

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(1)(H))
— with international search report (Art. 21(3))

(54) Title: PRINTED CIRCUIT BOARD ARRANGEMENT AND METHOD FOR MOUNTING A PRODUCT TO A MAIN PRINTED CIRCUIT BOARD

(57) Abstract: A printed circuit board arrangement and a method for mounting a product to a main printed circuit board (100) at a substantially perpendicular angle, the printed circuit board arrangement comprises a main printed circuit board (100) comprising an elongated slot (102), and a product (128) comprising a connector portion (130) configured to be inserted into the elongated slot (102). The connector portion (130) is such that the product (128) may be attached at a substantially perpendicular angle to the main printed circuit board (100). The elongated slot (102) comprises a protrusion (104), and the connector portion (130) comprises a spring portion (132) configured to engage with the protrusion (104) when the connector portion (130) is inserted into the elongated slot (102). This results in a force pressing the connector portion (130) of the product (128) to at least one side wall of the elongated slot (102).
Printed circuit board arrangement and method for mounting a product to a main printed circuit board

TECHNICAL FIELD OF THE INVENTION

The present invention relates to a printed circuit board arrangement and a method for mounting a product to a main printed circuit board at a substantially perpendicular angle.

BACKGROUND

Printed circuit boards have been used since a long time to allow electronic manufacturers and electronic designers a simple tool for organizing and attaching electronic circuits and components on a platform suitable for each application. However, as there is often a need for a modular design, alternative support structures, or components which require added space, a common solution is to use one or several secondary boards comprising the electronic circuits or components needed, or brackets which hold the circuit board in place within a supporting structure for example in an industrial environment. The assembly of such a system, e.g. a daughterboard or a bracket requires the main printed circuit board to be held in some manner and the daughterboard or bracket to be introduced at a perpendicular angle to be able attached by means of soldering or the like later.

A way to mount the daughterboard to the main printed circuit board is to use tools which hold the main board and the daughter board to be attached. Tools may be expensive, and may even require configurations for each possible product to be attached. Further, the step of attaching or arranging the tools would be an additional step during assembly of a printed circuit board arrangement. The tools and/or steps required may thus be both expensive and time-consuming. Hence, there is a need for a simple, cheap and reliable way to assemble a printed circuit board arrangement.

SUMMARY

With regards to the above-mentioned desired properties of a printed circuit board arrangement, it is a general object of the present invention to provide a printed circuit board arrangement which is simple, cheap, and easy to manufacture.
According to a first aspect of the invention, these and other objectives are achieved with a printed circuit board arrangement, comprising: a main printed circuit board comprising an elongated slot; and a product comprising a connector portion configured to be inserted into the elongated slot, such that the product may be attached at a substantially perpendicular angle to the main printed circuit board. The elongated slot comprises a protrusion, and the connector portion comprises a spring portion configured to engage with the protrusion when the connector portion is inserted into the elongated slot, resulting in a force pressing the connector portion of the product to at least one side wall of the elongated slot.

By printed circuit board, it should be understood that the main printed circuit board is in principle flat and mostly has extensions in two dimensions, i.e. length and width and a limited thickness which is substantially smaller than the length and width of the main printed circuit board.

An elongated slot is substantially longer than it is wide in a longitudinal direction. Thus a protrusion is understood to extend into the elongated slot from a sidewall of the elongated slot. A sidewall should be construed as the elongated walls of the elongated slot.

By being substantially perpendicular it should be understood that the product is to be arranged at a perpendicular angle to the two large dimensions i.e. length and width of the main printed circuit board.

The connector portion is configured to be inserted into the elongated slot and should thus be construed to be of equal or less width and thickness as the elongated slot.

A spring portion which results in a force should herein be interpreted as a portion of the product which bends, and provides a spring force as a response to the strain imposed on the material which is bent.

The present invention is based on the realization that by providing a spring portion of a connector portion of a product to be mounted with a main printed circuit board which has an elongated slot comprising a protrusion, the connector portion may be inserted in the elongated slot, and thus allowing the protrusion and the spring portion to engage. Thereby, the product may be held at a substantially perpendicular angle to the main printed circuit board by the forces produced by the engaging of the spring portion by the protrusion. The present invention allows for a simple mounting of a product to a main printed circuit board without any need for additional tools or components. Thereby, the present invention allows for a low cost production by eliminating the need for such tools or components. Moreover, steps which would require fitting, holding or attaching such tools or components are not
required by the present invention, thus reducing the number of steps during such a mounting operation. An additional advantage of the present invention is that the production tolerance for the connector portions is reduced as the force provided by the engaging of the protrusion and spring portion will provide a force holding the product at a substantially perpendicular angle without an exact tolerance of the connector portion. Yet another advantage is the reduced requirements on the material forming the main printed circuit board such that the main printed circuit board may be formed by commonly used low cost materials. Yet another advantage is that only a small space on the main printed circuit board is required, whereby compact electronics design are not blocked.

According to one embodiment of the invention, the protrusion may be wedge shaped with at least one sloping surface. By forming the protrusion wedge shaped with at least one sloping surface the insertion of the connection portion into the elongated slot may be facilitated by the spring portion which will first engage the sloping surface and thus be increasingly bent during the insertion.

According to another embodiment of the invention, the spring portion may be formed with an outer sloping edge, whereby insertion of the connector portion into the elongated slot engages the outer sloping edge with the sloping surface of the wedge shaped protrusion such that the spring portion is forced to bend. To even further facilitate the insertion of the connector portion, the spring portion may have an outer edge which is sloping. Hence, the outer sloping edge may engage with the sloping surface of the wedge shaped protrusion at insertion which will allow the spring portion and protrusion to easily slide against each other.

According to one embodiment, the spring portion further comprises a recess on a surface thereof, the recess being configured to reduce the force produced by the spring portion. The recess will reduce the amount of material being bent.

According to another embodiment, the spring portion may be formed by a right-angled cut extending into the product from an outer edge of the product, and the spring portion is formed by the material extending from the right-angled cut towards the outer edge of the product. A simple and efficient way to form a spring portion in an e.g. substantially rectangular product may be to form a right-angled cut which extends from an outer edge of the product, which allows the spring portion to be formed from the material remaining from the right-angled cut. Thus providing a spring portion integral to the product and formed from the same material thereof.
According to one embodiment, the product may be a secondary printed circuit board. The present invention also allows a simple and efficient way to arrange a secondary printed circuit board. A secondary printed circuit board may also be known as a daughterboard. The secondary printed circuit board may comprise functionality or components not found or not able to be placed on the main printed circuit board due to e.g. space restriction on the main printed circuit board. An additional advantage of the present invention is then also that the strain imposed on the spring portion is in the strong direction of the material of the secondary circuit boards.

According to another embodiment, the product may be a secondary printed circuit board and the main printed circuit board may comprise a main electronic circuit having electrical connections terminating at the elongated slot, and the secondary printed circuit board may comprise a secondary electronic circuit having electrical connections terminating in the connector portion. By providing electrical connections which terminate where the connector portion is inserted into the elongated slot the main electronic circuit and the secondary electronic circuit may efficiently and simply be electrically connected at the elongated slot by either direct mechanical contact or later introduced components and/or solder.

According to one embodiment, the secondary printed circuit board may be formed in a FR-4 material. As FR-4 is a typical strain resistant type of printed circuit board material, it may be advantageous to provide a more strain-resistant secondary printed circuit board by forming it in a FR-4 material.

According to another embodiment, the secondary printed circuit board may be formed in a FR-1 material or a CEM-1 material. In order to further save costs, the secondary printed circuit board may be formed in a low cost i.e. cheaper FR-1 or CEM-1 material. As the bending direction is in the strong material direction i.e. the strain direction is in the large dimensions of the secondary printed circuit board. The secondary printed circuit board and thus the spring portions can be formed by in a cheaper material such as FR-1 or CEM-1.

According to one embodiment, the product may be a metal plate or bracket. A metal plate or bracket may be used to provide a suitable attachment for the main printed circuit board. Thus, the present invention further allows a simple and efficient way to mount further components or even mount the main printed circuit board itself by allowing the product to be a metal plate or bracket on which the main printed circuit board may be mounted. Likewise, it is possible that the product is a bracket on which other components are mounted.
According to another embodiment, the arrangement may further comprise a soldering joint between the main printed circuit board and the product. A soldering joint between the main printed circuit board and the product will fixate and hold the main printed circuit board and the product together. Further, if the product is secondary printed circuit board the soldering joint may enable electrical contact between the main printed circuit board and the secondary printed circuit board as well as the mechanical connection.

According to a second aspect of the invention, the objectives are also achieved with a method for mounting a product to a main printed circuit board at a substantially perpendicular angle, the method comprising the steps of providing the main printed circuit board comprising an elongated slot which comprises a protrusion, and the product comprising an connector portion comprising a spring portion, and inserting the connector portion of the product into the elongated slot at a substantially perpendicular angle, whereby the protrusion engages with the spring portion resulting in a force pressing the connector portion of the product to at least one side wall of the elongated slot.

According to one embodiment of the invention, the method may further comprise the step of soldering between the main printed circuit board and the product to provide a soldering joint.

According to another embodiment of the invention the main printed circuit board may comprise a main electronic circuit having electrical connections terminating at the elongated slot, and the product is a secondary printed circuit board comprising a secondary electronic circuit having electrical connections terminating in the connector portion, whereby the soldering joint connects the main electronic circuit and the secondary electronic circuit.

Effects and features of this second aspect of the present invention are largely analogous to those described above in connection with the first aspect of the invention.

Further features of, and advantages with, the present invention will become apparent when studying the appended claims and the following description. The skilled person realize that different features of the present invention may be combined to create embodiments other than those described in the following, without departing from the scope of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing different embodiments of the invention.
Fig. 1A and is a top view of a main printed circuit board, and Fig. 1B is a side view of a product according to one embodiment of the invention; Fig. 2 is a detailed perspective view of a protrusion and a spring portion of a connector portion according to one embodiment of the invention; Fig. 3 is a perspective view of a printed circuit board arrangement according to one embodiment of the invention; and Fig. 4 is a flowchart illustrating steps of method for mounting a product to a main printed circuit board at a substantially perpendicular angle according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

In the present detailed description, embodiments of a printed circuit board arrangement according to the present invention are mainly discussed with reference to a planar-view showing the either the main printed circuit board or a product. It should be noted that this by no means limit the scope of the invention, which is also applicable in other circumstances for instance with other types of printed circuit boards. Further, the present invention is mainly discussed using an elongated slot having a protrusion in the middle of a sidewall of the elongated slot, however the present invention is also applicable where the protrusion is anywhere along a sidewall of the elongated slot. Moreover the dimensions and/or number of elongated slots and protrusions shown in the enclosed drawings is only a schematic representation. In use, the number, dimensions and other such details will be decided by each application.

The invention will now be described with reference to the enclosed drawings where first attention will be drawn to the structure, and then secondly the function.

Fig. 1A shows a main printed circuit board 100 having an elongated slot 102 therein. The elongated slot 102 comprises sidewalls 103 on each elongated side, and a protrusion 104 formed from the main printed circuit board 100. The protrusion 104 extends from one of the sidewalls of the elongated slot 102 inwards in the elongated slot 102. The elongated slot 102 may be through-going to facilitate an easier insertion. An area of interest 106 which will be discussed later in conjunction with Fig. 2 is marked. Along the elongated slot 102 there are a number of electrical connections 108. The main printed circuit board may also comprise a range of electrical components (not shown) which may be in electrical contact with the electrical connections 108. Note that the dimensions of length and width
along the x- and y-axis are the large dimensions of the board. A printed circuit board is typically much thinner than it is long and wide, a typical thickness is 1-5 mm.

The protrusion 104 is wedge shaped with at least one sloping surface. The sloping surface will allow a spring portion on a product 128 to more easily be inserted. The elongated slot 102 may also comprises a recess 105 which is arranged opposite the protrusion 104 and configured to provide a space for a spring portion 132 to be bent into when the spring portion 132 engages with the protrusion 104.

The main printed circuit board 100 also comprises a notch 101 which is intended to be used to identify which side of the main printed circuit board 100 an observer is seeing.

Also note that the main printed circuit board 100 shown is arranged in the y-x plane.

Fig. 1B shows a product 128, the product 128 comprises a connector portion 130 which has the spring portion 132 formed essentially therein. An area of interest 134 which will be discussed later in conjunction with Fig. 2 is marked. The product 128 may be a secondary printed circuit board i.e. a daughterboard to the main board or motherboard 100. Therefore, the connector portion 130 may comprise a number of electrical connections 136. In such a case that the product is a secondary printed circuit board it may comprise a range of electrical components (not shown) which may be in contact with the electrical connections 136.

The connector portion 130 comprises the spring portion 132 which is formed by a right-angled cut 133 extending into the product 128 from an outer edge 135 of the product 128. Thereby the spring portion 132 is formed by the material extending from the right-angled cut 133 towards the outer edge 135 of the product 128.

Also note that the product 128 is arranged in the z-y plane, which is different than the orientation of the main printed circuit board 100. This is because the connector portion 130 of the product 128 is intended to be inserted in the elongated slot 102 of the main printed circuit board 100 at a perpendicular angle and moved with a negative movement along the z-axis.

When the connector portion 130 is inserted into the elongated slot 102 the protrusion 104 will force the spring portion 132 to be bent. As the spring portion is bent the connector portion 130 and the product will be forced to at least one sidewall of the elongated slot 102. This will hold the product 128 at a substantially perpendicular angle from the main printed circuit board 100.
Fig. 2 shows the protrusion 104 and the spring portion 132 prior to any engagement with each other. Note that the orientation is now a perspective view and that the coordinate axes are also indicated. The protrusion 104 is formed by the material of the main printed circuit board 100 and is wedge shaped with a sloping surface 202. Adjacent to the wedge shaped protrusion 202 there is also a recess 206.

As described above the spring portion 132 may be formed by a right angled cut 133 into the product 128 from an outer edge 135. The spring portion 132 may also comprise an outer sloping edge 204. The outer sloping edge 204 extends from the outer edge 135 of the product 128 and will, when the product 128 is moved towards insertion into the elongated slot 102, engage with the sloping surface 202 of the protrusion 104. Further, the spring portion 132 comprises a recess herein shown as a through-going hole 208, the hole 208 is configured to reduce the force produced by the spring portion 132 when it engages or has engaged with the protrusion 104. This is achieved by the hole 208 which reduces the amount of material which needs to be strained and bent.

Fig. 3 shows a printed circuit board arrangement where the connector portion 130 of the product 128 has been inserted into the elongated slot 102 of the main printed circuit board 100. The notch 101 indicates that it is the same side as in earlier which of the main printed circuit board 100 which is observed. Note that the secondary printed circuit board 128 is held at a substantially perpendicular angle by the force produced by the spring portion 132 engaging the protrusion 104. This allows for a simple step of assembling the printed circuit board arrangement by inserting, and the electrical connections 106, 136 may be connected by soldering or other suitable connecting means. Therefore, the printed circuit board arrangement can also comprise a soldering joint (not shown) between the main printed circuit board 100 and the product 128.

Fig. 4 shows a flowchart illustrating steps of method for mounting a product 128 to a main printed circuit board 100 at a substantially perpendicular angle.

First, in step S1, the main printed circuit board 100 comprising an elongated slot 102 which comprises a protrusion 104, and the product 128 comprising a connector portion 130 comprising a spring portion 132 are provided.

Referring now to step S2, the connector portion 130 of the product is inserted into the elongated slot 102 at a substantially perpendicular angle, whereby the protrusion 104 engages with the spring portion 132 resulting in a force pressing the connector portion 130 of the product to at least one sidewall 103 of the elongated slot 102.
Then, optionally in step S3, a joint is soldered between the main printed circuit board 100 and the product 128 to provide a soldering joint. The soldering joint provides a mechanical connection. If electrical connections 108, 136 are present, also electrical connection may be provided by the soldering joint. The mechanical connection of the soldering joint will fixate and hold the secondary printed circuit board 128 at a substantially perpendicular angle from the main printed circuit board.

The main printed circuit board 100 can be formed in a CEM-1 material, or any other type of commonly used low cost printed circuit board material. CEM-1 is low cost, flame retardant, cellulose paper based laminate with only one layer of woven glass fabric. The secondary printed circuit board 128 can formed in a FR-4 material (woven glass and epoxy). Optionally any other type of commonly used low cost printed circuit board material can be used e.g. CEM-1 or FR-1.

Note that in all described examples the product 128 could be a metal plate or bracket which would have the same structural features and functions as the above described example. A metal plate or bracket 128 may for example be used to hold a main printed circuit board within a electronic storage unit (not shown) of some kind. Electronic storage units are often used in e.g. industrial environments to protect electronic components and printed circuit boards from direct mechanical or similar interactions.

Additionally, variations to the disclosed embodiments can be understood and effected by the skilled person in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination may not be used to an advantage.
CLAIMS:

1. A printed circuit board arrangement, comprising:
 a main printed circuit board (100) comprising an elongated slot (102); and
 a product (128) comprising a connector portion (130) configured to be inserted
 into said elongated slot (102), such that the product (128) may be attached at a substantially
 perpendicular angle to the main printed circuit board (100),

 wherein the elongated slot (102) comprises a protrusion (104), and wherein
 said connector portion (130) comprises a spring portion (132) configured to engage with said
 protrusion (104) when the connector portion (130) is inserted into said elongated slot (102),
 resulting in a force pressing said connector portion (130) of the product (128) to at least one
 side wall (103) of the elongated slot (102) said force holding the product at a substantially
 perpendicular angle irrespective of a production tolerance of the connector portion.

2. The arrangement according to claim 1, wherein said protrusion (104) is wedge
 shaped with at least one sloping surface (202).

3. The arrangement according to claim 2, wherein said spring portion (132) is
 formed with an outer sloping edge (204), whereby insertion of said connector portion (130)
 into said elongated slot (102) engages said outer sloping edge (204) with said sloping surface
 (202) of said wedge shaped protrusion (104) such that said spring portion (132) is forced to
 bend.

4. The arrangement according to any one of the preceding claims, wherein said
 spring portion (132) further comprises a recess (208) on a surface thereof, said recess (208)
 being configured to reduce the force produced by said spring portion (132).

5. The arrangement according to any one of the preceding claims, wherein said
 spring portion (132) is formed by a right-angled cut (133) extending into said product (128)
 from an outer edge (135) of said product (125), and said spring portion (132) is formed by the
material extending from said right-angled cut (133) towards said outer edge (135) of said product (128).

6. The arrangement according to any one of the preceding claims, wherein said product (128) is a secondary printed circuit board.

7. The arrangement according to any one of claims 1-5, wherein said product (128) is a secondary printed circuit board and said main printed circuit board (100) comprises a main electronic circuit having electrical connections (108) terminating at said elongated slot (102), and wherein said secondary printed circuit board (128) comprises a secondary electronic circuit having electrical connections (136) terminating in said connector portion (130).

8. The arrangement according to claim 6 or 7, wherein said secondary printed circuit board is formed in a FR-4 material.

9. The arrangement according to any one of claim 6 or 7, wherein said secondary printed circuit board is formed in a FR-1 material or a CEM-1 material.

10. The arrangement according to any one of the preceding claims 1-5, wherein said product (128) is a metal plate or bracket.

11. The arrangement according to any one of the preceding claims, further comprising a soldering joint between the main printed circuit board (100) and said product (128).

12. A method for mounting a product (128) to a main printed circuit board (100) at a substantially perpendicular angle, said method comprising the steps of:

 providing (S1) the main printed circuit board (100) comprising an elongated slot (102) which comprises a protrusion (104), and the product (128) comprising an connector portion (130) comprising a spring portion (132); and

 inserting (S2) said connector portion (130) of said product (128) into said elongated slot (102) at a substantially perpendicular angle, whereby said protrusion (104)
engages with said spring portion (132) resulting in a force pressing said connector portion (130) of the product (128) to at least one side wall (103) of the elongated slot (102).

13. The method according to claim 12, wherein the method further comprises the step of:

soldering (S3) between the main printed circuit board (100) and said product (128) to provide a soldering joint.

14. The method according to claim 13, wherein the main printed circuit board (100) comprises a main electronic circuit having electrical connections (108) terminating at said elongated slot (102), and said product (128) is a secondary printed circuit board comprising a secondary electronic circuit having electrical connections (136) terminating in said connector portion (130), whereby said soldering joint connects said main electronic circuit and said secondary electronic circuit.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- **INV.** H05K3/36
- **ADD.** H05K1/14

According to International Patent Classification (IPC) and/or both national classification and IPC.

B. FIELDS SEARCHED

- Minimum documentation searched (classification system followed by classification symbols)
 - H05K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic database consulted during the international search (name of database and, where practical, search terms used)

- EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>IT B020 100 742 AI (SELTAS R L) 18 June 2012 (2012-06-18) page 6, line 3 - page 13, line 10; figures</td>
<td>1,2,5-14</td>
</tr>
<tr>
<td>A</td>
<td>Wo 01/39568 AI (POWERWAVE TECHNOLOGIES INC [US]; SAUER SCOTT B [US]) 31 May 2001 (2001-05-31) page 4, lines 11-15 page 7, line 17 - page 9, line 23; figures 1-5</td>
<td>1,2,5-14</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.
[X] See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) on which the search was based
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "A" document member of the same patent family

Date of the actual completion of the international search: 24 July 2015

Date of mailing of the international search report: 31/07/2015

Name and mailing address of the ISA:

- European Patent Office, P.B. 5818 Patentlaan 2
- NL - 2280 HV Rijswijk
- Tel. (+31-70) 340-2040,
- Fax: (+31-70) 340-3016

Authorized officer: Geoghegan, C
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2007/036181 AI (SIEMENS AG [DE]; DOTZLER CHRISTIAN [DE]; GEITNER MANUEL [DE]; PFITZNER) 5 April 2007 (2007-04-05) page 1, lines 13-31 page 4, lines 10-18 page 5, line 34 - page 9, line 2; figures</td>
<td>1-14</td>
</tr>
<tr>
<td>A</td>
<td>DE 20 2011 002439 UI (TQ SYSTEMS GMBH [DE]) 12 May 2011 (2011-05-12) paragraphs [0011] - [0039]; figures</td>
<td>1,6,7,11-14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>IT B020100742 A1</td>
<td>18-06-2012</td>
<td>AU 4303701 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002080594 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0139568 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007096995 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 112005003784 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1929848 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007036181 A1</td>
</tr>
<tr>
<td>DE 202011002439 U1</td>
<td>12-05-2011</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10008340 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1269806 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003141104 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0163996 A2</td>
</tr>
<tr>
<td>US 2010277883 A1</td>
<td>04-11-2010</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013163416 A1</td>
</tr>
</tbody>
</table>