wo 2014/019701 A1 [N I PO 0O OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/019701 A1

6 February 2014 (06.02.2014) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/54 (2006.01) G06Q 10/02 (2012.01) kind of national protection available). AE, AG, AL, AM,
. o . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/EP2013/002302 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, I, IN, IS, JP, KE, KG, KN, KP, KR,
1 August 2013 (01.08.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
12368017.5 2 August 2012 (02.08.2012) EP (84) Designated States (unless otherwise indicated, for every
13/565,284 2 August 2012 (02.08.2012) Us kind Of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(71) Applicant: AMADEUS S.A.S. [FR/FR]; 485, route du Pin UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Montard, Sophia Antipolis, F-06410 Biot (FR). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventors: KRASENSKY, Nicolas; 28 chemin des EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Caiucours, F-06800 Cagnes sur Mer (FR). SEVEILLAC MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
> Zh s
Clément; 53 avenue du petit juas, F-06400 Cannes (FR). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
’ petit juas, KM, ML, MR, NE, SN, TD, TG).
SPEZIA, Didier; 22 avenue Saint Barthelemy, F-06100 > ’ O
Nice (FR). DOR, Pierre; 1019 Route de Grasse, F-06140 Published:

74

Vence (FR).

Agent: LIPPICH, Wolfgang; Samson & Partner, Widen-
mayerstrasse 5, 80538 Miinchen (DE).

with international search report (Art. 21(3))

(54) Title: METHOD, SYSTEM AND COMPUTER PROGRAM PRODUCT FOR SEQUENCING ASYNCHRONOUS MES-
SAGES IN A DISTRIBUTED AND PARALLEL ENVIRONMENT

Incoming messages

(57) Abstract: The invention provides a system
and a computer-implemented method of se-

811 wop B! el - comput .
quencing distributed asynchronous messages in
801-2 a distributed and parallel system having a plur-
810 820~ Lo 830~ 840 ~ ality of inbound handlers forming an inbound
1 handlers layer and a plurality of outbound
Inbound Inbound Inbound Inboun handlers forming an outbound handlers layer,
handler handler handler handler = °
A the method comprising the following steps per-
formed with at least one data processor: receiv-
ing in any inbound handler out of the plurality
822 . . .
800 824 826 of inbound handlers an incoming message the
incoming message comprising a sequence cor-
Status gop | Mutex | Overflow Areg 4,0 relation value that identifies a sequence com-
e] eanB0a | pn prising the incoming message, checking for a
A” “Processing” “1 sequence status of said sequence in a shared se-
891

quence storage; determining if the incoming
message is the next message to be processed for

maintaining the order of the messages in said

reP— e Outhound poT— sequence; - if the sequence status indicates that
u{Do! .
bhandler handler handler handler none of the outbound handlers in the outbound
860 .)
- - - - handlers layer is currently processing a mes-
Delivery|Ack Delivery JAck Delivery|Ack Delivery|Ack A X € R
8601|8602 8701] 8702 8801| 8802 8901 8902 sage for said sequence and if the incoming
message is determined to be the next message
to be processed for said sequence, then for-
FIGURE 8B p q ,

warding the incoming message to a shared
queue storage and subsequently retrieving the

message by an available outbound handler in the outbound handlers layer for processing; - if the sequence status indicates that at
least one of the outbound handlers in the outbound handlers layer is currently processing a message of said sequence; or if the shared
queue storage already comprises a message to be processed for said sequence; or if the incoming message is determined not to be the
next message to be processed for said sequence, then storing the incoming message in a memory ot a shared overflow storage to
keep for further processing.

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

METHOD, SYSTEM AND COMPUTER PROGRAM PRODUCT FOR SEQUENCING
ASYNCHRONOUS MESSAGES IN A DISTRIBUTED AND PARALLEL
ENVIRONMENT

TECHNICAL FIELD:

The present invention relates generally to data and information processing for
communication systems, and more particularly to a method, an apparatus and a
system for processing asynchronous messages of a sequence in a distributed and

parallel processing environment.

BACKGROUND: 7

In a service call or event processing, using a distributed software architecture,
the transmission of messages may be either synchronous or asynchronous. The
messages are distributed and multicast with full recipient isolation wherein each

multicast message is processed independently from each other.

Figure 1 shows a synchronous transmission of messages or service calls
between two systems, on one side a calling system 110 and on the other side a remote
system 120, wherein the calling system 110 controls the order of the message
processing. In this case, the calling system 110 is waiting for the result of remote
processing; as a consequence the caller is the master regarding the order in which
messages are actually processed on a server system or the remote system.

A transmission 111 of a first message A from the calling system 110 is processed
in the remote system 120 and followed by a message A processed 121 returned to the
calling system 110. Once the message A processed is received, the calling system 110
can start a transmission 113 of a second message B to the remote system 120. The
second message B is then processed in the remote system 120 and a message B
processed 123 is returned to the calling system 110.

In this exemplary flow diagram, the chronological processing of the synchronous
calls or messages between the calling system 110 and the remote system 120 shows
that the process 112 of the first message A by the server system or the remote system

120 occurs before the process 114 of the second message B.

Figure 2 shows an asynchronous transmission of messages or service calls

between a calling system 210 and a server system or a remote system 220, wherein

10

20

25

30

WO 2014/019701 PCT/EP2013/002302

the calling system 210 sends a service call or message to the server system or a
remote system 220 which will then process the message based on its own scheduling.
The client system or the calling system 210 is loosing control of the timing of the
message processing.

A transmission 211 of a first message A from the calling system 210 is processed
in the remote system 220. In the meantime, the calling system 210 has started a
transmission 213 of a second message B to the remote system 220. The second
message B is then processed in the remote system 220 and it cannot be determined
whether a message B processed is returned to the calling system 210 before a
message A processed.

In this exemplary flow diagram, the chronological processing of the asynchronous
calls or messages between the calling system 210 and the remote system 220 shows
that the process 212 of the first message A by the server system or the remote system
220 occurs more or less at the same time as the process 214 of the second message
B. It would also be possible that the second message B is processed before the first
message A, which could severely impact the relevancy of the sequence containing

messages A and B.

Figure 3 is an exemplary flow diagram showing a parallel processing of service
calls or messages in a distributed system. In distributed systems, to comply with the
resilience and scalability requirements, service calls or messages are processed in
parallel by instantiation and / or in multithreading. In this figure, Instances 1, 2, 3, ...,
and n, referred as 310-1, 310-2, ... and 310-n of the process system are processing
four messages 1, 2, 3 and 4 in the message queue 340 with an inbound sequence.

Parallelized processes do not guarantee the order in which consecutive service
calls or messages will be processed and finalized. However, service calls or message
processes sometimes require strong enforcement of a sequence between correlated
events or messages.

In the example shown in figure 3, message 1 is processed in an instance 2 and
message 2 is processed in an instance 3, message 3 is processed in an instance 1 and
message 4 is processed in instance 3 as is message 2. As processing of the messages
is not coordinated, message 2 is processed first, followed by message 1, then
message 4 and finally message 3. This is an inconsistent transactional processing

order.

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

In this figure, the sequence refers to the order in which the service calls or
messages are to be conveyed and/or processed by the distributed system. This order
is generally driven by the business process or an indusfry,standard. By not respecting
this order, the outcome results in inadequate processing and in the worst case in

irrevérsible corruption of the stored functional data, also called database corruption.

Figure 4 is an exemplary flow diagram showing a parallel processing of
asynchronous calls or messages in a distributed process system which results in a risk
of de-ordering the processing of messages and corrupted data.

In a synchronous environment, the sequencing is ensured by the emitter system
or the calling system which initiates the messages to the remote system one after the
other, controlling de facto the sequence flow between correlated messages.

This sequencing becomes impossible when the emitter system or the calling
system 410 has to deal with asynchronous and distributed processes, as it is incapable
to determine the end of the processing of a message on the remote system 420. Figure
4 shows this risk where a transmission 411 of a first message A from the calling system
410 to the remote system 420 is followed by a transmission 413 of a second message
B. The process 414 of the second message B starts before the process 412 of the
process 414 of the first message A. Therefore, the message processing may be
inversed, which results in inadequate processing and in the worst case in irreversible

corruption of the stored functional data, or database corruption.

Therefore the present invention aims to mitigate the aforementioned problem and
to avoid any irreversible corruption of the stored functional data, or any database

corruption.

SUMMARY

In one embodiment, the invention provides a computer-implemented method of

‘sequencing distributed asynchronous messages in a distributed and parallel system

having a plurality of inbound handlers forming an inbound handlers layer and a plurality
of outbound handlers forming an outbound handlers layer, the method comprising the
following steps performed with at least one data processor:
receiving in any inbound handler out of the plurality of inbound handlers an
incoming message with a sequence correlation value that identifies a sequence

comprising the incoming message,

10

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

checking for a sequence status of said sequence in a shared sequence storage;
determining if the incoming message is the next message to be processed for

maintaining the order of the messages in said sequence;

if the sequence status indicates that none of the outbound handiers in the
outbound handlers layer is currently processing a message for said
sequence and if the incoming message is determined to be the next
message to be processed for said sequence, then forwarding the incoming
message to a shared queue storage and subsequently retrieving the

message by an available outbound handler for processing;

if the sequence status indicates that at least one of the outbound handlers
in the outbound handlers layer is currently processing a message of said
sequence; or if the shared queue storage already comprises a message to
be processed for said sequence; or if the incoming message is determined
not to be the next message to be processed for said sequence, then storing
the incoming message in a memory of a shared overflow storage to keep for

further processing.

Thus the distributed and parallel system can be seen as a router including:
inbound handlers which are arranged in parallel to each other in an inbound handlers
layer receiving messages pertaining to many sequences; a storage layer comprising a
shared sequence storage, a queue storage and a shared overflow storage and being
configured to receive the messages from the inbound handlers and to store them in a
memory. The sequence storage may comprise the overflow storage. The distributed
and parallel system further includes outbound handlers which are arranged in parallel
to each other in an outbound handlers layer and which are adapted to retrieve the
messages from the shared queue storage for processing while the system ensures the
correct sequencing of the messages within their respective sequence. The outbound
handlers are configured to receive messages, to process them and to possibly deliver

them to the correct recipient.

The overflow storage and the sequence storage are shared by the inbound
handlers and by the outbound handlers. They are used in common by the parallel

inbound handlers and by the parallel outbound handlers.

10

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

The invention therefore provides a solution for maintaining the order of messages
pertaining to a same sequence while allowing parallel proéessing of various sequences
in a distributed environment. In addition, decoupling the inbound handlers from the
outbound handlers allows isolating the throughput of the emitters from the throughput
of the recipients. Furthermore, the number of inbound handlers and the number of
outbound handlers is highly and independently scalable. Additionally, the invention
avoids creating an affinity between a sequence and an in/outbound handler, allowing
thereby any infoutbound handler to handle a message of any sequence. Thus, the
invention offers a strong resiliency, since the outage of some handlers or outbound

handlers does not affect the processing of the messages.

The method according to the invention may also comprise any one of the

following additional features and steps:

In one embodiment, the step of determining if the incoming message is the next
message to be processed for maintaining the order of messages in said sequence,
comprises:

-determining a message rank indicating the order of the incoming message in said-
sequence,

- comparing the message rank to a sequence rank defining the rank of the next
message to be processed for said sequence,

- if the message rank is equal to the sequence rank, then the message is
determined to be the next message to be processed for maintaining the order of the
messages in said sequence,

- if the message rank is greater than the sequence rank, then the message is
determined not to be the next message to be processed for maintaining the order of the

messages in said sequence.

Messages comprised in a sequence and requiring to be processed in a specific
order may have a message rank number which is referred to in the present description
as message rank. The message rank defines the order of messages within a
sequence. A message may be provided with a message rank by the originator of the
message or a third party. A message rank may also be assigned by the system

according to the arrival order of the messages of a sequence.

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302

A sequence rank in the understanding of the present description defines which
message of a given sequence is to be processed next, i.e. which message rank the

next message to be processed must have.

Preferably, the sequence rank is indicated in the sequence storage.

Typically, processing a message at an outbound handier means that the
outbound handler sends or delivers the message to a recipient.

Advantageously, upon completion of the processing of a message of a given
sequence at an outbound handler, the sequence rank of said given sequence is

incremented.

Preferably, when the sequence rank of a sequence is incremented, the method
comprises checking if the overflow storage comprises a message with a message rank
that is equal to the sequence rank as incremented and subsequently forwarding this

message to the queue storage.

According to an advantageous embodiment, if the incoming message as received
is not provided with any index indicating the message rank within the sequence, then
the step of determining a message rank comprises assigning to the incoming message
a message rank indicating the rank of the incoming message in its sequence and
storing the assigned message rank in the sequence storage.

Preferably, the assigned message rank corresponds to the rank of the last
message received at any one of the inbound handlers for said sequence plus bne
increment. Thus, if the incoming message is the first message for said sequence, then
the messége rank is 1. If the message rank of the previous message that was received
at an inbound handler is N, then, the message rank assigned to the newly incoming

message is N+1.

In another advantageous embodiment, the incoming message as received in the
inbound handler is provided with an index indicating the message rank within the
sequence.

Preferably, if the message rank is greater than the sequence rank, then the

status of the sequence is set to “pending”. Thus, “pending” means that the overflow

10

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

storage area contains at least a message for the given sequence, but that this or these
messages have a message rank that is not equal to the sequence rank.

Typically, the sequence status is set to “waiting” when none of the outbound
handler is currently processing a message for said sequence and when no message
for that sequence is in the overflow storage area. Typically, the sequence status is set
to “processing” when at least one of the outbound handlers is currently processing a

message of said sequence.

Advantageously, if the queue storage does not comprise any message for the
sequence of the incoming message and if the messagé rank of the incoming message
is greater than the sequence rank indicated in the sequence storage, then the incoming
message is stored in the overflow storage until the sequence rank is incremented and
equals the message rank of the incoming message.

Thus, if the message was provided with a message rank by the originator of the
message or a third party, and if the message rank is greater than the sequence rank
then the message is stored in the overflow storage. When othér messages having a
lower message rank will be processed, then the sequence rank will be incremented
until it reaches the message rank of the message previously stored. This message can
then be released from the sequence storage or more precisely from the overflow
storage and can be sent to the queue storage once the queue storage and the inbound
handlers are not storing and processing a message of this sequence.

The same applies for messages that are not provided with a message rank but

for which a message rank is assigned by the system according to their arrival order.

Advantageously, when a message has been successfully processed by an

outbound handler it is then removed from the queue storage.

Advantageously, the outbound handlers operate asynchronously, allowing
thereby an outbound handler to send a message and then to be available for another
processing upon sending the message and before receiving an acknowledgment of

response from a recipient of the message.

According to an advantageous embodiment, an outbound handler comprises a
delivery process that sends messages to recipients and an acknowledgment process

that receives acknowledgment of receipt from the recipients. The delivery process and

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302

the acknowledgment operate independently, allowing thereby a delivery process to be

available immediately upon sending a message.

Advantageously, upon receiving the incoming message and before the checking
step, the method comprises performing an inbound locking step wherein all inbound
handlers are prevented to receive another message of said sequence until the

incoming message is stored in the sequence storage or is sent to the queue storage.

Advantageously, an incoming message can be accepted at an inbound handler
while another message for the same sequence is being sent or processed by an
outbound handler. The only limited cases for which an incoming message needs to
wait for release of the locking are:

-another incoming message is being stored in the storage layer or is being
received in an inbound handler,

-a recipient’'s response on a message of said sequence is being received and
processed by an outbound handler. When an outbound handler receives a reply, i.,e.,
an acknowledgment, from a recipient, it locks the sequence and the corresponding
rank, time to seek next message to be sent in said sequence if any and to increment
the rank.

Preferably, the inbound locking step comprises locking a mutex dedicated to said
sequence, said mutex being stored in the sequence storage.

Preferably, upon receiving an incoming message, the inbound handler checks
the sequence correlation value of the sequence of said incoming message and reads
the mutex parameter for said sequence before accepting the incoming message. The
inbound handler accepts the incoming message if the mutex is not locked. If the mutex
is locked, the incoming message waits for the release of the mutex.

More precisely, the mutex is stored in a sequence register comprised in the

sequence storage.

Advantageously, there is only one mutex per sequence and for the inbound and
the outbound handlers. The storage queue in the queue storage ensures that for a
given sequence only one message is propagated to an outbound handler until the
outbound handler layer has completed the processing of the message for that

sequence.

10

20

25

30

WO 2014/019701 PCT/EP2013/002302

Preferably, the outbound locking step comprises locking a mutex dedicated to

said sequence, said mutex being stored in the sequence storage.

Advantageously, when an outbound handler is available, it checks in the queue
storage if a message is available for processing, then it retrieves said message and
processes it.

Preferably, when an outbound handler is available, it checks in the queue storage
850 if there is an available message to process. If there is a message, then this
message is automatically the correct message to be processed for said given

sequence.

In one embodiment, upon storage of the incoming message in the sequence
storage or more precisely in the overflow storage, the inbound handler sends an

acknowledgment message.
Typically, the acknowledgment message is sent to an originator of the message.

Advantageously, a message having a message rank greater than the sequence
rank is stored in the overflow storage to lock the message sequence in the overflow
storage, as long as its message rank is not matching the sequence rank, i.e., the rank

of the next message to be processed.

Preferably, a message having a message rank greater than the sequence rank is
first stored in the overflow storage and is then discarded from the overflow storage after
a time out value assigned to the sequence of the message is reached. Alternatively or
in addition, a message having a message rank greater than the sequence rank is first
stored in the overflow storage and is then discarded from the overflow storage after a

time out value assigned to the message is reached.

In another embodiment, the invention relates to a non-transitory computer-
readable medium that contains software program instructions, where execution of the
software program instructions by at least one data processor results in performance of

operations that comprise execution of the method according to the invention.

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302

In another embodiment, the invention relates to a distributed and parallel
processing system for sequencing asynchronous messages comprising:
- a plurality of inbound handlers, comprising at least one data processor, each of the
plurality of inbound handlers being configured to receive independently a plurality of
incoming messages pertaining to various sequences;
- a plurality of outbound handlers, comprising at least one data processor, each of the
plurality of outbound handlers being configured to process and forward independently
the plurality of incoming messages; and
- a storage layer comprising at least a memory and comprising:
e a queue storage for storing incoming messages ready to be transmitted to the
plurality of outbound handlers;
* a sequence storage comprising: a sequence status context (802) for
maintaining and updating a status of sequences of the incoming messages; and
an overflow storage configured to receive the messages from the inbound
handlers and to sequentially forward them to the queue storage,
the system being also configured to determine if an incoming message is the next
message to be processed for maintaining the order of the messages in the sequence of
this message and to perform the following steps performed with at least one data
processor;

if the sequence status indicates that none of the outbound handler is currently
processing a message for said sequence and if the incoming message is determined to
be the next message to be processed for said sequence, then forwarding the incoming
message to the queue storage and subsequently forwarding it to an available outbound
handier for processing;

if the sequence status indicates that at least one of the outbound handlers is
currently processing a message of said sequence; or if the queue storage already
comprises a message to be processed for said sequence; or if the incoming message
is determined not to be the next message to be processed for said sequence, then

storing the incoming message in the overflow storage to keep for further processing.

According to an optional embodiment, the queue storage and the sequence ,
storage of the storage layer are implemented in an in-memory data or in a file base
storage. Alternatively, the queue storage and the sequence storage of the storage layer

are implemented in a client-server storage database.

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

Preferably, checking the sequence status comprises retrieving the status of a

sequence based on the sequence correlation value of said sequence.

In another embodiment, the invention relates to a computer-implemented travel
monitoring method for processing asynchronous messages between at least one
server application and at least one client application in a parallel environment having a
plurality of parallel inbound handlers and a plurality of paralle!l outbound handlers, the
method comprising the following steps performed with at least one data processor:

- receiving in an inbound handler of the plurality of parallel inbound handlers an
incoming message with a sequence correlation value that identifies a sequence
comprising the incoming message,
- checking for a sequence status of said sequence in a sequence storage;
- determining if the incoming message is the next message to be processed for
maintaining the order of the messages in said sequence;

if the sequence status indicates that none of the outbound handler out of the
plurality of parallel outbound handlers is currently processing a message for said
sequence and if the incoming message is determined to be the next message to be
processed for said sequence, then forwarding the incoming message to a queue
storage and subsequently forwarding it to an available outbound handler for
processing;

if the sequence status indicates that at least one of the outbound handlers is
currently processing a message of said sequence; or if the queue storage already
comprises a message to be processed for said sequence; or if the incoming message
is determined not to be the next message to be processed for said sequence, then
storing the incoming message in an overflow storage to keep for further processing,

wherein the messages comprise data related to passengers and the sequence

correlation value contain data related to references of a transportation service.

The method according to the invention may also comprise any one of the
following additional features and steps.

Once processed, the messages are forwarded from the outbound handlers to at
least one of: a travel reservation and booking system, an inventory system of an airline,
an electronic ticket system of an airline, a departure control system of an airport, the
operational system of an airport, the operational system of an airline, the operational

system of a ground handler.

10

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302
12

In one embodiment, the references of a transportation service comprise at least
one of the following: a flight number, a date and a class reservation.

In one embodiment, the messages are indicative of any one of. boarding
passengers, cancelled passengers, added passengers.

In one embodiment, a sequence time out value is provided for each incoming
message in order to remove the incoming message stored in the overflow storage after
a sequence time out value is reached, the sequence time out value being triggered by
the departure time of a flight or being any one of: an expiration of a flight offer or an

expiration of a promotion.

In another embodiment, the invention relates to a non-transitory computer-
readable medium that contains software program instructions, where execution of the
software program instructions by at least one data processor results in performance of

operations that comprise execution of the above method according to the invention.

In another embodiment yet, the invention relates to a computer-implemented
method of sequencing distributed asynchronous messages in a distributed and parallel
system having a plurality of inbound handlers and a plurality of outbound handlers
comprising at least one processor to process the messages, the method comprising
the following steps performed with at least one data processor:

- receiving in an inbound handler an incoming message with a sequence correlation
value that identifies a sequence comprising the incoming message and determining a
message rank indicating the order of the incoming message in said sequence;
- checking for a sequence status of said sequence in a sequence storage;

if the sequence status indicates that none of the outbound handler is currently
processing a message for said sequence and if;

the incoming message as received is not provided with any index indicating the
message rank within the sequence and the sequence storage does not already
comprise any message to be processed for said sequence, or if

the incoming message as received is provided with an index indicating the
message rank within the sequence, said message rank being equal to a sequence rank
indicated in the sequence storage and defining the rank of the next message to be
processed for said sequence,
then forwarding the incoming message to a queue storage and subsequently

forwarding it to an available outbound handler for processing;

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302

if the sequence status indicates that at least one of the outbound handlers is
currently processing a message of said sequence; or if the queue storage already
comprises a message to be processed for said sequence; or if the incoming message
as received is provided with an index indicating the message rank within the sequence,
said message rank being greater than a sequence rank indicated in the sequence
storage and defining the rank of the next message to be processed for said sequence,
then storing the incoming message in an overflow storage to keep for further
processing.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects of the embodiments of the present invention are
made more evident in the following Detailed Description, when read in conjunction with
the attached Figures, wherein:

Figure 1A is an exemplary flow diagram showing a chronological processing of
synchronous calls or messages between a calling system and a remote system.

Figure 2 is an exemplary flow diagram showing a chronological processing of
asynchronous calls or messages between a calling system and a remote system.

Figure 3 is an exemplary flow diagram showing a parallel processing of calls or
messages in a distributed process system.

Figure 4 is an exemplary flow diagram showing a parallel processing of
asynchronous calls or messages in a distributed process system which results in a risk
of de-ordering the processing of messages and corrupted data.

Figure 5 shows an exemplary block diagram of a high level sequence
management in a centralized and shared sequence context according to the present
invention.

Figure 6 is an exemplary flow diagram of the process for identifying sequences
within a transmission and processing channel according to the present invention.

Figure 7 shows an exemplary of asynchronous and distributed processing
system according the present invention. .

Figure 8A is an exemplary step of a sequencing process wherein an inbound
handler receives a first message on sequence A according to the present invention.

Figure 8B is another exemplary step of a sequencing process wherein an
inbound handler receives a second message on sequence A according to the present

invention.

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302

Figure 8C is another exemplary step of a sequencing process wherein an
outbound handler processes a first message on sequence A according to the present
invention.

Figure 8D is another exemplary step of a sequencing process wherein an
outbound handler has processed a first message on sequence A according to the
present invention.

Figure 8E is an exemplary step of a sequencing process wherein a sequence is

re-arranged according to the present invention.

DETAILED DESCRIPTION

Although the following description is given in the context of an application to the
travel industry, it does not represent a limiting example since the present invention is
applicable to all sorts of data processing as well as travel products such as hotel
rooms, car rental, railways tickets or the like.

According to the present invention, the processing order of a message is defined
in an asynchronous and parallel environment by the emitter of the message or the
calling system, either explicitly by providing an index indicating the rank of each
message within the sequence, or implicitly by delivering messages sequentially and
awaiting a transport acknowledgement of a given message before sending the next
message in the given sequence.

The present invention aims to ensure that concurrent and independent processes
respect the sequencing order for processing a given set of messages defined as a
sequence.

In that respect, the method, apparatus and system for sequencing distributed
asynchronous messages according to the present invention perform various actions
that are be briefly explained below and that will be afterwards detailed with further
details in reference to the drawings.

Each message or service call belonging to a given sequence is tagged, by
interface definition, to actually refer to the specific sequence it belongs to.

The rank of a message or service call within a sequence of messages is either:

+ Explicitly provided by the emitter/sender of the messages or service calls,
through adequate interface. For instance the message comprises a field
including an index that defines the rank of the message within its

sequence or

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

» Implicitly by using the sequential order in which the messages or service
call in the sequence are received overtime.

Once the sequence and the message rank or the service call order are identified,
the sequence has to be managed properly.

Figure 5 shows an exemplary block diagram of a high level sequence
management in a centralized and shared sequence context. In this figure, the main
features of the system and the main steps are shown in detail.

The asynchronous and distributed processing system comprises an inbound
handler 510 receiving incoming messages 501, an outbound handler 530 configured to
process messages and deliver them. The system also comprises an overflow storage
area 540 that possibly stores the messages received from the inbound handler if the
processing of the message 501 must be withhold to maintain the order of the sequence
to which the message belongs.

It is to be understood that the system comprises a plurality of parallel inbound
handlers 510 and a plurality of parallel outbound handlers 530 and figure 5 is simplified
to facilitate understanding.

The inbound handler can also be referred to as an acceptor or an acceptor
process. Thus the inbound handler layer comprising a pluralify of inbound handlers can
also be referred to as an acceptor layer.

The outbound handler can also be referred as a processor or a delivery process.
Thus the outbound handler layer comprising a plurality of outbound handlers can also
be referred to as a delivery layer.

Inbound handler 510 is in particular configured to perform any one of: receive
messages from emitters such as publishers; validate integrity of messages; perform the
sequence locking and status validation; store the message in one of the two areas,
(i.e., queue storage or overflow area); reply to the emitter.

According to an advantageous embodiment, the outbound handler 530 is
composed of two processes. A first process, referred to as the delivery process 531
and which is configured to perform any one of: get a message from storage queue;
send it to the recipient via the communication channel; quit to be available for other
processes. V

A second process, referred to as the acknowledgement process 532 and which
is configured to: receive from the recipient an acknowledgement of reception; perform
the sequence management as to put next message in corresponding sequence, if any,

in storage queue; quits to be available for other processes.

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302
16

Thus, the delivery layer formed of outbound handlers 532 is asynchronous which
allows complying with high scalability requirement. This way, the system is
independent 6f the latency of the recipient. More precisely, it means that an outbound
handler can retrieve and deliver a message of a first sequence and can then retrieve
and deliver another message of a second sequence before it receives an
acknowledgement for the delivery of the message for the first sequence. Therefore, an
outbound handler can asynchronously handie messages from many sequences,
increasing thereby the number of messages that the system can route while always
maintaining the correct order for each sequence.

According to the present invention, a central and shared sequence context is
implemented, wherein a state machine is used for each sequence. Whenever an
incoming message 501 is received in an inbound handler 510, a corresponding
sequence context status is checked 520. According to an embodiment, if the
corresponding sequence context does not exist, it is created dynamically and
transparently. Thus, the invention does not require sequences to be defined in advance
in the system, but is fully dynamical in this respect. In addition if the message has not
been provided with an index indicating its rank within the sequence, then a message
rank is assigned to the message according to the arrival order of the message.

* If the sequence status indicates that the outbound handler layer is waiting
for the next message of the sequence, i.e., the sequence status is
“‘Waiting”: then the incoming message 501 is processed 522 normally
according to the standard behaviour by an outbound handler 530 (the
message will be available for the asynchronous processing); or

o If the sequence status indicates that a message of the sequence is
already currently being processed, ie., the sequence status is
“Processing”: then the incoming message 501 is stored in a specific
sequence overflow storage area 540 in order to be processed later 524.
The overflow storage area 540 is structured / indexed in such a way that
the order of the incoming message is not lost. In thié way, the incoming
message 501 is kept for further processing and it is not available for
immediate processing (as out of sequence). |

The outbound handler layer receives the messages to be processed according to
the standard behaviour, wherein the messages are de facto, in the correct sequence

rank.

10

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

Once a message 501 is processed, the outbound handler layer looks for the next
message to process in the sequence in the overflow storage area 540. If such a
message is found, it is pushed to the outbound handler layer, according to the standard

process. If no message is found, then the sequence status is set back to “Waiting”.

The order of each message within the sequence is maintained. The sequence
storage defines a sequence rank indicating the rank of the next message that must be
processed to preserve the order of the message of a sequence. The sequence rank is
incrementally updated each time the processing of a message is complete. The
sequence rank can therefore be seen as a counter.

Any incoming message which does not match the sequence rank, i.e. the rank of
next message to process, is stored in the overflow storage area 540, until the correct
message to process is received by the inbound handler 510. This means that the
inserting / removing operations in the overflow storage area 540 are performed taking
into account the rank of the sequence and the rank of each message.

As messages are stored in the overflow storage area 540 pending their turn to be
processed in the sequence, it may happen that the sequence is never unlocked by the
next message in sequence. While this situation does not happen very often, the
present invention provides a dynamic way to leave an indicator in the context of the
sequence, to take action on a sequence when it is considered expired, such as to

discard the expired message or expired sequence.

Some Message Oriented Middleware, referred as MOMSs, provide a sequencing
feature by avoiding the use of parallelism (i.e. they enforce only one de-queuing
consumer). Therefore, they provide sequence guarantee at the expense of scalability.
Oracle® Advanced Queuing is a typical example.

Some other MOMs (for instance MQ-Series) do provide a sequencing' feature
based on a correlator, but they require the sequence messages to be processed as if
they were logically grouped together. Besides, the group size has to be limited and the
MOM may require additional constraints on the de-queuing process.

The distributed and parallel processing according to the present invention
provides strict sequencing while keeping parallelism and scalability, and without
requiring particular constraints in the way messages or services calls are correlated, or
processed by the de-queuing process. The high scalability and resilience of the

method, apparatus and system of the present invention enables:

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

To implement a fully asynchronized delivery process using the “post and
quit” principles in which the message is posted and the process does not
wait for an acknowledgement, another process (the acknowledgment
process) being in charge of receiving the acknowledgement, which allow
coping with a very high message throughput; and

To implement a fully distributed process and to remove any affinity
between the sequences and the infoutbound handlers, allowing thereby

any in/foutbound handler to handle a message of any sequence.

The trivial approach to cope with message sequencing may be to revert to a

mono process architecture which raises huge and sometimes unacceptable constraints

in terms of resilience and séalability. On the contrary, the present invention allows the

full benefit of distributed and parallel processing at two levels, the inbound handlers

level and the outbound handlers level while ensuring sequencing provided the

cardinality of the sequences is high. That means that the invention takes full advantage

of parallelizing sequence processing only if the system has to cope with a high number

of sequences in parallel.

There is no pre-requisite on the storage area and the de-queuing process in

regards to the sequence maintenance:

The queuing process of message acceptance in the inbound handler layer
and the queuing process of message processing in the outbound handler
layer do not need to support the sequence preservation as this will be
possible according to the invention; |

The parallel storage and parallel retrieval of messages (i.e. queuing / de-
queuing) is fully preserved;

According to a non-limitative embaodiment, the queue storage itself can be
local to the node whereas the overflow storage area remains global, i.e.,
shared by all the outbound handlers. The overflow storage needs to be
shared because any of the nodes can process a given sequence,
therefore, they should have access to the unique overflow area to actually
queue and de-queue in this storage. In case a queue storage is not
shared by all outbound handlers, it can either be dedicated to a single
outbound handler or to a plurality of outbound handlers. In these cases
where the queue storage is not shared by all outbound handles, each

message is received by only one local queue storage.

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302
19

* The storage of rejected messages is easier as there is no neéd for an
exception queue since the message can sit in the overflow area with an
altered status.

According to the method, apparatus and system of the present invention, the
message sequence is processed in a distributed and parallel mode by performing the
identification of the sequence and the identification of the message rank in the
sequence. In addition to the identification, the sequence is to be managed and re-
arranged including the sequence locks and the time outs. These aspects are detailed
below with more details.

Identify the sequence

In a flow of messages or events sharing a given transmission channel, each set
of correlated messages, in sense of sequence to respect, requires to be explicitly
defined. Figure 6 shows an exemplary flow diagram of the process for identifying
sequences within a transmission and processing channel 620 between an emitting
system 610 and a process system 630.

A dedicated parameter is provided to each messaging primitive involved in a
given transmission. This dedicated parameter is a sequence identifier also referred to
as a sequence correlation value. It is typically an alphanumeric value set by the
emitting system of the message. This parameter is used by each involved component
to actually identify messages belonging to the same sequence. For instance,
messages 1 to 4 are parsed in the transmission channel 620 and identified as
messages #1, ..., #4. Although these correlated and ordered messages are sharing the
same transmission channel 620, they are not consecutively following each other. They
are intertwined in the transmission channel 620 with messages belonging to another
sequence.

The sequence correlation parameter is defined in a way to ensure it is not shared
by distinct colliding processes on a given transmission and processing chain. In this
context, it is mandatory to have a strict uniqueness. Preferably, this definition of the
sequence correlation parameter is the responsibility of the business process using the

system.

ldentify the message rank in the sequence

Messages which require to be processed in a specific order can be categorized

in two kinds:

10

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302

20

The first kind of messages for which the order or rank within the sequence
is known at the time of the message creation, and preferably for which the
total humber of messages is also known at the time of the message
creation; wherein the generating process is capable of assigning to each
message a specific message rank number in the transmission primitive.
This message rank number is then conveyed and stored by each process
as part of an overall chain until the final processing is performed; and

The second kind of messages for which the ordering within the sequence
is determined at the time of generation. The processing of these second
kind of messages is generally incremental, meaning that each new
message (or event) in the process alters the results of the process of the
previous message in the sequence. In that respect, the emitting system of
a message knows neither the message rank number of a message in a

given sequence, nor the total number of messages within a sequence.

For conciseness reasons, in the present description the message rank number of a

message in a given sequence is referred to as the message rank.

Core sequence management

As illustrated in Figure 7, an exemplary of asynchronous and distributed

processing system comprises:

A plurality of Inbound handlers 710, 720, ..., 740 forming an inbound
handlers layer. The inbound handlers receive incoming messages 711,
721, 731 and 741, store them respectively in a queue storage 750 and
possibly acknowledge good reception of these incoming messages 711,
721, 731 and 741 to the emitting system;

A plurality of Outbound handlers 760, 770, ..., 790 forming an outbound
handlers layer. Each outbound handler is configured to retrieve messages
from the queue storage 750 and to process them. Outbound handlers are

also in charge of forwarding the processed messages to applications.

The inbound handlers can also be referred as acceptors or an acceptor

processes. The outbound handlers can also be referred to as processors or delivery

processes.

Figure 8A shows an improvement of the embodiment of Figure 7 illustrating

exemplary steps of a sequencing process of a first message of sequence A received by

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302
21

an inbound handler from the emitting system. In this improvement, an additional
component, referred to as sequence storage 800, is implemented as part of the storage
layer between a plurality of inbound handlers 810, 820, ..., 840 and a plurality of

outbound handlers 860, 870, ..., 830. The sequence storage 800 comprises:
e A centralized or common and shared sequence Mutex 804, also referred
to as Mutex to ensure that only one handler is handling a message for a
given sequence (or with the same sequence correlation value) at a time;
any competing attempt will be served on the first come first served model.
e A centralized or common and shared sequence Status context 802, also
referred to as Status, to maintain a shared sequence status between all
processes; a sequence being uniquely identified by its sequence
correlation value. The Status also enables to determine for each event on

a given sequence the behaviour to apply:
o ‘“waiting” status meaning that the next incoming message can be
queued for delivery;
o ‘“delivering” status, meaning that the next incoming message is
retained.

¢ A centralized or common and shared overflow storage 806, also referred
as overflow or overflow storage area to ensure that only the next message
to be processed by the plurality of outbound handlers is accessible to
them, other being “pending” in this overflow storage. The overflow storage
is a storage for indexed and ordered sequenced messages that are not

ready to be delivered in regards to the current sequence status.

These three components Status 802, Mutex 804 and overflow storage 806, which
are contextual processing information, are of the same nature as the queue storage
850. They can be implemented:

- In a memory data or file based storage, if all distributed processes run on the
same node, or

- In client-server storage database(s), if the distributed processes run on several
nodes wherein the server system is a remote system.

The maximum consistency between the storage layer and standard message
storage can be obtained by implementing both in a common RDBMS engine sharing a
unique transaction.

According to method, apparatus and system of the present invention:

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302

22

A queue storage 850 allows the message exchange between the plurality
of inbound handlers and the plurality of outbound handlers, and operates
independently from the sequence storage 800 ; and .

The overroW storage 806 of the sequence storage 800 ensures the
sequencing of the message exchange between the plurality of inbound
handlers 810, 820, ..., 840 and the plurality of outbound handlers 860,
870, ..., 890.

Figure 8A Illustrates the sequencing process of an incoming message of the

present invention:

A message 801-1 belonging to a sequence correlation value “A” is
received by an inbound handler 810;

The inbound handier 810 locks 812 the mutex 804 of sequence “A”
preventing any inbound handler or outbound handler to handle another
message with the sequence correlation value "A”;

The inbound handler 810 checks 814 the central status context 802 of
sequence “A’. wherein either the sequence does not exist or the
sequence is in “Waiting” status;

The inbound handler 810 sets 814 the status context 802 of sequence “A”
to “Processing”. The invention assigns to the incoming message a
message rank that is equal to the rank of the previously received
message plus one increment. Since the incoming message is the first one
for this sequence, the message rank assigned to the message is set to 1.
The message rank is preferably stored in the sequence storage 800 and
more precisely in the sequence context 802. The inbound handler 810
preferably stores 816 the message 851 in the queue storage 850; and
The inbound handler 810 acknowledges to the message emitter, releases
the mutex 804 of sequence “A” and is ready to receive any other incoming

message.

Figure 8B illustrates the next steps of the sequencing process where another

incoming message is received at the system:

A second message, 801-2 belonging to the sequence “A” is received by

an inbound handler 820;

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302

23

The inbound handler 820 locks 822 the mutex 804 of sequence "A’
preventing any inbound handler 810, 830 or 840 or outbound handler to
handle another message within sequence "A”

The inbound handler 820 checks 824 the central status context 802 of
sequence “A” where the sequence status is “Processing”. Since the
message cannot be made available to any outbound handlers, the
inbound handler 820 stores 826 the message 807 in the overflow storage
806.

A message rank corresponding to the message rank of the previously

incoming message plus one increment is assigned to the incoming

. message. As the message rank of the previous message was 1, thus, the

message rank assigned to the incoming message is 2. In addition, the
invention increments a sequence rank that defines the rank of the next
message to be processed for that sequence. Thus in case a plurality of
messages from the same sequence are stored in the sequence storage
800, their message ranks allow the system to identify the correct message
that must be forwarded to the queue storage 850. The correct message is
the one having a message rank corresponding to the sequence rank as
defined in the sequence. Advantageously, this applies when the incoming
message has a message rank that was assigned by the emitter and when
the rank of the incoming message is assigned according to its order of
arrival at the inbound handlers.

The inbound handler 820 acknowledges to the message emitter, releases
the mutex of sequence “A” and is ready to receive any other incoming

message.

Figure 8C illustrates the next steps of the sequencing process where the

message stored in the queue of the queue storage is dequeued to one of the outbound

handlers for processing:

One of the outbound handlers 870 retrieves 871 the message 851 of
sequence “A” from the queue storage 850. Thanks to the invention, this
message is automatically the next message of the sequence that must be
processed. Therefore its rank is the rank of the last message that has

been processed plus one increment. In this exemplary embodiment, since

10

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302
24

the message stored in the queue storage is the first one of the sequence
A, then its rank is necessarily “1”;

e The outbound handler 870 delivers 873 the message with rank “1” to a
relevant recipient or to another routing means before a further delivery to
the recipient. Once the message has been sent at step 873, the outbound
handler 870 is available for another processing. It can still operate while it
has not yet received the acknowledgment of receipt from the recipient.
For instance, the outbound handler 870 can retrieve and send another
message that pertains to another sequence, achieving thereby an
asynchronous delivery for enhancing the throughput. It can also receive
an acknowledgment of receipt from any emitter and for any message.
Therefore, the number of messages and processings that the outbound
handler can execute is not limited by the response time of the emitter of
the message that was sent at step 873.

e The recipient receives the message sent at step 873 from the delivery
process 8701 of the outbound handler 870. In response, the recipient
sends an acknowledgment message to the system. The acknowledgment
process 8702 of the same outbound handler 870 or the acknowledgment
process 8602 of another outbound handler 860 receives the
acknowledgment message. This corresponds to step 874 depicted in
figure 8C.

Figure 8D illustrates the next steps of the sequencing process where the next
message stored in the overflow storage area 806 is forwarded to the queue storage
850 before being forwarded to one of the outbound handlers for processing. The steps
depicted on figure 8D are triggered by the reception 875 of the acknowledgment
message at an inbound handler of the system.

» The outbound handler 860 checks 862 in the status context 802 the
sequence rank to determine the rank of the next message that must be
processed, within the sequence of the message being acknowledged.
Since the sequence rank is set to “2”, the outbound handler 860 retrieves
809 the message 807 of sequence “A” having a message rank “2” from
the Overflow storage area 806. This message 807 will then be stored in

queue storage 850, and will be made available to all outbound handlers.

15

20

25

30

WO 2014/019701 PCT/EP2013/002302

25

The status context 802 remains “processing”. The sequence rank is
incremented and is set to “3”, thereby indicating that the next message to
be processed is the one having a message rank equal to “3”;

e The outbound handler 860 exits and is ready to process another message
stored in the queue storage 850.

e And the process goes on until the full sequence of the incoming

messages is processed and delivered.

The process described above in Figures 8A-8D is identical whether the incoming
messages are received with or without a sequence index indicating the rank of the
message within the sequence. In the case it is provided, it is used as sequencing
ranking otherwise; the ranking is generated by the inbound handler based on the order

of reception within the same sequence.

Re-arranging the sequence

In addition to the process detailed previously in Figures 8A-8D, in which the
incoming messages are received by inbound handlers in a strict sequence order, the
same process is also implemented in order to cope with messages received out of
sequence. The only de facto pre-requisite is that message emitters provide an index for
each message within the same sequence, the index indicating for each message its
rank within the sequence.

As indicated previously, the invention increments a sequence rank that defines
the rank of the next message to be processed for that sequence. When the queue
storage 850 can receive a message from a given sequence, then the sequence rank is
checked. Only the message with a message rank equal to the sequence rank is
forwarded to the queue storage 850. If there is no message in the overflow area 806 of
the sequence storage 800 having a message rank that is equal to the sequence rank,
then the processing of this sequence is withhold until a message with the correct rank
is received from an inbound handler. Thus, the sequence rank operates like a counter
that indicates the message that must be processed. Preferably, the sequence rank is

stored in the sequence storage 800.

Figure 8E illustrates the steps of the sequencing process of an incoming

message 801 with the re-arrangement of the sequence:

10

15

20

25

30

WO 2014/019701 PCT/EP2013/002302
26

In addition to the previously described process performed by the plurality of
inbound handiers 810, ..., 840, additional steps may occur for the re-arrangement
driven by an index order:

e The rank of the message as indicated by the index of the message is
compared to the rank of the next message to process in order to maintain
the sequence order. This rank of the next message to process in order to
maintain the sequence order is indicated by the sequence rank that is
incrementally updated, preferably in the sequence storage.

e If the rank of the message matches 818 the sequence rank, then the
incoming message 815 is stored in the queue storage 850, to be available
to the plurality outbound handlers. The sequence status is set to
processing. The sequence rank to process is incremented and the
previously described process applies.

e If the rank of the message as indicated by the index is over the sequence
rank 819, then the message 813 is stored in the overflow storage 806.
The sequence status 802 is set to “Pending”. The message will de facto
not be processed. The sequencing will resume when a message with the
expected message rank to be processed is received by an inbound
handler. In that case the inbound handler will store the corresponding
message in the queue storage and set sequence status to “Processing”.

As for the process shown in Figures 8A-8D, when an outbound handler ends up
working on a message, it will seek in the overflow storage 806, a message with a
message rank matching the sequence rank (the sequence rank indicating the rank of
the next message to be processed for maintaining the order of the sequence). If it is
found, it is stored in the queue storage 850; if not, the sequence status is set either to
“Pending” (if messages on this sequence exist in the overflow area, but with a rank not
equal to the sequence rank) or “Waiting” (if no message for that sequence are in the

overflow storage area).

Managing sequence locks and time outs
As described previously, the messages received for a given sequence are stored

in overflow storage 806, as long as their message ranks are not matching the one to be
processed. This is a lock situation for the whole sequence, as long as the next

expected message to be processed is not received by an inbound handler.

20

25

30

35

WO 2014/019701 PCT/EP2013/002302
27

In a particular embodiment, the present invention ensures that this lock situation
is limited in time, if ever it is required by the process. The process also defines a global

sequence time out value, expressed as a duration (in seconds, minutes, days,...).

In another embodiment, the sequence context 802 may contain an absolute time
value, defined as the sequence timeout. Each time an inbound handler or outbound
handler has access to a given sequence context record, meaning it is processing in
some way a message belonging to the sequence, which is an indication of activity on
the séquence, this absolute time value is updated to a value being the sum of the

current system time and the sequence timeout duration.

In yet another embodiment, a time out sequence collector may be implemented
for regularly waking up and scanning the full list of sequence contexts. In this particular
implementation, any sequence that has expired with regard to its sequence duration, is
detected. This process makes use of the sequence time out values to achieve the
selection.

Depending on the implementation, the method, apparatus and system accokding
to the present invention can:

e Erase any corresponding messages in the overflow storage 806 and in
the sequence context 802;
e Perform any adequate processing and logging for specific sequence
expiration event:
o deliver out of sync such as taking items in order, or ignoring
item(s) while Waiting for the one until is found),

o raise alarms...

There are many application of the present invention in data processing. But it is
particularly suitable for:

e Messaging server, such as Amadeus Messaging Server (AMS): wherein
the application deals with persistent messaging, acting as a hub in an
infrastructure of a company and more particularly a software company. In
the booking or reservation industry, the AMS may be used by both as a
reservation system, and a departure control system. The sequencing is
enforced for all Teletype traffics. A Teletype message is usually referred
to as TTY. A TTY type B is an airline industry standard for exchanging

messages via asynchronous channels with strict order of processing for a

15

20

25

30

WO 2014/019701 PCT/EP2013/002302
28

given functional context. For instance, a first message contains a list of
boarding passengers, a second list contains a list of suppressed
passengers, a third list contains a list of added passengers. These lists of
passengers have to follow in a strict order.

e Another field of application is for instance the OTF high-level framework
(OHF) which is a middleware software component used by a number of
applications to implement guaranteed asynchronous delivery. The main
usage of the sequencing with OHF is the synchronization occurring
between the coupon database (CDB) and the electronic ticketing
application. It often occurs that many changes are made to a single
coupon in a limited time period. These changes must be forwarded in the
correct order to the electronic ticket application or the coupon database in

order to keep them synchronized.

While described above primarily in the context of travel solutions provided by
airlines or air carriers, those skilled in the art should appreciate that the embodiments
of this invention are not limited for use only with airlines, but could be adapted as well
for use with other types of travel modalities and travel providers including, as non-
limiting examples, providers of travel by ship, train, motorcar, bus and travel products

such as hotels.

The foregoing description has provided by way of exemplary and non-limiting
examples a full and informative description of various method, apparatus and software
for implementing the exemplary embodiments of this invention. However, various
modifications and adaptations may become apparent to those skilled in the relevant
arts in view of the foregoing description, when read in conjunction with the
accompanying drawings and the appended claims. As but some examples, the use of
other similar or equivalent processes or algorithms and data representations may be
attempted by those skilled in the art. Further, the various names used for the different
elements, functions and algorithms (e.g., , etc.) are merely descriptive and are not
intended to be read in a limiting sense, as these various elements, functions and
algorithms can be referred to by any suitable names. All such and similar modifications
of the teachings of this invention will still fall within the scope of the embodiments of

this invention.

20

25

30

35

WO 2014/019701 PCT/EP2013/002302
29

Furthermore, some of the features of the exemplary embodiments of the
present invention may be used to advantage without the corresponding use of other
features. As such, the foregoing description should be considered as merely illustrative
of the principles, teachings and embodiments of this invention, and not in limitation
thereof.

Embodiments of the various techniques described herein rhay be implemented in
digital electronic circuitry, in computer hardware, or handheld electronic device
hardware, firmware, software, or in combinations of them. Embodiments may be
implemented as a program or software product, i.e., a computer program tangibly
embodied in an information carrier, e.g., in a machine-readable storage device or in a
propagated signal, for execution by, or to control the operation of, data processing
apparatus, e.g., a programmable processor, a computer, a tablet or multiple
computers. A program, such as the computer program(s) described above, can be
written in any form of programming language, including compiled or . interpreted
languages, and can be deployed in any form, including as a stand-alone program or as
a module, component, subroutine, or other unit suitable for use in -a computing
environment. A program can be deployed to be executed on one computer or tablet or
on multiple computers or tablets at one site or distributed across multiple sites and
interconnected by a communication network or a wireless network.

Processors suitable for the execution of a computer program include, by way of
example, both general and special purpose microprocessors, and any one or more
processors of any kind of digital computer, tablet or electronic device. Generally, a
processor will receive instructions and data from a read-only memory or a random
access memory or both. Elements of a computer may includé at least one processor
for executing instructions and one or more memory devices for storing instructions and
data. Generally, a computer or electronic device also may include, or be operatively
coupled to receive data from or transfer data to, or both, one or more mass storage
devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks.

Embodiments may be implemented in a computing system that includes a
back-end component, e.g., as a data server, or that includes a middleware component,
e.g., an application server, or that includes a front-end component, e.g.,, a client
computer having a graphical user interface or a Web browser through which a user can
interact with an implementation, or any combination of such back-end, middleware, or
front-end components. Components may be interconnected by any form or medium of

digital data communication, e.g., a communication network, a wireless network or a

WO 2014/019701 PCT/EP2013/002302
30

telecommunication network. Examples of communication or telecommunication
networks include a local area network (LAN) and a wide area network (WAN), e.g., the

Internet or a wireless network such as a Wifi network.

While certain features of the described implementations have been illustrated
hérein, many modifications, substitutions, changes and equivalents will now occur to
those skilled in the art. It is, therefore, to be understood that the appended claims are
intended to cover all such modifications and changes as fall within the true spirit and

the scope of the embodiments of the invention.

10

15

20

25

30

35

WO 2014/019701 PCT/EP2013/002302
31

CLAIMS

1. A computer-implemented method of sequencing distributed
asynchronous messages in a distributed and parailel system having a plurality of
inbound handlers forming an inbound handlers layer and a plurality of outbound
handlers forming an outbound handlers layer, characterized in that the method
comprising the following steps performed with at least one data processor:

receiving in any inbound handler out of the plurality of inbound handlers an

incoming message, the incoming message comprising a sequence correlation

value that identifies a sequence comprising the incoming message,

checking for a sequence status of said sequence in a shared sequence storage;

determining if the incoming message is the next message to be processed for

maintaining the order of messages in said sequence;

— if the sequence status indicates that none of the outbound handler in the
outbound handlers layer is currently processing a message for said
sequence and if the incoming message is determined to be the next
message to be processed for said sequence, then forwarding the incoming
message to a queue storage and subsequenﬂy retrieving the message by
an available outbound handler in the outbound handlers layer for
processing;

— if the sequence status indicates that at least one of the outbound handlers
in the outbound handlers layer is currently processing a message of said
sequence; or if the queue storage already comprises a message to be
processed for said sequence; or if the incoming méssage is determined not
to be the next message to be processed for said sequence, then storing the
incoming message in a memory of a shared overflow storage to keep for

further processing.

2. The method according to the preceding claim wherein determining if the
incoming message is the next message to be processed for maintaining the order of
the messages in said sequence comprises:

- determining a message rank indicating the order of the incoming message in
said sequence,

- comparing the message rank to a sequence rank defining the rank of the next

message to be processed for said sequence,

10

15

20

25

30

35

WO 2014/019701) PCT/EP2013/002302
32

- if the message rank is equal to the sequence rank, then the message is
determined to be the next message to be processed for maintaining the order of the
messages in said sequence,

- if the message rank is not equal to the sequence rank, then the
message is determined not to be the next message to be processed for

maintaining the order of the messages in said sequence.

3. The method according to the preceding claim wherein upon completion
of the processing of a message of a given sequence at an outbound handler, the
sequence rank of said given sequence is incremented and wherein when the sequence
rank of a sequence is incremented, if the overflow storage comprises a message with a
message rank that is equal to the sequence rank as incremented, then forwarding this

message to the queue storage.

4. The method according to any one of the two preceding claim wherein if
the incoming message as received is not provided with any index indicating the
message rank of the sequence, then the step of determining a message rank
comprises assigning to the incoming message a message rank indicating the rank of
the incoming message in its sequence and storing the assigned message rank in the

sequence storage.

5. The method according to the preceding claim wherein the assigned
message rank corresponds to the rank of the last message received at any one of the

inbound handlers for said sequence plus one increment.

6. The method according to any one of claims 1 to 3 wherein the incoming
message as received in the inbound handler is provided with an index indicating the

message rank within the sequence.

7. The method according to any one of five preceding claims wherein if the
queue storage does not comprise any message for the sequence of the incoming
message and if the message rank of the incoming message is greater than the
sequence rank indicated in the sequence storage, then the incoming message is stored
in the overflow storage until the sequence rank is incremented and equals the message

rank of the incoming message.

10

20

25

30

35

WO 2014/019701 PCT/EP2013/002302
33

8. The method according to any one of the preceding claims wherein, the
outbound handlers operate asynchronously, allowing thereby an outbound handler to
send a message and to be available for another processing upon sending the message

and before receiving an acknowledgment of response from a recipient of the message.

9. The method according to any one of the preceding claims wherein, an
outbound handler comprises a delivery process that sends messages to recipients and
an acknowledgment process that receives acknowledgment of receipt from the

recipients, the delivery process and the acknowledgment operating independently.

10. The method according to any one of the preceding claims wherein, upon
receiving the incoming message and before the checking step, performing an inbound
locking step wherein all inbound handlers are prevented to receive another message of
said sequence until the incoming message is stored in the sequence storage or is sent
to the queue storage and wherein the inbound locking step comprises locking a mutex

dedicated to said sequence, said mutex being stored in the sequence storage.

11. The method according to any one of the preceding claims wherein, upon
forwarding the incoming message from the queue storage to an outbound handler,
performing an outbound locking step wherein all other outbound handlers are
prevented to receive another message of said sequence until the processing of the
incoming message is completed, and wherein the outbound locking step comprises
locking a mutex dedicated to said sequence, said mutex being stored in the sequence

storage.

12. The method according to the preceding claim wherein when an
outbound handler is available, it checks in the queue storage the mutex for the

sequence of said message and retrieves said message only if the mutex is not locked.

13. The method according to any one of claims 2 to 12 wherein a message
having a message rank greater than the sequence rank is first stored in the overflow
storage and is discarded from the overflow storage after a time out value is reached,
the time out value being assigned to any one of: the sequence of the message and the

message.

20

25

30

35

WO 2014/019701 PCT/EP2013/002302
34

14. A non-transitory computer-readable medium that contains software
program instructions, where execution of the software program instructions by at least
one data processor results in performance of operations that comprise execution of the

method as in any one of claims 1-13.

15. A distributed and parallel processing system for sequencing
asynchronous messages comprising:
- an inbound handlers layer comprising a plurality of inbound handlers, comprising at
least one data processor, each of the plurality of inbound handlers being configured to
receive independently a plurality of incoming messages pertaining to various
sequences;
- an outbound handlers layer comprising a plurality of outbound handlers, comprising at
least one data processor, each of the plurality of outbound handlers being configured to
process and forward independently the plurality of incoming messages; and
characterized in that the system comprises:
- a storage layer comprising at least a memory and comprising:
e a queue storage for storing incoming messages ready to be transmitted to the
plurality of outbound handlers;
e a shared sequence storage comprising:
- a sequence status context for maintaining and updating a status for
each sequence of the incoming messages; and
- a shared overflow storage configured to receive the messages from the
inbound handlers and to sequentially forward them to the queue storage,
the system being also configured to determine if an incoming message is the next
message to be processed for maintaining the order of the messages in its sequence
and to perform the following steps performed with at least one data processor;
- if the sequence status indicates that none of the outbound handler in the
outbound handlers layer is currently processing a message for said
sequence and if the incoming message is determined to be the next
message to be processed for said sequence, then forwarding the incoming
message to the queue storage and subsequently retrieving the message
byan available outbound handler for processing;
- if the sequence status indicates that at least one of the outbound handlers

in the outbound handlers layer is currently processing a message of said

20

25

30

35

WO 2014/019701 PCT/EP2013/002302
35

sequence; or if the queue storage already comprises a message to be
processed for said sequence; or if the incoming message is determined not
to be the next message to be processed for said sequence, then storing the
incoming message in the shared overflow storage to keep for further

processing.

16. A computer-implemented travel monitoring method for processing
asynchronous messages between at least one server application and at least one
client application in a parallel environment having a plurality of parallel inbound
handlers and a plurality of parallel outbound handlers, the method comprising the
following steps performed with at least one data processor:

- receiving in an inbound handler of the plurality of inbound handlers an incoming
message with a sequence correlation value that identifies a sequence comprising the
incoming message,
- checking for a sequence status of said sequence in a sequence storage;,
- determining if the incoming message is the next message to be processed for
maintaining the order of the messages in said sequence;

if the sequence status indicates that none of the outbound handlers out of the
plurality of outbound handlers is currently processing a message for said sequence and
if the incoming message is determined to be the next message to be processed for
said sequence, then forwarding the incoming message to a queue storage and
subsequently forwarding it to an available outbound handler for processing;

if the sequence status indicates that at least one of the outbound handlers is
currently processing a message of said sequence; or if the queue storage already
comprises a message to be processed for said sequence; or if the incoming message
is determined not to be the next message to be processed for said sequence, then
storing the incoming message in an overflow storage to keep for further processing,
wherein the messages comprise data related to passengers and the sequence

correlation value contain data related to references of a transportation service.

17. The method of claim 16, further comprising forwarding of the processed
messages from the outbound handlers to at least one of: a travel reservation and
booking system, an inventory system of an airline, an electronic ticket system of an
airline, a departure control system of an airport, the operational system of an airport,

the operational system of an airline, the operational system of a ground handler.

10

20

WO 2014/019701 PCT/EP2013/002302
36

18. The method of any of claims 16 and 17, wherein the references of a
transportation service comprise at least one of the following: a flight number, a date

and a class reservation.

19. The method of any of claims 16 to 18, wherein the messages are
indicative of any one of: boarding passengers, cancelled passengers, added
passengers. '

20. The method of any of claims 16 to 19, wherein a sequence time out
value is provided for each incoming message in order to remove the incoming
message stored in the overflow storage after a sequence time out value is reached, the
sequence time out value being triggered by the departure time of a flight or being any

one of: an expiration of a flight offer or an expiration of a promotion.

21. A non-transitory computer-readable medium that contains software
program instructions, where execution of the software program instructions by at least
one data processor results in performance of operations that comprise execution of the

method according to any of claims 16 to 20.

PCT/EP2013/002302

WO 2014/019701

1/12

g 33esSaN]
§592044

149!

V 93eSSIIN
$$32014

48!

o],

T ANDOIA
—""""p 9s5000ad ¢ 0BeSSOIN
71 P d A
< aSesso
gy TN
P T 5559901 79 BESOIN
AR V 9BESSI
MERSTE v a3esso

wI)SAS jowdy

174!

qsa
v Suissasoad
Jo Japao
S[01)u0d
wI)SAS
duipre)

wIYsAs suie)

0Tt

7 3

PCT/EP2013/002302

WO 2014/019701

2/12

vz

a
33essoIA

§5320.4

cle

v
a8essaIAl

{ Ssadoag

(ACt. IR K

g sA
v Suissasoad
Jo 1apao
Surmn 1940
S[0.1JU0)
$9500]
W3SAS
suire)

\

—7
e1e

¢ A3BSSIIA]

d
had

1127V 28essa]y

W9ISAS 9J0WYy

N

0C¢

wasAs 3urfed

awy,

01¢

A

PCT/EP2013/002302

WO 2014/019701

312

¢ TANOIA

AA@IO DNISSTO0Ud
TVNOILDVSNVUL
INILSISNOONI

w15/

tH L4is 1# H
== .- < -
\\\\\\ v\\\r\l\.\ltl lllllll U Vt
. 13
b g .
a---"7 7 \\\\\\\ \\ eH \\\s
L ' i’
P A | N L -7 ﬁl N*
W e O AUone - I#
ISP il P
4 - - 1# aduanbas
punoquy
L :$§90014
€ Qour)sul 7 ddue)sut | aduelsul 0) sogessajN
TW9ISAS $59901J WAISAS $S9001d :WIIISAS $§3001] 30 anand)
z-o1e”/ -o1e/ Ove

PCT/EP2013/002302

WO 2014/019701

4/12

¥ ANODIA
VW 93BSSIIAl
$§320.1J
/
viv
¢ 93BSSIIAI
§533044
/
487 <
A / | 23BSSIIA
ey
ip31dnaiod
BIBp
/ $s330aJ
:pajIaAUl 3q T \V 98ESSIIA]
Aews 1apao 987
§592014 wWalsAs sjowy /
1147

dw,

wa)sAs 3urjje)d I

o1y

' N

PCT/EP2013/002302

512

WO 2014/019701

S TANOIA
[4%Y |39
Yoy |Aaleg
_ Xom .
MO]JI2A0 0uanbag lajpuey
1149 punogin0
\\ ;Mmou passadoad
(193¢ passadoad 3q 0 98essaut S| 1y
3q 03 8] :g 776/
b7C Juel 93essow 29
snels
ozs/ souanbag }29YyD
|
Is[puey punoquj
016~ \/_
105/ agessow punoquy

PCT/EP2013/002302

WO 2014/019701

6/12

WAISAs
$53301g

0£9

vZ9

9 TANOMA

‘[ouueyD
uoIsstwsuer)
paIeys e
u1 so3essow paiapio
pUB PaJe[a1I0)

€29
Te9
cmo\

[oUURYD UOISSIWSURI],

WI)SAS
Sumyruy

PCT/EP2013/002302

WO 2014/019701

7/12

L 3dNOIA

7068 1068 7088 |1088 T0L8 |10L8 7098 {1098
FoV|A1atjaQ Yov|Aealeg Py AeAted Yov|A1ealeQ
068 088 0L8 098
Jojpuey Js|puey J3|puey Ja|puey
punoginQ punoginp punoqinQ punoqinQ
™ :..K 11L
e 1A (V1N _u _
Jnand —
n
ovn/ om\‘/ om/ oi./
Ia[puey Io|puey Id|puey Jo|puey
punoquj punoqu] punoquj punoquj
1L o

saogdessow duiwodu|

V8 HANDIA

PCT/EP2013/002302

2068 {1068 2088 1088 c0L8 |10L8
098 {1098
¥y Aieallsq Wov|AssAteq PN IEETNETe|
— Yov|A1aaljaq
068 \ 088 \ 0.8 —
djpuey lojpuey 1s|puey 098
punoginQ punoginQ punoginQ \ Is[puey
. . . punoginQ

8/12

— [l BUBEA,, (V5
908 03 L
Ba1Y MO[JIAQ XN 208 snelS

WO 2014/019701

L
y9€10)s 9dudnbag V/
008 Cl18 Vﬂ\\\\\
Z\ 718
19[puey Io[puey Id[puey 19]puey
punoquj punoquj punoqu] punoquj
,// ,4 A Pl _//. \J< V/
0v8 198 0¢8 / 178 078 _ v 018
1€8 118
sofessowr Surwoduy N\ 1-108

PCT/EP2013/002302

48 JdNOIA

9/12

WO 2014/019701

2068|1068 2088 1088 z0L8 [10.8 2098 |1098
Yoy|Asalpg Yoy|Asealad Yov|A1eAlg Yoy |K1aalaq
\ 068 xyz \ 0L8 x 098
Jo|puey 19[puey Jofpuey Ja[puey
punoqinQ punoqinQ punoqinQ punoginQ
198 1LY
168
198}, 08
nnﬁuu anwammmooo.ﬂmuv an<uv
SNZ 2<3 WOIW:<=
) 908 1Y MO[IRAQ XA 08 SMELS
ii8 —
— _
78 vZ8 008
&)
Io[puey 1 Io[puey Iojpuey Iojpuey
punoquj punoqu] punoquj punoquyj
S 0v8 0€8 ~~0T8 018
108
18 1¢8 3 118

sagdessow gutwoduy

PCT/EP2013/002302

WO 2014/019701

10/12

I8 TANDIA

juardioal juardioal
€L8 VL8
7068 11068 2088 1088 70,8 |10L8 7098 1098
oy | A1eaneq Yoy|AseAraq Yov|AeaeQ YovjAeatjpQq
063 088 0L8 098
Jo|puey Io[puey Is|puey Jojpuey
punogIng punoginQ punoqinQ punoqinQ
1.8 -
U
168 B gy
- ” 198 T. aMMw..aa,{: .Vow «V «lss 2@5mm®00&&3 «Vs
| \ 34V MOPIOAQ xampy | 708 STIE)S
// ddlw
Ia[puey Io[puey I9[puey Ia[puey
punoquj punoquj punoquj punoquy
./ ~ Lﬂ ,/. \1
o8 Tp 0€8 0z8 N\ 018
1€8 18

soBessow Jurwoou]

PCT/EP2013/002302

WO 2014/019701

11/12

GL8
7068 [1068 7088 1088 ZoL8 [rocs 098 [1098
Yoy | Arsataq Yoy |A1aAtaq Yoy |A1ealaq Yov|A1sataq
068 088 \d; \woow
Ia|puey Jo|puey Isjpuey Ia[puey
punoginQ punoqinQ punoginQ punoginQ
s
ﬁ\|\I wlowl V|O.W ha<ou aanu naMCMWWDOOhmvu »n<uu
|| « 1 BIIY MOJIdAQ | XomMIN | 703 SIS
6 L08 — R
008 >
Ia[puey Io[puey Ia[puey 1[puey
punoquy punoqu] punoquj punoquy
~~0v8 ~~0¢8 N 0z8 018
| v 1€8 118

juardioal

sagessaw gupmodu]

ds TINOI14

PCT/EP2013/002302

WO 2014/019701

12/12

2068

1068
Yov|A1eAteQ

068
Iajpuey

punoqinQ

168

2088

1088
Yoy |A1sAlleQ

088

Ja|puey
punoginQ

Io[puey
punoquj

Io[puey
punoquy

- 0v8

~.
178
1€8

z0L8 [10L8 2098 (1098
yov|A1eAljpg Yoy |A1saeq
02 (098
0.8 Iojpuey ls|puey
punoginQ punoginQ
one ON Vs
oow .VIOWP ’ .Nmuu naWGmumﬁBS «Vss
BAIY MOJJI2A XoInjN smels
N
Jul =
T8
1/// /
Io[puey Ia[puey
punoquj punoquj
018

,AW\
i3 [v]

sogessow Furwoouy

- 108

48 HANDIA

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2013/002302
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F9/54 G06Ql0/02
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F GO6Q HOAL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 2012/051366 A2 (ATTIVIO INC [US]; 1-21
JOHNSON WILLIAM K [US]; SERRANO MARTIN
ANTHONY [US]) 19 April 2012 (2012-04-19)
page 2, line 3 - Tine 18

page 3, line 22 - page 5, line 7; figure 1
page 7, line 10 - line 13

page 9, line 20 - page 11, line 10

X US 5 588 117 A (KARP ALAN H [US] ET AL) 1,14-16,
24 December 1996 (1996-12-24) 21
column 3, paragraph 3 - column 5,
paragraph 2; figures 1-3

A EP 2 254 046 Al (AMADEUS SAS [FR]) 16-21
24 November 2010 (2010-11-24)
paragraph [0014] - paragraph [0020]
paragraph [0029] - paragraph [0030]
paragraph [0035]

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
29 August 2013 10/09/2013
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016 Glaser, Norbert

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2013/002302

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

WO 03/071435 A1l (PROQUENT SYSTEMS CORP
[US]; HAMILTON THOMAS E [US]; KICKLIGHTER
KEVIN) 28 August 2003 (2003-08-28)

page 32, paragraph 2

10-12

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2013/002302
Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2012051366 A2 19-04-2012 CA 2813135 Al 19-04-2012
EP 2628098 A2 21-08-2013
US 2012096475 Al 19-04-2012
WO 2012051366 A2 19-04-2012

US 5588117 A 24-12-1996 JP HO7319787 A 08-12-1995
us 5588117 A 24-12-1996

EP 2254046 Al 24-11-2010 AU 2010251377 Al 10-11-2011
CA 2758844 Al 25-11-2010
CN 102414663 A 11-04-2012
EP 2254046 Al 24-11-2010
JP 2012527806 A 08-11-2012
KR 20120023033 A 12-03-2012
SG 175274 Al 28-11-2011
US 2010293235 Al 18-11-2010
WO 2010133446 Al 25-11-2010

WO 03071435 Al 28-08-2003 AU 2003211092 Al 09-09-2003
EP 1474746 Al 10-11-2004
US 2003182464 Al 25-09-2003
WO 03071435 Al 28-08-2003

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - wo-search-report
	Page 51 - wo-search-report
	Page 52 - wo-search-report

