Title: DISPOSABLE MODULAR RESERVOIR

Abstract: Embodiments of the present disclosure relate generally to a reservoir (40) that is easily removed from a grey water flush system. The reservoir is made modular so that rather than removing an entire reservoir/pump/circuitry system, the reservoir (40) can be separately removed from the system. The reservoir can also be made disposable, which can save cleaning and refurbishment costs. This can also increase turn-around time for maintenance of the system.

Published: — with international search report (Art. 21(3))
DISPOSABLE MODULAR RESERVOIR

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application Serial No. 62/086,290, filed December 2, 2014, titled “Disposable Reservoir and Filter for Waste,” the entire contents of which are hereby incorporated by reference.

FIELD OF THE DISCLOSURE

[0002] Embodiments of the present disclosure relate generally to a reservoir that is easily removed from a grey water flush system. The reservoir is made modular so that rather than removing an entire reservoir/pump/circuitry system, the reservoir can be separately removed from the system. The reservoir can also be made disposable, which can save cleaning and refurbishment costs. This can also increase turn-around time for maintenance of the system.

BACKGROUND

[0003] Water and waste management on passenger transportation vehicles can present challenges. For example, disposing of grey water must be addressed, due to the additional weight associated with carrying the water on-board. This can be a particular concern for passenger airliners.

[0004] As background, “grey water” is a term that is generally used to refer to spent water from hand or face washing at a sink basin or faucet. The water may include detergents and soaps from hand washing. The water may also include liquids poured down a drain, such as unconsumed coffee, water, wine, juices, or other liquid items. Managing grey water can present particular challenges onboard passenger aircraft, and a number of solutions have been explored. Some aircraft have disposed grey water overboard, out through drain masts. This presents environmental challenges, due to undesirable materials that may be present in the grey water. This may also present aesthetic challenges, for example, if the grey water is laden with wine or other colored liquids, the colored liquids can “stain” or “paint” the side of the plane as they are discharged. This may also present technical challenges, depending upon the temperature of the liquid to be discharged and the temperature of the
atmosphere. Improvements and alternative end uses or end locations for the grey water are desirable.

BRIEF SUMMARY

[0005] Embodiments of this disclosure provide improved reservoir systems for water systems. Certain embodiments provide a reservoir that is easily removed from a grey water flush system. The reservoir is made modular so that rather than removing an entire reservoir/pump/circuitry system, the reservoir can be separately removed from the system. The reservoir can also be made disposable, which can save cleaning and refurbishment costs. This can also increase turn-around time for maintenance of the system.

[0006] In some examples, there is provided a removable reservoir for a water system, comprising: a back plate skeleton configured to be mounted to a surface and comprising at least one attachment feature; a reservoir body comprising an inlet, at least one outlet, and a corresponding attachment feature for securement to the back plate skeleton, a water-tight clamp system for securing the inlet to a water pipe, wherein the water-tight clamp system allows a quick release of the reservoir body from the water pipe for removal and replacement of the reservoir body.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1A shows a perspective view of one embodiment of a grey water flush system.

[0008] FIG. 1B shows a front plan view of a current reservoir/pump/circuitry system.

[0009] FIG. 2A shows a cut away view of the reservoir of FIG. 2B.

[0010] FIG. 2B shows a side perspective view of one embodiment of a disposable modular reservoir.

[0011] FIG. 3 shows a side plan view of one embodiment of a disposable modular reservoir.

[0012] FIG. 4 shows a schematic illustration of the system of FIG. 3
DETAILED DESCRIPTION

[0021] The present assignee has developed a grey water flush system. Its grey water flush (GWF) system includes a Grey Water Interface Valve (GWIV) for eliminating the disposal of grey water overboard from an aircraft. The GWIV shuttles grey water from lavatory and galley sinks to the waste tanks, rather than to overboard drain masts. Legacy drain masts have had high susceptibility to freezing due to extreme temperature conditions existing at altitude conditions. Discharge of grey water to the environment has also presented environmental and aesthetic issues. Introduction of the grey water flush technology allows aerospace operators to mitigate this concern and create a more green-friendly aircraft. One example of a GWIV is described by U.S. Patent No. 7,533,426.

[0022] From this initial introduction of grey water technology, improvements upon sustainability efforts have continued to be investigated, including the potential reuse of grey water on board the vehicle. Initial investigations into grey water technology revealed that water used in lavatory and galley sinks accounts for up to about 30% of the overall water used in aircraft. Developing methods to re-use the
water allocated for flights could lead to a potential reduction in overall water usage on the aircraft. This understanding of grey water technology has led to development of the grey water flush system to clean, filter, and reuse grey water to flush the toilet. The GWF system may be implemented primarily in lavatories to reduce grey water settling time and to minimize the travel of water to the toilet.

[0023] The GWF system improved upon the GWIV’s design, while limiting overall impact into lavatory integration. One of the risks of system installation into the aircraft is changing any existing interfaces in the lavatory, either in the plumbing or electrical systems. To limit the amount of integration changes required, the GWF system uses the toilet’s dedicated power line. However, due to sharing a power source, the GWF system requires a smaller pumping mechanism to generate required pressure and flow for a clean toilet flush. This restriction was overcome through the implementation of a pump and accumulator pressurization system, as described in co-pending U.S. Application Serial No. 14/731,689 titled “Accumulator for Water Management.” FIG. 1A illustrates the initial conceptualization of the GWF system including the grey water reservoir 12, a filter cartridge 14, vacuum-operated pinch valve 16, a grey water pump 18, a check valve 20, and an accumulator 22.

[0024] As illustrated by FIG. 1B, the current standard is for the grey water reservoir 12 to have its rear face 24 extend out and form a platform 26 that provides a shared surface for mounting of electrical components. The platform 26 also serves a mounting function for mounting of the reservoir 12/pinch valve 16 system with respect to the laboratory or galley surface. The platform 26 is shown having mounting features 30.

[0025] The embodiments described may be located within lavatories, galleys, or any other locations that typically collect water on board a passenger transportation vehicle. The system generally collects grey water from a sink or other water-generating system, and routes that grey water appropriately. In some instances, the grey water may be routed to the main waste tank for disposal. In other instances, the grey water may be filtered for re-use.

[0026] If the grey water is to be filtered, the reservoir 12 portion of the GWF system 10 may be fitted with a filter 14. One example is illustrated by FIG. 2A. The
filter cartridge 14 is typically removed and disposed of at regular intervals. The replacement interval may depend upon the predicted lifespan of the filter and any accompanying washing mechanisms or systems that may be provided. (For example, one example of a filter cleaning system is described in co-pending application U.S. Serial No. 14/081,089 titled “Mixed Fluid Filtration System.”) However, one problem with traditional grey water reservoirs 12 is that access to the inner filter 14 for purpose of replacement can be difficult. Replacement of the filter can present various challenges due to space considerations, time considerations, and cleanliness issues. In many instances, it is necessary to remove the entire system as illustrated by FIG. 1B, including the related electronics board, in order to simply replace the filter. This can be invasive to the system and time intensive.

[0027] Traditional grey water reservoirs 12 may also present maintainability challenges. For example, the interior of the reservoir 12 may become coated with detergents, bacteria, mold, or other undesirable organisms or coatings. This build-up can interfere with water level sensor reliability. This may require a cleaning of the reservoir 12 and perhaps a complete replacement thereof. However, removal of the reservoir 12 means removal of the entire system 10 illustrated by either FIG. 1A or 1B. This means undesirable down-time of the aircraft. This may also mean that a spare unit must be kept on-hand at all times, which is an expensive and heavy part.

[0028] In the original concept, the filter in the GWF was a major component to be replaced due to its inherency for clogging and degradation of filtration characteristics. Similar concerns are seen in typical water filtration systems. However, another implication in replacing the filter is the exposure of maintenance personnel to potentially harmful substances or debris which may be trapped within the filter. Through the development process outlined above, the present inventors determined that modularity was an important aspect of installation of a grey water flush system. Quick turnaround of the system can be critical to increasing aircraft uptime. It was determined that providing modularity could allow operators to quickly replace components that require servicing, while leaving components not requiring service in place and generally untouched. There is thus provided a more easily removable and replaceable reservoir component, wherein such removal and replacement can be done within a short window of time and without removing the entire GWF or any other
components thereof. In use, rather than removing the filter 14 from the reservoir 12, the entire reservoir assembly 40 (including the reservoir body 42 and filter 14) may be removed and exchanged for a fresh assembly. This design allows for limited contact of all personnel with potentially harmful substances/debris and quick replacement of the reservoir which can be prone to clogging concerns. The design described allows the user to avoid direct content with contents of the reservoir assembly 40 during removal and replacement. The design also offers ease of removal and disposal of the reservoir assembly 40 without the need for tooling. This can increase system uptime by allowing replacement of reservoirs and filters during regular servicing between flights.

[0029] Although the disposable modular reservoir is primarily described with respect to a grey water flush system, it should be understood that other modular reservoirs are possible and considered within the scope of this disclosure.

[0030] FIG. 2B illustrates improvements to the system 10 that incorporate modularity. The improved reservoir assembly 40 is provided as a reservoir body 42 that may be modular and disposable. Providing a modular and disposable reservoir can help ease maintenance by reducing the potential risk of exposure of the maintenance crew to potential microbiological hazards and reducing the risk of mechanical maintenance issues. It can also allow a faster turn-around time for repairs and in the event of component failure. It can also reduce the risk of bacterial and biofilm growth or coatings on system components.

[0031] The reservoir assembly 40 disclosed may be designed to be completely separable from all other components of the GWF system 10. As illustrated, the reservoir body 42 has at least one inlet 44. The inlet 44 is generally configured to cooperate with a water outlet from a sink basin. (Such cooperation will be described in more detail below.) The reservoir body 42 also has a first outlet 46 that is generally configured to cooperate with a pinch valve 16. The reservoir body 42 may also be provided with a second outlet 48. In use, the second outlet 48 may be fluidly connected to a toilet flushing system, such that filtered grey water may be delivered into that system (or any other system).
[0032] The reservoir body 40 may also have one or more optional side latches 50. Side latches 50 may be provided in order to allow the reservoir body 42 to be openable/accessible. For example, the reservoir body 42 may have a lid 43 that is secured to the body 42 via latches 50. It may be possible to open the one or more latches 50 in order to remove the reservoir body 42 from the reservoir assembly 40. For example, this may be beneficial in order to allow a filter positioned within the reservoir body 42 to be removable.

[0033] A filter or a filter system 14 may be positioned between the inlet 44 and the outlet 46. The filter system may help filter incoming water. One example of a potential filter system is disclosed by co-pending U.S. Serial No. 14/081,089, but it should be understood that any other filter system may be used. However, instead of removing and replacing the filter from the reservoir and cleaning the reservoir, the entire reservoir and filter may be removable and disposable. In use, maintenance personnel may replace the reservoir body 42 (with the filter contained therein) and replace the body with a fresh new reservoir body 42. The design disclosed allows this replacement to occur without direct contact with the contents of the reservoir. The design also offers ease of removal and disposal without the need for tooling.

[0034] In one example, the components may be secured to one another via clamshell-style connections (e.g., between all components for the reservoir, pinch valve, pump, and accumulators) to allow for quick disconnection. Additionally or alternatively, a tab-and-slot release system may be used on the back plate skeleton 52 for modularity.

[0035] In one example, the reservoir assembly 40 may be provided as cooperable with a back plate skeleton 52. As illustrated by FIG. 5, the back plate skeleton 52 may have one or more mounting locations 53 for securing the back plate skeleton 52 to a surface. In one example, the surface is an aircraft lavatory wall, such as in a cabinet below the aircraft lavatory sink. The back plate skeleton 52 may have one or more attachment feature 54 for removably receiving the reservoir body 42 and for allowing the attachment of the reservoir body 42 thereto. The attachment features 54 may use any appropriate attachment method, non-limiting examples of which are shown and described.
As shown in FIGS. 5 and 6, the attachment feature may be provided as one or more flanged arms 56. The reservoir body 42 may have a corresponding attachment feature 58. As illustrated by FIG. 5, the attachment feature 58 may be a bridge 60 with one or more openings 62 configured to receive the one or more flanged arms 56 of the back plate skeleton 52. Cooperation between the bridge 60 and the one or more flanged arms 56 can affect secure attachment between the back plate skeleton 52 and the reservoir body 42. In order to remove the reservoir body 42, a user may pinch the flanged arms 56 inwardly by accessing them through the opening 62 and causing them to disengage from opening edges. As illustrated, the back plate skeleton 52 may also have one or more cradle portions 64 for securing and supporting the reservoir body 42.

The back plate skeleton 52 may also have a lower extension 66. Lower extension 66 may be configured to support the pinch valve 16. In one example, the lower extension 66 may have one or more slots 68 configured to receive one or more protrusions 70 on a rear surface 72 of the pinch valve 16. These separate securement locations may allow removal of the reservoir body 42 separately from removal of the pinch valve 16. As illustrated by the schematic of FIG. 4, the reservoir body 42 and the pinch valve 16 may be separately removable from the back plate skeleton 52. In one example, a drain valve 74 may cooperate with the pinch valve 16. The drain valve 74 may be secured directly to the pinch valve 16 or it may be removably secured to the back plate skeleton 52 using any appropriate attachment system, including any of the above-discussed options.

In order to provide such separate removability, one or more clamps 76 may be provided at water interfaces between components. For example, there may be a hydroclamp 76 provided in order to secure a wash basin outlet 80 with a reservoir body inlet 44. It is also possible to provide a sleeve 78 that may bridge one or more of these water interfaces. The sleeve 78 may be positioned within an internal diameter of the wash basin outlet 80, as well as within an internal diameter of the reservoir body inlet 44. This can help align the interfaces with respect to one another. Once positioned as desired, hinged arms 116 of a hydroclamp 76 may open and be positioned around the interfaces 80, 44. It is possible for the interfaces 80, 44 to be provided with one or more seals 118, which can help the elements be watertight with
respect to one another. Exemplary seals include o-ring seals. Once the hydroclamp
76 has been positioned, the wash basin outlet 80 may be secured to the water reservoir
inlet 44. When removability of the reservoir body 42 is desired, a user may release
the clamp 76 in order to cause the inlet 44 to be removed from the wash basin outlet
80. The clamp 76 may be a hydroclamp, a clam-shell clamp, or any other appropriate
clamp that can secure two components together in a water-tight manner but allow a
quick release therebetween. One exemplary clamp that has been found to be useful is
the Hydraflow clamp manufactured and distributed by JLS Motorsport of England.

[0039] In another example, a V clamp 92 may be positioned with respect to the
back plate skeleton 52. An exemplary the clamp 92 is illustrated by FIG. 12. The V
clamp may open in order to secure one or more of the inlet 44 and/or the outlet 46 of
the reservoir body 42 to the back plate skeleton 52. In use, a user may open the V
clamp 92 in order to release the reservoir body 42 from the back plate skeleton 52.

[0040] FIGS. 7 and 8 illustrate exemplary disconnect mounts that may be used to
secure the back plate skeleton 52 to an aircraft surface. Exemplary disconnect mounts
82 are illustrated by FIG. 7. As shown, the disconnect mounts 82 may have a lever
arm 84 that may be raised in order to secure the back plate skeleton in place. In
another example, the disconnect mounts may work via cooperation between an
interlocking protrusion 86 and a recess 88, as illustrated by FIG. 8. The recess may
be positioned at the end of a movable arm 90, and the movable arm 90 may be
maneuvered in order to cause the recess 88 to cooperate with the interlocking
protrusion 86. The disconnect mounts may also be used to secure the reservoir body
42 to the back plate skeleton 52. It is generally envisioned that such disconnect
mounts are tool free, such that a maintenance personnel simply need to pull the lever
via hand.

[0041] FIG. 9 illustrates one embodiment of a reservoir body 100 with a reservoir
top 102 that can remain positioned on the back plate skeleton 52. The top 102 may
include the inlet 44, as well as a vent tube 114. In one example, the top 102 may have
a connection flange 104 that secures to the back plate 52. The top 102 may also have
a sensor receiving portion 106. The sensor receiving portion 106 may support or
align a sensor system 108 with respect to the reservoir 100. For example, the sensor
system 108 may have one or more sensing conductive electrodes 110 that can extend
into the reservoir 100 in order to monitor water level, water quality, pressure, or any other feature. The sensor system 108 may be integral with the top 102 or it may be separate element, as illustrated by FIG. 10. In either example, the reservoir body 112 can be removed from the back plate 52 and top 102, so that only the reservoir body 112 need be replaced. This can allow the sensor system 108 and any other electronic components associated with the back plate 52 to stay in place. The reservoir body 112 may be removed from the top 102/back plate 52 via clamps, screws, or any other system that allows a quick release. The release system may be any system that can maintain pressure inside the reservoir body 112 such that the system can operate under vacuum. The release system may also be designed to maintain a water-tight connection between the body 112 and the top 102.

[0042] In another example, one or more water sensors may be capacitive sensors that are positioned along the back plate skeleton 52. Such capacitive sensors can detect water levels without requiring water/liquid contact. In this embodiment, the back plate skeleton may support a printed circuit board, capacitive sensors, and any other related electronics for the system. The reservoir body may be removed and replaced, leaving the electronics in place.

[0043] Changes and modifications, additions and deletions may be made to the structures and methods recited above and shown in the drawings without departing from the scope or spirit of the disclosure or the following claims.
What is claimed is:

1. A removable reservoir for a water system, comprising:
 a back plate skeleton configured to be mounted to a surface and comprising at least
 one attachment feature;
 a reservoir body comprising an inlet, at least one outlet, and a corresponding
 attachment feature for securement to the back plate skeleton,
 a water-tight clamp system for securing the inlet to a water pipe, wherein the water-
 tight clamp system allows a quick release of the reservoir body from the water pipe
 for removal and replacement of the reservoir body.

2. The system of claim 1, wherein the water-tight clamp system comprises at least one
 hydroclamp.

3. The system of claim 1, further comprising a sleeve positioned at the water-tight
 clamp system.

4. The system of claim 1, wherein the at least one attachment feature comprises one or
 more flanged arms.

5. The system of claim 1, wherein the at least one attachment feature comprises one or
 more latches.

6. The system of claim 1, wherein the at least one attachment feature comprises one or
 more disconnect mounts.

7. The system of claim 1, further comprising a pinch valve comprising an attachment
 system for securing the pinch valve to the back plate skeleton.

8. The system of claim 1, wherein the removable reservoir is configured for disposal
 and replacement with a new removable reservoir.

9. The system of claim 1, wherein the removable reservoir comprises a filter
 positioned therein.
10. The system of claim 1, wherein the removable reservoir comprises a second outlet configured to deliver filtered water to a toilet for flushing.

11. The system of claim 1, wherein the back plate skeleton comprises one or more cradle portions.

12. The system of claim 1, further comprising a reservoir top configured to remain secureable to the back plate skeleton when the reservoir body is removed.

13. The system of claim 12, wherein the reservoir top cooperates with a sensor system.

14. The system of claim 1, wherein the system is configured for use with a grey water flush system.

15. The system of claim 1, wherein the system is configured for use on an aircraft lavatory.
According to International Patent Classification (IPC) or to both national classification and IPC

B64D11/02 A47J31/00 B60R15/00 A47K11/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 1 215 553 A (KOELHLER DAYTON [US]) 9 December 1970 (1970-12-09) page 1, line 92 - page 2, line 15 page 2, line 35 - line 72 page 2, line 112 - page 3, line 127; figures 1-10</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

* A* document defining the general state of the art which is not considered to be of particular relevance

* E* earlier application or patent but published on or after the international filing date

* L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

* O* document referring to an oral disclosure, use, exhibition or other means

* P* document published prior to the international filing date but later than the priority date claimed

* T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* X* document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* Y* document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* A* document member of the same patent family

Date of the actual completion of the international search

8 March 2016

Date of mailing of the international search report

17/03/2016

Hofmann, Udo
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 192 004 A (BURROWS BRUCE D [US]) 9 March 1993 (1993-03-09)</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>col umn 3, line 59 - col umn 5, line 7; figures 1-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col umn 3, line 63 - col umn 4, line 52; col umn 5, line 20 - line 44; figures 1-6</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2005 092394 A (MATSUSHITA ELECTRIC IND CO LTD) 7 April 2005 (2005-04-07)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>abstract; figure 1</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>GB 1215553 A</td>
<td>09-12-1970</td>
<td>FR 1555177 A</td>
</tr>
<tr>
<td>GB 1215553 A</td>
<td>09-12-1970</td>
<td></td>
</tr>
<tr>
<td>US 2013305444 AI</td>
<td>21-11-2013</td>
<td>CA 2872859 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104334452 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2849998 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015522729 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013305444 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014137319 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013172963 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014069353 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014043185 AI</td>
</tr>
<tr>
<td>US 5192004 A</td>
<td>09-03-1993</td>
<td>AU 649834 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1785192 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2081901 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69213633 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69213633 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0535211 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2092110 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 101577 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H06500063 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 100226001 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5192004 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9218420 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1923595 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2160586 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69524685 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69524685 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0695278 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2165908 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H08509941 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5390826 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9523115 AI</td>
</tr>
<tr>
<td>JP 2005092394 A</td>
<td>07-04-2005</td>
<td>NONE</td>
</tr>
</tbody>
</table>