(54) 发明名称
一种顶发光 OLED 器件及其制备方法

(57) 摘要
本发明所述的一种顶发光 OLED 器件及其制备方法，依次包括衬底基板、反射金属层、有机功能层和第二电极层，所述反射金属层与有机功能层之间还设有散射层和透明电极层，所述散射层的两侧分别与所述反射金属层和透明电极层相接触，所述透明电极层的另一侧与所述有机功能层相接触。本发明通过在反射金属层和发光层之间依次设置了散射层和透明电极层，散射层主要是消除顶发光器件结构中所存在的微腔效应，消除器件视角问题。
1. 一种顶发光 OLED 器件，依次包括衬底基板、反射金属层、有机功能层和第二电极层，其特征在于，所述反射金属层与有机功能层之间还设有散射层和透明电极层，所述散射层的两侧分别与所述反射金属层和透明电极层相接触，所述透明电极层的另一侧与所述有机功能层相接触。

2. 根据权利要求 1 所述的顶发光 OLED 器件，其特征在于，所述有机功能层依次包括空穴传输层、发光层和电子传输层，所述空穴传输层的一侧与所述透明电极层相接触。

3. 根据权利要求 1 所述的顶发光 OLED 器件，其特征在于，所述第二电极层为半透明金属电极层，其材质为金、银、镁、铝、铜、钯或其合金。

4. 根据权利要求 3 所述的顶发光 OLED 器件，其特征在于，所述半透明金属电极层的厚度为 1-50nm。

5. 根据权利要求 1 所述的顶发光 OLED 器件，其特征在于，所述散射层的材质为氧化钛、氧化镁、氧化锌、氧化硅、二氧化硅、氧化铝、氧化铜、氧化铋、氧化锡、氧气等中的一种或上述多种材料的组合，其厚度为 0.1-3um。

6. 根据权利要求 1 所述的顶发光 OLED 器件，其特征在于，所述的透明电极层的材质为 ITO、IZO、ZnO、PEDOT-PSS 中的一种或几种，其厚度为 0.1-3um。

7. 根据权利要求 1-6 任一所述的顶发光 OLED 器件，其特征在于，所述的反射金属层的材质为金、银、镁、铝、铜、钯或其合金。

8. 一种顶发光 OLED 器件的制备方法，其特征在于，所述方法包括如下步骤:

步骤一，提供衬底基板，并在衬底基板上制作反射金属层；

步骤二，在反射金属层的表面上依次制作散射层和透明电极层；

步骤三，将步骤二中的衬底基板放入蒸镀腔室中，在透明电极层上依次蒸镀空穴传输层、发光层、电子传输层和第二电极层，即得顶发光 OLED 器件。

9. 根据权利要求 8 所述的制备方法，其特征在于，所述步骤二中的在反射金属层的表面上依次制作散射层和透明电极层的方式为蒸镀、溅射或湿法制备。

10. 根据权利要求 8 所述的制备方法，其特征在于，所述步骤三中的第二电极层为半透明金属电极层。
说明 书

一种顶发光 OLED 芯件及其制备方法

技术领域

[0001] 本发明涉及照明技术领域，具体涉及一种顶发光 OLED 芯件及其制备方法。

背景技术

[0002] OLED 按按光的取出方式可分为底发射型和顶发射型。顶发射型有机电致发光器件的光是从顶发射出，为了使光的取出效率达到最大，因此器件一般采用反射率较高的金属作为底面反射层，而顶端则为便于光发出的透明或半透电极。但是，采用透明电极时制作电极过程中的高能量会对有机层造成损伤，采用半透明电极会存在往返多次反射产生的微腔效应，产生严重的视觉问题。

[0003] 中国专利文献 CN 102468444A 中公开了一种有机电致发光器件及其制备方法，包括：一基底；一阳极，其结合在所述基底的一表面上；一光敏层，其结合在所述阳极与所述基底相对的表面上；一有机电致发光结构，其结合在所述光敏层与所述阳极相对的表面上；一阴极，其结合在所述有机电致发光结构与所述光敏层相对的表面上。本发明有机电致发光器件在其中设有光敏层，使得有机电致发光器件所发出的光在该光敏层界面发生反射，从而显著改善器件的视角问题。但是，两个电极之间加入光敏层，由于光敏层的电阻很高，导电性非常差导致器件效率很差。

发明内容

[0004] 为此，本发明要解决的是提高器件效率和出光效率的同时达到宽视角的器件性能，本发明提供了一种顶发光 OLED 芯件及其制备方法。

[0005] 一方面本发明提供了一种顶发光 OLED 芯件，依次包括衬底基板、反射金属层、有机功能层和第二电极层，所述反射金属层与有机功能层之间还设有光敏层和透明电极层，所述光敏层的两侧分别与所述反射金属层和透明电极层相接触，所述透明电极层的另一侧与所述有机功能层相接触。

[0006] 所述有机功能层依次包括空穴传输层、发光层和电子传输层，所述空穴传输层的两侧与所述透明电极层相接触。

[0007] 所述第二电极层为半透明金属电极层，其材质为金、银、镁、铝、铜、铂或其合金。

[0008] 所述半透明金属电极层的厚度为 1~50nm。

[0009] 所述反射层的材质为氧化钛、二氧化钛、氧化镁、氧化锌、氧化硅、二氧化硅、氧化锆、氧化铁、氧化铜、氧化铝、氧化锡、氧化镍、氧化钨中的一种或上述多种材料的组合，其厚度为 0.1~3 微米。

[0010] 所述的透明电极层的材质为 IT0、IZO、ZnO、PEDOT-PSS 中的一种或者几种，其厚度为 0.1~3 微米。

[0011] 所述的反射金属层的材质为金、银、镁、铝、铜、铂或其合金。

[0012] 另一方面，本发明提供了一种顶发光 OLED 芯件的制备方法，所述方法包括如下步骤：
附图说明

为了使本发明的内容更容易被清楚的理解，下面根据本发明的具体实施例并结合附图，对本发明作进一步详细的说明，其中

图 1 是本发明提供的 OLED 器件结构示意图。

图中：1- 褶底基板；2- 反射金属层；3- 散射层；4- 透明电极层；5- 发光层；6- 第二电极层。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚，下面将结合附图对本发明实施方式作进一步地详细描述。

图 1 结构所示，本发明提供了一种顶发光 OLED 器件，依次包括褶底基板 1、反射金属层 2、有机功能层 5 和第二电极层 6，反射金属层 2 与有机功能层 5 之间设有散射层 3 和透明电极层 4，散射层 3 的两侧分别与反射金属层 2 和透明电极层 4 相接触，透明电极层 4 的另一侧与所述有机功能层 5 相接触，其中的有机功能层 5 依次包括空穴传输层、发光层和电子传输层，所述空穴传输层的一侧与所述透明电极层相接触。

本发明优选所采用的第二电极层 6 为半透明金属电极层，半透明金属电极层的材质为金、银、镁、铝、铜、铂或其合金。

半透明金属电极层的厚度为 1-50nm。

所述散射层的材质为可产生光散射的无机颗粒，即氧化钛、二氧化钛、氧化镁、氧化锌、氧化硅、二氧化硅、二氧化砷、氧化铁、氧化铜、氧化铝、氧化锰、氧化镓、氧化钨中的一种或上述多种材料的组合，其厚度为 0.1-3 微米。

透明电极层的材质为 ITO、IZO，PEDOT-PSS 中的一种或者几种，其厚度为 0.1-3 微米。

实施例 1
下面具体说明 OLED 器件结构及制备方法，其中 OLED 器件的结构为：玻璃基板 / Ag (150nm) / TiO₂ (800nm) / ITO (150nm) / NPB (40nm) / ADN : TBPE (7%) (30nm) / Alq₃ (20nm) / Mg : Ag (30%) (20nm) / Ag (10nm)。

其制备方法具体如下所述：

（1）以透明玻璃为基板，在其上制作一层 150nm 的 Ag 金属作为反射金属层；

（2）在反射金属层上制作一层散射层，散射层的厚度为 800nm，其中散射层制作过程包括：

a）分散过程：将 15g 二氧化钛，1.2g 分散剂 (afcma-4010)，60g 溶剂（丙二醇甲醚醋酸酯）, 所制得的溶液放入研磨罐中，固定好研磨罐及研磨柱后，加入 90ml 铝珠（注：铝珠的量视研磨罐的体积而定），研磨 3 小时后用纱布滤去铝珠，制得研磨液。研磨液经过 1.2μm 滤纸过滤后，制得溶液 A。溶液 A 与光刻胶 (EOC130) 比例 1：1 混合后，制得溶液 B；

b）旋涂成膜：将上述制得的溶液 B，通过常规的光刻工艺旋涂，旋涂成膜。

（3）二氧化钛散射层制作完成后，采用直流磁控溅射法制备 150nm 的 ITO 透明电极层。ITO 靶材为铟锡合金，其成份比例 In：Sn = 90%：10%。制备过程中氧分压为 0.4Sccm，氩分压为 20Sccm。制备出 ITO 透明电极层后，再通过刻蚀方法刻蚀出 ITO 透明电极层。

（4）放入蒸镀腔室中蒸镀有机功能层和第二电极层。依次蒸镀空穴传输层、发光层、电子传输层、半透明金属电极层。蒸镀过程中腔室压强低于 5.0×10⁻⁵ Pa，首先蒸镀 40nm 厚 NPB 作为空穴传输层；以双源共蒸的方法蒸镀 30nm 厚的 ADN 和 TBPE 作为发光层，通过速率控制 TBPE 在 ADN 中的比例为 7%；蒸镀 20nm 的 Alq₃ 作为电子传输层；蒸镀 Mg : Ag (30%)，厚度为 20nm，其上再蒸镀 10nm 的 Ag，整体作为半透明金属电极层。

实施例 2

OLED 器件的结构为：玻璃基板 / Au (150nm) / SiO₃ (3um) / IZO (1um) / NPB (40nm) / ADN : TBPE (7%) (30nm) / Alq₃ (20nm) / Mg : Ag (30%) (20nm) / Ag (10nm)。

其制备方法具体如下所述：

（1）以透明玻璃为基板，在其上制作一层 150nm 的 Au 金属作为反射金属层；

（2）在反射金属层上制作一层氧化硅散射层，散射层的厚度为 3um，制作方法是将氧化硅分散液通过常规的光刻工艺旋涂，旋涂成膜。

（3）氧化硅散射层制作完成后，采用直流磁控溅射法制备 1 微米的 IZO 透明电极层。制备出 IZO 透明电极层后，再通过刻蚀方法刻蚀出 IZO 透明电极层。

（4）放入蒸镀腔室中蒸镀有机功能层和第二电极层。依次蒸镀空穴传输层、发光层、电子传输层、半透明金属电极层。蒸镀过程中腔室压强低于 5.0×10⁻⁵ Pa，首先蒸镀 40nm 厚 NPB 作为空穴传输层；以双源共蒸的方法蒸镀 30nm 厚的 ADN 和 TBPE 作为发光层，通过速率控制 TBPE 在 ADN 中的比例为 7%；蒸镀 20nm 的 Alq₃ 作为电子传输层；蒸镀 Mg : Ag (30%)，厚度为 20nm，其上再蒸镀 10nm 的 Ag，整体作为半透明金属电极层。

实施例 3

OLED 器件的结构为：玻璃基板 / Pt (150nm) / ZrO₂ (300nm) / PEDOT : PSS (300nm) / NPB (40nm) / ADN : TBPE (7%) (30nm) / Alq₃ (20nm) / Mg : Ag (30%) (20nm) / Ag (10nm)。其制备方
法具体如下所述:

[0048] (1) 以透明玻璃为基板，在其上制作一层 150nm 的 Pt 金属作为反射金属层；
[0049] (2) 在反射金属层上制作一层 ZrO₂ 散射层，散射层的厚度为 300nm，通过常规的光刻工艺旋涂，旋涂成膜。
[0050] (3) ZrO₂ 散射层制作完成后，采用常规的光刻工艺旋涂一层 PEDOT:PSS，厚度为 300nm。制备出透明 PEDOT:PSS 电极层后，再通过刻蚀方法刻蚀出透明电极层。
[0051] (4) 放入蒸镀腔室中蒸镀有机功能层和第二电极层。依次蒸镀空穴传输层、发光层、电子传输层，半透明金属电极层。蒸镀过程中腔室压强低于 5.0 × 10⁻³ Pa，首先蒸镀 40nm 厚 NPB 作为空穴传输层；以双源共蒸的方法蒸镀 30nm 厚的 ADN 和 TBPe 作为发光层，通过速率控制 TBPe 在 ADN 中的比率为 7%；蒸镀 20nm 的 Alq3 作为电子传输层；蒸镀 Mg:Ag(30%)，厚度为 20nm，其上再蒸镀 10nm 的 Ag，整体作为半透明金属电极层。
[0052] 实施例 4
[0053] OLED 器件的结构为：玻璃基板 /Pt (150nm)/ZrO₂(500nm)/ZnO(3um)/NPB(40nm)/
ADN:TBPe(7%) (30nm)/Alq3(20nm)/Cu(10nm)。其制备方法具体如下所述：
[0054] (1) 以透明玻璃为基板，在其上制作一层 150nm 的 Pt 金属作为反射金属层；
[0055] (2) 在反射金属层上制作一层 ZrO₂ 散射层，散射层的厚度为 500nm，通过常规的光刻工艺旋涂，旋涂成膜。
[0056] (3) ZrO₂ 散射层制作完成后，采用常规的光刻工艺旋涂一层 ZnO，厚度为 3um。制备出透明 ZnO 电极层后，再通过刻蚀方法刻蚀出透明电极层。
[0057] (4) 放入蒸镀腔室中蒸镀有机功能层和第二电极层。依次蒸镀空穴传输层、发光层、电子传输层，半透明金属电极层。蒸镀过程中腔室压强低于 5.0 × 10⁻³ Pa，首先蒸镀 40nm 厚 NPB 作为空穴传输层；以双源共蒸的方法蒸镀 30nm 厚的 ADN 和 TBPe 作为发光层，通过速率控制 TBPe 在 ADN 中的比率为 7%；蒸镀 20nm 的 Alq3 作为电子传输层；蒸镀 10nm 的 Cu，整体作为半透明金属电极层。
[0058] 实施例 5
[0059] OLED 器件的结构为：玻璃基板 /Pt (150nm)/ZrO₂(2um)/ZnO(100nm)/NPB(40nm)/
ADN:TBPe(7%) (30nm)/Alq3(20nm)/Cu(50nm)。其制备方法具体如下所述：
[0060] (1) 以透明玻璃为基板，在其上制作一层 150nm 的 Pt 金属作为反射金属层；
[0061] (2) 在反射金属层上制作一层 ZrO₂ 散射层，散射层的厚度为 2um，通过常规的光刻工艺旋涂，旋涂成膜。
[0062] (3) ZrO₂ 散射层制作完成后，采用常规的光刻工艺旋涂一层 ZnO，厚度为 100nm。制备出透明 ZnO 电极层后，再通过刻蚀方法刻蚀出透明电极层。
[0063] (4) 放入蒸镀腔室中蒸镀有机功能层和第二电极层。依次蒸镀空穴传输层、发光层、电子传输层，半透明金属电极层。蒸镀过程中腔室压强低于 5.0 × 10⁻³ Pa，首先蒸镀 40nm 厚 NPB 作为空穴传输层；以双源共蒸的方法蒸镀 30nm 厚的 ADN 和 TBPe 作为发光层，通过速率控制 TBPe 在 ADN 中的比率为 7%；蒸镀 20nm 的 Alq3 作为电子传输层；蒸镀 50nm 的 Cu，整体作为半透明金属电极层。
[0064] 对比例
[0065] OLED 器件的结构为：玻璃基板 /Au (150nm)/SiO(3um)/NPB(40nm)/ADN:TBPe (7%)

6
其制备方法具体如下所述：

（1）以透明玻璃为基板，在其上制作一层 150nm 的 Au 金属作为反射金属层；

（2）在反射金属层上制作一层氧化硅散射层，散射层的厚度为 3um，制作方法是将氧化硅分散液通过常规的光刻工艺旋涂、旋涂成膜。

（3）直接放入蒸镀腔室中蒸镀有机功能层和第二电极层。依次蒸镀空穴传输层、发光层、电子传输层、半透明金属电极层。蒸镀过程中腔室压强低于 5.0 × 10⁻³Pa，首先蒸镀 40nm 厚 NPB 作为空穴传输层；以双源共蒸的方法蒸镀 30nm 厚的 ADN 和 TBPe 作为发光层，通过速率控制 TBPe 在 ADN 中的比例为 7%；蒸镀 20nm 的 Alq₃ 作为电子传输层；蒸镀 Mg:Ag (30%)，厚度为 20nm，其上再蒸镀 10nm 的 Ag，整体作为半透明金属电极层。

各实施例的效果如下：

<table>
<thead>
<tr>
<th>序号</th>
<th>实施例</th>
<th>10A/m² 下亮度（cd/m² 坎德拉 / 平方米）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>实施例 1</td>
<td>1570</td>
</tr>
<tr>
<td>2</td>
<td>实施例 2</td>
<td>1480</td>
</tr>
<tr>
<td>3</td>
<td>实施例 3</td>
<td>1350</td>
</tr>
<tr>
<td>4</td>
<td>实施例 4</td>
<td>1400</td>
</tr>
<tr>
<td>5</td>
<td>实施例 5</td>
<td>1380</td>
</tr>
<tr>
<td>6</td>
<td>对比例</td>
<td>300</td>
</tr>
</tbody>
</table>

显然，上述实施例仅仅是为清楚地说明所作的举例，而并非对实施方式的限定。对于所属领域的普通技术人员来说，在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。
图 1