

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2016318051 B2

(54) Title
Diplosropy gene

(51) International Patent Classification(s)
C12N 15/82 (2006.01) **C12Q 1/68** (2006.01)

(21) Application No: **2016318051** (22) Date of Filing: **2016.09.05**

(87) WIPO No: **WO17/039452**

(30) Priority Data

(31) Number
2015398 (32) Date
2015.09.04 (33) Country
NL

(43) Publication Date: **2017.03.09**
(44) Accepted Journal Date: **2022.11.03**

(71) Applicant(s)
Keygene N.V.

(72) Inventor(s)
Van Dijk, Peter Johannes;Rigola, Diana;Prins, Marinus Willem;Van Tunen, Adrianus Johannes

(74) Agent / Attorney
FPA Patent Attorneys Pty Ltd, Level 19, South Tower 80 Collins Street, Melbourne, VIC, 3000, AU

(56) Related Art
VIJVERBERG K. ET AL BMC PLANT BIOLOGY, 2010, vol. 10:154
MA, C. et al. Journal of Plant Physiology 2011, vol. 168, pages 1980-1986
WO 2010/079432 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2017/039452 A1

(43) International Publication Date

9 March 2017 (09.03.2017)

(51) International Patent Classification:

C12N 15/82 (2006.01) C12Q 1/68 (2006.01)

(21) International Application Number:

PCT/NL2016/050617

(22) International Filing Date:

5 September 2016 (05.09.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2015398 4 September 2015 (04.09.2015) NL

(71) Applicant: KEYGENE N.V. [NL/NL]; P.O. Box 216, 6700 AE Wageningen (NL).

(72) Inventors: VAN DIJK, Peter Johannes; c/o P.O. Box 216, 6700 AE Wageningen (NL). RIGOLA, Diana; c/o P.O. Box 216, 6700 AE Wageningen (NL). PRINS, Marinus Willem; c/o P.O. Box, 6700 AE Wageningen (NL). VAN TUNEN, Adrianus Johannes; c/o P.O. Box 216, 6700 AE Wageningen (NL).

(74) Agent: KINGMA, R.L.; P.O. Box 3241, 2280 GE Rijswijk (NL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2017/039452 A1

(54) Title: DIPLOSPORY GENE

(57) Abstract: The invention provides nucleotide sequences and amino acid sequences of the Dipgene as well as (functional) homologues, fragments and variants thereof, which provides diplosropy as a part of apomixis. Also diplosropy plants and methods for making these are provided, as are methods of using these, and methods of making apomictic seed.

Title: Diplosropy gene

5 **Field of the invention**

The present invention relates to the field of biotechnology and in particular to plant biotechnology including asexual plant breeding. Particularly, the invention relates to the identification of genes, variants or fragments thereof as well as to the proteins and peptides they encode relating to the processes underlying apomixis, particularly gametophytic 10 apomixis through diplosropy. The invention also relates to methods using the genes, proteins, variants and fragments thereof of the invention for inducing gametophytic apomixis through diplosropy in plants and crops, and methods for producing diplosporous plants and apomictic seeds.

15 **Background of the invention**

In botany, apomixis (also known as agamospermy) refers to the formation of seeds by asexual processes. Apomixis occurs via a series of developmental processes, which collectively convert the sexual developmental program of a plant to an asexual developmental program. Recurrent apomixis has been reported to occur in more than 400 20 flowering plant species (Bicknell and Koltunow 2004). Apomixis may occur in different forms including at least two forms known as gametophytic apomixis and sporophytic apomixis (also referred to as adventive embryony). Examples of plants where gametophytic apomixis occurs include dandelions (*Taraxacum* sp.), hawkweeds (*Hieracium* sp.), Kentucky blue grass (*Poa pratensis*), eastern gamagrass (*Tripsacum dactyloides*) and others. Examples of 25 plants where sporophytic apomixis occurs include citrus (*Citrus* sp.), mangosteen (*Garcinia mangostana*), and others.

Interests in apomixis in general, but particularly in gametophytic apomixis, has increased over the last decades due to its potential usefulness in agriculture, particularly for the 30 purpose of clonal seed production. Gametophytic apomixis is characterized by at least two developmental processes: (1) the avoidance of meiotic reduction (apomeiosis), and (2) development of the egg cell into an embryo, without fertilization (parthenogenesis). The seeds resulting from the process of gametophytic apomixis are referred to as apomictic seeds.

Since apomictic seeds are genetically identical to the maternal parent plant, they are considered to be a clone of the maternal parent plant and therefore the process that produces such seeds is termed clonal seed production. It has been recognized since long that apomixis can be extremely useful in plant breeding (Asker 1979, Hermsen, J. G. Th.

5 1980. Breeding for apomixis in potato: Pursuing a utopian scheme. *Euphytica* 29:595-607, Asker and Jerling 1990, DeVille Calzada et al. 1995). An advantage of apomixis is the ability to perform true breeding of heterotic F1 hybrids (i.e. indefinite multiplication of F1 hybrids of uniform genetic quality). In most crops, F1 hybrids are the best varieties because they are often associated with higher yields, a phenomenon often called 'heterosis'.
10 10 Because self-fertilization of F1 hybrids causes loss of heterosis by recombination in the F2 sexual crops, F1 hybrids have to be produced each generation again by crossing of inbred homozygous parents. Producing sexual F1 seeds is a complicated and costly process, which needs to be repeated perpetually. In contrast, apomictic F1 hybrids are true breeding organisms, i.e. which are capable of breeding true.

15 15 Apomixis is of great interest in agriculture because it has the power to fix favourable genotype, regardless of its genetic complexity, and allows production of organisms that can breed true in one step. This implies that apomixis could be used for immediate fixation of polygenic quantitative traits of interest. It should be noted that most yield traits are polygenic.

20 20 Apomixis could be used for the stacking (or pyramiding) of multiple traits (for example various resistances, several transgenes, or multiple quantitative trait loci). Without apomixis, in order to fix such suite of traits, each trait locus must be made homozygous individually and later on combined again into the hybrid. As the number of loci involved in a trait increases, generating homozygous trait loci by crossing is laborious, time-consuming and a 25 25 logistical challenge. Similarly, selection of suitable parental lines for the F1 hybrid requires great investments in time and effort. Moreover specific epistatic interactions between alleles are lost in the homozygous (parental line) phase and may not return upon combination in the F1 hybrid. With apomixis, it becomes possible to fix this type of non-additive genetic variation.

30 30 Besides the instantaneously fixing of any genotype, whatever its complexity, there are important additional agricultural uses of apomixis. Sexual interspecific hybrids and autopolyploids often suffer from sterility due to meiotic problems. Since apomixis skips meiosis, these problems occurring in interspecific hybrids and autopolyploids would be 35 35 solved. Since apomixis prevents female hybridization, apomixis coupled with male sterility has been proposed for the containment of transgenes, preventing transgene introgression in wild relatives of transgenic crops (Daniell, H. 2002. Molecular strategies for gene

containment in transgenic crops. *Nature biotechnology* 20: 581-586). In insect-pollinated crops (e.g. *Brassica*), apomictic seed set would not be limited by insufficient pollinator services. This is becoming more important in the light of the increasing health problems of pollinating bee populations (Varroa mite infections, African killer bees etc.). As most viruses 5 are not transmitted by seed, tuber propagated crops, like potato, apomixis could be exploited to maintain the superior genotype clonally, but remove the risk of virus transmission through tubers. Also the storage costs of apomictic seeds would be much lower than that of tubers. In ornamentals apomixis could replace labour intensive and expensive tissue culture propagation. It is well understood that in general apomixis strongly reduces the 10 costs of cultivar development and propagation.

Apomixis does not occur in the major crops, most of which are sexual seed crops. There have been numerous attempts to introduce apomixis in sexual crops. Specifically, since 15 apomixis is under genetic control, many have sought to identify genes involved in apomixis processes. Apomixis in natural apomicts have been investigated as a sources of apomixis genes (Ozias-Akins, P. and P.J. van Dijk. 2007 in: *Annu. Rev. Genet.* 41:509-537). However, the genetics and molecular background of apomixis still remains poorly understood and attempts at identifying apomixis genes have not produced genes suitable for use in agriculture so far. This is mainly due to the fact that identification and isolation of 20 apomixis genes has proven to be a difficult task. Natural apomicts are often polyploids and positional cloning in polyploidy plants is difficult to perform. Other complicating factors are suppression of recombination in apomixis-specific chromosomal regions, repetitive sequences and segregation distortion in crosses. Further, the genomes of apomictic plants have not yet been sequenced, which complicates the search for apomixis genes overall. 25 Hence, apomixis genes have not been cloned and/or isolated. Attempts to introduce apomixis in sexual crops can be summarized as follows:

- a) Introgression of apomixis (apomictic) genes from wild apomictic plants into crop species through wide crosses have not been successful so far, e.g. attempts to transfer 30 apomixis from *Tripsacum dactyloides* into maize and millet [Savidan, Y. (2001). Transfer of apomixis through wide crosses. In *Flowering of Apomixis: From Mechanisms to Genetic Engineering*, Y.; apomixis from *Pennisetum squamulatum* into pearl millet. Savidan, J.G. Carman, and T. Dresselhaus, eds (Mexico: CIMMYT, IRD, European Commission DG VI), pp. 153–167; Morgan, R., Ozias-Akins, P., and Hanna, W.W. (1998). Seed set in an 35 apomictic BC3 pearl millet. *Int. J. Plant Sci.* 159, 89–97.; WO97 / 10704.]

b) Mutants of sexual model species, especially in *Arabidopsis*. For example, WO2007066214 describes the use of an apomeiosis mutant called *Dyad* in *Arabidopsis*. However, the *Dyad* is a recessive mutation with very low penetrance. The practical use of this mutant in a crop species this mutation would be of very limited practical use.

5 c) Generation of apomixis *de novo* by hybridization between two sexual ecotypes has not resulted in agronomically interesting apomicts (US20040168216 and US20050155111).

10 d) Cloning of candidate apomixis genes by transposon tagging in maize. US20040148667 discloses orthologs of the *elongate* gene, which were hypothesized to induce apomixis. However, according to Barrell and Grossniklaus (2005) in Plant Journal Vol: 34, pp 309-320, the *elongate* gene skips meiosis II and therefore does not maintain the maternal genotype.

15 Further, it has been described in US20060179498 that so-called 'reverse breeding' could serve as an alternative for apomixis. However, reverse breeding represents a complicated and laborious *in vitro* laboratory procedure compared to apomixis which does not require any laboratory procedures since it is an *in vivo* procedure that is carried out by the plant itself without any external (human) intervention. Moreover, with reverse breeding, once the parental lines have been reconstructed (doubled gamete homozygotes) crossing still has to be carried out.

20 Therefore there is a need for alternative procedures for inducing apomixis in sexual crops, which are devoid of at least some of the limitations of the present state of the art. Particularly, there is a need for methods for producing diplosporous plants and apomictic seeds. There is also a need to uncover alternative genes and proteins involved in the processes of apomixis, particularly diplospory, which are suitable for use in the methods above and which can substantially mimic the apomictic pathways in sexual crops.

Summary of the invention

30 The invention provides nucleotide sequences and amino acid sequences of the *Dip* gene as well as (functional) homologues, fragments and variants thereof, which provides diplospory as a part of apomixis. Also diplospory plants and methods for making these are provided, as are methods of using these, and methods of making apomictic seed.

35 **Detailed description of the invention**

Definitions

The term 'sexual plant reproduction' as used herein refers to a developmental pathway where a diploid somatic cell referred to as the 'megaspore mother cell' undergoes meiosis to produce four reduced megasporocytes. One of these megasporocytes divides mitotically to form the

5 megagametophyte (also known as the embryo sac), which contains a reduced egg cell (i.e. cell having a reduced number of chromosomes compared to the mother) and two reduced polar nuclei. Fertilization of the egg cell by one sperm cell of the pollen grain generates a diploid embryo, while fertilization of the two polar nuclei by the second sperm cell generates the triploid endosperm (process referred to as double fertilization).

10

The term 'megaspore mother cell' or 'megasporocyte' as used herein refers to a diploid cell that produces megasporocytes by reduction, usually meiosis, to create four haploid megasporocytes which will develop into female gametophytes. In angiosperms (also known as flowering plants), the megaspore mother cell produces a megaspore that develops into a 15 megagametophyte through two distinct processes including megasporogenesis (formation of the megaspore in the nucellus, or megasporangium), and megagametogenesis (development of the megaspore into the megagametophyte).

15

The term 'asexual plant reproduction' as used herein is a process by which plant 20 reproduction is achieved without fertilization and without the fusion of gametes. Asexual reproduction produces new individuals, genetically identical to the parent plants and to each other, except when mutations occur. Plants have two main types of asexual reproduction including vegetative reproduction (i.e. involves budding, tillering, etc of a vegetative piece of the original plant) and apomixis.

25

The term 'apomixis' as used herein refers to the formation of seeds by asexual processes.

30

The term 'diplospory' as used herein refers to a situation where an unreduced embryo sac is derived from the megaspore mother cell either directly by mitotic division or by aborted 35 meiotic events. Three major types of diplospory have been reported, named after the plants in which they occur, and they are the Taraxacum, Ixeris and Antennaria types. In the Taraxacum type, the meiotic prophase is initiated but then the process is aborted resulting in two unreduced dyads one of which gives rise to the embryo sac by mitotic division. In the Ixeris type, two further mitotic divisions of the nuclei to give rise to an eight-nucleate embryo sac follow equational division following meiotic prophase. The Taraxacum and Ixeris types are known as meiotic diplospory because they involve modifications of meiosis. By contrast, in the Antennaria type, referred to as mitotic diplospory, the megaspore mother cell does not

initiate meiosis and directly divides three times to produce the unreduced embryo sac. In gametophytic apomixis by diplospory, an unreduced gametophyte is produced from an unreduced megasporangium. This unreduced megasporangium results from either a mitotic-like division (mitotic diplory) or a modified meiosis (meiotic diplory). In both gametophytic apomixis by

5 apospory and gametophytic apomixis by diplospory, the unreduced egg cell develops parthenogenetically into an embryo. Apomixis in *Taraxacum* is of the diplosporous type, which means that the first female reduction division (meiosis I) is skipped, resulting in two unreduced megasporangia with the same genotypes as the mother plant. One of these megasporangia degenerates and the other surviving unreduced megasporangium gives rise to the
10 unreduced megagametophyte (or embryo sac), containing an unreduced egg cell. This unreduced egg cell develops without fertilization into an embryo with the same genotype as the mother plant. The seeds resulting from the process of gametophytic apomixis are referred to as apomictic seeds.

15 The term 'diplospory function' refers to the capability to induce diplospory in a plant, preferably in the female ovary, preferably in a megasporangium mother cell and/or in a female gamete. Thus a plant in which diplospory function is introduced, is capable of performing the diplospory process, i.e. producing unreduced gametes via a meiosis I restitution.

20 The term 'diplospory as part of gametophytic apomixis' refers to the diplospory component of the process of apomixis, i.e. the role that diplospory plays in the formation of seeds by asexual processes. In particular, next to diplospory function, parthenogenesis function is required as well in establishing the process of apomixis. Thus, a combination of diplospory and parthenogenesis functions may result in apomixis.

25 Apomixis is known to occur in different forms including at least two forms known as gametophytic apomixis and sporophytic apomixis (also referred to as adventive embryony). Examples of plants where gametophytic apomixis occurs include dandelion (*Taraxacum* sp.), hawkweed (*Hieracium* sp.), Kentucky blue grass (*Poa pratensis*), eastern gamagrass
30 (*Tripsacum dactyloides*) and others. Examples of plants where sporophytic apomixis occurs include citrus (*Citrus* sp.) mangosteen (*Garcinia mangostana*) and others.

35 The term 'diplosporous plant' as used herein refers to a plant, which undergoes gametophytic apomixis through diplospory or a plant that has been induced (e.g. by genetic modifications) to undergo gametophytic apomixis through diplospory. In both cases,

diplosporous plants produce apomictic seeds when combined with an parthenogenesis factor.

The term 'apomictic seeds' as used herein refers to seeds, which are obtained from 5 apomictic plant species or by plants or crops induced to undergo apomixis, particularly gametophytic apomixis through diplospory. Apomictic seeds are characterised in that they are a clone and genetically identical to the parent plant and germinate plants that are capable of true breeding.

10 A 'clone' of a cell, plant, plant part or seed is characterized in that they are genetically identical to their siblings as well as to the parent plant from which they are derived. Genomic DNA sequences of individual clones are nearly identical, however, mutations may cause minor differences.

15 The term 'true breeding' or 'true breeding organism' (also known as pure-bred organism) as used herein refers to an organism that always passes down a certain phenotypic trait unchanged or nearly unchanged to its offspring. An organism is referred to as true breeding for each trait to which this applies, and the term 'true breeding' is also used to describe individual genetic traits.

20 The term 'F1 hybrid' (or filial 1 hybrid) as used herein refers to the first filial generation of offspring of distinctly different parental types. F1 hybrids are used in genetics, and in selective breeding, where it may appear as F1 crossbreed. The offspring of distinctly different parental types produce a new, uniform phenotype with a combination of 25 characteristics from the parents. 'F1 hybrids' are associated with distinct advantages such as heterosis, and thus are highly desired in agricultural practice. In an embodiment of the invention, the methods, genes, proteins, variants or fragments thereof as taught herein can be used to fix the genotype of F1 hybrids, regardless of its genetic complexity, and allows production of organisms that can breed true in one step.

30 The term 'allele(s)' as used herein refers to any of one or more alternative forms of a gene at a particular gene locus. In a diploid cell of an organism, alleles of a given gene are located at a specific location, or locus (loci plural) on a chromosome. One allele is present on each chromosome of the pair of homologous chromosomes. A diploid, or polyploid plant species 35 may comprise a large number of different alleles at a particular locus. In an embodiment, the Dip locus of wild Taraxacum accessions as taught herein, may comprise various *Dip* or *dip* alleles, which may vary slightly in nucleotide and/or encoded amino acid sequence.

The term 'locus' (loci plural) as used herein refers to one or more specific locations or sites on a chromosome where, for example, one or more genes or genetic markers is/are located.

For example, the "Dip locus" as taught herein refers to the position in the genome where the

5 *Dip* gene (and two (or more) *dip* alleles) as taught herein is (are) found.

The term 'dominant allele' as used herein refers the relationship between alleles of one gene in which the effect on phenotype of one allele (i.e. the dominant allele) masks the contribution of a second allele (the recessive allele) at the same locus. The first allele is

10 dominant and the second allele is recessive. For genes on an autosome (any chromosome other than a sex chromosome), the alleles and their associated traits are autosomal dominant or autosomal recessive. Dominance is a key concept in Mendelian inheritance and classical genetics. For example, a dominant allele may code for a functional protein whereas

15 the recessive allele does not. In an embodiment, the genes and fragments or variants thereof as taught herein refer to dominant alleles of the Dip gene.

The term 'female ovary' (plural form is 'ovaries') as used herein refers to an enclosure in which spores are formed. It can be composed of a single cell or can be multicellular. All plants, fungi, and many other lineages form ovaries at some point in their life cycle. Ovaries

20 can produce spores by mitosis or meiosis. Generally, within each ovary, meiosis of a megasporangium produces four haploid megasporangia. In *gymnosperms* and *angiosperms*, only one of these four megasporangia is functional at maturity, and the other three degenerate. The megasporangium that remains divides mitotically and develops into the female gametophyte (megagametophyte), which eventually produces one egg cell.

25

The term 'female gamete' as used herein refers to a cell that fuses with another ('male') cell during fertilization (conception) in organisms that sexually reproduce. In species that produce two morphologically distinct types of gametes, and in which each individual produces only one type, a female is any individual that produces the larger type of gamete

30 (called an ovule (ovum) or egg). In plants, the female ovule is produced by the ovary of the flower. When mature, the haploid ovule produces the female gamete which is then ready for fertilization. The male cell is (mostly haploid) pollen and is produced by the anther.

The term 'pollination' or 'pollinating' as used herein refers to the process by which pollen is

35 transferred from the anther (male part) to the stigma (female part) of the plant, thereby enabling fertilization and reproduction. It is unique to the angiosperms, the flower-bearing

plants. Each pollen grain is a male haploid gametophyte, adapted to being transported to the female gametophyte, where it can effect fertilization by producing the male gamete (or gametes), in the process of double fertilization. A successful angiosperm pollen grain (gametophyte) containing the male gametes is transported to the stigma, where it

5 germinates and its pollen tube grows down the style to the ovary. Its two gametes travel down the tube to where the gametophyte(s) containing the female gametes are held within the carpel. One nucleus fuses with the polar nuclei to produce the endosperm tissues, and the other with the ovule to produce the embryo. Even most natural apomicts need pollination for the sexual development of the endosperm. However in a small number of apomicts, for

10 example in *Taraxacum* and in *Hieracium* (hawkweeds), the endosperm develops without fertilisation of the polar nuclei by a process known as autonomous endosperm development. In *Arabidopsis* a number a mutation are known which cause autonomous endosperm development.

15 The term 'parthenogenesis' as used herein refers to a form of asexual reproduction in which growth and development of embryos occur without fertilization. The genes and proteins of the invention can in combination with a parthenogenesis factor, for instance a gene or chemical factor, produce apomictic offspring.

20 The term 'vacuolar protein sorting-associated protein type 13' (abbreviated as VPS13) as used herein refers to a protein encoded by the *Vps13* gene, which is involved in controlling the steps in the cycling of proteins through the trans-Golgi network to vacuoles and the cell membrane.

25 The term 'genetic marker' or 'polymorphic marker' as used herein refers to a region on the genomic DNA, which can be used to 'mark' a particular location on the chromosome. If a genetic marker is tightly linked to a gene or is 'in' a gene ('in gene marker') it "marks" the DNA on which the gene is found and can therefore be used in the (molecular) marker analysis as taught herein to select for or against the presence of the gene, e.g. in marker

30 assisted breeding/selection (MAS) methods. Non-limiting examples of genetic markers are AFLP (amplified fragment length polymorphism, EP534858), microsatellite, RFLP (restriction fragment length polymorphism), STS (sequence tagged site), SNP (Single Nucleotide Polymorphism), SFP (Single Feature Polymorphism; see Borevitz et al. (2003) In: *Genome Research* Vol:13, pp 513-523), SCAR (sequence characterized amplified region), CAPS

35 markers (cleaved amplified polymorphic sequence) and the like. The further away the marker is from the gene, the more likely it is that recombination (crossing over) takes place between the marker and the gene, whereby the linkage (and co-segregation of marker and

gene) is lost. The distance between genetic loci is measured in terms of recombination frequencies and is given in cM (centiMorgans; 1 cM is a meiotic recombination frequency between two markers of 1%). As genome sizes vary greatly between species, the actual physical distance represented by 1 cM (i.e. the kilobases, kb, between two markers) also 5 varies greatly between species. It is understood that, when referring to 'linked' markers herein, this also encompasses markers 'in' the gene itself.

The term 'marker assisted selection' (abbreviated as 'MAS') as used herein refers to a process whereby plants are screened for the presence and/or absence of one or more 10 genetic and/or phenotypic markers in order to accelerate the transfer of the DNA region comprising the marker (and optionally lacking flanking regions) into an (elite) breeding line. The term 'molecular marker assay' (or test) as used herein refers to a (DNA based) assay that indicates (directly or indirectly) the presence or absence of a particular allele (e.g. *Dip* allele) in a plant or plant part. Preferably, it allows one to determine whether a particular 15 allele is homozygous or heterozygous at the *Dip* locus in any individual plant. For example, in one embodiment a nucleic acid linked to the *Dip* locus is amplified using PCR primers, the amplification product is digested enzymatically and, based on the electrophoretically resolved patterns of the amplification product, one can determine which *Dip* alleles are present in any individual plant and the zygosity of the allele at the *Dip* locus (i.e. the genotype at each locus). Non-limiting examples of molecular marker assay include the 20 sequence characterized amplified region (SCAR) marker assay, the cleaved amplified polymorphic sequence (CAPS) marker assay and the like.

The term 'heterozygous' as used herein refers to a genetic condition existing if two (or more 25 in case of polyploids) different alleles reside at a specific locus, such as the *Dip* locus (e.g. dominant *Dip* allele/recessive *dip* allele), but are positioned individually on corresponding pairs of homologous chromosomes in the cell.

The term 'homozygous' as used herein refers to a genetic condition existing when two (or 30 more in case of polyploidy) identical alleles reside at a specific locus (e.g. homozygous for the dominant allele *Dip*, or homozygous for the recessive allele *dip*), but are positioned individually on corresponding homologous chromosomes in the cell.

The term 'variety' as used herein is in conformity with the UPOV convention and refers to a 35 plant grouping within a single botanical taxon of the lowest known rank, which grouping can be defined by the expression of the characteristics resulting from a given genotype or

combination of genotypes, can be distinguished from any other plant grouping by the expression of at least one of the said characteristics and is considered as a unit with regard to its suitability for being propagated unchanged (stable).

5 The terms 'polypeptide' and 'protein' as used herein are used interchangeably and refer to molecules consisting of a chain of amino acids, without reference to a specific mode of action, size, 3-dimensional structure or origin.

10 The terms 'isolated polypeptides' or 'isolated proteins' as used herein are used interchangeably and refer to a protein that is no longer in its natural environment, for example a protein present in a tube (*in vitro*) or in a recombinant bacterial or plant host cell is an isolated protein.

15 As used herein, the term 'nucleic acid' refers to any polymers or oligomers of pyrimidine and purine bases, preferably cytosine, thymine, and uracil, and adenine and guanine, respectively (See Albert L. Lehninger, *Principles of Biochemistry*, at 793-800 (Worth Pub. 1982) which is herein incorporated by reference in its entirety for all purposes). The present invention contemplates any deoxyribonucleotide, ribonucleotide or peptide nucleic acid component, and any chemical variants thereof, such as methylated, hydroxymethylated or glycosylated forms of these bases, and the like. The polymers or oligomers may be 20 heterogenous or homogenous in composition, and may be isolated from naturally occurring sources or may be artificially or synthetically produced.

25 The terms 'polynucleotide', 'nucleic acid molecule', 'nucleic acid sequence' or 'nucleotide sequence' refer to a polymeric DNA or RNA molecule in single or double stranded form, particularly a DNA encoding a protein, variants or fragments thereof according to the invention.

30 The term 'isolated polynucleotide', 'isolated nucleic acid molecule', 'isolated nucleic acid sequence', or 'isolated nucleotide sequence' as used herein refers to a polynucleotide which is no longer in the natural environment, i.e. substantially separated from other cellular components which naturally accompany a native sequence or protein, e.g. ribosomes, polymerases, many other sequences and proteins. The term embraces a polynucleotide which has been removed from its naturally-occurring environment and includes recombinant or cloned nucleic acid isolates and chemically synthesized analogs or analogs biologically 35 synthesized by heterologous systems e.g., the nucleic acid sequence in a bacterial host cell or in the plant nuclear or plastid genome.

The term 'functional DIP gene or protein' or 'functional DIP gene or protein variant or fragments' (such as orthologs or mutants, and part of a gene) as used herein refers to the capability of the gene and/or encoded protein to modify or induce in a plant (quantitative and/or qualitative) the processes underlying apomixis, particularly gametophytic apomixis

5 through diplospory, by altering the expression level of one or more genes (e.g. by overexpression or silencing) in said plant. For example, the functionality of a putative DIP protein obtained from plant species X can be tested by various methods. Preferably, if the protein is functional, silencing of the *Dip* gene encoding the protein in plant species X, using e.g. gene silencing vectors, will lead to a reduction (i.e. the chromosome number will be

10 reduced) or suppression of diplospory while overexpression in a susceptible plant will lead to enhanced diplospory. Also, complementation with a functional DIP protein will be capable of restoring or conferring diplospory. The skilled person will have no difficulties in testing functionality.

15 The term 'gene' as used herein refers to a DNA sequence comprising a region (transcribed region), which is transcribed into an RNA molecule (e.g. an mRNA) in a cell, operably linked to suitable regulatory regions (e.g. a promoter). A gene may thus comprise several operably linked sequences, such as a promoter, a 5' leader sequence comprising e.g. sequences involved in translation initiation, a (protein) coding region (cDNA or genomic DNA) and a 3'

20 non-translated sequence comprising e.g. transcription termination sites.

The term 'chimeric gene' or 'recombinant gene' as used herein refers to any gene, which is not normally found in nature in a species, in particular a gene in which one or more parts of the nucleic acid sequence are present that are not associated with each other in nature. For example the promoter is not associated in nature with part or all of the transcribed region or with another regulatory region. The term 'chimeric gene' is understood to include expression constructs in which a promoter or transcription regulatory sequence is operably linked to one or more coding sequences or to an antisense (reverse complement of the sense strand) or inverted repeat sequence (sense and antisense, whereby the RNA transcript forms double stranded RNA upon transcription).

The term '3' UTR' or '3' non-translated sequence' (also known as '3' untranslated region' or '3'end') refers to the nucleic acid sequence found downstream of the coding sequence of a gene, which comprises for example a transcription termination site and (in most, but not all 35 eukaryotic mRNAs) a polyadenylation signal (such as e.g. AAUAAA or variants thereof). After termination of transcription, the mRNA transcript may be cleaved downstream of the

polyadenylation signal and a poly(A) tail may be added, which is involved in the transport of the mRNA to the cytoplasm (where translation takes place).

The term '5' UTR' or 'leader sequence' or '5' untranslated region' as used herein refers to a 5 region of the mRNA transcript, and the corresponding DNA, between the +1 position where mRNA transcription begins and the translation start codon of the coding region (usually AUG on the mRNA or ATG on the DNA). The 5'UTR usually contains sites important for 10 translation, mRNA stability and/or turnover, and other regulatory elements.

15 The term 'expression of a gene or variants or fragments thereof' as used herein refers to the process wherein a DNA region, which is operably linked to appropriate regulatory regions, particularly a promoter, is transcribed into an RNA, which is biologically active, i.e. which is capable of being translated into a biologically active protein or peptide (or active peptide fragment) or which is active itself (e.g. in posttranscriptional gene silencing or RNAi). An 20 active protein in certain embodiments refers to a protein being constitutively active. The coding sequence is preferably in sense-orientation and encodes a desired, biologically active protein or peptide, or an active peptide fragment. In gene silencing approaches, the DNA sequence is preferably present in the form of an antisense DNA or an inverted repeat DNA, comprising a short sequence of the target gene in antisense or in sense and antisense 25 orientation. "ectopic expression" refers to expression in a tissue in which the gene is normally not expressed.

The term 'transcription regulatory sequence' as used herein refers to a nucleic acid sequence that is capable of regulating the rate of transcription of a (coding) sequence 25 operably linked to the transcription regulatory sequence. A transcription regulatory sequence as herein defined will thus comprise all of the sequence elements necessary for initiation of transcription (promoter elements), for maintaining and for regulating transcription, including e.g. attenuators or enhancers. Although mostly the upstream (5') transcription regulatory sequences of a coding sequence are referred to, regulatory sequences found downstream 30 (3') of a coding sequence are also encompassed by this definition.

The term 'promoter' as used herein refers to a nucleic acid fragment that functions to control the transcription of one or more genes, located upstream with respect to the direction of transcription of the transcription initiation site of the gene, and is structurally identified by the 35 presence of a binding site for DNA-dependent RNA polymerase, transcription initiation sites and any other DNA sequences, including, but not limited to transcription factor binding sites, repressor and activator protein binding sites, and any other sequences of nucleotides known

to one of skill in the art to act directly or indirectly to regulate the amount of transcription from the promoter. Optionally the term 'promoter' may also include the 5'UTR region (e.g. the promoter may herein include one or more parts upstream (5') of the translation initiation codon of a gene, as this region may have a role in regulating transcription and/or translation.

5

The term 'constitutive promoter' as used herein refers to a promoter that is active in most tissues under most physiological and developmental conditions.

10 The term 'inducible promoter' as used herein refers to a promoter that is physiologically (e.g. by external application of certain compounds) or developmentally regulated.

15 The term 'tissue-specific promoter' as used herein refers to a promotor that is only active in specific types of tissues or cells. A "promoter active in plants or plant cells" refers to the general capability of the promoter to drive transcription within a plant or plant cell. It does not make any implications about the spatiotemporal activity of the promoter.

20 The term 'operably linked' as used herein refers to a linkage of polynucleotide elements in a functional relationship. A nucleic acid is 'operably linked' when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter, or rather a transcription regulatory sequence, is operably linked to a coding sequence if it affects the transcription of the coding sequence. Operably linked means that the DNA sequences being linked are typically contiguous and, where necessary to join two protein encoding regions, contiguous and in reading frame so as to produce a chimeric protein.

25 The term 'chimeric protein' or 'hybrid protein' as used herein refers to a protein composed of various protein domains or motifs, which are not found as such in nature but which are joined to form a functional protein, which displays the functionality of the joined domains. A chimeric protein may also be a fusion protein of two or more proteins occurring in nature.

30 The term 'domain' as used herein refers to any part(s) or domain(s) of the protein with a specific structure or function that can be transferred to another protein for providing a new hybrid protein with at least the functional characteristic of the domain.

35 The terms 'target peptide' as used herein refers to amino acid sequences which target a protein, or protein fragment, to intracellular organelles such as plastids, preferably chloroplasts, mitochondria, or to the extracellular space or apoplast (secretion signal peptide). A nucleic acid sequence encoding a target peptide may be fused (in frame) to the

nucleic acid sequence encoding the amino terminal end (N-terminal end) of the protein or protein fragment, or may be used to replace a native targeting peptide.

The term 'nucleic acid construct' or 'vector' as used herein refers to a man-made nucleic

5 acid molecule resulting from the use of recombinant DNA technology and which is used to deliver exogenous DNA or RNA into a host cell. The vector backbone may for example be a binary or superbinary vector (see e.g. US5591616, US2002138879 and WO9506722), a co-integrate vector or a T-DNA vector, as known in the art and as described elsewhere herein, into which a chimeric gene is integrated or, if a suitable transcription regulatory sequence is
10 already present, only a desired nucleic acid sequence (e.g. a coding sequence, an antisense or an inverted repeat sequence) is integrated downstream of the transcription regulatory sequence. Vectors usually comprise further genetic elements to facilitate their use in molecular cloning, such as e.g. selectable markers, multiple cloning sites and the like (see below).

15

The term 'host cell' or a 'recombinant host cell' or 'transformed cell' or 'transgenic cell' as used herein refer to a new individual cell (or organism) arising as a result of at least one nucleic acid molecule, especially comprising a chimeric gene encoding a desired protein or a nucleic acid sequence which upon transcription yields an antisense RNA or an inverted
20 repeat RNA (or hairpin RNA) or an siRNA or miRNA for silencing of a target gene/gene family, having been introduced into said cell. The host cell is preferably a plant cell or a bacterial cell. The host cell may contain the nucleic acid construct as an extra-chromosomally (episomal) replicating molecule, or more preferably, comprises the chimeric gene integrated in the nuclear or plastid genome of the host cell.

25

The term 'recombinant plant' or 'recombinant plant part' or 'transgenic plant' as used herein refer to a plant or plant part (e.g. seed or fruit or leaves) comprising the chimeric gene as taught herein in all cells and plant parts at the same locus, even though the gene may not be expressed in all cells.

30

The term 'elite event' as used herein refers to a recombinant plant which has been selected to comprise the recombinant gene at a position in the genome which results in good or desired phenotypic and/or agronomic characteristics of the plant. The flanking DNA of the integration site can be sequenced to characterize the integration site and distinguish from
35 other transgenic plants comprising the same chimeric gene at other locations in the genome.

The term 'selectable marker' as used herein refers to a commonly known term in the art and is used herein to describe any genetic entity which, when expressed, can be used to select for a cell or cells containing the selectable marker. Selectable marker gene products confer for example antibiotic resistance, or more preferably, herbicide resistance or another 5 selectable trait such as a phenotypic trait (e.g. a change in pigmentation) or a nutritional requirement. The term 'reporter' is mainly used to refer to visible markers, such as green fluorescent protein (GFP), eGFP, luciferase, GUS and the like.

The term 'ortholog of a gene' or 'ortholog of protein' as used herein refers to the 10 homologous gene or homologous protein found in another species, which has the same function as the gene or protein, but (usually) diverged in sequence from the time point on when the species harboring the genes diverged (i.e. the genes evolved from a common ancestor by speciation). In an embodiment, orthologs of the *Taraxacum Dip* gene may thus be identified in other plant species based on both sequence comparisons (e.g. based on 15 percentages sequence identity over the entire sequence or over specific domains) and functional analysis.

The expression 'syntenic region' as used herein refers to a term used in comparative genomics and refers to the same region on a chromosome of two related species.

20 The term 'stringent hybridization conditions' as used herein refers to a situation which can be used to identify nucleotide sequences, which are substantially identical to a given nucleotide sequence. Stringent conditions are sequence-dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C lower than the 25 thermal melting point (Tm) for the specific sequences at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically stringent conditions will be chosen in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least 60°C. Lowering the salt concentration and/or increasing the temperature increases 30 stringency. Stringent conditions for RNA-DNA hybridizations (Northern blots using a probe of e.g. 100nt) are for example those which include at least one wash in 0.2X SSC at 63°C for 20 min, or equivalent conditions. Stringent conditions for DNA-DNA hybridization (Southern blots using a probe of e.g. 100nt) are for example those which include at least one wash 35 (usually 2) in 0.2X SSC at a temperature of at least 50°C, usually about 55°C, for 20 min, or equivalent conditions. See also Sambrook et al. (1989) and Sambrook and Russell (2001).

The term 'high stringency conditions' as used herein refers to condition that can be achieved for example, by hybridization at 65°C in an aqueous solution containing 6x SSC (20x SSC contains 3.0 M NaCl, 0.3 M Na-citrate, pH 7.0), 5x Denhardt's (100X Denhardt's contains 2% Ficoll, 2% Polyvinyl pyrrolidone, 2% Bovine Serum Albumin), 0.5% sodium dodecyl sulphate

5 (SDS), and 20 µg/ml denatured carrier DNA (single-stranded fish sperm DNA, with an average length of 120 - 3000 nucleotides) as non-specific competitor. Following hybridization, high stringency washing may be done in several steps, with a final wash (about 30 min) at the hybridization temperature in 0.2-0.1× SSC, 0.1% SDS.

10 The term 'moderate stringency' as used herein refers to conditions equivalent to hybridization in the above described solution but at about 60-62°C. In that case the final wash is performed at the hybridization temperature in 1x SSC, 0.1% SDS.

15 The term 'low stringency' as used herein refers to conditions equivalent to hybridization in the above described solution at about 50-52°C. In that case, the final wash is performed at the hybridization temperature in 2x SSC, 0.1% SDS. See also Sambrook *et al.* (1989) and Sambrook and Russell (2001).

20 The term 'substantially identical' or 'substantial identity' or 'essentially similar' or 'essential similarity' or 'variant' or 'sequence identity' as used herein, when used in the context of amino acid sequences or nucleic acid sequences, refers to two amino acid sequences or two nucleotide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default parameters, share at least a certain percent sequence identity. GAP uses the Needleman and Wunsch global alignment algorithm to align two sequences over

25 their entire length, maximizing the number of matches and minimizes the number of gaps. Generally, the GAP default parameters are used, with a gap creation penalty = 50 (nucleotides) / 8 (proteins) and gap extension penalty = 3 (nucleotides) / 2 (proteins). For nucleotides the default scoring matrix used is nwsgapdna and for proteins the default scoring matrix is Blosum62 (Henikoff & Henikoff, 1992, PNAS 89, 915-919). It is clear that

30 when RNA sequences are said to be essentially similar or have a certain degree of sequence identity with DNA sequences, thymine (T) in the DNA sequence is considered equal to uracil (U) in the RNA sequence. Sequence alignments and scores for percentage sequence identity may be determined using computer programs, such as the GCG Wisconsin Package, Version 10.3, available from Accelrys Inc., 9685 Scranton Road, San

35 Diego, CA 92121-3752 USA. or using in EmbossWIN (version 2.10.0) the program "needle", using the same GAP parameters as described above or using gap opening penalty 10.0 and gap extension penalty 0.5, using DNAFULL as matrix. For comparing sequence identity

between sequences of dissimilar lengths, it is preferred that local alignment algorithms are used, such as the Smith Waterman algorithm (Smith TF, Waterman MS (1981) J. Mol. Biol 147(1):195-7), used e.g. in the EmbossWIN program "water". Default parameters are gap opening penalty 10.0 and gap extension penalty 0.5, using Blosum62 for proteins and 5 DNAFULL matrices for nucleic acids.

The terms 'comprising' and 'to comprise', and their conjugations as used herein refer to a situation wherein said terms are used in their non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. It also 10 encompasses the more limiting verb "to consist of". In addition, reference to an element by the indefinite article 'a' or 'an' does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article 'a' or 'an' thus usually means 'at least one'. It is further understood that, when referring to 'sequences' herein, generally the actual physical 15 molecules with a certain sequence of subunits (e.g. amino acids) are referred to.

The term 'plant' as used herein includes plant cells, plant tissues or organs, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant calli, plant cell clumps, and plant cells that are intact in plants, or parts of plants, such as embryos, 20 pollen, ovules, sporangia, fruit, flowers, leaves (e.g. harvested lettuce crops), seeds, roots, root tips and the like.

The term 'gene silencing' as used herein refers to the down-regulation or complete inhibition of gene expression of one or more target genes (e.g. endogenous Dip genes). The use of inhibitory 25 RNA to reduce or abolish gene expression is well established in the art and is the subject of several reviews (e.g Baulcombe 1996, Stam et al. 1997, Depicker and Van Montagu, 1997). There are a number of technologies available to achieve gene silencing in plants, such as chimeric genes which produce antisense RNA of all or part of the target gene (see e.g. EP 0140308 B1, EP 0240208 B1 and EP 0223399 B1), or which produce sense RNA (also referred 30 to as co-suppression), see EP 0465572 B1. The most successful approach so far has however been the production of both sense and antisense RNA of the target gene ('inverted repeats'), which forms double stranded RNA (dsRNA) in the cell and silences the target gene. Methods and vectors for dsRNA production and gene silencing have been described in EP 1068311, EP 983370 A1, EP 1042462 A1, EP 1071762 A1 and EP 1080208 A1. A vector according to the 35 invention may, therefore, comprise a transcription regulatory region which is active in plant cells operably linked to a sense and/or antisense DNA fragment of a DIP gene according to the invention. Generally short (sense and antisense) stretches of the target gene sequence, such as

17, 18, 19, 20, 21, 22 or 23 nucleotides of coding or non-coding sequence are sufficient. Longer sequences can also be used, such as 50, 100, 200 or 250 nucleotides or more. Preferably, the short sense and antisense fragments are separated by a spacer sequence, such as an intron, which forms a loop (or hairpin) upon dsRNA formation. Any short stretch of SEQ ID NO: 4 and/or 5 SEQ ID NO:5, or fragments or variants thereof, may be used to make a DIP gene-derived silencing vector, and a transgenic plant in which one or more target genes are silenced in all or some tissues or organs (depending on the promoters used).

A convenient way of generating hairpin constructs is to use generic vectors such as pHANNIBAL and pHELLSGATE, vectors based on the Gateway® technology (see Wesley et al. 2004, Methods Mol Biol. 265:117-30; Wesley et al. 2003, Methods Mol Biol. 236:273-86 and Helliwell & Waterhouse 2003, Methods 30(4):289-95.), all incorporated herein by reference.

Figures

15 Figure 1A. Seed head of fully apomictic triploid plant A68 (wildtype), in the absence of cross-pollination. Note the dark center of fully developed seeds.

Figure 1B. Typical seed head of a Loss of Diplospory (LoD) deletion mutant of A68, in the absence of cross-pollination. Typically LoD mutants under these conditions have smaller seed heads than A68 wildtype. Note the speckled center, with many white non-developing 20 seeds, without the Parthenogenesis gene and a few developing seeds, with the Parthenogenesis gene. Parthenogenesis is a gametophytically expressed gene and therefore segregates when diplospory is lost and is replaced by meiosis.

25 Fig. 2. Association sequence polymorphism and diplospory phenotype within a broad Taraxacum germplasm panel. The differences between the sexual (dip) and the diplosporous alleles (Dip) are indicated in grey.

Detailed description of the invention

In a first aspect, the present invention relates to an isolated polynucleotide comprising the nucleic acid sequence of SEQ ID NO:1, or a nucleic acid sequence having at least 50% or 30 70%, preferably at least 80%, more preferably at least 90%, even more preferably at least 95%, yet even more preferably at least 96% or 97%, most preferably at least 98% or 99% sequence identity to the nucleic acid sequence of SEQ ID NO:1.

In a second aspect, the invention relates to an isolated polynucleotide comprising the nucleic acid sequence of SEQ ID NO:2, or a nucleic acid sequence having at least 50% or 35 70%, preferably at least 80%, more preferably at least 90%, even more preferably at least

95%, yet even more preferably at least 96% or 97%, most preferably at least 98% or 99% sequence identity to the nucleic acid sequence of SEQ ID NO:2.

The isolated polynucleotides comprising the nucleic acid sequence of SEQ ID NO:1 or SEQ

5 ID NO:2 were identified to be part of the putative Vacuolar Protein Sorting associated protein gene, *Vps13*, of *Taraxacum officinale sensu lato*. The *Vps13* gene is a large gene. Hence, said nucleic acid sequences of SEQ ID NO:1 and SEQ ID NO:2 may be comprised in a single isolated nucleic acid sequence, i.e. being part of the same nucleic acid sequence.

10 The isolated nucleic acid sequence may hence comprise both SEQ ID NO:1 and SEQ ID NO:2 or variants thereof. It is understood that the *Vps13* gene may comprise many exons and introns, and other gene related sequences, such as promoter and terminator sequences encompassed in SEQ ID NO:1, extending to the 5' and 3' of the indicated protein encoding sequence (open reading frame; ORF) (SEQ ID NO:2) and may thus be larger than SEQ ID NO:2. Hence, the percentage of sequence identity may thus be relative not to the complete

15 sequence of the isolated nucleic acid sequence. Rather, only the nucleic acid sequences comprised in said isolated nucleic acid sequence may have the said percentage of sequence identity with SEQ ID NO:1 or SEQ ID NO:2. It is thus understood that the percentage of sequence identity is then to be calculated relative to the nucleic acid sequence, which is comprised in the isolated nucleic acid sequence, of which the first and

20 last nucleotide of the nucleic acid sequence align with the nucleic acid sequence of SEQ ID NO:1 and/or SEQ ID NO:2. Hence, when the percentage of sequence identity is to be calculated preferably it is only relative to the sequence corresponding to SEQ ID NO:1 and/or SEQ ID NO:2. It is also understood that SEQ ID NO:1 and SEQ ID NO:2 or variants thereof, are coding sequences, i.e. encode amino acid sequences. Hence, such coding

25 sequences may in DNA be interspersed by intronic sequences. Hence, in case sequence identity is calculated from a DNA sequence, parts of sequences that do not show an alignment with SEQ ID NO. 1 and/or SEQ ID NO:2, such as introns, are not to be taken into account.

30 In an embodiment, the isolated polynucleotides as taught herein have the nucleic acid sequence of SEQ ID NO:1 or SEQ ID NO:2 or variants thereof as taught herein.

In an embodiment, the isolated polynucleotides as taught herein comprising the nucleic acid sequence of SEQ ID NO:1 or SEQ ID NO:2 or variants or fragments thereof as taught herein

35 may be referred to as 'Dip, or DIP polynucleotides' or 'Dip or DIP genes' or 'apomixis polynucleotides or apomixis genes' or 'diplospory polynucleotides or diplospory genes'.

In an embodiment, the isolated polynucleotides as taught herein comprising the nucleic acid sequence of SEQ ID NO:1 or SEQ ID NO:2 or variants thereof as taught herein and/or the expression product of said polynucleotides and/or the protein encoded by said polynucleotides are capable of providing diplospory function to a plant or plant cell or

5 capable of inducing diplospory or diplospory as part of gametophytic apomixis, preferably the type that occurs though diplospory, preferably in crops that are currently considered to be sexual crops. Gametophytic apomixis through diplospory produces offspring that are genetically identical to the parent plant. Thus in an embodiment, the isolated polynucleotides or variants thereof as taught herein may be used to produce offspring that are genetically

10 identical to the parent plant without the need for fertilization and cross-breeding.

In a preferred embodiment, the *Dip* polynucleotides or genes and variants thereof as taught above and/or the expression product of said polynucleotides and/or the protein encoded by said polynucleotides are capable of providing diplospory function to a plant or plant cell, preferably the type that occurs though diplospory, in sexual crops when introduced into a plant or plant cell.

It is understood that the term 'isolated polynucleotides' or variants thereof (e.g. genomic DNA cDNA, or mRNA) includes naturally-occurring, artificial or synthetic nucleic acid molecules. The nucleic acid molecules may encode any of the polypeptides or variants thereof as taught herein. Said nucleic acid molecules may be used to produce the polypeptides or proteins or variants thereof as taught herein. Due to the degeneracy of the genetic code various nucleic acid molecules may encode the same polypeptide (e.g. polypeptides or proteins or variants thereof as taught herein comprising the amino acid sequence of SEQ ID NO:3 and/or SEQ ID NO: 7 or 12).

In an embodiment, the isolated polynucleotides as taught herein include any variant nucleic acid molecules, which encompass any nucleic acid molecules comprising a nucleotide sequence having more than 50%, preferably more than 55%, preferably more than 60%, preferably more than 65%, preferably more than 70%, preferably more than 75%, preferably more than 80%, preferably more than 85%, preferably more than 90%, preferably more than 95%, preferably more than 96%, preferably more than 97%, preferably more than 98%, and preferably more than 99% sequence identity with the nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO:2. Variants also include nucleic acid molecules, which have been derived, by way of one or more nucleic acid substitutions, deletions or insertions, from the nucleic acid molecule having the nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO:2. Preferably, such nucleic acid molecules comprise from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more up

to about 100, 90, 80, 70, 60, 50, 45, 40, 35, 30, 25, 20, 15 nucleic acid substitutions, deletions or insertions as compared to SEQ ID NO: 1 or SEQ ID NO:2. Sequence identity may be determined by any suitable means available in the art. For instance, bioinformatics may be used to perform pairwise alignment between nucleic acid sequences to identify

5 regions of similarity that may be due to functional, structural, or evolutionary relationships between the sequences. It is also understood that many methods can be used to identify, synthesize or isolate variants of the polynucleotide as taught herein, such as nucleic acid hybridization, PCR technology, *in silico* analysis and nucleic acid synthesis, and the like.

10 In an embodiment, the term 'variant' also encompasses natural variants, which are found in nature, e.g. in other Taraxacum species or in other plants. Said variant nucleotide sequences isolated from other Taraxacum species or in other plants may encompass dominant Dip alleles as well as recessive dip alleles from different plant species, e.g. encompassing different Taraxacum species, cultivars, accessions or breeding lines. For

15 example, without being bound by theory, the EMS mutations identified in the examples are variants that may be regarded as recessive dip, as diplosropy function was lost, whereas the wild-type sequence may be regarded as dominant Dip, as the wild-type sequence provided diplosropy function.

20 In an embodiment, variant isolated polynucleotides according to the invention, such as homologous or orthologs, may also be found in and/or isolated from plants other than those belonging to the genus Taraxacum. Said isolated polynucleotides may be isolated from other wild or cultivated apomictic or non-apomictic plants and/or from other plants, using known methods such as PCR, stringent hybridization methods, and the like. Thus, variants

25 of SEQ ID NO:1 and/or SEQ ID NO:2 include also nucleotide sequences found e.g. naturally in other Taraxacum plants, lines or cultivars, and/or found naturally in other plants of other species. Such nucleotides may for example be identified in a Blast search, or by identifying corresponding sequences *de novo in planta*.

30 In an embodiment, the isolated polynucleotide variants as taught herein include, for example, isolated polynucleotides according to the invention derived from a different 'origin' than that of SEQ ID NO:1 and/or SEQ ID NO:2, which are of Taraxacum origin. Thus, in particular the invention encompasses the genes or alleles derived from a plant wherein diplosropy (as part of gametophytic apomixis through diplosropy) is present, such as a wild

35 or cultivated plant and/or from other plants. Such homologues can be easily isolated using the provided nucleotide sequences and/or complementary sequences thereof, or parts thereof as primers or probes. For example, moderately stringent, stringent or highly stringent

nucleic acid hybridization methods can be used. For example, fragments of the sequences of SEQ ID NO. 1 and/or SEQ ID NO:2, or complementary sequences thereof may be used. Said fragments to be used in such hybridization methods may comprise at least 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000 or 5 more contiguous nucleic acids of SEQ ID NO. 1 and/or SEQ ID NO:2.

It is understood that due to the degeneracy of the genetic code, various nucleic acid sequences may encode the same amino acid sequence. For optimal expression in a host, the isolated nucleic acid sequences according to the invention can be codon-optimized by 10 adapting the codon usage to that most preferred in plant genes, particularly to genes native to the plant genus or species of interest (Bennetzen & Hall, 1982, J. Biol. Chem. 257, 3026-3031; Itakura et al., 1977 Science 198, 1056-1063) using available codon usage Tables (e.g. more adapted towards expression in the plant of interest). Codon usage Tables for 15 various plant species are published for example by Ikemura (1993, In "Plant Molecular Biology Labfax", Croy, ed., Bios Scientific Publishers Ltd.) and Nakamura et al. (2000, Nucl. Acids Res. 28, 292.) and in the major DNA sequence databases (e.g. EMBL at Heidelberg, Germany). Accordingly, synthetic DNA sequences can be constructed so that the same or substantially the same proteins are produced. Several techniques for modifying the codon usage to that preferred by the host cells can be found in patent and scientific literature. The 20 exact method of codon usage modification is not critical for this invention.

Small modifications to a DNA sequence such as described above can be routinely made, i.e., by PCR-mediated mutagenesis (Ho et al., 1989, Gene 77, 51-59., White et al., 1989, Trends in Genet. 5, 185-189). Modifications to a DNA sequence can also be routinely 25 introduced by *de novo* DNA synthesis of a desired coding region using available techniques.

In an embodiment, the isolated polynucleotide or variants thereof according to the invention can be modified so that the N-terminus of the DIP protein has an optimum translation initiation context, by adding or deleting one or more amino acids at the N-terminal end of the 30 protein. Often it is preferred that the proteins of the invention to be expressed in plants cells start with a Met-Asp or Met-Ala dipeptide for optimal translation initiation. An Asp or Ala codon may thus be inserted following the existing Met, or the second codon, Val, can be replaced by a codon for Asp (GAT or GAC) or Ala (GCT, GCC, GCA or GCG). The DNA sequences may also be modified to remove illegitimate splice sites.

35

The isolated polynucleotides or variants thereof according to the invention, are preferably 'functional', i.e. they preferably are capable of providing diplospory function to a plant,

preferably as part of gametophytic apomixis, preferably the type that occurs through diplospory, in plant or plant cell or sexual crop. In one embodiment, isolated polynucleotides or variants thereof are provided, which are homologous to the polynucleotide comprising nucleic acid sequence SEQ ID NO:1 and/or SEQ ID NO:2, which are derived from

5 Taraxacum, said isolated polynucleotides being isolated from apomictic plants. Hence, the isolated polynucleotides or variants thereof according to the invention, in this embodiment, are isolated from apomictic plants. Such isolated polynucleotides or variants thereof may be in particular capable of providing the diplospory function to a plant, in plant or plant cell or (sexual) crop.

10

It is understood that the variants of the polynucleotides as taught herein exert the same function as the polynucleotides comprising the nucleic acid sequence of SEQ ID NO:1 or SEQ ID NO:2 as taught herein, i.e. are capable of providing diplospory function to a plant or plant cell preferably as part of inducing diplospory or gametophytic apomixis, in plant or 15 plant cell or sexual crop, particularly when introduced in a in plant or plant cell or sexual crop. It is further understood that any isolated polynucleotides and variants thereof as taught herein may encode any of the polypeptides and variants thereof as taught herein.

20 In an embodiment, the expression product of the polynucleotides and variants thereof as taught herein is an RNA molecule, preferably an mRNA molecule or an siRNA or miRNA molecule.

25 In an embodiment, a fragment of the polynucleotides and variants thereof as taught herein and/or the expression product of said fragment and/or the protein encoded by said fragment is capable of providing diplospory function to a plant or plant cell preferably as part of inducing gametophytic apomixis.

30 In a preferred embodiment, the fragment as taught herein and/or the protein encoded by said fragment is capable of providing diplospory function, preferably inducing diplospory or as part of inducing gametophytic apomixis.

In an embodiment, the expression product of the fragment as taught herein is an RNA molecule, preferably a mRNA molecule or an siRNA or miRNA molecule.

35 In an embodiment, the fragment as taught herein may have a length of at least 20, 30, 40, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000 or 3000

contiguous nucleotides of the isolated polynucleotides comprising the nucleic acid sequence of SEQ ID NO; 1 or SEQ ID NO:2 and variant thereof as taught herein.

5 In a preferred embodiment, the fragment as taught herein has the nucleic acid sequence of SEQ ID NO:4, 6 or 11.

In a further preferred embodiment, the expression product of the fragment as taught herein has the nucleic acid sequence of SEQ ID NO:5.

10 In an embodiment, the expression product of the fragment as taught herein encodes a polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:7 and/or 12.

Chimeric gene and vectors

15 In an embodiment, a chimeric gene may comprise any of the polynucleotides, fragments and variants thereof as taught herein.

In an embodiment, any of the polynucleotides, fragments and variants thereof as taught herein, when comprised in the vector as taught herein, may be operably linked to a promoter. Any promoters known in the art, and which are suitable for linkage with the polynucleotides, fragments and variants thereof as taught herein may be used. Non-limiting examples of 20 suitable promoters include promoters allowing constitutive or regulated expression, weak and strong expression, and the like. Any known methods in the art may be used to incorporate the polynucleotides, variants or fragments thereof as taught herein in a chimeric gene.

25 In certain embodiment, it may be advantageous to operably link the polynucleotides, fragments and variants thereof as taught herein to a so-called 'constitutive promoter'. Alternatively, it may be advantageous to operably link the polynucleotides, fragments and variants thereof as taught herein to a so-called 'inducible promoter'. An inducible promoter may be a promoter that is physiologically (e.g. by external application of certain compounds) regulated.

30 In an embodiment, the promoter which is operably linked to isolated polynucleotides, variants or fragments thereof as taught herein may be for example a constitutively active promoter, such as: the strong constitutive 35S promoters or enhanced 35S promoters (the "35S promoters") of the cauliflower mosaic virus (CaMV) of isolates CM 1841 (Gardner et al., 1981, Nucleic Acids Research 9, 2871-2887), CabbB-S (Franck et al., 1980, Cell 21, 285-294) and CabbB-JI (Hull 35 and Howell, 1987, Virology 86,482-493); the 35S promoter described by Odell et al. (1985, Nature 313, 810-812) or in US5164316, promoters from the ubiquitin family (e.g. the maize ubiquitin promoter of Christensen et al., 1992, Plant Mol. Biol. 18,675-689, EP 0 342 926, see

also Cornejo et al. 1993, Plant Mol.Biol. 23, 567-581), the gos2 promoter (de Pater et al., 1992 Plant J. 2, 834-844), the emu promoter (Last et al., 1990, Theor. Appl. Genet. 81,581-588), Arabidopsis actin promoters such as the promoter described by An et al. (1996, Plant J. 10, 107.), rice actin promoters such as the promoter described by Zhang et al.(1991, The Plant Cell

5 3, 1155-1165) and the promoter described in US 5,641,876 or the rice actin 2 promoter as described in WO070067; promoters of the Cassava vein mosaic virus (WO 97/48819, Verdaguer et al. 1998, Plant Mol. Biol. 37,1055-1067), the pPLEX series of promoters from Subterranean Clover Stunt Virus (WO 96/06932, particularly the S7 promoter), an alcohol dehydrogenase promoter, e.g., pAdh1S (GenBank accession numbers X04049, X00581), and the TR1' promoter 10 and the TR2' promoter (the "TR1'promoter" and "TR2'promoter", respectively) which drive the expression of the 1' and 2' genes, respectively, of the T-DNA (Velten et al., 1984, EMBO J 3, 2723-2730), the Figwort Mosaic Virus promoter described in US6051753 and in EP426641, histone gene promoters, such as the Ph4a748 promoter from Arabidopsis (PMB 8: 179-191), or others.

15

As the constitutive expression of a chimeric gene, genetic construct or vector in a plant may have a high cost on fitness of the plants, it is in one embodiment preferred to use a promoter whose activity is inducible. Examples of inducible promoters are wound-inducible promoters, such as the MPI promoter described by Cordera et al. (1994, The Plant Journal 6, 141), which is induced

20 by wounding (such as caused by insect or physical wounding), or the COMPTII promoter (WO0056897) or the PR1 promoter described in US6031151. Alternatively the promoter may be inducible by a chemical, such as dexamethasone as described by Aoyama and Chua (1997, Plant Journal 11: 605-612) and in US6063985 or by tetracycline (TOPFREE or TOP 10 promoter, see Gatz, 1997, Annu Rev Plant Physiol Plant Mol Biol. 48: 89-108 and Love et al. 25 2000, Plant J. 21: 579-88).

A promoter can be utilized which is not constitutive but rather is specific for one or more tissues or organs of the plant. Preferably a promoter is tissue specific. Promoters may be preferably developmentally regulated, for example leaf preferred or epidermis preferred, whereby the said 30 nucleic acid sequence is expressed only or preferentially in cells of the specific tissue(s) or organ(s) and/or only during a certain developmental stage, preferably in female ovaries, megasporangium mother cells and/or in female gametes. For example, the Dip gene(s) can be selectively expressed in the leaves of a plant by placing the coding sequence under the control of a light-inducible promoter such as the promoter of the ribulose-1, 5-bisphosphate carboxylase 35 small subunit gene of the plant itself or of another plant, such as pea, as disclosed in US 5,254, 799 or Arabidopsis as disclosed in US5034322 and others.

The term 'inducible' does not necessarily require that the promoter is completely inactive in the absence of the inducer stimulus. A low level non-specific activity may be present, as long as this does not result in severe yield or quality penalty of the plants. Inducible, thus, preferably refers to an increase in activity of the promoter, resulting in an increase in transcription of the downstream 5 encoding region following contact with the inducer.

In a preferred embodiment, the promoter of an endogenous gene is used for expressing a protein comprising an amino acid sequence of SEQ ID NO:3 or variants or fragments thereof (e.g. SEQ ID NO:7 and/or 12) thereof as taught herein. For example, the promoter of a 10 Taraxacum Dip allele or corresponding promoter from another plant species may be isolated and operably linked to a nucleic acid sequence encoding a protein according to the invention. Said protein is preferably capable of providing diplosropy function, preferably as part of diplosropy or gametophytic apomixis. The said promoter, i.e. the upstream transcription regulatory region normally within about 2000 base pairs (bp) upstream of the transcription start site and/or 15 translation start codon, of a polynucleotide encoding a protein comprising an amino acid sequence of SEQ ID NO:3 or fragments or a variants thereof (e.g. SEQ ID NO:7 and/or 12) as taught herein, such as the homologs of other Taraxacum origins and/or other plants, can be isolated from apomictic plants and/or other plants using known methods, such as TAIL-PCR (Liu et al. 1995, Genomics 25(3):674-81; Liu et al. 2005, Methods Mol. Biol. 286:341-8), Linker-PCR, 20 or Inverse PCR (IPCR). It is understood that as the said gene sequences are part of the putative Vacuolar Protein Sorting associated protein gene, *Vps13*, (SEQ ID 1) of *Taraxacum officinale sensu lato*, the said promoter comprises sequences located within SEQ ID 1 which are located 5' of the gene encoding region (SEQ ID 2) or other regions of SEQ ID 1 located 5' of an expressed 25 sub-genomic region that is expressed as mRNA, miRNA or siRNA. Expressed mRNA, siRNA or miRNA is to encompass the female gametophytic stage, i.e. its expression activity can be traced to place and time of expression of the diplosropy phenotype or the developmental stage leading to the this stage.

In an embodiment of the invention, an endogenous promoter may be used which is derived from 30 a polynucleotide encoding a protein comprising an amino acid sequence of SEQ ID NO:3 or fragments or variants thereof as taught herein, such as homologs of other Taraxacum origins and/or other plants. Also sequences which are longer than these sequences may be used. For any of the said nucleic acid sequence the region up to about 2000 bp upstream of the translation start codon of the coding region may comprise transcription regulatory elements. Thus, in one 35 embodiment the nucleotide sequence which is 2000bp, 1500bp, 1000bp, 800bp, 500bp, 300bp or less upstream of the translation or transcription start site of the said polynucleotide may be isolated, and its promoter activity may be tested and, if functional, the sequence may be operably

linked to polynucleotide encoding a protein comprising an amino acid sequence of SEQ ID NO:3 or fragments or variants thereof as taught herein, e.g. SEQ ID NO:7 and/or 12. Promoter activity of whole sequences and fragments thereof can be tested by e.g. deletion analysis, whereby 5' and/or 3' of a transcription start site regions are deleted and the promoter activity is tested using 5 known methods (e.g. operably linking the promoter with a deletion or deletions to a reporter gene).

In another embodiment, said promoter drives the expression of the miRNA and siRNA molecules of the invention.

10

Whether a *Dip* allele originating from a plant having diplosropy function or not is capable of providing or inducing diplosropy, preferably as part of gametophytic apomixis, in a plant or plant cell or sexual crop according to the invention may depend on the molecular function of the polypeptide or protein encoded by the isolated polynucleotides as taught herein. In one 15 embodiment the protein encoded by the isolated polynucleotides, fragments and variants thereof as taught herein may have a dominant function, provided by expressing or overexpressing a protein comprising an amino acid sequence of SEQ ID NO:3, or variants or fragment thereof (e.g. SEQ ID NO:7 and/or 12) as taught herein. Said isolated polynucleotide encoding the said protein when expressed in a plant is capable of providing diplosropy function to a plant or enhancing 20 diplosropy function in a plant or is capable of inducing or enhancing diplosropy in a plant or plant cell or crop.

For example, when a polynucleotide comprising the nucleic acid sequence of SEQ ID NO:1 and/or SEQ ID NO:2 or fragments or variants thereof (e.g. SEQ ID NO: 4, 5, 6, or 11) is 25 expressed in a plant from a suitable plant promoter and functional amounts of the encoded protein are made, the diplosropy function or the occurrence of diplosropy preferably as part of gametophytic apomixis may be induced or significantly enhanced as compared with plants lacking said protein. Functionality (i.e. capacity of the polynucleotide, variant or fragment thereof as taught herein to induce or cause diplosropy in a plant) can be tested by introducing such a 30 nucleic acid sequence in a suitable host plant such that it is expressed therein, e.g. a non-diplosporous *Taraxacum* line, and analyzing the effect on diplosropy function of the transformants in a bioassay, such as e.g. described in the examples as taught herein.

In an embodiment, silencing of an expressed polynucleotide, variant or fragment thereof as 35 taught herein, which is capable of encoding a protein comprising an amino acid sequence of SEQ ID NO:3 or variants or fragments thereof (e.g. SEQ ID NOs: 7 and/or 12) may lead to loss-of-function, i.e. to reduced diplosropy or absence of diplosropy or non-occurrence of

g 5 gametophytic apomixis through diplospory. Hence, the skilled person can easily determine whether a polynucleotide or variant or fragment thereof encoding a protein comprising an amino acid sequence of SEQ ID NO:3 or fragments or variants thereof (e.g. SEQ ID NOs: 7 and/or 12) and/or fragment thereof as described herein is capable of providing diplospory preferably as part of gametophytic apomixis in a plant or plant cell or crop.

In one embodiment, the chimeric gene as taught herein is provided comprising any one of the isolated polynucleotides (SEQ ID NO:1 or SEQ ID NO:2), variants or fragments thereof (e.g. SEQ ID NO: 4, 5, 6, or 11) as taught herein. Said chimeric gene is preferably capable of providing 10 diplospory function to a plant in a plant or plant cell or crop according to the invention.

In an embodiment, the polynucleotides (e.g. SEQ ID NO:1 or SEQ ID NO:2), variants or fragments thereof (e.g. SEQ ID NO: 4, 5, 6, or 11) as taught herein or the chimeric gene as taught herein may be comprised in a genetic construct.

15 In a preferred embodiment, the genetic construct as taught herein may comprise an open reading frame of the isolated polynucleotides of the invention (e.g. SEQ ID:2), variants or fragments thereof (e.g. SEQ ID NO: 4, 5, 6, or 11) as taught herein.

20 In an embodiment, the isolated polynucleotides (e.g. SEQ ID NO:1 or SEQ ID NO:2), variants or fragments thereof (e.g. SEQ ID NO: 4, 5, 6 or 11) as taught herein may be comprised in a nucleic acid vector.

The construction of chimeric genes, genetic constructs and vectors according to the invention is 25 generally known in the art. Said chimeric genes, genetic constructs and vectors are preferably capable of providing diplospory function to a plant or capable of inducing diplospory or gametophytic apomixis through diplospory in a plant, plant cell or crop. Chimeric genes may be generated by modifying endogenous gene sequences. For example, a recessive allele (i.e. *dip*) may be modified such that it is changed into a dominant allele (i.e. *Dip*) in case the dominant 30 allele is capable of providing diplospory function or capable of inducing diplospory or gametophytic apomixis through diplospory in a plant, plant cell or crop. Or, alternatively, endogenous genes that would be capable of providing diplospory function or capable of inducing diplospory or gametophytic apomixis through diplospory but that are not expressed may be modified, e.g. by modifying the endogenous promoter sequences such that the endogenous 35 genes will be expressed. Such modifications may include (targeted) mutagenesis whereby at least 1, 5, 10, 20, 50, 100, 200, 500, or 1000 nucleotides of an endogenous gene are mutated. An example of such a modification may be found in example 5, wherein the four mutations found

in the EMS mutation to confer a loss of diplosropy phenotype, hence, reversing said mutations may provide for a gain of diplosropy phenotype.

In an embodiment, the chimeric genes as taught herein may be generated by operably linking the

5 nucleic acid sequence encoding a protein (or variant or fragment) according to the invention to a promoter sequence, suitable for expression in the host cells, using standard molecular biology techniques. The promoter sequence may already be present in a vector so that the nucleic acid sequence is simply inserted into the vector downstream of the promoter sequence. In one embodiment a chimeric gene comprises a suitable promoter for expression in plant cells or
10 microbial cells (e.g. bacteria), operably linked to a nucleic acid sequence according to the invention, optionally followed by a 3' non-translated nucleic acid sequence. The nucleic acid sequence according to the invention is optionally preceded by a 5' untranslated sequence region (UTR). The promoter, 3' UTR and/or 5' UTR may, for example, be from an endogenous *Dip* gene, or may be from other sources, as described below. In addition, the nucleic acid sequence
15 according to the invention may also include intronic sequences, which can be included in the 3' UTR or 5' UTR sequence, but may also be introduced in coding sequence of the nucleic acid sequence according to the invention.

In an embodiment, the chimeric genes, genetic constructs and vectors as taught herein are

20 preferably capable to express a nucleic acid sequence encoding an amino acid sequence according to the invention, wherein said amino acid sequence according to the invention is preferably capable of providing diplosropy function to a plant preferably as part of gametophytic apomixis in a plant or plant cell or crop. Hence, said chimeric genes, genetic constructs and vectors preferably comprise dominant Dip alleles according to the invention.

25

In an embodiment, the nucleic acid vector as taught herein may comprise a promoter sequence active in plant cells operably linked to any one of isolated polynucleotides (e.g. SEQ ID NO:1 or SEQ ID NO:2), variants or fragments thereof (e.g. SEQ ID NO: 4, 5, 6, or 11) as taught herein or a chimeric gene as taught herein or a genetic construct as taught
30 herein.

In a preferred embodiment, the promoter sequence of the nucleic acid vector as taught herein, may comprise:

a) the native promoter sequence of the nucleic acid sequence of SEQ ID NO:1 and/or

35 SEQ ID NO:2;

b) a functional fragment of the promoter sequence of a); or

- c) a nucleic acid sequence comprising at least 70%, preferably at least 80%, more preferably at least 90%, most preferably at least 95% sequence identity with the native promoter sequence of the nucleic acid sequence of SEQ ID NO:1 and/or SEQ ID NO:2;
- d) the native promoter sequence of the nucleic acid sequence of SEQ ID NO:6;
- 5 e) a functional fragment of the promoter sequence of d); or
- f) a nucleic acid sequence comprising at least 70%, preferably at least 80%, more preferably at least 90%, most preferably at least 95% sequence identity with the native promoter sequence of the nucleic acid sequence of SEQ ID NO:6.

10 In a preferred embodiment, the promoter of the nucleic acid vector as taught herein is a female ovary-specific promoter, preferably a megasporangium mother cell-specific promoter and/or female gamete-specific promoter.

Isolated polypeptide

15 In a third aspect, the present invention relates to an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:3, or an amino acid sequence having at least 50% or 70%, preferably at least 80%, more preferably at least 90%, even more preferably at least 95%, yet even more preferably at least 96% or 97%, most preferably at least 98% or 99% sequence identity to the amino acid sequence of SEQ ID NO:3.

20 In a preferred embodiment, the polypeptide as taught herein has the amino acid sequence of SEQ ID NO:3 or variants or fragments thereof.

25 In an embodiment, the isolated polypeptides as taught herein comprising the amino acid sequence of SEQ ID NO:3 and variants or fragments thereof as taught above may be referred to as DIP polypeptide or protein' or 'apomixis-related polypeptides or proteins'.

30 In an embodiment, the DIP polypeptides or proteins and variants or fragments thereof as taught above are capable of providing diplospory function to a plant or plant cell, preferably as part of inducing diplospory or gametophytic apomixis in crops. Thus in an embodiment, the isolated polypeptides or proteins as taught herein may be used to produce offspring that are genetically identical to the parent plant without the need for fertilization and cross-breeding.

35 In a preferred embodiment, the DIP polypeptides or proteins and variants or fragments thereof, preferably as part of gametophytic apomixis, as taught above are capable of

providing diplospory function to a plant or plant cell or capable of inducing diplospory, in crops, particularly when introduced into a plant or plant cell.

The polypeptides or proteins having the amino acid sequence of SEQ ID NO:3 or variants

5 thereof as taught herein were identified to be the putative Vacuolar Protein Sorting associated protein gene, *Vps13*, of *Taraxacum officinale sensu lato* or part thereof. The *Vps13* gene is a large gene. Hence, said amino acid sequences of SEQ ID NO:3 may be comprised in a single isolated protein, i.e. being part of the same amino acid sequence, or parts of that same amino acid sequence. The isolated protein may hence comprise both
10 SEQ ID NO:3 or variants thereof. It is understood that as the *Vps13* gene may constitute a large protein, when compared to the size of the amino acid sequences of SEQ ID NO:3 or variants thereof, that the percentage of sequence identity may be relative not to the complete sequence of the isolated protein. Rather, only the amino acid sequence comprised in said isolated protein may have the said percentage of sequence identity with SEQ ID
15 NO:3. It is thus understood that the percentage of sequence identity is then to be calculated relative to the amino acid sequence, which is comprised in the isolated protein, of which the first and last amino acid of the amino acid sequence align with the amino acid sequence of SEQ ID NO:3. Hence, when the percentage of sequence identity is to be calculated preferably it is only relative to the sequence corresponding to SEQ ID NO:3.

20

It is understood that the polypeptides as taught herein also includes variant polypeptides having the amino acid sequence of SEQ ID NO:3, the amino acid sequences of said variants having more than 50%, preferably more than 55%, more than 60%, more than 65%, more than 70%, preferably more than 75%, more than 80%, more than 85%, more than 90%,
25 more than 95%, preferably more than 96%, preferably more than 97%, preferably more than 98%, and preferably more than 99% sequence identity with the amino acid sequence of SEQ ID NO:3. Variants polypeptide having the amino acid sequence of SEQ ID NO:3 also include polypeptides, which have been derived, by way of one or more amino acid substitutions, deletions or insertions, from the polypeptide having the amino acid sequence
30 of SEQ ID NO:3. Preferably, such polypeptides comprise from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more up to about 100, 90, 80, 70, 60, 50, 45, 40, 35, 30, 25, 20, 15 amino acid substitutions, deletions or insertions as compared to the polypeptide having the amino acid sequence of SEQ ID NO:3.

In an embodiment, the variants polypeptides as taught herein may differ from the provided amino acid sequences by one or more amino acid deletions, insertions and/or replacements and include natural and/or synthetic/artificial variants.

- 5 In an embodiment, the term 'variant polypeptides' also encompasses natural variant polypeptides which are found in nature, e.g. in cultivated or wild lettuce plants and/or other plants. Isolated proteins also include fragments, i.e. non-full length peptides, of the isolated proteins. Fragments include peptides comprising or consisting of at least 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000 or more contiguous amino acids of the amino acid sequences encoded by SEQ ID NO:3, or variants thereof, especially comprising or consisting of at least 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, or more contiguous amino acids of SEQ ID NO:3 or variants thereof.
- 10
- 15 The isolated polypeptides or variants thereof as taught herein are preferably capable of providing diplospory function to a plant, preferably capable of inducing diplospory or gametophytic apomixis in a plant or plant cell or crop. Diplospory is. This means that the isolated polypeptides, fragments and variants according to the invention are capable of inducing diplospory. Diplospory function according to the invention includes skipping of the first female reduction division (Meiosis I), resulting in two unreduced megaspores with the same genotype as the mother plant. One of these megaspores degenerates and the other surviving unreduced megaspore gives rise to the unreduced megagametophyte (or embryo sac), containing an unreduced egg cell. This unreduced egg cell develops without fertilization into an embryo and has the same genotype as the mother plant, i.e. is a clone of the mother plant.
- 20
- 25

In an embodiment, the isolated polypeptides or variants thereof as taught herein may be isolated from natural sources, synthesized *de novo* by chemical synthesis (using e.g. a peptide synthesizer such as supplied by Applied Biosystems) or produced by recombinant host cells by expressing the nucleic acid sequence encoding the isolated polypeptides, fragments and variants thereof as taught herein.

In an embodiment, the isolated polypeptides or variants thereof as taught herein may comprise conservative amino acid substitutions within the categories:

- 35 basic (e.g. Arg, His, Lys);
- acidic (e.g. Asp, Glu);
- nonpolar (e.g. Ala, Val, Trp, Leu, Ile, Pro, Met, Phe, Trp); or

polar (e. g. Gly, Ser, Thr, Tyr, Cys, Asn, Gln).

In addition, non-conservative amino acid substitutions may also fall within the scope of the invention.

5 In an embodiment, the isolated polypeptides or variants thereof as taught herein may also be a chimeric polypeptide, such as a polypeptide composed of at least two different domains. Since SEQ ID NO:3 is derived, or partially derived, from the *Vps13* gene, SEQ ID NO:3 or variants thereof, may be exchanged with the corresponding sequence in a *Vps13* protein, which is not or which is less capable of providing diplosropy function or not capable
10 of inducing gametophytic apomixis through diplosropy in a plant or plant cell or crop. This way, a chimeric polypeptide or protein may be obtained which is capable of providing diplosropy function or improved function or which is capable of diplosropy or improved diplosropy in a plant or plant cell or crop. The chimeric polypeptide as taught herein may also have a part or parts of the amino acid sequences of SEQ ID NO:3. Further, the chimeric
15 polypeptide as taught herein may comprise an N-terminal of one protein (e.g. obtained from *Taxaracum* or another plant species) and a middle domain and/or C-terminal domain of another protein (e.g. obtained from *Taxaracum* or another plant species). Such chimeric proteins may have improved diplosropy function over the native protein or help improve the induction or may help improve diplosropy in a plant or plant cell or crop.

20

Amino acid sequence identity may be determined by any suitable means available in the art. For instance, amino acid sequence identity may be determined by pairwise alignment using the Needleman and Wunsch algorithm and GAP default parameters as defined above. It is also understood that many methods can be used to identify, synthesize or isolate variants of
25 the polypeptides as taught herein, such as western blot, immunohistochemistry, ELISA, amino acid synthesis, and the like.

It is also understood that any variants or fragments of the DIP polypeptides as taught herein exert the same function and/or have the same activity as the DIP polypeptide as taught
30 herein. The functionality or activity of any DIP polypeptides or variants thereof may be determined by any known methods in the art, which the skilled person would consider suitable for these purposes.

In an embodiment, a fragment of the polypeptides (SEQ ID NO:3) or variants thereof as taught herein is capable of providing diplosropy function to a plant or plant cell capable of inducing diplosropy or gametophytic apomixis.

In an embodiment, fragment of the polypeptides and variants thereof as taught herein may have a length of at least 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 400, or 500 contiguous amino acids of said polypeptides.

5

In an embodiment, the fragment of the polypeptides and variants thereof as taught herein has the amino acid sequence of SEQ ID NO:7 and/or 12.

Methods

10 In a further aspect, the present invention relates to a method for producing apomictic seed, comprising the steps of:

- transforming a plant, plant part or plant cell with any of the polynucleotides (e.g. SEQ ID NO:1 or SEQ ID NO:2) or variants or fragments thereof (e.g. SEQ ID NO: 4, 5, 6 or 11) as taught herein or the chimeric gene as taught herein or the genetic construct as taught herein

15 and/or the nucleic acid vector as taught herein to produce a primary transformant;

- growing a flowering plant and/or a flower from said primary transformant, whereby the polynucleotide, variant or fragment, chimeric gene, construct and/or vector as taught above is present and/or expressed at least in a female ovary, preferably in a megasporangium mother cell and/or in a female gamete; and

20 c) pollinating said primary transformant in order to induce production of seeds, preferably with pollen of a tetraploid plant or with self pollen of said primary transformant. It is to be understood that step c) may be omitted when said primary transformant develops autonomous endosperm.

25 In an embodiment, the apomictic seed obtained by the method as taught herein is a clone of the primary transformant as taught herein.

In one embodiment in step (a), the plant or plant part may be transformed with a chimeric gene comprising any of the polynucleotides (e.g. SEQ ID NO:1 or SEQ ID NO:2) or variants or fragments thereof (e.g. SEQ ID NO:4 or SEQ ID NO:5) as taught herein.

In a preferred embodiment, the chimeric gene comprises SEQ ID NO:2.

35 In an embodiment, the chimeric gene may be comprised in a genetic construct or vector according to the invention.

In a further embodiment, the chimeric gene may also comprise an endogenous gene which has been modified. Such modification may include modification by targeted mutagenesis or the use of nucleases such as Crispr/Cas, but is not limited thereto. Said chimeric gene preferably is capable of providing diplospory function or capable of inducing diplospory or 5 gametophytic apomixis through diplospory in a plant, plant part or plant cells when introduced in said plant, plant part or plant cells. A vector may be used to transform host cells inserting the chimeric gene in the nuclear genome or into the plastid, mitochondrial or chloroplast DNA and such that it can be expressed using a suitable promoter (e. g., McBride et al., 1995 Bio/Technology 13, 362; US 5,693, 507). One advantage of plastid 10 genome transformation is that the risk of spread of the transgene(s) can be reduced. Plastid genome transformation can be carried out as known in the art, see e.g. Sidorov VA et al. 1999, Plant J.19: 209-216 or Lutz KA et al. 2004, Plant J. 37(6):906-13.

In one embodiment, the polynucleotide or variant or fragment as taught herein, which is 15 comprised in a chimeric gene as taught above, is operably linked to a promoter sequence, wherein the promoter sequence comprises:

- (a) the endogenous promoter sequence of the nucleic acid sequence of SEQ ID NO:1 and/or SEQ ID NO:2; ;
- (b) a functional fragment of said native promoter sequence;
- 20 (c) a nucleic acid sequence comprising at least 70% sequence identity with the endogenous promoter sequence of the nucleic acid sequence of SEQ ID NO:1 or SEQ ID NO:2; or
- (d) a functional fragment of the nucleic acid sequence of (c);
- e) the native promoter sequence of the nucleic acid sequence of SEQ ID NO:6;
- 25 f) a functional fragment of the promoter sequence of d);
- g) a nucleic acid sequence comprising at least 70%, preferably at least 80%, more preferably at least 90%, most preferably at least 95% sequence identity with the native promoter sequence of the nucleic acid sequence of SEQ ID NO:6; or
- h) a functional fragment of the nucleic acid sequence of g).

30

It is understood that, as said above, the chimeric gene according to the invention may represent a dominant allele. Hence, transforming a plant, plant part or plant cell with such a dominant chimeric gene would suffice to provide diplospory function to said plant, plant part 35 or plant cell or to induce diplospory or gametophytic apomixis through diplospory in said plant, plant part or plant cells.

In one embodiment, polynucleotides are provided which are capable of encoding a protein (SEQ ID NO:3) or variants or fragments thereof (e.g. SEQ ID NO:7 and/or 12) as taught herein and which are capable of providing diplospory function to a plant, plant part or plant cell or to induce gametophytic apomixis through diplospory in said a plant, plant part or plant cell, as described above. Such polynucleotides may be used to make chimeric genes, and vectors comprising these for transfer of the chimeric gene into a host cell and production of the protein(s) in host cells, such as cells, tissues, organs or organisms derived from transformed cell(s). Vectors for the production of said protein (or protein fragments or variants) in plant cells are herein referred to as i.e. 'expression vectors'. Host cells are 5 preferably plant cells.

10

Any plant may be a suitable host, but most preferably the host is a plant species which could benefit from enhanced or reduced diplospory. Especially cultivars or breeding lines having otherwise good agronomic characteristics are preferred. It is easy to test whether a gene 15 and/or a protein (or variants or fragments thereof) provided herein confer the required increase of diplospory onto the host plant, by generating transgenic plants and inducing diplospory, together with suitable control plants.

In an embodiment, suitable host plants may be selected from maize/corn (*Zea* species), 20 wheat (*Triticum* species), barley (e.g. *Hordeum vulgare*), oat (e.g. *Avena sativa*), sorghum (*Sorghum bicolor*), rye (*Secale cereale*), soybean (*Glycine* spp, e.g. *G. max*), cotton (*Gossypium* species, e.g. *G. hirsutum*, *G. barbadense*), *Brassica* spp. (e.g. *B. napus*, *B. juncea*, *B. oleracea*, *B. rapa*, etc), sunflower (*Helianthus annus*), safflower, yam, cassava, 25 alfalfa (*Medicago sativa*), rice (*Oryza* species, e.g. *O. sativa* indica cultivar-group or japonica cultivar-group), forage grasses, pearl millet (*Pennisetum* spp. e.g. *P. glaucum*), tree species (Pinus, poplar, fir, plantain, etc), tea, coffeea, oil palm, coconut, vegetable species, such as pea, zucchini, beans (e.g. *Phaseolus* species), hot pepper, cucumber, artichoke, asparagus, eggplant, broccoli, garlic, leek, lettuce, onion, radish, turnip, tomato, potato, Brussels sprouts, carrot, cauliflower, chicory, celery, spinach, endive, fennel, beet, fleshy fruit bearing 30 plants (grapes, peaches, plums, strawberry, mango, apple, plum, cherry, apricot, banana, blackberry, blueberry, citrus, kiwi, figs, lemon, lime, nectarines, raspberry, watermelon, orange, grapefruit, etc.), ornamental species (e.g. Rose, Petunia, Chrysanthemum, Lily, Gerbera species), herbs (mint, parsley, basil, thyme, etc.), woody trees (e.g. species of *Populus*, *Salix*, *Quercus*, *Eucalyptus*), fibre species e.g. flax (*Linum usitatissimum*) and 35 hemp (*Cannabis sativa*).

In a preferred embodiment, the host plant may be a plant species selected from the group consisting of the genera Taraxacum, Lactuca, Pisum, Capsicum, Solanum, Cucumis, Zea, Gossypium, Glycine, Triticum, Oryza and Sorghum.

5 In an embodiment, the polynucleotides (SEQ ID NO:1 or SEQ ID NO:2), variants or fragments thereof (e.g. SEQ ID NO:4, 5, 6, or 11), which are preferably comprised in a chimeric gene according to the invention, and which are capable of encoding a protein (SEQ ID NO:3) or variant or fragments thereof (e.g. SEQ ID NO:7 and/or 12), and which are capable of providing diplospory function to a plant, plant part or plant cell or inducing 10 diplospory or gametophytic apomixis through diplospory in a plant, plant part or plant cell, can be stably inserted in a conventional manner into the nuclear genome of a single plant cell, and the so-transformed plant cell can be used in a conventional manner to produce a transformed plant that has an altered phenotype due to the presence of the said protein in certain cells at a certain time. In this regard, a T-DNA vector, comprising polynucleotide, 15 variants or fragments thereof as taught herein, which are capable of encoding a protein or variants or fragments as taught herein, which is capable of providing diplospory function or inducing diplospory or gametophytic apomixis through diplospory, in *Agrobacterium tumefaciens* can be used to transform the plant cell, and thereafter, a transformed plant can be regenerated from the transformed plant cell using the procedures described, for example, 20 in EP 0 116 718, EP 0 270 822, PCT publication WO84/02913 and published European Patent application EP 0 242 246 and in Gould et al. (1991, *Plant Physiol.* 95,426-434). The construction of a T-DNA vector for *Agrobacterium* mediated plant transformation is well known in the art. The T-DNA vector may be either a binary vector as described in EP 0 120 561 and EP 0 120 515 or a co-integrate vector which can integrate into the *Agrobacterium* 25 Ti-plasmid by homologous recombination, as described in EP 0 116 718. Lettuce transformation protocols have been described in, for example, Michelmore et al., 1987 and Chupeau et al. 1989.

Preferred T-DNA vectors each contain a promoter operably linked to nucleic acid sequence 30 function encoding a protein capable of providing diplospory (e.g. encoding SEQ ID NO:3 or variants or fragments thereof (e.g. SEQ ID NO:7 and/or 12)). The promoter being operably linked to said nucleotide sequence or sequences between T-DNA border sequences, or at least located to the left of the right border sequence. Border sequences are described in Gielen et al. (1984, *EMBO J* 3,835-845). Of course, other types of vectors can be used to 35 transform the plant cell, using procedures such as direct gene transfer (as described, for example in EP 0 223 247), pollen mediated transformation (as described, for example in EP

0 270 356 and WO85/01856), protoplast transformation as, for example, described in US 4,684, 611, plant RNA virus-mediated transformation (as described, for example in EP 0 067 553 and US 4,407, 956), liposome-mediated transformation (as described, for example in US 4,536, 475), and other methods. Introduction of the T-DNA vector into *Agrobacterium* 5 can be carried out using known methods, such as electroporation or triparental mating.

Likewise, selection and regeneration of transformed plants from transformed cells is well known in the art. Obviously, for different species and even for different varieties or cultivars of a single species, protocols are specifically adapted for regenerating transformants at high 10 frequency.

The plant or plant part or plant cells obtainable by the method as taught herein have an altered level of diplospory, especially transgenic plants comprising a significantly enhanced level of diplospory. Such plants can be made using different methods, as described further 15 herein below.

The plant obtained by, or obtainable by, the methods of the invention can be used in a conventional plant breeding scheme to produce more transformed plants containing the transgene as taught herein. Single copy transformed plants can be selected, using e.g. 20 Southern Blot analysis or PCR based methods or the Invader® Technology assay (Third Wave Technologies, Inc.). Transformed cells and plants can easily be distinguished from non-transformed ones by the presence of the chimeric gene. The sequences of the plant DNA flanking the insertion site of the transgene can also be sequenced, whereby an 'event specific' detection method can be developed, for routine use. See for example WO0141558, 25 which describes elite event detection kits (such as PCR detection kits) based for example on the integrated sequence and the flanking (genomic) sequence.

In an embodiment, the polynucleotides, variants or fragments thereof as taught herein, which are capable of providing diplospory function to a plant, plant part or plant cell or 30 inducing diplospory or gametophytic apomixis through diplospory in a plant, plant part or plant cell, e.g. by expression a protein, variants or fragments thereof according to the invention, which is capable of providing diplospory function or inducing gametophytic apomixis through diplospory in a plant, plant part or plant cell, is inserted in a plant cell genome so that the inserted coding sequence is downstream (i.e. 3') of, and under the 35 control of, a promoter which can direct the expression in the plant cell. This may be preferably accomplished by inserting the chimeric gene in the plant cell genome, particularly in the nuclear or plastid (e. g. chloroplast) genome.

The nucleic acid sequence according to the invention, which is capable of providing diplosropy function to a plant, or a sequence corresponding thereto, is preferably inserted into the plant genome so that the coding sequence is upstream (i.e. 5') of a suitable 3' end 5 nontranslated region ("3'-end" or 3'UTR). Suitable 3'ends include those of the CaMV 35S gene ("3' 35S"), the nopaline synthase gene ("3' nos") (Depicker et al., 1982 J. Mol. Appl. Genetics 1, 561-573.), the octopine synthase gene ("3'ocs") (Gielen et al., 1984, EMBO J 3, 835-845) and the T-DNA gene 7 ("3' gene 7") (Velten and Schell, 1985, Nucleic Acids Research 13, 6981-6998), which act as 3'-untranslated DNA sequences in transformed plant 10 cells, and others. In one embodiment the 3'UTR and/or 5'UTR of the Taraxacum allele capable of providing diplosropy function, i.e. comprising SEQ ID NO:1 and/or SED ID NO:2 (or a variant or fragment thereof) is used. The 3'UTR and/or 5'UTR may also be used in another embodiment, as it may also be used in combination with other coding regions or other nucleic acid constructs.

15 A DIP encoding nucleic acid sequence can optionally be inserted in the plant genome as a hybrid gene sequence whereby the sequence capable of providing diplosropy function to a plant is linked in-frame to a gene encoding a selectable or scorable marker (US 5,254, 799; Vaeck et al., 1987, Nature 328, 33-37), such as for example the neo (or nptII) gene (EP 0 20 242 236) encoding kanamycin resistance, so that the plant expresses a fusion protein which is easily detectable.

25 Preferably, for selection purposes but also for weed control options, the transgenic plants of the invention may also be transformed with a DNA encoding a protein conferring resistance to herbicide, such as a broad-spectrum herbicide, for example herbicides based on glufosinate ammonium as active ingredient (e.g. Liberty® or BASTA; resistance is conferred by the PAT or bar gene; see EP 0 242 236 and EP 0 242 246) or glyphosate (e.g. RoundUp®; resistance is conferred by EPSPS genes, see e.g. EP0 508 909 and EP 0 507 698). Using herbicide resistance genes (or other genes conferring a desired phenotype) as 30 selectable marker further has the advantage that the introduction of antibiotic resistance genes can be avoided.

35 Alternatively, other selectable marker genes may be used, such as antibiotic resistance genes. As it may be not accepted to retain antibiotic resistance genes in transformed host plants, these genes can be removed again following selection of the transformants. Different technologies exist for removal of transgenes. One method to achieve removal is by flanking the chimeric gene with lox sites and, following selection, crossing the transformed plant with

a CRE recombinase-expressing plant (see e.g. EP506763B1). Site specific recombination results in excision of the marker gene. Another site specific recombination system is the FLP/FRT system described in EP686191 and US5527695. Site specific recombination systems such as CRE/LOX and FLP/FRT may also be used for gene stacking purposes.

5 Further, one-component excision systems have been described, see e.g. WO9737012 or WO9500555.

All or part of a nucleic acid sequence according to the invention, which is capable of providing diplospory function to a plant e.g. as it encodes a protein according to the

10 invention, can also be used to transform microorganisms, such as bacteria (e.g. Escherichia coli, Pseudomonas, Agrobacterium, Bacillus, etc.), fungi, or algae or insects, or to make recombinant viruses. Transformation of bacteria, with all or part of a nucleic acid sequence of this invention, incorporated in a suitable cloning vehicle, can be carried out in a conventional manner, preferably using conventional electroporation techniques as described
15 in Maillon et al. (1989, FEMS Microbiol. Letters 60, 205-210.) and WO 90/06999. For expression in prokaryotic host cell, the codon usage of the nucleic acid sequence may be optimized accordingly. Intron sequences should be removed and other adaptations for optimal expression may be made as known.

20 The DNA sequence of the nucleic acid sequence according to the invention can be further changed in a translational neutral manner, i.e. with regard to amino acid sequence, to modify possibly inhibiting DNA sequences present in the gene part and/or by introducing changes to the codon usage, e. g., adapting the codon usage to that most preferred by plants, preferably the specific relevant plant genus, as described above.

25 As said, according to an embodiment of this invention, the proteins according to the invention, or chimeric proteins, which are capable of providing diplospory function to a plant are targeted to intracellular organelles such as plastids, preferably chloroplasts, mitochondria, and may also be secreted from the cell, potentially optimizing protein stability and/or expression. Similarly, the protein may be targeted to vacuoles. For this purpose, in
30 one embodiment of this invention, the chimeric genes of the invention comprise a coding region encoding a signal or target peptide, linked to the protein coding region according to the invention. Particularly preferred peptides to be included in the proteins of this invention are the transit peptides for chloroplast or other plastid targeting, especially duplicated transit peptide regions from plant genes whose gene product is targeted to the plastids, the
35 optimized transit peptide of Capellades et al. (US 5,635, 618), the transit peptide of ferredoxin-NADP + oxidoreductase from spinach (Oelmuller et al., 1993, Mol. Gen. Genet. 237,261-272), the transit peptide described in Wong et al. (1992, Plant Molec. Biol. 20, 81-

93) and the targeting peptides in published PCT patent application WO 00/26371. Also preferred are peptides signalling secretion of a protein linked to such peptide outside the cell, such as the secretion signal of the potato proteinase inhibitor II (Keil et al., 1986, Nucl. Acids Res. 14,5641-5650), the secretion signal of the alpha- amylase 3 gene of rice (Sutliff et al., 1991, Plant Molec. Biol. 16,579-591) and the secretion signal of tobacco PR1 protein (Cornelissen et al., 1986, EMBO J. 5,37-40). Particularly useful signal peptides in accordance with the invention include the chloroplast transit peptide (e.g. Van Den Broeck et al., 1985, Nature 313, 358), or the optimized chloroplast transit peptide of US 5,510, 471 and US 5,635, 618 causing transport of the protein to the chloroplasts. Also a secretory signal peptide or a peptide targeting the protein to other plastids, mitochondria, the ER, or another organelle can be used. Signal sequences for targeting to intracellular organelles or for secretion outside the plant cell or to the cell wall are found in naturally targeted or secreted proteins, preferably those described by Klösgen et al. (1989, Mol. Gen. Genet. 217, 155-161), Klösgen and Weil (1991, Mol. Gen. Genet. 225, 297-304), Neuhaus & Rogers (1998, Plant Mol. Biol. 38, 127-144), Bih et al. (1999, J. Biol. Chem. 274, 22884-22894), Morris et al. (1999, Biochem. Biophys. Res. Commun. 255, 328-333), Hesse et al. (1989, EMBO J. 8, 2453-2461), Tavladoraki et al. (1998, FEBS Lett. 426,62-66.), Terashima et al. (1999, Appl. Microbiol. Biotechnol. 52,516-523), Park et al. (1997, J.Biol. Chem. 272, 6876-6881), Shcherban et al. (1995, Proc. Natl. Acad. Sci USA 92,9245-9249).

20

In one embodiment, several protein encoding nucleic acid sequences according to the invention, which are capable of providing diplosropy function to a plant, are co-expressed in a single host, optionally under control of different promoters. A co-expressing host plant is easily obtained by transforming a plant already expressing a protein of this invention, or by crossing plants transformed with different proteins of this invention. Hence, the invention also provides for plants or plant parts having multiple nucleic acid sequences of the same or different isolated nucleic acid sequences of the invention, of which each may be capable of providing diplosropy function to a plant. It is understood that the term multiple in this respect means per cell. Alternatively, several nucleic acid sequences according to the invention, each of which may be capable of providing diplosropy function to a plant, may be present on a single transformation vector or be co-transformed at the same time using separate vectors and selecting transformants comprising multiple chimeric genes. Similarly, one or more genes encoding a protein capable of providing diplosropy function according to the invention may be expressed in a single plant together with other chimeric genes, for example encoding other proteins which enhance or suppress diplosropy, or that are involved in apomixis. It is understood that the different proteins can be expressed in the same plant, or each can be expressed in a single plant and then combined in the same plant by crossing

the single plants with one another. For example, in hybrid seed production, each parent plant can express a single protein. Upon crossing the parent plants to produce hybrids, both proteins are combined in the hybrid plant.

5 It is also an embodiment to generate plants which several chimeric genes according to the invention, preferably under the control of different promoters. This way, enhancement or suppression of the diplosropy phenotype can be fine-tuned by expressing a suitable amount 10 of a protein according to the invention which is capable of providing diplosropy function to a plant, at a suitable time and location. Such fine-tuning may be done by determining the most appropriate promoter and/or by selecting transformation "events" which show the desired expression level.

Transformants expressing desired levels of a protein according to the invention capable of providing diplosropy function are selected by e.g. analysing copy number (Southern blot 15 analysis), mRNA transcript levels (e.g. RT-PCR using primer pairs or flanking primers) or by analysing the presence and level of said diplosropy protein in various tissues (e.g. SDS-PAGE; ELISA assays, etc). For regulatory reasons, preferably single copy transformants are selected and the sequences flanking the site of insertion of the chimeric gene is analysed, 20 preferably sequenced, to characterize the result of the transformation. High or moderate DIP expressing transgenic events are selected for further development until a high performing elite event with a stable Dip transgene is obtained.

Also, it is envisaged that plants having several chimeric genes may have a first chimeric gene encoding a protein capable of providing diplosropy function, and a second chimeric 25 gene capable of suppressing or silencing the first chimeric gene. Said second chimeric gene preferably is under control of an inducible promoter. Such a plant may be particularly advantageous, as it allows to control the diplosropy function. By inducing expression from said promoter, diplosropy function in a plant may be lost. Furthermore, such control may also be obtained or is obtainable by introducing in a diplosropy plant, a chimeric gene 30 according to the invention which is also capable of suppressing or silencing the endogenous gene that provides diplosropy function to the plant, i.e. which naturally encodes an amino acid sequence according to the invention.

By selecting conserved nucleic acid sequence parts of the nucleic acid sequence according 35 to the invention, an allele in a host plant or plant parts can be silenced. Said silencing may result, as described above, in the suppression of diplosropy function of a plant. Hence, encompassed herein are also plants comprising a chimeric gene which includes a

transcription regulatory element operably linked to a sense and/or antisense DNA fragment of a nucleic acid sequence according to the invention and which is capable of exhibiting suppressed or enhanced diplosropy. Said transcription regulatory element may be a suitable promoter, which may be an inducible promoter.

5

Transformed plants expressing one or more proteins capable of providing diplosropy function to a plant according to the invention may also comprise other transgenes, such as genes conferring disease resistance or conferring tolerance to other biotic and/or abiotic stresses. To obtain such plants with "stacked" transgenes, other transgenes may either be introduced into the transformed plants, or the transformed plants may be transformed subsequently with one or more other genes, or alternatively several chimeric genes may be used to transform a plant line or variety. For example, several chimeric genes may be present on a single vector, or may be present on different vectors which are co-transformed.

10

15

20

25

30

35

Transformed plants expressing one or more proteins capable of providing diplosropy function to a plant according to the invention may also comprise other transgenes, such as genes conferring disease resistance or conferring tolerance to other biotic and/or abiotic stresses. To obtain such plants with "stacked" transgenes, other transgenes may either be introduced into the transformed plants, or the transformed plants may be transformed subsequently with one or more other genes, or alternatively several chimeric genes may be used to transform a plant line or variety. For example, several chimeric genes may be present on a single vector, or may be present on different vectors which are co-transformed.

In one embodiment the following genes are combined with one or more chimeric genes according to the invention: known disease resistance genes, especially genes conferring enhanced resistance to necrotrophic pathogens, virus resistance genes, insect resistance genes, abiotic stress resistance genes (e.g. drought tolerance, salt tolerance, heat- or cold tolerance, etc.), herbicide resistance genes, and the like. The stacked transformants may thus have an even broader biotic and/or abiotic stress tolerance, to pathogen resistance, insect resistance, nematode resistance, salinity, cold stress, heat stress, water stress, etc. Also, as described above, in this embodiment silencing or suppression of diplosropy function approaches may be combined with gene expression approaches in a single plant.

It is understood that the plants or plants parts comprising a chimeric gene according to the invention preferably do not show non-desired phenotypes, such as yield reduction, enhanced susceptibility to diseases (especially to necrotrophs) or undesired architectural changes (dwarfing, deformations) etc. and that, if such phenotypes are seen in the primary transformed plants, these can be removed by conventional methods. Any of the plants described herein may be homozygous or hemizygous for the chimeric gene according to the invention.

In a further aspect, the present invention relates to a method for producing clones of a hybrid plant, comprising the steps of:

a) cross-fertilizing a sexually reproducing plant with pollen of a plant as taught herein to produce F1 hybrid seed;

b) selecting F1 plants that comprise and/or express the polynucleotides or variants or fragments thereof as taught herein or a polypeptide or variants or fragments thereof as taught herein at least in a female ovary, preferably in a megasporocyte mother cell and/or in a female gamete;

5 c) optionally, pollinating said selected F1 plants in order to induce production of seeds, preferably with pollen of a tetraploid plant; and

d) harvesting seed; and

e) optionally, growing a hybrid clone plant from said seed.

Step c) may be omitted when the selected F1 plants develop autonomous endosperm.

10

In an embodiment, the clone of step (e) of the method as taught herein is an apomictic clone.

In an embodiment, the method as taught herein comprises obtaining said hybrid plant.

15

In a further aspect, the present invention relates to a method for conferring diplosropy to a plant, plant part or plant cell or for inducing gametophytic apomixis through diplosropy in a plant, plant part or plant cell, comprising the steps of:

a) transforming said plant, plant part or plant cell with any of the polynucleotides, variants or fragments thereof as taught herein, the chimeric gene as taught herein, the genetic construct as taught herein, and/or the nucleic acid vector as taught herein; and

20 b) optionally regenerating a plant, whereby said polynucleotide, variant or fragment, gene, construct and/or vector is present and/or expressed at least in a female ovary, preferably in a megasporocyte mother cell and/or in a female gamete.

25

In an embodiment, the polynucleotides, variants or fragments thereof as taught herein are integrated into the genome of said plant, plant part or plant cell.

In an embodiment, the method as taught herein comprises obtaining a diplosporous plant.

30

In a further aspect, the present invention relates to a method for conferring diplosropy on, or inducing diplosropy in, a plant, plant part or plant cell or for inducing gametophytic apomixis through diplosropy in a plant, plant part or plant cell, comprising the steps of:

a) modifying an endogenous polynucleotide, variant or a fragment of a polynucleotide, 35 preferably of a Vacuolar Protein Sorting-associated protein gene, in the plant, plant part or plant cell such that after modification the plant, plant part or plant cell comprises any one of the polynucleotide, variant or fragments thereof as taught herein; and

b) optionally regenerating a plant.

In an embodiment, the modified polynucleotide, variants or fragment of a polynucleotide of step (a) of the method as taught herein is expressed and/or encodes a polypeptide.

5

In an embodiment, the modified polynucleotide or fragment of a polynucleotide of step (a) of the method as taught herein is present at least in a female ovary, preferably in a megasporocyte mother cell and/or in a female gamete.

10 In an embodiment, the modification of step (a) of the method as taught herein is performed by:

a) introducing or expressing at least one site-specific nuclease in said plant, plant part or plant cell, preferably wherein said nuclease is selected from the group consisting of Cas9/RNA CRISPR nuclease, zinc-finger nuclease, meganuclease, and TAL-effector

15 nuclease; and/or by

b) oligonucleotide-directed mutagenesis using an oligonucleotide, preferably wherein the oligonucleotide is a single-stranded oligonucleotide; and/or by

c) chemical mutagenesis, preferably with ethyl methanesulfonate.

20 In an embodiment, the method as taught herein comprises obtaining a diplosporous plant.

In an embodiment, said modification, particularly in *Taraxacum*, comprises the deletion of nucleotides encoding amino acid residues GGGGW corresponding to position 96-100 of the endogenous dip amino acid sequence as set forth in SEQ ID NO: 10 and/or the deletion of

25 nucleotides encoding residues PPT corresponding to position 108-110 of the endogenous dip amino acid sequence as set forth in SEQ ID NO:10. In other organisms, nucleotides encoding amino acid residues corresponding to amino acid residues GGGGW or PPT as found in *Taraxacum officinale* may be deleted. The skilled person will be capable of identifying the correct amino acid residues to be deleted as well as the corresponding

30 nucleotide sequences that encode these amino acid residues.

In an embodiment, said modification comprises one or more, e.g. all, of the differences between *dip* (sexual allele; SEQ ID NO:13) and *Dip* (diplosporous allele) nucleotide sequences as set forth in Figure 2.

35

In an embodiment, whole plants, seeds, cells, tissues and progeny of any of the transformed plants obtainable by the methods as taught herein are encompassed herein and can be

identified by detecting the presence of the chimeric gene, genetic construct or vector as taught herein in the DNA, for example by PCR analysis using total genomic DNA as template and using specific PCR primer pairs, e.g. specific primer pairs designed against sequences SEQ ID NO:1 and/or SEQ ID NO:2 and/or SEQ ID NO:4, 6 or 11, or variants 5 thereof such as described above. Also 'event specific' PCR diagnostic methods can be developed, where the PCR primers are based on the plant DNA flanking the inserted chimeric gene, see US6563026. Similarly, event specific AFLP fingerprints or RFLP fingerprints may be developed which identify the transformed or modified plant or any plant, seed, tissue or cells derived there from.

10

Plants and seeds

In a further aspect, the present invention relates to a plant, plant part or plant cell comprising the chimeric gene as taught herein, the genetic construct as taught herein, and/or the nucleic acid vector as taught herein, whereby the gene, construct and/or vector is present 15 and/or expressed at least in a female ovary, preferably in a megasporocyte mother cell and/or in a female gamete.

In an embodiment, the seeds of the plant as taught herein are apomictic seeds.

20 In an embodiment, the seed as taught herein is a clone of the plant as taught herein on which it developed.

In a preferred embodiment, the plant, plant part, plant cell or seed as taught herein is from a species selected from the group consisting of the genera *Taraxacum*, *Lactuca*, *Pisum*, 25 *Capsicum*, *Solanum*, *Cucumis*, *Zea*, *Gossypium*, *Glycine*, *Triticum*, *Oryza*, *Allium*, *Brassica*, *Helianthus*, *Beta*, *Cichorium*, *Chrysanthemum*, *Pennisetum*, *Secale*, *Hordeum*, *Medicago*, *Phaseolus*, *Rosa*, *Lilium*, *Coffea*, *Linum*, *Canabis*, *Cassava*, *Daucus*, *Cucurbita*, *Citrullus*, and *Sorghum*.

30

Uses

In a further aspect, the present invention relates to uses of any of the isolated polynucleotides, variants or fragments thereof as taught herein for inducing diplospory in plants.

35

In a further aspect, the present invention relates to uses of any of the isolated polynucleotides or fragments or variants thereof as taught herein for prevention of the segregation of multiple genes, QTLs or transgenes.

5 In a further aspect, the present invention relates to uses of any of the isolated polynucleotides or fragments or variants thereof as taught herein for stacking of genes.

In a further aspect, the present invention relates to uses of any of the isolated polynucleotides or fragments or variants thereof as taught herein for development and/or
10 identification of markers for the diplosropy trait.

In an embodiment, the polynucleotides (SEQ ID NO:1 or SEQ ID NO:2), variants or fragments thereof (e.g. SEQ ID NO:4, 5, 6, or 11) as taught herein, which are capable of encoding the protein (SEQ ID NO:3) or variants or fragments thereof (e.g. SEQ ID NOs:7
15 and/or 12) as taught herein, and also polynucleotide sequences encoding any proteins and variants thereof capable of providing diplosropy function or inducing diplosropy or gametophytic apomixis through diplosropy in a plant, may be used as genetic markers for marker assisted selection of the alleles capable of providing diplosropy function of *Taraxacum* species (and/or of other plant species) and for the transfer and/or combination of
20 different or identical diplosropy alleles to/in plants of interest and/or to/in plants which can be used to generate intraspecific or interspecific hybrids with the plant in which the diplosropy allele (or variant) is found.

A large variety of different marker assays can be developed based on these sequences. The
25 development of a marker assay generally involves the identification of polymorphisms between alleles, so that the polymorphism is a genetic marker which “marks” a specific allele. The polymorphism(s) is/are then used in a marker assay. For example the nucleic acid sequences of SEQ ID NO:1 and/or SEQ ID NO:2 and/or SEQ ID NO:4, 5, 6, or 11, or variants thereof according to the invention may be correlated with the presence, absence,
30 reduction, suppression or enhancement of diplosropy. This is for example done by screening diplosporous plant material and/or non-diplosporous plant material for one or more of such sequences in order to correlate specific alleles with absence or presence of diplosropy function. Thus, PCR primers or probes may be generated which detect the presence or absence SEQ ID NO:1 and/or SEQ ID NO:2 and/or SEQ ID NO:4, 5, 6, or 11 or variants or
35 fragments thereof in a sample (e.g. an RNA, cDNA or genomic DNA sample) obtained from plant material. The sequences or parts thereof are compared and polymorphic markers may be identified which may correlate with diplosropy. A polymorphic marker, such as a SNP

marker linked to a *Dip* or *dip* allele can then be developed into a rapid molecular assay for screening plant material for the presence or absence of the diplosropy allele. Thus, the presence or absence of these “genetic markers” is indicative of the presence of the *Dip* allele linked thereto and one can replace the detection of the *Dip* allele with the detection of 5 the genetic marker. Example of such markers are disclosed in the Examples section.

Preferably, easy and fast marker assays are used, which enable the rapid detection of specific *Dip* or *dip* alleles (e.g. of an allele which confers diplosropy, such as *Dip*, versus an allele which does not, such as for instance *dip*) or allele combinations in samples (e.g. DNA 10 samples). Thus, in one embodiment the use is provided of the nucleic acid sequences of SEQ ID NO:1 and/or SEQ ID NO:2, or variants or fragments thereof (SEQ ID NO:4 or SEQ ID NO:5, 6 or 11) thereof comprising at least 70%, 80%, 90%, 95%, 98%, 99% or more nucleic acid identity therewith, or one or more fragments thereof, in a molecular assay for determining the presence or absence of a *Dip* allele and/or a *dip* allele in the sample and/or 15 whether the sample is homozygous or heterozygous with regard to said allele.

Such an assay may for example involve the following steps:

(a) providing diplosropy and non-diplosropy plant material and/or nucleic acid samples thereof;

20 (b) determining nucleotide sequences derived from the *Vps13* gene, e.g. including sequences corresponding to SEQ ID NO:1 and/or SEQ ID NO:2 or variants and/or fragments thereof (SEQ ID NO:4, 5, 6, or 11), in the material from (a) in order to identify polymorphisms between the nucleotide sequences;

25 (c) correlating polymorphisms with the diplosporous characteristics of the plant, thereby correlating polymorphisms with diplosropy and non-diplosropy alleles of the *Dip* locus;

The correlated polymorphisms identified may be optionally further used in a step (d)

30 (d) using said polymorphic markers to develop a marker assay for use in germplasm screening or characterization and MAS.

Thus, in one embodiment of the invention PCR primers and/or probes, molecular markers and kits for detecting DNA or RNA sequences derived from alleles of the diplosporous gene are provided (i.e. *Dip* and/or *dip* allele). Degenerate or specific PCR primer pairs which may amplify *Dip* and/or *dip* DNA (such as a nucleic acid sequence from SEQ ID NO:1 and/or 35 SEQ ID NO:2 or variants or fragments thereof (e.g., SEQ ID NO:4, 5, 6, or 11) from samples can be synthesized based on said sequences (or variants thereof) which is well known in the

art (see Dieffenbach and Dveksler (1995) PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, and McPherson et al. (2000) PCR-Basics: From Background to Bench, First Edition, Springer Verlag, Germany). For example, any stretch of 9, 10, 11, 12, 13, 14, 15, 16, 18 or more contiguous nucleotides of those sequences (or the complement 5 strand) may be used as primer or probe. The polynucleotide sequences of the invention can be used as hybridization probes as well. A *Dip* gene/allele detection kit may comprise *Dip* and/or *dip* allele specific primers and/or *Dip* and/or *dip* allele specific probes. An associated protocol may be used for the primers and/or probe to detect *Dip* and/or *dip* DNA in a sample. Such a detection kit may, for example, be used to determine, whether a plant has been 10 transformed with an *Dip* gene (or part or variant thereof) of the invention or to screen *Taraxacum* germplasm and/or other plant species germplasm for the presence of *Dip* alleles (or *Dip* homologs or orthologs) and optionally zygosity determination.

In one embodiment therefore a method of detecting the presence or absence of a nucleotide 15 sequence encoding an DIP protein in a plant tissue, e.g. in *Taraxacum* tissue, or a nucleic acid sample thereof is provided. The method comprises:

- a) obtaining a plant tissue sample, e.g. a *Taraxacum* tissue sample, or nucleic acid sample thereof,
- b) analyzing the nucleic acid sample using a molecular marker assay for the 20 presence or absence of one or more markers linked to an *Dip* allele, wherein the marker assay detects any one of SEQ ID NO:1 and/or SEQ ID NO: 2 and/or SEQ ID NO:4, 5, 6, or 11, or a sequence comprising at least 70% nucleotide identity therewith in said sample, and optionally
- c) selecting the plant (e.g. the *Taraxacum* plant) comprising one or more of said 25 markers.

Further applications of Diplosropy

Diplosropy is an element of apomixis and a gene for diplosropy may be used in combination with a gene for parthenogenesis to generate apomixis and to use it for the applications listed 30 above. These genes can be introduced into sexual crops by transformation. Knowledge of the structure and function of the apomixis genes can also be used to modify endogenous sexual reproduction genes in such a way that they become apomixis genes. The preferred use would be to bring the apomixis genes under a inducible promoter such that apomixis can be switched off when sexual reproduction generates new genotypes and switched on 35 when apomixis is needed to propagate the elite genotypes.

However, a diplospory polynucleotide or gene of the invention could also be used in entirely new ways, not directly as an element of apomixis. A diplospory gene could be used for sexual polyploidization, to generate polyploid offspring from diploid plants. Polyploid plants often are heterotic and produce higher yields than diploid plants (Bingham, E.T., R.W.

5 Groose, D.R. Woodfield & K.K. Kidwell, 1994. Complementary gene interactions in alfalfa are greater in autopolyploids than diploids. *Crop Sci* 34: 823–829.; Mendiburu, A.O. & S.J. Peloquin, 1971. High yielding tetraploids from 4x-2x and 2x-2x matings. *Amer Potato J* 48: 300–301). The Dip gene, i.e. a gene (or chimeric gene, or vector or genetic construct) capable of providing diplospory function to a plant according to the invention, avoids female

10 Meiosis I, and therefore generates First Division Restitution (FDR) egg cells, which transfer the full maternal genome, including all heterozygosity and epistatic gene interactions (Mok, D. W. S. and S. J. Peloquin. 1972. Three mechanisms of 2n pollen formation in diploid potatoes. *Am. Potato J.* 49:362-363.; Ramanna, M.S., 1979. A re-examination of the mechanisms of 2n gamete formation in potato and its implications for breeding. *Euphytica* 28: 537–561). Offspring produced by FDR gametes is superior to offspring produced by Second Division Restitution (SDR) gametes, which transfer only a part of the parental heterozygosity and epistasis to the offspring. Both FDR and SDR types of unreduced gametes result in hybrid offspring after crossing, with a much increased heterozygosity compared to somatic polyploidization by chemical treatment (e.g. colchicine). Therefore FDR

15 gametes, like the ones induced by the Dip-gene, are the most preferred type of gametes for sexual polyploidization. FDR gametes have proven their use for the improvement of autopolyploid crops such as potato, alfalfa, *Vaccinium* spp., and some of the fodder grasses (Ramanna, M.S. and Jacobsen E. 2003. Relevance of sexual polyploidization for crop improvement – a review. *Euphytica* 133:3-8; Mariani, A. & S. Tavoletti, 1992. Gametes with

20 Somatic Chromosome Number in the Evolution and Breeding of Polyploid Polysomic Species. Proc Workshop, Perugia, Tipolithographia Porziuncola-Assisi (PG) Italy, pp. 1–103; Veilleux, R., 1985. Diploid and polyploid gametes in crop plants: Mechanisms of formation and utilization in plant breeding. *Plant Breed Rev* 3: 252–288). In these applications it is highly beneficial that the Dip gene is only expressed during female megasporogenesis and

25 that male meiosis is reductional. This allows the introgression of the Dip-gene into the diploid gene pool through reduced pollen grains, creating new beneficial gene combinations by crosses. Another very useful property of the Dip-gene for plant breeding is its dominance such that heterozygotes express the diplosporous phenotype. This significantly simplifies the use of the Dip-gene in breeding schemes.

One specific application of sexual polyploidization is the production of triploids which can be used to produce seedless fruits. Triploids can also function as a source for trisomics, which are very useful for mapping studies.

5 Whereas in apomixis both diplospory and parthenogenesis are combined in a single plant, the use of diplospory in one generation and the use of parthenogenesis in the next generation would link sexual gene pools of a crop at the diploid and at the polyploid level, by going up in ploidy level by apomeiosis and going down in ploidy level by parthenogenesis. This is very practical because polyploid populations may be better for mutation induction

10 because they can tolerate more mutations. Polyploid plants can also be more vigorous. However diploid populations are better for selection and diploid crosses are better for genetic mapping, the construction of BAC libraries etc. Parthenogenesis in polyploids generates di-haploids which can be crossed with diploids. Diplospory in diploids generates unreduced FDR egg cells which can be fertilized by pollen from polyploids to produce

15 polyploid offspring. Thus, an alternation of diplospory and parthenogenesis in different breeding generations links the diploid and the polyploid gene pools.

The following non-limiting Examples illustrate the different embodiments of the invention. Unless stated otherwise in the Examples, all recombinant DNA techniques are carried out

20 according to standard protocols as described e.g. in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, and Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, NY; and in Volumes 1 and 2 of Ausubel et al. (1994) Current Protocols in Molecular Biology, Current Protocols, USA. Standard materials and

25 methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R.D.D. Croy, jointly published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications, UK.

Examples

30

Example 1. Genetic Mapping of the DIP locus

1.1 Apomixis recombination population

For the genetic mapping of the Diplosporous (Dip) locus, a cross was made between a diploid sexual *Taraxacum officinale* plant TJX3-20 and a triploid apomict A68. TJX3-20 was

35 chosen as a male sterile (no pollen production) seed parent in order to prevent the production of a high proportion of selfed offspring, which is normally the case in diploid X

triploid *Taraxacum officinale* crosses, as a consequence of mentor pollen effects (Tas en Van Dijk 1999). Average seed set in the TJX3-20 x A68 cross was low, between 1-3%. A large number of crosses resulted in a total of 190 offspring. Only viable euploid offspring was produced: 97 diploids, 92 triploids and 1 tetraploid (ploidy level was determined with a 5 PARTEC flow cytometer, Van Dijk et al. 2003). None of the diploids was apomictic, in contrast to the triploids which segregated for apomixis / no apomixis.

1.2 Diplosropy phenotyping

In order to map the DIP locus genetically, the triploid progeny plants were phenotyped for 10 diplosporous versus non-diplosporous (meiotic). The triploid progeny plants that produced triploid seeds without cross pollination, were apomictic and thus also diplosporous. For diplosropy phenotyping of non-apomictic plants so called pseudo-test crosses were made 15 (Ozias Akins and Van Dijk 2007). Triploid offspring from the TJX3-20 x A68 cross was crossed with diploid sexual pollen donors. Seeds were harvested and germinated and the 20 ploidy level of the progeny was determined by flow cytometry (Partec Ploidy Analyser, van Dijk et al. 2003). If the progeny consisted solely of tetraploid plants, it was concluded by subtraction that the triploid mother plant had been diplosporous, since the diploid pollen donor produced haploid pollen grains. If the progeny consisted of plants with a triploid or lower ploidy level, it was concluded that the egg cells of the mother plants had a reduced chromosome number and that the mother plant itself was non-diplosporous.

1.3 A genetic map of the DIP chromosomal region

Single dose dominant markers (simplex e.g. 001) can be mapped in autopolyploid plants according to the method described in Wu et al. (1992). Seven AFLP (Vos et al. 1995) 25 markers that were closely linked to the Dip locus (from Vijverberg et al 2004) were mapped in 76 triploid progeny plants from TJX3-20 x A68 cross: (for AFLP primer code, see Table 1) E40M60-505 (505 indicates the size of the fragment in base pairs; short code: S4), E38M48-215 (S8), E42M50-440 (S7), E35M52-235 (S10), E38M48-215 (S9), E45M53-090 (A4) and E37M59-135 (A5). To position the Dip locus, the triploid progeny plants were phenotyped for 30 diplosropy using the pseudo-test cross method, described above. Table 2 indicates the genotypes of four triploid progeny plants (AS99, AS112, AS193 and AS196) with a recombination event in the DIP chromosomal region.

EcoRI

EcoRI	Selective nucleotides
E35	ACT

E37	ACG
E38	ACT
E40	AGC
E42	AGT
E43	ATA
E45	ATG
E49	CAG
E60	CTC
Msel	
M40	AGC
M42	AGT
M48	CAC
M50	CAT
M52	CCC
M53	CCG
M59	CTA
M60	CTC

Table 1. Selective nucleotides of the used AFLP primers.

Marker/ gene	Plant				
	AS196	AS99	AS112	AS193	I124 deletion
S4	+	-	-	-	+
S8	+	-	-	-	+
S7	+	-	-	-	+
S10	+	+	-	-	+
S9	+	+	-	-	-
DD1	-	+	-	-	-
DD2	-	+	-	-	-
DD3	-	+	-	-	-
<i>Dip</i>	-	+	-	-	-
A4	-	+	+	-	-

A5	-	+	+	+	+
----	---	---	---	---	---

Table 2. Recombination (TJX320 x A68) and deletion (A68_i124) marker map of the Dip region. (+) sign means marker present; (-) sign means marker absent.

5 **Example 2. Deletion mapping of the DIP locus**

2.1 *Apomixis deletion population*

Because seed set in the TJX3-20 x A68 cross was too low to generate the thousands of seeds needed for genetic fine mapping, an alternative method was needed. Therefore a deletion mapping approach was used for the fine mapping of this chromosomal region.

10 Gamma irradiation causes random deletions of variable size, throughout the genome, irrespective of recombination hot or cold spots. Gamma irradiation deletions have been successfully used to map apomixis genes in Hieracium species (Catanach AS, Erasmus SK, Podivinsky E, Jordan BR, Bicknell RA (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103(49): 18650–18655).

15 First the optimal dose of gamma irradiation for clone A68 (50% seedling survival) was determined in a series of test doses, ranging from 100 to 800 Gray produced by a 60Co source (at Isotron B.V., Ede, The Netherlands) exposing dry Taraxacum seeds. For the final experiment 3 x 2000 seeds were irradiated with three different doses: one third with 250 Gy, one third with 300 Gy and one third with 400 Gy. Seeds were put to germinate on wet filter 20 paper in petri dishes at room temperature. In total 3075 plants were grown in pots in the greenhouse (350 of 200 Gy, 1600 of 300 Gy and 1125 of 400 Gy treatment). The plants were grown for two months in a heated greenhouse (21°C day, 16 hrs light and 18°C at night). Next, plants were kept for two month at 2-10 °C in order to induce flowering. After this vernalization period, the plants were again grown in the heated greenhouse at the 25 conditions indicate above. Over 90 percent of the plants flowered and produced seeds. Plants were classified whether or not they showed a Loss-of-Apomixis phenotype (LoA). Apomictic A68 plants produce seeds spontaneously and form large white seed heads, with a dark brown center, where the seeds (in botanical terms achenes: one-seeded fruits) are attached to the receptacle (see Figure 1A).

30 In the case of Loss-of-Apomixis phenotypes the center of the seed head was lighter and often the seed heads are reduced in diameter, because the seeds do not develop properly. More than 13000 seed heads were screened for Loss-of-Apomixis phenotype. Finally 102 plants were identified as Loss-of-Apomixis phenotypes. Most of these plants produced both 35 Loss-of-Apomixis and Apomixis seed heads, indicating that they were chimaeras. This is

due to the fact that the shoot meristems of the irradiated seeds were multicellular (M1 generation).

2.2 Loss-of-Diplosropy phenotyping

5 Loss-of-Apomixis in irradiated plants could be due to Loss-of-Diplosropy, Loss-of-Parthenogenesis or to other causes. Loss-of-Diplosropy among Loss-of-Apomixis plants were detected by pseudo-test crosses (see above). Loss-of-Diplosropy plants also produced spontaneously (thus without any cross pollination; see Figure 1B) low numbers of triploid and hypo-triploid offspring, because these non-Dip plants had retained the parthenogenesis 10 phenotype. Since parthenogenesis is gametophytically expressed, it segregates in the egg cells of non-diplosporous plants.

2.3 Low resolution Deletion Mapping

When a part of one of the three homologous chromosomes is deleted, the single dose AFLP 15 / SCAR markers located in the deleted region will be lost. In order to determine which of the 102 Loss-of Apomixis plants had lost parts of the Dip locus, the presence / absence of the following Dip-linked single dose markers was investigated: S8, S7, S9 , S10, A4 and A5.

In total 23 Loss-of-Apomixis plants had lost two or more of these markers. Most of these 20 plants could also be phenotyped as Loss-of-Diplosropy, confirming that the *Dip*-gene was lost by the deletion. The number of lost markers is an indication of the size of the deletion (Catanach et al 2006). Plant i124 had retained all these markers, except S9 and A4, suggesting that this plant had the smallest deletion in the Dip-locus. The five plants with the 25 smallest deletions (including i124) were made non-chimeric through tissue culture. Leaves were sterilized and explants were grown in vitro to regenerate whole plants. AFLP analysis confirmed that these plants were homogeneous and still carried the DIP deletions.

Example 3. DNA sequencing of the DIP locus

3.1 Fine mapping of the DIP locus using AFLP markers in the deletion population

30 In order to find new AFLP markers within the smallest Dip-deletion detected (i124), a new marker screening strategy, Bulked Deletion Analysis (BDA), analogous to Bulked Segregation Analysis (Michelmore et al. 1991), was developed. Three DNA samples were compared for the presence or absence of AFLP fragments: Sample A: DNA from the plant 35 with the smallest Dip deletion (i124), Sample B: A DNA pool of three plants with larger deletions in the Dip region, and Sample C: DNA from the A68 clone, non-irradiated. Only

AFLPs which lacked in both sample A and sample B would be located in the smallest deletion. Taking pooled sample B into consideration prevented the selection of deletions outside the Dip locus. Candidate AFLPs from the BDA were verified on individual Loss-of-Diplospory deletion plants. Screening of 966 different AFLP primer combinations resulted 5 into three new Dip Deletion markers (DD1: E43M40-68, DD2: E49M42-215 and DD3: E60M42-76), located within the Dip deletion of plant i124. Based on the number of AFLP markers screened with 966 AFLP primer combinations and the three markers lost, the size of the Dip deletion in plant i124 was estimated to be less than 450 kb. The DD2 marker was successfully cloned and sequenced (SEQ ID NO:12).

10

3.2 Gene isolation by BAC landing and walking

For the construction of a complete physical BAC contig of the Dip-locus of apomictic clone A68, a BAC library was screened. A BAC library of A68 was constructed by the Arizona Genome Institute and can be obtained through the AGI website 15 (<http://www.genome.arizona.edu/orders/>) as TO_Ba. This BAC library has an average insert size of 113kb covering 10 genome equivalents (*Taraxacum* Genome Size: 835Mb / 1 C). It was constructed in the HindIII site of the pAGIBAC1 vector and contains 73728 clones. The BAC insert library was double spotted on four nylon filters. DNAs from clones in the BAC library were also pooled (192 super pools: plate pools of 384 BACs; each plate was also 20 pooled in 4 pools of 96 BAC DNA's). The BAC insert library was screened for BACs containing the S10, A4, DD1, DD2 and DD3 markers by AFLP analysis of the pooled BAC DNA's. The BAC library was also screened by overgo hybridization of the nylon filters, using the DD2 sequence (SEQ ID NO:12) (Ross et al. 1999). For each marker one BAC insert was selected which was entirely sequenced using the GS-FLX sequence technology. By using 25 the ends of the seed-BACs to develop new overgo probes, it is possible to extend the BAC contig (BAC walking).

In addition to BAC walking a physical map of the A68 BAC library was made using sequence based tags (Whole Genome Profiling – Van Oeveren et al 2011). BAC walking and WGP 30 mapping gave consistent BAC contigs for the DIP region. A minimal BAC tiling path was constructed based on the shared WGP tags, using the Finger Printed Contig (FPC) software. The Minimal Tiling Path BACs were sequenced using GS FLX technology. Newbler software was used to assemble the individual 454 reads. In most cases two BAC variants were found, between which sequence identity varied between 95-99%. These 35 variants were interpreted as different alleles or haplotypes. The presence of the DD2 marker (SEQ ID NO:12) distinguished between the Dip and the dip BAC minimal tiling path.

3.3 Mapping of the deletion break points on the BAC minimal tiling path

To map the deletion breakpoints and to be sure that the minimal tiling path covered the smallest Dip deletion in i124, PCR primers were designed for one gene per BAC sequence. Genes were PCR amplified and DNA was directly Sanger sequenced on the ABI 3730XL.

5 This generated a complex raw sequencing data in the ABI trace file of A68, with many double peaks. In i124 however, patterns were often simplified, and were subsets of the A68 pattern, which is expected when one of the alleles (the most divergent) is deleted. When the sequence patterns of a gene had double peaks in both A68 and i124, it was concluded that this gene was not deleted in i124. BACs in the middle of the minimal tiling path often
10 showed deleted genes, whereas BAC at the ends showed no signs of deletion. It was therefore concluded that the minimal tiling path spanned the deletion in i124.

Example 4. Unbiased identification of the *Diplospory* gene within the Dip-locus

4.1 Generation of EMS apomixis knockouts

15 We reasoned that when apomixis in *Taraxacum* is genetically controlled, it should be possible to generate knock-out mutations by mutagens such as ethyl methane sulphonate (EMS). Since we could predict the genes within the Dip locus, it should be possible to identify the *Dip*-gene by resequencing the genes in the Dip locus of the Loss-of-Diplospory mutants. When we would find several diplospory mutants they should have mutations in the
20 same gene (the *Dip* gene), whereas mutations in genes in the Dip locus but not related to diplospory phenotype would not be enriched. This would thus identify the functional *Dip* gene.

To generate EMS apomixis knockouts 1800 plants were grown from A68 seeds treated with
25 0.35 percent EMS for 16 hours at room temperature. After seed set the plants were screened for Loss-of-Diplospory phenotypes (for a description see above). In total six putative Loss of DIP mutants (LoD1 to LoD6) were detected, although in two of them, LoD3 and LoD5, did not produce seeds in pseudo-test crosses. Since the LoD plants segregated for parthenogenesis some viable M2 seeds were produced and from these M2 plants were
30 grown. As far as we know this is the first time Loss-of-Apomixis mutants have been successfully made by EMS treatments. Attempts to generate Loss-of-Apomixis by EMS treatment in other species have been unsuccessful (Asker and Jerling 1990, Praekelt and Scott 2001).

35 4.2 High-throughput re-sequencing of genes predicted in Loss of Diplospory physical interval map in Loss of Apomixis EMS mutants

With the Augustus gene prediction software (Stanke M., R Steinkamp, S Waack and B Morgenstern (2004) "AUGUSTUS: a web server for gene finding in eukaryotes" Nucleic Acids Research, Vol. 32, W309-W312) the genes in the Dip and the dip BAC Minimal Tiling

5 Path (see above) were predicted using the *Arabidopsis* gene model. Gene annotation was performed by BLASTing the predicted protein sequences against the non-redundant database from NCBI, with 40% protein identity as threshold. A total of 129 *Taraxacum* genes were predicted in the Dip and the dip BAC Minimal Tiling Paths

10 Leaf material was collected from *Taraxacum* A68, A68 LoD1 to 6 EMS mutants and LoD deletion line (A68 i124). Genomic DNA was extracted using the CTAB procedure (Rogstad 1992). DNA samples were quantified using Quant-iTTM TMPicoGreen[®] dsDNA reagent (Invitrogen) on the FLUOstar Omega (BGM LABTHEC) using a standard procedure. DNA samples were diluted to a concentration of 20ng/µl and subsequently LoD samples were 15 pooled to generate 2 pools (pool A=LoD 1+LoD2+ LoD3; poolB= LoD4 +LoD5 +LoD6).

20 Specific primers were designed for PCR amplification of the 129 predicted genes, in order to target mainly their coding sequences. A total of 295 primer pairs were designed. *Taraxacum* apomictic A68 clone, A68_i124 deletion line (LoD phenotype) and A68 LoD EMS mutants pool A and B were chosen as targets for amplicon screening with the aim of associating the EMS mutant phenotypes with EMS mutation and to thus identify the DIP gene(s).

25 From each chosen target 295 amplicons were generated by PCR reaction. Fifty µl PCR reactions were performed containing 80 ng DNA for each of the sample, 50 ng forward primer, 50 ng reverse primer, 0.2 mM dNTP, 1 U Herculase H II Fusion DNA polymerase (Stratagene) and 1XHerculase H II reaction buffer. PCRs were performed with the following thermal profile: 2 minutes at 95°C, followed by 35 cycles of 30 sec 95°C, 30 sec 55°C and 30 sec 72°C, followed by cooling down to 4°C. Equal amounts of PCR products from samples were used for GS FLX fragment library sample.

30 Amplicon screening was performed using the Genome Sequencer (GS) FLX+ PLATFORM (Roche Applied Science) which allows massive parallel picoliter-scale amplification and pyrosequencing of individual DNA molecules. Amplicon samples libraries were constructed using standard Roche protocols. Barcodes (Multiplex Identifiers, MIDs), were added during 35 libraries preparation. The MID-tagged samples were pooled for simultaneous amplification and sequencing (multiplexing). One full picotiterplate (PTP) (70x75 mm) with two region was

used for sequencing the amplicon libraries (A68, A68_i124, A68_EM5 pools A and B). Sequencing was performed according to the manufacturer's instructions (Roche Applied Science).

5 The bioinformatics analysis of mutation screening consisted of 5 parts:

(1) GS FLX+ data processing, using the Roche GS FLX+ software. Base-called reads were trimmed and filtered for quality and converted into FASTA format.

(2) Sample processing. The origins of the sequence reads was identified based on the specific barcode. Barcode sequences were trimmed and sequence reads of each sample

10 were saved separately to the database.

(3) Amplicon processing. The origin of the amplicons was identified based on the target-specific primer sequences. Sequences reads per amplicon were clustered using CAP3 (95% homology, 40 nucleotides overlap).

(4) Polymorphism detection. Identification of all potential SNPs and INDELS in each

15 clustered amplicon.

(5) Detecting EMS SNPs. Identification of SNPs that were induced by EMS treatment. Such SNPs are expected in EMS mutant plants only (EMS pool A or B). Considering that six independent EMS mutants were pooled (3 in pool A and 3 in pool B) and EMS induced SNP will be either detected in pool A or B, but not in both. SNPs were considered true EMS-SNPs

20 if matching the following parameters: (a) not present in A68 and A68_i124; (b) detected either in pool A or in pool B.

In total 6 putative EMS mutations (C->T or G->A) were identified, of which four were found in a single gene with a very high protein BLAST homology with the Vacuolar Protein Sorting

25 (VPS) 13 like protein of *Arabidopsis thaliana* (gi|10129653|emb|CAC08248.1|) (Table 3).

Amino acid start	Amino acid end	Blast Score	E-value
643	785	204.91	1.9e-054
1020	1393	237.65	2.6e-064
1645	2097	256.91	4.1e-070
2142	2618	303.91	3.0e-084
2608	3384	728.78	3.7e-212
3390	3737	327.79	1.9e-091
3621	3931	273.09	5.6e-075

Table 3. Protein homology between SEQ ID NO:3 and Arabidopsis VPS13 like protein (gi|10129653|emb| CAC08248.1|). Tera-BLASTP search Protein query (DeCypher, TimeLogic™ Standard settings).

5 This is a large gene, representing 34 of the sequenced 295 exons, which corresponds with 11% of the total re-sequenced nucleotides. An enrichment of mutations in the causal *Dip* gene is expected by the selection for loss-of-Diplosropy phenotypes. All four *ToVps13* EMS mutations were in the Dip haplotype, none was in the dip haplotype. We calculate the probability that this distribution of mutations over the sequenced genes is due to chance as
10 follows. The size of the predicted *ToVps13* is 11% of the total re-sequenced region. Since there are three haplotypes, the size of a single *ToVps13* haplotype is 3.7% of the total re-sequenced region. The probability that the first EMS mutant is located in the Dip haplotype is 0.33. The probability that the second, third and fourth EMS mutations are located in the same gene in the same haplotype is $0.037 \times 0.037 \times 0.037 = 5.1 \times 10^{-5}$. The combined
15 probability that the first EMS mutation is in the right haplotype and the second, third and fourth in the same haplotype in the same DNA region is $0.33 \times 5.1 \times 10^{-5} = 1.67 \times 10^{-5}$. Since this can also happen for other DNA regions, the probability over the whole re-sequenced region is $100/11 \times 1.67 \times 10^{-5} = 1.54 \times 10^{-4}$. Therefore the probability that this distribution is due to chance is 1.54 in 10,000. Consequently, it is very likely that the *Vps13* sequence is
20 involved in diplosropy.

In two LoD plants a second EMS mutation was found in the resequenced region, one in an oligo peptide transporter and the other in a putative transporter gene. In both cases the mutation was not in the Dip haplotype, but in a dip haplotype. Therefore we conclude that
25 these two EMS mutations are not related to the Diplosporous phenotype. In the putative LoD3 and LoD5 plants no EMS mutation was detected in the re-sequenced region. These plants did not produce offspring in pseudo-test crosses (see above) and may have been female sterility mutations, rather than loss of apomixis mutations.

30 **Example 5. Association mapping of the DIP locus in a wide panel of unrelated sexual and apomictic dandelions**

In order to provide further proof for the involvement of SEQ ID NO:1 in the diplosporous phenotype, the association between sequence SEQ ID NO:4 and diplosropy was
35 investigated in a panel of apomictic (=diplosporous) plants and a panel of sexual (= meiotic) plants. Both panels consisted of 13 unrelated plants, as diverse as possible, with respect to

geographic origin and taxonomic group (different sections and different species within the genus *Taraxacum*). Ploidy levels were determined by flow cytometry, according to the method described in Tas and Van Dijk (1999, *Heredity* 83: 707-714). The breeding system was determined by seed set in isolation from pollinators: apomicts produce full seed set in isolation, sexuals produce no seeds in isolation. Part of SEQ ID NO:4 was resequenced, either 1-300 nt or 7-586 nt, the first by Illumia paired end sequencing, the second by sequencing on the Genome Sequencer (GS) FLX+ PLATFORM (Roche Applied Science). The sequences were analyzed with nucleotide BLAST against SEQ ID NO:4 using Decypher (TimeLogic) with standard settings. In Table 4 per plant the highest nucleotide sequence identity and the smallest E-values are given. From this table it is clear that all apomicts carry the sequenced region of SEQ ID NO:4, whereas none of the sexuals carries this DNA fragment. Thus there is maximum linkage disequilibrium between this sequence and diplospory. Recombination and mutagenesis will erode linkage disequilibrium between the nucleotide region and diplospory over time if the nucleotide region is not functionally involved in diplospory. The perfect association between apomixis and SEQ ID NO:4 at a large geographic and taxonomic scale therefore confirms that this sequence is essential for diplospory.

	<i>Section</i>	<i>Species</i>	<i>Origin</i>	<i>Ploidy</i>
20	<u>A. sexuals (meiotic)</u>			
	1. Biennia	<i>T. nutans</i>	China, Shanxi	2x
	2. Ceratoidea	<i>T. koksaghyz</i> 1	Kazakhstan	2x
	3. Ceratoidea	<i>T. koksaghyz</i> 2	Kazakhstan	2x
	4. Ceratoidea	<i>T. koksaghyz</i> 3	Kazakhstan	2x
25	5. Ceratoidea	<i>T. koksaghyz</i> 4	Kazakhstan	2x
	6. Ceratoidea	<i>T. koksaghyz</i> 5	Kazakhstan	2x
	7. Ceratoidea	<i>T. koksaghyz</i> 6	Kazakhstan	2x
	8. Mongolica	<i>T. hallaisanense</i>	Korea	2x
	9. Obliqua	<i>T. pyrenaicum</i>	France	2x
30	10. Piesis/Primigenia	<i>T. cylleum</i>	Greece	2x
	11. Piesis	<i>T. bessarabicum</i>	Ukraine	2x
	12. Piesis	<i>T. stenocephalum</i>	Russia, Caucasus	4x
	13. Ruderalia	<i>T. officinale</i> 3 (FCH72)	Switzerland	2x
35	<u>B. apomicts (diplosporous)</u>			
	1. Borealia	indet.	China, Shanxi	indet.

2.	Ceratoidea	<i>T. brevicorniculatum</i>	Kazakhstan	3x	
3.	Erythrocarpa	<i>T. gratum</i>	Caucasus	indet.	
4.	Erythrosperma	<i>T. lacistophylloides</i>	IBOT	indet.	
5.	Erythrosperma	<i>T. brachyglossum</i>	Chili	3x	
5	6.	Palustria	<i>T. validum</i>	IBOT	indet.
	7	Ruderalia	<i>T. officinale</i> 1 (Ron)	France	4x
	8.	Scariosa	<i>T. minimum</i>	Malta	5x
	9.	Stenoloba	indet.	Siberia, Yakutia	indet.
	10.	Mongolica	<i>T. aurantiacum</i>	China	4x
10	11.	Nevosa	<i>T. richardsianum</i>	UK, Wales	4x
	12.	Ruderalia	<i>T. officinale</i> 2 (A68)	Netherlands	3x
	13.	Scariosa	<i>T. hybirnum</i>	Russia, Crimea	3x

		Section	nt identity	BLAST E_Value	Region SEQ ID NO:4
15		<u><i>A. sexuals (meiotic)</i></u>			
	1.	Biennia	93	6.4e-128	1-300
	2.	Ceratoidea	95	8.9e-081	1-300
	3.	Ceratoidea	96	1.5e-085	1-300
	4.	Ceratoidea	95	8.9e-081	1-300
20	5.	Ceratoidea	93	5.3e-076	1-300
	6.	Ceratoidea	95	8.9e-081	1-300
	7.	Ceratoidea	96	1.5e-085	1-300
	8.	Mongolica	96	1.3e-150	1-300
	9.	Obliqua	99	7.1e-100	1-300
25	10.	Piesis/Primigenia	95	3.7e-083	1-300
	11.	Piesis	97	2.5e-090	1-300
	12.	Piesis	91	5.5e-116	1-300
	13.	Ruderalia	96	1.3e-150	1-300
30		<u><i>B. apomicts (diplosporous)</i></u>			
	1.	Borealia	100	4.4e-172	1-300
	2.	Ceratoidea	100	4.4e-172	1-300
	3.	Erythrocarpa	100	4.4e-172	1-300
	4.	Erythrosperma	100	4.4e-172	1-300
35	5.	Erythrosperma	100	4.4e-172	1-300
	6.	Palustria	100	4.4e-172	1-300

7	Ruderalia	100	4.4e-172	1-300
8.	Scariosa	100	4.4e-172	1-300
9.	Stenoloba	100	4.4e-172	1-300
10.	Mongolica	100	0.000000	7-586
5	11.	Nevosa	100	0.000000
	12.	Ruderalia	100	0.000000
	13.	Scariosa	100	0.000000

Table 4. Association mapping between apomixis and SEQ ID NO:4. The sequences were analyzed with nucleotide BLAST against SEQ ID NO:4 using Decypher (TimeLogic) with standard settings. Per plant the highest nucleotide identity and the smallest E-values are given. Indet. means indetermined. IBOT means provided by the Institute of Botany Pruhonice, Czech Republic, geographic origin not known.

Example 6. Expression of the DIP gene in the Megaspore Mother Cell of a apomict and a near isogenic Loss of Diplospory mutant

With the aim to study the expression of the DIP candidate gene, RNAseq was performed from isolated Megaspore Mother Cell (MMC) and Female Gametophyte (FG) of the apomictic (A68) and its isogenic deletion line (i124). Pilot studies made clear that megasporogenesis in *Taraxacum* occurs in the buds of very young inflorescences (~ 0.5 cm in diameter), before stem elongation, when the bud is still in the rosette of the plant. For the later stage (Female Gametophyte; FG) buds were collected with a stem length of 1 cm.

Fresh ovaries were cut open and were macerated in a mannitol mixture of pectinase, pectolyase, hemicellulase and cellulase. Ovules were separated from surrounding tissues by manual micro-dissection using a needle. Isolated ovules were collected in batches of 20 ovules using a CellTram® Oil device (Eppendorf) and immediately frozen in a -80°C freezer until further processing. RNA was extracted from pools of 20 ovules with an Arcturus® Picopure® RNA Isolation Kit. RNA was linearly amplified by in vitro reverse transcription using an Ambion MessageAmp™II aRNA amplification kit. Different pools of 20 ovules from the same genotype and tissue, were considered as biological replicates.

In total 10 samples were sequenced in 6 Illumina HiSeq lanes (3 biological replicas of A68 MMC, 3 biological replicas of FG and 4 biological replicas of MMC i124). Per sample, overlapping read pairs were merged using FLASH software (<http://ccb.jhu.edu/software/FLASH/>). The merged (unfiltered) reads were assembled using

Trinity software (<http://trinityrnaseq.sourceforge.net/>). For each sample, transcript abundances were estimated according to Trinity's "Abundance Estimation Using RSEM" protocol (http://trinityrnaseq.sourceforge.net/analysis/abundance_estimation.html).

Differentially expressed isoforms were then identified following the "Identifying Differentially

5 Expressed Trinity Transcripts" protocol
(http://trinityrnaseq.sourceforge.net/analysis/diff_expression_analysis.html).

Among the *de novo* assembled expressed genes, more than 40 meiotic genes were detected (e.g. *Dmc1*, *Spo11*, *Rad50*) indicating that the right developmental ovule stages,

10 MMC and FG, were studied. SEQ ID NO:4 was *de novo* assembled and shown to be expressed in the apomict A68 at moderate expression levels, in both the MMC and the FG stage. In Table 5 the expression is quantified as FPKM values (Fragments Per feature Kilobase per Million reads mapped). In the deletion mutant i124 SEQ ID NO:4 is not expressed, but in its diplosporous homolog A68 is. The expression data therefore confirm
15 that the *Vps13* gene is in the deletion and that it is expressed at the MMC and FG developmental stages.

The expression and association mapping analyses performed so far indicate that the nucleic acid molecule as set forth in SEQ ID NO:4, currently annotated as the 3 prime terminus of

20 the *Vps13* gene, is transcribed independently, either as a novel gene or as a differential splicing variant of the *Vps13* gene, similar to the sporulation gene *Spo2* of *Saccharomyces pombe*. The *Spo2* gene encodes a 15-kDa protein composed of 133 amino acid residues that was incorrectly annotated as being the last exon of the *S.pombe* *Vps13* gene. Actually the *Spo2* gene is immediately downstream of the *Vps13* gene and transcribed
25 independently (Nakase et al 2008, Molecular Biology of the Cell. Vol. 19, 2476–2487).

It is noteworthy that the mRNA sequence of SEQ ID NO:5 does not contain an ATG start codon, and that possible translated Open Reading Frames are short. However, using ribosome profiling in budding yeast (*Saccharomyces cerevisiae*) the Brar lab (University of

30 California - Berkeley <http://www.unal-and-brar-labs.org/brar-sorfs>) has identified noncanonical translation of thousands of new short peptides during meiosis. These meiosis-specifically expressed short Open Reading Frames (sORFs) have no ATG start codons and their translated peptides are shorter than 80 amino acids and will therefore not be predicted by standard gene software. sORFs are located in regions previously not known to contain
35 expressed sequences. sORFs can also be short alternative isoforms of proteins with known function. The presence of these short peptides during meiosis had been confirmed by

classical methods. However, the function of these thousands of these short meiosis specific peptides remains a mystery.

Plant	Tissue	FPKM	S.E.
A68	MMC1	6.80	2.51
	MMC2	5.96	
	MMC3	8.54	
	Mean	7.10	
i124	MMC1	0.00	0.00
	MMC2	0.00	
	MMC3	0.00	
	MMC4	0.00	
A68	Mean	0.00	0.69
	FG1	6.45	
	FG2	5.56	
	FG3	6.45	
	Mean	6.15	

5

Table 5. Expression of SEQ ID NO:4 in Megaspore Mother Cells and Female Gametophyte of the apomict A68 and the Dip deletion line i124. Absolute expression is measured as fragments per feature kilobase per million reads mapped (FPKM). The mean and the standard error are calculated. The percentage of allele-specific expression is indicated.

10

Example 7. Overexpression of ToDIP and Todip in *Arabidopsis thaliana*

A ToDIP sequence fragment (SEQ ID NO:11) preceded by an artificial ATG start codon and a Todip sequence fragment (SEQ ID NO:9) preceded by an artificial ATG start codon were cloned into a vector with a 35S promoter. Three independent *Arabidopsis* floral dip transformation experiments were carried out with these constitutive overexpression vectors. In each experiment between 15 and 30 T_0 plants for each allele were obtained.

The 35S::Todip overexpression transformants were indistinguishable from wildtype plants and were fully fertile. In contrast, of the 35S::ToDIP overexpression transformants in all three experiments some plants were partially sterile (20% of the transformants in the first experiment, 10% in the second and third experiment).

Megaspore Mother Cell (MMC) and Female Gametophyte (FG) development were investigated by Nomarski microscopy of cleared ovules using the method of Yadegari, R., et al. (1994) Cell differentiation and morphogenesis are uncoupled in *Arabidopsis* raspberry

embryos. *Plant Cell*, 6, 1713–1729). MMC and FG development in all investigated 35S::dip transformants looked normal, like in wildtype *Arabidopsis* plants. However, the 35S::ToDIP plants often showed abnormal megasporangium mother cells, extra small nuclei next to the megasporangium, as well as disrupted FG development, like arrest at FG1 stage, absence of 5 vacuoles and collapsed embryo sacs. In an *Arabidopsis* dyad mutation, which affects female and male meiosis (Ravi M et al. (2008) Gamete formation without meiosis in *Arabidopsis*. *Nature* 451: 1121–1124), similar disturbances of FG development were observed. Therefore, the observed 35S::ToDIP abnormal MMC and FG phenotypes likely indicate the presence of a disrupted female meiosis.

10

These ToDIP phenotypes were dominant since they were observed in the hemizygous T_0 . This is consistent with the dominance of the DIP allele in *Taraxacum*. In the first experiment, in some plants also pollen development was affected (extra nuclei), but in the second and third 15 experiment pollen development looked normal. At least in the second and third experiment the phenotypic effect of the DIP construct is female meiosis specific, which is consistent with the DIP function in *Taraxacum*.

In conclusion, it was found that the *Taraxacum* DIP allele produces a female specific dominant on meiosis in a heterologous plant species. This effect was not found for the 20 *Taraxacum* dip allele. The *Arabidopsis* overexpression phenotypes provide strong supportive evidence that the DIP sequence is causing the diplospory phenotype in *Taraxacum*.

Example 8. DIP gene functionality in *Taraxacum*

To further confirm diplospory function of SEQ ID NO: 4, *Taraxacum* i124 plants, in which the 25 DIP allele is deleted, are transformed with plasmids containing SEQ ID NO: 4, fused with different promoters and regulatory elements in appropriate vectors. The following promoter sequences are used:

1. The native *Taraxacum* promoter of SEQ ID NO: 4 (about 1500 bp of SEQ ID NO: 1, upstream of SEQ ID NO: 4)
2. The promoter of the *Taraxacum* ortholog of *Arabidopsis* Dmc1 (At3g22880)(Klimyuk V.I. and Jones J.D. 1997. AtDMC1, the *Arabidopsis* homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression. *Plant J.*: 11:1-14). This gene has a meiosis specific promoter.
3. The 35S promoter. This promoter results in overexpression of SEQ ID NO: 4.

35 Protocols for the transformation of *Taraxacum* plants have been published by Wahler et al. 2009 (*Plant Phys.* 151, pp. 334–346). Since i124 carries all other elements of apomixis,

complementation of diplospory will restore apomixis which can be easily determined by high seed set in this triploid plant and by genetic markers in the T1 progeny. The progeny plants contain the full maternal genome, with no segregation of maternal markers.

5 **Example 9 Introduction of diplospory in sexual crops by transformation**

Sexual diploid plants of rice and lettuce are used for transformation according to the protocols of Dreni, L et. al 2011 (Plant Cell 23: 2850-2863) and Dias, B.B.A. et al. 2006 (Plant Pathology 55: 187-193), respectively. The same constructs with promoters and SEQ ID NO: 4 as disclosed in Example 8 are used. After crossing T₀ diplosporous plants with 10 diploid pollen donors, triploid progeny is produced. Triploidy can be determined by root tip chromosome counts or by flow cytometry. Both are standard methods (Tas and Van Dijk 1999, Heredity 83: 707-714). Further proof for diplospory can be found in the analysis of the progeny plants for genetic markers. In addition to paternal markers, the progeny will carry the full maternal genotype.

15

Example 10. Introduction of diplospory in sexual crops by genome editing

Targeted genome editing technologies such as CRISPR- CAS9, TALENS and ZFN (zinc-finger nucleases are commonly used in the art to generate mutations in existing genes. Not only by creating knock out alleles, but also by introducing mutations encoded by so-called 20 'repair DNA'. (e.g. Doudna J.A. and Gersbach C.A. 2015 Genome editing: the end of the beginning Genome Biology (2015) 201516:292, and references cited therein).

Such stretches of DNA typically encode fragments of a (target) gene sequence in which alterations are introduced that lead to an altered gene function. Typically such sequences replace the gene sequence targeted in the genome editing event by homologous 25 recombination thereby introducing the mutation of choice in a targeted way in the genome of a host cell, e.g. a plant cell.

This example encompasses the introduction of alterations to the dip homolog in a given plant species that lead to a functional change into DIP, i.e. altering the function of the naturally occurring recessive non-diplosporous allele by the dominant diplosporous (DIP) 30 allele.

Dip homologs are readily identified in many plant species. CRiSPR CAS mediated genome editing using Taraxacum-based 'repair' plasmid design can convert the native dip homolog into its DIP sibling by simply modifying SNPs and indels in line with the differences between the *Taraxacum* DIP and dip alleles.

35

Reference to any prior art in the specification is not an acknowledgement or suggestion that this prior art forms part of the common general knowledge in any jurisdiction or that this prior art could reasonably be expected to be combined with any other piece of prior art by a skilled person in the art.

5

By way of clarification and for avoidance of doubt, as used herein and except where the context requires otherwise, the term "comprise" and variations of the term, such as "comprising", "comprises" and "comprised", are not intended to exclude further additions, components, integers or steps.

10

Claims

1. A polynucleotide comprising a chimeric gene that comprises:
 - a) a nucleic acid sequence comprising
 - i) a nucleic acid sequence having at least 90% sequence identity with SEQ ID NO: 11; and/or
 - ii) a sequence encoding an amino acid sequence having at least 90% sequence identity with SEQ ID NO: 12; operably linked to
 - b) a promoter sequence that is not naturally associated with (a),
 - wherein said polynucleotide, an expression product thereof, and/or the protein encoded thereby, is capable of providing diplosropy function to a plant or plant cell.
2. The polynucleotide according to claim 1, wherein the nucleic acid sequence of (a) has at least 50% sequence identity with SEQ ID NO: 1 or 2 and/or encodes for an amino acid sequence having at least 50% sequence identity with SEQ ID NO: 3.
3. The polynucleotide according to claim 1 or 2, wherein said expression product is at least one of an mRNA molecule, an siRNA and a miRNA molecule.
4. The polynucleotide according to any one of claims 1 – 3, wherein the promoter sequence is active in plant cells.
5. An isolated polypeptide capable of providing diplosropy function to a plant or plant cell and wherein the polypeptide comprises a sequence having at least 90% sequence identity with SEQ ID NO: 12.
6. The isolated polypeptide according to claim 5, wherein the polypeptide comprises a sequence having at least 50% sequence identity with SEQ ID NO: 3.
7. A genetic construct comprising a polynucleotide according to any one of claims 1 - 4.
8. A nucleic acid vector comprising a polynucleotide according to any one of claims 1 - 4, or a genetic construct according to claim 7.
9. A plant, plant part or plant cell comprising the polynucleotide according to any one of claims 1 - 4, the genetic construct according to claim 7, and/or the nucleic acid vector

according to claim 8, wherein the polynucleotide, construct and/or vector is present and/or expressed at least in a female ovary.

10. The plant, plant part or plant cell according to claim 9, wherein the polynucleotide,

5 construct and/or vector is present and/or expressed in a megasporocyte mother cell and/or in a female gamete.

11. A seed of a plant according to claim 9 or 10, wherein said seed is an apomictic seed of said plant and/or wherein said seed is a clone of the plant on which it developed.

10

12. A method for conferring diplospory on a plant, plant part or plant cell, comprising the step of:

a) transforming said plant, plant part or plant cell with a polynucleotide comprising a nucleic acid sequence as defined in claim 1 sub (a), the polynucleotide comprising a chimeric gene according to any one of claims 1 - 4, a genetic construct according to claim 7, and/or the nucleic acid vector according to claim 8.

13. The method according to claim 12, further comprising the step of regenerating a plant, wherein the polynucleotide comprising a nucleic acid sequence as defined in claim 1 sub (a), the polynucleotide comprising a chimeric gene according to any one of claims 1 - 4, the genetic construct according to claim 7 and/or vector according to claim 8 is present and/or expressed at least in a female ovary.

14. A method for conferring diplospory on a plant, plant part or plant cell, comprising the step

25 of:

a) modifying an endogenous polynucleotide or a fragment of a polynucleotide, preferably of a Vacuolar Protein Sorting-associated protein gene in the plant, plant part or plant cell such that after modification the plant, plant part or plant cell comprises a nucleic acid sequence as defined in claim 1 sub (a).

30

15. The method according to claim 14, further comprising the step of:

b) regenerating a plant, wherein the nucleic acid sequence as defined in claim 1 sub (a) is present and/or expressed at least in a female ovary.

35

16. A diplosporous plant, plant part or plant cell obtainable or obtained by the method according to any one of claims 12 - 15.

17. A method for producing apomictic seed, comprising the steps of:

- a) transforming a plant, plant part or plant cell with a polynucleotide comprising a nucleic acid sequence as defined in claim 1 sub (a), the polynucleotide comprising a chimeric gene according to any one of claims 1 - 4, a genetic construct according to claim 7, and/or the nucleic acid vector according to claim 8 to produce a primary transformant;
- 5 b) growing a flowering plant and/or a flower from said primary transformant, wherein the polynucleotide comprising a nucleic acid sequence as defined in claim 1 sub (a), the polynucleotide comprising a chimeric gene according to any one of claims 1 - 4, the construct according to claim 7 and/or vector according to claim 8 is present and/or expressed at least in a female ovary; and
- 10 c) pollinating said primary transformant in order to induce production of seed, preferably with pollen of a tetraploid plant or with self pollen of said primary transformant, wherein preferably said plant, plant part or plant cell is capable of parthenogenesis.

15 18. A method for producing clones of a hybrid plant, comprising the steps of:

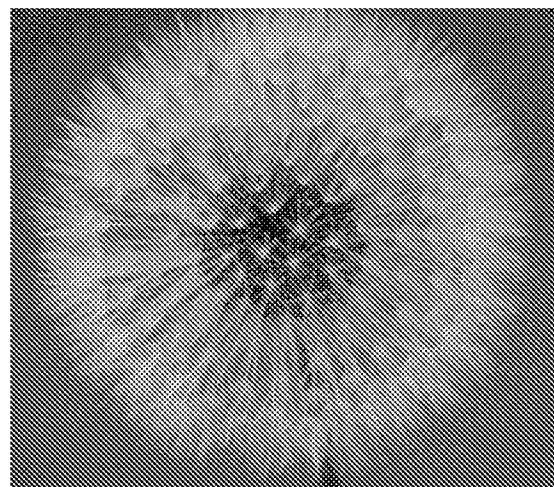
- a) cross-fertilizing a sexually reproducing plant with pollen of a plant according to claim 9, 10 or 16 to produce F1 hybrid seed;
- b1) selecting F1 plants that comprise and/or express the polynucleotide comprising a polynucleotide sequence as defined in claim 1 sub (a), a polynucleotide comprising a chimeric gene according to any one of claims 1 - 4, or a polypeptide according to claim 5 or 6 at least in a female ovary; and
- 20 c) harvesting seed.

19. The method according to claim 18, wherein the method further comprises at least one of

- in between step b1) and step c), a step b2) of pollinating said selected F1 plants in order to induce production of seed, preferably with pollen of a tetraploid plant; and
- after step c), a step d) of growing a hybrid clone plant from said seed.

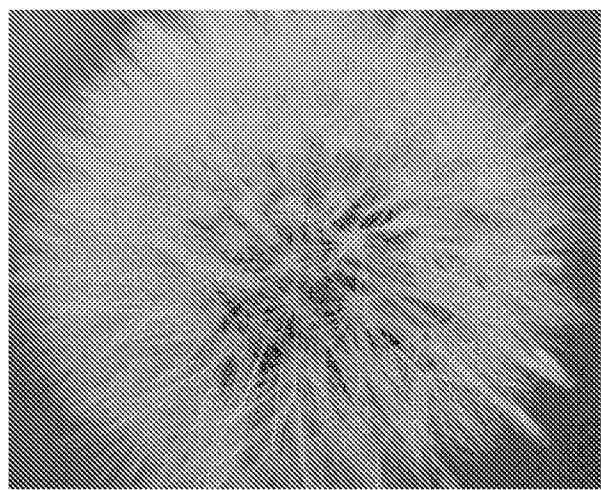
20. The method according to claim 18 or 19, wherein the F1 plant is capable of

- 30 wherein said clone is an apomictic clone.


21. The method according to claim 13, 15, 17 or 18, wherein the nucleic acid sequence as defined in claim 1 sub (a) is present at least in a megasporangium mother cell and/or in a female gamete of the female ovary.

35

22. A hybrid plant obtainable or obtained by the method according to any one of claims 18 - 20.


23. Use of a polynucleotide according to any one of claims 1 - 4 for inducing diplospory, polyploidization and/or apomixis in plants.

1/3

Figure 1A

2/3

Figure 1B

Figure 2

SEQUENCE LISTING

<110> Keygene N.V.
<120> Diplosropy gene
<130> P6069699pct
<150> NL2015398
<151> 2015-09-04
<160> 13
<170> PatentIn version 3.5
<210> 1
<211> 23361
<212> DNA
<213> Taraxacum officinale
<400> 1
ttttcaccta gaagagcaca accctttca agtgaagcac acactcgaag tgtatttccg 60
tatattcagtc cagctggaaa cagaagacca ttaatgatat tttagcaaga aagctttcat 120
tcatttggtc atcatagcag catcctactt cctacaacat tgtatttga aaaatctacc 180
aattaaatag caatatcatc caaatacaaa gcaagttca ctgctatata ttgctaaacc 240
tctcttaat ccctagatat aataagggca aaaaagtggc acatatgtac cttaactctg 300
tcatttggatg ataaatgtt ttttaagtt agtataaacc tggaaattgtg ctaatcaca 360
tgggttgaa ttgttggcaa attctattta ttaataaaat cataggtaaa acaatgacat 420
ataaaactatt ttactctacc atttgacaac cactcttgcgtat gttactcact gattatata 480
caccccaccc catataatca gataatcaact tccaaaaagc atatccaacc acccctctat 540
attttcaacta actatcccaa ttgcctgtct ataaattcag aattaataaa tctactcagc 600
tgattgattt tgaataaata ataatgacac attgcataact gatagataaa gttctgcagc 660
acccaaatca aatgtcctaa aaccttaagg tgaagaacac agcccaaagg aattgaagat 720
cgacatatac tcttaacag ttccttaata tcaatgacaa aactgaatcg aatttaacgg 780
ggggaaaaat aaatacacca atttcataac taaaacacc tggtaatcc tcgcgactac 840
aaatcaaaac agctgaatat ttaaccaaga gaaaaataa aaaccctagt tgatcgcatt 900

2016318051 10 Oct 2022

gacatctgag ctacacacat ccaattacat aacgaaaaat acgaatcaga agtttacgaa 960
acgaaacaag atctagtcaa taaagaaaac tgaaactaag acagatcaga aaagtggttt 1020
ctcgaacgta cctgatcgaa gtgaagatgt cagatctgat aaactggtat cttgtagtaa 1080
aagatgaatc gagagataaa aatgaagaac gaatgcagaa ttgtaatata aaatacacaa 1140
aactcaagat ttatttctgt tttatgttga aaatttgaat gaaaatgatt ctaacagaga 1200
aagggtttgg tcttccttt ctgtttctct gtcaacaaca atttagggaa ggcgtagaga 1260
gatgagagca gacagcgcac ctttgcgcgg agaattctg ggatatatct atttatttcc 1320
cttttacctt tctttcatt atgtttttt tttttcttc agaaaattca aactttcttt 1380
ttcaatattc tgagtacgct aatttctagc tggcatgttag caagtcttaa tttctagctg 1440
gcatgttagca agtctttgtt ggggtgtata gcatttcct cttttaata gtaagtgaaa 1500
atgacttaat agggtaaaaaa cgttcgaac ttgtccatat ttggtcatta tcctattttt 1560
tgtacacaat acaccattaa gatttatatg accggtaaag tttcgtccat tgccgatttt 1620
cataggtaat catcgtaaaa tcagtaagca acctcatgaa tcacccactc ctgcccac 1680
aaccacagcc gaagcttcat ttgagccct ggatgaaaat ctcttcgtt atctaacc 1740
actctgttat ttactccat ccacccccc caaatcaccc ccaacattaa tcttcctcc 1800
gttctaccac caccaatcct ctcaagattc atccttcgtt atcgtccgtga cgtttccag 1860
caaaacccat gtccaccacc gcccgtca aaccagtccg gaaattcccg ccatcgtgcc 1920
cggatgtaac cccgcccgtca aaccagtccg gaaatcaaca acacaacccc ctgtttgca 1980
tcaccagagc ttgaatccgg gtcgtggagt tcgatttaaa ctatctcaa ctcaaaatct 2040
ggtaacatta gcagctagtt ccaccaatca taccctgtat ttgcattcta ggtttccaaa 2100
tcacgattcc tcatacatga acaactggtc taatcaagaa gaagacaacg acgtgggtg 2160
tcttgatgac tctacaattha atgaaacctc gattcatccg ggtacccaaa tcacaagagt 2220
gtgaaaggag gaattcggat aaaatcctca attccatccc acctcgggccc gagaaagttg 2280
agcaaggctg ctcatgaaca tgaagtgcgt gaggatgggtg aaatgtggat taaagtgcct 2340
agaaacacaa atttggttta cgggaaccat caaaacggca atagtttaa tcctaattgg 2400

2016318051 10 Oct 2022

gatcaaggga agaaaagaag aaatgaaggg atataggagg tggttcaatc gattaagcta 2460
ttaggagatg gggtcatgaa gatgctgact gatttcagga gggtgctgac tgatttcacg 2520
atgattacct attaaaaccg gtaaatggac gaaacttaac cggtcatata aaccttaatg 2580
gtgtattgtg tacaaaaaaaa taggataatg accaaatgtt gacaagttcg aaacgttttt 2640
accctattaa gtcattttcc ctaatagtta actaattatt ctttcggct ctaaattatt 2700
ttttgttata atttcttcta aatagactgg tttatcttcc ttaattactg tatgaaacat 2760
ttcacaaact tattactttt taaaaatata tcataattct caagataaaa agtaagataa 2820
aagaattaat atatctatgt gttacaaatc aaaaaatgtat aaattgttgg atgccgtatg 2880
attttgcac gactaaaagt taacatatta tttctaggc attttaata ataaagaaac 2940
tgacttatat atatgtaaca tattattgt tcataatttag tcattatata tcatttgcata 3000
tattattaaa tttgttacaa tttttatata ttagccacta caatttgcaa ttgcaggtca 3060
tagtacccaa atgtaaacaa ttgcaacaag ttcgatggta taatgtgaca aaaaaatata 3120
atgaataaaat atgtttcaa acatttttt ttatatttag ccactacaat ttgtcatctg 3180
agttggaata aatatgtttt caaacattct ttttttaaat tcaaaatgaa tggcgtcg 3240
taaatcacag caatcactta ttatgatttt acattattgt gaactaaaat aaaacttctc 3300
gacgaaatac atatattgtt tataatatct ttacttccgg tagtcgtgtt tttaaaatata 3360
attcaatctt attatatgtt caattaaata ggttaattaa taaaacataa ttattatattt 3420
aaatataattt attgatagat acaaaaaata gaagtttagta tagctaaatg gaaaaaaacc 3480
ataaaaaaaat gattaatagg ttattgggtt catattttt ctaaacgcta aacatataatg 3540
gttctaaaaa aatgtctgtat gaatgttcaa aatatggtac aaaataatgt ctcaagaact 3600
gtaacatcct taatttttag aagttatgtt ttaagttaaa attaactaat taggaccta 3660
tttggtaagt tttaggataa taatgaaaga aataaagaga ctcaggtta ttttgcattt 3720
ttgacaagta gagggaccac taatgaaaaa tgtggaaatt aaaagcctgg aactctttc 3780
cagcttctaa gatcgcgaga gaaagagagc agtggaaaggg aggggchgatt ttgagagcaa 3840
accaagaaca agagctaaat tctgatcatt gaagagatc ggagtgatac taaagaggat 3900

2016318051 10 Oct 2022

tcaagcacaa aaaggtaaga aatcatcttc tatttacaag aaattcgaaa ttgatgttga 3960
gggttagaaac ccaaaatcga aatcagatga aattgaaggt ttaagggctg gattctaacc 4020
tcttttggtc attagaagtg atttctagct tttgctcacc tttgaattga ttatttgaag 4080
gttttgggaa agatcaccat gaacttagaa tttgcttattg gggtttgatt atatgctttg 4140
attccatccc ttagacatgt cataaagcct gttaatgagt gataagaagt attgctaaaa 4200
ggtaggact ttagacccaa agtttggaaag ttgcaagaaa ttggaaaaga gaagctgcct 4260
agactgcgga cacgggtcgt gtcccacagg ctggaatcat tttgagttc gatttcttta 4320
ttttttatc caattccaaat aattccaaat gcaataagct tagatatgtat gataaatgag 4380
ttgcacaaaa gttgaatata tttggaaata cccaaaggta tttggcatt tttaaatgacc 4440
tttagactat tgttttgttag aaaacaaacg aaggagcata taggaaggag gtctagctgg 4500
gggttgcaag tatctgaaaaa cctctacaac ctaaggtagt tacgtgtgat tcatttcccc 4560
tctttgaggg tatgtttatg tgataggaat ctatgtatgc aaagtaggtt gttattgtaa 4620
aggaaatgt tagtcttct agttcaggt actatgttgc tatgtatgtatgatgatgatg 4680
tatgaagata tgaatgcttag aaagaatgtg tacgaaatga atgagaatgt tgtccggact 4740
atgagagcct cgcaaggggg cctagaggat tctattggaa cggtacccctcc ctccgcgaaa 4800
tagaactcct aatgtgtatg agagccttgg tggactgatt tggacttcc accttggcct 4860
agacttgggg tggttcctaa taggacatag accctaagtg taaaggaatg atcattgaag 4920
gggatcccga tatattgtgg ataatggcac aagaattaaa tagaattgtatgatgatgatg 4980
attgaattta aatgaatgtt ttagattata tccgcgtatc tcaccagacc ttgtctgata 5040
tggttgggg tgccatgtat tccaggtatg agttctcatg cataggagat ttggatattt 5100
tgaagttata ttagcaagtg gaatgaagac ccgggtgtta tccattctcc aattcagttt 5160
atactatggt tgttttgtat acaagttgtt aaataccca aacttaatta catctttga 5220
aagtaaatgt ttatgtatgt taaatagttt taaactgtatg atgtttctt ggttaaacca 5280
tagtcataaaa aaaatatttt aaaaagttat gaaagggtgg ggtgtttcaa gaacagtccg 5340
acagcggccc tcctccgacg gtgttcccg gcgagttcct ttctactccg gctagttcc 5400

2016318051 10 Oct 2022

ccattattgg attaacctat tactgcacct ctccctccgt ctcgaacatg tcacattgtt 5460
ctcggttctc tctgccatga ccataacaac aaacatatgt atagttgtgt gtaggcattg 5520
agtttaaacg gaggagaaaa tatgccatgg ccagctcacc cgctgtcgcc atcccagcca 5580
gcattagccc agccgtcgct cacatccacc gaaaagctga tttccacatc gtcgctcccg 5640
gccgtcacct acacgttaggt tcgtaagttt ccaatatctt agttgcgttt tcggatggct 5700
gataaaaatg catccgttga caaggaagat attgtgattt gtgagtaaac tattttgctg 5760
gaggaaggtg agttagatca catggcgagc atggtaagat gtgaggtggg taaatttcca 5820
ttcaattact tggggcttcc catagggca aacatgaaat tatctaaaca ttggaacatt 5880
atagttgata agtttgagaa aagattatca aactggaaag ctgagaattt gtcctttagg 5940
ggcggctga ct当地gataaaa atcggtgatg gggagcttc cgttgttttta tttctcgatg 6000
tttagggctc cgaagaaagt ggtcgataag ctagaaggga taagaagaag gttcttatgg 6060
ggcggtaaga agtcggaaaa aaagattcac tgggttcgt gggagaaggt gataaaaatca 6120
aaagataaaag aaggtttagg ggtgaatgga ttgagcagca tgaatatggc cttgctagtg 6180
aaatggttt ggcggctcaa aactgaaagg gacagcctgt gggtagatg tgtcacggct 6240
tgtcataata tcaaacttat tcatggaaa cgggtggcta aagtttcctt gaaaggagta 6300
tggtggaaca tcatgagctg tggtaagag taaaaacga aaggaatttc tggtagtca 6360
aagtttagtaa ggcaactggg aaacggcaaa cacacgcatt tttggaagga tagatggta 6420
cacaacaaag tttaaaaga tgaccttcg gagttgtaca aaatagaagg ggacaaaaat 6480
tgtatggtaa accaaagact ggttggac aacaacgaga aaatattcaa gcaagcttgg 6540
gactggaaaa gaccgatcag gagaggaaga gaaaccaaag aactcgaaac ttaataatt 6600
ttgacaaatg ggatacaatt aaagggaaata gaagataatt ggagatggaa ggagggatcg 6660
gacggaaat ttccggggg aaaattgagg aaactcttgc ttatcagga gcaggccgag 6720
gtttaggtg gattcgattt gatcaattgg gtcccttgc aggtgaattt cttgcctgg 6780
aggttggaaac aagagcgagt tcctgtgatg tggtaatttcaaaatgggg ggtatatgtg 6840
gaatccaaaa tatgtaaaat ctgtcaacag gaagaagagg aaaccgaaca tgctttttc 6900

2016318051 10 Oct 2022

2016318051 10 Oct 2022

cataagctga atactcatat cactcacatt tatggtaac accaatatgc catttcttct 8460
atgcccctt cctcttatt tatttatttg taactggtc tgaggcatgt tttctcgct 8520
ttgatctctt tatgactcct tcaatatttc gccatattat atattcgat caatatccag 8580
tgaatttctt atatctgatg tcattttat gtgaagaaca tactgatcac aatctatgct 8640
attgaaattt tgctctcatt ttaatgcaga ggaagtgttt ttggaaaatg tggagttat 8700
tctggaagct tttgattatc ttgaacttcc gtttgctcta aagcaaggtg atcaataata 8760
tccgtaaact ttcaagtttc aatactttgt ttatattgtt attttgatg tggttctca 8820
tttttgggtt ggttgcatt atttgacaca tgtgagtggt tgataggacg ggttgggagg 8880
ctaagcatta gaattccttg gaaaaagctt ggttgggatc ctattataat aatcttagag 8940
gatataattag tttgtgcctc tcaacgtgag gatgaagagg taagtagtat ctcattcaa 9000
ggtataataa gtatttgca tctccattat attatataac ttttcaacta tgtgaacagt 9060
tatcctttt gtagtggagt gttgatgatg ttgaaagacg agaattttct ggaaaaaaagg 9120
ccaaacttgc tgcagcagaa ttggcaaagt tatcgcaacg tgtatgtggt gagtgactat 9180
tttccatttc tatgtttcat tgttataact cctgttattc attgtggact atgataataat 9240
gcattaattt aaagaagttg aagactacca ttgctggtag gctttgtatt ttagtgaat 9300
agtaactatg tttgccagt cctatatgta aattaaacag cttttcagc tttcttca 9360
gttggcagtc ttttaatgc tcagatcttc cagagttta taagatcacc ttttactat 9420
actttttat tggtaggg aaaagtcagt gttagttat catagctata tacttatatt 9480
cactgttaat gcatttaatt ctttcatccc aaaagatgca ttttttgac acaatacata 9540
ataaaaaatgt tggatttgg tcaaataaa aaaatattca tttatgaggt caaaataaag 9600
atttttat tttgaaccag aatcaaatt tcggatatta aataacaata gttaatggga 9660
aaacacatta agaaatgtt cttgtcgat atgtatatgg atatatggga atatggatc 9720
agtgacattc ttggatacac cttttttt tttgcataa aaccagtaaa atctttca 9780
cattattgt gctaataatgt tgtcttttc tgcagataat cagactggga aatcatttat 9840
gtcatacatt actgccaagg tagtgagatt tcatgttgct tgaacttgg 9900

2016318051 10 Oct 2022

aaaagtcata tgccctgttt tccgtttac ttatcatgt aatcttagttt tcttaatctt 9960
catttgaat cagggttgat ttacgtgt aatggctg a tagttgtgtc actagtattt 10020
atttatctat ttattccat ccagattatt gatggcattc aagtcaccat caggaatgtc 10080
catatcgat atagagatat ttcaaatgaa aaatccaaa ctgtatgg tgtgaagttg 10140
gctagttga ctgcaatgaa gcaaaactat gctgggtata cctcttttc ttactctaca 10200
gtcaatcaca tacttaaatt ttcacaaaac tcttaatgac tttgatataat gtatataat 10260
cttcaggta ttaagtggaa aggtgagagt tggccaagta aacaaaattt ttgagataca 10320
aggtttggaa atatactgta aaacctttca tggatcttca acagacatcc atactgaaaa 10380
tggtaagac tccatggcaa tggtggtgc aagttatgtat aatgtatgaaat atgctactt 10440
gttggccca gtcaacgtat ctgcttctt ttcggatgtc atcatgcact tgtaccatct 10500
cataacaaat tttcttagatt tttattgtta tggatgtactt tgcaggtgaa taggtctgga 10560
aggctggaga ataatgcagc acaatactcg gttgatattt agttgtctgg cttggtagt 10620
tagttcctta actttctaa tcataattaa ttatgttattt attatgtcag attatcta 10680
atgttagtat gtcaccattt ttaggtattt tccctagatg aagatcattt gcagcaaata 10740
ctgtatctat atgaatatct atgcacatgt cggctaagag agaagtgttgg ggattgctt 10800
ttcaccacct tattttttttt aattacattt tcattatcct tttattgttt tttaagata 10860
tggacgat cgtccttggg ggaaacctat atcagagaga caattggat ggcagataca 10920
gtgggtggcat tatgctcaac actctgtgtt atctgtatgtt cgtaaaagac tgaagaaaac 10980
ttcatggaaa taccttggag aacgtctgt a agtttattt tttatgttattt tttaacat 11040
acctgcaatg tttttatgtat gaaatcttga aatctgttac atgtacagag gcagaaaac 11100
acggatgtt aatctgtaca aattgaaact cgaatgtctt cggaaaagac aggtgagttt 11160
tcatgattt aacatcaagg tgtatgtatgtt ttaaacat ttttttttta tgaattatgt 11220
tcagccctt gatgtatgtt ttttttttta ttaaacat ttttttttta tgaattatgt 11280
agaagatata ttgagttaca gatctgctgc tgagaatgaa cttcaggat gattaagatc 11340
attgttattt gatcttataa cacatgcatt tattttactt ataccttttta tttaagacta 11400

2016318051 10 Oct 2022

tgaaaatgta ggagttcttg gtggattcac cttctggtat tggaggtat gaagtgaata 11460
ctaccattga caagtcaatg gatgatgacc aaacatctgg caaaccgcaa ggatggttga 11520
aatggctgtc ccgtggatag ctaggtgctg gaggtacaga cgattccagc cagtttctg 11580
gtgttggttc agatgaagta atcaaggtaa ggtgaaatga tttcaattcc aattgaatta 11640
attaatcatt atattaattt gatacaggat atttatgagg caacaaagtt tcacccgtct 11700
cctccctg tcttggatgc ttctggaact gatagggttc ttttgcaccc catcaaatgc 11760
tctatacatc aaatttctgc aacacttcgc aataagtatg acgtattaaat taattaatta 11820
aatatctaattat tatctaattt tctttatagt tttgtaagac ttacttctt tttctaggaa 11880
gttggatcga gctattggtg aagtgggtt tgagggaaat gttgtggagt gcatgatttg 11940
ggaggaatct gctgttgttta ctgcatcaat caattctgtt gagatgatta atccattaaa 12000
caatcaagcc attttactta taaaagggt gtgtgttctt tttgtttttg ttacatggaa 12060
agtcttgagt tatttatttt tgaatcttt tctatttctt tcaggtcatc tctgaggaga 12120
gttttcttga agaggagaaa ccgtctttaa atatccaagc ttacattcca caagcaaatc 12180
gtgagggtga cttgacattt aaggtacccc accttgcatt tttgaaaaaa tatttcttg 12240
tgctataaat ttctgataat tacagtact cttaaacttc attttaggtt ttgcttgagc 12300
cgattgaagt gacgtgtat ccaacatatc ttgttaattt catggagcta tatactgtgt 12360
tgggttccta tacctctcat gaagaaaggg tcagttttt catttctcaa agtagatttc 12420
ttttaagaac cttctggaag atgcagattt gaaatgtat ctagatagtg aattcaatgt 12480
ttctcatata aaaacactga acatactta ccttatgaga ttttgaataa caactccat 12540
tagttaatg ttacaggtcc taaactcgct taatggata aatgtatgtaa agtcacgtct 12600
aatatccaaa gccaagtatg tcacatctacta tacctttagg gtcttagtaat gggattgata 12660
gcaacttcat gtttaagct atatctatct cttctttctt tttgttttgc aggtatattt 12720
tgtcaggccg gaagagaatg atgtggata ttagtttgat aaacatcaag ataaatattc 12780
catggagaa tggaaactca gagatgcata aattggtaat ttaatttctt attacatgg 12840
ctacaaactc acattatttg cattaacttt aaacaaaaac atccaggtac ttgaattaac 12900

2016318051 10 Oct 2022

agctgtcacc tttgcattca agcgcgatat cggctttt gcaccagata tcaatgtacc 12960
atctcaattc atgaggaatc tgattgatga caattttca aacgagcttc tagaaggaac 13020
tcacattcaa gatctgtacg atctttgga aatcaaata atcgacttcc aggtcagcat 13080
atcccatcat ctctcatctt tcacatcaact gatgtttgac tttgactttt actttgactt 13140
cctgcagata aacttgggg tgccttcta tccatatact tttcctatct tggagaaact 13200
caatgcctct tctgctttat catggtgcat tgttcaggac gaatcttac taaaagcact 13260
agaggttaggt aaacggtaaa tctcacattt actaattact gttgattttt ttggcacact 13320
ttttaccatc aataattgggt ttcaggtta tgtattgggtg gctaccctt tggcacatgt 13380
gtcaccatca ataattggct cattttaga actagttgaa agcatgaaca tgctgcatca 13440
tacttcacaa ttggcgcca catcagcaac ctcgtcaatt gaaccaagga actctagcag 13500
tatctctgtt attgctaatt tggagtctgc tagcatcatt gttgaccttggaaatggctt 13560
agaagcttagc tgcacactaa ctgtgtctct tcaggacttggatgagga tggtagtat 13620
gaaatccaca caatcttctt ggtatgtac aaggattta aaagtaactt ctcggttggaaatgggt 13680
ggaaagtggatgaccttataat atgtctgcct caaagtactt cacctaatgatgggtctt 13740
tggtgtctt gtgctacatt atgatggtaa tttgagcata tggtagtggatcttggatct 13800
tcattgctat ccacatatttggattgctt ggttggatgtt tctggaaagcttccacata 13860
tagtccttca aatgcacaaa atcaagattt tgtggacagt aacagtaaca ctatactctc 13920
agattcttataatgacttcc agagggttgg ttgttccaaa atttcagttt atcattaccc 13980
ttttgttaca atatacaatg acagatctct tcttaacctc gatacttcac ttattaaat 14040
caagaagggtt cataagacaa atagttcaaa gttgagggca aaaaaggata atcatcaagt 14100
aggtgctcta gttgtaatga atcttgcatttcaacgatttcaacttccagtttgcatttgc 14160
ttcatccatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc 14220
gaactttctg gatgtgttat tttcaacttgcatttgcatttgcatttgcatttgcatttgcatttgc 14280
tcagactctca caagactctc tggggggccc tgcttcaacttgcatttgcatttgcatttgcatttgc 14340
cattcgtgtg agaaaaggaa accatggaaat cggaaacttggat ttttagtgcatttgcatttgcatttgc 14400

2016318051 10 Oct 2022

ctgcatattg ccaactgagt tcctggctgc actcattggt tacttctcat tgcctgattg 14460
gagctactca aatccaaatg agtcatcacc tactactacc aacaccaata ccaataacaa 14520
cagcatcagt ttcacttaca agttttagat attggactcg gttttattta cacctgtggc 14580
taatcctgat cacgagttt taaagcttaa tattccacag atgtactgca cattcattga 14640
tagcattgat tcagacactc tggtaaaga aatccctta gagtgctctg ttccagttgg 14700
atttactgga aatcagaatt attgtctgaa tgtatttggg agggatttat ctctacatca 14760
tattatttgt cgaaaagaca atgcttctga agtgacaagt gtcagcttga tcgcgcctt 14820
tagtggcgat atatggatca caataccata tgaatcta tcttctttagt caacatgtat 14880
catgtcaagg gttagtaat gtcagttac tggtaaggt aaatattttc taccaaactc 14940
tgagtttgt tcatgttga tacttgatta atgcaatggt gtttcatttt tccaggaaga 15000
gaaatacttg gctgcattgg agcattacag gatgttgc accaattctc atctgttggc 15060
aatctatcca cttgtttcac ttctgtatgtc tcagagtttca aatattttaa agaaaattat 15120
gtggttccag ttcccattga atcttcaact gtcagcttta cagaaatcag atgctctgtt 15180
caatccatgt cagtagaact ttactctgac aagatgaatg gtaacagact tatcgccaaa 15240
tccgacatga aattcgcattt gggatatca atgaaaacag acaagcctct ttctctttagt 15300
atatcattca cttgtttcac actttcctca cttcttacct ctgttgcctt actggaaatgc 15360
acatcatgtt ccaaaaatgt accggttctc aacatgcagt tcttgatgtc agatgatgg 15420
aaaaaccacc tgcgattctc cttccattgt gttaacattt gtttgcctt gtctgaatgg 15480
agtcaagttt ttgacctggt caattcttgc tgtgaacctg caatccagaa tgaggaaccg 15540
aaaaaatcca catcagctcc gtttctcggt gttgatactg cagaaaactc acctcaatcc 15600
accactgtct ccagctatcc atcttagaa gatcggtttt cattaaccgt aaagtcggat 15660
cttattgggt taaaaatccg tattcctgtt caagtttctg gagaagtagt taaatacttt 15720
ggggccccac aagttcgaga gcagagttt gttacaggaa gagatcacgg aagtttctg 15780
tttattttatc tacaatgtt gtcactgag gtgaacatga agggcgaaac ggttaatttg 15840
aagtcgaatc tggggaaagc aatgggaaca gttgaactgt ttcagaacaa gagtgcctat 15900

2016318051 10 Oct 2022

tcttgcccc ttttcagtt actggaaatc gatatagaag ccgaatctgg taatgatgat 15960
atggaccgca tgcatttaaa gacagagatt cactgtgata atcttgatgt ttggctctca 16020
catcatgcat tttacttctg gcaaactatg ctgttatgt ttccggaagg ttccggatcc 16080
gaatctcctc aacttccagt tggcagtgtc aatttcagat tccacttacg aaaactctcc 16140
attctttaa cagatgaaaa ggtatgtaaa ctgtaaactg taaagtaaac tgtttctca 16200
tattaaaaaa tataatgaaa ctaattcaa gtttttaatt agtggagctc caatggcct 16260
ttattggaga ttctcatggg aagttgtta tttcacggaa tcataactgc aaacatgatg 16320
gaagggtcaa tcgacagtga cttcaagtc aactacaaca acatccataa agtcctatgg 16380
gagcctttc tcgaaccatg gaagttccaa ataaccttaa gaagacaaca aggaaaaagc 16440
accctcgaga acagtccagt catgaccgat atccgcctcg agtcatcaac aaacctaacc 16500
atcaatgtca ccgaatcctt catcgaggc gctttcagaa cattcgacat gatcaaagac 16560
gcctcagatc tcataagtct taacattctt cctgaaaaca attcaagatt gacaaaaccc 16620
catacaaatg aaaacacact cgcaataga tacgcccctt acacactcga aaacttgaca 16680
tcacttcctc tggtattta catctaaaaa ggtgaggggt tcaatatgac atcattgaaa 16740
gatggaaaac acgtgcagcc aggctgtca tatccgtga atattgataa caaccggaa 16800
gaacaaacgt ttgggttag gcctagtc tctactgaca atctagggtgg cgacatgcaa 16860
ttcgctgatg ctcaacatca ttatatagtt gttcaacttg aaggaacttc tacacttcg 16920
gctccagttt ctattgatct tggtgggtc agcttcttg aggtggattt ttctactaat 16980
ataggacttg atgttctaa aggtggctat gttgttcctg tagtaatcga tgttcagtc 17040
caacggtaca caaagctagt ccgcttgcac tcaacggtac gtttatttct ttccactcct 17100
aatatatata tacatatata tatatatata tattgatgtg atgacgtggc aggtcatact 17160
gacgaatgca acatcaatgc cattgaagt acggttcgat atcccatgg gtgtatctcc 17220
caagattcta gaccctgtat accccggcca tgagttcctt cttcctctac atttagcaga 17280
atcagggcga ataagatggc gtccattagg aagcacttac ctatggagtg aagcttacag 17340
catttcaaatttctctaa atgaaagcaa gattggacat ttgcggtcgt ttgtctgtta 17400

2016318051 10 Oct 2022

tccttctctt ccaagtagcg accccttcg gtgttgtg tccgttcatg atgtgtgtt 17460
gccatctgct ggaagggtaa taaacaagag gggatcatct tcacatctgt ataatattaa 17520
tactcatgat catggtgaca agatagagaa ccaggatctc tcgaataaga ggtgtattca 17580
cttgattact ttgagtaatc ctttgatagt gaaaaactat ttgccagttg aagtgtctgt 17640
ggtgattgag agtggtggag tttcacgtag catgctgctt tcagaggtt 17700
ttatcagtta tcttattata aactttgaca ttttcttaat gtattgtttt ataacatatg caggtgaaa 17760
cttttttta tcattttgtat tcttcacatg atcttcgtt aactttttag atacacgggt 17820
tttagaccttc tcttttgaag tttccacgtg ctgaaaagtt cagtggattt gctaaattca 17880
gtggaaacaaa gtttcttct tcagaatcca tcaactttgc tgctgataat tctaaagg 17940
ctgcacactt actttctca tctcccttt tctcttttac attaaaagaa gctgatgtgt 18000
ctttgttag gtccattata tgtgacaatg gaaaaggtaa tggatgcatt ctctgggct 18060
cgtgaaatct gcatattgtt gccccttta ttgtacaact gctgtggttt tccccttacg 18120
attgcaaatt cgactaatga tctcacaatg cgtgacactt tgccatg 18180
ttatgatttg gatgaagagg acccgaaaaa gggcaaaaaa gatggctaa gcctttgtt ttccaaccaa 18240
gtttccaata atgatcctat gagtaatctt gtttccacta gaaaggaatc tttcacctca 18300
tctggatcaa ccaaaaaaaa catcgacaca caaaaaccgt cttaacacga tcagggaaaa 18360
agtcaacttt cgcatagtc acaacttgac tttgacgaaa caactcgcaa aaaagtcaac 18420
ttccgcatgt attctccgaa ccctaacatc gcttcgagtg agatcatggt gagagttgt 18480
cgatgccggt ctgatgctga catggcaagt acctcagact acacgtggc cagtcaattc 18540
ttcctggtcc caccagccgg ttcaaccaca gtcctgtcc cccgatcatc aaccaatgct 18600
tcataatgtat tatcagttgc ctctagtgct atttccgggc catattctgg aaggacaagg 18660
attatcaatt tccagcctag atacgttac agtaatgcat gcagtcagga cttgtgctat 18720
aggcagaaag gttccgactt tatataccat ttgaaagcag gacaacactc ccataatccat 18780
tggacagaca taacaaggta catcaatcat ttcccctaa ctttctgtta ccaaattcac 18840
atgcttatgt ggcagttgca taaaataaaa cagggagttt ctgggtctg ttcgtttcga 18900

2016318051 10 Oct 2022

tgagccaggg tggcagtggt caggctgctt tttccagaa catctaggtg atacacagct 18960
gaagatgaga aactatgtta gtgggcagt tagtatggtt cgttagagg tccaaaatgc 19020
tgacgatgca atcagagatg acaagattgt tgggaaccct catggtaat ctgggacaaa 19080
tttgcattttt ttgtctgatg atgatactgg ctttatgcca tacagggtt ataaatttctc 19140
aaaggaggtt agttacttac tccatttttc atttctaatt ctttccattt gatctatgtat 19200
ataagttgg taaaatgttg ccagaggtt cgtatccacc aacaaaaatg tgaagcattt 19260
gagactgtta tacattcata tacgtcttgc cttacgcat gggatgaacc ctcctaccca 19320
catcgtaa ctgttgaggt atgcatttga ttaaaaaca gttggctatt aaatttattca 19380
tatattcatt ctgttgtaa atctccaagg tgtttgcgtt gagggttagt gggcttaca 19440
ctctagatga tgctaaagag tacaacctg tggtttacc ttcaacctcc gaggtaaatt 19500
tgtaattttt acaaacatgg atgggttaaa tctgttaacta actactctt catgatttct 19560
tttggtagaa acctgaaaga aggttgctaa tatctgtcca tgctgaagga gcattgaagg 19620
tcctgagcat cattgattca agctatcata tatttgatga tgtaaaaatc ccacgttctc 19680
ctcggttaac tgagaaaaga gaatacgacc aaaaacaaga aagttcactt ctatcaag 19740
aaagagtatc gatttccatt ccattcatttgg gatattctgt tatgagctct caaccacagg 19800
taccattact ttatacaaattt atcttgctta tatgtgggttga atttcaccat tcttataaaa 19860
tgtattttgtt agaggttgct ttgttgcattt gcaaggaaca caatgattga cctggttcaa 19920
agtctggacc agcaaaatct ttccttgaaa atctcctt tacagattga taaccaactg 19980
ccaaccacac cctaccccgat tatattatct ttgcaccatg agtataaaca actcccaacc 20040
tctcagataa aaaacaaaga tgagcctgtt ttctcattgg ctgcagcaaa atggaggaat 20100
aaagatagag ctttgctttc attcgagcat ataaacttaa ggtacatgtat tataacaata 20160
tgtcaataaa tagacagtca gaaatttagtc aattactgag aattttgggtt gttgcagaat 20220
ggcagatttc catcttgagc ttgaacagga tgtgattttt agtctgtttt atttctccaa 20280
ggcagttcc tcaaggttcc atagcagagg aatgccacat atggattcag tcgtgcattcc 20340
tcttcctca aacttgagtg gaaataaagc aactaaattt gctggaaaaga ctgaaattga 20400

2016318051 10 Oct 2022

gggtgaaagt ttccctctt taccatcaat agtgccaatt ggtgcaccat ggcagaaaat 20460
atatctcctg gcaagaaaac agaagaaaat atatgtggaa cttcttgaag tggcccccatt 20520
cactttaacc ctaaggtaag acgatcgaca ctcagagggg catatgtgta aatgtgttga 20580
attggtcttt ttttcctgca gctttcgag cagtcctatgg atgctaagga atggaataact 20640
tacatcagga gaatatctta tccatgttaag tgtgaccatt ggaatagggt tactgatagt 20700
agtaaagagt aatttgtatg ggattgcaga gaggtctgat ggctcttgct gacgtggagg 20760
gagcacggat ccatctaagg cggttaacaa tctctcatca gttggccagc ttggaatcca 20820
tacgagagat cttaatcata cattataccc gccaacttct ccacgaaatg tacaaggtta 20880
gattacatct ctacatatat aaatcttcaa ttgtgattat ttttctttt cttcttcagg 20940
tattttggttc agctggggta ataggcaacc ccatgggaaa cgcaagaagt gtaggacttg 21000
gcatccgaga cttcctctca gttccagcca gaagcttcat gcaggtataa aataaataat 21060
taaatattaa atccaaggtta attagtaatg tcaattttaa ttatatcgca gagccccgca 21120
ggacttatca cggggatggc acagggaaact acaagtcttc taagcaatac ggtttacgcc 21180
ataagtgtatg ctgccaccca agtcagtaga gccgcacaca aggtatatat atatatacat 21240
tatattatac tttctcaat tctaagattt catcatttac ttgaagggca ttgttgcatt 21300
tacaatggac gaccccccatt ctgcagcaga aatgggaaa ggtgtataa atgaagtttt 21360
ggagggggctg actggcttc tccaatcacc aataagagga gctgaaaaac acgggcttcc 21420
aggagtcctt tcaggtatacg cactaggagt aacgggtcta gtggcaaggc cagccgccag 21480
catactggaa gtaacagaaa aaaccgccccg cagcataaga aaccgaagca aactctacca 21540
catccgcctc cgggtccgccc tcccgagacc gctaaccccc aaccaccacc cgttaaaacc 21600
ctactcggtt gaccaaggcag tcggcctctc cgtcctcacc aataccaatt ccaattccga 21660
ttccgacctc aaagacgaaa ccctcgctt ctccaaatcc ctcaaacaatggcaattt 21720
cgtcattatc acccaacggt tactcctcat tggttaccc tcgagcctaa cgaatttagg 21780
tcaacccaat ttcaaaggcg tccctgcgga ccccgattgg gtgggtgaag ccgagataac 21840
gttggatagt gtgatacacg tggatgttga tggagaggtg gtgcataatttgcggagtag 21900

2016318051 10 Oct 2022

ttctgatgtg gtggtagac agaatgtgg tgggaagcag cggtggata atccgtgcc 21960
gctgttcag acgaatttgg agtgtttagg gaaggaggag gcgggggagt tggtgaaggt 22020
gttgttggtg acgattgaga gagggaaagga gagaggggtgg ggccgggggt gtgtgtaccg 22080
tctgcatcag agtaatgtt agtgatgtat atttttttc tacatataaa gttactatag 22140
gagaaaaagg actggatatt atattataca tacctgaaac aaggaaacgt tttcttcaa 22200
aattttggct gtattattat tttgtcgacc atgttggct aaaatggcca attatttact 22260
tatgacatgg taaaaaaata ttgggtgttt gttttgtata attacaattt atattagtt 22320
cgatgcaatg taagattgta gaaagcgcta ccgtataaaa caacataagt catgaggtt 22380
cacccatgt gggtcaaggg aacaaaaaca ttttaaacgt ttttcagatt tgcattcca 22440
gccgcctata actaccattc taattcttccat ccgacatctt aacacgatat agggattttt 22500
actttacttg tcaaaacttg aagttgacag tttgataata tccagtcctc ttttccaata 22560
gtaacttttc cagccgccc taactatcat tctttctttg ttataactat gttctatcta 22620
atttagttgt tttttattat ttttgataaa aatatgtttt agttgtttct gattttgttt 22680
atattaattt attattgttt ttttgctaa aacatataa atttggtttg aattttgtct 22740
atgtatagtt ttatgataa attattgtt aatttagccg gttaaatgaa attttcggc 22800
caagcatgaa catttcgatg aacgaacgca catgctttt ataggttatac tacggagca 22860
cgtgcttcaa tttcatattt gcattcaata atccattgaa ctacttgtaa ttttgctcta 22920
gttccttgcc agagtggttt tctttattat agggatattt tcatttataat ggtgactttt 22980
tctaaaaaaag gtaaacattt ttttagattt gcaaataatc ggtcataagg actggaaaaaa 23040
tcaaaaaacaa caatgatgca ttttactaaa aaaaacaata gtgacaaaat atgaacaaaa 23100
tcagaaataa tgacgttttataaaaaat aacgactaaa tatagacaaa acgagaacta 23160
agttatcctt gtaagttatt atccctgat tatattatca aacaaatttc gtatgacaca 23220
atacaggctt aaaaacctac ctcaactact tacatccgcc aaaatttaca tcttatctat 23280
tcatattaaa cctatactt gaaatttga actccatgaa ttaaatgcta aaatttctaa 23340
aatgatgaaa accctaattc a 23361

2016318051 10 Oct 2022

<210> 2
<211> 11799
<212> DNA
<213> *Taraxacum officinale*

<400> 2
atgtcagatc tgataaactg taagcaacct catgaatcac ccactcctgc cgccacaacc 60
acagccgaag cttcatttga gcccctggat gaaaatctct tctcggatct aaccccactc 120
tgttatttac tccaatccac ctccccaaa tcaccccaa cattaatctt tcctccgttc 180
taccaccacc aatcctctca agattcatcc tttctcatcg ccgtgacggtt ttccagcaaa 240
acccatgtcc accaccgccc accgtcaaacc agtccggaaa ttcccgccat cgtccccgga 300
tgtaaccccg ccgtcaaacc agtccggaaa tcaacaacac aacccctgt tttgcatcac 360
cagagcttga atccgggtcg tggagttcga tttaaactat cttaactca aaatctggta 420
acattagcag ctagttccac caatcatacc cctgatttcg attctaggtt tccaaatcac 480
gattcctcat acatgaacaa ctggtctaatt caagaagaag acaacgacga tgggtgtctt 540
gatgactcta caattaatga aacctcgatt catccgggag tgatactaaa gaggattcaa 600
gcacaaaaag gcattgagtt taaacggagg agaaaatatg ccatggccag ctcacccgct 660
gtcgccatcc cagccagcat tagccagcc gtcgctcaca tccaccgaaa agctgatttc 720
cacatcgctg ctccggccg tcacctacac gtagggtcgg ctccgaagaa agtggtcgat 780
aagctagaag ggataagaag aaggttctta tggggcggtt agaagtcgga aaaaaagatt 840
cactgggttt cgtgggagaa ggtgataaaa tcaaaagata aagaaggttt aggggtgaat 900
ggattgagca gcatgaatat ggccttgcta gtgaaatggt tttggcggct caaaactgaa 960
agggacagcc tgtgggttag atgtgtcacg gcttgcata atatcaaact tattgatggg 1020
aaacgggtgg ctaaagcttc cttgaaagga gtatggtgga acatcatgag ctgtgttcaa 1080
gagttaaaaa cgaaaggaat ttctgtggag tcaaagtttag taaggcaact gggaaacggc 1140
aaacacacgc atttttggaa ggatagatgg ttacacaaca aagttttaaa agatgacctt 1200
ccggagttgt acaaaataga agggacaaa aattgtatgg taaaccaaag actgggttgg 1260

10 Oct 2022	gacaacaacg agaaaatatt caagcaagct tgggactgga aaagaccgat caggagagga	1320
	agagaaacca aagaactcga aacttaata atttgacaa atggataca attaaaggaa	1380
	atagaagata attggagatg gaaggaggga tcggacggga aatttcggt gggaaaattg	1440
	aggaaactct ttgcttatca ggagcaggcc gaggttgatg gtggattcga ttggatcaat	1500
	tgggtcccct tgaaggaaga agagggaaacc gaacatgctt tttcaggtg tgcacatgcg	1560
2016318051	catcaggtgt gggactggtt caagatgtgg tcgggtctga tgcggaaat ccctctaaac	1620
	ttcagatcca tggaggcgga gatcaaggct ggtgctggtg aaaaaaaatc ggtgaaacta	1680
	ggaatggctt tggcttatgt gatgctgtgg actatctgga aaatcaggaa tggtgagtc	1740
	ttcaacaaca gaaaagcgag ggcaatgaac acgacggatg agaaatccat ctcctaccgg	1800
	ccgacttcac cagcggcgcc tccctctcca tctccggcgc cctctccagc gaccgctccc	1860
	tctccaccgg cgacgtcttc tccagagccg gcgaccacaca gccccatgct aattggcact	1920
	gagggaaatgt ttgaaggttt agtacggcag ctgatattag gttatcttgg ccaatataatt	1980
	aaagatatac acagagaaca actcaagatc acactgtgga atgaggaatg gttttggaa	2040
	aatgtggagt taattctgga agctttgat tatcttgaac ttccgtttgc tctaaagcaa	2100
	ggacgggttg ggaggctaag cattagaatt cttggaaaaa agttggttg ggatcctatt	2160
	ataataatct tagaggatat attagttgt gcctctcaac gtgaggatga agagtgaggat	2220
	gttgatgatg ttgaaagacg agaattttct ggaaaaaaagg ccaaacttgc tgcagcagaa	2280
	ttggcaaagt tatcgcaacg tgtatgtat aatcagactg gggaaatcatt tatgtcatac	2340
	attactgccca agattattga tggcattcaa gtcaccatca ggaatgtcca tatcgatata	2400
	agagatattt caaatgaaaa atcccaaact gtattttgtg tgaagttggc tagtttgact	2460
	gcaatgaagc aaaactatgc tgggttatta agtggaaagg tgagagttgg ccaagtaaac	2520
	aaaattgttg agatacaagg tttggaaata tactgtaaaa ctttcatgg atcttcaaca	2580
	gacatccata ctgaaaatgg tgaagactcc atggcaatgg tggctgcaag ttatgataat	2640
	gatgaacatg ctcacttggt ggccccagtc aacgtatctg cttcttttc ggtgaatagg	2700
	tctggaaggc tggagaataa tgcagcacaa tactcggtt atattgagtt gtctggcttg	2760

10 Oct 2022	gtattgtccc tagatgaaga tcagttgcag caaatactgt atctatatga atatctatgc	2820
	acatgtcggc taagagagaa atatggacga tatcgtcctt gggggaaacc tatatcagag	2880
	agacaattgg gatggcagat acagtggtgg cattatgctc aacactctgt gttatctgat	2940
	gttcgtaaaa gactgaagaa aacttcatgg aaatacctt gagaacgtct aggcagaaaa	3000
	cgacggtatg taaatctgta caaattgaaa ctcgaatgtc ttcgaaaaga acagccttg	3060
	gatgatgaaa ttgtaatgga gttggaccaa atggagaaag tgtctgatata agaagatata	3120
	ttgagttaca gatctgctgc tgagaatgaa cttcaggagt tcttggtgg a ttcacccct	3180
	ggtattggag gtagtgaagt gaatactacc attgacaagt caatggatga tgaccaaaca	3240
	tctggcaa ac cgcaaggatg gttgaaatgg ctgtccctg gtatgctagg tgctggaggt	3300
	acagacgatt ccagccagtt ttctggtgg tttcagatg aagtaatcaa ggatattt	3360
	gaggcaacaa agtttcatcc tgctccttcc cctgtcttgg atgcttctgg aactgatagg	3420
	gttctttga cctccatcaa atgctctata catcaaattt ctgcaacact tcgcaataag	3480
	aagttggatc gagctattgg tgaagtgg tttgagggaa atgttggatc gtgcattt	3540
	tgggaggaat ctgctgtt tactgcatca atcaattctg tagagatgat taatccatta	3600
	aacaatcaag ccattttact tattaaaagg gtcatctctg aggagagttt tcttgaagag	3660
	gagaaaccgt cttaaatat ccaagttac attccacaag caaatcgta gggtgacttg	3720
	acattgaagg ttttgcctga gccgattgaa gtgacgtgtg atccaacata tcttggtaat	3780
	ttcatggagc tatatactgt gttgggttcc tatacctctc atgaagaaag ggtcctaaac	3840
	tcgcttaatg ggataaatga tgtaaagtca cgtctaataat ccaaagccaa gtatatttt	3900
	tcaggccgga agagaatgat gtgggatatt agtttgcataaa acatcaagat aaatattcca	3960
	tgggagaatg ggaactcaga gatgcataaa ttggacttg aattaacagc tgtcacctt	4020
	gcatccaagc gcgatatcgg ctctttgca ccagatatca atgtaccatc tcaattcatg	4080
	aggaatctga ttgatgacaa ttcttcaa ac gagcttctag aaggaactca cattcaagat	4140
	ctgtacgatc tcttggaaat caaaataatc gacttccagg acgaatctt actaaaagca	4200
	ctagaggatc ttgtattggt ggctaccctt ttggcacatc tgtcaccatc aataattggc	4260

10 Oct 2022	tcatttttag aactagttga aagcatgaac atgctgcac atacttcaca attggcgcc	4320
	acatcagcaa cctcgtcaat tgaaccaagg aactctagca gatatctgt tattgctaatttggagtctg ctagcatcat tggtagcatt gaaaatggct tagaagctag ctgcacacta	4380
	actgtgtctc ttcaggactt ggatatgagg atggtagta taaaatccac acaatcttc	4440
	tggatatgta caagggattt aaaagtaact tctcggttgt tgaaaagtgg tggatgtcg	4500
	gaccttataa tatgtctgcc tcaaagtact tcacctaattt atgggtgtct tgtgctacat	4560
	tatgatggta attttagcat atggttgagt gatttggatc ttcatgtca tccacatatttggattgc tggttgagtt ttctggaaag ctatccacat atagtccttc aaatgcca	4620
	aatcaagatt ttgtggacag taacagtaac actatactct cagattcttata tagacttc	4680
	cagaggtttt gttgttccaa aattttagtt aatcattacc cttttgttac aatatacaat	4740
	gacagatctc ttcttaacct cgatacttca cttattaaca tcaagaaggt tcataagaca	4800
	aatagttcaa agttgagggc aaaaaaggat aatcatcaag tagtgctct agttgtatg	4860
	aatcttgcattc tcaacagcat tagactacat ttcatgact cttcatccat tggtgcattcttacacttc ctgtttccaa atcctttttt gctatccatg agaactttctt ggtgtgttataactg agggatttgag tctttcatca cagtggtatc ctcagactct acaagactct	5040
	ctgtggggcc ctgcttcaatc gaatcttctt ccagtgtatc acattcgtgt gagaaggg	5100
	aaccatggaa tcgaactgga ttttagtgtt caaaatgttt cctgcattttt gccaactgag	5160
	ttcctggctg cactcattgg ttacttctca ttgcctgatt ggagctactc aaatccaaat	5220
	gagtcatcac ctactactac caacaccaat accaataaca acagcatcag ttctacttac	5280
	aagtttgaga tattggactc ggttttattt acacctgtgg ctaatcctga tcacgagttt	5340
	ataaaagctta atattccaca gatgtactgc acattcattt atagcattga ttcagacact	5400
	ctgttgaaag aaatccctt agagtgtctt gttccagttt gatttactgg aaatcagaat	5460
	tattgtctga atgtattttgg gagggattta tctctacatc atattatttg tcgaaaagac	5520
	aatgcttctg aagtgacaag tgtcagcttgc atcgccctt ttagtggcga tatatggatc	5580
	acaataccat atgaatctaa ttcttcttat gcaacatgtt tcatgtcaag ggtagtaaa	5700
		5760

10 Oct 2022	tgtcagttta ctgttgaagg aagagaaata cttggctgca ttggagcatt acaggatgtt	5820
	gtcgaccaat tctcatctgt tggcaatcta tccacttggtt tcacttctga tgtctcagag	5880
	tttctcaatt taaaagaaaa ttatgtggtt ccagttccca ttgaatcttc aactgtcagc	5940
	tttacagaaa tcagatgctc tggtcaatcc atgtcagtag aactttactc tgacaagatg	6000
	aatggtaaca gacttatcgc caaatccgac atgaaattcg catgtggaat atcaatgaaa	6060
2016318051	acagacaagc ctctttctct tgcataatca ttcaacttggtt tcacacttcc ctcacttctt	6120
	acctctgttg tcttactgga atgcacatca tgtaccaaaa atgtaccggg tctcaacatg	6180
	cagttctga tgtcagatga tggtaaaaac cacctgcgat tctcccttcc ttgtgttaac	6240
	atttgggtgt tcttgcgtga atggagtcaa gttgttggacc tggtaattc ttgctgtgaa	6300
	cctgcaatcc agaatgagga accggaaaaa tccacatcag ctccggtttc tcgtgttgc	6360
	actgcagaaa actcacctca atccaccact gtctccagct atccatctt agaagatcgg	6420
	ttttcattaa ccgtaaagtc ggttattttt ggtgtaaaaa tccgtattcc tggtaagtt	6480
	tctggagaag tagttaaaata ctttggggcc ccacaagttc gagagcagag ttttagttaca	6540
	ggaagagatc acggaagttt tctgtttattt tatctacaaa gtaggtgcac tgaggtgaac	6600
	atgaagggcg aaacggtaaa ttgttgcg aatctggga aagcaatggg aacagttgaa	6660
	ctgtttcaga acaagagtgt ccattcttgg ccccttttc agttactgga aatcgatata	6720
	gaagccgaat ctggtaatga tgatatggac cgcatgcatt taaagacaga gattcactgt	6780
	gataatcttgc atgtttggct ctcacatcat gcattttact tctggcaaac tatgtgttt	6840
	atgtttccgg aaggttccgg atccgaatct cctcaacttc cagttggcag tgtcaatttc	6900
	agattccact tacgaaaact ctccattctt ttaacagatg aaaagtggag ctccaaatgg	6960
	cctttattgg agattctcat gggaaatgggg ttatccacg gaatcataac tgcaaaatcg	7020
	atggaagggt caatcgacag tgaccccaa gtcaactaca acaacatcca taaagtccta	7080
	tgggagcctt ttctcgaaacc atggaagttc caaataacct taagaagaca acaaggaaaa	7140
	agcaccctcg agaacagtcc agtcatgacc gatatccgcc tcgagtcatc aacaacaccc	7200
	aacatcaatg tcaccgaatc cttcatcgag gtcgcttca gaacattcga catgatcaa	7260

2016318051	10 Oct 2022	gacgcctcg atctcataag tcttaacatt cttcctgaaa acaattcaag attgacaaaaa	7320
		ccccatacaa atgaaaacac actcgcaat agatacgccc cttacacact cgaaaacttg	7380
		acatcacttc ctctggatt ttacatctca aaaggtgagg ggttcaatat gacatcattg	7440
		aaagatggaa aacacgtgca gccaggctgt tcatatcccg tgaatattga taacaacccg	7500
		gaagaacaaa cgtttgggtt taggcctagt cattctactg acaatctagg tggcgacatg	7560
		caattcgctg atgctcaaca tcattatata gttgttcaac ttgaaggaac ttctacactt	7620
		tcggctccag tttctattga tcttgggt gtcagcttct ttgaggtgga ttttctact	7680
		aatataggac ttgatgttc taaaggtggc tatgttgttc ctgtagtaat cgatgtttca	7740
		gtccaaacggt acacaaagct agtccgctt tactcaacgg tcatactgac gaatgcaaca	7800
		tcaatgccat ttgaagtacg gttcgatatc ccatttggtg tatctccaa gattctagac	7860
		cctgtatacc ccggccatga gtttcctctt cctctacatt tagcagaatc agggcgaata	7920
		agatggcgtc cattaggaag cacttaccta tggagtgaag cttacagcat ttcaaataatt	7980
		ctctcaaatg aaagcaagat tggacatttg cggtcggtt tctgttatcc ttctcttcca	8040
		agtagcgacc ctttcggtg ttgtgtgtcc gttcatgatg tgtgttgcc atctgctgga	8100
		aggtaataa acaagagggg atcatctca tctctgtata atattaatac tcatgatcat	8160
		ggtgacaaga tagagaacca ggatctctcg aataagaggt gtattcactt gattactttg	8220
		agtaatccct ttagatgtaa aaactatttg ccagttgaag tgtctgtggt gattgagagt	8280
		ggtggagtt cacgtagcat gctgcttca gaggtgaaa cttttttta tcatattgat	8340
		tcttcacatg atcttcgtt aactttgag atacacgggt ttagacccctc tctttgaag	8400
		tttccacgtg ctgaaaagtt cagtgaaatt gctaaattca gtgaaacaaa gtttcttct	8460
		tcagaatcca tcaactttgc tgctgataat tctaaaggtc cattatatgt gacaatggaa	8520
		aagggtatgg atgcattctc tggggctcgt gaaatctgca tatttgcctt ctttttattg	8580
		tacaactgct gtgggtttcc ctttacgatt gcaaattcga ctaatgatct cacaatgcgt	8640
		gacactttgc cttcatgtta tgatttgat gaagaggacc cggttttggg caaaaaagat	8700
		ggtctaagcc ttttgggttcc caaccaagtt tccaataatg atcctatgag taatcttgc	8760

2016318051 10 Oct 2022

tccactagaa	aggaatctt	cacccatct	ggatcaacca	aaaaaaaacat	cggcacacaa	8820
aaaccgtctt	tacacgatca	ggaaaaaaagt	caacttcgc	atagtcaaca	acttgacttt	8880
gacgaaaaca	ctcgaaaaaa	agtcaacttc	cgcattgtatt	ctcccgaccc	taacatcgct	8940
tcgagtgaga	tcatggtgag	agttagtcga	tgccggtctg	atgctgacat	ggcaagtacc	9000
tcagactaca	cgtggtccag	tcaattcttc	ctggtcccac	cagccggttc	aaccacagtc	9060
cttggcccc	gatcatcaac	aatgcttca	tatgtattat	cagttgcctc	tagtgctatt	9120
tccgggccat	attctggaag	gacaaggatt	atcaatttcc	agcctagata	cgttatcagt	9180
aatgcatgca	gtcaggactt	gtgctatagg	cagaaaggtt	ccgactttat	ataccatttg	9240
aaagcaggac	aacactccca	tatccattgg	acagacataa	caagggagtt	actggtgtct	9300
gttcgtttcg	atgagccagg	gtggcagtgg	tcaggctgct	ttttccaga	acatctaggt	9360
gatacacagc	tgaagatgag	aaactatgtt	agtggtgcag	tttagtatgg	tcgtgttagag	9420
gtccaaaatg	ctgacgatgc	aatcagagat	gacaagattt	ttgggaaccc	tcatggtaa	9480
tctgggacaa	atttgcattct	tttgcgtat	gatgatactg	gctttatgcc	atacagggtt	9540
gataatttct	caaaggagag	gttacgtatt	taccaacaaa	aatgtgaagc	atttgagact	9600
gttatacatt	catatacgtc	ttgcccttac	gcatgggatg	aaccctccta	cccacatcgt	9660
ttaactgttg	agggtttgc	tgagagggta	gttagggctt	acactctaga	tgtatctaaa	9720
gagtacaaac	ctgtggtttt	accttcaacc	tccgagaaac	ctgaaagaag	gttgctaata	9780
tctgtccatg	ctgaaggagc	attgaaggtc	ctgagcatca	ttgattcaag	ctatcatata	9840
tttgcgtat	taaaaatccc	acgttctcct	cggtaactg	agaaaagaga	atacgaccaa	9900
aaacaagaaa	gttcacttct	ttatcaagaa	agagtatcga	tttccattcc	attcattggg	9960
atttctgtta	tgagctctca	accacaggag	ttgcttttg	catgtgcaag	gaacacaatg	10020
attgacctgg	ttcaaagtct	ggaccagcaa	aatcttcct	tgaaaatctc	ctcttacag	10080
attgataacc	aactgccaac	cacaccctac	cccggttat	tatcttcga	ccatgagtat	10140
aaacaactcc	caacctctca	gataaaaaac	aaagatgagc	ctgtgttctc	attggctgca	10200
gcaaaaatgga	ggaataaaga	tagagcttg	ctttcattcg	agcatataaa	cttaagaatg	10260

2016318051	10 Oct 2022	gcagattcc atctttagct tgaacaggat gtgattttaa gtctgtttga tttctccaag 10320
		gcagttatcct caaggttcca tagcagagga atgccacata tggattcagt cgtgcaccc 10380
		cttcctcaa acttgagtgg aaataaagca actaaattgg ctgaaaagac taaaattgag 10440
		ggtaaagtt tccctcttt accatcaata gtgccaattt gtgcaccatg gcagaaaata 10500
		tatctcctgg caagaaaaca gaagaaaata tatgtggaac ttcttgaagt ggccccatc 10560
		actttaaccc taagctttc gagcagtcca tggatgctaa ggaatggaat acttacatca 10620
		ggagaatatc ttatccatag aggtctgatg gctcttgctg acgtggaggg agcacggatc 10680
		catctaaggc ggttaacaat ctctcatcag ttggccagct tggaaatccat acgagagatc 10740
		ttaatcatac attatacccg ccaacttctc cacgaaatgt acaaggtatt tggttcagct 10800
		ggggtaatag gcaacccat gggtttcgca agaagtgtag gacttggcat ccgagacttc 10860
		ctctcagttc cagccagaag cttcatgcag agcccccgcag gacttacac gggatggca 10920
		cagggacta caagtcttct aagcaatacg gtttacgcca taagtgtatgc tgccacccaa 10980
		ggcattgttgc catttacaat ggacgacccc ccatctgcag cagaaatggg caaagggtgt 11040
		ataaaatgaag ttttggaggg gctgactggt cttctccaaat caccataaag aggagctgaa 11100
		aaacacgggc ttccaggagt ctttcaggt atagcactag gagtaacggg tcttagtggca 11160
		aggccagccg ccagcatact ggaagtaaca gaaaaaaccg cccgcagcat aagaaaccga 11220
		agcaaactct accacatccg cctccgggtc cgcctcccga gaccgctaac ccccaaccac 11280
		caccgttaa aaccctactc gtgggaccaa gcagtcggcc tctccgtcct caccaatacc 11340
		aattccaatt ccgattccga cctcaaagac gaaaccctcg tcctctccaa atccctcaaa 11400
		caaaaggca aattcgtcat tatcacccaa cggttactcc tcattgttac ctcctcgagc 11460
		ctaacgaatt taggtcaacc caatttcaaa ggcgtccctg cggaccccgaa ttgggtggtt 11520
		gaagccgaga taacgttgaa tagtgtgata cacgtggatg ttgatggaga ggtggtgcat 11580
		attgtcggga gtagttctga tgtggtggtt agacagaatg ttgggtggaa gcagcggtgg 11640
		tataatccgt tgccgctgtt tcagacgaat ttggagtgtt tagggaaaggga ggaggcgggg 11700
		gagttgttga aggtgttgtt ggtgacgatt gagagagggaa aggagagagg gtggggccgg 11760

10 Oct 2022

2016318051

gggtgtgtgt accgtctgca tcagagtaat gtttaggtga 11799

<210> 3
<211> 3932
<212> PRT
<213> Taraxacum officinale

<400> 3

Met Ser Asp Leu Ile Asn Cys Lys Gln Pro His Glu Ser Pro Thr Pro
1 5 10 15

Ala Ala Thr Thr Ala Glu Ala Ser Phe Glu Pro Leu Asp Glu Asn
20 25 30

Leu Phe Ser Asp Leu Thr Pro Leu Cys Tyr Leu Leu Gln Ser Thr Ser
35 40 45

Pro Lys Ser Pro Pro Thr Leu Ile Phe Pro Pro Phe Tyr His His Gln
50 55 60

Ser Ser Gln Asp Ser Ser Phe Leu Ile Ala Val Thr Phe Ser Ser Lys
65 70 75 80

Thr His Val His His Arg Arg Arg Gln Thr Ser Pro Glu Ile Pro Ala
85 90 95

Ile Val Pro Gly Cys Asn Pro Ala Val Lys Pro Val Arg Lys Ser Thr
100 105 110

Thr Gln Pro Pro Val Leu His His Gln Ser Leu Asn Pro Gly Arg Gly
115 120 125

Val Arg Phe Lys Leu Ser Ser Thr Gln Asn Leu Val Thr Leu Ala Ala
130 135 140

Ser Ser Thr Asn His Thr Pro Asp Phe Asp Ser Arg Phe Pro Asn His
145 150 155 160

2016318051 10 Oct 2022

Asp Ser Ser Tyr Met Asn Asn Trp Ser Asn Gln Glu Glu Asp Asn Asp
165 170 175

Asp Gly Cys Leu Asp Asp Ser Thr Ile Asn Glu Thr Ser Ile His Pro
180 185 190

Gly Val Ile Leu Lys Arg Ile Gln Ala Gln Lys Gly Ile Glu Phe Lys
195 200 205

Arg Arg Arg Lys Tyr Ala Met Ala Ser Ser Pro Ala Val Ala Ile Pro
210 215 220

Ala Ser Ile Ser Pro Ala Val Ala His Ile His Arg Lys Ala Asp Phe
225 230 235 240

His Ile Val Ala Pro Gly Arg His Leu His Val Gly Ser Ala Pro Lys
245 250 255

Lys Val Val Asp Lys Leu Glu Gly Ile Arg Arg Arg Phe Leu Trp Gly
260 265 270

Gly Lys Lys Ser Glu Lys Lys Ile His Trp Val Ser Trp Glu Lys Val
275 280 285

Ile Lys Ser Lys Asp Lys Glu Gly Leu Gly Val Asn Gly Leu Ser Ser
290 295 300

Met Asn Met Ala Leu Leu Val Lys Trp Phe Trp Arg Leu Lys Thr Glu
305 310 315 320

Arg Asp Ser Leu Trp Val Arg Cys Val Thr Ala Cys His Asn Ile Lys
325 330 335

Leu Ile Asp Gly Lys Arg Val Ala Lys Ala Ser Leu Lys Gly Val Trp
340 345 350

Trp Asn Ile Met Ser Cys Val Glu Glu Leu Lys Thr Lys Gly Ile Ser
355 360 365

2016318051 10 Oct 2022

Val Glu Ser Lys Leu Val Arg Gln Leu Gly Asn Gly Lys His Thr His
370 375 380

Phe Trp Lys Asp Arg Trp Leu His Asn Lys Val Leu Lys Asp Asp Leu
385 390 395 400

Pro Glu Leu Tyr Lys Ile Glu Gly Asp Lys Asn Cys Met Val Asn Gln
405 410 415

Arg Leu Val Trp Asp Asn Asn Glu Lys Ile Phe Lys Gln Ala Trp Asp
420 425 430

Trp Lys Arg Pro Ile Arg Arg Gly Arg Glu Thr Lys Glu Leu Glu Thr
435 440 445

Leu Ile Ile Leu Thr Asn Gly Ile Gln Leu Lys Glu Ile Glu Asp Asn
450 455 460

Trp Arg Trp Lys Glu Gly Ser Asp Gly Lys Phe Ser Val Gly Lys Leu
465 470 475 480

Arg Lys Leu Phe Ala Tyr Gln Glu Gln Ala Glu Val Asp Gly Gly Phe
485 490 495

Asp Trp Ile Asn Trp Val Pro Leu Lys Glu Glu Glu Thr Glu His
500 505 510

Ala Phe Phe Arg Cys Ala His Ala His Gln Val Trp Asp Trp Phe Lys
515 520 525

Met Trp Ser Gly Leu Met Arg Glu Ile Pro Leu Asn Phe Arg Ser Met
530 535 540

Glu Ala Glu Ile Lys Ala Gly Ala Gly Asp Lys Lys Ser Val Lys Leu
545 550 555 560

2016318051 10 Oct 2022

Gly Met Ala Leu Ala Tyr Val Met Leu Trp Thr Ile Trp Lys Ile Arg
565 570 575

Asn Gly Ala Val Phe Asn Asn Arg Lys Ala Arg Ala Met Asn Thr Thr
580 585 590

Asp Glu Lys Ser Ile Ser Tyr Arg Pro Thr Ser Pro Ala Ala Ala Pro
595 600 605

Ser Pro Ser Pro Ala Pro Ser Pro Ala Thr Ala Pro Ser Pro Pro Ala
610 615 620

Thr Ser Ser Pro Glu Pro Ala Thr His Ser Pro Met Leu Ile Gly Thr
625 630 635 640

Glu Glu Met Phe Glu Gly Leu Val Arg Gln Leu Ile Leu Gly Tyr Leu
645 650 655

Gly Gln Tyr Ile Lys Asp Ile His Arg Glu Gln Leu Lys Ile Thr Leu
660 665 670

Trp Asn Glu Glu Val Phe Leu Glu Asn Val Glu Leu Ile Leu Glu Ala
675 680 685

Phe Asp Tyr Leu Glu Leu Pro Phe Ala Leu Lys Gln Gly Arg Val Gly
690 695 700

Arg Leu Ser Ile Arg Ile Pro Trp Lys Lys Leu Gly Trp Asp Pro Ile
705 710 715 720

Ile Ile Ile Leu Glu Asp Ile Leu Val Cys Ala Ser Gln Arg Glu Asp
725 730 735

Glu Glu Trp Ser Val Asp Asp Val Glu Arg Arg Glu Phe Ser Gly Lys
740 745 750

Lys Ala Lys Leu Ala Ala Ala Glu Leu Ala Lys Leu Ser Gln Arg Val
755 760 765

2016318051 10 Oct 2022

Cys Asp Asn Gln Thr Gly Lys Ser Phe Met Ser Tyr Ile Thr Ala Lys
770 775 780

Ile Ile Asp Gly Ile Gln Val Thr Ile Arg Asn Val His Ile Val Tyr
785 790 795 800

Arg Asp Ile Ser Asn Glu Lys Ser Gln Thr Val Phe Gly Val Lys Leu
805 810 815

Ala Ser Leu Thr Ala Met Lys Gln Asn Tyr Ala Gly Val Leu Ser Gly
820 825 830

Lys Val Arg Val Gly Gln Val Asn Lys Ile Val Glu Ile Gln Gly Leu
835 840 845

Glu Ile Tyr Cys Lys Thr Phe His Gly Ser Ser Thr Asp Ile His Thr
850 855 860

Glu Asn Gly Glu Asp Ser Met Ala Met Val Ala Ala Ser Tyr Asp Asn
865 870 875 880

Asp Glu His Ala His Leu Leu Ala Pro Val Asn Val Ser Ala Ser Leu
885 890 895

Ser Val Asn Arg Ser Gly Arg Leu Glu Asn Asn Ala Ala Gln Tyr Ser
900 905 910

Val Asp Ile Glu Leu Ser Gly Leu Val Leu Ser Leu Asp Glu Asp Gln
915 920 925

Leu Gln Gln Ile Leu Tyr Leu Tyr Glu Tyr Leu Cys Thr Cys Arg Leu
930 935 940

Arg Glu Lys Tyr Gly Arg Tyr Arg Pro Trp Gly Lys Pro Ile Ser Glu
945 950 955 960

2016318051 10 Oct 2022

Arg Gln Leu Gly Trp Gln Ile Gln Trp Trp His Tyr Ala Gln His Ser
965 970 975

Val Leu Ser Asp Val Arg Lys Arg Leu Lys Lys Thr Ser Trp Lys Tyr
980 985 990

Leu Gly Glu Arg Leu Gly Arg Lys Arg Arg Tyr Val Asn Leu Tyr Lys
995 1000 1005

Leu Lys Leu Glu Cys Leu Arg Lys Glu Gln Pro Leu Asp Asp Glu
1010 1015 1020

Ile Val Met Glu Leu Asp Gln Met Glu Lys Val Ser Asp Ile Glu
1025 1030 1035

Asp Ile Leu Ser Tyr Arg Ser Ala Ala Glu Asn Glu Leu Gln Glu
1040 1045 1050

Phe Leu Val Asp Ser Pro Ser Gly Ile Gly Gly Ser Glu Val Asn
1055 1060 1065

Thr Thr Ile Asp Lys Ser Met Asp Asp Asp Gln Thr Ser Gly Lys
1070 1075 1080

Pro Gln Gly Trp Leu Lys Trp Leu Ser Arg Gly Met Leu Gly Ala
1085 1090 1095

Gly Gly Thr Asp Asp Ser Ser Gln Phe Ser Gly Val Val Ser Asp
1100 1105 1110

Glu Val Ile Lys Asp Ile Tyr Glu Ala Thr Lys Phe His Pro Ala
1115 1120 1125

Pro Ser Pro Val Leu Asp Ala Ser Gly Thr Asp Arg Val Leu Leu
1130 1135 1140

Thr Ser Ile Lys Cys Ser Ile His Gln Ile Ser Ala Thr Leu Arg
1145 1150 1155

2016318051 10 Oct 2022

Asn Lys Lys Leu Asp Arg Ala Ile Gly Glu Val Val Phe Glu Gly
1160 1165 1170

Asn Val Val Glu Cys Met Ile Trp Glu Glu Ser Ala Val Val Thr
1175 1180 1185

Ala Ser Ile Asn Ser Val Glu Met Ile Asn Pro Leu Asn Asn Gln
1190 1195 1200

Ala Ile Leu Leu Ile Lys Arg Val Ile Ser Glu Glu Ser Phe Leu
1205 1210 1215

Glu Glu Glu Lys Pro Ser Leu Asn Ile Gln Ala Tyr Ile Pro Gln
1220 1225 1230

Ala Asn Arg Glu Gly Asp Leu Thr Leu Lys Val Leu Leu Glu Pro
1235 1240 1245

Ile Glu Val Thr Cys Asp Pro Thr Tyr Leu Val Asn Phe Met Glu
1250 1255 1260

Leu Tyr Thr Val Leu Gly Ser Tyr Thr Ser His Glu Glu Arg Val
1265 1270 1275

Leu Asn Ser Leu Asn Gly Ile Asn Asp Val Lys Ser Arg Leu Ile
1280 1285 1290

Ser Lys Ala Lys Tyr Ile Leu Ser Gly Arg Lys Arg Met Met Trp
1295 1300 1305

Asp Ile Ser Leu Ile Asn Ile Lys Ile Asn Ile Pro Trp Glu Asn
1310 1315 1320

Gly Asn Ser Glu Met His Lys Leu Val Leu Glu Leu Thr Ala Val
1325 1330 1335

2016318051 10 Oct 2022

Thr Phe Ala Ser Lys Arg Asp Ile Gly Ser Phe Ala Pro Asp Ile
1340 1345 1350

Asn Val Pro Ser Gln Phe Met Arg Asn Leu Ile Asp Asp Asn Ser
1355 1360 1365

Ser Asn Glu Leu Leu Glu Gly Thr His Ile Gln Asp Leu Tyr Asp
1370 1375 1380

Leu Leu Glu Ile Lys Ile Ile Asp Phe Gln Asp Glu Ser Leu Leu
1385 1390 1395

Lys Ala Leu Glu Val Tyr Val Leu Val Ala Thr Leu Leu Ala His
1400 1405 1410

Val Ser Pro Ser Ile Ile Gly Ser Phe Leu Glu Leu Val Glu Ser
1415 1420 1425

Met Asn Met Leu His His Thr Ser Gln Leu Gly Ala Thr Ser Ala
1430 1435 1440

Thr Ser Ser Ile Glu Pro Arg Asn Ser Ser Ser Ile Ser Val Ile
1445 1450 1455

Ala Asn Leu Glu Ser Ala Ser Ile Ile Val Asp Leu Glu Asn Gly
1460 1465 1470

Leu Glu Ala Ser Cys Thr Leu Thr Val Ser Leu Gln Asp Leu Asp
1475 1480 1485

Met Arg Met Gly Ser Met Lys Ser Thr Gln Ser Phe Trp Ile Cys
1490 1495 1500

Thr Arg Asp Leu Lys Val Thr Ser Arg Leu Leu Glu Ser Gly Asp
1505 1510 1515

Asp Leu Asp Leu Ile Ile Cys Leu Pro Gln Ser Thr Ser Pro Asn
1520 1525 1530

2016318051 10 Oct 2022

Asp Gly Cys Leu Val Leu His Tyr Asp Gly Asn Leu Ser Ile Cys
1535 1540 1545

Leu Ser Asp Leu Asp Leu His Cys Tyr Pro His Ile Val Gly Leu
1550 1555 1560

Leu Val Glu Phe Ser Gly Lys Leu Ser Thr Tyr Ser Pro Ser Asn
1565 1570 1575

Ala Lys Asn Gln Asp Phe Val Asp Ser Asn Ser Asn Thr Ile Leu
1580 1585 1590

Ser Asp Ser Tyr Ile Asp Phe Gln Arg Phe Gly Cys Ser Lys Ile
1595 1600 1605

Ser Val Asn His Tyr Pro Phe Val Thr Ile Tyr Asn Asp Arg Ser
1610 1615 1620

Leu Leu Asn Leu Asp Thr Ser Leu Ile Asn Ile Lys Lys Val His
1625 1630 1635

Lys Thr Asn Ser Ser Lys Leu Arg Ala Lys Lys Asp Asn His Gln
1640 1645 1650

Val Gly Ala Leu Val Val Met Asn Leu Asp Leu Asn Ser Ile Arg
1655 1660 1665

Leu His Leu His Asp Ser Ser Ser Ile Val Ala Ser Val Thr Leu
1670 1675 1680

Pro Val Ser Lys Ser Ser Phe Ala Ile His Glu Asn Phe Leu Asp
1685 1690 1695

Val Leu Phe Ser Thr Glu Gly Leu Ser Leu Ser Ser Gln Trp Tyr
1700 1705 1710

2016318051 10 Oct 2022

Pro Gln Thr Leu Gln Asp Ser Leu Trp Gly Pro Ala Ser Leu Asn
1715 1720 1725

Leu Ser Pro Val Ile Asn Ile Arg Val Arg Lys Gly Asn His Gly
1730 1735 1740

Ile Glu Leu Asp Phe Ser Val Gln Asn Val Ser Cys Ile Leu Pro
1745 1750 1755

Thr Glu Phe Leu Ala Ala Leu Ile Gly Tyr Phe Ser Leu Pro Asp
1760 1765 1770

Trp Ser Tyr Ser Asn Pro Asn Glu Ser Ser Pro Thr Thr Thr Asn
1775 1780 1785

Thr Asn Thr Asn Asn Asn Ser Ile Ser Phe Thr Tyr Lys Phe Glu
1790 1795 1800

Ile Leu Asp Ser Val Leu Phe Thr Pro Val Ala Asn Pro Asp His
1805 1810 1815

Glu Phe Ile Lys Leu Asn Ile Pro Gln Met Tyr Cys Thr Phe Ile
1820 1825 1830

Asp Ser Ile Asp Ser Asp Thr Leu Leu Lys Glu Ile Pro Leu Glu
1835 1840 1845

Cys Ser Val Pro Val Gly Phe Thr Gly Asn Gln Asn Tyr Cys Leu
1850 1855 1860

Asn Val Phe Gly Arg Asp Leu Ser Leu His His Ile Ile Cys Arg
1865 1870 1875

Lys Asp Asn Ala Ser Glu Val Thr Ser Val Ser Leu Ile Ala Pro
1880 1885 1890

Phe Ser Gly Asp Ile Trp Ile Thr Ile Pro Tyr Glu Ser Asn Ser
1895 1900 1905

2016318051 10 Oct 2022

Ser Tyr Ala Thr Cys Ile Met Ser Arg Val Ser Lys Cys Gln Phe
1910 1915 1920

Thr Val Glu Gly Arg Glu Ile Leu Gly Cys Ile Gly Ala Leu Gln
1925 1930 1935

Asp Val Val Asp Gln Phe Ser Ser Val Gly Asn Leu Ser Thr Cys
1940 1945 1950

Phe Thr Ser Asp Val Ser Glu Phe Leu Asn Leu Lys Glu Asn Tyr
1955 1960 1965

Val Val Pro Val Pro Ile Glu Ser Ser Thr Val Ser Phe Thr Glu
1970 1975 1980

Ile Arg Cys Ser Val Gln Ser Met Ser Val Glu Leu Tyr Ser Asp
1985 1990 1995

Lys Met Asn Gly Asn Arg Leu Ile Ala Lys Ser Asp Met Lys Phe
2000 2005 2010

Ala Cys Gly Ile Ser Met Lys Thr Asp Lys Pro Leu Ser Leu Asp
2015 2020 2025

Ile Ser Phe Thr Cys Phe Thr Leu Ser Ser Leu Leu Thr Ser Val
2030 2035 2040

Val Leu Leu Glu Cys Thr Ser Cys Thr Lys Asn Val Pro Val Leu
2045 2050 2055

Asn Met Gln Phe Leu Met Ser Asp Asp Gly Lys Asn His Leu Arg
2060 2065 2070

Phe Ser Leu Pro Cys Val Asn Ile Trp Leu Phe Leu Ser Glu Trp
2075 2080 2085

2016318051 10 Oct 2022

Ser Gln Val Val Asp Leu Val Asn Ser Cys Cys Glu Pro Ala Ile
2090 2095 2100

Gln Asn Glu Glu Pro Glu Lys Ser Thr Ser Ala Pro Val Ser Arg
2105 2110 2115

Val Asp Thr Ala Glu Asn Ser Pro Gln Ser Thr Thr Val Ser Ser
2120 2125 2130

Tyr Pro Ser Leu Glu Asp Arg Phe Ser Leu Thr Val Lys Ser Asp
2135 2140 2145

Leu Ile Gly Val Lys Ile Arg Ile Pro Val Gln Val Ser Gly Glu
2150 2155 2160

Val Val Lys Tyr Phe Gly Ala Pro Gln Val Arg Glu Gln Ser Leu
2165 2170 2175

Val Thr Gly Arg Asp His Gly Ser Phe Leu Phe Ile Tyr Leu Gln
2180 2185 2190

Ser Arg Cys Thr Glu Val Asn Met Lys Gly Glu Thr Val Asn Leu
2195 2200 2205

Lys Ser Asn Leu Gly Lys Ala Met Gly Thr Val Glu Leu Phe Gln
2210 2215 2220

Asn Lys Ser Val His Ser Trp Pro Leu Phe Gln Leu Leu Glu Ile
2225 2230 2235

Asp Ile Glu Ala Glu Ser Gly Asn Asp Asp Met Asp Arg Met His
2240 2245 2250

Leu Lys Thr Glu Ile His Cys Asp Asn Leu Asp Val Trp Leu Ser
2255 2260 2265

His His Ala Phe Tyr Phe Trp Gln Thr Met Leu Phe Met Phe Pro
2270 2275 2280

10 Oct 2022

2016318051

Glu Gly Ser Gly Ser Glu Ser Pro Gln Leu Pro Val Gly Ser Val
2285 2290 2295

Asn Phe Arg Phe His Leu Arg Lys Leu Ser Ile Leu Leu Thr Asp
2300 2305 2310

Glu Lys Trp Ser Ser Asn Gly Pro Leu Leu Glu Ile Leu Met Gly
2315 2320 2325

Ser Leu Leu Phe His Gly Ile Ile Thr Ala Asn Met Met Glu Gly
2330 2335 2340

Ser Ile Asp Ser Asp Leu Gln Val Asn Tyr Asn Asn Ile His Lys
2345 2350 2355

Val Leu Trp Glu Pro Phe Leu Glu Pro Trp Lys Phe Gln Ile Thr
2360 2365 2370

Leu Arg Arg Gln Gln Gly Lys Ser Thr Leu Glu Asn Ser Pro Val
2375 2380 2385

Met Thr Asp Ile Arg Leu Glu Ser Ser Thr Asn Leu Asn Ile Asn
2390 2395 2400

Val Thr Glu Ser Phe Ile Glu Val Ala Phe Arg Thr Phe Asp Met
2405 2410 2415

Ile Lys Asp Ala Ser Asp Leu Ile Ser Leu Asn Ile Leu Pro Glu
2420 2425 2430

Asn Asn Ser Arg Leu Thr Lys Pro His Thr Asn Glu Asn Thr Leu
2435 2440 2445

Ala Asn Arg Tyr Ala Pro Tyr Thr Leu Glu Asn Leu Thr Ser Leu
2450 2455 2460

2016318051 10 Oct 2022

Pro Leu Val Phe Tyr Ile Ser Lys Gly Glu Gly Phe Asn Met Thr
2465 2470 2475

Ser Leu Lys Asp Gly Lys His Val Gln Pro Gly Cys Ser Tyr Pro
2480 2485 2490

Val Asn Ile Asp Asn Asn Pro Glu Glu Gln Thr Phe Gly Phe Arg
2495 2500 2505

Pro Ser His Ser Thr Asp Asn Leu Gly Gly Asp Met Gln Phe Ala
2510 2515 2520

Asp Ala Gln His His Tyr Ile Val Val Gln Leu Glu Gly Thr Ser
2525 2530 2535

Thr Leu Ser Ala Pro Val Ser Ile Asp Leu Val Gly Val Ser Phe
2540 2545 2550

Phe Glu Val Asp Phe Ser Thr Asn Ile Gly Leu Asp Val Ser Lys
2555 2560 2565

Gly Gly Tyr Val Val Pro Val Val Ile Asp Val Ser Val Gln Arg
2570 2575 2580

Tyr Thr Lys Leu Val Arg Leu Tyr Ser Thr Val Ile Leu Thr Asn
2585 2590 2595

Ala Thr Ser Met Pro Phe Glu Val Arg Phe Asp Ile Pro Phe Gly
2600 2605 2610

Val Ser Pro Lys Ile Leu Asp Pro Val Tyr Pro Gly His Glu Phe
2615 2620 2625

Pro Leu Pro Leu His Leu Ala Glu Ser Gly Arg Ile Arg Trp Arg
2630 2635 2640

Pro Leu Gly Ser Thr Tyr Leu Trp Ser Glu Ala Tyr Ser Ile Ser
2645 2650 2655

2016318051 10 Oct 2022

Asn Ile Leu Ser Asn Glu Ser Lys Ile Gly His Leu Arg Ser Phe
2660 2665 2670

Val Cys Tyr Pro Ser Leu Pro Ser Ser Asp Pro Phe Arg Cys Cys
2675 2680 2685

Val Ser Val His Asp Val Cys Leu Pro Ser Ala Gly Arg Val Ile
2690 2695 2700

Asn Lys Arg Gly Ser Ser Ser Leu Tyr Asn Ile Asn Thr His
2705 2710 2715

Asp His Gly Asp Lys Ile Glu Asn Gln Asp Leu Ser Asn Lys Arg
2720 2725 2730

Cys Ile His Leu Ile Thr Leu Ser Asn Pro Leu Ile Val Lys Asn
2735 2740 2745

Tyr Leu Pro Val Glu Val Ser Val Val Ile Glu Ser Gly Gly Val
2750 2755 2760

Ser Arg Ser Met Leu Leu Ser Glu Val Glu Thr Phe Phe Tyr His
2765 2770 2775

Ile Asp Ser Ser His Asp Leu Ser Leu Thr Phe Glu Ile His Gly
2780 2785 2790

Phe Arg Pro Ser Leu Leu Lys Phe Pro Arg Ala Glu Lys Phe Ser
2795 2800 2805

Gly Ile Ala Lys Phe Ser Gly Thr Lys Phe Ser Ser Ser Glu Ser
2810 2815 2820

Ile Asn Phe Ala Ala Asp Asn Ser Lys Gly Pro Leu Tyr Val Thr
2825 2830 2835

2016318051 10 Oct 2022

Met Glu Lys Val Met Asp Ala Phe Ser Gly Ala Arg Glu Ile Cys
2840 2845 2850

Ile Phe Val Pro Phe Leu Leu Tyr Asn Cys Cys Gly Phe Pro Leu
2855 2860 2865

Thr Ile Ala Asn Ser Thr Asn Asp Leu Thr Met Arg Asp Thr Leu
2870 2875 2880

Pro Ser Cys Tyr Asp Leu Asp Glu Glu Asp Pro Phe Leu Gly Lys
2885 2890 2895

Lys Asp Gly Leu Ser Leu Leu Phe Ser Asn Gln Val Ser Asn Asn
2900 2905 2910

Asp Pro Met Ser Asn Leu Val Ser Thr Arg Lys Glu Ser Phe Thr
2915 2920 2925

Ser Ser Gly Ser Thr Lys Lys Asn Ile Gly Thr Gln Lys Pro Ser
2930 2935 2940

Leu His Asp Gln Glu Lys Ser Gln Leu Ser His Ser Gln Gln Leu
2945 2950 2955

Asp Phe Asp Glu Thr Thr Arg Lys Lys Val Asn Phe Arg Met Tyr
2960 2965 2970

Ser Pro Asp Pro Asn Ile Ala Ser Ser Glu Ile Met Val Arg Val
2975 2980 2985

Ser Arg Cys Arg Ser Asp Ala Asp Met Ala Ser Thr Ser Asp Tyr
2990 2995 3000

Thr Trp Ser Ser Gln Phe Phe Leu Val Pro Pro Ala Gly Ser Thr
3005 3010 3015

Thr Val Leu Val Pro Arg Ser Ser Thr Asn Ala Ser Tyr Val Leu
3020 3025 3030

2016318051 10 Oct 2022

Ser Val Ala Ser Ser Ala Ile Ser Gly Pro Tyr Ser Gly Arg Thr
3035 3040 3045

Arg Ile Ile Asn Phe Gln Pro Arg Tyr Val Ile Ser Asn Ala Cys
3050 3055 3060

Ser Gln Asp Leu Cys Tyr Arg Gln Lys Gly Ser Asp Phe Ile Tyr
3065 3070 3075

His Leu Lys Ala Gly Gln His Ser His Ile His Trp Thr Asp Ile
3080 3085 3090

Thr Arg Glu Leu Leu Val Ser Val Arg Phe Asp Glu Pro Gly Trp
3095 3100 3105

Gln Trp Ser Gly Cys Phe Phe Pro Glu His Leu Gly Asp Thr Gln
3110 3115 3120

Leu Lys Met Arg Asn Tyr Val Ser Gly Ala Val Ser Met Val Arg
3125 3130 3135

Val Glu Val Gln Asn Ala Asp Asp Ala Ile Arg Asp Asp Lys Ile
3140 3145 3150

Val Gly Asn Pro His Gly Glu Ser Gly Thr Asn Leu Ile Leu Leu
3155 3160 3165

Ser Asp Asp Asp Thr Gly Phe Met Pro Tyr Arg Val Asp Asn Phe
3170 3175 3180

Ser Lys Glu Arg Leu Arg Ile Tyr Gln Gln Lys Cys Glu Ala Phe
3185 3190 3195

Glu Thr Val Ile His Ser Tyr Thr Ser Cys Pro Tyr Ala Trp Asp
3200 3205 3210

2016318051 10 Oct 2022

Glu Pro Ser Tyr Pro His Arg Leu Thr Val Glu Val Phe Ala Glu
3215 3220 3225

Arg Val Val Gly Ser Tyr Thr Leu Asp Asp Ala Lys Glu Tyr Lys
3230 3235 3240

Pro Val Val Leu Pro Ser Thr Ser Glu Lys Pro Glu Arg Arg Leu
3245 3250 3255

Leu Ile Ser Val His Ala Glu Gly Ala Leu Lys Val Leu Ser Ile
3260 3265 3270

Ile Asp Ser Ser Tyr His Ile Phe Asp Asp Val Lys Ile Pro Arg
3275 3280 3285

Ser Pro Arg Leu Thr Glu Lys Arg Glu Tyr Asp Gln Lys Gln Glu
3290 3295 3300

Ser Ser Leu Leu Tyr Gln Glu Arg Val Ser Ile Ser Ile Pro Phe
3305 3310 3315

Ile Gly Ile Ser Val Met Ser Ser Gln Pro Gln Glu Leu Leu Phe
3320 3325 3330

Ala Cys Ala Arg Asn Thr Met Ile Asp Leu Val Gln Ser Leu Asp
3335 3340 3345

Gln Gln Asn Leu Ser Leu Lys Ile Ser Ser Leu Gln Ile Asp Asn
3350 3355 3360

Gln Leu Pro Thr Thr Pro Tyr Pro Val Ile Leu Ser Phe Asp His
3365 3370 3375

Glu Tyr Lys Gln Leu Pro Thr Ser Gln Ile Lys Asn Lys Asp Glu
3380 3385 3390

Pro Val Phe Ser Leu Ala Ala Ala Lys Trp Arg Asn Lys Asp Arg
3395 3400 3405

2016318051 10 Oct 2022

Ala Leu Leu Ser Phe Glu His Ile Asn Leu Arg Met Ala Asp Phe
3410 3415 3420

His Leu Glu Leu Glu Gln Asp Val Ile Leu Ser Leu Phe Asp Phe
3425 3430 3435

Ser Lys Ala Val Ser Ser Arg Phe His Ser Arg Gly Met Pro His
3440 3445 3450

Met Asp Ser Val Val His Pro Leu Ser Ser Asn Leu Ser Gly Asn
3455 3460 3465

Lys Ala Thr Lys Leu Ala Glu Lys Thr Glu Ile Glu Gly Glu Ser
3470 3475 3480

Phe Pro Leu Leu Pro Ser Ile Val Pro Ile Gly Ala Pro Trp Gln
3485 3490 3495

Lys Ile Tyr Leu Leu Ala Arg Lys Gln Lys Lys Ile Tyr Val Glu
3500 3505 3510

Leu Leu Glu Val Ala Pro Ile Thr Leu Thr Leu Ser Phe Ser Ser
3515 3520 3525

Ser Pro Trp Met Leu Arg Asn Gly Ile Leu Thr Ser Gly Glu Tyr
3530 3535 3540

Leu Ile His Arg Gly Leu Met Ala Leu Ala Asp Val Glu Gly Ala
3545 3550 3555

Arg Ile His Leu Arg Arg Leu Thr Ile Ser His Gln Leu Ala Ser
3560 3565 3570

Leu Glu Ser Ile Arg Glu Ile Leu Ile Ile His Tyr Thr Arg Gln
3575 3580 3585

2016318051 10 Oct 2022

Leu Leu His Glu Met Tyr Lys Val Phe Gly Ser Ala Gly Val Ile
3590 3595 3600

Gly Asn Pro Met Gly Phe Ala Arg Ser Val Gly Leu Gly Ile Arg
3605 3610 3615

Asp Phe Leu Ser Val Pro Ala Arg Ser Phe Met Gln Ser Pro Ala
3620 3625 3630

Gly Leu Ile Thr Gly Met Ala Gln Gly Thr Thr Ser Leu Leu Ser
3635 3640 3645

Asn Thr Val Tyr Ala Ile Ser Asp Ala Ala Thr Gln Gly Ile Val
3650 3655 3660

Ala Phe Thr Met Asp Asp Pro Pro Ser Ala Ala Glu Met Gly Lys
3665 3670 3675

Gly Val Ile Asn Glu Val Leu Glu Gly Leu Thr Gly Leu Leu Gln
3680 3685 3690

Ser Pro Ile Arg Gly Ala Glu Lys His Gly Leu Pro Gly Val Leu
3695 3700 3705

Ser Gly Ile Ala Leu Gly Val Thr Gly Leu Val Ala Arg Pro Ala
3710 3715 3720

Ala Ser Ile Leu Glu Val Thr Glu Lys Thr Ala Arg Ser Ile Arg
3725 3730 3735

Asn Arg Ser Lys Leu Tyr His Ile Arg Leu Arg Val Arg Leu Pro
3740 3745 3750

Arg Pro Leu Thr Pro Asn His His Pro Leu Lys Pro Tyr Ser Trp
3755 3760 3765

Asp Gln Ala Val Gly Leu Ser Val Leu Thr Asn Thr Asn Ser Asn
3770 3775 3780

2016318051 10 Oct 2022

Ser Asp Ser Asp Leu Lys Asp Glu Thr Leu Val Leu Ser Lys Ser
3785 3790 3795

Leu Lys Gln Lys Gly Lys Phe Val Ile Ile Thr Gln Arg Leu Leu
3800 3805 3810

Leu Ile Val Thr Ser Ser Leu Thr Asn Leu Gly Gln Pro Asn
3815 3820 3825

Phe Lys Gly Val Pro Ala Asp Pro Asp Trp Val Val Glu Ala Glu
3830 3835 3840

Ile Thr Leu Asp Ser Val Ile His Val Asp Val Asp Gly Glu Val
3845 3850 3855

Val His Ile Val Gly Ser Ser Ser Asp Val Val Val Arg Gln Asn
3860 3865 3870

Val Gly Gly Lys Gln Arg Trp Tyr Asn Pro Leu Pro Leu Phe Gln
3875 3880 3885

Thr Asn Leu Glu Cys Leu Gly Lys Glu Glu Ala Gly Glu Leu Leu
3890 3895 3900

Lys Val Leu Leu Val Thr Ile Glu Arg Gly Lys Glu Arg Gly Trp
3905 3910 3915

Gly Arg Gly Cys Val Tyr Arg Leu His Gln Ser Asn Val Arg
3920 3925 3930

<210> 4

<211> 909

<212> DNA

<213> Taraxacum officinale

<400> 4

gaaaccgaag caaactctac cacatccgcc tccgggtccg cctcccgaga ccgctaacc

60

2016318051 10 Oct 2022

ccaaccacca cccgttaaaa ccctactcgt gggaccaagc agtcggcctc tccgtcctca 120
ccaataccaa ttccaattcc gattccgacc tcaaagacga aaccctcgtc ctctccaaat 180
ccctcaaaca aaagggcaaa ttgcgtcatta tcacccaacg gttactcctc attgttacct 240
cctcgagcct aacgaattt aaccaacccaaat ggtcaacccaaat gaccccgatt 300
gggtgggtga agccgagata acgttggata gtgtgataca cgtggatgtt gatggagagg 360
tggtgcatat tgtcgggagt agttctgatg tggtggttag acagaatgtt ggtgggaagc 420
agcggtggtta taatccgttg ccgctgttcc agacgaattt ggagtgttta gggaggagg 480
aggcggggga gttgttgaag gtgttggtg tgacgattga gagagggaaag gagagagggt 540
ggggccgggg gtgtgtgtac cgtctgcattc agagtaatgt taggtgatgt atatttttt 600
tctacatata aagttactat aggagaaaaa ggactggata ttatattata catacctgaa 660
acaaggaaac gtttctttc aaaattttgg ctgttatttattt attttgcga ccatgttggg 720
ctaaaatggc caattattta cttatgacat ggttaaaaaa tattggtgtc ttgtttgtta 780
taattacaat ttatatttagt atcgatgcaa tgtaagattt tagaaagcgc taccgtataa 840
aacaacataa gtcatgaggt tacaccctag tgggtcaag ggaacaaaaa cattttaaac 900
gtttttcag 909

<210> 5
<211> 909
<212> RNA
<213> Taraxacum officinale

<400> 5
gaaaccgaag caaacucuac cacauccgccc uccggguccg ccuuccggaga ccgcuaaccc 60
ccaaccacca cccguuuaaaa cccuacucgu gggaccaagc agucggccuc uccguccuca 120
ccaaucacca uuccaauucc gauuccgacc ucaaagacga aacccucguc cucuccaaau 180
cccucaaaca aaagggcaaa uucgucauuu ucacccaacg guuacuccuc auuguuaccu 240
ccucgagccu aacgaauuuu ggucaacccaaauucaaagg cguccugcg gaccccgauu 300
gggugguuga agccgagaua acguuggaua gugugauaca cguggauguu gauggagagg 360
uggugcauau ugucgggagu aguucugaug ugugguuag acagaauguu ggugggaaagc 420

2016318051 10 Oct 2022

agcgguggua uaauccguug ccgcuguuuc agacgaauuu ggaguguua gggaggagg 480
aggcgaaaaa guuguugaag guguuguugg ugacgauuga gagagggaaag gagagagggu 540
ggggccgggg guguguguac cgucugcauc agaguuaugu uaggugaugu auauuuuuuu 600
ucuacauuaa aaguuuacuau aggagaaaaa ggacuggaua uuauuuuaua cauaccugaa 660
acaaggaaac guuuucuuuc aaaauuuugg cuguaauuuu auuuugucga ccauguuggg 720
cuaaaauggc cauuuauuaa cuuaugacau gguuuaaaaaa uauugguguc uuguuuugua 780
uaauuacaaau uuaauuuagu aucgaugcaa uguagauug uagaaagcgc uaccguauaa 840
aacaacauaa gucaugaggu uacacccuag uggttgcuag ggaacaaaaa cauuuuuaac 900
guuuuucag 909

<210> 6
<211> 582
<212> DNA
<213> *Taraxacum officinale*

<400> 6
aaccgaagca aactctacca catccgcctc cgggtccgccc tcccggagacc gctaaccgg 60
aaccaccacc cgttaaaacc ctactcgtgg gaccaagcag tcggcctctc cgtcctcacc 120
aataccaatt ccaattccga ttccgacctc aaagacgaaa ccctcgtcct ctccaaatcc 180
ctcaaacaaa agggcaaatt cgtcattatc acccaacggt tactcctcat tggatcc 240
tcgagcctaa cgaattttagg tcaacccat ttcaaaaggcg tccctgcggg ccccgattgg 300
gtgggtgaag ccgagataac gttggatagt gtgatacacg tggatgttga tggagaggtg 360
gtgcatattg tcgggagtag ttctgatgtg gtggtagac agaatgttgg tgggaagcag 420
cggtggata atccggttgc gctgtttcag acgaatttgg agtgttttagg gaaggaggag 480
gcgggggagt tggatgttgg acgattgaga gagggaaagga gagaggggtgg 540
ggccgggggt gtgtgtaccg tctgcatcag agtaatgtta gg 582

<210> 7
<211> 194
<212> PRT

2016318051 10 Oct 2022

<213> Taraxacum officinale

<400> 7

Asn Arg Ser Lys Leu Tyr His Ile Arg Leu Arg Val Arg Leu Pro Arg
1 5 10 15

Pro Leu Thr Pro Asn His His Pro Leu Lys Pro Tyr Ser Trp Asp Gln
20 25 30

Ala Val Gly Leu Ser Val Leu Thr Asn Thr Asn Ser Asn Ser Asp Ser
35 40 45

Asp Leu Lys Asp Glu Thr Leu Val Leu Ser Lys Ser Leu Lys Gln Lys
50 55 60

Gly Lys Phe Val Ile Ile Thr Gln Arg Leu Leu Leu Ile Val Thr Ser
65 70 75 80

Ser Ser Leu Thr Asn Leu Gly Gln Pro Asp Phe Lys Gly Val Pro Ala
85 90 95

Asp Pro Asp Trp Val Val Glu Ala Glu Ile Thr Leu Asp Ser Val Ile
100 105 110

His Val Asp Val Asp Gly Glu Val Val His Ile Val Gly Ser Ser Ser
115 120 125

Asp Val Val Val Arg Gln Asn Val Gly Gly Lys Gln Arg Trp Tyr Asn
130 135 140

Pro Leu Pro Leu Phe Gln Thr Asn Leu Glu Cys Leu Gly Lys Glu Glu
145 150 155 160

Ala Gly Glu Leu Leu Lys Val Leu Leu Val Thr Ile Gln Arg Gly Lys
165 170 175

Glu Arg Gly Trp Gly Arg Gly Cys Val Tyr Arg Leu His Gln Ser Asn
180 185 190

2016318051 10 Oct 2022

Val Arg

<210> 8

<211> 51

<212> DNA

<213> Taraxacum officinale

<400> 8

gaattcctct atgttttggaa accttcttgt tgttattccg caccacttta a 51

<210> 9

<211> 479

<212> DNA

<213> Taraxacum officinale

<400> 9

aattccaatt ccgattccga cctcaaagac gaaaccctcg tcctctccaa atccctcaaa 60

caaaaggca aattcgtcat tatcacccaa cggttactcc tcattgttac ctcctcgagc 120

ctaacgaatt taggtcaacc cgatttcaaa ggcgtccctg cggaccccga ttgggtggtt 180

gaagccgaga taacgttggaa tagtgtgata cacgtggatg ttgatggaga ggtggtgcat 240

attgtcggga gtagttctga tgtggtggtt agacagaatg ttggtggtgg tggtggtgg 300

gggaagcagc ggtggtataa tccgcccacg ccgttggcgc tggccatggc gaatttggag 360

tgttttaggga aggaggaggc gggggagttg ttgaagggtgt tggtggtgac gattcagaga 420

gggaaggaga gagggtggggg ccgggggtgt gtgtaccgtc tgcatcagag taatgttag 479

<210> 10

<211> 159

<212> PRT

<213> Taraxacum officinale

<400> 10

Asn Ser Asn Ser Asp Ser Asp Leu Lys Asp Glu Thr Leu Val Leu Ser
1 5 10 15

Lys Ser Leu Lys Gln Lys Gly Lys Phe Val Ile Ile Thr Gln Arg Leu

2016318051 10 Oct 2022

	20	25	30												
Leu	Leu	Ile	Val	Thr	Ser	Ser	Ser	Leu	Thr	Asn	Leu	Gly	Gln	Pro	Asp
	35				40						45				
Phe	Lys	Gly	Val	Pro	Ala	Asp	Pro	Asp	Trp	Val	Val	Glu	Ala	Glu	Ile
	50					55					60				
Thr	Leu	Asp	Ser	Val	Ile	His	Val	Asp	Val	Asp	Gly	Glu	Val	Val	His
	65					70				75				80	
Ile	Val	Gly	Ser	Ser	Ser	Asp	Val	Val	Val	Arg	Gln	Asn	Val	Gly	Gly
	85						90					95			
Gly	Gly	Gly	Trp	Gly	Lys	Gln	Arg	Trp	Tyr	Asn	Pro	Pro	Thr	Pro	Leu
	100					105					110				
Pro	Leu	Phe	Gln	Thr	Asn	Leu	Glu	Cys	Leu	Gly	Lys	Glu	Glu	Ala	Gly
	115					120					125				
Glu	Leu	Leu	Lys	Val	Leu	Leu	Val	Thr	Ile	Gln	Arg	Gly	Lys	Glu	Arg
	130					135					140				
Gly	Trp	Gly	Arg	Gly	Cys	Val	Tyr	Arg	Leu	His	Gln	Ser	Asn	Val	
	145					150					155				
<210>	11														
<211>	455														
<212>	DNA														
<213>	Taraxacum officinale														
<400>	11														
aattccaatt	ccgattccga	cctcaaagac	gaaaccctcg	tcctctccaa	atccctcaaa									60	
caaaaagggca	aattcgtcat	tatcacccaa	cggttactcc	tcattgttac	ctcctcgagc									120	
ctaacgaatt	taggtcaacc	caatttcaaa	ggcgtccctg	cggaccccgaa	ttgggtggtt									180	
gaagccgaga	taacgttgga	tagtgtgata	cacgtggatg	ttgatggaga	ggtgggtgcat									240	
attgtcggga	gtagttctga	tgtggtggtt	agacagaatg	ttgggtggaa	gcagcggtgg									300	

2016318051 10 Oct 2022

tataatccgt tgccgctgtt tcagacgaat ttggagtggtt tagggaagga ggaggcgggg 360
gagttgttga aggtgttgtt ggtgacgatt gagagagggg aggagagagg gtggggccgg 420
gggtgtgtgt accgtctgca tcagagtaat gttag 455

<210> 12
<211> 151
<212> PRT
<213> Taraxacum officinale

<400> 12

Asn Ser Asn Ser Asp Ser Asp Leu Lys Asp Glu Thr Leu Val Leu Ser
1 5 10 15

Lys Ser Leu Lys Gln Lys Gly Lys Phe Val Ile Ile Thr Gln Arg Leu
20 25 30

Leu Leu Ile Val Thr Ser Ser Leu Thr Asn Leu Gly Gln Pro Asn
35 40 45

Phe Lys Gly Val Pro Ala Asp Pro Asp Trp Val Val Glu Ala Glu Ile
50 55 60

Thr Leu Asp Ser Val Ile His Val Asp Val Asp Gly Glu Val Val His
65 70 75 80

Ile Val Gly Ser Ser Asp Val Val Val Arg Gln Asn Val Gly Gly
85 90 95

Lys Gln Arg Trp Tyr Asn Pro Leu Pro Leu Phe Gln Thr Asn Leu Glu
100 105 110

Cys Leu Gly Lys Glu Glu Ala Gly Glu Leu Leu Lys Val Leu Leu Val
115 120 125

Thr Ile Glu Arg Gly Lys Glu Arg Gly Trp Gly Arg Gly Cys Val Tyr
130 135 140

10 Oct 2022

2016318051

Arg Leu His Gln Ser Asn Val
145 150

<210> 13
<211> 938
<212> DNA
<213> Taraxacum officinale

<400> 13
gaaaccgaag caaactctac cacatccgcc tccgggtccg cctcccaaga ccgctaacc 60
ccaaccaccc gttaaaaccc tactcgtggg accaagcagt cggcctctcc gtcctcacca 120
attccaattc cgattccgac ctcaaagacg aaaccctcgt cctctccaaa tccctcaaac 180
aaaagggcaa attcgtcatt atcacccaaac ggttactcct cattgttacc tcctcgagcc 240
taacgaattt aggtcaaccc gattcaaag gcgtccctgc ggaccccgat tgggtggttg 300
aagccgagat aacgttggat agtgtgatac acgtggatgt tcatggagag gtgggtgcata 360
ttgtcggag tagttctgat gtggtggtta gacagaatgt tggtggtgg ggtgggtgg 420
ggaagcagcg gtggtataat ccggccgacgc cggtgccgct gttcagacg aatttggagt 480
gtttagggaa ggaggaggcg ggggagttgt tgaaggtgtt gtgggtgacg attcagagag 540
ggaaggagag agggtgtgggc cgggggtgtg tgtaccgtct gcatcagagt aatgttaggt 600
gatgtatatt tttttgtac atataaagtt tactatagga gaaaaaggac tggatattat 660
attatacata cctgaaaaca aggaaacgtt ttcttcaaa attttggctg tattattatt 720
ttgtcgtacca tggggctta aaatggccaa ttatgttactt atgacatgg taaaaaatat 780
tgggtcttg ttttgtataa ttacaattta tattcccttt tagactataa cttatgcaat 840
gtaagattgt gtataaaaca acataagtca tgagggtaca ccctagtggtt atcaaggggg 900
ctacaccccg gaacaaaaac attttaacg tttttcag 938