发明名称
发光二极管

摘要
本发明涉及一种发光二极管。该发光二极管包括：具有一承载部的一第一电极；一第二电极；配置在所述承载部上的一发光二极管芯片，该发光二极管芯片分别与所述第一电极及所述第二电极电性连接；以及具有透光面的一透光封装体，该透光封装体用于封装所述发光二极管芯片、所述第一电极与所述第二电极，其中，该透光封装体的透光面为一非球面。利用非球面透镜能有效消除光学像差的功能来提升发光二极管的发光亮度。
1. 一种发光二极管，包括：
 具有一承载体的一第一电极；
 相对于所述第一电极设置的一第二电极；
 配置在所述承载体上的一发光二极管芯片，该发光二极管芯片分别与所
述第一电极及所述第二电极电性连接；
 以及具有透光面的一透光封装体，该透光封装体用于封装所述发光二极
管芯片、所述第一电极与所述第二电极；
 其特征在于：该透光封装体的透光面为一非球面。
2. 如权利要求 1 所述的发光二极管，其特征在于，所述的非球面透镜为
椭圆面、双曲面或抛物面。
3. 如权利要求 1 所述的发光二极管，其特征在于，所述的透光封装体内
镶嵌有曲面反射镜。
4. 如权利要求 3 所述的发光二极管，其特征在于，所述的反射镜内涂布
有反射膜层。
5. 如权利要求 4 所述的发光二极管，其特征在于，所述的反射膜层是通
过蒸镀的方法获得。
6. 如权利要求 4 所述的发光二极管，其特征在于，所述的反射膜层材料
为金属。
7. 如权利要求 1 所述的发光二极管，其特征在于，所述的透光封装体的
材料为树脂。
8. 如权利要求 7 所述的发光二极管，其特征在于，所述的树脂可为聚酯
树脂、丙烯酸树脂、氯化树脂或氯乙烯树脂。
9. 如权利要求 1 所述的发光二极管，其特征在于，所述的透光封装体仅
封装所述发光二极管芯片与所述第一电极及所述第二电极的电性连接部分，
以及所述发光二极管芯片。
发光二极管

【技术领域】
本发明涉及一种发光二极管，尤其涉及一种具有高亮度的发光二极管。

【背景技术】
发光二极管（Light Emitting Diode, LED）是利用半导体材料中的电子与空穴结合时能量带（Energy Gap）之差的改变，以发光形式，释放出能量。目前在市场上应用的发光二极管所发出的光为红、绿、蓝及白光等多种。由于发光二极管具有体积小、寿命长、驱动电压低、耗电量低、反应速率快、耐震性佳等优点，可应用在汽车、自行车第三煞车灯、交通标志、户外信息看板与日常照明等各种应用领域中。

业界要提升发光二极管的亮度，一般通过两种方法：1）提升发光二极管芯片的发光效率，其通过提升发光二极管芯片的光电转换效率或增加发光二极管芯片的大小；2）提升发光二极管芯片的光学利用率，其通过发光二极管外部封装结构，减少光的损耗。

目前一种炮弹型白光发光二极管 10 的结构如图 1 所示。该结构主要是利用荧光粉与环氧树脂混合而形成荧光粉树脂 101，将荧光粉树脂填充在电极脚架上的凹孔中并覆盖配置在该凹孔内的发光二极管芯片 102，利用芯片的发光与荧光粉层的能量转换，从而得到发白光的发光二极管，且通过嵌设在环氧树脂内的喇叭状反射镜 103，藉此减少发光二极管的边际光损失，提升发光二极管芯片的光学利用率。

但是，上述结构发光二极管的透光封装体 104 的透光面 105 为一球面，容易造成光学像差。当沿发光二极管出射光线的相反方向看时，会造成发光二极管的发光点发散，从而造成发光点亮度的下降，影响其照明效果。

因此，有必要提供一种能有效消除光学像差的发光二极管。

【发明内容】
以下，将以实施例说明一种发光二极管，其能有效消除光学像差，进而提高发光二极管的发光亮度。

为实现上述内容，提供一种发光二极管，包括：
具有第一电极的一承載部；
相对于所述第一电极的一第二电极；
配置在所述承載部上的一发光二极管芯片，该发光二极管芯片分别与所述第一电极及所述第二电极电性连接；
以及
一透光封装体，用于封装所述发光二极管芯片、所述第一电极与所述第二电极；该透光封装体具有一透光面，其为一非球面。
所述的非球面为椭圆面、双曲面或抛物面。
所述的透光封装体内镶嵌有曲面反射镜，藉此在有限的封装空间得到较大的反射镜反射面积。
所述的反射镜上涂布有反射膜层。
优选的，所述的反射膜层材料为金属，以增强发光二极管散热的功效。
所述的反射膜层是通过蒸镀的方法获得。
所述的透光封装体的材料为树脂。
所述的树脂可为聚酯树脂、丙烯酸树脂、氯化树脂或氯乙烯树脂。
相对于现有技术，本技术方案所提供的发光二极管，通过对其透光封装体透光面的变更，采用非球面，能有效消除光学像差，且采用曲面反射镜能在相同大小的封装空间内增大反射面积，从而得到更多的反射光线，从而提高发光二极管的发光亮度。
【附图说明】
图 1 为现有技术中一种发光二极管的结构示意图；
图 2 为本发明提供的一种发光二极管的结构示意图。
【具体实施方式】
以下将结合附图对本发明作进一步的详细说明。
请参阅图 2，本发明提供一种发光二极管 20，其包括：一第一电极 202；
一第二电极 203；一发光二极管芯片 204；以及一透光封装体 205。
该第一电极 202 具有一承載部 201，其与该第二电极 203 相对设置。该
发光二极管芯片 204 配置在所述承載部 201 上并与所述第一电极 202 电性连
接。所述第二电极 203 藉由金属导线与所述发光二极管芯片 204 电性连接。
所述电性连接可通过粘结或烧结的方法来形成。
该透光封装体 205 用于密封封装所述发光二极管芯片 204。所述第一电极 202 及所述第二电极 203，以保护所述发光二极管芯片 204 的正常工作。另外，所述透光封装体 205 可仅密封封装所述发光二极管芯片 204 与所述第一电极 202 及所述第二电极 203 的电性连接部分，及所述发光二极管芯片 204。

所述的透光封装体 205 的材料可选用聚酯树脂(Polyester Resins)，如聚乙烯对苯二甲酸酯(Polyethylene Terephthalate, PET)、聚二酸二乙酯(Polyethylene Naphthalate, PEN)；丙烯酸树脂(Acrylic Resins)，如聚甲基丙烯酸甲酯(Polymethyl Methacrylate)；改良的聚甲基丙烯酸甲酯(Modified Polymethyl Methacrylate)；氟化树脂(Fluororesins)，如聚偏氟乙烯树脂(Polyvinylidene Fluoride, PVDF)；氯乙烯树脂(Vinyl Chloride Resins)，如氯乙烯共聚物(Vinyl Chloride Copolymers)等等，利用非球面透镜模具有通过射出成型方法形成该透光封装体 205，从而可在其透光面 206 形成一非球面。

该透光封装体 205 的透光面 206 为一非球面。非球面的表面不是球面，而是二次曲面或高次曲面，一般情况下是二次曲线的旋转面。例如在本实施例中，所述的非球面为椭圆面。当然，所述的非球面也可为其它形状，如双曲面或抛物面，而不限于椭圆面。非球面透镜能有效消除光学像差，成像与聚光效果均明显优于球面透镜。随着计算机技术与高精数控工艺的出现与发展，非球面透镜的设计与加工变得容易，使其制造成本下降。

在本实施例中，所述透光封装体 205 的透光面 206 设计为向所述发光二极管芯片 204 光线出射方向凸出的形状，另外，该透光面 206 设计也可采用向所述发光二极管芯片 204 光线出射方向相反的方向凸出的形状。

在所述的透光封装体 205 内还镶嵌有曲面反射镜 207，相对于现有技术的喇叭状反射镜，该曲面反射镜 207 能在相同大小的封装空间内增大反射面积，从而得到更多的反射光线。所述的反射镜上涂布有反射膜层 208，该反射膜层 208 是通过蒸镀的方法获得，其作用是增加反射镜的反射率，减少反射时光的能量损失。优选的，所述的反射膜层材料为金属。可以理解的是，所述的金属应具有良好的反射率与导热性能，在减少反射时光的能量损失的同时，也能增强该发光二极管 20 的散热功效。

本实施例提供的发光二极管，通过对其透光封装体透光面的变更，采用

5
非球面，能有效消除光学像差，且采用曲面反射镜能在相同大小的封装空间内增大反射面积，从而得到更多的反射光线，从而提高发光二极管的发光亮度。

另外，本领域技术人员还可在此发明精神内做其他变化，当然，这些依据本发明精神所做的变化，都应包含在本发明所要求保护的范围之内。