US 20140317075A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0317075 A1l

Deutsch (43) Pub. Date: Oct. 23, 2014
(54) METHOD AND APPARATUS TO SEARCH Publication Classification
DATA AND NOTIFY AND UPDATE A USER
(51) Imt.CL
(71) Applicant: Larry Maurice Deutsch, Cupertino, CA GO6F 17/30 (2006.01)
(US) GO6F 17/27 (2006.01)
(52) US.CL
(72) Inventor: Larry Maurice Deutsch, Cupertino, CA CPC ... GO6F 17/30483 (2013.01); GOG6F 17/30864
(Us) (2013.01); GOGF 17/3048 (2013.01); GO6F
17/2705 (2013.01)
USPC oot 707/706; 707/755
The present invention allows a user to subscribe to multiple
(22) Filed: Nov. 14, 2013 concurrent channels of syndicated content published over the
internet. The user receives notification of the content which is
new since the previous time that the user accessed a channel.
S The user can select the frequency of checking for new content
Related US. Application Data and the user can specify how far back in time to check. In
(63) Continuation of application No. 13/373,600, filed on addition, the user can specity a maximum number of changes

Nov. 21, 2011, now Pat. No. 8,589,376.

to be presented.

START

114

5

Perform
scarches

118
no
yes P 122

Record
results

5

Notify user of
new resalts

) 4

s

y

New user
requests?

M

Patent Application Publication Oct. 23,2014 Sheet 1 of 22 US 2014/0317075 A1

START

C
114
S 146
Perform ;
searches
Wait
118
no
122
yes ;

Record
results

Notify user of
new results

New user
requests?

130

Patent Application Publication Oct. 23,2014 Sheet 2 of 22 US 2014/0317075 A1

11

204

Search Service no

enabled?

208

Get list of ;

search requests
from database

212

Search requests 1o

found?

Record time since 216
last boot in data ;
store

Get pollingInterval 220
from user ;
preferences data

store

v

Get errorCount ;
from data store

FIG. 2A

Patent Application Publication Oct. 23,2014 Sheet 3 of 22 US 2014/0317075 A1

228

5

Get device
network
connection
status

i 232
Read battery ;

Level

240

5

Process retry
logic

Can device connect
and is battery
sufficient?

Reset °

errorCount to 0
and record in
data store

'

Start Search ;
Service Thread

248

FIG. 2B

Patent Application Publication Oct. 23,2014 Sheet 4 of 22 US 2014/0317075 A1

240 yes
Is battery tow? 1 308
304 ;
Low battery
processing
Get pollinglnterval
; from user preferenccs
312 data store
yes

pollingInterval
< 20 minutes?

316

pollingInterval
< 60 minutes?

328

Set errorCount to 1 +
previous errorCount
and save in data store

'

Reschedule service
to run in 10 minutes

errorCount >=
n3 ?

348

Set errorCount to 1 +
previous errorCount
and save in data storc

v

336
Reschedule service ;
to run in 50% of

pollingInterval

FIG. 3A

Patent Application Publication Oct. 23,2014 Sheet 5 of 22 US 2014/0317075 A1

352
5

Reset errorCount = 0
and save in data
store

356

5

Run service at next
regularly scheduled
pollinglnterval

FIG. 3B

Patent Application Publication

More search

Oct. 23,2014 Sheet 6 of 22 US 2014/0317075 A1
404
Search Service no
enabled? ’
408
Get list of {
search requests
from dgtabase
412
S b no
earch requests
founc?? P ; 420
\ 4
416 Terminate
; Search Service
Set total
autoHits =0

422

requests?

Perform auto
search for current
search request

v

Increments autoHits
by number found
from search

;

428

FIG. 4A

Patent Application Publication Oct. 23,2014 Sheet 7 of 22 US 2014/0317075 A1

436
5

sumWaitingForUser =
count of unviewed auto
hits from AutoHits
Table

Total autoHits >
0?

Display user 444

notification of ;

sumWaitingForUser
results

v

Update user
interface if s~

currently visible

448

sumWaitingForUser
=07

Cancel user
notification

vy "\

460

456

RETURN

FIG. 4B

Patent Application Publication

Oct. 23,2014 Sheet 8 of 22 US 2014/0317075 Al

Apply filters to
generate HTML
search request

504

v

Determine
search stop
criteria

'

Start HTML
parsing thread

Wait

ine?
Done parsing?

Timeout period
expired?

Kill HTML
parsing thread

508

512

516

yes

h

Get posted item
map from HTML
parsing results

FIG. 5A

Patent Application Publication Oct. 23,2014 Sheet 9 of 22 US 2014/0317075 A1

536
Generate RSS {
search request

L 540

Start RSS ;

parsing thread

544

yes
Done parsing?

J Wait

Timeout period
expired?

556

Kill RSS parsing f

thread

FIG. 5B

Patent Application Publication Oct. 23,2014 Sheet 10 of 22 US 2014/0317075 A1

560

no

Search results
>0?

568

numberOfHits = ;

count of Rdfltems

* /564 l

numberOfHits = 0

570

Update f
SearhRequest

Table

Convert ;
Rdfltems to
AutoHit objects

l 574

Save hits in ;

AutoHits Table

l 578
Q Return . >/
numberOfHits FIG. SC

Patent Application Publication

Lh
r—
o

I:

Oct. 23,2014 Sheet 11 of 22 US 2014/0317075 Al

Get 10 Reader ;

from URL input

i 608

Attempt to read next ;

line

More lines to o >
process?
616
Read next data ;
element
620
no
More data to P>
process?
¢ ; 640

Return
postedItemMap

624
Extract posting ID {
and posted data

FIG. 6A

Patent Application Publication

Posted items found
>= maxHits?

no
Background

Search?

Posted time available
and older than
lookBackTime?

Oct. 23,2014 Sheet 12 of 22

US 2014/0317075 Al
ves
—»
yes
—P
650
636 v ;

Add posting ID and
posted item to
postedliemMap

C

Return
postcdltemMap

FIG. 6B

Patent Application Publication Oct. 23,2014 Sheet 13 of 22 US 2014/0317075 A1

340

704

Get 10 Reader ;

from URL input

l

Initialize XML ;

parser

708

yes
End of)
document?
€S
Done parsing Y >

posted items?

Parse posted item

No. of posted items
found >= maxHits?

FIG.7A

Patent Application Publication Oct. 23,2014 Sheet 14 of 22 US 2014/0317075 A1

no

Background
Search?

lastHitId
matches?

Posted time available
and older than
lookBackTime?

FIG.7B

Patent Application Publication

Oct. 23,2014 Sheet 15 of 22

Item found in
postedItemMap?

US 2014/0317075 Al

Y¢S
& Image URL
found for item?
75
Parse posted item 2
description for ;
image URL
756
yes
— Image URL found
in description?
no
760
v S5
Set image URL in
Rdfltem

Add Rdfltem to
return list

764

FIG.7C

Patent Application Publication Oct. 23,2014 Sheet 16 of 22 US 2014/0317075 A1

768 k ?

Get next batch of
Rdfltems without
image URLs

772

no
More Rdfltems

to process?

776 < f
Return
Rdiltcms

780

Start ImageParser ;

threads

784

no ves

Wait

788

FIG.7D

Patent Application Publication

Oct. 23,2014 Sheet 17 of 22

Begin database 804

transaction

l 808
Count number of ;

rows in AutoHits
Table:
numOf{Rows

l 812

Compute number of
open slots in
AutoHits Table:
openSlots

i 816

Count number of ;

AutoHits records
being inserted:
nRecords

820

nRecords > yes

US 2014/0317075 Al

capacity of
AutoHits Table?

824

nRecords >
openSlots?

Make room in 828
AutoHits Table f
by removing

oldest records

l s

Delete all entries
in AutoHits Table

836

5

Remove oldest
AutoHit records
tfrom list being
inserted

!

FIG. 8A

Patent Application Publication Oct. 23,2014 Sheet 18 of 22

Insert AutoHit
records into table,
from oldest to
newest, filling all
open slots

I

End database
transaction

RETURN

848

840

844

FIG. 8B

US 2014/0317075 Al

US 2014/0317075 Al

Oct. 23,2014 Sheet 19 of 22

Patent Application Publication

6 "DIA
OrItr
= \}).ﬁ
o))
\oo_ I \omo_ \mwo_ % \owo_ %
0L01
Klouway Kjowapy 1oidepy depy stayduwry \
[rPuId)u| VY FIOMION IR Tomod 4y
0901
0501
feidsiq TOAIQOSURL, Y \
(5)10s532044 uonedddy
pimogkoay 108800014
M purgestg
5 0£01
0r0l OND_\

S0l

1A Sunurog

0101

\ PMod

0001 smeaeddy 3uissasoag eidi(

Patent Application Publication Oct. 23,2014 Sheet 20 of 22 US 2014/0317075 A1

1210
pd
ﬂ'//
s 9:46 pm| 1305
Search Service ON {
1 Hour 7
1310
1330
" -
Locations Favorites
1320/}
;{ﬁilboat IR x
1340 7

{uor sale &

1392 1394

FIG. 10

Patent Application Publication Oct. 23,2014 Sheet 21 of 22 US 2014/0317075 A1

~ 1210
z 5 /
i 9:46 pm
Viewing 101 - 200 |:>
Sat Jul 30 6:04 PM 1230
Day sailor sail boat - $7500 }’
Full sail and runner. Comes with trailer.

1220
Good condition.

Pasadena, MD

Sat Jul 30 5:34 PM

Cape Dory 25 - $3500

1978 Cape Dory ready to sail away.
Cape May, NJ

Fri Jul 29 3:18 PM

1995 270 Catalina- $24000
Comfortable, fun, and easy to sale.
Deale, MD

FIG. 11

US 2014/0317075 Al

Oct. 23,2014 Sheet 22 of 22

Patent Application Publication

[AANIE |
08F1 waiskg Suneiadp
CLy] 21§ vieQg
0Lyl suiug A1anQ)
S9¥1 utduyg 13077 Sursieg juatuo))

091 0ShI 0epl STP] U2U0Y) 4

weq sql liciti (v J8enJuey UAIRJY
WaN[pAsod | wisy parsod pajedIpuig dnyrepy JuNUOD
Obpl deguenparsod |

011 21507 [onuo)

S

BOCO| J0ssad0ld uonraddy

000T smeireddy Fuissadoaq endiq

US 2014/0317075 Al

METHOD AND APPARATUS TO SEARCH
DATA AND NOTIFY AND UPDATE A USER

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 13/373,600, now U.S. Pat. No. 8,589,
376, the entire file wrapper contents of which are hereby
incorporated by reference as though fully set out at length. In
turn, U.S. patent application Ser. No. 13/373,600 claimed the
benefit under 35 USC 119(e) of U.S. Provisional Application
No. 61/458,442 filed Nov. 23, 2010 by Larry Deutsch, which
is hereby incorporated by reference in its entirety.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro-
duction of the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

REFERENCE TO COMPUTER PROGRAM
LISTING APPENDIX

[0003] This application includes a computer program list-
ing appendix submitted electronically which is identical to a
computer program listing appendix submitted on compact
disc with the parent application, U.S. patent application Ser.
No. 13/373,600, now U.S. Pat. No. 8,589,376.

FIELD OF THE INVENTION

[0004] Broadly stated, disclosed in some embodiments is a
method and apparatus for searching a community/classified
posting service.

BACKGROUND OF THE INVENTION

[0005] Community/classified posting internet sites, on
which users publish items for sale or make notifications and
related web content available publicly, are popular. Tens of
millions of people make tens of billions visits every month to
these sites. Sections on the these sites may be devoted to jobs
and resumes, housing, personals, items for sale, services,
community issues, gigs and entertainment, and discussion
forums.

SUMMARY OF THE INVENTION

[0006] Inone embodiment of the invention, an application,
commonly referred to as an “app,” is described. The app
preferably runs on a mobile device, such as amobile (cellular)
telephone, a tablet device, a notebook computer, or a laptop
computer. The purpose of the app is to connect to a commu-
nity/classified posting site, search for items using user speci-
fied sections and keywords, parse information relating to the
items, select relevant data, and display selected data in a
format suitable for viewing on the particular device. In addi-
tion, the app optionally can run in the background, monitor-
ing the site for newly posted information, and informing a
user of a new item. This background search permits the user
to respond in a rapid and timely way to an item as it becomes
available, thus maximizing the user’s chances of obtaining it.

Oct. 23,2014

[0007] In more technical language, some embodiments of
this app permit the user to subscribe to multiple concurrent
channels of syndicated content published over the internet. A
web services application programming interface (API) such
as simple object access protocol (SOAP) is not required to be
supported by the posting service. Instead, the method dis-
closed herein relies on a combination of web harvesting (e.g.,
markup language scraping) and parsing of syndicated content
to extract and associate data from the posting service. The
user receives notification of the content which is new since the
previous time that the user accessed a channel. The user can
select the frequency of checking for new content while the
app conducts a background search. And the user can specify
how farback in time to check for content. In addition, the user
can specify a maximum number of changes to be presented.
[0008] Such an app has to overcome numerous obstacles.
For example, mobile devices may have batteries of limited
capacity and life, may have limited size displays, and may
have limited computing memory and power. In addition, there
may be network and communication issues such as limited
bandwidth and unreliable network connections.
[0009] Referring to FIG. 10, a sample device display shows
how, in one embodiment, the user may set up a search, via the
device, of items available on the posting site. Preferably, a
graphic user interface for the device comprises menu selec-
tors such as icons, tabs, and pull down widgets.
[0010] Selector 1210, as described above, notifies the user
that new search results are available. A status indicator 1305
may indicate that the device is performing background
searches and show the time interval between each search.
[0011] One embodiment of the display shown in FIG. 10 is
a selector 1310 that facilitates a search of the posting site. The
selector 1310 brings up a screen and interface that shows
search options and allows the user to enter parameters for an
immediate search or a background search.
[0012] Location selector 1320 brings up a screen (not
shown) and interface that allows the user to narrow search
results to items located within a specific geographic area. This
location may be saved as a favorite accessible by selector
1370.
[0013] Favorites selector 1330 brings up a screen (not
shown) and interface that may allow the user to select previ-
ously saved search requests, to access bookmarked search
results, and to perform the following operations:

[0014] Notify other users of search request or results via

email, short messaging service (SMS) messages (e.g.,
text messages), or other communication modes

[0015] Contact item poster via email, SMS messages, or
telephone

[0016] Respond to posting service

[0017] Display a geographic map of the location of

posted item

[0018] Submit an auction bid
[0019] The search keyword selector option 1340 allows the
user to enter a keyword to narrow search results to those
posted items whose descriptions contain the keyword.
[0020] Search category selector option 1350 allows the user
to enter a general category (such as “free,” “for sale,” or “for
lease™) to narrow search results to those posted items within
the category.
[0021] Search sub-category selector option 1360 allows the
user to enter a specific category (in this example “boats”) to
narrow search results to those posted items within the sub-
category.

US 2014/0317075 Al

[0022] Favorite location selector 1370 allows the user to
choose a geographic area previously saved by invoking selec-
tor 1320 (see above). Selector 1320 or 1370 optionally may
access a current location of the user via global positioning
satellite or other geo-location mechanism to use as a favorite.
[0023] Filter selector option 1380 allows the user to further
narrow search results to parameters (in this example mini-
mum price and maximum price) within a range or other
specifications.
[0024] Search selector 1390 allows the user to initiate an
immediate search. A screen displaying results, as shown in
FIG. 11 in one embodiment, may automatically appear.
[0025] View results selector 1392 allows the user to view
the results of a background search.
[0026] Search preferences selector 1394 directs the user to
one or more screens (not shown) that allow the user to display
and edit various search parameters such as, in some embodi-
ments:

[0027] Enable or disable display of thumbnails on a

result screen (such as shown in FIG. 11)

[0028] Specify a maximum number of search results to
return
[0029] Specify a look-back time interval (e.g., do not

return items posted before a specified time)
[0030] Enable or disable background searches for newly
posted items
[0031] Enable or disable visual, audible, or tactile forms
of notification of new results
[0032] Set a time interval between each background
search
[0033] The time between search intervals is a trade-off, in
some embodiments, between receiving search results as soon
as possible after postings are listed and extending battery life
of'the device. The shorter the period between search intervals,
the larger the drain on a battery. However, the longer the
interval, the less likely the user will be able to submit a quick
enough response to obtain a posted item. Obviously, this
tradeoff not a factor for plugged in devices.
[0034] Another selector, a clear saved data option (not
shown), may direct the user to one or more screens (not
shown) that allow the user, in some embodiments, to perform
one or more of the following functions:

[0035] Delete background search results
[0036] Delete favorite search requests
[0037] Delete preferred locations
[0038] Delete bookmarks and/or bookmarked results
[0039] Clear web cache
[0040] Referring to FIG. 11, a sample device display shows

how, in one embodiment, the app may display search results,
gathered from a posting site, to the user.

[0041] Notification selector 1210, when displayed, indi-
cates to the user that new search results are available on the
device. This app permits background searches to be per-
formed at periodic intervals while other app’s and functions
are running on the device. Selector 1210 may appear on a
status line while the user is running another app, while using
the device for a phone call, or while the device is in idle mode.
Inaddition to a visual selector, the user may be notified of new
search results by a sound (e.g. a ring tone) or a vibration, for
example. Upon receiving selector 1210, the user may review
updated search results.

[0042] Optional image thumbnail 1220 displays a photo-
graph, picture, or drawing on the device of an item (e.g. a
good or service), offered on the posting site, selected from a

Oct. 23,2014

user specified category and/or keyword. Reasons that the
thumbnail 1220 may not be shown include lack of a photo-
graph, picture, or drawing of the item on the posting site, a
user decision not to show thumbnails on the device (which
can reduce the size of data to be communicated from the
posting site to the device and save memory on the device),
image is too big to download, target website temporary not
responding, temporary loss of communications, and lack of
relevance of a thumbnail to the requested information.
[0043] Contents 1230 include details of the posted item.
Specifically, contents 1230 may include title of the item, date
and time posted, price, description, location, and condition.
The most relevant details may include a short summary
description and date. By “clicking” on the details, the user
may select the item to display a full posting. The user may
scroll through multiple postings, if they exist.

[0044] Aspects of this specification, comprising routines
and data structures, in addition to contributing to the opera-
tion of the app, are relevant to other types of apps. One
embodiment of the invention, included in Appendix A, com-
prises Java and XML user interface specifications.

BRIEF DESCRIPTION OF THE DRAWINGS

[0045] The features of the invention believed to be novel are
set forth with particularity in the appended claims. The inven-
tion itself however, both as to organization and method of
operation, together with objects and advantages thereof, may
be best understood by reference to the following detailed
description of the invention, which describes certain exem-
plary embodiments of the invention, taken in conjunction
with the accompanying drawings in which:

[0046] FIG. 1 is a high level diagram of a method imple-
menting the invention according to one embodiment.

[0047] FIGS. 2A and 2B combined is a diagram of a
method of performing a background search of a community/
classified posting service.

[0048] FIGS. 3A and 3B combined is a diagram of a
method of process retry logic for handling battery and com-
munication error problems.

[0049] FIGS. 4A and 4B combined is a diagram of an
asynchronous thread to perform multiple search requests.
[0050] FIGS. 5A, 5B and 5C combined is a diagram of a
procedure to execute a single search request.

[0051] FIGS. 6A and 6B combined is a diagram of a thread
to perform an markup language search of the posting service.
[0052] FIGS.7A, 7B, 7C and 7D is a diagram of a thread to
perform an syndicated content search of a posting service.
[0053] FIGS. 8A and 8B is a procedure to store the search
results in a table.

[0054] FIG. 9 is a block diagram of an apparatus configured
to perform features of the invention according to one embodi-
ment.

[0055] FIG. 10 is a diagram of a user interface for control-
ling the apparatus to perform a search of the posting service.
[0056] FIG. 11 is a diagram of a user interface to display
and scroll through search results.

[0057] FIG.12isablock diagram of a system configured to
execute some embodiments of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0058] While this invention is susceptible of embodiment
in many different forms, there is shown in the drawings and
will herein be described in detail specific embodiments, with

US 2014/0317075 Al

the understanding that the present disclosure is to be consid-
ered as an example of the principles of the invention and not
intended to limit the invention to the specific embodiments
shown and described. In the description below, like reference
numerals are used to describe the same, similar or corre-
sponding parts in the several views of the drawings.

[0059] As used in this application, the generic term “con-
tent reference” includes the concept of uniform resource loca-
tor (URL) and equivalents.

[0060] As used in this application, the generic term
“markup language” includes the concept of hyper-text
markup language (HTML) and equivalents.

[0061] As used in this application, the generic term “syn-
dicated content” includes the concept of RDF Site Summary
(RSS) sometimes known as “really simple syndication” and
equivalents. “RSS” is a family of web feed formats used to
publish frequently updated works. RSS is a web content syn-
dication format that is a dialect of XML 1.0. The RSS 2.0
specification was released through Harvard under a Creative
Commons license on Jul. 15, 2003 which is available on the
internet at the cyber law Harvard RSS website.

[0062] As used in this application, the term “data store”
includes but is not limited to the concept of a database. A data
store may be any type of information depository known in the
art accessible by data processing apparatus.

[0063] Referring initially to FIG. 9, a system is shown
which includes a digital processing apparatus 1000. This
system is preferably a mobile device (such as a cellular tele-
phone, notebook computer, tablet computer, or laptop com-
puter). The example apparatus in FIG. 9 includes provision
for input power 1010 (such as a battery and power manage-
ment IC), application processor(s) 1030, RAM memory
1090, and internal memory 1100 (e.g., non-volatile memory
such as flash memory, hard drive, CD-ROM drive, or DVD
drive). Communications may be provided by optional net-
work adapter 1085, and/or optional Wi-FI adapter 1080, to a
local area network 1120 or to a point-to-point network 1130.
In addition, optional connectivity to cellular network 1110
may be provided via baseband processor 1020 (a CPU that
manages cellular network 1110 communications), trans-
ceiver 1050 which handles the broadcast and reception of
radio signals with network or subscriber equipment, and one
or more power amplifiers 1070 which increase signal power
up to levels required for wireless communication.

[0064] Electronic visual display 1060 typically comprises
an LCD touch screen and preferably supports graphics. Data
input may be through one or more of the following agencies:
keyboard 1040 (soft or hard), touch interface or pointing
device 1045, voice (not shown), disk storage (optionally com-
prising internal memory 1100), local area network 1120,
point-to-point network 1130, and cellular network 1110.
[0065] One or more features of the computer as shown may
be omitted while still permitting the practice of the invention.
For example, apparatus pointing device 1045, such as a
mouse, is not required where the apparatus 1000 is a cellular
telephone.

[0066] FIG.12isablock diagram of a system configured to
execute some embodiments of the invention. Digital process-
ing apparatus 1000 includes operating system 1480. Appara-
tus 1000 also comprises an application processor 1030a
which in turn comprises control logic 1410. Operating system
1480 is in communication with data store 1475 (which may
include but is not limited to a database). In addition, operating
system 1480 is in communication with content parsing logic

Oct. 23,2014

engine 1465. Data store 1475 is in communication with query
engine 1470, such as a SQL based query system. In turn,
query engine 1470 is in communication with content parsing
logic engine 1465.

[0067] Content parsing logic engine 1465 generates a con-
tent reference 1420 based on user selected and/or defined
preferences (e.g., parameters saved in data store 1475). Then
engine 1465 uses reference 1420 in executing a first query on
posting site to retrieve markup language content 1425. Next,
the engine 1465 generates map 1440 where posting site item
identifiers 1450 are mapped to item data 1460. The engine
then uses content reference 1420 in its execution of a second
query of the posting site to retrieve syndicated content 1430.
This content is used to generate information to be included in
appropriate item data 1460 locations resulting in a modified
map 1440.

[0068] The content parsing logic engine passes the modi-
fied map 1440 to the query engine 1470 which in turn stores
these results in data store 1475, if the search is a background
search. Otherwise, if the search is a foreground search, these
results are displayed to the user.

[0069] The flow charts herein illustrate the structure of the
logic of the present invention as embodied in computer pro-
gram software. Those skilled in the art will appreciate that the
flow charts illustrate the structures of logic elements, such as
computer program code elements or electronic logic circuits
which function according to this invention. Manifestly, the
invention is practiced in its essential embodiment by a
machine component that renders the logic elements in a form
that instructs digital processing apparatus 1000 (that is, a
computer) to perform a sequence of function steps corre-
sponding to those shown.

[0070] Logic elements may be contained on a computer
program product which includes but is not necessarily limited
to a disk, volatile or non-volatile memory, flash memory, and
ROM for storing program modules. Program modules may
comprise a computer program that is executed by processor
(s) 1030 within the apparatus 1000 as a series of computer-
executable instructions. In an illustrative embodiment of the
invention, the computer-executable instructions may be lines
of compiled Java code.

[0071] FIG. 1 is a high level view of a foreground and
background search method. Step 110 is a scheduler that
decides which action to perform. Options include performing
a foreground or background search at step 114, accepting user
requests at step 146, or entering a sleep state 134 prior to
running a search.

[0072] Step 114 is a high level representation of a method
for initiating a search (shown in detail in FIGS. 2A and 2B).
At step 118, if new search results are found, they are pro-
cessed. Otherwise, proceed to step 130 which in turn pro-
ceeds to sleep state 134 or to a wait state for user input at step
146.

[0073] Ifthere are new results at step 118, record the results
in a table at step 122 that executes the steps 804 to 844
(returning to step 122 at step 848) (see FIGS. 8A and 8B and
accompanying description). Then the user is notified of new
results at step 126 that executes the steps 440 to 456 (returning
to step 126 at step 460) (see FIG. 4B and accompanying
description). This notification, in some embodiments, can be
adisplay ofa selector in a status area, a sound, a vibrate alarm,
ornotification “widget” on the user’s home screen. As defined
in the internet online service Wikipedia: “In computer pro-
gramming, a widget (or control) is an element of a graphical

US 2014/0317075 Al

user interface (GUI) that displays an information arrange-
ment changeable by the user, such as a window or a text box.
The defining characteristic of a widget is to provide a single
interaction point for the direct manipulation of a given kind of
data. In other words, widgets are basic visual building blocks
which, combined in an application, hold all the data pro-
cessed by the application and the available interactions on this
data.”

[0074] Some embodiments of this invention display search
results via a widget on a pop up window while the user is
executing other applications.

[0075] Upon exiting sleep state 134 (when it is time to
search), the process proceeds to step 114. Otherwise a deci-
sion is made to either proceed to sleep state 134 again or to
wait state step 146. Upon exiting the wait state step 146, it is
determined at step 148 whether there is a new user request. If
there is a request, the process proceeds to sleep state 134 to
wait for the next time to search. Otherwise, the process may
proceed either to wait again for user input at step 146 or to
sleep state 134 for the next time to search.

[0076] In FIGS. 2A and 2B, step 114 is detailed. At step
204, if the search service is enabled proceed to step 208 to
continue with the search. Otherwise, return to the sleep state
134. At step 208, a list is obtained of search request objects
from a data set. These are searches and associated criteria
input by the user. Typically, search request objects would be
stored in a relational database, but this is not required. A
search request object comprises:

[0077] 1. A short description of the request
[0078] 2. The content reference for the request
[0079] 3. Filters for the search (e.g. price ranges, age

limits, square footage, etc.)

[0080] 4. Search category (e.g. for sale, housing, ser-
vices, etc.)
[0081] 5. Auto search enabled flag (true if the search

should be run in the background, false otherwise)

[0082] 6. Last hit time (calendar time of the most recent
match from the previous search)

[0083] 7.Identifier for the last item that was successfully
matched. The identifier can be a content reference or
other string that is unique for the posting service.

After completing step 208, a decision is made at step 212
whether search request objects are found. If not, the process
proceeds back to sleep state 134. If search requests objects are
found, at step 216 the process records time since last boot in
a data store.

[0084] The data store can be on a file system, or some other
data storage mechanism. The data can be represented a simple
name-value pair association. A battery operated device can go
into “Deep Sleep” mode to save battery life. The time since
last boot is the absolute amount of time since the device was
lasted powered on, and includes the time that the device was
in Deep Sleep mode. This time is used to determine when to
schedule the service to run, and is used in process retry logic
step 240 (shown in detail in FIGS. 3A and 3B).

[0085] The process at step 220 obtains polling time inter-
val, according to user preference, from the data store. The
polling interval is specified by the user as the number of hours
and seconds in which to periodically run the automatic
searches.

[0086] The process at step 224 obtains an error count. The
error count is the number of failed attempts to contact the
server data feed since the last successful connection. This is
used in the process retry logic at step 240.

Oct. 23,2014

[0087] Theprocess determines at step 228 the ability of the
device to connect to the network. The network comprises the
cellular network 1110, the local area network 1120, the point-
to-point network 1130.

[0088] Theprocess at step 232 reads battery status from the
device. This would typically be the percentage of maximum
capacity remaining on the device.

[0089] The process at step 236 decides if the device can
connect to the network. If not, the process performs the pro-
cess retry logic at step 240. Also the process performs the
process retry logic step 240 if the battery capacity is insuffi-
cient. Battery sufficiency can be determined by processing
the charging status and the capacity remaining on the device.
The result of a step 240 operation determines when to the
schedule the next attempt to connect to the network and
execute background search processing.

[0090] Ifthe process at step 236 decides that the device can
connect to the network, the process proceeds to reset error
count at step 244. The error count is reset to a value, such as
zero, which indicates that no errors are outstanding. The value
is saved in a data store for the next time that the background
search is executed.

[0091] The process next starts an asynchronous thread at
step 248 executing the steps from step 404 to 456 (returning
to step 248 at step 460) (shown in more detail in FIGS. 4A and
4B). Step 248 will execute the background search.

[0092] FIGS. 3A and 3B show the process retry logic
executed by step 240. The goal of the process retry logic is to
adjust the retry time, taking into account a user’s preferred
polling interval and the number of consecutive connection
errors. Cellular communications can be very unreliable,
depending on the user’s location and radio coverage. An
unsophisticated technique of repeatedly attempting to con-
nect at set time intervals, especially at short time intervals, is
wasteful of battery capacity. Also, abandoning attempts to
connect after a limited number of times may miss an oppor-
tunity to reconnect when coverage is available.

[0093] Step 304 checks for low battery. If battery is low,
perform low battery processing at step 308. If not, perform
process retry logic (steps 312 to 356) based on polling interval
and error count.

[0094] At low battery processing step 308, perform low
battery processing based on charging status and capacity
remaining. For example, if battery capacity is less than 50%
and polling interval is less than one hour, the next attempt
might be delayed until twice the polling interval. Alterna-
tively, a lookup table can be configured with the rows repre-
senting battery life, and the columns representing the retry
interval. Each cell could contain a rule determining when to
retry the next search.

[0095] Ifbattery is not low, perform get polling interval step
312; read polling interval user preference from a data store
such as a database.

[0096] Step 316 determines if polling interval is less than a
first threshold. For example, the first threshold might be 20
minutes

[0097] Typically, server data feed is only updated at a lim-
ited time frequency (for example, 15 minutes). It would be
wasteful to try more frequently than a data feed update fre-
quency at which the first threshold is approximately set. Thus,
if the user’s preferred polling interval is less than the first
threshold, retry at the expiration of the user’s next preferred
polling interval.

US 2014/0317075 Al

[0098] Atstep 316, it is determined if the polling interval is
less than the first threshold (e.g., the polling interval is less
than 20 minutes). If it is, proceed to step 352 where error
count is reset and saved in a data store. Then proceed to step
356 and run the service at its next regularly scheduled polling
interval. Next proceed to step 134.

[0099] Otherwise, if at step 316 the polling interval is
greater than or equal to the first threshold, proceed to step 320.
[0100] At step 320, if the polling interval is less than a
second threshold (e.g., less than 60 minutes), but greater than
the first threshold, proceed to step 340 to check the error count
else proceed to step 324. If at step 340, the error count is >=n,
(e.g. n,=1), the number of retry attempts has been exceeded.
n, is also referred to as “first constant” in this application.
Then in this case, reset the error count at step 352, save in the
data store, also at step 352, and run the service polling interval
at step 356. Then proceed to step 134.

[0101] If the error count is less than n, at step 340, set the
error count to 1 plus the previous error count and save the
error count in the save data store at step 344. Proceeding to
step 348, the service is rescheduled to run at an interval that is
a fraction of the polling interval (e.g. the fraction being 10
minutes). Then proceed to step 134.

[0102] If, at step 320, the polling interval is greater than or
equal to the second threshold proceed to step 324. An error
count less than orequal to n, (e.g.n,=0),n, being less thann,,
means that insufficient retries have been attempted. n, is also
referred to as “second constant” in this application. In this
case, proceed from step 324 to step 344, where the error count
is incremented and saved in the save data store. Proceeding to
step 348, the service is rescheduled to run at an interval that is
a fraction of the polling interval (e.g. the fraction being 10
minutes). Then proceed to step 134.

[0103] At step 324, if the error count is greater than n,,
proceed to step 328. At step 328, test whether number of retry
attempts is greater than or equal to n,, n, being greater thann,
(e.g. n;=1). n, is also referred to as “third constant” in this
application. If the error count is greater than n;, proceed to
reset the error count at step 352, save in the data store (also at
step 352), and run the service polling interval at step 356.
Then proceed to step 134.

[0104] At step 328 if the error count is less than n;, set the
error count to 1 plus the previous error count and save in the
data store at step 332. Proceed to step 336 where the service
is rescheduled to run at some fraction (e.g. 50%) of the polling
interval. Then proceed to step 134.

[0105] FIGS. 4A and 4B show a search thread that is an
asynchronous task running in the background.

[0106] Atstep 404, ifthealertserviceis disabled, terminate
the alert at step 420 and return at step 422. If the alert service
is enabled than proceed to step 408 to get a list of search
request objects from a data store.

[0107] Atstep 412, if no search request objects were found
in the data store, proceed to step 420 to terminate the alert
service and return to the caller at step 422.

[0108] If, at step 412, search request objects were found in
the data store, proceed to step 416 and initialize the autoHits
count to zero. The autoHits count is the number of postings
that are found by executing all of the search requests.

[0109] Next proceed to iterate steps 424, 428, and 432. At
424, determine if more search requests are outstanding. Ifnot,
terminate looping and proceed to step 436. Otherwise, pro-
ceed to step 428 where a search for a current search request is

Oct. 23,2014

performed. Then increment at step 432 the autoHits by the
number found from the search. Next, the process loops back
to step 424.

[0110] The search and the user interface process are asyn-
chronous, so the user can look at an autoHits table (see FIGS.
8A, 8B, and 8C and accompanying description), while the
search is in progress. Therefore at step 436, a count (sum-
WaitingForUser) of the current unviewed autoHits is queried
from the data store. Then proceed to steps 440 to 456 where
the user is notified of search results. The user can be notified
during background search or when the app is running in the
foreground. This can be accomplished by adding a notifica-
tion selector in the mobile status area, or displaying a notifi-
cation widget on the user’s home screen.

[0111] At step 440, a check is made to determine if the
number of autoHits from the previous search iteration (steps
424, 428, and 432) is greater than zero. If the number is not
greater than zero, proceed to step 452. At step 452, determine
if the sumWaitingForUser is equal to zero. If the sumWait-
ingForUser is equal to zero, cancel at step 456 any user
notification currently displayed. This can be accomplished by
removing the notification selector in a status area, or by
removing a notification widget in the user’s home screen.
Next, return to the caller at step 460. If, at step 452, the
sumWaitingForUser is not equal to zero, return to the caller at
step 460 without canceling the user notification.

[0112] If, at step 440, the number of autoHits is greater than
zero, the process proceeds to step 444 where a user notifica-
tion of sumWaitingForUser results is displayed. Then at the
next step, step 448, a user interface is updated if currently
visible. After step 448, at step 460, the process returns to the
caller.

[0113] FIGS. 5A, 5B, and 5C shows the sequence of steps
performed at search step 428.

[0114] The perform search 428 sequence of steps is the
main procedure for executing a single search request. It can
run automatically in the background at periodic time inter-
vals, or in the foreground at the request of the user. It accepts
as input a SearchRequest object defined by the user, and
returns the number of resulting search hits. If search results
are found, they are stored in the autoHits Table for retrieval
and display by the user.

[0115] A problem to be solved by some embodiments ofthe
present invention is that posting services publish information
partly in markup language format and partly in syndicated
content format.

[0116] The posting service can return posted items in both
markup language and syndicated content formats. The data
associated with posted items may be distributed across both
formats. Some embodiments of this invention apply user-
specified criteria to perform searches of posted items, to
extract data published in dissimilar formats, such as markup
language and syndicated content formats, to integrate the data
into displayable results, and to notify the user of the results
preferably on a mobile device.

[0117] The benefit of parsing markup language content, in
addition to syndicated content channel, is that additional data
can be extracted and associated with a posted item that is not
available in syndicated content alone. For example, the post-
ing service may host an image for a posted item that is
uploaded by the user, and represented in the markup language
content as a content reference. By associating this image
content reference with the posted item in the syndicated con-

US 2014/0317075 Al

tent channel, time consuming parsing of syndicated content is
not required to display an image thumbnail.

[0118] An example of a posted item, as presented to the
user, is shown in FIG. 11. An item includes a posting date and
time, a short description of merchandise contents 1230, and a
content reference which the user can select to display detailed
web content. This invention also provides a mechanism to
parse item data across multiple content formats in order to
generate efficiently the image thumbnail 1220 for display,
preferably on a mobile device.

[0119] A “hit” is defined as a match between the search
criteria specified by the user in the SearchRequest object, and
a single item extracted from a list of items returned from the
community/classified posting service. A match can be made
based on one or more of the following criteria:

[0120] Keyword

[0121] Search category (e.g. for sale, jobs, services)
[0122] Search subcategory (e.g. boats, cars, accountant)
[0123] Time range

[0124] Filters supported by service (e.g. price ranges,

age limits, square footage, etc.)
[0125] The following input variables, which are members
of the SearchRequest object, are utilized by this procedure:
[0126] 1. searchUrl—content reference to retrieve indi-
vidual posting results.
[0127] 2.lastHitTime—Calendar time of the most recent
match from the previous search
[0128] 3. lastHitId—Identifier for the last item that was
successfully matched. The identifier can be a content
reference or other string that is unique for the posting
service.
[0129] 4. filters
[0130] A high level description for performing search 428
is as follow:
[0131] 1. Apply filters to generate markup language
search request (apply filters step 504)
[0132] 2. Determine stop criteria step 508 for searching
[0133] 3. Perform markup language search to extract a
postedltemMap. The postedItemMap is a map of posting
identifiers and associated posted item data which is data
extracted from posting data element. The posting data
element contains a posting identifier and data associated
with a posting such as image content references. Other
posting data element content might include an item
price, a posting time, an item description, and a flag that
indicates the availability of images external to the ser-

vice.
[0134] 4. Generate syndicated content search request
[0135] 5. Perform syndicated content search until stop

criteria is satisfied
[0136] 6. Record hits in AutoHits table, if any. Embodi-

ments of this invention also include a mechanism on a

mobile device to store a limited number of the most

recent hit results to a data store table, for future presen-

tation to the user.
[0137] At step 504, a search request is constructed by
applying the input filters to input content reference, and for-
matting a request for markup language content. The input
content reference comprises the domain name of the search
service website and any additional path and query parameters
needed to execute the search. The input content reference is
specific to the service being searched.

Oct. 23,2014

[0138] At step 508, determine the search stop criteria as
described in the following pseudo code:

// The variables used by the parsing threads to determine when to stop the
search are:
// 1. maxHits - User specified preference for the maximum number of
search results to return
// 2. lastHitld - Identifier of the most recent posting that was found during
the previous search.
// The background search only returns search results that haven’t been
made available to the
// user from previous background searches.
// 3. lookBackTime - Calculated calendar time that indicates how far back
in time to search
lookBackTime = -1 // Default to unlimited look back time
if (userLookBackInterval specified by user) {
// Subtract userLookBackInterval from current time
lookBackTime = currentTime — userLookBackInterval
if (lastHit Time > lookBackTime) {
// We received a hit more recent than the user specified
// look back interval. Use the more recent time
lookBackTime = lastHitHime
// Subtract a small amount of time from the look back time
// to account for any overlaps or posting errors
lookBackTime = lookBacTime — 5 minutes

[0139] Parsing thread 512 is a sequence of steps (shown in
detail in FIGS. 6 A and 6B). Start an asynchronous thread that
will execute the markup language search, and then execute
sleep loop until the timeout has expired or the search is
finished.

[0140] Next, steps 516, 520, and 524 are iterated. At step
516, decide whether parsing is completed. If completed, pro-
ceed to the step 532, exiting the loop. If not done parsing,
proceed to step 524 to determine if the parsing timeout period
has expired. If the timeout period has not expired, enter a wait
state at step 520 and subsequently return to the start of the
loop. If the timeout period has expired at step 524, exit the
loop, kill the markup language parsing thread at step 528, and
proceed to step 532.

[0141] At step 532, a posted item map is returned from the
markup language parsing thread. It comprises the posted item
identifications and associated posted data, Examples of
posted data include a description, a price, or an image content
reference for the item being posted.

[0142] At step 536, a syndicated content search request is
initiated by formatting a request for syndicated content. The
request is specific to the service being searched, but it might
be constructed by appending path and query information to
the input content reference.

[0143] At step 540, a syndicated content parsing thread
sequence of steps (shown in detail in FIGS. 7A, 7B, 7C, and
7D) is started. Start an asynchronous thread that will execute
the syndicated content search, and then proceed to the sleep
wait state until the timeout has expired or the search is fin-
ished. Inputs to the syndicated content parsing thread com-
prise the syndicated content stop criteria and the posted item
map. The posted item map comprises the results of the
markup language search.

[0144] Next, steps 544, 548, and 552 are iterated. At step
544, decide whether parsing is completed. If completed, pro-
ceed to step 560 exiting the loop. If not done parsing, proceed
to step 552 to determine if the parsing timeout period has
expired. If the timeout period has not expired, enter a wait
state at step 548 and subsequently return to the start of the
loop. If the timeout period has expired at step 552, proceed to
kill the markup language parsing thread at step 556 and exit
the loop, proceeding to step 560.

US 2014/0317075 Al

[0145] At step 560, it is determined if there are any search
results. If there are no search results, set number of hits
(numberOfHits) to 0 and return the result at step 578. How-
ever, if there are search results, calculate the number of hits as
the count of the number of Rdfltems returned from the syn-
dicated content parsing thread from step 540.
[0146] Rdfltems contains the following data:
[0147] 1. title—Short description which can be pre-
sented to the user
[0148] 2. link—content reference to posted content
[0149] 3. description—syndicated content description
parsed from the posting
[0150] 4. location—Optional geographic location of
item posting
[0151] 5. imageUrls—Candidate list of content refer-
ences which can be used for thumbnail generation
[0152] 6. time—Time item was posted
[0153] If the search results are greater than O at step 568,
calculate the number of results (numberOfHits) by determin-
ing the count of Rdfltems.
[0154] Update SearchRequest table at step 570. The fol-
lowing input variables, members of the SearchRequest
object, are utilized by this step 570:
[0155] 1. searchUrl—content reference to retrieve indi-
vidual posting results.
[0156] 2.lastHitTime—Calendartime of the most recent
match from the previous search
[0157] 3. lastHitld—Identifier for the last item that was
successfully matched. The identifier can be a content
reference or other string that is unique for the posting
service.
[0158] 4. filters
[0159] The SearchRequest table is updated to reflect the
most recent hit, so future searches do not return the same
results. The identifiers (lastHitld) and time (lastHitTime) of
the most recent post found are updated in the table.
[0160] Convert Rdfltems at step 572. The Rdfltems
returned from syndicated content parsing thread are con-
verted to AutoHit objects, so they can be stored in the Auto-
Hits table.
[0161] An AutoHit object comprises:
[0162] 1. title—Short description which can be pre-
sented to the user
[0163] 2. link—content reference to posted content
[0164] 3. location—Optional geographic location of
item posting
[0165] 4. imageUrls—Candidate list of content refer-
ences which can be used for thumbnail generation
[0166] 5. time—Time item was posted
[0167] 6.1isNew flag—True ifthe user has not yet viewed
the item, false otherwise.
[0168] Inthiscase, because the items have not been view by
the user, the isNew flag is set to true.
[0169] Save hits step 574 executes steps 804 to 844 (return-
ing to step 574 at step 848) (shown in detail in FIGS. 8A and
8B). Save the hits in the AutoHits table.
[0170] The invention includes a mechanism to store a lim-
ited number of the most recent hit results to a data store table
for future presentation to the user. A list of AutoHit objects is
passed to this procedure. The list contains the search results,
from most to least recent. Return numberOfHits, step 578.
[0171] FIGS. 6A and 6B show an markup language parser.
This an expansion of the steps referred to by step 512.

Oct. 23,2014

[0172] Atstep 604, get a character reader in order to read an
markup language input stream from the content reference.
Next, begin iterating steps from step 608 to step 636. At step
608 attempt to read the next line from the markup language
input stream. The end of the stream would typically be indi-
cated by a negative number of bytes returned or by reading an
End Of File character.

[0173] Step 612 checks to determine if there are more lines
to read or data to process. If the last line has been read, return.
Otherwise, read a next posting data element (defined above)
at step 616.

[0174] If the posting data element is not contained on a
separate line, this could be implemented by reading addi-
tional lines from the 10 stream. An alternative approach
would be to read the next match of a regular expression
matcher.

[0175] Step 620 determines if there is more markup lan-
guage data; i.e., if there are additional posting data elements.
If there are no more markup language data to process, return
the postedItemMap to the caller at step 640. The determina-
tion of whether there is more data to process depends on the
markup language content provided by the service. One imple-
mentation would utilize a regular expression matcher to
extract posted items from the markup language. If there are no
more matches, the processing is completed.

[0176] If, at step 620, there are more data to process, pro-
ceed to step 624 where the posted item is extracted from
markup language content. The mechanism to parse the data
depends on the format of the markup language content pro-
vided by the service. One approach would utilize string
matching to extract the relevant data. Another approach
would use regular expression matching. A posted item iden-
tifier must be extracted from the data in order to associate this
posting with the data in the syndicated content channel.
[0177] At step 628, if the number of posting items found is
equal to or exceeds the maxHits stop criterion, return at step
640. If instead the number of posting items is less than the
maxHits stop criterion, continue processing at step 630.
[0178] At step 630, if the search is being performed in the
foreground, all posted results are desired and proceed to step
636. Otherwise, the search is being performed in the back-
ground and the process proceeds to step 632 to perform a look
back time (lookBackTime) check. The check for the look-
BackTime at step 632 determines if posting time is available
in the posting data element. If it is available and is older than
the lookBackTime stop criteria, defined above, the search is
completed and proceed to return posted item map to the caller
atstep 650. If posting time is not available, or the posting time
is more recent that the lookBackTime, proceed to step 636.
[0179] At step 636, add the posting identifier and posted
item to the postedltemMap, and continue with the search by
looping back to step 608.

[0180] FIGS. 7A, 7B, 7C, and 7D detail the syndicated
content search (parsing) thread referred to at step 540.

The syndicated content Parsing Thread parses service con-
tents resulting from the submission of syndicated content
search request. A reader to the syndicated content stream is
obtained from the search request, and each posted item is
parsed until the search stop criteria (step 508) is satisfied. The
stop criteria can be applicable to both the markup language
search (FIGS. 6 A and B) and the syndicated content search
(FIGS.7A,7B, 7C, and 7D). Since an syndicated content feed
contains structured XML content, a standard XML parser can
be utilized to parse the document. A representative service
might post an syndicated content channel as follows:

US 2014/0317075 Al

Oct. 23,2014

<channel>
<title>Community/classified posting service</title>
<link>http://samplepostingservice.com</link>
<description>This is a sample channel for a posting service</description>
<item>
<title>Cape dory 25 - $3500<title>
<link>http://annapolis.samplepostingservice.com/forsale/boats/<link>
<pubDate>2011-11-06T14:41:19-05:00</pubDate>
<description>
<![CDATA[<p>1978 Cape Dory ready to sail away</p>]]>
</description>
</item>
</channel>

[0181] The syndicated content parsing thread is initialized
with the postedltemMap obtained as a result of the markup
language parsing (step 512). The postedItemMap is a map of
posting identifiers and associated posted item data. The syn-
dicated content parsing thread returns a list of Rdfltems,
which can be converted to AutoHit objects for storage in the
AutoHits table.
[0182] Atstep 704, get a character reader in order to read an
syndicated content input stream from the content reference. A
search request is constructed by applying the input filters to
the input content reference, and formatting a request for syn-
dicated content. The input content reference comprises the
domain name of the search service website and any additional
path and query parameters needed to execute the search. The
input content reference is specific to the service being
searched.
[0183] Initialize Parser at step 708. Use a standard XML
parser, such as a pull parser.
[0184] Next iterate the steps from step 712 to step 764.
First, at step 712, check if the end of the XML document has
be reached. If the end of XML document has been reached,
exit loop to step 768 for post-processing of the Rdfltems.
Otherwise, continue processing at step 716.
[0185] Atstep 716, a determination is made if parsing of the
posted items is completed. If parsing is completed, exit loop
and proceed to step 768 for post-processing of the Rdfltems.
Otherwise, continue processing to step 720 to parse the next
posted item. See above for an example of the syndicated
content format to be parsed. Data items to be parsed include:
[0186] 1. title—Short description which can be pre-
sented to the user
[0187] 2. link—content reference to posted content
[0188] 3. description—A more detailed description of
the posting. This can include markup language content
for display on a web page
[0189] 4. date—The date the item was posted
[0190] Proceed to step 724 to determine if the number of
items parsed so far is greater than or equal to maxHits. If the
number of posting items found equals or exceeds the maxHits
stop criteria, exit loop to step 768 for post-processing of the
Rdfltems. Otherwise, continue processing at step 732.
[0191] If searching in the background at step 732, the
lastHitId and lookBackTime stop criteria will be applied and
proceed to step 736. If searching in the foreground, ignore the
stop criteria and proceed to step 744.
[0192] At step 736, if the lastHitld matches the identifier
from the parsed item, exit loop to step 768 for post-processing
of the Rdfltems. Otherwise, continue processing at step 740.
[0193] Atstep 740, if a posting time was extracted from the
posted item and the item that is currently being parsed is older

the lookBackTime stop criteria, exit loop to step 768 for
post-processing of the Rdfltems. Otherwise, proceed to step
744.

[0194] At step 744, use the identifier of the posted item as a
lookup key to the postedItemMap. If an entry exists, the same
item was previously processed from the markup language
processing thread; proceed to step 748. At step 748, ifthe item
previously processed from the markup language processing
thread contains an image content reference, it is not necessary
to continue to parse additional content. This saves consider-
able processing in locating a suitable image content reference
from which to generate a thumbnail. If an image content
reference is not available, syndicated content description ele-
ment will be searched.

[0195] If an entry does not exist at step 744, go to step 752
to parse the posted item description for image content refer-
ences. The syndicated content description data can contain
markup language content that was posted by the service user.
The content can be parsed to find a list of candidate images
that would make suitable thumbnails. Images that would not
make suitable thumbnails are not added to the list. When the
AutoHit items are displayed for the mobile user, this reduces
the processing needed to display a thumbnail. The parsing
procedure at step 752 to find a list of candidate image content
references is described in the following pseudo-code:

Create regular expression matcher to locate image links
Apply regular expression to markup language content
while there are more matches and number of matches <
MAX_ THUMBNAILS_TO_TRY {
Get next link from matcher
Extract image resource name from link
if resource name indicates image would make a bad thumbnail {
// e.g. spacer.gif, blank.gif, etc.
continue

if link is not a valid content reference {
continue

Extract width and height attributes from image tag
if width and height are available {
Calculate aspect ratio of image
if aspect ratio is too big or too small {
// The image is most likely some type of
// formatting element, such as a spacer - ignore
continue

¥
Add image to list of candidates

return candidate list of images

[0196] If at step 756, one or more candidate images were
found in syndicated content description, the candidate images

US 2014/0317075 Al

are stored in the Rdfltem, at step 760, which is then added to
the return list, at step 764. If one or more images were not
found at step 756, bypass step 760 and proceed to step 764. At
step 764, add Rdfltems to a return list and loop back to step
712.

[0197] Referring back to step 748, if an image content
reference is found proceed to step 760 (described above). [fan
image content reference is not found at step 748, execute the
steps described in step 752 (see above).

[0198] Some of the Rdfltems in the return list may not have
image content references associated with them. This can
occur when both the markup language parser and syndicated
content description parser fail to find candidate images. In
this case, the contents pointed to by the link in the Rdfltem
will also be searched for candidate images. As a performance
optimization, the links to search will be grouped into small
batches so they can be executed concurrently. Typically,
mobile devices can only process a few concurrent connec-
tions at a time. This number can be optimized for the specific
device and communications network being utilized.

[0199] To accomplish the above, post-processing is con-
ducted starting at step 768 (routed to there from steps 712,
716, 724, 736, and 740). Step 768 is the start of a loop: steps
768, 772,780, 784, and 788. At step 768, get a next batch of
RdfItems which do not contain content references. This can
be accomplished by conducting a linear search through the
Rdfltems to find items without image content references.
[0200] Atstep 772, if there are no more batches to process,
exit the loop and return the list of RdfItems to the caller at step
776. Otherwise, at step 780 start one ImageParser thread for
each Rdfltem in the batch. The link in each Rdfltem repre-
sents a detailed posting by a service user. The contents
pointed to by the link can be parsed for a list of candidate
thumbnail images. One ImageParser thread will be created
for each link in the batch of Rdfltems. The ImageParser
thread will open an IO reader from the link content reference,
and then utilize the method specified in parse syndicated
content description step 752 to parse image links.

[0201] At step 784, if all the threads in the current batch are
not done, proceed to step 788 to wait. Otherwise, proceed to
step 768 to get the next batch to process. The completion of
the threads can be coordinated by a countdown latch object, or
other similar thread synchronization mechanism.

[0202] Steps 574 and 122 utilize the logic shown in FIGS.
8A and 8B.
[0203] At step 804, a data store transaction begins. This

procedure assumes the existence of a transactional data store
on the device. The data store operations in this procedure
should be atomic, and a mechanism should be available to roll
back the transactions if a failure occurs.

[0204] At step 808, count the number of rows (numO-
fRows) in the AutoHits Table, by executing a query against
the data store.

[0205] At step 812, the number of open slots (openSlots) is
calculated by subtracting the numOfRows from a capacity of
the AutoHits Table. Capacity is the maximum number of rows
that the table can grow to. The capacity is a tradeoff between
memory utilization on the mobile device and the number of
prior hits available to the user.

[0206] At step 816, a count of the number of AutoHits
(nRecords) being inserted into the table is determined from
the list of AutoHit objects passed into this procedure.

[0207] At step 820, determine if nRecords>capacity of the
AutoHits table. If the number of records being inserted into

Oct. 23,2014

the table is greater than the capacity, proceed to step 832
which deletes all of the existing records in the AutoHits table.
Then proceed to step 836.

[0208] At step 836, the number of records being inserted is
greater than the capacity of the table, so the oldest records
can’t be accommodated. The list of records being inserted is
ordered from most to least recent, so the excess number of
records (capacity-nRecords) is removed from the end of the
list. Then proceed to step 840.

[0209] If, at step 820, the number of records being inserted
into the AutoHits table is less than or equal to the capacity of
the AutoHits table, proceed to step 824 to determine if
nRecords is greater than openSlots.

[0210] At step 824, if nRecords is greater than openSlots,
proceed to step 828 to make room in the AutoHits table by
removing the oldest records. The AutoHits Table is ordered
from the least recent postings to most recent. Additional room
is made in the table by removing the oldest entries at the top,
thereby creating room to add the newest entries at the bottom.
This is done without increasing the capacity. The number of
records to remove is calculated by (nRecords—openSlots).
This number of records can be removed from the beginning of
the table by executing a query. After executing 828, proceed
to 840.

[0211] If, at step 824, nRecords is less than or equal to the
openSlots, it is not necessary to make additional room in the
AutoHits table and step 828 can be bypassed, proceeding
instead to step 840.

[0212] By the time step 840 is executed, there is enough
room in the table to insert the records. Since the table is
ordered from least to most recent postings, but the list of
records being inserted is ordered from mostto least recent, the
records are inserted in reverse order. Proceeding to step 844,
queries executed in this procedure are committed to the data
store. After step 844, return to the caller at step 848.

[0213] Those skilled in the art will recognize that the
present invention has been described in terms of exemplary
embodiments based upon use of a programmed processor
(e.g., digital processing apparatus 1000). However, the inven-
tion should not be so limited, since the present invention
could be implemented using hardware component equiva-
lents such as special purpose hardware and/or dedicated pro-
cessors that are equivalents to the invention as described and
claimed. Similarly, general purpose computers, microproces-
sor based computers, micro-controllers, optical computers,
analog computers, dedicated processors and/or dedicated
hard wired logic may be used to construct alternative equiva-
lent embodiments of the present invention. Moreover,
although the present invention has been described in terms of
a general purpose personal computer providing a playback
mechanism, the playback can be carried on a dedicated
machine without departing from the present invention. Con-
versely, the present decoder has been described in terms of a
state machine and such state machine can be implemented as
either a hardware or software based state machine. Moreover,
those skilled in the art will understand that the exact register
configurations, PID protocols and other details described in
connection with the above exemplary embodiment should not
be considered limiting, but are presented by way of illustra-
tion.

[0214] Those skilled in the art will appreciate that the pro-
gram steps and associated data used to implement the
embodiments described above can be implemented using disc
storage as well as other forms of storage such as for example

US 2014/0317075 Al

Read Only Memory (ROM) devices, Random Access
Memory (RAM) devices; optical storage elements, magnetic
storage elements, magneto-optical storage elements, flash
memory, core memory and/or other equivalent storage tech-
nologies without departing from the present invention. Such
alternative storage devices should be considered equivalents.

[0215] The present invention, as described in embodiments
herein, is implemented using a programmed processor
executing programming instructions that are broadly
described above form that can be stored on any suitable elec-
tronic storage medium or transmitted over any suitable elec-
tronic communication medium or otherwise be present in any
computer readable or propagation medium. However, those
skilled in the art will appreciate that the processes described
above can be implemented in any number of variations and in
many suitable programming languages without departing
from the present invention. For example, the order of certain
operations carried out can often be varied, additional opera-
tions can be added or operations can be deleted without
departing from the invention. Error trapping can be added
and/or enhanced and variations can be made in user interface
and information presentation without departing from the
present invention. Such variations are contemplated and con-
sidered equivalent.

[0216] Software code and/or data embodying certain
aspects of the present invention may be present in any com-
puter readable medium, transmission medium, storage
medium or propagation medium including, but not limited to,
electronic storage devices such as those described above, as
well as carrier waves, electronic signals, data structures (e.g.,
trees, linked lists, tables, packets, frames, etc.) optical signals,
propagated signals, broadcast signals, transmission media
(e.g., circuit connection, cable, twisted pair, fiber optic
cables, waveguides, antennas, etc.) and other media that
stores, carries or passes the code and/or data. Such media may
either store the software code and/or data or serve to transport
the code and/or data from one location to another.

[0217] While the invention has been described in conjunc-
tion with specific embodiments, it is evident that many alter-
natives, modifications, permutations and variations will
become apparent to those skilled in the art in light of the
foregoing description. Accordingly, it is intended that the
present invention embrace all such alternatives, modifications
and variations as falling within the scope of the appended
claims.

APPENDIX

[0218] The Appendix, submitted on a computer readable
medium, forms a part of the patent application entitled
“Method and Apparatus to Search Data and Notify and
Update a User.”

[0219] This Appendix, which is hereby incorporated by
reference herein in its entirety, includes computer program-
ming code in the JAVA language. It should be recognized,
however, that this code is not meant to limit the scope of the
invention, but only to provide details for a specific embodi-
ment. This Appendix includes the Appendix incorporated by
reference above from U.S. Provisional Application No.
61/458,442, filed Nov. 23, 2010 entitled “Method and Appa-
ratus to Search Data and Notify and Update a User,” which is
hereby incorporated by reference herein in its entirety.

Oct. 23,2014

REFERENCE TO COMPUTER PROGRAM
LISTING APPENDICES

[0220] Computer program listing appendix submitted elec-
tronically, corresponding to the program listings discussed
below, is filed herewith, in accordance with 37 C.F.R. 1.52(e).
This computer program listing appendix is incorporated
herein by reference in its entirety, in accordance with 37
C.FR.1.77(b)(4). The aforementioned appendix was created
on Nov. 14, 2013 and is a copy of a compact disc created on
Now. 22, 2010 submitted as an appendix to U.S. Provisional
application No. 61/458,442 filed Nov. 23, 2010 by Larry
Deutsch, which application and appendix are incorporated by
reference in their entirety.

[0221] The files submitted electronically are identified as
follows:

File Name Size Date
Address.Java 3,439 Nowv. 22,2010
AppPreferenceActivity.java 5,219 Now. 22,2010
AutoHit.java 6,500 Nov. 22,2010
BoundedLruCache.java 2,274 Nov. 22,2010
Categories.java 9,255 Now. 22,2010
CheckBoxPreferenceWithLongSummary.java 1,557 Nov. 22,2010
clear_data_ dialog.xml 2,182 Nowv. 22,2010
ClearDataPreference.java 10,621 Nov. 22,2010
colors.xml 651 Oct. 30,2010
Constants.java 6,415 Nov. 22,2010
Contact.java 3,147 Nowv. 22,2010
ContactAPLjava 2,095 Nowv. 22,2010
ContactAPI3.java 7,048 Nowv. 22,2010
ContactAPI5.java 8,878 Nov. 22,2010
ContactList.java 1,218 Now. 22,2010
CraigslistHtmlParser.java 11,371 Now. 22,2010
CraigslistUrl.java 5,889 Now. 22,2010
custom__dialog.xml 2,267 Nov. 22,2010
CustomAlertDialog.java 5,081 Now. 22,2010
Database.java 25,798 Now. 22,2010
Email.java 1,962 Now. 22,2010
FinditAlertService.java 8,645 Nov. 22,2010
FinditApplication.java 6,479 Nov. 22,2010
FinditServiceConnection.java 3,340 Nowv. 22,2010
FinditServiceReceiver.java 1,375 Now. 22,2010
HtmlParsingResults.java 1,573 Nov. 22,2010
ImageDownloader.java 22,606 Nov. 22,2010
ImageUrl.java 1,430 Nov. 22,2010
Is08601DateParser.java 2,433 Nowv. 22,2010
item__web__view.xml 1,029 Now. 22,2010
LineReader.java 3,818 Nowv. 22,2010
list__item__icon__text.xml 1,319 Now. 22,2010
list__item_ text.xml 1,103 Now. 22,2010
location.xml 2,586 Nov. 22,2010
LocationActivity.Java 25,128 Now. 22,2010
LocationRecord.Java 5,768 Nov. 22,2010
Locations.java 22,742 Now. 22,2010
map__result_ dialog.xml 3,176 Now. 22,2010
number_picker.xml 1,634 Oct. 17,2010
NumberPicker.java 14,049 Nov. 22,2010
NumberPickerButton.java 2,527 Sep. 19,2010
Phone.java 1,888 Nov. 22,2010
Range.Java 2,107 Nowv. 22,2010
Rdfltem.Java 7,328 Nowv. 22,2010
RdfParser.java 26,178 Now. 22,2010
review__list.xml 1,285 Now. 22,2010
ReviewSearchResults.java 47,293 Nov. 22,2010
save_result dialog.xml 5,499 Nowv. 22,2010
save__search_ dialog.xml 3,896 Nov. 22,2010
saved__overview.xml 6,162 Nov. 22,2010
SavedActivity.java 54,731 Nov. 22,2010
search_ criteria.xml 2,887 Nov. 22,2010
SearchCriteria.java 26,016 Nowv. 22,2010
SearchltemAdapter.java 6,302 Nov. 22,2010
SearchRequest.java 8,134 Nov. 22,2010

US 2014/0317075 Al

-continued

File Name Size Date

SearchResult.java 5,908 Nov. 22, 2010
SearchTabActivity.Java 2,507 Nov. 22, 2010
sendto.xml 4,325 Now. 22,2010
ServiceCallable.java 1,164 Nov. 22,2010
ServiceTimerTask.java 13,675 Nov. 22, 2010
spinner_ view.xml 888 Nov. 22, 2010
spinner_ view__dropdown.xml 891 Now. 22,2010
strings.xml 16,669 Nov. 22, 2010
StyleableSpannableStringBuilder.java 1,789 Nov. 22, 2010
styles.xml 1,517 Nov. 18,2010
TimePickerPreference.java 11,691 Nov. 22, 2010
ToggleButtonGroup TableLayout.java 2,767 Nowv. 22,2010
UrlParam.Java 1,594 Nov. 22, 2010
Utils.java 26,315 Now. 22,2010
Viewltem.java 18,256 Nov. 22, 2010

I claim:
1. A digital processing apparatus 1000 comprising:
an operating system 1480;
a control logic 1410, in communication with the operating
system 1480, comprising a content parsing logic engine
1465 in communication with a posting site via the oper-
ating system 1480; and
wherein:
the content parsing logic engine 1465 generates a con-
tent reference 1420 based on user parameters;

the content parsing logic engine 1465 uses the content
reference 1420 to execute a first query on the posting
site to retrieve markup language content 1425;

the content parsing logic engine 1465 parses the markup
language content 1425 to generate map 1440 to map
item identifiers 1450 with respective item data 1460;

the content parsing logic engine 1465 uses the content
reference 1420 to execute a second query on the post-
ing site to retrieve syndicated content 1430; and

the content parsing logic engine 1465 updates item data
1460 with syndicated content 1430 resulting in a
modification of map 1440.

2. The digital processing apparatus 1000 of claim 1 further
comprising:

a query engine 1470 in communication with a data store

1475; and
the content parsing logic engine 1465 in communication
with the query engine 1470;
wherein the content parsing logic engine 1465 passes the
modification of map 1440 to the query engine 1470;
and

the query engine 1470 saves the modification of map
1440 in the data store 1475.

3. The apparatus 1000 of claim 1 wherein a user is notified
of the modification of map 1440 via the passing of the modi-
fication of map 1440 to an output channel of the operating
system 1480.

4. The apparatus 1000 of claim 1 wherein the user param-
eters are stored in a data store 1475 and wherein a query
engine 1470 obtains the user parameters from the data store to
pass the user parameters to the content parsing engine 1465.

Oct. 23,2014
11

5. The apparatus 1000 of claim 1, wherein the apparatus
1000 is at least one selected from the group consisting of
cellular telephone, notebook computer, tablet computer, and
laptop computer.

6. A digital processing apparatus 1000 implemented pro-
cess for coordinating data from dissimilar formats compris-
ing:

communicating between a content parsing logic engine

1465 and an operating system 1480;

communicating between the operating system 1480 and a

posting site;
generating a content reference 1420, based on user param-
eters, via the content parsing logic engine 1465;

using the content reference 1420 to execute a first query on
the posting site to retrieve markup language content
1425 via the content parsing logic engine 1465;

parsing the markup language content 1425 to generate map
1440 to map item identifiers 1450 with respective item
data 1460 via the content parsing logic engine 1465;

using the content reference 1420 to execute a second query
on the posting site to retrieve syndicated content 1430
via the content parsing logic engine 1465; and
updating item data 1460 with syndicated content 1430
resulting in a modification of map 1440 via the content
parsing logic engine 1465.

7. The method of claim 6 further comprising:

a query engine 1470 in communication with a data store
1475,

the content parsing logic engine 1465 in communication
with the query engine 1470;

passing the modification of map 1440 to the query engine
1470 via the content parsing logic engine 1465; and

saving the modification of map 1440 in the data store 1475
via the query engine 1470.

8. The method of claim 6 wherein a user is notified of the
modification of map 1440 via the passing of the modification
of map 1440 via the content parsing logic engine to an output
channel of the operating system 1480.

9. The method of claim 6 wherein the user parameters are
stored in a data store 1475 and wherein a query engine 1470
obtains the user parameters from the data store to pass the user
parameters to the content parsing engine 1465.

10. The apparatus 1000 of claim 6 wherein the apparatus
1000 is at least one selected from the group consisting of
cellular telephone, notebook computer, tablet computer, and
laptop computer.

11. A non-transitory data processing apparatus readable
storage medium storing a program for causing a data process-
ing apparatus 1000 to execute a method according to claim 7.

12. A non-transitory data processing apparatus readable
storage medium storing a program for causing a data process-
ing apparatus 1000 to execute a method according to claim 8.

13. A non-transitory data processing apparatus readable
storage medium storing a program for causing a data process-
ing apparatus 1000 to execute a method according to claim 9.

14. A non-transitory data processing apparatus readable
storage medium storing a program for causing a data process-
ing apparatus 1000 to execute a method according to claim
10.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Drawings
	Page 16 - Drawings
	Page 17 - Drawings
	Page 18 - Drawings
	Page 19 - Drawings
	Page 20 - Drawings
	Page 21 - Drawings
	Page 22 - Drawings
	Page 23 - Drawings
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description
	Page 28 - Description
	Page 29 - Description
	Page 30 - Description
	Page 31 - Description
	Page 32 - Description
	Page 33 - Description
	Page 34 - Description/Claims

