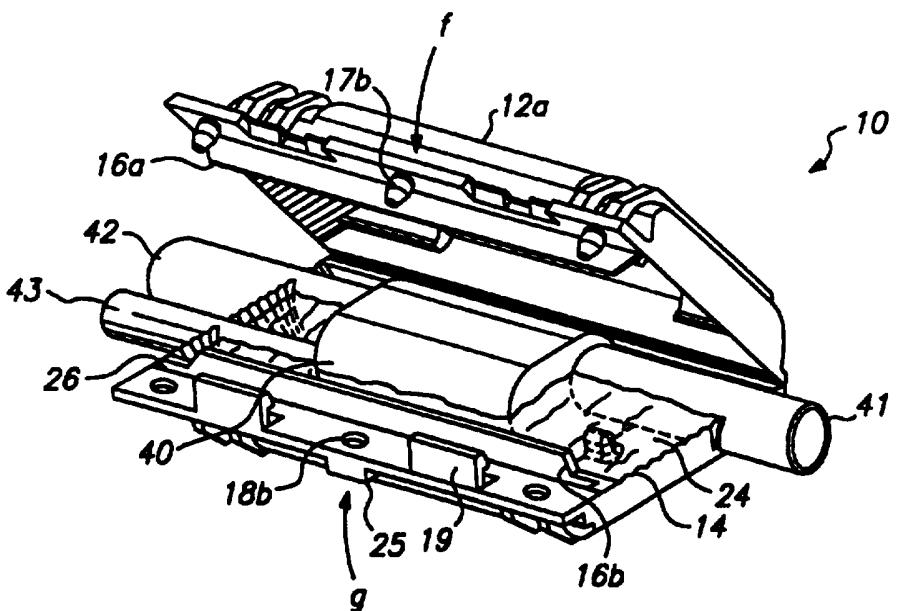


PCT


WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number: WO 97/16869
H01R 4/70, H02G 15/18, G02B 6/44		(43) International Publication Date: 9 May 1997 (09.05.97)
(21) International Application Number: PCT/US96/17309		(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TI, TM, TR, TT, UA, UG, UZ, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 30 October 1996 (30.10.96)		
(30) Priority Data: 08/550,729 1 November 1995 (01.11.95) US		
(71) Applicant: RAYCHEM CORPORATION [US/US]; 300 Constitution Drive, Mail Stop 120/6600, Menlo Park, CA 94025-1164 (US).		Published <i>With international search report.</i>
(72) Inventors: HUYNH-BA, Thai; 10 Tolliver Court, Newark, DE 19702 (US). YAWORSKI, Harry; 108 Tall Pine Drive, Newark, DE 19713 (US). BONTATIBUS, Michael, J., Jr.; 103 Cullen Way, Newark, DE 19711 (US).		
(74) Agents: CHAO, Yuan et al.; Raychem Corporation, Intellectual Property Law Dept., 300 Constitution Drive, Mail Stop 120/6600, Menlo Park, CA 94025-1164 (US).		

(54) Title: GEL-FILLED CLOSURE

(57) Abstract

A gel-filled closure (10) for environmentally protecting a connector (40) forming a connection between a cable (41) and at least one electrical component (which may be another cable) (42, 43) is disclosed. The closure includes first and second cavitated bodies (12a, 12b), each having two lateral sides (13) and two end sides (14); a hinge (15) joining the first and second cavitated bodies along a lateral side thereof, such that the cavitated bodies are capable of pivoting around the hinge and closing around the connector and immediately adjacent portions of the cable and the at least one electrical component. A gel (24) substantially fills each of the first and second cavitated bodies. At least one of the cavitated bodies has a flap (16a, 16b) disposed along the lateral edge thereof distal from the hinge, for directing gel flow in the lateral direction as the first and second cavitated bodies are closed. A locking mechanism (19, 20) for securing the cavitated bodies in a closed position is also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

GEL-FILLED CLOSURE

Technical Field of the Invention

This invention relates to a gel-filled closure for environmentally protecting cable connections.

5

Background of the Invention

When a cable (whether for the transmission of telecommunications signals or electrical power) is connected to another electrical component which can be another cable or other equipment such as switch gear or a transformer, it is customary to strip back the insulation to expose the underlying conductor to make the connection. Connection is 10 effected with a connector which holds the conductors together and establishes electrical contact between them. It is necessary to environmentally protect the connection (the exposed conductors and the connector), particularly against moisture, which can cause short-circuits or, in the case of signal transmission cables, deterioration of signal quality.

Known means for environmentally protecting connections include tapes, elastomeric 15 push-on closures, heat-recoverable (also known as heat-shrink) closures, and cast-resin closures. Each suffers from a drawback of some kind. Tapes are difficult to apply reliably to complex connector geometries such as branched connections and the wrapping process is labor-intensive. Push-on closures rely on an interference fit between the cable and the closure and may for this reason be difficult to install, requiring an excessive amount of 20 force. Also, they tend to leak and become geometrically complex when applied to branched connections. Heat-recoverable closures require specialized tools (e.g., a torch), which may be hazardous in certain environments. Also, a certain amount of craft skill is needed to assure a proper degree of recovery and/or to avoid overheating. Cast resin closures entail the inconvenience of mixing, pouring, and curing of a resin into the closure in the field. The 25 curing requirement also means that the connection cannot be disturbed until a threshold level of cure has been attained, holding up subsequent operations.

Debbaut et al., US 4,600,261 (1986) (hereinafter Debbaut '261") teaches that a gel under compression may be used as a sealing material, with the gel being contained in a suitable closure. Gels offer the advantage of sealing readily around complex substrate geometries and of being re-enterable. Various closure configurations have been proposed, 5 ranging from two separate half-shells, elbows, hinged half-shells (also known as clamshells), and wrap-arounds, as illustrated in Raychem, WO 95/11543 (1995) and Roney et al., US 5,347,084 (1994) (hereinafter "Roney '084"). A hinged gel-filled closure is attractive in several respects. It offers the possibility of less craft sensitivity during installation, in some instances one-handed, tool-less installation. Complex connector 10 geometries and cable configurations and sizes are easily accommodated, including branched connections.

Gel-filled hinged closures may have, however, some limitations. Thermal expansion of the gel may permanently deform the closure material, leading to decompression at the gel interfaces. Closures for connections between electrical power cables are especially susceptible to this problem, because the passage of high currents can heat the gel to temperatures as 15 high as 90 °C, or even 130 °C. Upon closure around the connector, gel may extrude out the side of the closure, resulting in the loss of gel, the prevention of proper compression of the remaining gel, and interference with proper locking of the closure. Internal pressure on the closure exerted by the compressed gel leads to a torsional torque which may deflect the 20 closure and disengage the locking mechanism. During manufacture, a hinged closure is normally laid flat and uncured gel is poured into each half-shell and allowed to cure. The ports through which the cables are to enter the closure must at that time be liquid-impermeable to permit each half-shell to be filled with gel. It has been proposed in Roney '084 to use break-away seals to address this issue. However, such seals may be difficult to break during 25 installation of the closure and may need to be cut with a knife, undesirable as involving both an extra tool and an extra step. Also, once broken, the seals may be ineffective barriers against the loss of gel during service, compromising the sealing function. With these problems in mind, we have invented an improved gel-filled closure, as described hereinbelow.

Summary of the Invention

This invention provides a gel-filled closure for environmentally protecting a connector forming a connection between a cable and at least one electrical component, the closure comprising

5 first and second cavitated bodies, each having two lateral sides and two end sides defining an interior cavity;

10 a hinge joining the first and second cavitated bodies along one lateral side of each of the first and second cavitated bodies, such that the cavitated bodies are capable of pivoting around the hinge and closing around the connector and immediately adjacent portions of the cable and the at least one electrical component;

 a gel substantially filling each of the first and second cavitated bodies;

15 at least one of the cavitated bodies having a flap disposed along the lateral edge thereof distal from the hinge and projecting above the top level of the interior cavity thereof, for directing gel flow in the lateral direction as the first and second cavitated bodies are closed; and

 locking mechanism for securing the cavitated bodies in a closed position.

In a preferred embodiment, each of the cavitated bodies has a flap, i.e., the first cavitated body has a first flap along the lateral edge thereof distal from the hinge and the second cavitated body has a second flap along the lateral edge thereof distal from the hinge, the first 20 and second flaps overlapping and directing gel flow in the lateral direction as the first and second cavitated bodies are closed.

25 In another preferred embodiment, each end side comprises a plurality of fingers joined to the immediately adjacent fingers by a frangible membrane. This construction provides the closure with liquid impermeable end sides as it is filled with fluid, uncured gel, thereby containing the uncured gel and preventing it from leaking out, but also with frangible end sides which can accommodate a wide variety of cable diameters when the closure is closed around a cable and associated connector.

Brief Description of the Drawing(s)

Fig. 1a and 1b show two different views of a closure of this invention.

Fig. 2 and 2b show a detail of a closure of this invention.

Fig. 3a and 3b show the installation of a closure of this invention over a connector
5 connecting an electrical cable and two other electrical cables.

Fig. 4 shows a preferred embodiment for the connector.

Description of the Preferred Embodiments

Fig. 1a and 1b show respective top and bottom perspective views of a gel-filled closure 10 of this invention. Closure 10 has first and second cavitated bodies 12a and 12b, 10 each of which has lateral sides 13 and end sides 14 defining an interior cavity 28. Bodies 12a and 12b are joined to each other along a lateral side 13 by a hinge 15. Hinge 15 is shown here in the preferred embodiment of a living hinge, but other hinge designs such as an integral hinge or a door hinge design are permissible. Bodies 12a and 12b are sized and shaped such that they can pivot about hinge 15 and close to define an enclosed volume 15 inside which can be contained a connector and immediately associated portions of an electrical cable and an electrical component which are electrically connected and held together by the connector, as described hereinbelow. A gel 24 substantially fills each of bodies 12a and 12b. At least one of bodies 12a and 12b has a flap thereon, disposed along the lateral side 13 thereof distal from hinge 15 and projecting above the top level of the 20 cavity. In the preferred embodiment shown, each of bodies 12a and 12b is equipped with a flap, designated as a first flap 16a on body 12a and a second flap 16b on body 12b. When bodies 12a and 12b are closed around the connector and associated cable and electrical component(s), gel 24 is initially squeezed outwards, in the directions indicated by arrows a, b, and c. Excessive flow of gel in direction c tends to interfere with the locking mechanism 25 (described below) and increase the closing force required. However, flaps 16a and 16b overlap each other during the closure operation, act as barriers to gel flow in the c direction, and re-direct gel flow in the lateral direction indicated by arrows d and e. This has the advantageous effect of reducing the closing force and improving the quality of the lateral

5 seal. In the configuration shown, flap 16a overlaps on the outside of flap 16b and body 12b has a groove 26 for receiving flap 16a, but it is to be understood that the mode of overlap and positioning of groove 26 can be reversed. While the exact length of flaps 16a and 16b is not critical, they should be sufficiently long to serve the intended function of damming the
10 undesired lateral flow of gel 24. Preferably, flaps 16a and 16b extend along substantially the entire length of lateral sides 13. Similarly, the width or depth of flaps 16a and 16b is not critical, provided they are of sufficient width to achieve the aforementioned damming function. Where a single flap is used instead of a pair of flaps 16a and 16b, a somewhat wider flap is preferred, for example one which is about twice as wide as it would be when a pair of flaps is used.

15 Body 12a has a plurality of alignment buttons 17a-17c along distal lateral side 13, while body 12b has a corresponding number of alignment holes 18a-18c. In the preferred embodiment shown here, there are three buttons: button 17a is disposed near one end side, button 17c is disposed near the other end side, and button 17b is disposed substantially midway between the other two buttons. However, other numbers and arrangements of buttons may be used. Buttons 17a-17c and holes 18a-18c are sized and positioned such that when bodies 12a and 12b are pivoted around hinge 15 to close them, each button is inserted through a corresponding hole, i.e., button 17a through hole 17a, button 17b through hole 17b, etc. A locking mechanism for securing bodies 12a and 12b in a closed position is
20 provided, illustrated here in the preferred embodiment of cantilevered snap joints consisting of snap arms 19 and receptacles 20. Other locking mechanisms, such as torsion snap joints, annular snap joints, or the longitudinal pin and pin receptacle design of the aforementioned Roney '084 are permissible (though the latter may not be sufficiently strong in larger closure configurations). Preferably the locking mechanism should be relatively easy to
25 activate, be reversible to permit re-entry, and but yet sturdy enough to prevent accidental opening.

30 End sides 14 may be frangible, meaning that they rupture upon the closure of bodies 12a and 12b about a connector and associated electrical cable and components, as shown hereinbelow. However, prior to insertion it must form a wall which is liquid impermeable, to permit filling with liquid, uncured, gel precursor(s) which are then cured to form the gel.

Fig. 2 shows in magnified cross-section a preferred construction of end sides 14, comprising a plurality of fingers 30 joined to adjacent fingers by frangible membranes 31. Fig. 2b is a perspective view of the same feature. Upon closure of bodies 12a and 12b around a cable or electrical component projecting out of the end sides, membrane 31 is 5 stressed and ruptures or tears, permitting the splaying of fingers 30 to accommodate the cable or electrical component. In a preferred embodiment, fingers 30 are about 0.81 mm (0.032 inch) thick, while membranes 31 are about 0.051 mm (0.002 inch) thick.

It is to be understood that closure 10 has been illustrated in the preferred rectangular geometry, i.e., with the lateral sides parallel to each other and perpendicular to the end 10 sides, and vice versa, but that other geometries are permissible. For example, there may be a taper at the end sides, or the distal lateral sides need not be linear but instead can be somewhat curved.

Returning now to Figs. 1a and 1b, reference is made to some other optional features. Closure 10 may have reinforcing ribs 21 (two pairs per body 12a or 12 b shown) which 15 decrease the deflection in the closure near fingers 30 as the enclosed gel expands during service at elevated temperatures, which can be as high as 90 °C, thereby helping keep the gel under compression. We have found that relatively heavy ribs, about 2.8 mm (0.110 inch) wide, are preferred where closure is of a rectangular shape about 38.1 mm (1.5 inches) wide by 114 mm (4.5 inches) long. While the instant closure is designed to be amenable to 20 manual closing, it may be preferable to close it by pinching near the center with a pair of pliers. Towards this purpose, a thickened section 25 may be provided surrounding hole 18b to protect button 17b projecting therethrough against damage during the pinching. To prevent opening under torsional torque, it is preferable to chamfer buttons 17a-17c. To 25 distribute stress concentrations more evenly and to increase the opening force, a fillet may be added to the inside of the snap lock arms. Alignment plateaus 22 and dividers 23 may be provided in the interior of bodies 12a and 12b to assist in the positioning of the connector to be enclosed and the associated cable and electrical component parts, and also to hold the same in place. Adding fillets 32 to the intersection of the interior surfaces, for example where the vertical walls of plateaus 22 meets the bottom of bodies 12a and 12b and where

the bottom of these bodies meets their lateral sides, helps the gel flow more easily and lower the closing force.

The installation of a closure of this invention is show by Fig. 3a and 3b. Fig. 3a shows a connector 40 of the conventional H-frame type, connecting a cable 41 to cables 42 and 43, placed in position inside a closure 10 of this invention. (Numerals repeated from previous figures designate the same elements. To avoid clutter, not all features repeated from previous figures are labeled with reference numerals.) It is to be understood that this particular one-in/two-out configuration is for illustrative purposes only, and that other configurations, such as one-in/one-out, two-in/two-out, etc., are also permissible. Further, 10 cable 41 need not be connected to only other cables, but can be connected to other electrical components, such as switch gear or a transformer. Closure 10 is shown in a partially closed position and may be completely closed by pressing down at the locations indicated by arrows f and g, either manually or with a pair of pliers. As discussed above, flaps 16a and 16b re-direct gel flow in a lateral direction during closure. Fig. 3b shows the closure closed 15 around connector 40 and associated cables 41, 42, and 43. Gel 24 has oozed out along the ends, serving as visible indicium of an effective seal.

In a preferred embodiment, connector 40 can an insulation displacing connector (IDC), also known in the art as an insulation piercing connector (IPC). Such a connector contains teeth, blades, or other sharp elements which pierce the insulation to make electrical contact with the underlying insulation, without the need to strip back the insulation. This embodiment is illustrated in Fig. 4, in which a connector 40 has teeth 45 which pierce insulation 48 and 49 of cables 41 and 42 to establish electrical contact with the underlying conductors 51 and 52 and electrically connect the two conductors. Gel 24 may ooze into the interstices inside connector 40.

25 The term "gel" has been used in the prior art to cover a vast array of materials from greases to thixotropic compositions to fluid-extended polymeric systems. As used herein, "gel" concerns the category of materials which are solids extended by a fluid extender. The gel is a substantially dilute system which exhibits no steady state flow. As discussed in Ferry, "Viscoelastic Properties of Polymers," 3rd ed. p. 529 (J. Wiley & Sons, New York 30 1980), a polymer gel is a cross-linked solution whether linked by chemical bonds or

crystallites or some other kind of junction. The absence of the steady state flow is the key definition of the solid like properties while the substantial dilution is necessary to give the relatively low modulus of gels. The solid nature is achieved by a continuous network structure formed in the material generally through crosslinking the polymer chains through 5 some kind of junction or the creation of domains of associated substituents of various branch chains of the polymer. The crosslinking can be either physical or chemical as long as the crosslink sites are sustained at the use conditions of the gel.

Preferred gels for use in this invention are silicone (organopolysiloxane) gels, such as the fluid-extended systems taught in Debbaut, US 4,634,207 (1987) (hereinafter 10 "Debbaut '207"); Camin et al., US 4,680,233 (1987); Dubrow et al., US 4,777,063 (1988); and Dubrow et al., US 5,079,300 (1992) (hereinafter "Dubrow '300"); the disclosures of which are incorporated herein by reference for all purposes. These fluid-extended silicone gels may be created with nonreactive fluid extenders as in the previously recited patents or with an excess of a reactive liquid, e.g., a vinyl-rich silicone fluid, such that it acts like an 15 extender, as exemplified by the Sylgard® 527 product of Dow-Corning or as disclosed in Nelson, US 3,020,260 (1962). Because curing is involved in the preparation of these gels, they are sometimes referred to as thermosetting gels. An especially preferred gel is a silicone gel produced from a mixture of divinyl terminated polydimethylsiloxane, tetrakis-(dimethylsiloxy)silane, a platinum divinyltetramethyldisiloxane complex (available from 20 United Chemical Technologies, Inc.), polydimethylsiloxane, and 1,3,5,7-tetravinyl-tetramethylcyclotetrasiloxane (reaction inhibitor for providing adequate pot life). Such a gel has a Voland hardness of between 10 and 20 g, a tack of between 10 and 36 g, and a stress relaxation of less than 55 % and is available from Raychem Corporation in conjunction with the GDS Gel Drop Splice Closure, used in coaxial cable television connectors. Such a 25 product is also described in Gronvall, US 4,988,894 (1991), the disclosure of which is incorporated herein by reference for all purposes.

Other types of gels may be used, for example, polyurethane gels as taught in the aforementioned Debbaut '261 and Debbaut, US 5,140,476 (1992) (hereinafter "Debbaut '476") and gels based on styrene-ethylene butylene-styrene (SEBS) or styrene-ethylene 30 propylene-styrene (SEPS) extended with an extender oil of naphthenic or nonaromatic or

low aromatic content hydrocarbon oil, as disclosed in Chen, US 4,369,284 (1983); Gamarra et al., US 4,716,183 (1987); and Gamarra, US 4,942,270 (1990). The SEBS and SEPS gels comprise glassy styrenic microphases interconnected by a fluid-extended elastomeric phase. The microphase-separated styrenic domains serve as the junction points in the systems. The 5 SEBS and SEPS gels are examples of thermoplastic systems. Where a thermoplastic gel is used, the frangible feature of end sides 14 is not needed, as these gels do not require curing.

Another class of gels which may be considered are EPDM rubber based gels, as described in Chang et al., US 5,177,143 (1993). However, these gels tend to continue to cure over time and thus become unacceptably hard with aging.

10 Yet another class of gels which may be suitable are based on anhydride-containing polymers, as disclosed in Raychem, WO 96/23007 (1996), the disclosure of which is incorporated herein by reference. These gels reportedly have outstanding thermal resistance.

15 The gel may include a variety of additives, including stabilizers and antioxidants such as hindered phenols (e.g., Irganox 1074 (Ciba)), phosphites (e.g., Weston DPDP (General Electric)), and sulfides (e.g., Cyanox LTDP (American Cyanamid)), light stabilizers (e.g., Cyasorb UV-531 (American Cyanamid)), and flame retardants such as halogenated paraffins (e.g., Bromoklor 50 from Ferro) and/or phosphorous containing organic compounds (e.g., Fyrol PCF and Phosflex 390, both from Akzo Nobel). Other suitable additives include colorants, biocides, tackifiers and the like described in "Additives 20 For Plastics, Edition 1" published by D.A.T.A., Inc. and The International Plastics Selector, Inc., San Diego, California.

25 The gel can have a wide variety of hardnesses, as measured by a Voland texture analyzer, from about 1 to about 100 grams, preferably 1 to 30 grams, and stress relaxations preferably less than about 85%. Tack is generally greater than about 1 gram, preferably greater than 5 grams. Hardness, tack and stress relaxation are adjustable for specific applications. Elongation preferably is greater than 50 % and more preferably greater than 200-300 %. The elongation is measured according to the procedures of ASTM D-638.

30 The Voland hardness, stress relaxation, and tack are measured using a Voland-Stevens texture analyzer model LFRA, Texture Technologies Texture Analyzer TA-XT2, or like machines, having a five kilogram load cell to measure force, a 5 gram trigger, and 1/4

inch (6.35 mm) stainless steel ball probe as described in Dubrow '300, the disclosure of which is completely incorporated herein by reference for all purposes. For example, for measuring the hardness of a gel a 60 mL glass vial with about 20 grams of gel, or alternately a stack of nine 2 inch X 2 inch X 1/8" thick slabs of gel, is placed in the Texture

5 Technologies Texture Analyzer and the probe is forced into the gel at the speed of 0.2 mm per sec to a penetration distance of 4.0 mm. The Voland hardness of the gel is the force in grams, as recorded by a computer, required to force the probe at that speed to penetrate or deform the surface of the gel specified for 4.0 mm. Higher numbers signify harder gels. The data from the Texture Analyzer TA-XT2 is analyzed on an IBM PC or like computer, 10 running Microsystems Ltd, XT.RA Dimension Version 2.3 software.

The tack and stress relaxation are read from the stress curve generated when the XT.RA Dimension Version 2.3 software automatically traces the force versus time curve experienced by the load cell when the penetration speed is 2.0 mm/second and the probe is forced into the gel a penetration distance of about 4.0 mm. The probe is held at 4.0 mm 15 penetration for 1 minute and withdrawn at a speed of 2.00 mm/second. The stress relaxation is the ratio of the initial force (F_i) resisting the probe at the pre-set penetration depth minus the force resisting the probe (F_f) after 1 min divided by F_i , expressed as a percentage. That is, percent stress relaxation is equal to

$$\frac{(F_i - F_f)}{F_i} \times 100\%$$

20 where F_i and F_f are in grams. In other words the stress relaxation is the ratio of the initial force minus the force after 1 minute over the initial force. It is a measure of the ability of the gel to relax any induced compression placed on the gel. The tack is the amount of force in grams resisting on the probe as it is pulled out of the gel when the probe is withdrawn at a speed of 2.0 mm/second from the preset penetration depth.

25 An alternative way to characterize the gels is by cone penetration parameters according to ASTM D-217 as taught in Debbaut '261; Debbaut '207; Debbaut '746; and Debbaut et al., US 5,357,057 (1994), each of which is completely incorporated herein by reference for all purposes. Cone penetration ("CP") values range from about 70 (10^{-1} mm)

to about 400 (10^{-1} mm). Harder gels generally have CP values from about 70 (10^{-1} mm) to about 120 (10^{-1} mm). Softer gels generally have CP values from about 200 (10^{-1} mm) to 400 (10^{-1} mm), with a particularly preferred range of from about 250 (10^{-1} mm) to about 375 (10^{-1} mm). For a particular materials system a relationship between CP and Voland 5 gram hardness can be developed as taught in Dittmer et al., US 4,852,646 (1989), which is completely incorporated herein by reference for all purposes.

Preferably closure 10 is integrally made of a thermoplastic material, by injection molding. Preferred thermoplastics are propylene polymers, including its homopolymers and copolymers, such as ACCTUFTTM polypropylene from Amoco Polymers, Alpharetta, 10 Georgia, a copolymer which possesses a good balance of impact resistance, heat resistance, and stiffness. Especially preferred are the 3434 and 61-3434X grades of ACCTUFTTM polypropylene, which are described by the manufacturer as medium impact, antistatic, nucleated, injection molding materials. Other preferred materials include Crastin PBT 15 (grade S600) poly(butylene terephthalate) from Du Pont and Profax polypropylene (grade 6231NW) from Himont. Preferably, the physical properties are a flexural modulus of between 100,000 and 300,000 psi, with between 200,000 and 290,000 psi most preferred (per ASTM D790B), a notched Izod impact value of between 0.5 and 4 ft-lb/in, with between 0.6 and 3.4 ft-lb/in most preferred, at room temperature (per ASTM D256), a heat deflection temperature at 66 psi of at least 200 °F (per ASTM D648), a tensile yield 20 strength of at least 3,500, with between 3,900 and 8,400 psi most preferred (per ASTM D638), and an elongation at break of greater than 50 %, most preferably greater than 500 % (per ASTM D638). Other suitable thermoplastics include nylon, thermoplastic polyester, polycarbonate, ABS, acetal, poly(phenylene sulfide), and other thermoplastics generally referred to as engineering thermoplastics, filled or unfilled.

25 While the closure of this invention is especially suitable for the environmental protection of connections involving electrical power cables rated up 1,000 V, where temperature fluctuations to as high as 90 °C, or even 130 °C, may occur, it is also suitable for connections involving other types of cables, such as cables for the transmission of telecommunications signals, of between a cable and another piece of electrical or electronic

equipment, such as a transformer, switch gear, or a signal repeater. The closure of this invention is especially effective at sealing against the ingress of moisture.

By way of illustration of the sealing performance of the closure of this invention, twelve specimens using H-tap compression connectors, six of the 1/0 main and #8 AWG 5 tap type and six of the 2/0 main and #8 AWG tap type, were tested according to ANSI C119.1-1986 (part 4.3). In this test, the specimens were subjected to a series of water immersion, heat conditioning, and cold temperature conditioning tests and their electrical properties were measured at the start of the test, at various intermediate stages, and at the conclusion of the test. Without going into the minutiae of the 17 steps of the test procedure, 10 the test generally requires that a specimen have an insulation resistance of at least 1.0×10^6 ohm at the start and at least 1.0×10^9 ohm or retention of at least 90 % of the starting value upon the conclusion of the test, plus a final AC leakage current of no more than 1000 μ A. The specimens started with insulation resistances of between 5.2×10^{11} and 3.5×10^{12} ohms and ended with insulation resistances of between 1.5×10^{12} and 5.0×10^{12} ohms, with a 15 leakage current of between 250 and 470 μ A.

The foregoing detailed description of the invention includes passages which are chiefly or exclusively concerned with particular parts or aspects of the invention. It is to be understood that this is for clarity and convenience, that a particular feature may be relevant in more than just passage in which it is disclosed, and that the disclosure herein includes all 20 the appropriate combinations of information found in the different passages. Similarly, although the various figures and descriptions thereof relate to specific embodiments of the invention, it is to be understood that where a specific feature is disclosed in the context of a particular figure, such feature can also be used, to the extent appropriate, in the context of another figure, in combination with another feature, or in the invention in general.

Claims

What is claimed is:

1. A gel-filled closure for environmentally protecting a connector forming a connection between a cable and at least one electrical component, the closure comprising
5 first and second cavitated bodies, each having two lateral sides and two end sides defining an interior cavity;
a hinge joining the first and second cavitated bodies along one lateral side of each of the first and second cavitated bodies, such that the cavitated bodies are capable of pivoting around the hinge and closing around the connector and immediately adjacent portions of the cable and the at least one electrical component;
10 a gel substantially filling each of the first and second cavitated bodies;
at least one of the cavitated bodies having a flap disposed along the lateral edge thereof distal from the hinge, for directing gel flow in the lateral direction as the first and second cavitated bodies are closed; and
15 locking mechanism for securing the cavitated bodies in a closed position.
2. A gel filled closure according to claim 1, wherein the first cavitated body has a first flap along the lateral edge thereof distal from the hinge and the second cavitated body has a second flap along the lateral edge thereof distal from the hinge, the first and second flaps overlapping and directing gel flow in the lateral direction as the first and second cavitated bodies are closed.
20
3. A gel-filled closure according to claim 1 or 2, wherein the each end side is frangible.
25
4. A gel-filled closure according to claim 3, wherein each end side comprises a plurality of fingers joined to the immediately adjacent fingers by a frangible membrane.

5. A gel-filled closure according to any of the preceding claims, further comprising a plurality of alignment buttons along the lateral edge of the first cavited body distal from the hinge and a plurality of alignment holes along the lateral edge of the second cavited body distal from the hinge, the alignment buttons and holes being sized and positioned such
5 that when the first and second cavited bodies are closed, each alignment button is inserted through a corresponding alignment hole.

6. A gel-filled closure according to claim 5, wherein the alignment buttons include a first alignment button disposed proximate to one end side, a second alignment button disposed proximate to the second end side, and a third alignment button disposed substantially midway between the first and second alignment buttons.
10

7. A gel-filled closure according to claim 1, wherein only one of the cavited bodies has a flap.
15

8. A gel-filled closure according to claim 7, wherein each end side comprises a plurality of fingers joined to the immediately adjacent fingers by a frangible membrane.

9. A gel-filled closure according to claim 7, further comprising a plurality of alignment buttons along the lateral edge of the first cavited body distal from the hinge and a plurality of alignment holes along the lateral edge of the second cavited body distal from the hinge, the alignment buttons and holes being sized and positioned such that when the first and second cavited bodies are closed, each alignment button is inserted through a corresponding alignment hole.
20

25
10. A gel-filled closure according to any of the preceding claims, made of a propylene polymer.

11. A gel-filled closure according to any of the preceding claims, wherein the gel is
30 silicone gel.

12. A gel-filled closure according to any of the preceding claims, wherein the locking mechanism comprises a plurality of snap locks.
- 5 13. A gel-filled closure according to any of the preceding claims, wherein the hinge is a living hinge.
14. A gel-filled closure according to any of the preceding claims, wherein the at least one other electrical component is an electrical cable.
- 10 15. A gel-filled closure according to any of the preceding claims, wherein the interior surfaces of the cavitated bodies intersect at intersections having fillets.
- 15 16. A gel-filled closure according to any of the preceding claims, wherein each flap extends along substantially the length of the lateral side on which each respective flap is disposed.
17. A gel-filled closure according to any of the preceding claims, wherein the connector is an insulation displacing connector.

20

* * * * *

1/4

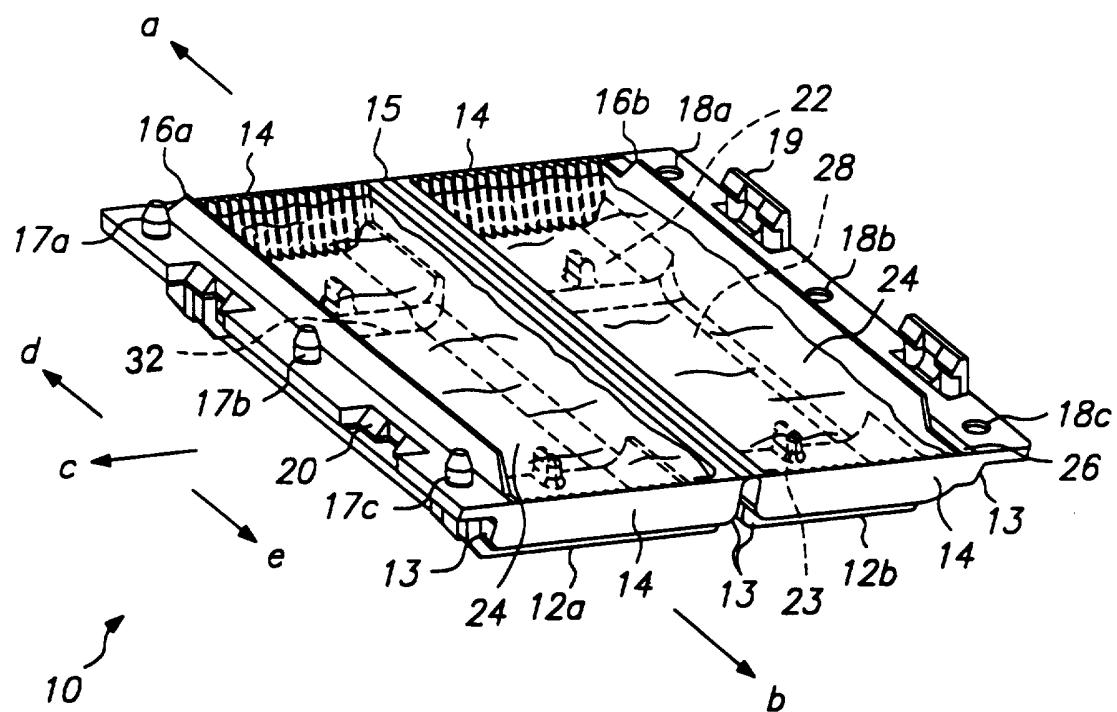


FIG. 1a

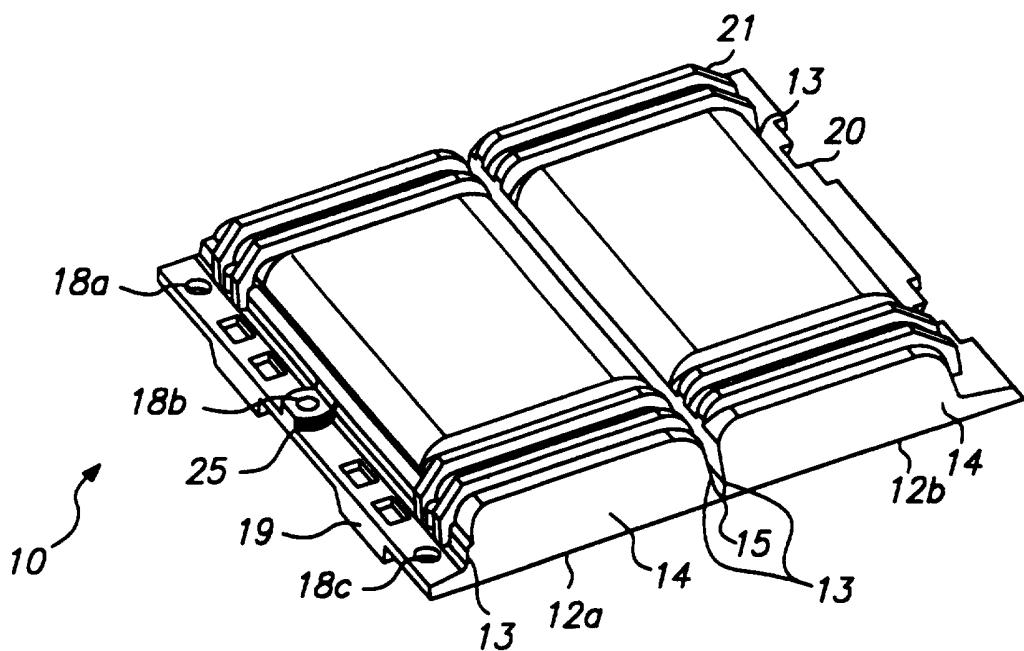


FIG. 1b

2/4

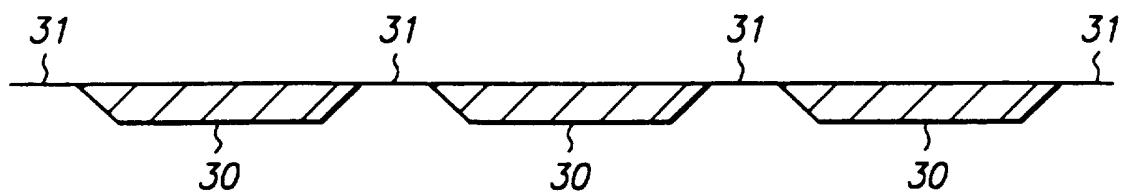


FIG. 2a

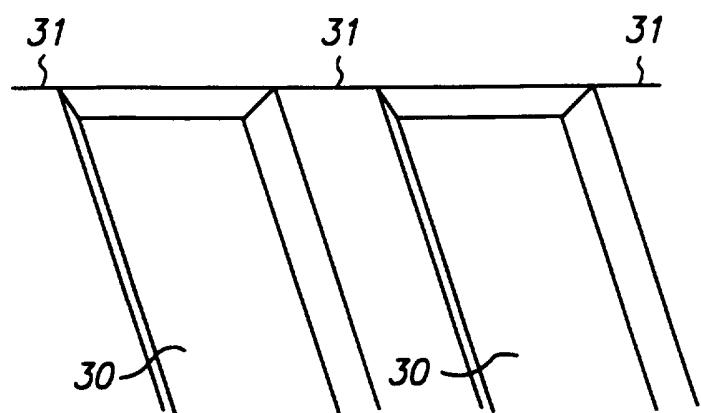


FIG. 2b

3/4

FIG. 3a

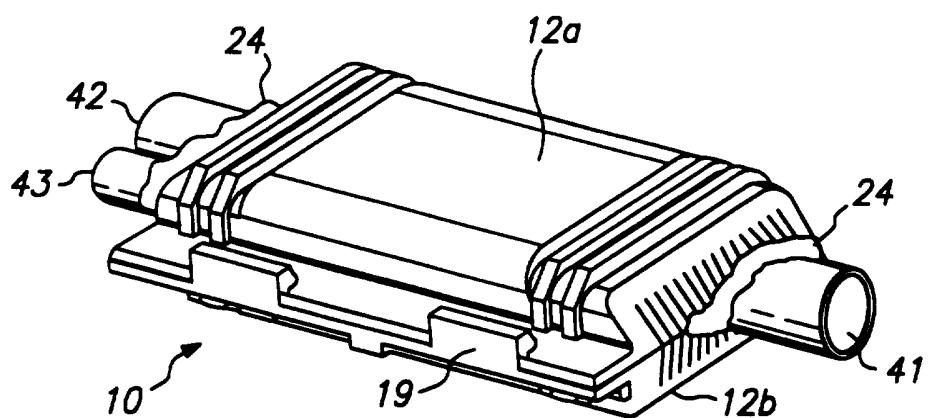
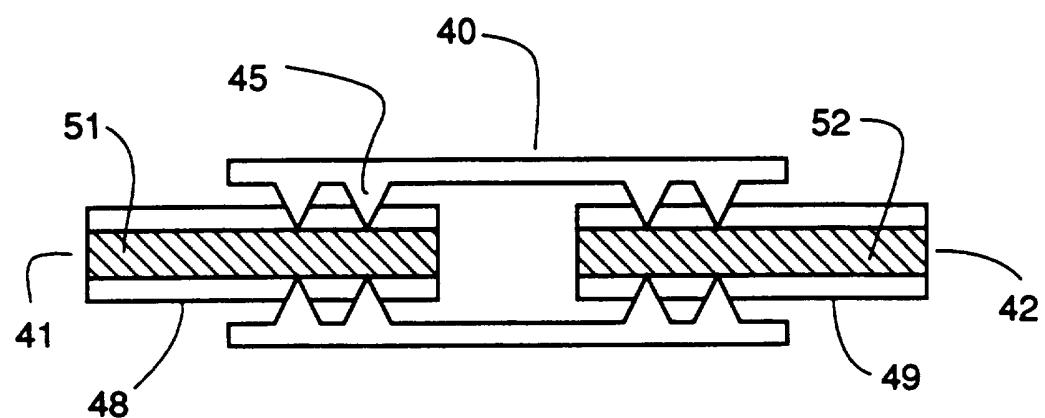



FIG. 3b

4/4

Fig. 4

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 96/17309

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 H01R4/70 H02G15/18 G02B6/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 H01R H02G G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 397 859 A (ROBERTSON JAMES W ET AL) 14 March 1995 see claims; figures ---	1,3,14, 15,17 2,5, 10-12
A	EP 0 328 386 A (MINNESOTA MINING & MFG) 16 August 1989 see claims; figures ---	1
A	PATENT ABSTRACTS OF JAPAN vol. 95, no. 006 & JP 07 161395 A (YAZAKI CORP), 23 June 1995, see abstract ---	1
A	WO 89 10648 A (RAYCHEM CORP) 2 November 1989 see claims; figures ---	1
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

23 January 1997

Date of mailing of the international search report

31.01.97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Authorized officer

Pfahler, R

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 96/17309

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 92 22116 A (RAYCHEM CORP) 10 December 1992 see claims; figures -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 96/17309

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A-5397859	14-03-95	BR-A-	9404927	08-08-95
		CA-A-	2134312	11-06-95
		EP-A-	0657980	14-06-95
		JP-A-	7193964	28-07-95
		US-A-	5561269	01-10-96
<hr/>				
EP-A-0328386	16-08-89	US-A-	4849580	18-07-89
		CA-A-	1312931	19-01-93
		CN-A-	1035209	30-08-89
		DE-D-	68919418	05-01-95
		DE-T-	68919418	18-05-95
		JP-A-	1248484	04-10-89
<hr/>				
WO-A-8910648	02-11-89	US-A-	4859809	22-08-89
		AT-T-	109316	15-08-94
		AU-B-	626154	23-07-92
		AU-A-	3557689	24-11-89
		CA-A-	1317650	11-05-93
		DE-D-	68917137	01-09-94
		DE-T-	68917137	17-11-94
		EP-A-	0414756	06-03-91
		FI-B-	94472	31-05-95
		JP-T-	3504075	05-09-91
		NO-B-	179500	08-07-96
<hr/>				
WO-A-9222116	10-12-92	AU-B-	673143	31-10-96
		AU-A-	2180992	08-01-93
		CA-A-	2103353	08-12-92
		EP-A-	0587748	23-03-94
		JP-T-	6508258	14-09-94
		US-A-	5347084	13-09-94
<hr/>				