氟代烯烃制冷剂组合物

摘要

在压缩致冷、空调和热泵系统中使用的液体组合物，其中将一种含3至4个碳原子和至少1个
但不超过2个双键的氟代烯烃与一种可基本混溶的有机润滑剂组合，有机润滑剂的量是提供润滑
的有效量，含有碳、氢和氧，并且具有的氧碳比有效提供与所述氟代烯烃的一定程度的可混溶性，
使得当将至多5重量%润滑剂加入所述氟代烯烃
时，该致冷剂在介于-40和+70℃之间的至少一个
温度下具有一个液相。还公开了氟代烯烃单独进
行或与所公开的润滑剂组合进行冷却和加热的
方法。
1. 一种用在压缩制冷、空调和热泵系统中的液体组合物，其中包含：
 a）含3个碳原子的氟代烃烃，其中所述氟代烃烃具有如下结构：
 \[
 \begin{align*}
 &\text{R} \quad \text{R} \\
 \text{C} = \text{C} - \text{R'} \\
 \text{R}
 \end{align*}
 \]
 其中每个R独立地为F或H；R’为(CR_{2})_{n}Y；Y为CRF_{2}并且n是0；
 b）提供润滑有效果的、可混溶的有机润滑油剂，其含有碳、氮和氧，并且具有的氧碳比有效提供与所述氟代烃烃的一定程度的可混溶性，使得当将至多5重量％有机润滑油剂加入所述
 氟代烃烃时，混合物在介于-40和+70℃之间的至少一个温度下具有一个液相，其中所述有
 机润滑油剂选自用于压缩致冷、空调和热泵系统的聚亚烷基二醇、聚亚烷基二醇酯和多元醇
 酯润滑油剂。

2. 权利要求1的组合物，其中所述氟代烃烃是2,3,3,3-四氟丙烯。

3. 权利要求1或2的组合物，其中当将至多20重量％有机润滑油剂加入所述氟代烃烃时，该
 混合物具有一个液相。

4. 权利要求1或2的组合物，其中在氟代烃烃和有机润滑油剂的所有比例下，该混合物具
 有一个液相。

5. 权利要求1或2的组合物，其中覆盖整个-40和+70℃的温度范围，该混合物具有一个
 液相。

6. 权利要求1或2的组合物，其中所述有机润滑油剂是聚亚烷基二醇。

7. 权利要求6的组合物，其中所述聚亚烷基二醇具有至少一个端羟基。

8. 权利要求6的组合物，其中所述聚亚烷基二醇的两个端基均是羟基。

9. 权利要求7或6的组合物，其中一个或每一个羟基被含1至10个碳原子的烷基封端。

10. 权利要求6的组合物，其中所述聚亚烷基二醇具有至少一个烷基封端基团。

11. 权利要求10的组合物，其中所述聚亚烷基二醇的至少一个端基含有至少一个杂
 原子。

12. 权利要求11的组合物，其中所述聚亚烷基二醇具有至少一个氟代烷基端基。

13. 权利要求1或2的组合物，其中所述有机润滑油剂是聚亚烷基二醇酯。

14. 权利要求1或2的组合物，进一步包含适量的烃润滑油剂，其与所述氟代烃烃和所述有
 机润滑油剂可混溶。

15. 权利要求14的组合物，进一步包含表面活性剂，其用于增加所述烃润滑油剂与所述有
 机润滑油剂的溶解性，其含量使得有效地形成一种可混溶的混合物。

16. 权利要求1或2的组合物，其中所述有机润滑油剂包含粘度在37℃时粘度为1至200厘
 斯的聚亚烷基二醇。

17. 权利要求1或2的组合物，其中所述有机润滑油剂包含聚亚烷基二醇，所述有机润滑油剂
 的粘度在37℃时为20至200厘斯。

18. 权利要求1或2的组合物，其中所述有机润滑油剂包含聚亚烷基二醇，所述有机润滑油剂
 的粘度在37℃时为30至150厘斯。

19. 权利要求1或2的组合物，其中所述有机润滑油剂包含聚亚烷基二醇，所述聚亚烷基二
醇含有5至50个氧化烯重复单元，该重复单元含1至5个碳原子。

20. 权利要求1或2的组合物，其中所述有机润滑剂包含聚亚烷基二醇，该聚亚烷基二醇是均聚物或2、3或更多种氧乙烯、氧丙烯、氧丁烯或氧戊烯基或其组合的共聚物。

21. 权利要求1的组合物，其中所述有机润滑剂包含聚亚烷基二醇，该聚亚烷基二醇含至少50%的氧丙烯基。

22. 权利要求21的组合物，其中所述聚亚烷基二醇是均聚物。

23. 权利要求1的组合物，其中所述有机润滑剂包含多元醇酯。

24. 一种进行致冷的方法，其包括冷凝一种致冷剂组合物，其包含：

a) 含3个碳原子的氟代烯烃，其中所述氟代烯烃具有如下结构：

```
  R         R
 C=CR=CR
   R
```

其中每个R独立地为F或H；R’为(CR₂)nY；Y为CRF₂并且n是0；和

(24) 提供润滑有效量的、可混溶的有机润滑剂，其含有碳、氢和氧，并且具有有效的氟碳比有效提供与所述氟代烯烃的至少5重量%的有机润滑剂加入所述氟代烯烃时，混合物在介于-40和70°C之间的至少一个温度下具有一个液相，其中所述有机润滑剂选自用于压缩致冷、空调和热泵系统的聚亚烷基二醇、聚亚烷基二醇酯和多元醇酯润滑剂，

并随后在待冷却的物体附近蒸发所述致冷剂组合物。

25. 权利要求24的方法，其中所述氟代烯烃是2,3,3,3-四氟丙烯。

26. 权利要求24或25的方法，其中所述致冷方法在压缩致冷系统中执行。

27. 权利要求24或25的方法，其中所述致冷方法在空调系统中执行。

28. 权利要求24或25的方法，其中当将至多20重量%有机润滑剂加入所述氟代烯烃时，该致冷剂具有一个液相。

29. 权利要求24或25的方法，其中在氟代烯烃和有机润滑剂的所有比例下，该致冷剂具有一个液相。

30. 权利要求24或25的方法，其中覆盖-40和70°C的整个温度范围，该致冷剂具有一个液相。

31. 权利要求24或25的方法，其中向所述致冷剂中进一步添加适量的烃润滑剂，其与所述氟代烯烃和所述有机润滑剂可混溶。

32. 权利要求31的方法，其中向所述致冷剂中进一步添加表面活性剂，其用于增加所述烃润滑剂与所述氟代烯烃和所述有机润滑剂的溶解性，其含量使得有效地形成一种混溶的混合物。

33. 权利要求24或25的方法，所述方法在选自压缩制冷系统、空调系统、深冷器、电冰箱、运输制冷系统和商业致冷系统的系统中进行。

34. 权利要求24的方法，其在深冷器中进行。

35. 一种进行加热的方法，其包括在待加热的物体附近冷凝一种氟代烯烃组合物，其包含：

3
（a）含3个碳原子的氟代烯烃，其中所述氟代烯烃具有如下结构：

其中每个R独立地为F或H；R’为(CR₃)ₙY；Y为CRF₂并丽数目是0；和

（B）提供润滑有效量的、可混溶的有机润滑剂，其含有碳、氢和氧，并且具有芳族和碳链的有效性与所述氟代烯烃的一定范围的可混溶性，使得当将至多5重量%有机润滑剂加入所述氟代烯烃时，混合物在介于–40℃和+70℃之间的至少一个温度下具有一个液相，其中所述有机润滑剂自用于压缩致冷、空调和热泵系统的聚亚烷基二醇、聚亚烷基二醇酯和多元醇酯润滑剂，

并将后蒸发所述氟代烯烃组合物。
36.权利要求35的方法，其中所述氟代烯烃是2,3,3-四氟丙烯。
37.权利要求35或36的方法，其中当将至多20重量%有机润滑剂加入所述氟代烯烃组合物时，该氟代烯烃组合物具有一个液相。
38.权利要求35或36的方法，其中在氟代烯烃组合物和有机润滑剂的所有比例下，该氟代烯烃组合物具有一个液相。
39.权利要求35或36的方法，其中覆盖–40℃和+70℃的整个温度范围，该氟代烯烃组合物具有一个液相。
40.权利要求35或36的方法，其中向所述氟代烯烃组合物中进一步添加适量的烃润滑剂，其与所述氟代烯烃和所述有机润滑剂可混溶。
41.权利要求40的方法，其中向所述氟代烯烃组合物中进一步添加表面活性剂，其用于增加所述烃润滑剂与所述氟代烯烃和所述有机润滑剂的溶解性，其含量使得有效地形成一种可混溶的混合物。
氟代烯烃制冷剂组合物

【0001】 相关申请
【0002】 本申请是中国专利申请号2004800390948, 申请日2004年10月25日，发明名称“氟代烯烃制冷剂组合物”的中国专利申请的分案申请。
【0003】 本申请涉及并要求美国临时申请60/421,263和60/421,435的优先权益，其中每个申请于2002年10月25日递交，且每个申请在引用前并入本申请。本申请还涉及并以引用合并以下同时递交的各美国专利申请：代理人楼号（Docket Number）H0004412(26,269)，Singh等人的标题为“Compositions Containing Fluorine Substituted Olefins(包含氟代烯烃的组合物)”申请，和代理人楼号H0003789(26,267), Tung等人的标题为“Proess For Producing Fluoropropenes(氟代丙烯的制备方法)”申请。

技术领域
【0004】 本发明涉及在压缩致冷、空调和热泵系统中用作制冷流体的组合物。

背景技术
【0005】 人们已经不赞同使用含氨致冷剂，例如含氯氟烃(chloro-fluorocarbons) (CFC’s)、氢化含氯氟烃(hydrochlorofluorocarbons)(HCF’s)等作为空调系统和制冷系统的致冷剂，这是因为这些化合物伴有氧化性能，结果，日益期望用例如氟化碳烃(HFC’s)的不消耗臭氧层的非含氨致冷剂化合物代替含氨致冷剂，以改型含氨致冷系统。
【0006】 作为任何与致冷组合物相关的替代材料，这些材料必须与压缩机中采用的润滑剂相容。遗憾的是，在传统上与CFC’s和HFC’s一起使用的润滑剂类，包括例如矿物油、烷基苯或聚(α-烯烃)中，包括HFC’s的许多非含氨致冷剂流体是相对不可溶的和/或不可混溶的。为了获得一种在压缩致冷、空调或热泵系统中有效工作的致冷流体-润滑剂组合（combination)，润滑剂必须在宽泛的操作温度范围里均能足够地溶解在致冷液体中。这种可溶性降低了润滑剂的粘度，并使它能更容易地流过系统。缺少这种可溶性的情况下，润滑剂趋于在压缩致冷、空调和热泵系统的蒸发器以及系统其它部件的蛇行管中滞留，从而降低了系统的效率。
【0007】 作为HFC致冷液体的可混溶润滑剂，已经开发了聚亚烷基二醇、酯化的聚亚烷基二醇和多元醇酯的润滑剂。美国专利4,755,316,4,971,712和4,975,212公开了聚亚烷基二醇致冷润滑剂。美国专利5,008,028公开了聚亚烷基二醇酯。所公开的聚亚烷基二醇和聚亚烷基二醇酯润滑油可混溶于一个和两个碳原子且无双键的氟代烷烃中。
【0008】 从而，发现基于氟代烃的流体广泛用于致冷系统应用的工业领域，包括空调系统以及热泵应用，它们均包括压缩致冷。压缩致冷通常包括通过较低压力下热吸收将致冷剂从液相变为气相，然后通过在高压下排除热量从气相变为液相。
【0009】 致冷的首要目的是在低温时除去能量，而热泵的首要目的是在高温时增加能量。热泵因为加热而被认为是逆循环系统，冷凝器的运作与致冷蒸发器的运作互换。
【0010】 这一技术领域不断寻求基于新的氟代烃和氢化氟代烃的纯流体，其为致冷和热泵
应用提供替代物。申请人已经意识到，基于氟代烯烃的材料（氟代烯烃类）尤其有意义，因为它们具有的特性使它们可以比目前使用的氟代烃（HFC’s）对环境更安全的替代品，HFC’s 尽管对臭氧层安全，但是令人怀疑使全球变暖。

[0011] 申请人还认识到，在许多情况下HFC’s的致冷组合物替代品优选具有某些性能，使它们被认为是可接受的替代品，包括可接受的致冷特性、化学稳定性、低毒性、不燃性、润滑性、相容性及使用效率等。最后的性能在许多致冷系统中都是重要的，尤其在致冷热力学性能或能量效率的损失可能导致通过电能需求增加而引起的矿物燃料使用增加造成二次环境影响时。此外，不需要对传统的蒸汽压缩技术及目前氟致冷液体一起使用的润滑剂系统的重大变动，这可能也是HFC致冷组合物替代品的优点。

[0012] 对许多应用来说，可燃性是另一项重要性能。即，在许多应用，尤其是在包括传热的应用中，使用不可燃的组合物被认为是重要或基本的需求。这样，在这类组合物中使用不可燃的化合物常常是有益的。

[0013] 本申请中使用时，术语“不可燃的”是指化合物或组合物按照ASTM标准E-681, 2002年版，测定会是不可燃的，该标准经引用并入本申请。不幸的是，在所用的致冷剂组合物中可能可能可取的许多HFC’s却不是不可燃的。例如氟代烃二氟乙烷（HFC-152a）和氟代烃1,1,1,2-四氟乙烯（HFC-143a）均是不可燃，从而在许多应用中它们是不可用的。

[0014] 已经提议用更高级的氟代烯烃，即具有至少5个碳原子的氟取代的烯烃，作为致冷剂。Smutny的美国专利4,788,352涉及氟代的C6至C8具有至少一些不饱和度的化合物的生产。Smutny的这项专利视为是这类更高级烯烃，已知它们具有作为致冷剂、杀菌剂、介电液体、传热液体、溶剂和各种化学反应的中间体的可用性。

[0015] 尽管Smutny专利中描述的氟代烯烃可具有一定效力水平的传热应用，但是据信，这类化合物还可能有某些缺陷。例如其中一些化合物可能倾向于侵蚀基底，特别是一些目的的塑料，例如丙烯酸树脂和ABS树脂。此外，Smutny专利中描述的更高级的氟代烯烃在某些应用中还可能因为这类化合物潜在的毒性水平而不可取的，之所以这样认为可能是Smutny专利中指出杀菌剂活性所导致。这类化合物还可能具有过高的沸点，以致于在某些应用中不能用它们作为致冷剂。

[0016] 因此申请人已经意识到，需要一些组合物，特别是流体输送组合物，它们可能用包括蒸汽压缩加热和冷却系统的方法为数众多的应用中，且同时避免以上指出的一种或多中缺陷。而且，申请人也已经认识到，许多应用中一直需要比HFC’s对环境更安全的基于氟代烃和氢化氟代烃的致冷剂液体，相对的适合某些致冷剂的热力学性能，并且有较高的热力学性能，具有类似或更好的特性，且与现有的润滑剂系统相容。

发明内容

[0017] 本发明提供一种用于压缩制冷、空调和热泵系统的液体组合物，其包含：

[0018] (A)含3至4个碳原子和至少1个但不超过2个双键的氟化烯烃；和

[0019] (B)提供润滑有效的，基本上可混溶的有机润滑剂，其含有碳、氢和氧，并且具有氧碳比有效提供与所述氟代烯烃的一定程度的可混溶性，使得当将至多5重量％润滑剂加入所述氟代烯烃时，混合物在介于-40和+70℃之间的至少一个温度下具有一个液相。
具体实施方式
[0020] 本发明涉及如下方案：
[0021] 项目1.一种用于压缩制冷、空调和热泵系统的液体组合物，其包含：
[0022] (A)含3至4个碳原子和至少1个但不超过2个双键的氟代烯烃；和
[0023] (B)提供润滑有效性的、基本上可混溶的有机润滑剂，其含有碳、氢和氧，并具有
的氧碳比有效提供与所述氟代烯烃的一定程度的可混溶性，使得当将至多5重量%润滑剂
加入所述氟代烯烃时，混合物在介于-40和+70℃之间的至少一个温度下具有一个液相。
[0024] 项目1的组合物，其中当将至多5重量%润滑剂加入所述氟代烯烃时，该混合物
具有一个液相。
[0025] 3.项目2的组合物，其中当将至多20重量%润滑剂加入所述氟代烯烃时，该混合物
具有一个液相。
[0026] 4.项目3的组合物，其中在氟代烯烃和润滑剂的所有比例下，该混合物具有一个液
相。
[0027] 5.项目1的组合物，其中基本覆盖整个温度范围，该混合物具有一个液相。
[0028] 6.项目1的组合物，其中所述润滑剂选自用于压缩机致冷、空调和热泵系统的聚亚
烷基二醇、聚亚烷基二醇酯和多元醇酯润滑剂。
[0029] 7.项目1的组合物，其中所述氟代烯烃具有如下结构：
[0030] XCF2R3-2
[0031] 其中X是C2或C3不饱和的、取代的或非取代的烷基，R独立地选自Cl、Br、I或H，且z是
1至3。
[0032] 8.项目7的组合物，其中所述氟代烯烃具有如下结构：
[0033] \[\begin{align*}
R & \quad R \\
\text{C} & \quad \text{C} \\
R & \quad R' \\
\end{align*} \]
[0034] 其中每个R独立地为Cl,F,Br,I或H, R' 为(CR2)nY, Y为CF2并且n是0或1。
[0035] 9.项目8的组合物，其中所述氟代烯烃是1,3,3,3-四氟-丙烯或3,3,3-三氟丙烯。
[0036] 10.项目1的组合物，其中所述有机润滑剂是聚亚烷基二醇。
[0037] 11.项目10的组合物，其中所述聚亚烷基二醇具有至少一个端基基。
[0038] 12.项目11的组合物，其中所述聚亚烷基二醇的两个端基均是羟基。
[0039] 13.项目10的组合物，其中所述聚亚烷基二醇具有至少一个烷基封端基团。
[0040] 14.项目13的组合物，其中所述聚亚烷基二醇的至少一个端基含有至少一个杂
原子。
[0041] 15.项目14的组合物，其中所述聚亚烷基二醇具有至少一个氟代烷基端基。
[0042] 16.项目1的组合物，其中所述有机润滑剂是聚亚烷基二醇酯。
[0043] 17.项目1的组合物，进一步包含适量的烃润滑剂，其基本上与所述氟代烯烃和所
述有机润滑剂可混溶。
[0044] 18.项目17的组合物，进一步包含表面活性剂，其用于增加所述烃润滑剂与所述有
机润滑剂的溶解性，其含量使得有效地形成一种基本可混溶的混合物。
19. 一种进行致冷的方法，其包括冷凝一种包含氟代烯烃的致冷剂组合物，该氟代烯烃含3至4个碳原子和至少1个但不超过2个双键，并随后在待冷却的物体附近蒸发所述致冷剂组合物。

20. 项目19的方法，其中所述氟代烯烃具有如下结构：

21. 项目20的方法，其中所述氟代烯烃具有如下结构：

22. 项目21的方法，其中所述氟代烯烃是：1,3,3,3-四氟丙烯或3,3,3-三氟丙烯。

23. 项目19的方法，其中所述致冷方法在压缩致冷系统中执行。

24. 项目19的方法，其中所述致冷方法在空调系统中执行。

25. 项目19的方法，其中将有机润滑油以有效提供润滑的量添加到所述致冷剂中，该有机润滑油含有碳、氢和氧，并且具有的氧碳比有效提供与所述氟代烯烃的一定程度的可混溶性，使得当将至多5重量％润滑油加入所述氟代烯烃时，致冷剂在介于-40和+70℃之间的至少一个温度下具有一个液相。

26. 项目25的方法，其中当将至多20重量％润滑油加入所述氟代烯烃时，该致冷剂具有一个液相。

27. 项目26的方法，其中在氟代烯烃和润滑油的所有比例下，该致冷剂具有一个液相。

28. 项目25的方法，其中基本覆盖整个温度范围，该致冷剂具有一个液相。

29. 项目25的方法，其中所述润滑油选自用于压缩机致冷和空调系统的聚亚烷基二醇、聚亚烷基二醇酯和多元醇酯润滑油。

30. 项目25的方法，其中向所述致冷剂中进一步添加适量的烃润滑油，其基本上与所述氟代烯烃和所述有机润滑油可混溶。

31. 项目30的方法，其中向所述致冷剂中进一步添加表面活性剂，其用于增加所述烃润滑油与所述氟代烯烃和所述有机润滑油的溶解性，其含量使得有效地形成一种基本混溶的混合物。

32. 一种进行加热的方法，其包括在待加热的物体附近冷凝一种氟代烯烃组合物，其含3至4个碳原子和至少1个但不超过2个双键，并随后蒸发所述氟代烯烃组合物。

33. 项目32的方法，其中所述氟代烯烃具有如下结构：

34. 项目33的方法，其中所述氟代烯烃具有如下结构：
其中每个R独立地为Cl、F、Br、I或H；R'为(CR₃)ₙ，Y为CRF₂，并且n是0或1。

35. 项目34的方法，其中所述氟代烯烃是1,3,3,3-四氟丙烯或3,3,3-三氟丙烯。

36. 项目32的方法，其中将一种有机湿润剂以有效湿润的量添加到所述氟代
烯烃组合物中，该有机湿润剂含有碳、氢和氧，并且所述的有机湿润剂与所述氟代烯烃
组合物的相容性，使得当将至多20重量％湿润剂加入所述氟代烯烃组合物时，所
述组合物在介于-40和+70°C之间的至少一个温度下具有一个液相。

37. 项目36的方法，其中当将至多20重量％湿润剂加入所述氟代烯烃组合物时，所
述氟代烯烃组合物具有一个液相。

38. 项目37的方法，其中在氟代烯烃组合物和湿润剂的所有比例下，所述氟代烯烃
组合物具有一个液相。

39. 项目36的方法，其中基本覆盖整个温度范围，所述氟代烯烃组合物具有一个液
相。

40. 项目36的方法，其中所述湿润剂选自用于压缩机致冷和空调系统的聚亚烷基
二醇、聚亚烷基二醇酯和多元醇酯湿润剂。

41. 项目36的方法，其中所述氟代烯烃组合物中进一步添加适量的烃湿润剂，其
基本上与所述氟代烯烃和所述有机湿润剂可混溶。

42. 项目41的方法，其中所述氟代烯烃组合物中进一步添加表面活性剂，其用于
增加所述烃湿润剂与所述氟代烯烃和所述有机湿润剂的溶解性，其含量使得有效地形成一
种基本可混溶的混合物。

通过在待加热的物体附近压缩含H₂至5个碳原子并至少含1个但不超过2个双键的
氟代烯烃而产生热，从而蒸发氟代烯烃。再次地，优选含5个碳原子和1个双键的氟代烯烃。

还发现，本发明的氟代烯烃可与存在的聚亚烷基二醇、聚亚烷基二醇酯和多元醇
酯润滑油混溶。因此，按照本发明的另一个方面，提供用于压缩致冷、空调和热泵系统中的
液体组合物，其中将含2至5个碳原子且至少1个但不超过2个双键的氟代烯烃与足够提供润
滑油的基本混溶的有机润滑油组合，该润滑油选自用于压缩致冷、空调和热泵系统中的聚
亚烷基二醇、聚亚烷基二醇酯和多元醇酯润滑油。在某些优选实施方案中，本发明的润滑油
是含碳、氢和氧的有机化合物，且氧对碳的比例足以提供与氟代烯烃的一定混合度，使得
当约1至5重量％的润滑油加入到致冷剂液体中时，液体具有一个液相。优选，在混合物中
存在1至20重量％的润滑油时，混合物具有一个液相。更优选，在混合物各组分的全部比例
下，混合物是一个液相。这种溶解性或混溶性优选存在于约-40°C至70°C的至少一个温度
下，更优选基本覆盖整个温度范围。

如本文中所述的，术语“致冷系统”是指采用提供冷却的致冷液体或致冷剂的任何
系统或设备，或者这种系统或设备的任何部件或部分。这种致冷系统包括，例如空调、电冰
箱、冷热器、运输致冷系统、商业致冷系统等等。

本发明的HFC’s替代品HFO’s尽管对臭氧层安全，但是其被怀疑促使全球变暖，至
少按照本发明优选的某些HFO’s具有使他们仅以最小的设备改变即可替代HFC’s的物理特
适用于本发明使用的聚亚烷基二醇润滑剂一般含有5至50个氧化烯（oxyylakylene）重复单元，该重复单元含1至5个碳原子。这种聚亚烷基二醇可以是直链或支链的，而且可以是均聚物或2、3或更多种氧乙烯、氧丙烯、氧丁烯或氧戊烯基或其组合以任意比例的共聚物。优选的聚亚烷基二醇含至少50％的氧丙烯基。按照本发明的组合物可含有：一种或多种作为润滑剂的聚亚烷基二醇，一种或多种作为润滑剂的聚亚烷基二醇酯，一种或多种作为润滑剂的多元醇酯，或者一种或多种聚亚烷基二醇、一种或多种聚亚烷基二醇酯和一种或多种多元醇酯的混合物。乙醚醚类也可用于本发明。

合适的聚亚烷基二醇包括：美国专利4,971,712中的聚亚烷基二醇和美国专利4,755,316所公开的每端具有羟基的聚亚烷基二醇。两项专利所公开的内容经引用并入本申请。

虽然合适的聚亚烷基二醇包括每一端以羟基封端的二醇，但是其它合适的HFO润滑剂包括一端或两端羟基被封端的聚亚烷基二醇。羟基可被以下基团封端：含1至10个碳原子的烷基、含杂原子例如氮的1至10个碳原子的烷基、美国专利4,975,212所描述的氟代烷基（该专利的部分内容经引用并入本申请）等。当聚亚烷基二醇的两个羟基都被封端时，可使用相同类型或组合的两种不同类型的封端基团。

还可以如美国专利5,008,028（其部分内容经引用并入本申请）所公开的，通过羧酸与一个或两个羟基形成其酯，将其封端。这一专利中的润滑剂是指多元醇酯和聚亚烷基二醇酯，羧酸还可以被氟化。当聚亚烷基二醇的两端均被封端时，一端或两端以酯封端、或者一端可以以酯封端而另一端未封端或用前述烷基，杂化烷基或氟代烷基之一封端。

市售可获得的聚亚烷基二醇润滑剂包括：General Motors出售的用于HFC-134a系统的Goodwrench Refrigeration Oil，和Daimler-Chrysler出售的MOPAR-56，这是一种用乙酰基双封端的聚亚烷基二醇。市售可获得的聚亚烷基二醇酯包括：Exxon-Mobil出售的Mobil EAL 22 cc和CPI Engineering Services, Inc.出售的Solest 120。还可从Dow Chemical获得多种多样的聚亚烷基二醇润滑剂。

在优选的实施方案中，本发明的润滑剂的粘度在约37°C时为约1至1000厘泽，更优选在约37°C时为约10至约200厘泽，并更优选为约30至约150厘泽。

除了HFO致冷剂和润滑剂以外，按照本发明的组合物可包括致冷、空调和热泵的组合物的用于增强它们性能的其它类型添加剂或材料。例如，这些组合物还可包括：耐极压添加剂和耐磨添加剂、氧化和热稳定性改进剂、降凝点剂和降絮凝点剂、消泡剂、可溶于HFO′s的其它润滑剂等等。这类添加剂的实例公开在美国专利5,254,280中，经引用将其部分内容并入本申请。从而，本发明的组合物可进一步包括一定量的矿物油润滑剂，其尽管不能与HFO混溶或不溶，但是当与聚亚烷基二醇、聚亚烷基二醇酯或多元醇酯组合加入HFO时，至少部分混溶或部分可溶。典型地，这是至多约5-20重量％的量。还可添加表面活性剂以使矿物油与聚亚烷基二醇、聚亚烷基二醇酯或多元醇酯及HFO相容，这些内容在美国专利6,516,837中公开，这项专利的公开内容经引用并入本申请。

本发明可使用将本发明致冷组合物引入压缩致冷、空调和热泵系统中的任何方法。例如，一种方法包括将致冷剂容器连接到致冷系统的低压侧，并打开致冷系统的压缩机，以便将这种致冷组合物推入系统中。在这些实施方案中，致冷剂容器可被置于称上，使
得能够监控进入系统的致冷组合物的量。当已经将需要量的致冷组合物引入系统时，停止加料。替换地，可以购买到本领域技术人员已知的各种各样的加料工具。因此，鉴于上述内容，本领域技术人员会容易地将本发明的HFO致冷剂和致冷组合物引入压缩致冷、空调和热泵系统中，而且无需过度实验。

[0089] 实施例
[0090] 提供以下实施例的目的是为了举例说明本发明，但不限定本发明的范围。
[0091] 实施例1
[0092] 性能系数(COP)是普遍接受的致冷剂性能的度量，尤其用于表示，在包括致冷剂蒸发或冷凝的特定加热或冷却循环中，致冷剂的相对热力学效率。在致冷工程中，这个术语表达有用的致冷相对压缩机压缩蒸汽所施加能量的比率。致冷剂的容量表示致冷剂的容积效率，并为压缩机以一定的致冷剂体积流速泵送热量能力来提供某种度量。换句话说，给定了特定的压缩机，致冷剂的容量越高，则输送的冷却或加热功率越大。估算特定操作条件下致冷剂COP的一种手段是基于该致冷剂的热力学性能，使用标准致冷循环分析技术(参见，例如R.C.Downing,FLUOROCARBON REFRIGERANTS HANDBOOK,Chapter 3,Prentice-Hall,1988
(R.C.Downing,氟代烃致冷剂手册,第3章,Prentice-Hall,1988))。
[0093] 提供了致冷/空调循环系统，其中冷凝器温度为约150°F，且蒸发器温度为约-35°F，处于标称等熵压缩下，压缩机入口温度为约50°F。对本发明的数种组合物测定COP，测定覆盖了冷凝器和蒸发器的温度范围，并将COP记录在下表1中，基于HFC-134a，其具有1.00的COP值，1.00的容量值和175°F的排出温度。
[0094] 表1

<table>
<thead>
<tr>
<th>致冷剂组合物</th>
<th>相对COP</th>
<th>相对容量</th>
<th>排出温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFO 1225ye</td>
<td>1.02</td>
<td>0.76</td>
<td>158</td>
</tr>
<tr>
<td>HFO trans-1234ze</td>
<td>1.04</td>
<td>0.70</td>
<td>165</td>
</tr>
<tr>
<td>HFO cis-1234ze</td>
<td>1.13</td>
<td>0.36</td>
<td>155</td>
</tr>
<tr>
<td>HFO 1234vf</td>
<td>0.98</td>
<td>1.10</td>
<td>168</td>
</tr>
</tbody>
</table>

[0096] 这一实施例显示，与本组合物一起使用的优选化合物确实每一个都比HFC-134a具有更好的能量效率(1.02,1.04和1.13相比于1.00)，而且使用本致冷剂组合物的压缩机将产生排出温度(158,165和155相比于175)，这是有利的，因为这种结果可能会导致减少维护问题。
[0097] 实施例2
[0098] 试验HFO-1225ye和HFO-1234ze与各种致冷润滑油剂的混溶性。受试的润滑油剂是矿物油(C3)，烷基苯(Zerol 150)，酯油(Mobil EAL 22 cc和Solest 120)，聚亚烷基二醇(PAG)油(134a系统使用的Goodwrench致冷油)和聚(o-烯烃)油(CP-6005-100)。对每种致冷剂/油组合，试验3个组合物，即5，20和50重量%的润滑油剂，使每个的余量为受试的本发明化合物。
[0099] 将润滑油剂组合物装入厚壁玻璃管中。使这些管排气(evacuated)，加入按照本发明的致冷剂，然后密封这些管。接着将这些管放入空气浴环境模拟箱，其温度从约-50°C到70°C变化。在粗略10°C间隔的各点，肉眼观察管的内容物，判断存在一个或多个液相。在观察
到多于一个液相的情况下，将该混合物记录为不可混溶的。在只观察到一个液相的情况下，
将这一混合物记录为可混溶的。在观察到两个液相但一个液相仅占有很小体积的情况下，
将混合物记录为部分可混溶的。
【0100】 聚亚烷基二醇及酯油润滑剂被判定在所有试验比例和整个温度范围是可混溶的。除
了HFO-1225ye与聚亚烷基二醇的混合物，发现这种致冷剂混合物在-50℃至-30℃温度范
围是不可混溶的，而在20至50℃是部分可混溶的。在致冷剂中PAG的浓度为50重量％时而
且在60℃(℃)时，致冷剂/PAG混合物是可混溶的。70℃时，致冷剂中润滑剂为5重量％至50重
量％时，它是可混溶的。
【0101】 实施例3
【0102】 在350℃试验与用于致冷和空调系统的金属接触时，本发明的致冷剂化合物和组
合物与PAG润滑油的相容性，这代表了比许多致冷和空调应用中严重得多的条件。
【0103】 将铝、铜和钢取样管加入厚壁玻璃管中。向管中加入2克油。然后使这些管排气并
加入1克致冷剂，将这些管放入350°F的烘箱中1个星期并进行肉眼观察。在暴露期结束时，
取出这些管。
【0104】 对以下油与本发明化合物的组合完成这一工序：
【0105】 a)HFC-1234ze和GM Goodwrench PAG油
【0106】 b)HFC1243zf和GM Goodwrench油PAG油
【0107】 c)HFC-1234ze和MOPAR-56 PAG油
【0108】 d)HFC-1243zf和MOPAR-56 PAG油
【0109】 e)HFC-1225 ye和MOPAR-56 PAG油。
【0110】 在所有情形中，管的内容物外观变化极小。这表示，本发明的致冷剂化合物和组合
物在与致冷和空调系统中存在的铝、铜和钢以及可能会包括在这些组合物中的，或者与这
类组合物在这些系统中一起使用的这些类型的润滑油接触时是稳定的。
【0111】 对比例
【0112】 将铝、铜和钢取样管加入装有矿物油和CFC-12的厚壁玻璃管中，并如实施例3中那
样于350℃加热1个星期。在暴露期结束时，取出这些管并进行肉眼观察。观察到液体内容物
变黑，这表示管的内容物存在严重的分解。
【0113】 在此以前，CFC-12和矿物油已经是许多致冷系统和方法中选择的组合。因此，与广
泛使用的已有技术中的致冷剂-润滑油组合相比，本发明的致冷剂化合物和组合物与许多
通常使用的润滑油具有明显更优的稳定性。