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(57) Abstract: In a particular implementation, a video decoder may retine an
initial motion vector predictor decoded from the bitstream for a current block.
In order to reduce signaling overhead, the decoder may determine whether or
not motion refinement is used based on information that is already available, for
example, based on whether the motion field is uniform around the current block,
and whether there is a certain level of textureness in adjacent blocks. The motion
vector difference decoded from the bitstream can be used to automatically acti-
vate or deactivate the motion refinement without receiving explicit signaling in
the bitstream. For example, when the motion vector difference is smaller than
a threshold, motion refinement is automatically activated, and when the motion
vector difference is greater than another threshold, motion refinement is auto-
matically deactivated. A corresponding video encoder may choose whether to
use and signal motion refinement based on encoder decisions.
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METHOD AND APPARATUS FOR VIDEO CODING WITH
AUTOMATIC MOTION INFORMATION REFINEMENT

TECHNICAL FIELD

[1] The present principles generally relate to a method and an apparatus for video encoding
and decoding, and more particularly, to a method and an apparatus for video encoding and

decoding with motion information refinement.

BACKGROUND

[2] To achieve high compression efficiency, image and video coding schemes usually
employ prediction and transform to leverage spatial and temporal redundancy in the video
content. Generally, intra or inter prediction is used to exploit the intra or inter frame
correlation, then the differences between the original image and the predicted image, often
denoted as prediction errors or prediction residuals, are transformed, quantized, and entropy
coded. To reconstruct the video, the compressed data is decoded by inverse processes

corresponding to the prediction, transform, quantization, and entropy coding.
SUMMARY

[3] According to a general aspect, a method for video decoding is presented, comprising:
accessing an initial motion vector predictor for a current block of a video, the initial motion
vector predictor being associated with a first motion resolution; determining whether or not to
refine the initial motion vector predictor, based on a motion vector difference; and if the
initial motion vector predictor is determined to be refined, refining the initial motion vector
predictor based on motion search to form a refined motion vector predictor and decoding the
current block based on the refined motion vector predictor, the refined motion vector
predictor being associated with a second motion resolution, and the second motion resolution

being higher than the first motion resolution.

(4] When a magnitude of the motion vector difference is smaller than a first threshold, the
initial motion vector predictor may be determined to be refined. When a magnitude of the
motion vector difference exceeds a second threshold, the initial motion vector predictor may

be determined not to be refined, and the current block is decoded based on the initial motion
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vector predictor. Here, the activation or deactivation of motion refinement is automatically

performed, without explicit signaling.

[5] When a magnitude of the motion vector difference exceeds the first threshold but not
the second threshold, a flag may be decoded from a bitstream, and whether or not the initial

motion vector predictor is to be refined is based on the decoded flag.

[6] The motion vector of adjacent decoded blocks can also be used to determine whether
or not to perform motion refinement. For example, if a difference between the initial
motion vector predictor for the current block and the at least one motion vector of adjacent
decoded blocks is smaller than a third threshold, the initial motion vector predictor is
determined to be refined. In addition, the texture level can also be used. For example, if a
texture level of a plurality of pixels of adjacent decoded blocks exceeds a fourth threshold,

the initial motion vector predictor is determined to be refined.

[7] According to another general aspect, a method for video encoding is presented,
comprising: accessing an initial motion vector predictor, the initial motion vector predictor
associated with a first motion resolution; determining whether or not to explicitly signal a
refinement of the initial motion vector predictor, based on a motion vector difference
corresponding to the initial motion vector predictor, the refinement being associated with a
second motion resolution, and the second motion resolution being higher than the first motion

resolution; and encoding the motion vector difference.

[8] When a magnitude of the motion vector difference is smaller than the first threshold
but not the second threshold, the refinement of the initial motion vector predictor is not
explicitly signaled. When a magnitude of the motion vector difference exceeds a second
threshold, the refinement of the initial motion vector predictor is deactivated without

explicitly signaling.

[9] When a magnitude of the motion vector difference exceeds a first threshold, a flag is
encoded into a bitstream to explicitly signal whether or not the initial motion vector predictor

is to be refined.

[10] The motion vector of adjacent reconstructed blocks can also be used to determine
whether or not to perform motion refinement. For example, if a difference between the
initial motion vector predictor for the current block and the at least one motion vector of

adjacent reconstructed blocks is smaller than a third threshold, the initial motion vector
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predictor is determined to be refined. In addition, the texture level can also be used. For
example, if a texture level of the plurality of pixels exceeds a fourth threshold, the initial

motion vector predictor is determined to be refined.
[11]  The present embodiments also provide an apparatus for performing these methods.

[12] The present embodiments also provide a non-transitory computer readable storage
medium having stored thereon instructions for performing any of the methods described

above.

[13] The present embodiments also provide a bitstream generated according to the

methods described above.

BRIEF DESCRIPTION OF THE DRAWINGS

[14] FIG. 1 illustrates an exemplary HEVC (High Efficiency Video Coding) encoder.

[15] FIG. 2A is a pictorial example depicting the positions of five spatial candidates {ai, by,
bo, ao, b2} for a current block, FIG. 2B is a pictorial example depicting an exemplary motion
vector representation using AMVP (Advanced Motion Vector Prediction), and FIG. 2C is a

pictorial example depicting motion-compensated prediction.
[16] FIG. 3 illustrates a block diagram of an exemplary HEVC video decoder.

[17] FIG. 4 illustrates an exemplary method for performing motion vector refinement at a

decoder, according to an embodiment of the present principles.

[18] FIG. 5 is a pictorial example depicting pixel positions for integer pixels, half pixels,

quarter pixels and eighth pixels.

[19] FIG. 6A illustrates an exemplary PU to be decoded, and FIG. 6B is a pictorial
example illustrating an L-shape set of neighboring reconstructed samples and an L-shape set

of prediction samples for measuring discontinuity.

[20] FIG. 7A is a pictorial example illustrating local gradients, and FIG. 7B is a pictorial

example illustrating second order moments of gradients.

[21] FIG. 8 illustrates an exemplary method for performing motion vector refinement at an

encoder, according to an embodiment of the present principles.
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[22] FIG. 9 illustrates an exemplary method for performing motion vector predictor

refinement at a decoder, according to an embodiment of the present principles.

[23] FIG. 10 illustrates an exemplary method for performing motion vector predictor

refinement at an encoder, according to an embodiment of the present principles.

[24] FIG. 11 illustrates an exemplary method for performing motion vector predictor
refinement with automatic motion refinement activation at a decoder, according to an

embodiment of the present principles.

[25] FIG. 12 illustrates an exemplary method for performing motion vector predictor
refinement with automatic motion refinement activation at an encoder, according to an

embodiment of the present principles.

[26] FIG. 13 illustrates an exemplary method for determining whether or not to use
adaptive motion refinement for a particular MVP, according to an embodiment of the present

principles.

[27] FIG. 14 illustrates a block diagram of an exemplary system in which various aspects

of the exemplary embodiments of the present principles may be implemented.

DETAILED DESCRIPTION

[28] FIG. 1 illustrates an exemplary HEVC (High Efficiency Video Coding) encoder 100.
To encode a video sequence with one or more pictures, a picture is partitioned into one or
more slices where each slice can include one or more slice segments. A slice segment is

organized into coding units, prediction units and transform units.

[29] The HEVC specification distinguishes between “blocks” and “units,” where a “block”

3

addresses a specific area in a sample array (e.g., luma, Y), and the “unit” includes the
collocated block of all encoded color components (Y, Cb, Cr, or monochrome), syntax

elements and prediction data that are associated with the block (e.g., motion vectors).

[30] For coding, a picture is partitioned into coding tree blocks (CTB) of square shape with
a configurable size, and a consecutive set of coding tree blocks is grouped into a slice. A
Coding Tree Unit (CTU) contains the CTBs of the encoded color components. A CTB is
the root of a quadtree partitioning into Coding Blocks (CB), and a Coding Block is

partitioned into one or more Prediction Blocks (PB) and forms the root of a quadtree
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partitioning into Transform Blocks (TBs). Corresponding to the Coding Block, Prediction
Block and Transform Block, a Coding Unit (CU) includes the Prediction Units (PUs) and the
tree-structured set of Transform Units (TUs), a PU includes the prediction information for all
color components, and a TU includes residual coding syntax structure for each color
component. The size of a CB, PB and TB of the luma component applies to the
corresponding CU, PU and TU. In the present application, the term “block” can be used to
refer to any of CTU, CU, PU, TU, CB, PB and TB. In addition, the “block™ can also be
used to refer to a macroblock, a partition and a sub-block as specified in H.264/AVC or other

video coding standards, and more generally to refer to an array of data of various sizes.

[31] In the exemplary encoder 100, a picture is encoded by the encoder elements as
described below. The picture to be encoded is processed in units of CUs. Each CU is
encoded using either an intra or inter mode. When a CU is encoded in an intra mode, it
performs intra prediction (160). In an inter mode, motion estimation (175) and
compensation (170) are performed. The encoder decides (105) which one of the intra mode
or inter mode to use for encoding the CU, and indicates the intra/inter decision by a
prediction mode flag. Prediction residuals are calculated by subtracting (110) the predicted

block from the original image block.

[32] CUs in intra mode are predicted from reconstructed neighboring samples within the
same slice. A set of 35 intra prediction modes is available in HEVC, including a DC, a
planar and 33 angular prediction modes. The intra prediction reference is reconstructed
from the row and column adjacent to the current block. The reference extends over two
times the block size in horizontal and vertical direction using available samples from
previously reconstructed blocks. When an angular prediction mode is used for intra
prediction, reference pixels can be copied along the direction indicated by the angular

prediction mode.

[331 The applicable luma intra prediction mode for the current block can be coded using
two different options. If the applicable mode is included in a constructed list of three most
probable modes (MPM), the mode is signaled by an index in the MPM list. Otherwise, the
mode is signaled by a fixed-length binarization of the mode index. The three most probable

modes are derived from the intra prediction modes of the top and left neighboring blocks.

[34] For an inter CU, the corresponding coding block is further partitioned into one or

more prediction blocks. Inter prediction is performed on the PB level, and the
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corresponding PU contains the information about how inter prediction is performed.

[35] The motion information (i.e., motion vector and reference index) can be signaled in

two methods, namely, “merge mode” and “advanced motion vector prediction (AMVP).”

[36] In the merge mode, a video encoder or decoder assembles a candidate list based on
already coded blocks, and the video encoder signals an index for one of the candidates in the
candidate list. At the decoder side, the motion vector (MV) and the reference picture index

are reconstructed based on the signaled candidate.

[37] The set of possible candidates in the merge mode consists of spatial neighbor
candidates, a temporal candidate, and generated candidates. FIG. 2A shows the positions of
five spatial candidates {ai, b1, bo, ao, b2} for a current block 210. For each candidate
position, the availability is checked according to the order of ai, bi, bo, ao, b2, and then the

redundancy in candidates is removed.

[38] The maximum number of merge candidates N is specified in the slice header. If the
number of merge candidates is larger than N, only the first N — 1 spatial candidates and the
temporal candidate are used. Otherwise, if the number of merge candidates is less than N,

the set of candidates is filled up to the maximum number N.

[39] In AMVP, a video encoder or decoder assembles candidate lists based on motion
vectors determined from already coded blocks. The video encoder then signals an index in
the candidate list to identify a motion vector predictor (MVP) and signals a motion vector
difference (MVD). At the decoder side, the motion vector (MV) is reconstructed as
MVP+MVD.

[40] Only two spatial motion candidates are chosen in AMVP. The first spatial motion
candidate is chosen from left positions {ao, a1} and the second one from the above positions
{bo, b1, b2}, while keeping the searching order as indicated in the two sets. If the number of
motion vector predictors is not equal to two, the temporal MV prediction candidate can be
included. If the temporal candidate is not available, a zero motion vector is used to fill the

set of candidates.

[41] FIG. 2B illustrates an exemplary motion vector representation using AMVP. For a
current block to be encoded (240), a motion vector (MVcurent) can be obtained through

motion estimation. Using the motion vector (M Vi) from a left block (230) and the motion
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vector (MVabove) from the above block (220), a motion vector predictor can be chosen as
MVPuurent. A motion vector difference then can be calculated as MVDcurrent = MV current —

MVPcurrent .

[42] In HEVC, the precision of the motion information for motion compensation is one
quarter-sample (also referred to as quarter-pel or 1/4-pel) for the luma component and one
eighth-sample (also referred to as 1/8-pel) for the chroma components. A 7-tap or 8-tap
interpolation filter is used for interpolation of fractional-sample pixel positions, i.e., 1/4, 1/2
and 3/4 of full pixel locations in both horizontal and vertical directions can be addressed for

luma.

[43] The prediction residuals are then transformed (125) and quantized (130). The
quantized transform coefficients, as well as motion vectors and other syntax elements, are
entropy coded (145) to output a bitstream. The encoder may also skip the transform and
apply quantization directly to the non-transformed residual signal on a 4x4 TU basis. The
encoder may also bypass both transform and quantization, i.e., the residual is coded directly
without the application of the transform or quantization process. In direct PCM coding, no

prediction is applied and the coding unit samples are directly coded into the bitstream.

[44] The encoder decodes an encoded block to provide a reference for further predictions.
The quantized transform coefficients are de-quantized (140) and inverse transformed (150) to
decode prediction residuals. Combining (155) the decoded prediction residuals and the
predicted block, an image block is reconstructed. A filter (165) is applied to the
reconstructed picture, for example, to perform deblocking/SAO (Sample Adaptive Offset)
filtering to reduce blockiness artifacts. The filtered image is stored at a reference picture

buffer (180).

[45] FIG. 3 illustrates a block diagram of an exemplary HEVC video decoder 300. In the
exemplary decoder 300, a bitstream is decoded by the decoder elements as described below.
Video decoder 300 generally performs a decoding pass reciprocal to the encoding pass as

described in FIG. 1, which performs video decoding as part of encoding video data.

[46] In particular, the input of the decoder includes a video bitstream, which may be
generated by video encoder 100. The bitstream is first entropy decoded (330) to obtain
transform coefficients, motion vectors, and other coded information. The transform

coefficients are de-quantized (340) and inverse transformed (350) to decode the prediction
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residuals. Combining (355) the decoded prediction residuals and the predicted block, an
image block is reconstructed. The predicted block may be obtained (370) from intra
prediction (360) or motion-compensated prediction (i.e., inter prediction) (375). As
described above, AMVP and merge mode techniques may be used to derive motion vectors
for motion compensation, which may use interpolation filters to calculate interpolated values
for sub-integer pixels of a reference block. A filter (365) is applied to the reconstructed

image. The filtered image is stored at a reference picture buffer (380).

[47] In video compression, the inter prediction mode allows for predicting one block (for
example, Prediction Unit) using at least one motion compensated block from previously
reconstructed/decoded pictures. For example, as illustrated in FIG. 2C, a current block (255)
is encoded using the inter prediction mode, blocks 225 and 245 are co-located blocks in
reference pictures, and blocks 215 and 235 are blocks used for motion-compensated
prediction. At least one reference index (e.g., refldx0) identifying a reconstructed picture in
the Decoded Pictures Buffer (DPB) and one motion information (Motion Vector Difference,
MVD) are encoded, to enable reconstruction of at least one motion vector (MV, e.g., mv0) at
the decoder. When bi-prediction is used, addition reference index (e.g., refldx1) and motion
information are encoded in order to reconstruct the motion vectors (e.g., mv0 and mvl). In
some cases, the motion vectors can be inferred from previously decoded data (e.g., merge

mode in HEVC).

[48] The reconstruction of MV values can be performed as follows:

MVy = MVPx + MVDy, MVy = MVPy + MVDy, (1)
where MVy and MVy are the horizontal and vertical motion vector components, respectively,
MVP (MVPx, MVPy) is the motion vector predictor built from previously reconstructed data,
and MVD (MVDy, MVDy) is the motion vector difference that is encoded and transmitted in

the bitstream.

[49] The MVD values are usually encoded at a precision corresponding to the decoded
MYV values. For example, HEVC uses one-quarter pixel (i.e., 1/4-pel) as the motion vector

resolution.

[50] Increasing the MV resolution, for example, from 1/4-pel to 1/8-pel, can improve the
prediction in general. However, for low bit rates, the coding of the MVD data can have a

relatively high bitrate cost with respect to other data encoded per block. Thus, the overall
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compression efficiency may not necessarily improve with the MV resolution.

[51] To improve the compression efficiency, there are some existing works on using
adaptive motion resolution, for example, to choose a motion resolution between integer pel or
1/4-pel, or to choose between 1/4-pel and 1/6-pel. However, indicating which motion vector
resolution is used may cause a degradation in compression efficiency because of the extra

side information that needs to be sent in the bitstream.

[52] To reduce overhead, an article by Lakshman, Haricharan, et al., entitled “Conditional
motion vector refinement for improved prediction,” Picture Coding Symposium (PCS), 2012.
IEEE (hereinafter “Lakshman’), defines a set of rules known to both the encoder and decoder
to infer the MV resolution, between quarter-sample MV resolution and 1/6-sample MV
resolution, without any explicit block-by-block forward signaling. A high resolution MV is
transmitted as a regular quarter-sample MV augmented with refinement information, which
increases the resolution of the motion vectors from a quarter-sample resolution to one-sixth
of a sample. The reconstructed MV components that point to integer or half-sample
positions are left unaltered. For the MV components that point to one-quarter or
three-quarter positions, the decoder infers the presence of refinement using the following

conditions:
- In case of a P-slice, the MV refinement information is always sent.

- In case of a Bi-prediction, the MV refinement is sent for the predictions that access

samples from a reference picture that contains high texture.

- In case of Bi-predictions not accessing high texture reference pictures, the MV

refinement is sent only for pictures from a pre-defined reference picture list.

- For single hypothesis predictions in B-slices, MV refinement is not used.

[533] An article by Chen, Jianle, et al., entitled “Further improvements to HMKTA-1.0,”
VCEG-AZO07, ITU-T/SG16 Video Coding Experts Group (VCEG) 52nd Meeting: 19-26
June 2015, Warsaw, Poland (hereinafter “Chen”), describes an Advanced Motion Vector
Resolution (AMVR) mode. In particular, MVD between the motion vector and predicted
motion vector of a PU can be coded with either quarter-pel resolution or integer-pel
resolution. The MVD resolution is controlled at coding unit (CU) level and an integer MVD
resolution flag is conditionally signaled for each CU that has at least one non-zero MVD
components. When the integer MVD resolution flag is false, or not coded for a CU, the
default quarter-pel MV resolution is used for all PUs belonging to the CU. Otherwise, all
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PUs coded with AMVP mode belonging to the CU use integer MV resolution, while the PUs
coded with merge mode still use quarter-pel MV resolution. When a PU uses integer MV
resolution, the AMVP candidate list is filled with integer MV by rounding quarter-pel MVs
to integer-pel MVs.

[54] The present principles are directed to motion vector refinement in video encoding and
decoding. In one embodiment, a first resolution MVD (for example, 1/4-pel) is received in
the bitstream, and the decoder obtains an initial motion vector based on the MVD, and refines
the initial motion vector to obtain a second motion resolution (for example, 1/8-pel) higher
than the first resolution, using already decoded neighboring samples. The refinement of
motion information is also performed at the encoder to avoid mismatch. Because the
motion refinement is performed at both the encoder and decoder, no additional information is
transmitted in the bitstream to indicate the motion refinement, for example, no explicit
signaling is used to indicate the refinement of a motion vector from 1/4-pel to 1/8-pel. Ina
variant, merge mode is used for the current block (i.e., no MVD is received in the bitstream),
and the initial motion vector is obtained as a motion vector predictor in the candidate list

(possibly rounded to the first resolution) is refined to obtain the second motion resolution.

[55] The motion information refinement may be performed using motion estimation at the
encoder or decoder. Comparing with an approach that uses the first motion resolution (for
example, 1/4-pel) without motion resolution refinement, the proposed embodiment may
improve the motion accuracy without the overhead of transmitting the refinement motion
information. Comparing with an approach that uses the second motion resolution (for
example, 1/8-pel) without motion resolution refinement at the decoder, the proposed
embodiment may reduce the overhead of transmitting the motion refinement information. It
should be noted that the decoder according to the present principles may also perform motion

search, and thus may be more complex than a decoder that does not need motion search.

[56] FIG. 4 illustrates an exemplary method 400 for performing motion vector refinement
at a decoder, according to an embodiment of the present principles. In this example, we
suppose a decoder can refine a motion vector resolution from 1/4-pel to 1/8-pel. It should
be noted that the present principles can be applied to refinement between other motion
resolutions, for example, but not limited to, from integer-pel to 1/4-pel, from1/4-pel to

1/6-pel.

[57] For a block to be decoded, the decoder checks whether adaptive motion vector
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resolution is enabled (410), for example, using a flag in the bitstream, or using the existing
methods as described above. If adaptive motion vector resolution is enabled, the decoder
generates MV predictor (MVP) at 1/4-pel resolution (420), for example, using the AMVP
mode of HEVC. If the predictor is at 1/8-pel, it is rounded to Y%-pel. The decoder then
decodes MVD at 1/4-pel resolution (430). An initial motion vector can be obtained (440) as
MV, = MVP + MVD. Then the initial motion vector (MV,) can be refined to 1/8-pel

resolution (450) and be used for motion-compensated prediction.

[58] At 420, the MV predictors may also be generated at 1/8 pel. Whether the MV
predictor is generated at 1/4-pel or 1/8-pel should be consistent with what the encoder has

used.

[59] The samples of a motion-compensated prediction block are obtained from those of a
corresponding block at a position displaced by the motion vector in a reference picture
identified by a reference picture index. When the motion vector is not an integer, fractional

sample interpolation is used to generate the prediction samples.

[60] HEVC supports motion vectors at 1/4-pel. Let us represent a motion vector as MV =
iIMV + sMV, where iMV is the integer part of MV and sMV is the Y-pel part (first motion
resolution), SMV =p/4, p =0, 1, 2, 3, then the interpolated sample value can be calculated as:
Ival[x] = Nt c[p][i] Xs[x +iMV — N/2 + i] 2)
where x is the pixel location, c[p][i],i = 0,...,N-1, are the filter coefficients corresponding to
the p/4-pel position and N is the number of filter taps. The filter coefficients for 1/4-pel
interpolation in HEVC are as follows:
c[p=0][]={0, 0, 0, 64, 0, 0, 0, 0}, corresponding to integer position, and there is only scaling,
c[p=11[]={-1, 4, -10, 58, 17, -5, 1, 0}, corresponding to 1/4-pel position, and a 7-tap filter,
c[p=2][]={-1, 4, -11, 40, 40, -11, 4, -1}, corresponding to 1/2-pel position, and a 8-tap filter,
c[p=31[]={0, 1, -5, 17, 58, -10, 4, -1}, corresponding to 1/4-pel position, and a 7-tap filter.

[61] When using a higher resolution 1/8-pel, 1/8-pel interpolation filter is used to
interpolate the 1/8-pel part, including sMV =p/8, p=0, 1, 2, 3,4, 5, 6,7, 8. For example
the following 1/8-pel interpolation filters (N=4) can be used:

c[p=01[1={0,64,0,0},

c[p=11[1=1{-2, 58, 10, -2 },

c[p=2][1=1{ -4, 54, 16, -2 },
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c[p=31[]1={ -6, 46, 28, -4 },
c[p=4][1={ -4, 36, 36, -4 },
c[p=5][1={ -4, 28, 46, -6 },
c[p=6][1={-2, 16,54, -4},
c[p=71[1={ -2, 10, 58, -2 }.

[62] The motion refinement process may be regarded as motion estimation, with a range
related to the motion resolution before refinement. For example, when a motion vector is
refined from a first resolution of 1/4-pel to a second resolution of 1/8-pel, the motion search
range include candidates around the initial motion vector. More generally, the search
candidates for motion refinement can be MVX, — AMVX~MVX, + AMVX, MVY, —
AMVY ~ MVY, + AMVY, in the horizontal direction and vertical direction, respectively,
wherein MVX, and MVY, are horizontal and vertical components of the initial motion vector
MV,, respectively, and AMVX and AMVY define the search range in the horizontal and

vertical directions, respectively.

[63] For example, the refinement candidates in the horizontal direction can be (MVX, —
kxstep2, MVX, + kXstep2, where k is an integer and is defined as

-stepl < (k * step2) < stepl, (3)
where stepl is the first resolution, and step2 is the second resolution. When stepl = 1/4 and
step2 = 1/8, -2 <k < 2. FIG. 5 illustrates pixel positions for integer pixels, half pixels,
quarter pixels and eighth pixels. For ease of notation, we may also refer to those candidates
as motion refinement candidates, and we denote a predicted block built by motion
compensation with a motion refinement candidate as a motion-refinement predicted block
and samples within a motion-refinement predicted block as motion-refinement prediction

samples.

[64] An exemplary set of search candidates includes the positions within box 520 when
(MVXy MVY; ) corresponds to position 510. The search range, and more generally, the set
of search candidates can be different from what is shown in FIG. 5. The same set of search

candidates should be used at the encoder and decoder.

[65] If adaptive motion vector resolution is not enabled, the decoder obtains MVP and
MVD at a motion resolution that is used for the decoded motion vector, and no motion

refinement is performed at the decoder. As shown in FIG. 4, the decoder may get (460, 470)
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both MVP and MVD at 1/8-pel resolution, and decode (480) the motion vector at 1/8-pel
resolution as MV = MVP + MVD. In a variation, the decoder may get (460, 470) both MVP
and MVD at 1/4-pel resolution, and decode (480) the motion vector at 1/4-pel resolution as
MV = MVP + MVD.

[66] In the following, we describe several embodiments that can be used to perform

motion vector refinement (450) in further detail.

[67] To refine the motion vector at the decoder, we use the characteristics that a picture
signal usually is smooth and continuous. Thus, at the decoder side, if a motion vector is
accurate, a decoded block typically should be continuous with respect to the neighboring
blocks. In one embodiment, we use the reconstructed neighboring samples to refine the MV.
In particular, a set of search candidates as described above are evaluated by measuring the
discontinuity between the predicted block built by motion compensation with motion
refinement candidates and the previously reconstructed samples, for example, the samples of

the neighboring upper and left blocks as illustrated in FIG. 6A.

[68] FIG. 6A illustrates an exemplary PU (650) to be decoded. Other PUs (610, 620, 630,
640) above, or to the left of, the current PU are already decoded, and are available for
decoding the current PU. In particular, an L-shape set of decoded samples (670) in
neighboring blocks (610, 620, 640) may be used for refining the motion vector for the current
PU (650). It should be noted that PUs can be in different sizes or shapes from what are
shown in FIG. 6A, and a larger or smaller set of neighboring reconstructed samples can be
used for refining motion vector for the current PU. In the present application, we use an
L-shape set of samples for motion refinement. More generally, different sets of samples can

be used for motion refinement, and the refinement can be applied to a block.

[69] In one embodiment, we use the discontinuity based on the L-shape set of decoded
samples (670) in neighboring blocks (referred to as “neighboring L-shape”) and an L-shape
set of samples (680) in a current prediction block. The discontinuity can be measured as the
Sum of Absolute Difference (SAD) between the reconstructed samples (n) and the closest
motion-refinement prediction sample (p), as illustrated in FIG. 6B. Mathematically, the
refined motion vector difference can be calculated as:

MVD;efine = S\I;%min Zpllref(p + MVP + MVD + MVDrefine) - II‘ec (1’1)| (4)
refine
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where p is a motion-refinement prediction sample in the L-shape of the PU with a location

at (Xp,Yp)» 2pl |is a summation over the L-shape set of the PU, MV, = MVP + MVD is

the motion vector to be refined, n is the reconstructed sample in the L-shape next to p with

a location at (x,,y,) (for example x, =X, —1,y, =y, if p belongs to the left bound of
the PU, and x, =X, yp =yp — 1, if p belongs to the upper bound of the PU), I ec(n) is

the reconstructed (or decoded) sample value of the current picture, I.o¢(p + MVP + MVD +

MVD,efine) is the motion-compensated prediction value when MVD qfineq iS selected.

[70] In a variation, we consider the sum of the residual and the motion-compensated
prediction block, and I.ee(p + MVy + MVD ¢fine) + Res(p) would be the reconstructed
value for sample p if MVD efine is selected. Then the refined motion vector difference can
be calculated as:

MVD:efine = argmin Zpllref(p + MVP + MVD + MVDrefine) + Res(p) - Irec (n)l (5)

Drefine

where Res(p) is the residual at sample p.

[71] When an HEVC decoder is modified to include the motion vector refinement
according to the present principles, MV, can be set to MVD+MVP in AMVP or the one
signaled in the candidate list in merge mode, wherein MVD and MVP are obtained as
specified by HEVC. Generally, MV, is the motion vector the decoder obtained without

performing motion search at the decoder.

[72] Motion refinement can be viewed as motion search at the decoder, with a set of
candidate motion vectors, at a higher motion resolution, selected from around the initial
motion vector. The choice of a best motion vector may be the one that minimizes a certain
criterion, for example, the discontinuity measure as described in Eq. (4) or (5). That is, after
an initial motion vector MV, is obtained, a motion search is further performed to refine the
initial motion vector. The extra complexity in a decoder is usually small because only a

small set of search candidates around the initial motion vector needs to be checked.

[73] Mathematically, the derived refined MV can be expressed as:

MV = MV, + MVD? e (6)
Then the block corresponding to the refined MV in the reference picture is used as the
prediction block for decoding the PU, for example, using the interpolation filters as described

above. Typically, motion refinement enables an encoder to encode an MVD at a low
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resolution, and thus reduces the cost of encoding motion information compared with
encoding MVD at a full resolution, while the decoder can still recover the MV at a full

resolution.

[74] In the present application, we use SAD as a difference measure in various
embodiments. It should be noted that other difference measures, for example, but not

limited to, Sum of Squared Error (SSE), can be used instead of SAD.

[75] In another embodiment, we use the property that gradients at adjacent pixels are
usually similar, and we compute local gradients at locations (n) and (p) to measure the
discontinuity. Assuming that the signal (i.e., picture samples) is spatially stationary, one can
locally model the signal as a Taylor series, truncated to the linear term:

I(x+d) = I(x) + g(x).d (7)
where I(x) is the picture sample value at location x, g is a 2x2 matrix estimated with local

gradients.

[76] Using Eq. (7), the relation between the neighboring reconstructed samples R(x) and

the motion-refinement predicted block P(x) becomes:

R(n) = P(p) + g(p).(n-p) (8)

with P(p) = Lef(p + MVo+ MVDxefine), and R(n) = Iec(n). In a variation, the residuals can be
included when calculating P(p). The local gradients at position p = (X;, yp) can be expressed
as shown in FIG. 7A:

Gl1(p) =R(n) - P(p), withn=(xp- 1, yp- 1)

G12(p) =R(n) - P(p), with n=(xp - 1, yp)

G13(p) =R(n) - P(p), withn=(xp - 1, yp+ 1)

[77] Then the sum of the absolute value of the local gradients can be used to calculate the
discontinuity, and the motion vector refinement that minimizes the discontinuity is chosen:
MVDiefine = a\rlgilfiiflleZp{lGll(p)l +1G12(p)| + 1G13(p)1} 9)

[78] The second order moments at position p = (Xp, yp) can be expressed as shown in FIG.
7B (when n and p are located at the vertical left boundary of the L-shape):

G21(p) =R(n2) — R(n) — G11, with n=(xp -1, yp -1) and n2=( xp - 2, yp - 2)

G22(p) =R(n2) — R(n) — G12, with n=(xp -1, yp) and n2=( xp - 2, yp)

G23(p) =R(n2) — R(n) — G13, with n=(xp -1, yp+ 1) and n2=( x,, -2, yp + 2)
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G24(p) = R(n2) — R(n) — P(p) + P(p2), with n=(xp - 1, yp) and n2=(x, -1, yp + 1)
and p2=(xp, yp + 1).

When sample p is at the upper boundary of the PU, the gradients can be derived similarly.
For the upper-left corner, it can be processed as it is at the left or upper boundary or can be

processed twice (once as the boundary, and once as the upper).

[79] Then the sum of the absolute value of the second order moments of the gradients can
be used to calculate the discontinuity, and the motion vector refinement that minimizes the
discontinuity is chosen:

MVD e = argmin E,(1G21(0)| + 1622()] + 623()] + 162401} (10
[80] The discontinuity can also be calculated as the sum of the absolute value of the local
gradients and second order moments:

MVD: = argmin Y,{|G11(p)| + |G12(p)| + [G13(p)| + |G21(p)| +

refine MVBoorie
1G22(p)| + 1G23(p)| + [G24(p)[}
(1)
It should be noted that the present principles can also be applied to other forms of gradient

calculation.

[81] FIG. § illustrates an exemplary method 800 for performing motion vector refinement
at an encoder, according to an embodiment of the present principles. The output of method
800 may be used as an input bitstream to method 400. At the initialization step (805), the
encoder may access a video sequence to be encoded as input. Additionally, the encoder
may set the parameters to initial values, for example, set Best_flag = 1, and set Best_RDcost

to a large value.

[82] Motion estimation (810) is performed at the 1/8-resolution to obtain a motion vector
(MV). The encoder then checks whether it is more efficient to encode the motion vector
using adaptive motion refinement or not. From steps 820-840, the encoder checks the MV
encoding cost with motion refinement, for example, using the RD (Rate-Distortion) cost.
From steps 845-875, the encoder checks the MV encoding cost without motion refinement.
Then motion compensation is performed based on the final MV (Best_MV) and the residuals
can be calculated (885). The residuals, the final MVD (Best MVD) and the adaptive

motion refinement flag (Best_flag) are encoded (890) into the bitstream.
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[83] More particularly, at step 815, a motion vector predictor list is built at the 1/4-pel
resolution, for example, using the motion vector predictor candidate list from AMVP, a
rounded version of a 1/8-pel initial motion vector predictor or an average of neighboring
motion vectors, consistent with how a corresponding decoder builds the motion vector
predictor list. Lowering the resolution may make the motion vector predictor into a more
“correlated” one (i.e., the motion vector predicted can be accurately predicted such that just
an index may be transmitted to indicate the motion vector predictor), and let the motion
refinement to obtain the high resolution part (i.e., the less “correlated” portion). The MVP
list may contain only one MVP in some cases. For each MVP in the MVP list, a motion
vector difference (MVD) is calculated (820) as MVD = MV — MVP, and an initial motion
vector can be calculated as MVo = MVP + MVD.

[84] In a variation, the motion vector predictor candidate list may be built at 1/8-pel
resolution at step 815, and the motion vector difference MVD is rounded to 1/4-pel at step
820. Note that MV may be different from MV because of the rounding applied to the MVP
or MVD.

[85] The refinement is performed (825) to obtain MVDyefine, for example, as described in
Eq. (4) or (5), and a refined motion vector as MV* = MV + MVDxefine. The residuals can
then be calculated (827) based on MV*. The encoding cost of the adjusted motion vector
(MV*) can be estimated using RD (Rate-Distortion) cost at step 830. At step 835, the
encoder checks whether the current adjusted motion vector has a smaller RD cost than the
current Best_RDcost. If yes, parameters Best_RDcost, Best MV, Best. MVD are set to the
current RD cost, current adjusted motion vector, and current MVD, and some other relevant

encoding information may also be stored.

[86] At step 845, a motion vector predictor list is built at the 1/8-pel resolution, for
example, using the motion vector predictor candidate list from AMVP. Step 845 is similar
to step 815, except that the encoder does not adjust the motion resolution to 1/4-pel. For
each MVP in the MVP list, the MVD is calculated (850) based on the MVP at the 1/8-pel
resolution. The residuals can be calculated (852) for the motion vector MV; = MVP +
MVD and the encoding cost of the motion vector MV can be estimated using RD cost at step
855. At step 865, the encoder checks whether the current motion vector has a smaller RD
cost than the current Best_RDcost. If yes, parameters Best_RDcost, Best_ MV and

Best_MVD are set to the current RD cost, current motion vector, and current MVD, and the
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adaptive motion refinement flag is set to false (0). Other relevant encoding information may

also be stored.

[871 When MVD is 0, for example, when the merge mode is used, steps 820 and 850 are
not needed, and at step 840 and 875, Best_MVD does not need not to be calculated, and at
step 890, Best_MVD does not need to be encoded.

[88] The motion refinement can be applied to all motion vectors corresponding to the
motion vector predictors, or can be applied to a subset. For example, motion refinement is

used for AMVP motion vector predictors only, or to the merge mode only.

[89] In method 800, the encoder decides whether to use adaptive motion refinement based
on the encoding cost and signals the choice through a flag in the bitstream. In other
embodiments, the encoder may decide whether to use adaptive motion refinement based on
the video characteristics without checking the encoding cost, for example, as described
further below or in Lakshman and Chen. Consequently, the encoder may only need to
perform part of method 800 (for example, the part with motion refinement, or the part

without motion refinement).

[90] Note that an additional syntax element Best_flag may need to be sent according to
method 800. However, sending Best_flag may still be more efficient than sending the MVD
at the 1/8-pel resolution since the high-resolution portion of the motion vector usually is

random and expensive to encode.

[91] By refining the motion vector, the encoder can reach a 1/8-pel motion resolution
while the motion vector difference MVD is transmitted in the bitstream at a 1/4-pel motion
resolution. Accordingly, the MVD may require fewer bits to be encoded. For example, as
shown in TABLE 1, a motion vector (MV) for a current block from the motion estimation
(810) is 3.625, a motion vector predictor list (815) includes {3.0, ... }. For the motion
vector predictor MVPy = 3.0, when motion refinement is not enabled, MVD (850) is MV —
MVP = 0.625 (coded at 1/8-pel). On the other hand, when motion refinement is enabled,
MVD is rounded to 0.5 (1/4-pel) and the initial motion vector (§20) MVo = MVP + MVD =
3.5. The motion vector MVy then is refined (825) to MV* = 3.625. In this example, the
refined motion is the same as the MV obtained from motion estimation and the MVD is
transmitted at 1/4-pel, and thus may need fewer bits than when no motion refinement is used

(i.e., the MVD is transmitted at 1/8-pel). Consequently, the encoder is likely to choose to
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19
enable motion refinement.
TABLE 1
Resolution Example

MVP list (left, upper) | 1/4 {3.0...}
MVP 1/4 3.0
MVD 1/4 0.5

MV’ 1/8 3.625
MYV from ME 1/8 3.625
MYV for MC 1/8 3.625

[92] In the above example, the refined motion vector is the same as the motion vector from
motion estimation. It should be noted the refined motion vector may be different from the

motion vector obtained from motion estimation.

[93] MVP refinement

[94] In the above, we discuss refinement to an initial motion vector that is generated based
on a motion vector predictor MVP and a motion vector difference MVD. In another
embodiment, the refinement can be performed with respect to the motion vector predictor
(without including MVD). Referring back to FIG. 6, after an initial motion vector predictor
(MVP,) is obtained, for example, using AMVP as specified by HEVC, the motion vector

predictor can be refined using the reconstructed L-shape (670).

[95] In particular, the decoder may form an MC L-shape (680) corresponding to a motion

vector predictor around the initial motion vector predictor, for example, MVP, +
AMV,AMV = {(—é, 0) , - (0, %)}. Then the decoder can compare a difference, for example,

the discontinuity or gradients as discussed above, between the reconstructed L-shape (670)
and different MC L-shapes (680), and choose the motion refinement (AMV™) that yields the
smallest difference as the refinement to the initial motion vector predictor, that is, the refined
motion vector predictor can be calculated as MVP* = MVP, + AMV*. Note that both the
reconstructed L-shape (670) and MC L-shape (680) are based on decoded samples, such that

the same process can be performed at both the encoder and decoder sides.

[96] Generally, the motion refinement for the motion vector predictor can be viewed as a
motion search with a search range including a few sub-sample displacements at a full motion
resolution around the initial motion vector predictor. For example, a motion vector

predictor MVPg at 510 may be refined using the search candidates within 520 as illustrated in
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FIG. 5. Similarly to refining the motion vector (with MVD), different sets of search

candidates may be used from what is shown in FIG. 5.

[97] In a variation, the motion refinement can be performed on a rounded version of the
initial motion vector predictor (round(MVPF,;)), and the search range for the motion
refinement includes sub-sample displacements at a full motion resolution around the rounded
motion vector predictor. For example, when the refined motion resolution is 1/8 pel, the
rounded version of MVP, may be at an interger-pel, half-pel or quarter-pel resolution. This
is because the actual motion vector is more likely to be concentrated around a motion vector
at the lower resolution, and the rounded version of the initial motion vector predictor may

provide a better starting point for search.

[98] In another variation, the motion refinement may be performed with respect to an
average value of neighboring motion vectors that are used in the MVP candidate list. For
example, the motion refinement may use an average of the left and above motion vectors
(MViet + MV p0ve)/2 as the initial motion vector predictor, and then perform a motion
search around the initial motion vector predictor. We observe that motion refinement is
usually selected in an almost, or relatively, uniform motion area. By averaging the motion
vectors adjacent to the current block, we may provide a better starting point for search.
When motion refinement is selected, i.e., when the motion field is uniform, the predictor
candidate list may be reduced to use only one (left or above) candidate in the list, and thus,
reducing the number of possible candidates. This may improve the compression efficiency

as no index of the AMVP list needs to be encoded or transmitted in the bitstream.

[99] FIG. 9 illustrates an exemplary method 900 for performing motion vector predictor
refinement at a decoder, according to an embodiment of the present principles. In this
example, we suppose a decoder can refine a motion vector predictor resolution from 1/4-pel

to 1/8-pel.

[100] For a block, the decoder checks (910) whether adaptive motion vector resolution is
enabled, for example, using a flag in the bitstream, or using the existing methods as described
above. If adaptive motion vector resolution is enabled, the decoder generates MV predictor
(MVP) at 1/4-pel resolution (920). The initial motion vector predictor can be generated, for
example, but not limited to, using the AMVP mode of HEVC, using an average of
neighboring motion vectors, or using a rounded version of a motion vector predictor. The

motion vector predictor can then be refined to 1/8-pel resolution (930), for example, using the
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embodiments described above. The decoder decodes MVD at 1/8-pel resolution (940).
The motion vector can be then obtained (950) as MV = MVP* + MVD and be used for

motion-compensated prediction.

[101] If adaptive motion vector resolution is not enabled, the decoder obtains MVP and
MVD at a motion resolution that is used for the decoded motion vector, and no motion
refinement is performed at the decoder. As shown in FIG. 9, the decoder may get (960, 970)
both MVP and MVD at 1/8-pel resolution, and decode (980) the motion vector at 1/8-pel
resolution as MV = MVP + MVD. In a variation, the decoder may get (960, 970) both MVP
and MVD at 1/4-pel resolution, and decode (980) the motion vector at 1/4-pel resolution as
MV = MVP + MVD.

[102] FIG. 10 illustrates an exemplary method 1000 for performing motion vector predictor
refinement at an encoder, according to an embodiment of the present principles. The output
of method 1000 may be used as an input bitstream to method 900. At the initialization step
(1005), the encoder may access a video sequence to be encoded as input. Additionally, the
encoder may set the parameters to initial values, for example, set Best_flag = 1, and set

Best_RDcost to a large value.

[103] Motion estimation (1010) is performed in the 1/8 resolution to obtain a motion vector
MV. The encoder then checks whether it is more efficient to encode the motion vector
using adaptive motion refinement or not. From steps 1020-1040, the encoder checks the
MYV encoding cost with motion refinement, for example, using the RD (Rate-Distortion) cost.
From steps 1045-1075, the encoder checks the MV encoding cost without motion refinement.
Then motion compensation is performed based on the final MV (Best_MV) and the residuals
can be calculated (1085). The residuals, the final MVD (Best_MVD) and the adaptive

motion refinement flag (Best_flag) are encoded (1090) into the bitstream.

[104] More particularly, at step 1015, a motion vector predictor list is built at the 1/4-pel
resolution, for example, using the motion vector predictor candidate list from AMVP, an
rounded version (for example, to the closet integer at the desired resolution) of an initial
motion vector predictor or an average of neighboring motion vectors, consistent with how a
corresponding decoder builds the motion vector predictor list. The MVP list may contain
only one MVP in some cases. At step 1015, the motion vector predictor list can also be

built at the 1/8-pel resolution. However, one advantage of using a lower resolution (1/4-pel)
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is that it may avoid drift in flat areas, where the RD optimization cannot differentiate between
MYV at the 1/8-pel or 1/4-pel resolution. Using a reduced resolution allows a sort of
smoothing of the MV predictor which may reduce the MV noise. Also, if the size of the
search window for the refinement is relatively small (+1/4 for 1/8 refinement), the precision

of the starting/center MV for the search window may change the result.

[105] For each MVP in the MVP list, MVP refinement is performed (1020), for example, as
described above for the decoder. The MVD is calculated based on the refined MVP (MVP*)
(1025), and the adjusted motion vector (MV™) that can be used for motion compensation
(MV* = MVD + MVP?¥) can also be calculated. The encoding cost of the adjusted motion
vector (MV™) can be estimated using RD cost at step 1030. At step 1035, the encoder
checks whether the current adjusted motion vector has a smaller RD cost than the current
Best_RDcost. If yes, parameters Best_RDcost, Best. MV and Best_ MVD are set (1040) to
the current RD cost, current adjusted motion vector, and current MVD, and Best_flag remains

true (1).

[106] At step 1045, a motion vector predictor list is built at the 1/8-pel resolution, for
example, using the motion vector predictor candidate list from AMVP. For each MVP in
the MVP list, the MVD is calculated (1050) based on the MVP at the 1/8-pel resolution.
The encoding cost of the motion vector (MV) can be estimated using RD cost at step 1055.
At step 1065, the encoder checks whether the current motion vector has a smaller RD cost
than the current Best_RDcost. If yes, parameters Best_RDcost, Best. MV and Best MVD
are set (1075) to the current RD cost, current motion vector, and current MVD, and the

adaptive motion refinement flag (Best_flag) is set to false (0).

[107] In method 1000, the encoder decides whether to use adaptive motion refinement
based on the encoding cost and signals the choice through a flag in the bitstream. In other
embodiments, the encoder may decide whether to use adaptive motion refinement based on
the video characteristics without checking the encoding cost, for example, as described
further below or in Lakshman and Chen. Consequently, the encoder may only need to
perform part of method 1000 (for example, the part with motion refinement, or the part

without motion refinement).

[108] By refining the motion vector predictor, the MV predictor can be more accurate.

Accordingly, the MVD may statistically have lower values, and the coding cost can then be
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reduced. For example, as shown in TABLE 2, a motion vector (MV) for a current block
from the motion estimation (1010) is 3.625, a motion vector predictor list (1015) includes
{3.0, ... }. For the motion vector predictor MVPy = 3.0, it is refined (1020) by motion
refinement to MVP* = 3.5, Subsequently, the motion vector difference is MVD = MV —
MVP* = 0.125. Comparing with the motion vector difference without using motion
refinement MV — MVPy = 0.625, the MVD to be encoded is smaller and may need fewer bits
to be encoded. In this example, using motion refinement may improve the compression
efficiency, and thus, the encoder is likely to choose to enable adaptive motion refinement.

The motion vector used for motion compensation is MVP* + MVD = 3.625.

TABLE 2
Resolution Example

MV from ME 1/8 3.625
MVP list (left, upper) | 1/4 {3.0...}
MVP 1/4 3.0
MVP-refined (MVP*) | 1/8 3.5
MVD 1/8 0.125
MYV for MC 1/8 3.625

[109] When MVD is 0, for example, when the merge mode is used, steps 1025 and 1050 are
not needed, and at step 1040 and 1075, Best_MVD does not need to be calculated, and at step
1090, Best_MVD does not need to be encoded. Note that when MVD is 0, method 1000
may become the same as method 800. The motion refinement can be applied to all motion
vectors corresponding to the motion vector predictors, or can be applied to a subset. For
example, motion refinement is used for AMVP motion vector predictors only, or to the merge

mode only.

[110] Automatic Motion Refinement Activation

[111] In the above embodiments, we describe that a flag (for example, Best_flag as shown
in FIG. 8 or FIG. 10) can be used to indicate whether adaptive motion vector resolution is
enabled. In the following, we describe various embodiments that automatically activate or
deactivate motion vector resolution refinement. Thus, the encoder can indicate whether
adaptive motion vector resolution is enabled without an explicit flag, and the decoder can

also decide whether adaptive motion vector resolution without referring to an explicit flag.

[112] In one embodiment, we propose to automatically activate the adaptive motion

refinement based on one or more of the following criteria:
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[113]

[114]

24

Motion similarity: The motion of the current block is similar to the motion of
surrounding blocks, such that an encoder or decoder can use motion vectors of
surrounding blocks for motion refinement.

Textureness (or texture level): The current block and surrounding blocks contain some
texture which may allow a robust sub-pixel motion refinement.

Motion vector difference (MVD): MVD is available at both the encoder and decoder,
and can be used to determine whether to use automatic adaptive motion refinement or

to explicitly signal the adaptive motion refinement.

The motion similarity criterion may be measured using one or more of the following

conditions:

1) MVPier and MVPapove (optionally MVPapove-left) €Xist, namely, a motion field exists
around the current block. More generally, there are one or more neighboring blocks
that have motion vectors.

2) IMVPett - MVPeugend < T2, IMVPabove - MVPeurend < T2, and IMVPiefrabove -
MVPcurend < T2.  This condition can also be a different logical combination of these
three sub-conditions: IMVPiert - MVPeurrend < T2, IMVPabove - MVPeurrend < T2, and
IMV Pieftabove - MVPeurrendd < T2, That is, the motion vectors of the surrounding blocks
are similar and motion field around the current block is somewhat uniform. Here we
use the same T2 to check the difference between MVPlei and MVPeymrent, between
MVPaiove and MVPeurenr, and between MVPiefabove and MVPeurrent. It should be

noted that different thresholds can be used for these differences.

The textureness criterion may be measured using one or more of the following

conditions:

1) Texture(L) > T3, where L is the neighboring area used for performing motion
refinement, for example, 670 as shown in FIG. 6A, and texture(X) is a measure of
texturing, for example, the variance in luminance of X. That is, the neighboring area
has some texture.

2) Err(mc(L, MVP, Iref), L) < Err(mc(L., MVP+MVr, Iref),L) + T4, where MVP is the
selected motion vector predictor that corresponds to MVD signaled in the bitstream,
such that both the encoder and decoder can use the same MVP for checking this
condition, Err(X,Y) is a measure of error between a group of pixels X and a group of
pixels Y, for example, SAD, HAD or SSE, mc(X, v, 1) is the motion compensation of

the group of pixels X using the motion vector v in the reference image I, Iref is the
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reference image associated with the motion vector predictor MVP, T4 is a threshold
on error similarity, MVP+MVr is the motion vector predictor after refinement. The
MVP may be at a lower motion resolution as described before, for example, being

integer rounded.

[115] The automatic motion refinement activation may be based on all conditions under
both motion similarity or textureness criteria, or may also use a subset of the conditions.
Whether to signal the motion refinement activation or deactivation can be based on the
motion vector difference (MVD). When IMVDI < T1, wherein MVD is the motion vector

difference indicated in the bitstream and T1 is a motion threshold, in a typical example, T1 =

\/2/2, we may choose to activate motion vector refinement without explicit signalling. That
is, when the motion vector difference is small and the current motion vector is close to the
current motion vector predictor, the encoder and decoder could automatically activate motion
refinement. In addition, both the encoder and decoder have access to MVD, and can use
MVD to determine the motion refinement activation in the same manner in order to
synchronize the encoder and decoder. On the other hand, when IMVDI becomes large, the
encoder and decoder may automatically deactivate motion refinement, without explicit

signalling.

[116] In another example, when a temporal candidate is used to build the motion vector
predictor list, that is, when MVPere and MVPasove do not co-exist or are the same, conditions
1) and 2) in the motion similarity criterion are not used. The encoder may choose whether

or not to use the temporal candidate for automatic refinement.

[117] FIG. 11 illustrates an exemplary method 1100 for performing motion vector predictor
refinement with automatic motion refinement activation or deactivation at a decoder,

according to an embodiment of the present principles.

[118] For a block to be decoded, the decoder generates (1110) MV predictor (MVPurrent)
and decodes (1120) the MV difference (MVD). When IMVDI < T1 (1125) is true, the

decoder checks other conditions to see whether motion refinement is to be activated.

Otherwise, if IMVDI > T1, the decoder checks whether MVDI < T1 4+ S * \/E/Z. In one

example, S = 1/2, indicating that the motion search for the refinement is in [-1/2, 1/2]. If
IMVDI < T1 +S#%+/2/2 (1130), the decoder decides whether motion refinement is used
based on a flag decoded (1140) from the bitstream. Otherwise, if MVDI > T1 + S x V2 /2,
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the decoder does not perform motion refinement (i.e., the motion refinement is automatically
deactivated) and decodes (1180) the motion vector based on the MVP and MVD, ie., MV =
MVP + MVD.

[119] More particularly, the decoder checks (1155) whether IMVPie - MVPcurrend < T2 and
IMVPabove - MVPeupendd < T2, If yes, the decoder checks (1165) whether Texture(L) > T3.
If both conditions at 1155 and 1165 are satisfied, the decoder performs motion vector
predictor refinement, for example, using the various embodiments described above, and
decodes (1170) the motion vector based on the refined motion vector predictor (MVP*) and
MVD, i.e., MV = MVP* + MVD. Here, the motion refinement is automatically activated

without a flag.

[120] When T1 < IMVDI<TI +S=x* \/E/Z, the decoder decodes (1140) a flag (for example,
Refine_flag) indicating whether motion refinement may be used. If the flag is true (1145),
the decoder continues to step 1155. Otherwise, if the flag is false (1145), the motion vector
is obtained (1180) based on the MVP and MVD.

[121] In FIG. 11, the decoder automatically deactivates or activates motion refinement in
some conditions, and relies on a flag to deactivate or activate motion refinement in other
conditions. The same conditions are used by a corresponding encoder to ensure the

synchronization between the encoder and decoder.

[122] When MVD is 0, for example, when the merge mode is used, the condition at step
1125 is always true and can be removed, and steps 1120, 1130, 1140, 1145 and 1180 are not
needed. Alternatively, in the merge mode, motion refinement can be disabled in order to

avoid adding noise on the merge deduced motion vector predictor.

[123] Different from what is shown in FIG. 11, method 1100 can also skip steps 1130-1145.
That is, when IMVDI > T1, the decoder performs step 1180 without motion refinement.
Other variations can also be implemented, for example, but not limited to, skipping step 1155

and/or step 1165, checking one of the two conditions at step 1155.

[124] FIG. 12 illustrates an exemplary method 1200 for performing automatic motion
refinement at an encoder, according to an embodiment of the present principles. The output
of method 1200 may be used as an input bitstream to method 1100. At the initialization step
(1205), the encoder may access a video sequence to be encoded as input. Additionally, the

encoder may set the parameters to initial values, for example, set Best_RDcost to a large
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value.

[125] Motion estimation (1210) is performed at the 1/8-pel resolution to obtain a motion
vector MV. At step 1220, a motion vector predictor list is built, for example, using the
motion vector predictor candidate list from AMVP. A rounded version (for example, to the
closet integer at the desired resolution) of an initial motion vector predictor or an average of
neighboring motion vectors may be used, consistent with how a corresponding decoder builds
the motion vector predictor list. The MVP list may contain only one MVP in some cases.

At step 1220, the motion vector predictor list can also be built at other resolutions.

[126] At step 1225, for a particular MVP, the encoder then checks whether it is more
efficient to encode the motion vector using adaptive motion refinement or not and sets a
Refine_flag to O or 1. When motion refinement is more efficient, Refine_flag is set to 1,

and otherwise to 0. A corresponding MVD is also computed at step 1225.

[127] FIG. 13 illustrates an exemplary method 1300 for determining whether or not to use
adaptive motion refinement for a particular MVP, according to an embodiment of the present

principles. Method 1300 can be used to implement step 1225 of method 1200.

[128] Particularly, the encoder checks (1305) whether IMVPier - MVPeurrend < T2, IMVPabove
- MVPeurend < T2, and Texture(L) > T3. If the conditions at 1305 are satisfied, the encoder
performs motion vector predictor refinement (1330), for example, using the various
embodiments described above, and computes (1340) the motion vector difference based on
the refined motion vector predictor (MVP*), i.e., MVD = MV - MVP* A RD Cost
(RDCostl) is estimated (1350) when motion refinement is used. The encoder also computes
(1360) the motion vector difference without the refined motion vector predictor, i.e., MVD =
MV - MVP. A RD Cost (RDCost2) is estimated (1370) when motion refinement is not
used. The RD costs with and without motion refinement are compared (1375). If
RDCostl is smaller, then Refine_flag is set (1380) to 1, and MVD is set to MV — MVP*,
Otherwise, Refine_flag is set (1390) to 0, and MVD is set to MV — MVP.

[129] If the conditions at 1305 are not satisfied, the motion vector difference is computed
(1310) based on the motion vector predictor (MVP), ie., MVD = MV — MVP, and
Refine_flag is set (1320) to 0.

[130] After the MVD and Refine_flag are determined at step 1225, at step 1230, the encoder
checks whether IMVDI £ T1. If yes, the encoder further checks (1235) whether Refine_flag
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is equal to 1. If Refine_flag is set to 1, the encoder estimates (1270) the RD cost. If the
RD cost is smaller than the current Best_RDCost (1275), parameters Best_RDcost and
Best_ MVD are set (1280) to the current RD cost and current MVD, and Write_flag is set to
no, indicating that no explicit signaling is used to indicate adaptive motion refinement. That
is, if the current MVP is selected for encoding, the motion refinement would be automatically

activated without the need to send a flag.

[131] When IMVDI > T1 (1230), the encoder estimates (1240) the RD cost. If the RD cost
is smaller than the Best_RDCost (1245), parameters Best_RDcost and Best MVD are set
(1250) to the current RD cost and current MVD. The encoder then checks (1255) whether
IMVDI < T1 +S=%+/2/2. If yes, Write_flag is set to yes. Here, if a motion vector
predictor corresponding to conditional branch 1260 is selected, whether motion refinement is

activated would be explicitly signaled based on Refine_flag.

[132] Otherwise if the condition at 1255 is not satisfied, Write_flag is set (1265) to no.
That is, if a motion vector predictor corresponding to conditional branch 1265 is selected, the

motion refinement would be automatically deactivated without the need to send a flag.

[133] The encoder checks (1285) whether the end of the MVP list is reached. If yes, the
encoder encodes the Best_MVD, the index of the selected MVP, and corresponding residual
if any. If Write_flag is set to yes, the Refine_flag is also encoded. Otherwise, if the
condition at 1285 is not satisfied, the control is returned to step 1225. If the merge mode is
selected, Best_ MVD does not need to be encoded at step 1290. Corresponding to method
1100, method 1200 can also be varied from what is shown in FIG. 12, for example, steps

1240-1260 can be skipped.

[134] In the above, automatic activation of deactivation of motion refinement is discussed
with respect to a motion vector predictor. It should be noted that the automatic activation or
deactivation can be applied to other types of motion information, for example, but not limited

to, the motion vector that already includes the motion vector difference.

[135] Various numeric values are used in the present application, for example, to determine
the motion similarity or textureness based on thresholds. It should be noted that the specific
values are for exemplary purposes and the present principles are not limited to these specific

values.

[136] In the above, various embodiments are described with respect to the HEVC standard.
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For example, various motion refinement or automatic activation methods as described above
can be used to modify the motion estimation module (175) of the HEVC encoder as shown in
FIG. 1 or the motion compensation module (375) of the HEVC decoder as shown in FIG. 3.
However, the present principles are not limited to HEVC, and can be applied to other

standards, recommendations, and extensions thereof.

[137] In the above, we discuss motion refinement from from1/4-pel to 1/8-pel. It should
be noted that the present principles can be applied to refinement between other motion
resolutions, for example, but not limited to, from integer-pel to 1/4-pel, from1/4-pel to

1/6-pel.

[138] FIG. 14 illustrates a block diagram of an exemplary system in which various aspects
of the exemplary embodiments of the present principles may be implemented. System 1400
may be embodied as a device including the various components described below and is
configured to perform the processes described above. Examples of such devices, include,
but are not limited to, personal computers, laptop computers, smartphones, tablet computers,
digital multimedia set top boxes, digital television receivers, personal video recording
systems, connected home appliances, and servers. System 1400 may be communicatively
coupled to other similar systems, and to a display via a communication channel as shown in
FIG. 14 and as known by those skilled in the art to implement the exemplary video system

described above.

[139] The system 1400 may include at least one processor 1410 configured to execute
instructions loaded therein for implementing the various processes as discussed above.
Processor 1410 may include embedded memory, input output interface and various other
circuitries as known in the art. The system 1400 may also include at least one memory 1420
(e.g., a volatile memory device, a non-volatile memory device). System 1400 may
additionally include a storage device 1440, which may include non-volatile memory,
including, but not limited to, EEPROM, ROM, PROM, RAM, DRAM, SRAM, flash,
magnetic disk drive, and/or optical disk drive. The storage device 1440 may comprise an
internal storage device, an attached storage device and/or a network accessible storage device,
as non-limiting examples. System 1400 may also include an encoder/decoder module 1430

configured to process data to provide an encoded video or decoded video.

[140] Encoder/decoder module 1430 represents the module(s) that may be included in a
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device to perform the encoding and/or decoding functions. As is known, a device may
include one or both of the encoding and decoding modules. Additionally, encoder/decoder
module 1430 may be implemented as a separate element of system 1400 or may be
incorporated within processors 1410 as a combination of hardware and software as known to

those skilled in the art.

[141] Program code to be loaded onto processors 1410 to perform the various processes
described hereinabove may be stored in storage device 1340 and subsequently loaded onto
memory 1420 for execution by processors 1410. In accordance with the exemplary
embodiments of the present principles, one or more of the processor(s) 1410, memory 1420,
storage device 1440 and encoder/decoder module 1430 may store one or more of the various
items during the performance of the processes discussed herein above, including, but not
limited to the input video, the bitstream, equations, formula, matrices, variables, operations,

and operational logic.

[142] The system 1400 may also include communication interface 1450 that enables
communication with other devices via communication channel 1460. The communication
interface 1450 may include, but is not limited to a transceiver configured to transmit and
receive data from communication channel 1460. The communication interface may include,
but is not limited to, a modem or network card and the communication channel may be
implemented within a wired and/or wireless medium. The various components of system
1400 may be connected or communicatively coupled together using various suitable

connections, including, but not limited to internal buses, wires, and printed circuit boards.

[143] The exemplary embodiments according to the present principles may be carried out
by computer software implemented by the processor 1410 or by hardware, or by a
combination of hardware and software. As a non-limiting example, the exemplary
embodiments according to the present principles may be implemented by one or more
integrated circuits. The memory 1420 may be of any type appropriate to the technical
environment and may be implemented using any appropriate data storage technology, such as
optical memory devices, magnetic memory devices, semiconductor-based memory devices,
fixed memory and removable memory, as non-limiting examples. The processor 1410 may
be of any type appropriate to the technical environment, and may encompass one or more of
microprocessors, general purpose computers, special purpose computers and processors

based on a multi-core architecture, as non-limiting examples.
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[144] The implementations described herein may be implemented in, for example, a method
or a process, an apparatus, a software program, a data stream, or a signal. Even if only
discussed in the context of a single form of implementation (for example, discussed only as a
method), the implementation of features discussed may also be implemented in other forms
(for example, an apparatus or program). An apparatus may be implemented in, for example,
appropriate hardware, software, and firmware. The methods may be implemented in, for
example, an apparatus such as, for example, a processor, which refers to processing devices
in general, including, for example, a computer, a microprocessor, an integrated circuit, or a
programmable logic device. Processors also include communication devices, such as, for
example, computers, cell phones, portable/personal digital assistants ("PDAs"), and other

devices that facilitate communication of information between end-users.

[145] Reference to “one embodiment” or “an embodiment” or “one implementation” or “an
implementation” of the present principles, as well as other variations thereof, mean that a
particular feature, structure, characteristic, and so forth described in connection with the
embodiment is included in at least one embodiment of the present principles. Thus, the
appearances of the phrase “in one embodiment” or “in an embodiment” or “in one
implementation” or “in an implementation”, as well any other variations, appearing in various

places throughout the specification are not necessarily all referring to the same embodiment.

[146] Additionally, this application or its claims may refer to “determining” various pieces
of information. Determining the information may include one or more of, for example,
estimating the information, calculating the information, predicting the information, or

retrieving the information from memory.

[147] Further, this application or its claims may refer to “accessing” various pieces of
information. Accessing the information may include one or more of, for example, receiving
the information, retrieving the information (for example, from memory), storing the
information, processing the information, transmitting the information, moving the
information, copying the information, erasing the information, calculating the information,

determining the information, predicting the information, or estimating the information.

[148] Additionally, this application or its claims may refer to “receiving” various pieces of
information. Receiving is, as with “accessing”, intended to be a broad term. Receiving the
information may include one or more of, for example, accessing the information, or retrieving

the information (for example, from memory). Further, “receiving” is typically involved, in



10

15

WO 2018/002024 3 PCT/EP2017/065809

one way or another, during operations such as, for example, storing the information,
processing the information, transmitting the information, moving the information, copying
the information, erasing the information, calculating the information, determining the

information, predicting the information, or estimating the information.

[149] As will be evident to one of skill in the art, implementations may produce a variety of
signals formatted to carry information that may be, for example, stored or transmitted. The
information may include, for example, instructions for performing a method, or data
produced by one of the described implementations. For example, a signal may be formatted
to carry the bitstream of a described embodiment. Such a signal may be formatted, for
example, as an electromagnetic wave (for example, using a radio frequency portion of
spectrum) or as a baseband signal. The formatting may include, for example, encoding a
data stream and modulating a carrier with the encoded data stream. The information that the
signal carries may be, for example, analog or digital information. The signal may be
transmitted over a variety of different wired or wireless links, as is known. The signal may

be stored on a processor-readable medium.
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CLAIMS

1. A method (1100) for video decoding, comprising:
accessing (1110) a motion vector predictor and a motion vector difference for a
current block of a video, said motion vector predictor being associated with a first motion
resolution; and
determining (1125, 1130) whether or not to refine said motion vector predictor, based
on said motion vector difference, wherein refining (1170) said motion vector predictor
includes:
forming a refined motion vector predictor based on motion search, said refined
motion vector predictor being associated with a second motion resolution, and said
second motion resolution being higher than said first motion resolution, and
forming (1170) a motion vector for said current block based on said refined
motion vector predictor and said motion vector difference, wherein said current block

is decoded based on said formed motion vector.

2. An apparatus (1400) comprising at least one memory and one or more
processors, said one or more processors configured to:
access a motion vector predictor and a motion vector difference for a current block of
a video, said motion vector predictor being associated with a first motion resolution; and
determine whether or not to refine said motion vector predictor, based on said motion
vector difference, wherein said one or more processors are configured to refine said motion
vector predictor by performing:
forming a refined motion vector predictor based on motion search, said refined
motion vector predictor being associated with a second motion resolution, and said
second motion resolution being higher than said first motion resolution, and
forming a motion vector for said current block based on said refined motion
vector predictor and said motion vector difference, wherein said current block is

decoded based on said formed motion vector.

3. The method of claim 1, or the apparatus of claim 2, wherein said motion
vector predictor is determined to be refined when a magnitude of said motion vector

difference is smaller than a first threshold.
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4. The method of claim 1 or 3, or the apparatus of claim 2 or 3, wherein said
motion vector predictor is determined not to be refined when a magnitude of said motion
vector difference exceeds a second threshold, further comprising decoding said current block

based on said motion vector predictor and said motion vector difference.

5. The method of any one of claims 1 and 3-4, or the apparatus of any one of
claims 2-4, when a magnitude of said motion vector difference exceeds a first threshold,
further comprising decoding a flag from a bitstream, wherein whether or not said motion

vector predictor is to be refined is based on said decoded flag.

6. The method of any one of claims 1 and 3-5, further comprising, or the
apparatus of any one of claims 2-5, said one or more processors further configured to
perform:

accessing at least one motion vector of adjacent decoded blocks, wherein said motion
vector predictor is determined to be refined if a difference between said motion vector
predictor for said current block and said at least one motion vector is smaller than a third

threshold.

7. The method of any one of claims 1 and 3-6, further comprising, or the
apparatus of any one of claims 2-6, said one or more processors further configured to
perform:

accessing a plurality of pixels of adjacent decoded blocks, wherein said motion vector
predictor is determined to be refined if a texture level of said plurality of pixels exceeds a

fourth threshold.

8. A method (1200) for video encoding, comprising:

accessing (1220) a motion vector predictor, said motion vector predictor being
associated with a first motion resolution;

determining (1225) a motion vector difference corresponding to said motion vector
predictor;

determining (1225) whether to refine said motion vector predictor, said refinement
being associated with a second motion resolution, and said second motion resolution being

higher than said first motion resolution;
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determining (1280, 1260, 1265) whether or not to explicitly signal said refinement of
said motion vector predictor, based on said determined motion vector difference; and

encoding (1290) said motion vector difference.

9. An apparatus (1400) comprising at least one memory and one or more
processors, said one or more processors configured to:

access a motion vector predictor, said motion vector predictor being associated with a
first motion resolution;

determine a motion vector difference corresponding to said motion vector predictor;

determine whether to refine said motion vector predictor, said refinement being
associated with a second motion resolution, and said second motion resolution being higher
than said first motion resolution;

determine whether or not to explicitly signal said refinement of said motion vector
predictor, based on said determined motion vector difference; and

encode said motion vector difference.

10. The method of claim §, or the apparatus of claim 9, wherein said refinement of
said motion vector predictor is not explicitly signaled when a magnitude of said motion

vector difference is smaller than a first threshold.

11. The method of claim § or 10, or the apparatus of claim 9 or 10, wherein said
refinement of said motion vector predictor is deactivated without explicitly signaling when a

magnitude of said motion vector difference exceeds a second threshold.

12. The method of any of claims 8 and 10-11, or the apparatus of any one of
claims 9-11, when a magnitude of said motion vector difference exceeds a first threshold,
further comprising encoding a flag into a bitstream to explicitly signal whether or not said

motion vector predictor is to be refined.

13. The method of any of claims 8 and 10-12, further comprising, or the apparatus
of any of claims 9-12, said one or more processors further configured to perform:

accessing at least one motion vector of adjacent reconstructed blocks, wherein said
motion vector predictor is determined to be refined if a difference between said motion vector

predictor for said current block and said at least one motion vector is smaller than a third
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threshold.

14. The method of any of claims 8 and 10-13, further comprising, or the apparatus
of any of claims 9-13, said one or more processors further configured to perform:

accessing a plurality of pixels of adjacent reconstructed blocks, wherein said motion
vector predictor is determined to be refined if a texture level of said plurality of pixels

exceeds a fourth threshold.

15. A non-transitory computer readable storage medium having stored thereon

instructions for implementing a method according to any of claims 1, 3-8 and 10-14.

16. A bitstream, generated according to a method of any of claims 8 and 10-14.
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