发明名称
树脂模制机

摘要
提供不需要一残留材料去除器能够降低成本和能够减少周期时间和残留材料数量的一树脂模制机，该树脂模制机包括具有与模腔(C)连接的一浇入槽(13a)的一固定模腔板(13)，其中形成用于输送一模制材料通过浇入槽(13a)进入模腔(C)的一浇口(16a)的一浇口衬套(16)、设置在固定模腔板(13)和浇口衬套(16)之间的一流道板(20)、用于在推出位置 B,和 B2 之间、通过一模制位置 A 直线往复流道板(20)的一缸单元(流道板驱动机构)(25)，推出位置 B,和 B2 与模制位置 A 分开，推出位置用于推出残留材料，以及包括用于在推出位置 B,和 B2 推出残留材料的一推出通道(残留材料推出机构)。
1. 一树脂模制机，它包括具有一模腔板的一模子，该模腔板被设置成可在模子的打开/闭合位置之间运动并具有与一模腔连通的一浇入槽，该模子还具有其中形成用于输送一模制材料通过浇入槽进入模腔的一浇口的一浇口衬套；树脂模制机还包括一浇道板、一浇道板驱动机构和一残留材料推出机构：该浇道板具有一第一浇道和一第二浇道，并形成在模腔板和浇口衬套之间；浇道板驱动机构用于在一模制位置和一推出位置之间移动浇道板，浇口和浇入槽通过在模制位置的浇道连通，推出位置和模制位置分开，推出位置用于推出保留在浇道板中的残留材料；残留材料推出机构用于在推出位置推出浇道板中的残留材料，其中，当第一浇道位于模制位置时，第二浇道位于推出位置，以及当第一浇道位于推出位置时，第二浇道位于模制位置。

2. 按照权利要求1所述的一树脂模制机，其特征在于：浇道板具有用于在模子打开和运动时保持残留材料的一保持部分。

3. 按照权利要求2所述的一树脂模制机，其特征在于：浇道板具有：雏形状和起到保持部分的作用。

4. 按照权利要求2所述的一树脂模制机，其特征在于：保持部分是形成在浇道板中的一保持凹槽、凹入或凸出。

5. 按照权利要求1所述的一树脂模制机，其特征在于：浇道板驱动机构驱动浇道板在模制位置和推出位置之间直线运动或直线往复运动。

6. 按照权利要求1所述的一树脂模制机，其特征在于：浇道板驱动机构驱动浇道板在模制位置和推出位置之间转动或在往复运动中转动。

7. 按照权利要求1所述的一树脂模制机，其特征在于：残留材料推出机构通过当模子闭合时使模腔板接触残留材料从浇道板推出残留材料。

8. 按照权利要求1所述的一树脂模制机，其特征在于：残留材料推出机构通过使设置在推出位置的一止动块与残留材料接合将残留材料从浇道板推出。

9. 按照权利要求1所述的一树脂模制机，其特征在于：残留材料推出机构通过用从一高压气源供应的高压气体吹残留材料将残留材料从浇道板推出。
10. 按照权利要求1所述的一树脂模制机，其特征在于：残留材料推出机构通过用一驱动器驱动的一销钉推压残留材料将残留材料从流道板推出。

11. 按照权利要求1所述的一树脂模制机，其特征在于：残留材料推出机构通过用设置在排出位置的一残留材料夹紧件夹紧残留材料将残留材料从流道板排出。
树脂模制机

技术领域
本发明涉及一树脂模制机，其中从一浇口注入例如一热塑性树脂和一热固性树脂的一模具材料，通过一浇入槽进入一模腔，用于生产一树脂模制物品，例如一电子元件。

发明背景
这类树脂模制机通常采用一个三板、针尖状槽的模子。
在这模子中，如图 11 和 12 所示，在一固定下模 51 的上表面和一可动上模 52 的下表面之间形成一模腔 53，上模在模子的打开/闭合位置之间垂直移动。上模 52 具有一流道 55 以及与模腔 53 连通的一浇入槽 54。垂直移动的和包括与流道 55 连通的一浇口的一浇口衬套 56a 设置在上模的上表面。

为了采用上述树脂模制机生产一树脂模制产品，从浇口 56 对闭合的模子供应模具材料（见箭头），通过流道 55，经过浇入槽 54，进入模腔 53。
随后，通过打开模子、切断浇入槽 54，取出在模腔 53 内的一树脂模制产品 58，去除保留在浇入槽 54、流道 55 和浇口 56 中的残留材料 59。
用于去除这残留材料 59 的一已知方法是提供如图 13 和 14 所示的、与树脂模制机分开的一残留材料去除器 60。

在这残留材料去除器 60 中，一主体 61 支承如图 14 中箭头所示的可上、下和前、后方向移动的一臂 62。具有一对爪 63a 的一夹紧件 63 连接于臂 62 的末端。

当通过打开模子而切断浇入槽 54 时，由一流道锁定销 57a 保持住残留材料 59。

随后，臂 62 向前移动，用夹紧件 63 夹住残留材料 59 的浇口段 59a。然后向下和向后移动臂 62，同时从浇口衬套 56a 抽出残留材料 59，並將被抽出的残留材料送到某一残留材料容器。
例如如上所述，与树脂模制机分开设置的一残留材料去除器需要用于水平地和垂直地移动该臂的一驱动机构。这导致增加成本的一问题。

而且，为了抽出上述残留材料，臂运动要求从前、后方向转换到上、下方向。此外，模子打开的程度必须对应于臂运动的上、下距离。这调节要求打开模子的时间，从而增加了周期时间。

而且，为了用夹紧件可靠地保持残留材料，例如，必须增加残留材料的浇口壁面的厚度。这一形状的要求造成残留材料数量的增加。

本发明是根据上述存在情况而提出的。本发明的一目的是提供通过不需要一残留材料去除器而能降低成本的、还能缩短周期时间和减少残留材料量的一树脂模制机。

发明内容

按照本发明的一第一方面，一树脂模制机，它包括具有同模腔板的一模子，该模腔板被设置成可在模子的打开/闭合位置之间运动并具有与一模腔连通的一浇入槽，该模子还具有其中形成用于输送一模制材料通过浇入槽进入模腔的一浇口的一浇口衬套；树脂模制机还包括一一流道板、一一流道板驱动机构和一残留材料推出机构；该流道板具有一第一流程和一第二流程，并形成在模腔板和浇口衬套之间；流道板驱动机构用于在一流制位置和一推出位置之间移动流通板，浇口和浇入槽通过在模制位置的流程连通，推出位置和模制位置分开，推出位置用于推出保留在流道板中的残留材料；残留材料推出机构用于在推出位置推出流道板中的残留材料，其中，当第一流程位于模制位置时，第二流程位于推出位置，以及当第一流程位于推出位置时，第二流程位于模制位置，按照本发明的一第二方面，在本发明的第一方面中，流道板具有用于在模子打开和运动时保持残留材料的一保持部分。

按照本发明的一第三方面，在本发明的第二方面中，流道具有一锥形形状和起到一保持部分的作用。

按照本发明的一第四方面，在本发明的第二方面中，保持部分是形成在流道板中的一保持槽、一凹状或一中凸。

按照本发明的一第五方面，在本发明的第一方面中，流道板驱动机构驱动
流道板在模制位置和推出位置之间的直线运动或直线往复运动。

按照本发明的一第六方面，在本发明的第一方面中，流道板驱动机构驱动流道板在模制位置和推出位置之间转动或在往复运动中的转动。

按照本发明的一第七方面，在本发明的第一方面中，残留材料推出机构通过随着模子闭合使模腔板与残留材料接触将残留材料从流道板推出。

按照本发明的一第八方面，在本发明的第一方面中，残留材料推出机构通过使设置在推出位置的止动块接合残留材料将残留材料从流道板推出残留材料。

按照本发明的一第九方面，在本发明的第一方面中，残留材料推出机构通过用从一高压气源供应的高压气体吹残留材料将残留材料从流道板推出。

按照本发明的一第十方面，在本发明的第一方面中，残留材料推出机构通过用由一驱动器驱动的一销钉推压残留材料将残留材料从流道板推出。

按照本发明的一第十一方面，在本发明的第一方面中，残留材料推出机构通过用设置在推出位置的一残留材料夹紧件夹紧残留材料将残留材料从流道板推出。

在按照本发明的第一方面的树脂模制机中，其中形成流道的流道板设置在模腔板和浇口衬套之间。流道板在浇口和浇入槽通过一流道连通的模制位置和用于推出残留材料的推出位置之间可运动。然后从推出位置推出在流道板中的残留材料。这使模子具有推出残留材料的一功能。从而，不需要一已知的残留材料去除器，能够实现成本的降低。

按照本发明，流道板按模制位置和推出位置之间的一方向运动。因此，比较包含一臂的双轴线运动的已知机构，简化了驱动单元的机构，缩小了模子打开的范围，其结果能够缩短周期时间。

此外，按照本发明，由于通过它在模制位置和推出位置之间的运动推出残留材料，因此存在于用于去除残留材料而夹紧它的情况中对浇口形状的要求消失了，以及能够减少残留材料的数量。

按照本发明的第一方面，当流道板的一个流道位于模制位置时，另一个位于推出位置，这使模制加工与推出顺序地或同时地连续进行，以及导致周期时间的进一步缩短。
按照本发明的第二方面，流道板具有用于保持残留材料的保持部分。例如，在本发明的第三方面中，流道板形成为锥形。在本发明的第四方面中，在流道板中形成保持槽、凹状或中凸。因此，防止残留材料通过到达模腔板和在模子运行和打开过程中从流道板落下，以及因此，能够在推出位置可靠地推出它。

按照本发明的第五方面，流道板在模制位置和推出位置之间直线运动或直线往复运动。按照本发明的第六方面，转动流道板或在往复运动中转动流道板。因此，比较包含一臂的双轴线运动的已知机构，简化了驱动单元的机构。这导致降低成本、缩短流道板的移动距离和进一步缩短周期时间。

按照本发明的第七方面，通过使模腔板与残留材料接触将残留材料从流道板挤出。由于有效地利用模腔板的模子闭合运动，用于推出残留材料，从而不需要从流道板推出残留材料的一特定单元，从而能够降低成本。

按照本发明的第八方面，通过在运动到推出位置时使止动块接合残留材料将残留材料从流道板推出。能够用一简单机构推出残留材料，而不要使用一特定的驱动单元。

按照本发明的第九方面，通过用高压气体吹残留材料而将它推出。这能够易于和可靠地推出残留材料。

按照本发明的第十方面，通过用驱动器驱动的一销钉推压残留材料将它从流道板推出。这能够易于和可靠地推出残留材料。

按照本发明的第十一方面，通过用残留材料夹紧件夹紧残留材料排出它。这能够易于和可靠地推出残留材料。

附图说明

图 1 是示出按照本发明的一实施例的一树脂模制机中一模子的一打开状态的一正剖视图。

图 2 是示出上述模子的打开状态的侧剖视图。

图 3 是按照上述实施例的一流道板的平面图。

图 4 是上述流道板的剖视图（图 3 的剖面 IV－IV）。

图 5 是示出按照上述实施例的流道板的一驱动单元的示意图。
图 6 是示出流道板的上述驱动单元的一主要部分的示意图。
图 7 是示出上述树脂模制机的总体结构的一简图。
图 8 是示出用上述树脂模制机进行的一模制过程的一系列示图。
图 9 是示出用上述树脂模制机进行的一模制过程的一系列示图。
图 10 是示出按照上述实施例的流道板的驱动单元的一修改形式的剖视图。
图 11 是示出一已知模子的一闭合状态的剖视图。
图 12 是示出一已知模子的一打开状态的剖视图。
图 13 是示出了一已知残留材料去除器的一夹紧单元。
图 14 是示出了一已知残留材料去除器。

具体实施方式

图 1 至 9 是示出一树脂模制机。图 1 至 2 是示出一模子在打开状态的分别为一正剖视图和一侧剖视图。图 3 和 4 分别是一流道板的一平面图和一剖视图（图 3 的剖面 IV-IV）。图 5 和 6 是示出流道板的一驱动单元的示意图。图 7 是树脂模制机的一总图。图 8（a）至（d）和图 9（e）至（g）示出使用该模子的一模制过程。

在这些图中，标号 1 表示用于制造模制生产一热塑性树脂或一热固性树脂制成的一电子元件的一树脂模制机。

树脂模制机 1 具有在其上设置一模子 4，一模子夹紧单元 5 和一模制材料输送单元 6 的一固定床 1a，模子 4 包括一可动模单元 2 和一固定模单元 3，模子夹紧单元 5 使可动模单元 2 在模子打开/闭合位置之间移动，模制材料输送单元 6 将一模制材料输送进入模子 4 内。

可动模单元 2 固定于被多根导向杆 7 可滑动地支承的一可动模压板 8。

各导向杆 7 在左、右一对支承块 1b 和 1c 之间延伸和固定于这两支承块，这两支承块相互相对放置和固定于固定床 1a。

模子夹紧单元 5 具有固定于支承块 1b 的一液压缸 5a 和设置在液压缸 5a 内的一活塞杆 5b，活塞杆由液压移动。活塞杆 5b 连接于可动模压板 8。

在模制材料输送单元 6 中，从右侧安装在支承块 1c 中的一送料嘴 6a 连接于其中设置一螺杆 6b 的一简体 6c。简体 6c 连接于一导向作用的驱动器 6e 和
驱动螺杆 6b 的一转动驱动器 6f。简体 6c 连接于用来输送粒子的一料斗，以及设置一加热器（未示出）。

通过将一可动模腔板 11 固定于一可动基板 10 形成可动模单元 2。可动基板 10 固定于可动模压板 8。

固定模单元 3 具有一固定基板 12、一固定模腔板 13 和插置在其间的一送料喷嘴接触板 14。固定基板 12 在右侧固定于支承块 1c。

可动模腔板 11 和固定模腔板 13 形成两模腔 C。用于排出一模制产品的一导架导向件 15 设置在可动模腔板 11 和固定模腔板 13 之间。

固定模腔板 13 具有与模腔 C 连通的浇入槽 13a 和 13a。

喷嘴接触板 14 具有一浇口衬套 16。该浇口衬套含有在模子闭合时与各浇入槽 13a 连通的一浇口 16a。

许多导向轴 17 支承固定模腔板 13 和在模子打开/闭合方向可滑动的喷嘴接触板 14。

各导向轴 17 延伸在可动基板 10 和固定基板 12 之间和固定于这两板。

在每个导向轴 17 内，一弹簧 18 设置在固定基板 12 和喷嘴接触板 14 之间和设置在喷嘴接触板 14 和固定模腔板 13 之间。诸弹簧 18 偏置这些相对板，用于分开它们。

一流道板 20 设置在固定模腔板 13 和浇口衬套 16 之间。

一滑动支承件 21 在与模子打开/闭合方向相垂直的方向可滑动地支承流道板 20。诸弹簧 22 设置在滑动支承件 21 以及固定基板 12 和固定模腔板 13 之间，用偏置这些板，以分开它们。

当从模子闭合位置释放可动模腔板 11 时，基本与可动模腔板 11 接触的固定模腔板 13 被诸弹簧 18 的推力作用跟随可动模腔板 11，同时固定模腔板 13、流道板 20 和喷嘴接触板 14 相互分开。当可动模腔板 11 进一步在打开方向移动时，它与固定模腔板 13 分开，完成模子打开过程。

流道板 20 具有槽孔形状的一第一流道 20a 和一第二流道 20b。

第一流道 20a 和第二流道 20b 具有朝底部扩张的锥形状（见图 3 和 4）。

一缸单元 25 起到一流道板驱动器的作用，该驱动器使流道板 20 在左方的一推出位置 B1 和在右方的一推出位置 B2 之间往复直线运动，并通过中间的一
模制位置 A，推出位置 B₁ 和 B₂ 与模制位置 A 是分开的。

即，当第一流道 20a 位于允许浇口 16a 与浇入槽 13a 连通的模制位置时，
第二流道 20b 位于左侧的推出位置 B₁。当第二流道 20 位于模制位置 A 时，第一
流道 20a 位于右侧的推出位置 B₂。

在缸单位 25 中，具有在运动方向延伸的一槽孔 26a 的一支承板 26 固定于
流道板 20。一杆 27 装配在支承板 26 的槽孔 26a 内，同时连接和固定于一活塞
杆 25a。

这允许流道板 20 执行打开和合闭运动。

在固定模腔板 13 的底部形成一定位凹槽 13c。形成在流道板 20 中的一止
动块 20c 位于定位凹槽 13c 内部。

使止动块 20c 分别与定位凹槽的左和右侧上的基准表面 13d 和 13c 接触，
用于将流道板 20 定位在模制位置 A 或诸推出位置 B。

参阅图 10，通过将这磁吸块 40 分别附连于在一模制位置和一推出位置的
一磁铁 41 或一磁铁 42，也可实现该定位。

喷嘴接触板 14 和固定基板 12 的每块板都具有对应于推出位置 B1 和 B2
的一推出通道 30，用于推出残留材料。诸推出通道 30 与固定模单元 3 的外部
连通。

当固定模腔板 13 随一模子闭合运动下降时，固定模腔板 13 的底部与残留
材料接触。然后固定模腔板 13 进一步下降，完成模子闭合，并挤出流道板 20
中的残留材料，以及允许残留材料下降进入推出通道 30。

现在参照图 8 和 9 将叙述用树脂模制机进行的一模制过程。

当可动模腔板 11 从模子打开位置向模子闭合方向移动时，板 11 接触和推
动固定模腔板 13，以及压缩弹簧 18 和 22，闭合模子（见图 8（a）和 8（b））。

将一被加热的和熔化的模制材料注入喷嘴 6a，通过浇口 16a、第一流道 20a、
浇入槽 13a，以及输送进入诸模腔 C。

这状态保持为了固化模制材料所需的一预定时间（见图 8（c））。

在下一步骤中，可动模腔板 11 向打开方向移动。

在模子打开的最初阶段，基本相互接触的固定模腔板 13 和导架引导件 15
跟随着可动模腔板 11。固定模腔板 13 和流道板 20 之间，流道板 20 和喷嘴接
触板 14 之间以及喷嘴接触板 14 和固定基板 12 之间的距离都增加。

这打开运动使一模制产品 35 与诸浇入槽 13a 分开。留在浇入槽 13a、第一流道 20a 和浇口 16a 中的残留材料 36 保持在流道板 20 中。

通过第一流道 20a 的一锥形部分的保持和浇口衬套 16 的一锥形部分的保持之间的平衡，残留材料 36 被保持在流道板 20 之中。

缸单元 25 驱动流道板 20 朝图中的右侧直线滑动。那么残留材料 36 被移至推出位置 B2，同时第二流道 20b 移动到模制位置 A。

实际上同时，导架引导件 15 移动到一模制产品推出位置（未示出），用于在这位置推出模制产品 35（见图 9（e））。

然后可动模腔板 11 再次以模子闭合方向移动，接触和推动固定模腔板 13 和压缩弹簧 18 和 22。

随着固定模腔板 13 移动，从流道板 20 挤出残留材料 36，落入推出通道 30，以及被推到外部，完成模子闭合过程（见图 9（f））。

然后将一模子材料注入输送喷嘴 6a、通过浇口 16a、第二流道 20b、浇入槽 13a，以及被送入诸模腔 C（见图 9（g））。

从而通过重复如上所述的模子打开和闭合，自动地和顺序地生产模制产品。

在本发明的树脂模制机中，流道板 20 设置在固定模腔板 13 和浇口衬套 16 之间。流道板 20 在分别形成于模制位置 A 的左侧和右侧上的推出位置 B1 和 B2 之间是可动的，并通过模制位置 A，以及在流道板 20 中的残留材料从推出位置 B1 和 B2 被推至外部。这使固定模单元 3 具有推出残留材料的一功能。从而，不需要一已知的残留材料去除器，以及从而降低设备成本。

在这实施例中，缸单元 25 在两推出位置 B 之间、并通过模制位置 A 直线往复移动流道板 20，因此，比较包含一臂的双轴线运动的已知机构，简化了该驱动单元的机构，降低了模子打开范围，其结果能缩短周期时间。

此外，由于通过在两推出位置 B 之间、并通过模制位置 A 的它的直线运动推出残留材料，存在于用来去除残留材料而夹紧残留材料的情况中的浇口形状的要求也消失了，以及能够减少残留材料的数量。

在这实施例中，当流道板 20 的第一流道 20a 位于模制位置 A 时，第二流
道 20b 位于推出位置 B₁。当第二流程 20b 位于模制位置 A 时，第一流程 20a
位于推出位置 B₂。这使推出和模制同时地和连续地执行，以及引起周期时间的进
一步缩短。

由于流程板 20 的第一流程 20a 和第二流程 20b 被形成为锥形状，防止了
残留材料 36 通过。到达固定模腔板 13，和在模子的移动和打开期间防止残留
材料从流程板 20 落下，因此，能够在推出位置 B₁ 和 B₂ 可靠地推出残留材料。

代替形成上述锥形状，可以在流程板中形成一保持槽、凹入状或中凸状。
这叙述在本发明的第五方面中。

这也能在模子移动和打开过程中防止残留材料掉落。

在这实施例中，流程板 20 在推出位置 B₁ 和 B₂ 之间、经过模制位置 A 直
线往复运动。因此，比较包含一臂的两轴线运动的已知机构，简化了驱动单元
的机构。这导致成本下降，流程板运动距离的缩短和周期时间的进一步缩短。

可以转动流程板，或可以在两推出位置之间、经过模制位置的一往复运动
中转动流程板。这叙述在本发明的第七方面中。

与上述相类似，这也简化了该驱动单元。

在这实施例中，随着固定模腔板 13 的模子闭合运动将残留材料从流程板
20 挤出，以及通过推出通道被推到固定模单元 3 的外部。由于有效地使用固定
模腔板的模子闭合运动，用于推出残留材料，因此不需要用于推出残留材料的
一特殊单元，从而能够降低成本。

本发明不局限于其中通过固定模腔板 13 的模子闭合运动推出残留材料的
上述实施例。

例如，位于一推出位置的一止动块可以与残留材料相接合，用于将残留材
料从流程板推出。这叙述在本发明的第九方面中。

在这情况下，能够由一简单机构推出残留材料，而不要使用一特定驱动单
元。

可以通过用一高压气源供应的高压气体吹残留材料将它推出。这叙述在本
发明的第十方面中。

还可以通过用由一驱动器传动的一销钉推出残留材料将它推出，这叙述在
本发明的第十一方面中。
并且，还可以通过设置在一推出位置的一残留材料夹紧件夹紧残留材料，将它从流道板排出。这叙述在本发明的第十二方面中。

能够在上述诸情况的任一情况中，易于和可靠地推出残留材料。

工业应用

如以上所述，本发明的树脂模制机可用于生产具有复杂形状的一树脂模制产品，以及特别适合用于要求较短周期时间的一生产线中。
图 2
图 10
图 14