PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7

GOG6F 17/30 A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/57315

28 September 2000 (28.09.00)

(21) International Application Number: PCT/US00/07973

(22) International Filing Date: 24 March 2000 (24.03.00)

(30) Priority Data:
60/126,094
60/171,995

Us
Us

25 March 1999 (25.03.99)
23 December 1999 (23.12.99)

(71) Applicant: MICROSOFT CORPORATION [US/US]; On
Microsoft Way, Redmond, WA 98052 (US). i

(72) Inventors: KAMATH, Vivek; 19508 NE 120th Street, Red-
mond, WA 98053 (US). BROWN, Craig; 17405 20th Drive
SE, Bothell, WA 98012 (US). PENCE, John; 9728 174th
Avenue SE, Renton, WA 98059 (US). SHEKARAN, Chan-
dra; 17042 183rd Place NE, Woodinville, WA 98072 (US).
LORIMOR, Tom; 2020 184th Avenue NE, Redmond, WA
98052 (US).

(74) Agent: MICHALIK, Albert, S.; Michalik & Wylie, PLLC,
Suite 103, 14645 Bel-Red Road, Bellevue, WA 98007 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ,
UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: EXTENDED FILE SYSTEM

(57) Abstract

A method and system for transparently combining remote
and local storage to provide an extended file system such as a
virtual local drive for a computer system client/user, e.g. a
user of a pocket sized personal computer or a cable set-top
box. A client device may load file system object data, storing
the directories and files remotely, and retrieving the files only
when required. Via its local storage, the extended file system
handles unreliable connections and delays. When a connection
to an extended file system server is present, the extended file
system provides automatic downloading of information that is
not locally cached, and automatically uploading of information
that has been modified on the client. Extended file system
attributes are employed to determine the actual location of file
system data, and a lightweight protocol is defined to download
or upload remote data by low-level components that make
the remote source transparent from the perspective of the
application. The system scales to large networks as it employs
the lightweight protocol and establishes a connection only to
retrieve and submit data.

Client 80
e 76
Application i
[_aPis_| Server
XFS-SERVER
OS Kernel 102 NAME
92 | SERVICES
T
y 100
| PERMISSIONS
File System Manager 1 32 L_ MANAGER
[
33
XFS-CLIENT
y 198~ _ ACCESS
XFSDISK - 34 CONTROLLER
A 4 74
XFSFSD 11T 9%
A
y
XFSCUNT 1T 94
3
Y A
Winsock over TCP/IP Winsock over TCP/IP
[Y 84 [y

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d'Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR

Slovenia

Stovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/57315 PCT/US00/07973

EXTENDED FILE SYSTEM

FIELD OF THE INVENTION

The present invention relates generally to computer
devices and networks, and more particularly to file

storage and access by a computer-related device.

BACKGROUND OF THE INVENTION

Consumer devices such as Pocket PCs or palm-sized
and handheld computers are limited in their available
storage space. These devices are capable of loading and
executing software packages in much the same way as a
desktop computer, but lack the storage necessary to have
several of these packages loaded onto the system
concurrently along with other data needed by a user.
Other devices such as cable television set-top boxes,
satellite receivers and so forth have the same lack-of-
memory problems.

As access to the Internet via such devices is being
planned and to some extent implemented, the lack of
storage on the devices create problems not seen in home
or business computers. For example, personal site
customizations, favorites, saved data such as credit card
information, cookies and so forth are typically stored on
computing devices having relatively large hard disks
wherein storage is not normally an issue. E-mail files,
which on a device such as a single set-top box, will
differ for (possibly multiple) individual users of that
device. However, saving such data along with other
needed information would quickly fill up the available
storage on many devices, and if, for example, a
relatively large file was downloaded to the device, the

saved data would have to be discarded in order to fit the

10

15

20

25

30

WO 00/57315 PCT/US00/07973

large file. 1Indeed, in at least one contemporary cable
television set-top box, only 128 kilobytes are available
for persisting user data, which is several orders of
magnitude smaller than the hundreds of megabytes to
dozens of gigabytes typically provided by contemporary
personal computers. Contemporary pocket-size devices
have somewhat more memory, but are still on the order of
tens megabytes or less, of which the operating system and
stored programs consume a considerable amount.

While network shares allow greater amounts of
storage to be accessed via remote drive connections,
their implementations require constant connection to the
network in order to access a network share. Among other
drawbacks, this makes network shares unsuitable for use
with the Internet. For example, NetBIOS and other drive-
sharing (redirector) systems currently require constant
communication between the server and the client. Data is
not cached, but instead is used directly off the shared
file system, and is updated immediately. This is not
acceptable for Internet-based file sharing, as the
Internet is unreliable, and can be susceptible to long
delays in transmission. The NetBios service and SMB
protocol are also point-to-point, relatively heavy, and
do not scale well to large numbers of remote users and
multiple servers. Other existing services are unable
and/or impractical to provide a solution to these low

memory problems.

SUMMARY OF THE INVENTION
Briefly, the present invention provides a method and

system for transparently combining remote and local
storage to act as one or more virtual local drives for a

computer system client, such as a pocket sized personal

10

15

20

25

30

WO 00/57315 . PCT/US00/07973

computer or a set top box. When a connection to an
extended file system server is present, the extended file
system provides automatic downloading of information that
is not locally cached, and automatically uploading of
information that has been modified on the client.
Providing such a remote drive allows any client device to
load file system objects, storing the directories and
files remotely, and retrieving the files only when
required. Via its local storage, the extended file
system handles unreliable connections and delays,
particularly with small files such as cookies, e-mail
text and so forth.

To provide the extended file system, the client
includes components that determine via object attributes
the remote/local location of file system data, and when
appropriate, download or upload the data in a manner that
is transparent from the perspective of the application.
Thus, an application makes normal file / operating system
application programming calls or the like, and the client
components determine the source and retrieve / update the
data appropriately. Data that is updated (e.g., written)
locally is automatically synchronized with the remote
server.

Moreover, communication is fast by use of a
relatively lightweight protocol using straightforward
primitives described herein, and may be made secure via
authentication and encryption. The system scales to
large networks as it employs the lightweight protocol and
establishes a connection only to retrieve and submit

data.

10

15

20

25

30

WO 00/57315 PCT/US00/07973

Other advantages will become apparent from the
following detailed description when taken in conjunction

with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a block diagram representing one

exemplary computer system into which the present
invention may be incorporated;

FIG. 2 is a block diagram representing a television
set-top box including a computer system into which the
present invention may be incorporated;

FIG. 3 is a block diagram generally representing an
extended file system installation in accordance with one
aspect of the present invention;

FIG. 4 is a block diagram generally representing
logical components in a client and server for remotely
accessing objects in accordance with in accordance with
one aspect of the present invention;

FIG. 5 is a flow diagram generally representing
logical steps when enlisting a server to participate in
an extended file system in accordance with one aspect of
the present invention;

FIG. 6 is a flow diagram generally representing
logical steps when defecting a server from participation
in an extended file system in accordance with one aspect
of the present invention;

FIG. 7 is a representation of communications between
a client device and a server to initiate access to remote
objects and perform file system-related operations
thereto in accordance with one aspect of the present
invention;

FIG. 8 is a flow diagram generally representing

logical steps when enlisting a client to participate in

10

15

20

25

30

WO 00/57315 PCT/US00/07973

an extended file system in accordance with one aspect of
the present invention;

FIG. 9 is a flow diagram generally representing
logical steps when a client attempts to locate a selected
server for accessing an extended file system in
accordance with one aspect of the present invention;

FIGS. 10-12 are representations of how the client
components access local objects locally and remote
objects remotely in accordance with one aspect of the
present invention; and

FIGS. 13 is a flow diagram generally representing
logical steps when determining the source of an object in

accordance with one aspect of the present invention.

DETAILED DESCRIPTION

EXEMPLARY OPERATING ENVIRONMENTS

FIGURE 1 and the following discussion are intended
to provide a brief, general description of one suitable
computing environment in which the invention may be
implemented. Although not required, the invention will
be described in the general context of computer-
executable instructions, such as program modules, in one
alternative being executed by a pocket~sized computing
device such as a personal desktop assistant. Generally,
program modules include routines, programs, objects,
components, data structures and the like that perform
particular tasks or implement particular abstract data
types.

Moreover, those skilled in the art will appreciate
that the invention may be practiced with other computer
system configurations, including hand-held, laptop or

desktop personal computers, mobile devices such as pagers

10

15

20

25

30

WO 00/57315 PCT/US00/07973

and telephones, multi-processor systems, microprocessor-
based or programmable consumer electronics including a
cable or satellite set-top box (FIG. 2), network PCs,
minicomputers, mainframe computers and the like. Part of
the invention is also practiced in distributed computing
environments where tasks are performed by remote
processing devices that are linked through a
communications network. In a distributed computing
environment, program modules may be located in both local
and remote memory storage devices, as described below.
With reference to FIG. 1, one exemplary system for
implementing the invention includes a general purpose
computing device in the form of a pocket-sized personal
computing device 20 or the like, including a processing
unit 21, a system memory 22, and a system bus 23 that
couples various system components including the system
memory to the processing unit 21. The system bus 23 may
be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures.
The system memory includes read-only memory (ROM) 24 and
random access memory (RAM) 25, typically non-volatile RAM
(e.g., battery-backed up) in a pocket-sized personal
computing device. A basic input/output system 26 (BIOS),
containing the basic routines that help to transfer
information between elements within the hand-held
computer 20, such as during start-up, is stored in the
ROM 24. A number of program modules are stored in the
ROM 24 and/or RAM 25, including an operating system 28
(such as Windows® CE), one or more application programs
29, other program modules 30, program data 31 and a file

system manager 32.

10

15

20

25

30

WO 00/57315 PCT/US00/07973

In accordance with one aspect of the present
invention, a local memory is used as part of a virtual
local drive is provided by an XFS client component 33,
which includes an XFS Ramdisk manager and storage 34
(XFSDISK), and other components (described below). A
user may enter commands and information into the hand-
held computer 20 through input devices such as a touch-
sensitive display screen 35 with suitable input detection
circuitry 36. Other input devices may include a
microphone 37 connected through a suitable audio
interface 38 and physical (hardware) or a logical
keyboard (not shown). Additional other devices (not
shown), such as LED displays or other peripheral devices
controlled by the computer, may be included. The output
circuitry of the touch-sensitive display 35 is also
connected to the system bus 23 via video driving
circuitry 39. In addition to the display 35, the device
may include other peripheral output devices, such as at
least one speaker 40 and printers (not shown).

Other external input or output devices 42 such as a
joystick, game pad, satellite dish, modem or the like
(satellite, cable or DSL interface), scanner or the like
may be connected to the processing unit 21 through an RS-
232 or the like serial port 40 and serial port interface
41 that is coupled to the system bus 23, but may be
connected by other interfaces, such as a parallel port,
game port or universal serial bus (USB). Such devices
may also be internal. The hand-held device 20 may
further include or be capable of connecting to a flash
card memory (not shown) through an appropriate connection
port (e.g., slot) 43 and interface 44. A number of

hardware buttons 45 such as switches, buttons (e.g., for

10

15

20

25

30

WO 00/57315 PCT/US00/07973

switching application) and the like may be further
provided to facilitate user operation of the device 20,
and are also connected to the system via a suitable
interface 46. An infrared port 47 and corresponding
interface/driver 48 are provided to facilitate
communication with other peripheral devices 49, including
other computers, network connection mechanism (e.g.,
modems or the like), printers, and so on (not shown). It
will be appreciated that the various components and
connections shown are exemplary and other components and
means of establishing communications links may be used.

Turning to FIG. 2 of the drawings, there is shown an
alternate computer system into which the present
invention may be incorporated, implemented in a set-top
box 54 connected to a television receiver / monitor 56.
In FIG. 2, an application 58 which may, for example,
provide a user interface configured to control set-up,
parental control, tuning, timed operation, and/or the
like is provided. The application may also provide a
user interface via which a user is able to access the
Internet, and may include a browser, although as is
known, the browser may be integrated into the operating
system 60 of the set-top box 54. A user interacts with
the application 58 and/or operating system 60 (such as
Windows® CE) via a user input device 62 (such as an
attached keypad, infrared remote control and/or hard-
wired keyboard) and suitable device interface 64.

As is known, one of the functions of a contemporary
set-top box 54 is to output to the receiver / monitor 56
television programming and Internet content received from
a provider 66. To this end, some signal processing

mechanism 68 or the like is generally provided, such as

10

15

20

25

30

WO 00/57315 PCT/US00/07973

including one or more splitters, filters, multiplexers,
demultiplexers, mixers, tuners and so forth as required
to output appropriate video to the receiver / monitor 56,
and to both output and input Internet-related data via a
cable / satellite modem 70. Of course, consumer
satellite dishes only receive content, and thus in a
satellite system an additional mechanism (e.g., telephone
line, not shown) is required to output data to the
provider 66. Other components 72 such as to display
closed-captioning, allow parental control, provide on-
screen program guides, control video recorders and so
forth may be provided as is also known. 1In any event,
these functions of set-top boxes are known, and are not
described herein for purposes of simplicity, except to
the extent that they relate to the extended file system

of the present invention.

EXTENDED FILE SYSTEM

In accordance with one aspect of the present
invention, to provide access to remote client-owned
objects (directories and/or files therein) maintained in
remote storage 74 by one or more XFS file servers 76, the
set-top box includes (e.g., 1in system memory) an XFS
client 33 comprising a number of components (described
below) including the XFS Ramdisk manager / virtual local
drive 34. A file system manager 32 1is also provided, as
described below. For example, in the Windows® CE
operating system, a suitable file system manager is known
as “FSDMGR.”

An exemplary extended file system (XFS) installation
is represented in FIG. 3, and typically comprises a large

number (e.g., millions) of client devices 80,-80, (for

10

15

20

25

30

WO 00/57315 PCT/US00/07973

example, the pocket computing device 20 or the set-top
box 54). The client devices 80:-80, are capable of
connecting to one or more of the servers (76:-76, in FIG.
3) over a network 84 via a service provider 86. The
servers 76,76, participate in XFS as name servers, access
controllers and permission managers, or a combination of
access controller, permission manager and name server as
described below with reference to FIG. 4.

The servers 76,-76, {more particularly the access
controllers) point to a common remote file system for
storing files in one or more XFS storage devices 74
implemented using DFS shares. DFS is a feature of
Windows® 2000 (or Windows® NT®) that provides file
replication (used for providing redundancy of data) and
load balancing for a file system. In one preferred
implementation, the remote file system is the Windows®
NTFS file system, which among other benefits, 1is
considered secure. As will be understood, however, the
XFS file system of the client is independent of the
remote file system / server configuration, and thus
virtually any operating and/or file system (e.g., UNIX,
FAT, FAT32) or combination thereof that works with the
server-side storage media 74 will suffice for purposes of
the present invention.

In the set-top box implementation, the client
devices 54 will normally be physically connected to the
servers 76,-76, at all times via the cable / satellite
modem 70 therein. Indeed, since broadband is in use,
remote files may be quickly accessed by the client, as
described below, even though logical connections are
preferably made on a per-access basis. In keeping with

the present invention, however, the client device

- 10 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

provides local storage for caching some of the data
maintained at the remote storage device 74, thereby
enabling operation without a physical connection.
Synchronization may be performed at some later time or on
demand. As can be appreciated, this is particularly
useful with client devices such as pocket-sized computing
devices (e.g., 20), digital cameras, and so forth wherein
a physical connection is occasional. Moreover, local
caching is generally valuable when dealing with Internet
content, as even when physically connected to a provider,
the Internet is unreliable and can be susceptible to long
delays in transmission and also helps in optimizing
bandwidth utilization.

As generally represented in FIG. 4, the extended
file system (XFS) comprises the XFS-Client portion 33 and
an XFS-Server portion 92, which together generally
include the XFS Ramdisk manager / virtual local drive 34
and other components 94-102 (described below). Note that
the various components 94-102 are logical components, and
it is likely that several of the components may be
integrated into and handled by a single program. For
example, the XFS server portion 92 may comprise a single
physical component servicing the requests for its logical
components. For extremely large installations, however,
it may be desirable for the components to be implemented
separately for scalability reasons. Similarly, the
virtual local drive of XFS (managed by the XFSDISK 34)
may be at any physical or virtual location or locations
in system memory, not necessarily adjoining or within the
memory allocated to the other XFS client components.

The XFSDISK RAMdisk manager 34 that provides the

virtual local drive is a complete, thread-safe

ll

10

15

20

25

30

WO 00/57315 PCT/US00/07973

implementation of a stream interface driver (as defined
in the “Windows® CE DDK,” available from Microsoft®
Corporation, Redmond, Washington). The XFSDISK 34 is
loaded at boot time, and is configured based on
information provided in the system registry. The XFSDISK
34 is capable of loading a file system device on itself,
thereby appearing as an actual folder off of the root
folder of a hierarchically organized file system. To
provide accessible memory, the XFSDISK 34 creates a
specified number of heaps of a specified size and then
“stitches” them together to give the appearance of a
single, contiguous, addressable block of memory which
serves as a local cache of the virtual local drive. This
address space is shared by the threads and processes
which access XFSDISK, either through the associated file
system device (e.g., the file system manager 32) or by
directly reading from or writing to the disk locations.
XFSDISK serves as the local cache for the remote file
system of the present invention.

Two XFS-Client 33 components include the XFS Client
Interface (XFSCLNT) 94 and the XFS File System Driver
(XFSFSD) 96. The XFS Client Interface 94 is the
interface to the XFS Server 92, and is responsible for
translating file system requests into XFS primitives (XFS
network functions) and marshaling the primitives across
to the server. As will be described below, the XFS
Client Interface (XFSCLNT) 94 performs initialization
operations.

The XFS File System Driver (XFSFSD) 96 is an
installable file system driver, which in one
implementation is modeled after the well-documented FAT

file system. In keeping with the present invention, a

- 12 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

remotely maintained file system is presented as a local
file system through XFSFSD 96. As the local disk 33
fills up, the XFSFSD 96 implements a Least Recently Used
(LRU) algorithm to make space available. As described
below, if it is not possible to make space, the files
presented as available in the local file system are
marked as remote and for those files, the file system
essentially behaves like a redirector. The local cache
of files is thus intelligently managed.

The XFS server portion 92 includes an XFS Access
Controller 98, an XFS Permissions manager 100, and an XFS
Name Resolution Manager (name services module) 102. The
access controller 98 is responsible for receiving
primitives from the client and taking actions on them,
although when the access controller 98 receives name-
server primitives, it routes them to name services module
102. As described below, the access controller 98
translates primitives to appropriate actions to be taken
on the file system and sends the response back to the
client.

The Permissions manager 100 is responsible for
authenticating clients and users on the clients. Having
authenticated the client, and a specified user, the
permissions manager 100 provides access to the private
folder for a given client. This is done as a part of
PRIMITIVE CALL, described below. The permissions manager
100 may use the standard X509-based authentication scheme
for validating clients. 1In addition to validating client
devices, the permissions manager 100 enables multiple
users of a common device (e.g., a single set-top box) to
share the same device while isolating the files of one

user from each other user. SQL-based authentication, the

- 13 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

Windows® 2000 Active Directory that specifies domain users
or any custom authentication scheme may be used for
authentication.

The name services module 102 provides enlistment and
name resolution services, as also described below, by
maintaining (e.g., in the local server registry) a local
directory of the name servers and access controllers. To
enlist, when a server starts up, it sends a UDP broadcast
of an enlistment request as described below. If the
server gets an appropriate response from one of the other
servers, it then sends a directed enlistment for
confirming the entries, after which the local directory
is synchronized via a directed resolve. The process of
sending resolves across to known servers 1s done at
periodic intervals of time to ensure that any server that
is added is reflected in the local directory. The name
services module 102 also handles defection (withdrawal
from participation) of servers. When a defection is
initiated for a specific server, the name services module
92 sends directed defects to the other servers in the
local directory. Once the other servers have
acknowledged the deletion of the defecting server, no
more requests are processed.

For the purpose of XFS communications, there are
three specific sets of network functions, called
primitives, comprising a set of Name Resolution
primitives, which include UDP/TCP packets used to locate
XFS components on the network, a set of control
primitives, which are UDP/TCP packets used for management
of the XFS system, and a set of session primitives, which
are TCP streams used to transfer data among XFS

components. Session primitives are conducted on TCP

- 14 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

connections from machine to machine. TCP provides a
minimal Quality of Service (QoS) scenario for the
connection. Primitives have two distinct states, request
and response. Thus, for example, the response to a
Resolve request will be a Resolve response. The Maximum
size for a primitive is 512 bytes for UDP transported
primitives and 1024 bytes for TCP transported primitives.

One control primitive is the enlist primitive, which
is used to enlist clients (as described below), and also
by servers that are attempting to participate in an XFS
installation. A field in the primitive identifies
whether a client or server sent the Enlist request.

More particularly, to enlist a server, an XFS server
(e.g., 763) sends an Enlist primitive to notify the name
servers (XFS-NS) that it wants to begin participation in
the XFS system. The server 763 does not begin processing
requests until it has received an Enlist response
primitive from the name services module at least one
other server. After receiving an Enlist response
primitive, the XFS server 763 may begin processing
requests, however, it should continue to send Enlist
primitives until it has received and Enlist response
primitive from every name services module 102 server
participating on the system. Servers (as well as
clients) should maintain lists of resolved server IP’s,
and preferably update the list in a Time To Live (TTL,
which denotes the amount of time that a piece of data may
be considered valid before it must be verified), manner.
It is recommended that TTL’s be no less than 256 seconds
for each XFS-NS, and 128 seconds for other servers. 1In
the event that no XFS-NS can be located to resolve

requests, the list should be invalidated, and an Enlist

15..

10

15

20

25

30

WO 00/57315 PCT/US00/07973

primitive should be sent via UDP broadcast to retrieve
the network topography.

After the first Enlist response, the name services
module of the server 763 should send its Enlist requests
to unresponsive XFS-NS servers directly, instead of
broadcasting the requests on the network. This will help
to reduce network traffic and avoid responses from XFS-NS
servers which have already responded to the earlier
Enlist request.

For the server control primitive “Enlist,” the
logical flow generally described with reference to FIG. 5
should be used to minimize network traffic. As
represented in FIG. 5, beginning at step 500, a server
sends the enlist request primitive via a UDP Broadcast.
This is necessary because the server has no idea as to
the locations of XFS-NS’s on the network. The server
then'provides some time duration for responses, as
generally represented via steps 502. For each response
received, (if any), at step 504 the server records the IP
address of the responding server.

In general, UDP transported primitives expect a UDP
response verifying their transmission; if no UPD response
is received within a reasonable amount of time, the
primitive send is considered to have failed, and should
be re-issued some number of times before considering the
primitive to have failed completely. Thus, when the time
for waiting is over, step 506 tests if no responses were
received, and if not, branches back to step 500 to
reissue the enlist request primitive via UDP Broadcast.
If at least one response was received, step 506 branches
to step 508 to determine whether the number of servers

that responded is the same as the number of XFS-NS

16

10

15

20

25

30

WO 00/57315 PCT/US00/07973

servers reported from the enlist responses (note that the
number that responded may be less than or equal than
reported, but absent some error will not be greater than
the number reported). If the numbers match, the
enlistment process ends via step 508. If the number
responding is less than the reported number, step 508
branches to step 510 wherein a resolve request for
servers of type XFS-NS is .sent to one of the at least one
known XFS-NS. When the response is received, step 512
sends a UDP directed (i.e., non-broadcast) enlist request
to each XFS-NS which did not respond to broadcast
request. Step 514 saves the IP addresses for servers
that respond to the enlist requests. Note that some wait
time (not represented in FIG. 5) to obtain the responses
may be provided between steps 510 and 512, and between
steps 512 and 514. Note that as long as at least one
XFS-NS has responded, the server should begin processing
requests, except in the case that the enlisting server is
a XFS-NS. The server is to complete enlistment with the
other XFS-NS’s, and system implementers should strive to
ensure that enlistment will be completed even in the case
of server and/or network outages.

To withdraw from participation, an XFS server (e.g.,
76,) sends a Defect primitive to notify the XFS-NS that is
no longer wishes to participate in the XFS system. Note
that defection is not intended for temporary removal of
the server from the XFS system, but rather is used to
remove a server from the XFS for extended or indefinite
periods. As described below, the name resolution
primitive “Locate” will be used to determine server
availability. Further, note that the server may quit

responding to XFS name resolution and session primitives

- 17 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

at this time, but is not to shut down until a Defect
response primitive is received from each of the known
XFS-NS’s in the system.

For the server control primitive “Defect,” the
logical flow generally described in FIG. 6 should be used
to minimize network traffic. In FIG. 6, beginning at
step 600, a server sends the Defect request primitive via
a UDP Broadcast. After some time, (step 602), the server
normally receives a number of Defect responses from the
XFS-NS servers (step 604).

At step 606, If the numbers match, the enlistment
process ends. Otherwise, (i.e., the number is less than
the total number of known XFS-NS servers), step 606
branches to step 608 to send a UDP-directed (non-
broadcast) Defect request to each XFS-NS which did not
respond to the broadcast request, and then record the IP
address of each responding XFS-NFS at step 610. Note
that until all known XFS-NS have responded, the server
should continue processing requests (step 612), i.e., the
server is to complete defection with each XFS-NS. .System
implementers are to ensure that the defection will be
completed, even in the case of server and/or network
outages.

Turning to an explanation of the flow of information
between one client 80 and one server 76, FIG. 7 shows
(via numerically labeled arrows) how and in which
direction communication generally takes place. In FIG.
7, it is assumed that the server with which the client 80
is communicating has already enlisted, as described
above.

As generally represented in FIG. 7 the client sends

an enlist request primitive via UDP Broadcast, as

- 18 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

represented by the arrow (1), although as can be
appreciated, this primitive likely reaches other servers,
not shown. This is performed Dbecause the client 80 has
no idea as to the locations of XFS-NS’s on the network.
The client receives a number of Enlist responses from
XFS-NSes, such as an XFS-NS name service module of the
server 76 (arrow (2)). The client 80 records the IP
address of each server from which an appropriate response
was received. In addition to enlistment, any other
custom method can be used to identify the XFS server to
the client. 1In this case, client enlistment process can
be bypassed.

FIG. 8 generally represents the logical flow for
client enlistments, (similar in a number of steps to the
server enlisted described above with respect to FIG. 5).
For the client control primitive “Enlist,” as represented
in FIG. 8, beginning at step 800, a client 80 sends the
enlist request primitive via a UDP Broadcast. The client
80 then provides some time duration for responses, as
generally represented via steps 802. For each response
received, (if any), at step 504 the client 80 records the
IP address of the responding client 80. When the wait
time is up, step 806 tests if no responses were received,
and if not, branches back to step 800 to reissue the
enlist request primitive via UDP Broadcast, at least for
some number of reissue attempts. Alternatively, if at
least one response is received, step 806 branches to step
808 to determine whether the number of servers that
responded is the same as the number of XFS-NS servers
reported from the enlist responses (note that the number
that responded may be less than or equal than reported,

but absent some error will not be greater than the number

- 19 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

reported). If the numbers match, the client has located
the full set of servers, and the enlistment process ends
via step 808. Note that the XFS-NS will not remember the
enlistment of XFS clients. The client enlistment
scenario is only for network topography discovery. Thus,
the XFS clients have no need to defect from the system,
though it is not considered an error for a client to do
so.

If at step 808 the number responding does not equal
(i.e., is less than) the reported number, step 808
branches to step 810 wherein a resolve primitive (arrow
(3) in FIG. 7) is sent to an XFS-NS (one of the at least
one known) to request a list of IP addresses of the
specified XFS server type participating on the system.

Returning to FIG. 7, when the Resolve response is
received ({(arrow (4) in FIG. 7), the client saves the IP
addresses for servers from the ResolveResponse data at
step 812. The client 80 may select one of the resolved
servers (e.g., the server 76) via a random process or the
like so that the total load of a set of clients is
randomly distributed across multiple servers. A client
Locate primitive is then sent by the XFS client 80 to the
selected XFS server 76 in order to verify the existence
of that server on the network (arrow (5) in FIG. 7), and
if it exists, the server responds (arrow (6)).

More particularly, prior to establishing a TCP
session, an XFS client should perform the logical flow
represented in the steps of FIG. 9 described below. At
step 900 of FIG. 9, the client selects a first XFS access
controller, (e.g., from a randomly-ordered list), and at
step 902 sends a Locate request to the selected XFS
access controller via UDP/TCP. If at step 904 there is

- 20 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

no response, (e.g., within a suitable delay), and if at
least one other access controller is listed, (step 906),
the client selects the next XFS access controller at step
908 and returns to step 902 to repeat the process.

If at step 904 there are no more XFS access
controllers in the XFS client’s list of servers, the
client sends a Resolve request at step 910 to a known
XFS~-NS to update the list, and after receiving a
response, returns to step 902 for at least some number of
retry attempts. In the event that no XFS-NS can be
located to respond to the resolve request, (not
represented in FIG. 9), the list should be invalidated,
and an Enlist primitive should be sent (as described
above) via a UDP broadcast to retrieve the network
topography.

Thus, to summarize, at startup time, the XFS Client
Interface (XFSCLNT) 94 of a client 80 sends a client
enlistment broadcast on UDP to get the network topology
of the servers. Once the enlistment response is
received, a directed resolve is sent to the server that
responded to enlistment to get a list of access
controllers and name servers. Once the client receives a
list of name servers and access controllers, the
initialization is complete and other primitives can be
sent. The other primitives are wrapped in PRIMITIVE CALL
and PRIMITIVE HANGUP, described below.

The session primitives include a call primitive,
which initiates a session with a server that is
listening. Authentication will be performed during the
call, which may include several round trips on the
network. For example, the first client call request

primitive may include a device id, user-id, user password

- 21 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

and a “ticket” (arrow (7) in FIG. 7). The ticket may not
be present if it is the first CALL, for instance after
power up. The server retrieves credentials from the CALL
primitive. If the ticket is not present, server makes a
call into the permissions manager to verify the
credentials. If the credentials are not valid, the
session is dropped. If the credentials are valid, the
server constructs a ticket, which consist of expiration
time, box id, user id, and a password, encrypts the
ticket and sends it back to the client. 1In the case when
ticket is present in the CALL primitive, the server
decrypts the ticket and makes sure that the expiration
time is greater then the current time and that the box
id, user id and password in the decrypted ticket match
the credentials passed. If everything is valid, the same
ticket is passed back to the client (e.g., arrow (8) in
FIG. 7). Otherwise the credentials are checked against
the permissions manager, and if they are valid, a new
ticket is generated and passed back to the client. The
client caches the ticket and uses it the future when
sending CALL primitive. The ticket in the described
scheme serves as a scalability component, which greatly
reduces hits to the authentication mechanism. In order
to further decrease hits, the expiration period is set to
random value between predefined minimum and maximum
values (typically between 3-8 hours).

Additionally, the underlying channel is secured
using the standard PKI infrastructure. When a client
makes a TCP connection to the server, the client sends
over “Establish secure channel” message. Then, the
client sends over its certificate containing its public

signature key. The server validates the certificate as

22

10

15

20

25

30

WO 00/57315 PCT/US00/07973

for trust, and if it finds the certificate is not valid,
disconnects. The server then sends back over a block of
random data. The client computes an MD5 hash of the
block of random data, signs the MD5 hash using the
client’s private signature key, and then sends the
signature to the server. The server computes a MD5 hash
of a block of the same random data. The server validates
the signature passed over by the client using the public
signature key buried in the client’s certificate. 1If the
validation fails, the client is considered an imposter,
and the server disconnects. The server encrypts its two
secret RC4 keys with the client’s public key exchange key
and sends over encrypted RC4 keys — SEND key first and
then RECEIVE key. The client decrypts the RC4 keys using
its private key exchange key. The client stores the
first RC4 key as its RECEIVE key and the second as its
SEND key (i.e., opposite of the server). The channel is
now secure. Any data to pass through secure connection
must be encrypted with the SEND key on the client and
then decrypted using the RECEIVE key on the server. The
same two keys are shared between all clients connecting
to a given server. There is a provision that the server
may expire it’s RC4 keys at any time, forcing the client
to re-negotiate a new set of RC4 keys. This rotation of
keys helps the channel from being compromised.

Once the server authenticates the client and vice-
versa, the virtual file system of the present invention
is made available to the client. Although not necessary,
an automatic directory request (arrow (9) in FIG. 7) is
sent on behalf of the client to retrieve the first level
of directories (arrow (10)) under the root. One public

folder is provided to supply clients with common

- 23 -

10

15

20

WO 00/57315 PCT/US00/07973

information, (e.g., an updated component), and each
client has a subdirectory at the sever with a unique
name. It is this subdirectory that essentially serves as
the root for the each client. The client then ends the
call via a hangup request (arrow (11)) and response
{arrow (12)).

As shown in FIG. 10, the retrieved directory has
whatever subdirectories and files (objects) under it that
the user of the client device has stored therefore under
the first level. The XFS file system adds an attribute
(flag) to each object indicating whether the file or
directory data stream is in the local storage, or is
remote. As represented in FIGS. 10-12, this is indicated
by a circled “R” for remote or “L” for local. As can be
understood from FIG. 10, at this time, each directory and
file are remote.

The user can request typical file system operations
on objects via session primitives in a new session,
(represented in FIG. 7 by arrows numbered (13 - 18)). As
shown in FIG. 7, these XFS-related session primitives
{arrows (15) and (16)) are generally wrapped in
PRIMITIVE CALL (arrows (13) and (14)) and
PRIMITIVE HANGUP (arrows (17) and (18)) primitives, and

are set forth in the table below:

Send Send data. A time-out can occur. The send
primitive may be “chained”, that is, the
sender will send multiple sends.

Retrieve Retrieve data. A time-out can occur. The
retrieve primitive may be “chained”, that
is, the server could send multiple
retrieve responses to the client.
Directory Retrieves a listing of files and
directories under the current working
directory for the current session.

- 24 -

10

15

20

location of the file.

WO 00/57315 PCT/US00/07973

ChangeDir Changes the current working directory for
the current session.

CreateDir Creates a new directory.

CreateFile |Creates or opens a file and returns a
fileID.

RemoveDir Removes an existing empty directory.

DelFile Deletes an existing file from the object
store.

CloseFile Closes the file opened or created by
CreateFile primitive.

MoveFile Renames an existing file or a directory-—
including all its children.

GetFileAttr | Fetches attributes for a specified file or
directory.

SetFileAttr | Sets a file attribute.

GetFileSize | Gets the file size.

SetEOF Sets a End Of File marker at the current

As described above,

the Call and Hangup primitives

are used so that the system can scale to large networks,

i.e.,
submit data,

Thus,

requests a file system operation on an object,

and then closes

unlike existing file systems,

XFS establishes a connection only to retrieve and

(hangs up) the connection.
when the user

the

extended file system of the present invention evaluates

the Local/Remote attribute to determine whether the

object can be retrieved locally or needs to be retrieved

from remote storage.

synchronized with the remote file system,

Any changes to a local object are

however reads

and the like that do not change an object may be

performed locally,

the server.

too large to be stored locally,
by setting another attribute,

attribute

Note that as described below,

(circled “S” as represented in FIG.

By way of example,

without any need to communicate with

some files are
and such files are marked
i.e., a “synchronize only”

12).

consider a user presented with

the locally-downloaded directory listing 110, when the

25

10

15

20

25

30

WO 00/57315 PCT/US00/07973

user (or some entity such as a remote server) wants to
access (e.g., open) a particular file, e.g., via the path
\DIR,\DIR3\File;;. When the user selects the DIR;
directory, or when the path\filename is provided, the
system determines from the Local/Remote file attribute
that the directory \DIR; is remote. For example, in a
Windows® CE environment, an application places an API call
to the operating system kernel, which passes the request
to the file system manager 32 (FIG. 4). In turn, the
file system manager 32 (e.g., FSDMGR in Windows® CE) sends
the request to the XFSFSD 96, which analyzes the call and
calls back to the file system manager 32 with the
information (track and sector) needed to locate the
attribute information on the XFSDISK 34. Note that the
track equals one on a RAMDisk. When the file system
manager returns the attribute information, the XFSFSD 96
determines that the directory data stream is remote, and
calls the XFSCLNT 94 to retrieve the data from the remote
server. XFSCLNT issues a DIRECTORY primitive to the
server and fetches the remote data. As can be readily
appreciated, other operating system and/or file systems
may perform essentially equivalent operations, and there
is no intent to limit the present invention to the
Windows® CE operating system.

When the requested data returns, the XFSCLNT 94
provides it to the XFSFXD 96, which stores it in the
XFSDISK 34. At this time, the information is generally
arranged as shown in listing 110, of FIG. 11, i.e., DIR;
is local, and the objects under it remote. The process
continues as above to remotely retrieve the DIR;
subdirectory data (listing 110, of FIG. 12), and then

again to remotely retrieve the data of File;;. The next

26

10

15

20

25

30

WO 00/57315 PCT/US00/07973

time that access to File;; is needed, DIR2 and DIR3 may
still be local, in which event the data may be locally
retrieved from XFSDISK 34, i.e., once data is local, the
extended file system essentially behaves in the same
manner as any local file system.

Note that from the perspective of the application
and user, there is no knowledge as to where the objects
are stored. Indeed, with fast, broadband connections and
small files, any delay in retrieval may go unnoticed.
Unlike a simple redirector, however, the locally stored
information is used whenever the information is present
locally.

Similarly, on the server end, the access controller
may perform normal access checks and the like, and if
appropriate to return / update the server-maintained
data, translates the primitive into whatever command
corresponds based on the remote file system in use,
(e.g., the access controller an API call that equates to
the primitive).

One of the files in FIG. 12, namely FILE;;, is shown
as having its synchronize-always (“S”) attribute set.
Note that the other files (and also directories) have
this attribute, but it is only shown in FIGS. 10-12 for
the file (FILE;;) where it is active. This attribute is
used for files that are too large for local memory; their
information is always retrieved from the remote storage,
providing the user with as much data as possible at a
given time given available memory, but without
maintaining the file in the local XFSDISK 34. 1In other
words, the extended file system operates as a redirector
for such objects. Some threshold size (e.g., less than

the available RAMDisk size) may be used to determine when

- 27 -

10

15

20

25

30

WO 00/57315 PCT/US00/07973

a file is synchronize-always. Note that it is also
feasible to cache partial files in the XFSDISK 34, and
provide the application with an appropriate window to the
data, however this is not presently implemented. For
example, one present implementation uses a file object as
the unit of remote or local storage, however it is
equivalent to use something smaller or larger than a
single object, e.g., resolution may be to a sector, part
of a stream (useful for streaming audio or video) and so
forth. As used herein, “object data” such as local or
remote object data, includes any size, fixed or variable
into which the data may be divided or combined.

Similarly, objects may have a “local-always”
attribute set therefor, i.e, if an object is not too
large, (e.g., over a certain threshold which may be up to
the entire size of the local RAMDisk), the object may be
marked so as to not remove it from the cache via the
least-recently-used algorithm or otherwise. The local-
always “LA” attribute is present for each file, but is
only shown in FIGS. 11 and 12 for one file, file
\DIR,\Filey. This may be valuable, for example, to save a
particular directory stream, or to save file data that is
often needed and should not be removed, e.g., if a user
reads some large file. Note that if a file is marked as
local always, its parent directory or directories may be
marked local-always so that it can be accessed even when
no connection is present.

To summarize, FIG. 13 shows the general logic
performed by the extended file system when retrieving
(e.g., reading) or updating (e.g., writing) data,
beginning at step 1300. At step 1300, the local-always

attribute corresponding to the requested object is

28

10

15

20

25

30

WO 00/57315 PCT/US00/07973

evaluated. If set to local-always, then the object will
be cached locally, and thus step 1300 branches to step
1308 to retrieve (or update) the data from (or to) the
local RAMDisk as described above.

If not local-always at step 1300, the synchronize-
always attribute corresponding to the requested object is
evaluated at step 1302. If set to synchronize-always,
then the object will not be cached locally, and thus step
1302 branches to step 1304 to retrieve (or update) the
data from (or to) the remote source using appropriate
primitives as described above.

If instead at step 1302 the synchronize-always
attribute is not set for synchronize-always, the extended
file system evaluates the Local / Remote attribute at
step 1306 to see if the information to be retrieved or
updated is local. If local, step 1308 is performed to
retrieve or update the local data. Steps 1310 and 1312
handle the synchronization of the remote data for updates
(e.g., writes) to the local data. Note that it is
possible that an update to the local data may result in
the file becoming too big for local storage by the
XFSDISK. 1In such an event, the object is set to
synchronize-always, and is no longer supported locally
unless its data later shrinks. Thus, as used herein,
“always synchronize, synchronize-always, always local,
local-always and the like” are not necessarily attributes
that are permanent, and instead, can vary as appropriate
based on the file size, available storage, and/or other
factors.

Returning to step 1306, if the Local/Remote
attribute indicates that the data is remote, the process

instead branches to step 1314 to handle the operation

29

WO 00/57315 PCT/US00/07973

remotely, i.e., to retrieve or update the object data

from or to the remote store. Step 1316 then stores the

data locally, unless it is too large for the local

storage, in which event the synchronize-always bit is set
5 (if not already set) and the data handled remotely

thereafter unless and until it shrinks.

PRIMITIVE FORMATS AND C STRUCTURES

The information below is a description of the packet
10 formats used in the transmission protocols, and their
corresponding C/C++ structures. Each packet comprises a
primitive header followed by the data of the primitive.
Format of the data section depends on the type of
primitive. The maximum size for a single primitive
15 (header and data) is 512 bytes.
A plurality of data types are used in the

transmission of data, including those set forth below:

unsigned char |an 8-bit unsigned integer in the range
of 0-255. The bits are arranged in most
significant bit first.

DWORD a 32-bit unsigned integer in the range
of 0-4,294,967,295. The format little-
endian, that is, the most significant
byte first.

CRC a 32-bit unsigned integer in the range
of 0-4,294,967,295. The format is
little~endian.

For graphical representation of structures, the
20 following format will be used, where n is the size of the

field in bits:

| Field Name | Field Name ...
N n

The primitive header structure is set forth below:

[wPrimitive |wRequest |wMore |wSenderType |wReserved |
4 1 1 3 7

- 30 -

WO 00/57315 PCT/US00/07973
| wID | WSequence | wSize
16 6 10

typedef struct _tPrimitiveHeader

{
WORD wReserved : 6;
WORD wSenderType : 3;
WORD wMore: 1;
WORD wRequest : 1;
WORD wPrimitive : 5;
WORD wID;
WORD wSize 10;
WORD wSequence: 6;

} PimitiveHeader;

Valid values for the primitive header fields are

wPrimitive
PRIMITIVE_RESOLVE

PRIMITIVE_LOCATE =
PRIMITIVE CALL = 2
PRIMITIVE CONTINUE
PRIMITIVE HANGUP =
PRIMITIVE SEND = 5

1

il

1

One of the following set

0

Il
)

PRIMITIVE_RETRIEVE
PRIMITIVE DIRECTORY = 7

PRIMITTIVE CHANGEDIR = 8

PRIMITIVE ENLIST = 9

PRIMITIVE DEFECT = 10
PRIMITIVE_CREATEDIR=11
PRIMITIVE_CREATEFILE=12
PRIMITIVE_REMOVEDIR=13
PRIMITIVE_DELFILE=14
PRIMITIVE_CLOSEFILE=15
PRIMITIVE_MOVEFILE=16
PRIMITIVE_GETFILEATTR=17
PRIMITIVE_SETFILEATTR=18
PRIMITIVE_GETFILESIZE=19

PRIMITIVE SETEOF=20

Values 21-31 are reserved and should not
be used.

wRequest

1 = request
0 = response

wSenderType

SENDER_XFSC = 0
SENDER_XFSAC = 1
SENDER_XFSNS = 2

31

WO 00/57315 PCT/US00/07973

SENDER XFSDS 3
SENDER XFSPM 4
Values 5-7 are reserved and should not

be used
wReserved Reserved, must be O
wID Connection unique ID. This ID will be

used for all transmissions associated
with this primitive (continues,
responses, etc.)

wSequence For the first transmission of a
primitive of wID = X, this is 0. For
each additional transmission associated
with this ID, this number is incremented
by 1. This allows for packet sequencing
within the primitive communications.
This must also be used by XFS services
to ensure that no part of a
communication is lost.

wSize Size of the data segment following the
header

0 >= wSize >= 500 (512 bytes - size of
header) for UDP

0 >= wSize >= 1012 (1024 bytes - size of
header) for TCP

The primitive header is followed by 0 or more data
structures. The type of structure following the header

is determined by the wPrimitive and wRequest fields.

PRIMITIVE DATA STRUCTURES

Structures for the data fields are listed according
to Type=ttt, Request=r where ttt is one of the defined
PRIMITIVE wvalues, and r is 1 for a request primitive and

0 for a response primitive.

Type=PRIMITIVE RESOLVE, Request=l

cName |szNUID
8 n

10

15

20

WO 00/57315 PCT/US00/07973

typedef struct tResolveRequest
{

unsigned char cName;

unsigned char szNUID;

} ResolveRequest;

where rgcName is one of the following values:
XFS C = 1

XFS_AC
XFS_NS

XFS_DS

XFS_PM

2
3
4
5
Values 6-255 are reserved at this time and should not be

used

The szNUID field is the name of the XFS system to
resolve against. XFS-NS’s are only to respond to resolve
requests if they are members of that particular XFS
system. XFS names are decided upon by the network
administrator, and should be unique across the network.
For Internet use, it is recommended that the ASCII
representation of a static, unique IP address be used.
This will prevent multiple XFS vendors from selecting

conflicting names.

Type=PRIMITIVE RESOLVE, Request=0

| cIpy’ [cIp,’ | cIps’ | cIp,” |
8 8 8 8

[... ... [.. [.. |
8 8 8 8

| cIp,” | cIP,” | cips” | cIp,” |
8 8 8 8

- 33 -

WO 00/57315 PCT/US00/07973

typedef struct tResolveResponse
{

unsigned char cType;

unsigned char rgcIP[4];

} ResolveResponse;

The values cIP; through cIP, are the numbers in the
IP address for the requested servers in cIP;.cIP;.cIP3.cIPy
format. The number of IP addresses is determined by

5 | {IP}| = (wSize)/sizeof (ResolveResponse).

If the final IP address is IP BROADCAST
(255.255.255.255) and the wMore flag is 0, then there are
more IP’s available, and the requester should send a
Continue primitive to retrieve the next block IP

10 addresses.

If the wMore flag is 1, the final address will not
be IP BROADCAST, and the requester should expect another
Resolve response primitive.

cType is the same as send with PRIMITIVE RESOLVE,

15 Reqguest =1. This is returned for convenience.

Type= PRIMITIVE LOCATE, Request=1l
No data 1is associated with the Locate request
20 primitive. It is simply a “ping” to make sure that the

requested machine is still available.

Type= PRIMITIVE LOCATE, Request=0

25 No data is associated with the Locate response
primitive. The fact that a reply is generated is
sufficient to imply that the located machine is

processing requests.

10

15

20

25

30

WO 00/57315 PCT/US00/07973

Type= PRIMITIVE CALL, Request=l

The data associated with the Call primitive is
implementation specific. It should contain information
about the client (such as name/password) or some

information used to begin arbitration of credentials.

typedef unsigned char[] CallRequest;

While wSize could be 0 (no data), this is highly
discouraged for open systems, as no security model will
be implement-able and no user information or state will

be known.

Type= PRIMITIVE CALL, Request=0

The data associated with the Call primitive is
implementation specific. It should contain information
about the client (such as name/password) or some
information used to begin arbitration of credentials.

typedef unsigned char{] CallResponse;

Type= PRIMITIVE CONTINUE, Request=l
The data associated with the Continue request

primitive is dependent on the last non-continue request

primitive issued for this connection. e.g. The data type

for a Continue request primitive in response to a
Continue Send response primitive returned from a Send
request primitive is the same as for a Send request

primitive.

- 35 -

10

15

20

25

WO 00/57315 PCT/US00/07973

Type= PRIMITIVE CONTINUE, Request=0

A Continue response primitive is send in response to
an X primitive request. For example, if a Call request
primitive is issued, and a continuation is required, the
Call is answered with a Continue response primitive. The
caller would then provide additional data according to
the needs of the session, and return a Continue request
primitive.

The data associated with the Continue response
primitive is a set of data according to the last non-
continue primitive request issued on this connection. If
there were no prior non-continue requests on the
connection, the Hangup primitive (with error) should be

returned and the session terminated.

Type= PRIMITIVE HANGUP, Request=1
| dwErrorCode | strError
32 n

typedef struct tHangupRequest
{

DWORD dwErrorCode;

unsigned char strError(];

} HangupRequest;

The Hangup request primitive requests termination of
the current session. The receiver should note the
dwErrorCode field, return the Hangup response primitive,
and gracefully terminate the session.

If dwErrorCode is not 0 (ERROR_SUCCESS) then
dwErrorCode is an implementation specific error about the
reason for termination. Win32 error codes should be

used by implementations for interoperability.

36

10

15

20

25

WO 00/57315 PCT/US00/07973

The string strError is a nul terminated human
readable description of the error. While it is not
required (strError[0] == 0), an application should
attempt to provide an error string whenever possible.

Multiple error codes are allowed, the receiver of a
Hangup request primitive should continue parsing
HangupRequest data structures until wSize bytes have been

consumed.

Type= PRIMITIVE HANGUP, Request=0
[dwErrorCode | StrError |
32 N

typedef struct tHangupResponse
{

DWORD dwErrorCode;

unsigned char strError(];
} HangupResponse;

The Hangup response primitive verifies receipt of
request for termination of the current session. The
receiver should note the dwErrorCode field. If the field
is not 0 (ERROR_SUCCESS) the receiver should terminate
the session immediately (non-graceful shutdown) because
and error was encountered while closing the session.

The string strError is a nul terminated human
readable description of the error. While it is not
required (strError[0] == 0), an application should
attempt to provide an error string whenever possible.

Only one Hangup response data field is allowed.

Type= PRIMITIVE SEND, Request=l
The Send primitive sends part of all of an object to

a XFS service. The system is designed so that portions

- 37 -

10

15

20

25

WO 00/57315 PCT/US00/07973

of the object may be updated without transmission of the
entire object. It is not necessary that a XFS service
send partial objects, but all XFS systems must be able to

receive them.

dwLength | dwSectionStart |Crc |dwFileID | rgcObjectData
32 32 32 32 n...

typedef DWORD CRC;

typedef struct _tSendRequest
{
DWORD dwLength;
DWORD dwSectionStart;
CRC crc;
DWORD dwFilelID;
unsigned char rgcObjectDatal(]l; // wSize-(sizeof
// (DWORD) * 4);

A send request contains the length and the start of
section identifier. dwFilelID is the file identifier
returned by PRIMITIVE CREATEFILE. A CRC is calculated
and send across with the primitive. This ensures correct
receipt of data. The receiver of this primitive must
validate the CRC and only then commit object to the
persistent store. If the CRC does not match, the
response will contain appropriate error code and the

sender should re-send the primitive.

CRC 1is calculated by the formula

n

CRC = [E (%5742 04 %3 P+ % 24 %7+ %)] MOD 2%
i=0
A send request primitive containing dwLength = O,
dwSectionStart = 0 denotes the end of the request. 1In a

- 38 -

10

15

20

25

WO 00/57315 PCT/US00/07973

chained send, this will inform the receiver that the send
is complete and it should reply with a Send response
primitive. In a send/continue scenario, this informs the
receiver that no more sections are required to be sent,
and the transaction should be terminated with the send

response primitive.

Type= PRIMITIVE SEND, Request=0

The Send response primitive returns an error code
that specifies the result of the operation. A value of 0
(ERROR_SUCCESS) indicates a successful completion of the
operation. ERROR_CRC indicates that the CRC did not

verify successfully.

32

typedef struct tSendResponse

{
DWORD dwError;

}s

Type= PRIMITIVE RETRIEVE, Request=l

The Retrieve request primitive is used to start the
process of retrieving an object. It specifies the name
of the object as well as the portion(s) it wishes to

retrieve.

| dwFileID |
32

dwSection |dwLength
Start

32 32

39

WO 00/57315 PCT/US00/07973

typedef struct tRetrieveSection
{

DWORD dwOffset;

DWORD dwLength;

} RetrieveSection;

typedef struct tRetrieveRequest
{

DWORD dwFilelID;

RetrieveSection Section|[]:

};

The dwFileID field contains the file identifier
returned by PRIMITIVE CREATEFILE. The RetrieveOffset
5 array contains the sections, their starting positions,
and their lengths to be retrieved. Certain combinations
of values for dwOffset and dwlLength mean have special
meanings.
A section start of 0 and Length of 0 indicates end
10 of retrieval by the client. Note that at present, this
primitive implements only one retrieve section per

request.

15 Type= PRIMITIVE RETRIEVE, Request=0
The Retrieve response primitive returns the CRC and
(if requested) the data from a section of the object, or

the CRC of the entire object if so requested.

Crc dwSectionStart DwLength | dwError rgcData
32 32 32 32 n

20

- 40 -

10

15

20

25

WO 00/57315 PCT/US00/07973

typedef struct tRetrieveResponse
{

CRC crc;

DWORD dwSectionStart;

DWORD dwLength;

DWORD dwError;

unsigned char rgcDatall;
} RetrieveResponse;

The dwError field indicates if the retrieve
operation was successful. A return value of O
(ERROR_SUCCESS) means that the operation completed
successfully.

The value of the field crc is one of two values. If
the dwlLength == 0, the crc field should be ignored since
no data was sent back with the response. Otherwise, the
crc field contains the CRC of the rgcDhata field.

Once the client gets retrieve response, it should
verify the crc. If it does not mach, it should re-send
the primitive across.

A Retrieve sequence is terminated by the server with
either retrieve response, a return value other than 0 in
dwError or length less than the requested length. If the
length is less than requested length, a retrieve response
is send back. Otherwise, a continue is send back from
the server. The client can terminate the retrieve
sequence by sending a sectionstart =0 and dwlength=0 with

the retrieve request.

Type= PRIMITIVE DIRECTORY, Request=1l
The Directory request primitive requests a list of
some or all objects and sub folders from 1) the current

working directory of the session, 2) a directory relative

WO 00/57315 PCT/US00/07973

to the current working directory, or 3) a specific

directory.

cFiller cTypeMask | szDirectory | szNameMask
8 8 N n

_typedef struct _tDirectoryRequest
{

unsigned char cTypeMask;

unsigned char cFiller;

unsigned char szNameMask][];
unsigned char szDirectoryl];

} DirectoryRequest;

5
The szDirectory field is a null-terminated string in
one of the following formation:
the current working directory
the parent of the current working
directory
[.| .. directory relative to the current
] \<name> working directory. <name> is the
name of the relative directory and
may include “\” for multiple levels
of indirection
\<name> directory relative to the root “\”
directory, that is, a specific
directory.
10 The cTypeMask field contains a bitmask describing

the types of objects to list. The value of the cTypeMask
field is a bitwise OR of one or more of the following
values
ATTR READONLY = 0x01

15 ATTR DIRECTORY = 0x02
ATTR_ALLOBJECTS = OxXFF

The szNameMask field is a string that is used to

filter the list of objects returned by name. The

- 42 -

WO 00/57315 PCT/US00/07973

szNameMask field may be empty, in which case, all located
objects matching the cTypeMask parameter are to be
enumerated.
The szNameMask field may contain the “wildcard”
5 characters '?’ and ‘*’, where
? = Any character in this location is a match.
* = Any set of characters starting at this location

is a match.

10 cFiller is padding for 16 byte alignment required by
many processors.

This is analogous to the DIR command under DOS.

" Type= PRIMITIVE DIRECTORY, Request=0
The Directory response primitive contains the names
and flags of objects located by the Directory request
primitives masks.
20

| CFlags [cFiller |szName |
8 8 n

typedef struct _tDirectoryResponse

{
unsigned char cFlags;
unsigned char cFiller;
unsigned char szName[];

} DirectoryResponse;

The cFlags field of the DirectoryResponse structure
contains a bitwise OR of the attributes of the named
25 object. Currently, only the flags ATTR READONLY and
ATTR DIRECTORY are defined - see “Type=
PRIMITIVE DIRECTORY, Request=1"” for values of these
flags.

43

WO 00/57315 PCT/US00/07973

cFiller is padding for 16 byte alignment required by
many processors.

The szName field is a nul terminated string giving
the canonical name of the object, sans directory

5 information.

Type= PRIMITIVE CHANGEDIR, Request=1l
10 The ChangeDir request primitive requests the
changing of the current working directory for the

session.

| szDirectory |
n
typedef struct _tChangedirRequest
{

unsigned char szDirectoryll];
} ChangedirRequest;

15 szDirectory is a nul-terminated string in one of the
following formation:

the current working directory
the parent of the current working

directory
L. 1 .. directory relative to the current
] \<name> working directory. <name> is the

name of the relative directory and
may include “\” for multiple levels
of indirection

\<name> directory relative to the root “\”
directory, that is, a specific
directory.

This is the only primitive for which an error does
20 not generate a Hangup request in response. A ChangeDir
request primitive will be answered with a ChangeDir

response primitive with szDirectory != szNewDirectory

- 44 -

WO 00/57315 PCT/US00/07973

(see “Type= PRIMITIVE CHANGEDIR, Request=0” below for

details on the ChangeDir response primitive).

5 Type= PRIMITIVE CHANGEDIR, Request=0

On Success

| szNewDirectory |
n

On Error

[szNewDirectory |dwError |szErrorString |
n 32 n

10

typedef struct _tChangedirResponse
{

unsigned char szNewDirectoryll:;
} ChangedirResponse;

typedef struct _tChangedirError
{

DWORD dwError;

unsigned char szErrorString(];
} ChangedirError;

szNewDirectory is a nul-terminated string in one of
the following formation:

15
the current working directory
the parent of the current working

directory
[.1 .. directory relative to the current
] \<name> working directory. <name> is the

name of the relative directory and
may include “\” for multiple levels
of indirection

\<name> directory relative to the root “\”
directory, that is, a specific
directory.

If no error occurs, szNewDirectory should be equal

to the szDirectory parameter from the Changedir request

10

15

20

25

WO 00/57315 PCT/US00/07973

primitive, and only a ChangedirResponse is returned in
the data portion.

If an error occurs, szNewDirectory should be the new
current working directory (even if the new CWD is the
same as the original CWD) and the data segment will
contain a ChangedirResponse structure followed by a

ChangedirError structure.

Type= PRIMITIVE ENLIST, Request=l

The Enlist request primitive is used to register new
XFS servers with the XFS-NS’s. The enlistment/defect
scenarios are meant for permanent addition and removal of
servers. Limited removal from the system is accomplished
though the fact that XFS servers will not respond to a

Locate request primitive when inactive or disabled.

cType | cIP; cIP; cIPs cIPy szNUI
D
8 8 8 8 8 n

typedef struct tEnlistRequest

{
unsigned char cType;
unsigned char cIP[4];
unsigned char szNUIDI[];

} EnlistRequest;

The cType location contains the type of XFS server

being registered. It can be one of the following values:

XFS C = 1*
XFS_AC = 2
XFS DS = 3
XFS NS = 4
XFS_PM = 5

46

10

15

20

25

30

WO 00/57315 PCT/US00/07973

Values 6-255 are reserved at this time and should not be

used

The enlistment of a XFS-C is not maintained in the
XFS-NS. It is supplied so that clients may locate the
XFS-NS’'s without prior knowledge of the network
topography. As such, there is no need to defect a XFS-C
from the network.

The cIP fields contain the IP address of the enlisting
box in cIPl.cIP2.cIP3.cIP4 format.

The szNUID field is the name of the XFS system to
enlist with. XFS-NS’s must only respond to enlist
requests if they are members of that particular XFS
system. XFS names are decided upon by the network
administrator, and should be unique across the network.
For Internet use, it is recommended that the ascii
representation of a static, unique IP address be used.
This will prevent multiple XFS vendors from selecting
conflicting names.

Multiple Enlist Request structures may be present.
This allows a multi-homed box to register several IP
addresses, or a package implementing multiple XFS
services to register all services at the same time.

If more enlistment’s are required than the data
segment of the datagram will support, the enlisting
service(s) must send separate Enlist requests for each
block of IP’s. Neither datagram chaining nor the

continue scenario is supported for enlistment.

- 47 -

WO 00/57315 PCT/US00/07973

Type= PRIMITIVE ENLIST, Request=0
The Enlist response primitive is sent from a XFS-NS
to notify an enlisting server that the enlistment into

the XFS system has succeeded.

[nNSCount |
16

typedef struct tEnlistResponse
{ .

unsigned short nNSCount;
} EnlistResponse;

The nNSCount field contains the number of XFS-NS’s
currently known to the system so that the enlisting box
will know when all XFS-NS’s have succeeded in registering

10 the enlistment.

Type= PRIMITIVE DEFECT, Request=l
The Defect request primitive is sent to remove the
requester from the XFS-NS’s namespace. The requestor
15 must issue a Defect request for every Enlist request that

was previously registered.

[cType [cIP; |cIP, |cIP; [cIP,
8 8 8 8 8

typedef struct tDefectRequest
{
unsigned char cType;
unsigned char cIP[4];
} DefectRequest;

20 The Defect request primitive data is substantially
identical to the EnlistRequest primitive data. See the
above information in “Type= PRIMITIVE ENLIST, Request=1”"

for details on data values and semantics.

WO 00/57315 PCT/US00/07973

Type= PRIMITIVE DEFECT, Request=0
The Defect request primitive notifies the defecting
5 server that the defect has been registered on a XFS-NS.
There is no data associated with the Defect request

primitive.

10 Type=PRIMITIVE CREATEDIR, Request=l
The CreateDir primitive requests the creation of a
new directory. The directory could be a new directory in
the current directory for the session, new directory

relative to the current directory for the session or a

15 specific directory.

szNewDirectoryName
n

typedef struct tCreateDirrequest
{

unsigned char szNewDirectory([]:;
)i

szNewDirectory contains the new directory name.

20 Type=PRIMITIVE CREATEDIR, Request=0

CreateDir response indicates the result of the operation.

dwErrorCode
32

A return value of 0 (ERROR SUCCESS)indicates the

25 operation completed successfully.

10

15

20

25

WO 00/57315 PCT/US00/07973

Type=PRIMITIVE CREATEFILE, Request=l
The CreateFile primitive requests creation of a new

file or open an existing file.

SzFileName | DwDesired | DwShare | DwCreate DwFile
Access Mode Disposition |Attributes
N 32 32 32 32

typedef struct _tCreateFileRequest
{

unsigned char szFileNamel[];

DWORD dwDesiredAccess;
DWORD dwShareMode;
DWORD dwCreateDisposition;

b

szFileName can be file in the current directory for
the session, relative directory to the current directory
for the session or a specific directory in object store.

dwDesiredAccess specifies the type of access to the
file. This is an implementation specific parameter that
goes across with the primitive. Typical types of access
would be read, write or both.

dwShareMode specifies how the file can be shared.
Setting this field to 0 implies the file cannot be
shared. Other sharing modes are implementation specific
parameter. Typical types of sharing modes would be share
for read and share for write.

dwCreateDisposition the actions that can be taken on
files that exist and files that do not exist. Following
actions may be supported Create New, Create Always, Open
Existing, Open Always and Truncate Existing. The
implementation of these actions is left to the developer.

dwFileAttributes specifies the attributes for the

file. This is an implementation specific parameter.

WO 00/57315 PCT/US00/07973

Type=PRIMITIVE CREATEFILE, Request=0
CreateFile response indicates the result of

operation.

dwFilelD DwError
32 32

typedef struct _tCreateFileResponse
{ .

DWORD dwFilelID;
DWORD dwError;
i

dwFileID is the ID of the newly created or opened
file. This is set to OxFFFFFFFF (INVALID HANDLE VALUE)
10 if the operation is unsuccessful.
dwError is set to O (ERROR_SUCCESS) if the
primitive succeeds. A non-zero value indicates an error

in operation.

15 Type=PRIMITIVE REMOVEDIR, Request=1
The RemoveDir primitive requests deletion of an
existing empty directory. The directory to be removed
can be relative to the current directory for the session
or a directory in the current directory in the session or

20 a specific directory.

SzDirectoryName
N

typedef struct tRemoveDirRequest
{
unsigned char szDirectoryNamel[];

}:

szDirectoryName is the name of the directory to be
25 removed.

WO 00/57315 PCT/US00/07973

Type=PRIMITIVE REMOVEDIR, Request=0
RemoveDir response indicates the result of RemoveDir
operation.

dwError
32

typedef struct tRemoveDirResponse

{
DWORD dwError;

}s

dwError is set to O (ERROR SUCCESS) if the
operation succeeds.

10

Type=PRIMITIVE DELFILE, Request=l
DelFile primitive requests deletion of an existing
file. The file to be deleted can be in the current
15 directory for the session, directory relative to the
current directory for the session or a specific

directory.

szFileName
N

typedef struct tDelFileRequest
{
unsigned char szFileName[];

)7

20
szFileName is the name of the file to be deleted.
Type=PRIMITIVE DELFILE, Request=0
25 DelFile response indicates the result of DelFile

operation.

- 52 -

WO 00/57315

PCT/US00/07973
dwError
32
typedef struct tDelFileResponse
{ dwError is set
?WORD dwError; to 0 (ERROR SUCCESS)
5 if the operation
succeeds.

Type=PRIMITIVE CLOSEFILE, Request=1

CloseFile closes the file either created or opened

10 Dby CreateFile primitive.

dwFilelD
32

typedef struct _tCloseFileRequest
{

DWORD dwFilelID;
}i

dwFileID is the file identifier returned by

15 CreateFile primitive.

Type=PRIMITIVE CLOSEFILE, Request=0

CloseFile response identifies the result of
20 CloseFile operation. If the file could not be closed, it

must be closed once the session terminates.

dwError
32

typedef struct CloseFileResponse
{

DWORD dwError;

};

53

10

15

20

25

WO 00/57315

PCT/US00/07973

dwError is set to 0 (ERROR_SUCCESS) if the operation

succeeds.

Type=PRIMITIVE MOVEFILE, Request=1

MoveFile primitive renames an existing file or a

directory.

SzExistingFileNéme

SzNewFileName

N

N

{

b

typedef struct tMoveFileRequest

unsigned char szExistingFileNamel[];
unsigned char szNewFileName[];

szExistingFileName is a null terminated string that

names an existing file or directory.

szNewFileName is a null terminated string that

specifies a new name for the file or directory.

Type=PRIMITIVE MOVEFILE, Request=0

MoveFile response indicates the result of MoveFile

operation.

dwError
32

typedef struct tMoveFileResponse
{

DWORD dwError;

b

dwError is set to O (ERROR _SUCCESS) if the operation

succeeds.

WO 00/57315 PCT/US00/07973

Type=PRIMITIVE GETFILEATTR, Request=l

GetFileAttr requests the attributes for a specified

file or a directory.

szFileName
NULL terminated str

typedef struct _tGetFileAttrRequest
{
unsigned char szFileName[];

}:

szFileName is a null terminated string that

specifies the name of the file or directory.

10
Type=PRIMITIVE GETFILEATTR, Request=0

GetFileAttr response contains the attributes of the

requested file or directory and a error code.

DwAttr dwError
32 32

typedef struct tGetFileAttrResponse
{

DWORD dwAttr;

DWORD dwError;

};

15
dwAttr is a 32 bit value specifying the attributes

for the file. This value is meaningful if dwError is set
to 0 (ERROR SUCCESS). The actual values of the
attributes are implementation specific and are the same

20 as implemented in CreateFile primitive.

dwError is set to 0 is the operation succeeded.

- 55 -

WO 00/57315 PCT/US00/07973

Type=PRIMITIVE SETFILEATTR, Request=l

SetFileAttr requests setting of the file attributes.

SzFileName DwAttr
N 32

typedef struct tSetFileAttr
{

unsigned char szFileName[];
DWORD dwAttr;

};

szFileName is a null terminated string that

specifies the name of the file whose attributes are to be
set.

dwAttr is a 32 bit value specifying the attributes for
10 the file. The actual values of the attributes are

implementation specific and are the same as implemented

in CreateFile primitive.

15 Type=PRIMITIVE SETFILEATTR, Request=0

SetFileAttr response indicates the result of

SetFileAttr operation.

dwError
32

typedef struct tSetFileAttrResponse
{
DWORD dwError;

}s

20
dwError is set to 0 (ERROR SUCCESS) 1f the operation

succeeds.

- g -

WO 00/57315 PCT/US00/07973

Type=PRIMITIVE GETFILESIZE, Request=1
GetFileSize requests the file size for a given file
id. The file should be opened using CreateFile primitive

prior to invoking this primitive.

5
dwFilelID
32
typedef struct tGetFileSizeRequest
(‘
DWORD dwFilelID; //File ID
}GetFileSizeRequest;
dwFileID is set to the file id returned by
CreateFile Primitive.
10
Type=PRIMITIVE GETFILESIZE, Request=0
GetFileSize response indicates the result of
GetFileSize operation.
15
dwFileSize dwRetCode
32 32

typedef struct tGetFileSizeResponse
{

DWORD dwFileSize; //File Size. -1 if error
DWORD dwRetCode; //Return Code for the
operation

}GetFileSizeResponse;

dwFileSize contains the file size if the primitive
is successful. In case of failure, this is set to
20 OXFFFFFFFF. dwRetCode specifies if the operation is
successful. This field is set to ERROR SUCCESS if
successful. Otherwise, an implementation specific error

code must be returned in this field.

25

- 57 -

WO 00/57315 PCT/US00/07973

Type=PRIMITIVE SETEOF, Request=l

SetEQOF primitive set’s the EOF at the current

position in the file.

dwFileID
32

typedef struct tSetEOFRequest
{

DWORD dwFilelID; //File 1ID
}SetEOFRequest;

dwFileID is set to file id returned by CreateFile

10 primitive.

Type=PRIMITIVE SETEOQF, Request=0
SetEOF response indicates the result of SetEOF

operation.
15

dwRetCode
32

typedef struct tSetEOFResponse
{

DWORD dwRetCode; //Return Code of the
//operation

}SetEOFResponse;

dwRetCode is set to ERROR SUCCESS if the operation
20 completes successfully. In case of error, an

implementation specific error is set in this field.

Type = XfsTICKET

10

15

20

WO 00/57315 PCT/US00/07973

The following structure defines the ticket send
across by the server in the PRIMITIVE CALL Response after

authentication.

struct XfsTicket
{

enum
{
SIZE=256
b
DWORD m_dwLength;
unsigned char m bData[SIZE];
i

XFS COMMUNICATIONS - IP AND LINK LAYER

The XFS system specifies two types of transport for
primitives, UDP and TCP. UDP and TCP communications are
conducted on separate IP ports. It is recommended that
port 171 be used for UDP communications and port 172 used
for TCP communications. However, any available port
could be configured for TCP and UDP communications.
Session primitives are restricted to TCP transport.
Control primitives - which are UDP capable - are capable
of being used with UDP broadcast. Primitives are listed
in the table below with the types of transports that may
be used with them. Available transports are denoted by
an ‘x’ in the transport column. The preferred
transport(s) for the primitive is denoted by a capital

X,

Primitive TCP UDP Broadcast
Resolve request
Resolve response
Locate request
Locate response
Call request
Call response

E TR R

D> X[D] <

- 59 -

WO 00/57315 PCT/US00/07973

Continue request
Continue response
Hang Up request
Hang Up response
Send request

Send response
Retrieve request
Retrieve response
Directory request
Directory response
ChangeDir request
ChangeDir response

Enlist request X X
Enlist response X
Defect request X X
Defect response X

CreateDir Request
CreateDir Response
CreateFile Request
CreateFile Response
RemoveDir Request
RemoveDir Response
DelFile Request
DelFile Response
CloseFile Request
CloseFile Response
MoveFile Request
MoveFile Request
GetFileAttr Request
GetFileAttr Response
SetFileAttr Request
SetFileAttr Response
GetFileSize Request
GetFileSize Response
SetEOF Request
SetEQOF Response

Bl el el el el e el ool (ol el Bl el el ol Ret el el el Bl Bl el Bl R I I B Bl B el Bl B I el e el B B

As can be seen from the foregoing detailed
description, there is provided a method and system
wherein a client device has access to an entire file
system with large storage capacity when a physical
connection is present, even with limited memory

resources. The system and method are fast, efficient,

10

15

WO 00/57315 PCT/US00/07973

scalable and secure. The client device works with
locally-cached data, and thus may work without a physical
connection, and then upload any changes at a later time.
While the present invention thus provides particular
benefit with the Internet, it also provides numerous
other benefits to computer users in general. Note
further that the present invention need not be limited to
hierarchically arranged directories of files, but may
alternatively be used with other arrangements of data.
While the invention is susceptible to various
modifications and alternative constructions, certain
illustrated embodiments thereof are shown in the drawings
and have been described above in detail. It should be
understood, however, that there is no intention to limit
the invention to the specific form or forms disclosed,
but on the contrary, the intention is to cover all
modifications, alternative constructions, and equivalents

falling within the spirit and scope of the invention.

10

15

20

25

30

WO 00/57315 PCT/US00/07973

WHAT IS CLAIMED IS:

1. In a computer system, a method of providing
access to file system object data, comprising:
receiving a request to access object data from the file
system;

determining whether the data is maintained at a
local source or is maintained at a remote source; and

if maintained at the local source, providing
access to the data from the local source; and
if maintained at the remote source, providing

access to the data from the remote source.

2. The method of claim 1 wherein access to the
data is provided at the local source, and further
comprising, receiving a modification to the local data,

and synchronizing the local data with the remote data.

3. The method of claim 1 wherein determining
whether the data is maintained at a local source or is
maintained at a remote source includes checking at least
one attribute of a file system object associated with the

data.

4. The method of claim 3 wherein checking at least
one attribute determines that the present file data

should be always local.

5. The method of claim 3 wherein checking at least
one attribute determines that the present file data

should be always synchronized remotely.

6. The method of claim 1 further comprising,

establishing a secure channel with the remote source.
— 62 _—

10

15

20

25

30

WO 00/57315 PCT/US00/07973

7. The method of claim 1 wherein providing access
to the data from the remote source includes

authenticating the remote source.

8. The method of claim 1 wherein providing access
to the data from the remote source includes
authenticating a client that issued the request to access

object data.

9. The method of claim 1 wherein the data is
maintained at a remote source, and wherein providing
access to the data from the local source includes
establishing a session with the remote source, requesting
a file system operation to the data, and ending the

session.

10. The method of claim 9 wherein the file system
operation that is requested corresponds to at least one
of a send, retrieve, directory, change directory, create
directory, create file, remove directory, delete file,
close file, move file, get file attribute, set file

attribute, get file size, and set end of file operation.

11. The method of claim 1 further comprising,

enlisting with the remote source.

12. The method of claim 1 further comprising,
receiving information identifying a plurality of remote
sources, and selecting one of the plurality as the remote

source.

10

15

20

25

WO 00/57315 PCT/US00/07973

13. A system for maintaining file object data,
comprising,

a server component, the server component associated
with a remote storage mechanism that maintains at least
some of the file object data, and

a client component, the client component associated
with a local storage mechanism that maintains at least
some of the file object data, the client component
configured to receive a request for file object data and
to determine whether the file object data is locally
maintained or remotely maintained, and when locally
maintained, to provide access to the locally maintained
file data, and when maintained remotely, to communicate
with the server component to provide access to the

remotely maintained file data.

14. The system of claim 13 wherein the client

component includes an installable file system driver.

15. The system of claim 13 wherein the server

component includes an access controller.

PCT/US00/07973

WO 00/57315

AN o7 — .
(s)eameq (s)aaineqg F Q \m
[eusa)x3 [ewss)x3

" o v |sNoLing ﬁ% =

| @I L N (Lo7s) =

| 1y0d 130d S¥ La0d i ¥z (wow) |
_ WRAS fazuvuan] | | geve | v
_ + * HSV1d __viwa

| y 4 (2 IE WY¥D0¥d

_ adepdu| ERLTTET aoseu3)u| 2oepld)u| e

- |om ooy || vod oil uoung pies 0¢ S31NAON

| \ : |eu9ag paiesju) alempieH ysej4 WYHOO0Ud ¥3HLO
|

B AVAN AN VAR
| 14 14 9 144 €e Juskd S4X
| 10}993)9Q . ‘ |

| nduj sng wajsAg 7c YIOVYNYIN

_ uaaIog . W3LSAS 314
B L W € L/ 5z W3LSAs
1 ONLLYYIJO

_

_ \l 19A14(] O9PIA \ §7 SWYd90ud

_ 6¢ \ nun NOLLYOITddV

| >m_am_o/// 1z buissaaold A4 57 (NVN-AN)
| eaisues (. | =t | bFesme— e
_ :.o.:o 1 < . Aowsy waysAg

_ ; 0z

e o e ————— e e -

1112

PCT/US00/07973

WO 00/57315

v.
‘ 9.
(s)iontas
9]i4 SdX _
Japinoad
jaulaju| ajl||ejes
woidfor | / 21980
4
99
(s)o2inog
weiboud
wou4

9S

¢ Old

> 5| Buissedoid
4 jeubis
89 0
wapoW
/| duiisles
114, / 81qed
ve Twsiasaxle | %
_lv %y
\V ! JaBeuey
| jual|D
14°] /]] WSAS 914
S4X
€€ 0
> woalsAs
a2eLdUu _ L Bupesad
| 99Ireg < mo_ﬂmg\o_ 7
| nduy | —F>] d 09 0
c9 1980 s 3nhdu| _
9 « uopeoyddy
0
JOJIUO / sjusuodwon < 86
FEYVERENY 18410]
UOISIASJa L ! xog do]-}8S

¢l

)

2/12

PCT/US00/07973

WO 00/57315

obelio)s
9lld SdX

(TEISELSE bos

S wang|
sdax T €¢
'y
—» Ugoias T Yos
. IA8(Q JU3I|D
. \ /
Ew\.v €9 :
g}
(s)1spinoid walio) -
92IAIaS SdX et
- —» ~t Co8
¢aojnaq uallD
|
/ 8)
08 A
SdX €e
T p— F
£ ‘94 basjnaqgjuallo 08

3/12

WO 00/57315 PCT/US00/07973

Client 80
® _ FIG. 4
Application (
Server
XFS-SERVER
OS Kernel 102 ——NANE
92 _ ™ SERVICES
N~
I 100
i 1 PERMISSIONS
File System Manager - 32 L_ S NAGER
%
33
XFS-CLIENT / v
A 98"\\\ ACCESS
XFSDISK 411 34 ‘CONTROLLER

' 745/!\
XFSFSD 11T 96 D

411 94
; \Storage

Y Y
Winsock over TCP/IP Winsock over TCP/IP
A 84 A

4/12

WO 00/57315 PCT/US00/07973

&= FIG. 5

Send Enlist Request
Primitive via UDP

L 500

Broadcast
. 502
504
Continue ‘ /
to Wait

Record IP Address

506 Corresponding to
Time Each Response

Ended with
Responses

510

(

Send Resolve Request to
One of Known XFS-NS's for
\ Servers of Type XFS-NS,
Reported from Receive Response

Enlist No i

Response Send UDP-Directed (non-

broadcast) Enlist Requests to

/ Non-Broadcast-Responding
XFS-NSes

!

51 4\/__ Save IP Addresses for

Servers that Respond to
end
Enlist

Yes

Directed Enlist requests.

5/12

WO 00/57315 PCT/US00/07973

(Servt;erg[i):fectD Fl G- 6
Y

Send DefectRequest
Primitive via UDP
Broadcast

L 600

602 604

Walt/ Continue * /
Time to Wait Record Each
up Responding XFS-NFS

606

Numberof
FS-NS Servers =
Known Number

No t
Send UDP-Directed (non-
608 broadcast) Defect
A Requests to
Non-Broadcast-Responding
XFS-NSes

Y
610 Record Each
1 Responding XFS-NFS

Y
612 Continue
m Processing

Requests

6/12

WO 00/57315

Client

(1)

(3)

(5)

(7)

(9)

(11)

(13)

(15)

(17)

«—

FIG. 7

80 76

Enlist

PCT/US00/07973

<Control> \. Server

Enlistment Response

-

<Name Resolution >
Resolve

Resolve Response {Server List)

>
(4)

Locate

Locate Response

Establish Secure Channel
<Session>
CALL (with User-id, password,
deviceid, token)

CALL Response with Token

Directory Request

Directory Response (Root Directory)

-

Hang Up Request

Hang Up Response

<New Session>

CALL (with User-id, password,
deviceid, token)

CALL Response

XFS Request

XFS Response

Hang Up Request

Hang Up Response

72

(2)

(6)

(8)

(10)

(12)

(14)

(16)

(18)

WO 00/57315

begin
Client Enlist

PCT/US00/07973

FIG. 8

Send Enlist Request
Primitive via UDP
Broadcast

L 800

802

804

Time
Ended with
Responses
=0
?

ervers = No.
Reported from

Continue
to Wait

806

'/

Record IP Address
Corresponding to
Each Response

810

y /

Send Resolve Request
to One of Known
XFS-NS's for Servers
of Type XFS-NS,
Receive Response

'

Save IP Addresses for
Servers from the Resolve
Response data

l

Save IP Addresses for
Servers that Respond to
Directed Enlist Requests.

8/12

WO 00/57315 PCT/US00/07973

C Cliel:ﬁ:l_igcate) F IG. 9

Select First XFS L 900
Access Controller

F

Send Locate Req'uest to
Selected XFS Access [~ 902
Controller (via UDP/TCP)

904

Response

Yes
906
Another
Access
Controller
”?
910)

908

<)

Send Resolve Request

to One of Known Select Next XFS
XFS-NS's for Servers Access
of Type XFS-NS, Controller

Receive Response

9/12

WO 00/57315 ‘ PCT/US00/07973

[client root] FIG, 10
110
\DIR ®| a
<
DRz)
\Fileg @I
\DIR;
FIG. 11
[client root]
110
DRy ® . ’

\DIR, @l

\Fileg ®)

\DIR;

10/12

WO 00/57315

PCT/US00/07973

11/12

FIG. 12
110
[client root] / ¢
\DIR4 R
\DIR, @
\DIR3 @
\Fileq4 ® — @
\Fileq2 @
\DIR; ®
\File4 ®
\Filey '
\Fileg ®)
\DlRi- ®

WO 00/57315 PCT/US00/07973

FIG. 13

Object S 1304
SyncAlways
y 2 y Yes ¢ I
Retrieve / Update
Object Data
Y From/To
Remote Store
1308 Object =
J | o Re'2°te 1314
Retrieve / Update Retrieve / Update
Object Data Object Dat
From / To From I To
Local Storage Remote Store

l 1 3)1 6
Update Local

Storage unless
Sync-Always

Synchronize
Remote Store

end
-

12/12

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

