWEST (PGPB, USPT, USOC, EPAB, JPAB); GOOGLE; Google Scholar

Terms: asynchronous, netlist, circuit, logic, edif, synchronous, portion, region, subset, subregion, discard,
parameter, merge, combine, join, hardware, description, language, predicated, affirmed, confirmed, conditional.

dispose, erase, control, profile,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

entire document, especially abstract, para [0005], [0008], [0009), [0025], [0027], [0033].

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2007/0256038 A1 (Manohar) 01 November 2007 (01.11.2007), 1-28
entire document, especially abstract, para [0028], [0030], [0034], [0038], [0040], [0041], [0043],
[0047], [0054], [0056], [0057], {0061], (0064], [0069], [0070].
Y US 2006/0041872 A1 (Poznanovic et al.) 23 February 2006 (23.02.2006), 1-28
entire document, especially abstract, para [0012], [0052], [0053], [0054), [0074], [0095], [0101],
[0170], [0239].
A US 2008/0301603 A1 (Ja et al.) 04 December 2008 (04.12.2008), 1-28

|__-I Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the intemnational
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0" document referring to an oral disclosure, use, exhibition or other
means

“p" document published prior to the international filing date but later than

the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

wp

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

wyr

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

oy

“&” document member of the same patent family

Date of the actual completion of the international search

26 August 2010 (26.08.2010)

Date of mailing of the international search report

07 SEP 2010

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. s571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report

