发明名称

车载车辆信息通知设备、信息提供系统及信息通知方法

摘要

车载车辆信息通知设备包括移动体位置获取部分、信息获取部分、信息提供区设置部分，以及信息通知部分。移动体位置获取部分为存于装备有车载车辆信息通知设备的主车辆附近的至少一个移动体获取移动体位置。信息获取部分获取主车辆的前进速度和前进方向，以及移动体的规定移动速度。信息提供区设置部分基于由信息获取部分所获取的信息，设置在其中应报告移动体的存在的信息提供区。当由移动体位置获取部分所获取的移动体的位置存在于由信息提供区设置部分所设置的信息提供区中时，信息通知部分报告移动体的存在。
1. 一种车载车辆信息通知设备，包括:

 移动体位置获取部分，其被配置为针对存在有该车辆信息通知设备的主车辆附近的至少一个移动体，来获取移动体位置；

 信息获取部分，其被配置为获取主车辆的前进速度和前进方向，以及移动体的设定移动速度；

 信息提供区设置部分，其被配置为基于由信息获取部分所获取的信息而设置信息提供区，在该信息提供区内应当报告移动体的存在；以及

 信息通知部分，其被配置为当由移动体位置获取部分获取的移动体的位置存在于由信息提供区设置部分所设置的信息提供区内时，报告移动体的存在。

2. 如权利要求1所述的车载车辆信息通知设备，其中，

 移动体位置获取部分还被配置为获取主车辆附近的地图信息，该地图信息被划分成多个单位区域，当移动体存在于单位区域中时，每个单位区域指示为通知必要区域；以及

 信息通知部分还被配置为：当由信息提供区设置部分设置的信息提供区和由移动体位置获取部分获取的通知必要区域重叠时，报告移动体的存在。

3. 如权利要求1所述的车载车辆信息通知设备，还包括：

 主车辆位置获取部分，其被配置为获取指示主车辆位置的车辆位置信息；

 移动体位置获取部分，其被配置为向远程信息提供设备发送由主车辆位置获取部分获取的主车辆位置信息，以从该信息提供设备中获取包含主车辆位置的地图信息，其中，由信息提供设备使用从移动体传送的终端位置信息来创建该地图信息。

4. 如权利要求3所述的车载车辆信息通知设备，其中，

 信息提供区设置部分被配置为：基于当移动体位置获取部分获取地图信息时、发生在移动体终端和远程信息提供设备之间的通信延迟时间、以及发生在移动体位置获取部分和信息提供设备之间的通信延迟时间中的至少一个，而修改信息提供区。

5. 如权利要求3所述的车载车辆信息通知设备，其中，
信息提供区设置部分被配置为：基于在主车辆位置获取部分发送所获取的指示主车辆的位置的指示的通信循环周期，而修改信息提供区。

6. 如权利要求3所述的车载车辆信息通知设备，其中，

信息提供区设置部分被配置为：基于信息提供设备在每个通信循环周期中获取指示移动体的位置的信息一次的通信循环周期，而修改信息提供区。

7. 如权利要求3所述的车载车辆信息通知设备，其中，

信息提供区设置部分被配置为：基于由主车辆位置获取部分所获取的指示主车辆的位置的信息的误差，以及指示移动体的位置的信息的误差中的至少一个，而修改信息提供区。

8. 如权利要求1所述的车载车辆信息通知设备，其中，

信息提供区设置部分被配置为：当确定在主车辆的前进方向上存在交叉点时，设置信息提供区，以排除在其中道路不从该交叉点分支的区。

9. 如权利要求1所述的车载车辆信息通知设备，其中，

当确定弯路存在于主车辆的前进方向上时，信息提供区设置部分基于该弯路的曲率而设置信息提供区，使得信息提供区是相对于主车辆的前进方向的角度，从而弯路被包含在信息提供区中。

10. 如权利要求1所述的车载车辆信息通知设备，其中，

信息提供区设置部分被配置为：当确定在主车辆的前进方向上存在主车辆将必须右转弯或左转弯的T型交叉点、且主车辆已移近该T型交叉点时，停止设置信息提供区。

11. 如权利要求1所述的车载车辆信息通知设备，其中，

信息提供区设置部分被配置为：当确定在主车辆的前进方向上存在有弯路、且该弯路的曲率大于规定值时，停止设置信息提供区。

12. 如权利要求1所述的车载车辆信息通知设备，其中，

信息提供区设置部分被配置为：当确定主车辆正在行驶在不存在移动体的道路上时，停止设置信息提供区。

13. 如权利要求1所述的车载车辆信息通知设备，其中，

信息提供区设置部分被配置为：当确定存在停止主车辆的驾驶操作时，停止设置信息提供区。

14. 如权利要求1所述的车载车辆信息通知设备，其中，

信息提供区设置部分被配置为：当确定用于使主车辆左转弯或右转弯的
驾驶操作时，停止设置信息提供区。

15. 如权利要求1所述的车载车辆信息通知设备，其中，
信息提供区设置部分被配置为：当确定将主车辆的档位置于倒车档位置或泊车档位置时，停止设置信息提供区。

16. 如权利要求1所述的车载车辆信息通知设备，其中，
信息提供区设置部分被配置为：当确定主车辆的速度等于或低于规定值时，停止设置信息提供区。

17. 如权利要求1所述的车载车辆信息通知设备，其中，
信息提供区设置部分被配置为：当确定信息通知部分已经报告移动体存在，且自从报告移动体存在起尚未经过规定时间量时，停止设置信息提供区。

18. 如权利要求1所述的车载车辆信息通知设备，其中，
信息提供区设置部分被配置为：当确定自从主车辆开始移动且在主车辆已停止之前、信息通知部分已报告移动体的存在的次数超过了规定值时，停止设置信息提供区。

19. 一种车辆信息通知系统，包括：
车载车辆信息通知设备；以及
信息提供设备，其包括：
通信装置，其被配置为在车载车辆信息通知设备和移动体所具有的移动体终端之间交换信息；
地图创建装置，其被配置为使用从移动体终端接收的指示移动体终端的位置的信息，并创建被划分成多个单位区域的地图信息，当移动体存在于单位区域中时，每个单位区域被指示为通知必要区域；以及
传送控制装置，其被配置为使用通信装置，向车载车辆信息通知设备传送指示移动体终端的位置的至少部分地图信息，并且
该车载车辆信息通知设备包括：
信息获取部分，其被配置为获取主车辆的前进速度和前进方向、以及移动体的移动速度；
信息提供区设置部分，其被配置为基于由信息获取部分所获取的信息而设置信息提供区，在该信息提供区内应当报告移动体的存在；
移动体位置获取部分，其被配置为通过引用从信息提供设备发送的地图信息，而获取在主车辆的附近存在的移动体的位置；以及
信息通知部分，其被配置为当由信息提供区设置部分设置的信息提供区和由移动体位置获取部分获取的通知必要区域重叠时，报告移动体的存在。

20. 一种信息通知方法，包括：
获取主车辆的前进信息；
获取移动体的位置信息；
基于主车辆的前进信息和移动体的位置信息，在主车辆前设置规定的信息提供区，在所述规定的信息提供区内，应当报告移动体的存在；以及当移动体存在于所述规定的信息提供区时，报告该移动体。
车载车辆信息通知设备、信息提供系统及信息通知方法

对相关申请的交叉引用

本申请要求 2007 年 9 月 28 日提交的日本专利申请 2007-253449 的优先权，通过引用将日本专利申请 2007-253449 的全部内容合并于此。

技术领域

本发明一般涉及车载车辆信息通知设备，其用于向主车辆(host vehicle)的驾驶者通知有关在车辆周围附近的行人或其它移动体的存在。

背景技术

日本公开专利申请 2004-227412 描述了一种已知技术，其用于向主车辆的驾驶者通知有关在车辆周围附近的移动体。在日本公开专利申请 2004-227412 中提及的车辆驾驶辅助设备基于从移动体接收信息，来计算主车辆与存在于该车辆周围的区域中的每个移动体之间的相对位置关系，并且随后报告关于移动体的信息。

发明内容

已发现：在上面所述的车辆驾驶辅助设备中，该车辆驾驶辅助设备从存在于车辆附近的所有移动体接收信息。因此，当存在大量其它移动体时，有必要从所有移动体接收信息，并且计算车辆和每个移动体之间的相对位置关系。由此，根据上述车辆驾驶辅助设备，为了确定是否应当通知驾驶者移动体的存在，在主车辆处必须执行的计算机处理量可能变得非常大。

本发明正是考虑到上述所述的设备的此缺陷而产生的。一个目的在于，提供车载车辆信息通知设备、信息提供系统、以及信息通知方法，其能够减少为了报告关于另一个移动体的信息而产生于车辆上的计算机处理负担。

根据一个方面的设备，所提供的车载车辆信息通知设备基本上包括移动体位置获取部分、信息获取部分、信息提供区设置部分以及信息通知部分。移动体位置获取部分被配置为针对于存在于配备有该车辆信息通知设备的主
车辆附近的至少一个移动体，来获取移动体位置。信息获取部分被配置为获取车辆的前进速度和方向、以及移动体的移动速度。信息提供区设置部分被配置为根据由信息获取部分所获取的信息而设置信息提供区，在该信息提供区中应当报告移动体的存在。信息通知部分被配置为当由移体位置获取部分获取的移动体的位置存在于由信息提供区设置部分所设置的信息提供区内时，报告移动体的存在。

从下面结合附图而公开了本发明的优选实施例的详细描述中，对于本领域技术人员而言，本发明的这些和其它目的、特征、方面和优点将变得清楚。

附图说明

现在，参照形成此原始公开的一部分的附图：

图 1 是示出根据一个实施例的信息提供系统的基本组件的框图；

图 2 是示出图 1 所展示的信息提供系统的信息提供服务器的基本组件的框图；

图 3 是示出图 1 所展示的信息提供系统的便携式终端的基本组件的框图；

图 4 是示出图 1 所展示的信息提供系统的车载设备的基本组件的框图；

图 5 是示出用于图 1 所展示的信息提供系统的基本地图数据的图；

图 6 是示出用于设置信息提供区，并报告移动体(例如，行人)的存在，在图 1 所展示的信息提供系统中执行的控制处理步骤的流程图；

图 7 显示了如何通过图 1 所展示的信息提供系统中的车载设备来设置信息提供区；

图 8 显示了如何通过图 1 所展示的信息提供系统中的车载设备来修改信息提供区；

图 9 显示了通过图 1 所展示的信息提供系统中的车载设备，如何基于最大通信延迟时间和最小通信延迟时间来修改信息提供区的最远线(farthest line)和最近线(closest line)；

图 10 显示了通过图 1 所展示的信息提供系统中的车载设备，如何基于 GPS 误差来修改信息提供区的最远线和最近线；

图 11 显示了通过图 1 所展示的信息提供系统中的车载设备，如何基于最大通信延迟时间和最小通信延迟时间来修改信息提供区的水平宽度；
图 12 示出了通过图 1 所展示的信息提供系统中的车载设备，如何基于便携式终端的通信循环周期和车载设备的通信循环周期来修改信息提供区的水平宽度；

图 13 示出了通过图 1 所展示的信息提供系统中的车载设备，如何基于 GPS 误差来修改信息提供区的水平宽度；

图 14 示出了在图 1 所展示的信息提供系统中，信息提供区和弯路之间的位置关系；

图 15 示出了在图 1 所展示的信息提供系统中，信息提供区和弯路之间的另一个位置关系；

图 16 示出了通过图 1 所展示的信息提供系统中的车载设备，如何基于弯路的曲率来修改信息提供区；

图 17 示出了在图 1 所展示的信息提供系统中，信息提供区和 T 型交叉点 (T intersection) 之间的位置关系；

图 18 示出了在图 1 所展示的信息提供系统中，信息提供区和 T 型交叉点之间的另一个位置关系；以及

图 19 示出了在图 1 所展示的信息提供系统中，如何基于车辆所行驶的道路的形状来由车载设备修改信息提供区。

具体实施方式

现在，将通过参照附图来说明本发明的所选实施例。本领域的技术人员将从此公开而明白，仅为了说明、而不是限制如由所附权利要求及其等价物定义的本发明的目的，提供了本发明的实施例的以下描述。

首先，参照图 1，其依照第一实施例展示了信息提供系统。信息提供系统的目的在于，为了提醒主车辆的驾驶者注意移动体，警告主车辆的驾驶者在道路上存在移动体(例如，行人、骑自行车的人、其它车辆)。因此，术语 “移动体” 并不限于行人。更特别地，术语 “移动体” 是指任何具有直接地，或间接地与主车辆通信的能力的移动体。

因此，基本上，在该信息提供系统中，由移动体(例如，行人、骑自行车的人、其它车辆)具有的便携式终端 1 向远程(车外)信息提供服务器 2 发送指示便携式终端 1 的位置的信息。随后，信息提供服务器 2 向主车辆上的车载设备 3 发送报告移动体(例如，行人、骑自行车的人、其它车辆)的存在所需的
信息。该车载设备 3 组成车辆信息通知设备，且用于向主车辆的驾驶者报告移动体（例如，行人、骑自行车的人、其它车辆)的存在。便携式终端 1 和信息提供服务器 2 之间的信息交换、以及信息提供服务器 2 和车载设备 3 之间的信息交换是通过广域通信网络 N(例如，移动通信网络、或包括通用目的通信电路的有线公共通信网络)而进行的。尽管图 1 只示出了一个便携式终端 1 和一个车载设备 3，但该信息提供服务器 2 能够在多个便携式终端 1 和车载设备 3 之间进行通信。

如在图 2 中可见，基本上，信息提供服务器 2 包括通信部分 11、终端分布管理部分 12 和控制部分 13。配置该通信部分 11，以通过广域通信网络 N 在便携式终端 1 和车载设备 3 之间交换信息。配置该终端分布管理部分 12，以管理便携式终端 1 的分布。配置该控制部分 13，以在整体上控制信息提供服务器 2 的操作。该信息提供服务器 2 是包括中央处理单元、输入接口电路、输出接口电路、以及诸如 ROM(只读存储器)器件和 RAM(随机存取存储器)器件那样的存储器件的微计算机。图 2 是作为分离的框或部分展示信息提供服务器 2 的功能的框图。这些框或部分 11、12、以及 13 是由常规的硬件和/或软件形成。

所述通信部分 11 也具有被配置以向和从广域通信网络 N 发送和接收无线信号的天线电路、被配置以向广域通信网络 N 传送无线信号的传送电路、以及被配置以处理从广域通信网络 N 接收的无线信号的接收电路。通信部分 11 用于将所接收的无线信号转换为数字信息，且向控制部分 13 提供该数字信息。该通信部分 11 还用于当其从控制部分 13 接收到要被传送到广域通信网络 N 的数字信号时，产生无线信号。更具体地，通信部分 11 经由广域通信网络 N 接收便携式终端 1 所传送的位置信息。每规定通信循环周期期间，便携式终端 1 将从便携式终端 1 发送的终端位置信息传送一次。

配置该通信部分 11，以经由广域通信网络 N 接收从车载设备 3 发送的信息传送请求。这些请求包括位置信息和地图信息的传送的请求、以及简单地图数据（随后描述）的传送的请求。该简单地图数据被用来向安装了车载设备 3 的车辆的驾驶者报告便携式终端 1 的存在，也就是，移动体的存在。由控制部分 13 的通信控制部分 13a 控制通信部分 11 的操作。

通过由通信控制部分 13a 控制通信部分 11 建立和中断信息提供服务器 2 和便携式终端 1 之间的通信连接，而完成该通信控制。当车载设备 3 启动时，
也通过由通信控制部分 13a 控制通信部分 11，而完成在车载设备 3 和信息提供服务器 2 之间建立通信连接所需的控制处理。

配置终端分布管理部分 12，以存储从多个便携式终端 1 发送的位置信息 (终端位置信息) 和从多个车载设备 3 发送的位置信息 (主车辆位置信息)。该终端位置信息和主车辆位置信息均按照经度和纬度的方式表示。该终端分布管理部分 12 存储：表示便携式终端 1 的位置的终端位置信息，对于该便携式终端 1，已建立了关于通信部分 11 的通信连接；以及表示车载设备 3 的位置的主车辆位置信息，对于该车载设备 3，已建立了关于通信部分 11 的通信连接。该终端分布管理部分 12 创建在简单地图数据 (随后描述) 上分布终端位置信息和主车辆位置信息的分布数据。因此，该终端分布管理部分 12 起到地图创建装置的作用。

当便携式终端 1 发送终端位置信息时，每个规定循环周期，该终端分布管理部分 12 执行用来更新简单地图数据的处理，并且，当从车载设备 3 发送主车辆位置信息时，在每个规定循环周期，该终端分布管理部分 12 执行用来更新简单地图数据的处理。当向车载设备 3 发送简单地图数据时，信息准备部分 13b 将由终端分布管理部分 12 所更新的简单地图数据处理为适合向车载设备 3 提供的信息。该通信控制部分 13a 控制通信部分 11，以完成经由广域通信网络 N 向车载设备 3 传送信息。

该信息准备部分 13b 执行处理，以提取由终端分布管理部分 12 所创建的分布数据的部分，并创建要向车载设备 3 发送的简单地图数据。例如，当启动车载设备 3 时，和/或在周期性的基础上，向信息提供服务器 2 发送信息传送请求，其请求用于确定在车载设备 3 的附近存在便携式终端 1 的信息。该信息传送请求包括来自车载设备 3 的主车辆位置信息。当接收到信息传送请求时，该信息准备部分 13b 创建表示为以主车辆位置信息为中心的便携式终端 1 的分布在的简单地图数据。随后，该通信控制部分 13a 控制通信部分 11，以便向发送信息传送请求的车载设备 3 传送简单地图数据。这样，信息提供服务器 2 可以基于从车载设备 3 获得的主车辆位置信息，向主车辆的驾驶者报告安装有车载设备 3 的主车辆附近的移动体的存在。

如图 5 所示，简单地图数据 100 可以被划分成由具有规定面积的单位区域组成的网格。假定每个单位区域 101 具有边长从几米到几十米的正方形的形状。单位区域 101 的形状是六边形或某个其它形状也是可以接受的。简单
地图数据 100 是已经被添加了通知确定信息的地图数据，该通知确定信息指示每一个单位区域 101 是表示便携式终端 1 存在的通知不必要区域 101a. 还是表示便携式终端 1 存在的通知必要区域 101b。该通知不必要区域 101a 是在车载设备 3 的附近中不存在具有便携式终端 1 的移动体的区域。该通知必要区域 101b 是在车载设备 3 的附近中存在具有便携式终端 1 的移动体的区域。该简单地图数据 100 包括基于从车载设备 3 发送的主车辆位置信息而识别的主车辆位置 103。从简单地图数据 100 中提取一组具有规定大小（例如，大体上以主车辆位置 103 为中心的几公里的半径内）的简单地图数据 102。从信息提供服务器 2 向车载设备 3 传送简单地图数据 102。

如图 3 所示，便携式终端 1 包括通信部分 21，位置识别部分 22 和控制部分 23，配置通信部分 21，以经由广域通信网络 N 与信息提供服务器 2 交换信息。配置位置识别部分 22，以识别便携式终端 1 自身的位置。配置控制部分 23，以控制便携式终端 1 的整体操作。该便携式终端 1 是包含中央处理单元、输入接口电路、输出接口电路，以及诸如 ROM（只读存储器）器件和 RAM（随机存取存储器）器件的存储器件的微计算机。图 3 是按照分离的框或部分示出便携式终端的功能的框图。这些框或部分 21、22 和 23 由常规的硬件和/或软件形成。配置该控制部分 23，以执行存储于存储器（未示出）的程序，且因此，执行配置成控制便携式终端 1 和信息提供服务器 2 之间的通信的通信控制部分 23a，以及配置成控制终端位置信息的传送的位置传送控制部分 23b 的功能。

通信部分 21 具有配置成向和从广域通信网络 N 发送和接收无线信号的天线电路，配置成向广域通信网络 N 传送无线信号的传送电路，以及配置成处理从广域通信网络 N 接收的无线信号的接收电路。通信部分 21 用于将所接收的无线信号转换为数字信息，并向控制部分 23 提供该数字信息。当通信部分 21 从控制部分 23 接收到要被传送到广域通信网络 N 的无线信号时，通信部分 21 也用于产生无线信号。

更具体地，通信部分 21 经由广域通信网络 N 向信息提供服务器 2 发送便携式终端 1 的终端位置信息。由控制部分 23 的通信控制部分 23a 控制通信部分 21 的操作。通过由通信控制部分 23a 控制通信部分 21 以建立和中断信息提供服务器 2 和便携式终端 1 之间的通信连接，来完成通信控制。

位置识别部分 22 接收从 GPS 卫星传送的信号，并且产生指明便携式终
端1的位置的位置信息。通过由位置传送控制部分23b执行的控制，每规定通信循环周期向信息提供服务器2传送终端位置信息一次。

如图4所示，车载设备3包括通信部分31、位置识别部分32、道路地图存储部分33、信息存储部分34、车辆运动状态识别部分35、驾驶员操作量识别部分36、时间测定部分37、信息提供部分38和控制部分39。配置通信部分31，以经由广域通信网络N向和从信息提供服务器2发送和接收信息。配置位置识别部分32，以识别车载设备3的位置。配置道路地图存储部分33，以存储道路地图。配置信息存储部分34，以存储下面所讨论的各种信息。配置车辆运动状态识别部分35，以识别车辆运动状态。配置驾驶员操作量识别部分36，以识别驾驶员操作。配置时间测定部分37，以测定时间。配置信息提供部分38，以提供下面所讨论的各种信息。配置控制部分39，以整体上控制车载设备3的操作。车载设备3是包含中央处理单元、输入接口电路、输出接口电路、以及诸如ROM(只读存储器)和RAM(随机存取存储器)的存储器件的微计算机。图4是按照分离的框展示车载设备3的功能的框图。这些框或部分31到39是由传统的硬件和/或软件形成的。

通信部分31具有配置成向和从广域通信网络N发送和接收无线信号的天线电路、配置成向广域通信网络N传送无线信号的传送电路、以及配置成处理从广域通信网络N接收的无线信号的接收电路。通信部分31用于将所接收的无线信号转换为数字信息，且向控制部分39提供该数字信息。当通信部分31从控制部分39接收到要被传送到广域通信网络N的无线信号时，通信部分31也用于产生无线信号。

更具体地，配置通信部分31，以经由广域通信网络N向信息提供服务器2发送主车辆位置信息，并从信息提供服务器2接收简单地图数据102。由控制部分39的通信控制部分39a控制通信部分31的操作。通过由控制部分39控制通信部分31，以建立和中断车载设备3和信息提供服务器2之间的通信连接，来完成通信控制。

位置识别部分32接收从GPS卫星传送的信号，且产生指明安装有车载设备3的主车辆的位置的主车辆位置信息。向控制部分39提供主车辆位置信息，并且，每规定通信循环周期，由通信部分31向信息提供服务器2传送主车辆位置信息一次。与车载设备3发送到信息处理服务器2的请求简单地图数据102的请求信号一起传送该主车辆位置信息。
该道路地图存储部分33存储详细地图数据，其包括表示道路和交叉点的
链接数据和节点数据，且作为经度和纬度信息而在地图上记录点。更具体地，
道路地图存储部分33的详细地图数据包括关于交叉点形状、道路的曲率、道路
的类型（例如，快速路、旁路和一般公路）的信息，且该信息与地图上由经度
和纬度信息表示的点相关。该道路地图存储部分33也存储为主车辆的行驶指
明推荐路线的信息。

可以接受：存储于道路地图存储部分33的详细地图数据将存储在大容
量存储介质上的覆盖整个国家的详细地图数据，或从地图存储服务器（未示出）
下载的详细地图数据。还可接受：存储于道路地图存储部分33的详细地图数
据是包括已由车载导航设备（未示出）或具有导航功能的服务器设备（未示出）
计算出的车辆沿其行驶的推荐路线的区域的详细地图数据。

配置信息存储部分34，以临时存储从信息提供服务器2接收的简单地图数
据102。可接受：信息存储部分34也存储诸如在从当车辆启动时直到车辆
停止的时段期间信息提供部分已报告了行人存在的次数、报告行人的次数的
历史、以及自从报告行人的存在开始经过的时间量的信息。下面，将解释
存储于信息存储部分34中的除了简单地图数据102以外的其它信息的应用。

信息存储部分34也存储规定的距主车辆的最远区距离和最近距离，其定
义在其内应当报告移动体的存在的信息提供区（如下所述，设置该信息提供区
是必要的，其在内报告移动体的存在也是必要的）、以及移动体的规定运动速
度。

车辆运动状态识别部分35获取前进信息（例如，主车辆的前进速度和主
车辆的前进方向），并且将其输出到控制部分39。尽管在车载设备3的此描述
中提及主车辆的前进速度和前进方向作为用于修改信息提供区（随后描述）的
主车辆运动参数，但可以接受：获取其它参数，只要所述参数指示信息提供
区的修改所基于的主车辆的运动状态即可。

配置驾驶员操作量识别部分36，以获取当驾驶员将把车辆左转弯或右转
弯时由转向操作或转弯信号操作信息产生的转向角度信息、制动操作信息、
以及诸如将车辆的档位（shift position）设置成倒车档位置（reverse position）（R）
或泊车档位置（park position）（P）的驾驶操作信息。驾驶员操作量识别部分36
向控制部分39输出所获取的信息。

时间测定部分37产生由控制部分39在计算机处理的执行中所使用的时
间信息。控制部分 39 读入时间信息。通过参考由时间测定部分 37 所产生的
时间信息，为了确定信息提供区，控制部分 39 控制由信息提供区确定部分
39b 所执行的计算机处理的定时，并且，为了报告行人的存在，控制部分 39
控制由信息提供控制部分 39c 所执行的计算机处理的定时。

信息提供部分 38 包括驾驶者能够观看到的显示设备、或向驾驶者发出声
音的发声设备。可以接受：为了显示信息，信息提供部分 38 包括被配置成检测
由驾驶者或其他人所执行的操作的输入装置。

控制部分 39 被配置为执行存储在存储器(未示出)中的程序，且因此，执行
通信控制部分 39a、信息提供区确定部分 39b、以及信息提供控制部分 39c
的功能。

信息提供区确定部分 39b 被配置为：设置在其中应当报告移动体的存在
的信息提供区。信息提供区确定部分 39b 基于由车辆运动状态识别部分 35 所
获取的主车辆的前进速度和前进方向、存储在信息存储部分 34 中的用于设置
信息提供区的距车辆的规定最远距离和最短距离、以及在信息存储部分 34 中的行
人的规定的运动速度，而设置信息提供区。例如，如图 5 所示，信
息提供区 110 被设置为离开主车辆位置 103 的位置。信息提供区 110 被缩
放到包括多个单位区域 101。优选地，信息提供区 110 是具有较接近主车辆
位置 103 的较短基边(base side)、以及较为远离主车辆位置 103 的较长上基
边的梯形。配置信息提供区确定部分 39b，以响应于通过通信部分 31 接收的
从车载设备 3 所发送的车辆位置信息而计算信息提供区 110 的形状。随后将
描述为了设置信息提供区 110 而由信息提供区确定部分 39b 所执行的处理。

信息提供控制部分 39c 涉及存储在信息存储部分 34 中的简单地图数据
100，且获取存在于主车辆附近(通知必要区域 101b)的行人的位置。如果移动
体的位置处于由信息提供区确定部分 39b 所设置的信息提供区 110 内，则信
息提供控制部分 39c 执行控制，使得信息提供部分 38 报告移动体存在。更具
体地，当信息提供区 110 与被包含于简单地图数据 100 中的通知必要区域 101b
重叠时，信息提供控制部分 39c 通过信息提供部分 38 报告移动体的存在，而
当信息提供区 110 仅与通知不必要区域 101a 重叠时，不报告行人的存在。

因此，在该信息提供系统中，便携式终端 1 向信息提供服务器 2 发送终
端位置信息，且该信息提供服务器 2 创建表示终端位置信息的分布的数据。图
结果，根据此信息提供系统，当车载设备 3 向信息提供服务器 2 发送车
辆位置信息时，信息提供服务器 2 可以向车载设备 3 提供分布数据，使得能够向安装了车载设备 3 的车辆的驾驶者报告具有便携式终端 1 的移动体的位置。

现在，将参考图 6 中所示的流程图，来解释为了向主车辆的驾驶者通知移动体存在于车辆的附近、由如上所述配置的信息提供系统中的车载设备 3 所执行的处理步骤。每规定处理循环周期将图 6 中所示的处理执行一次，例如，每几百毫秒一次。

在步骤 S1 中，控制部分 39 检查自从车辆的发动机启动后已经报告了行人的存在的总次数，并且，确定当前的次数是否小于预设的最大次数。对已经被报告的移动体的次数进行计数，并在车载设备 3 的信息存储部分 34 中存储该次数。最大次数是基于经验等而设置的规定值，并对应于大量的移动体报告，其可能成为对驾驶者有害的行为，并降低报告的效果。如果已经报告移动体存在的次数小于该最大次数，则控制部分 39 进到步骤 S2。同时，如果已经报告行人的存在的次数等于或大于该最大次数，则控制部分 39 停止设置信息提供区 110 的处理，且结束控制序列而不执行报告。

在步骤 S2 中，控制部分 39 确定自从前一次报告移动体的存在起（在车载设备 3 的信息存储部分 34 中存储了其时间）经过的时间是否等于或小于预设的最小时间量（X 分钟）。在该实施例中，在信息存储部分 34 中存储：指示如由时间测定部分 37 测定的指示前一次报告的发生的时间的时间信息。随后，控制部分 39 基于所存储的时间信息和当前时间信息，来计算自从前一次报告的时间起经过的时间量。最小时时间量是基于经验等而设置的规定值，且对应于高频率的移动体报告，其可能成为对驾驶者有害的行为，并降低报告的效果。如果自从前一次报告起经过的时间量大于最小时时间量，则控制部分 39 进到步骤 S3。同时，如果自从前一次报告开始起经过的时间量等于或小于最小时时间量，则控制部分 39 停止设置信息提供区 110 的处理，且结束控制序列而不执行报告。

在步骤 S3 中，控制部分 39 确定由驾驶者操作量识别部分 36 所获取的数据是否是倒车档位置（R）或泊车档位置（P）。换句话说，在步骤 S3 中，控制部分 39 确定是否检测到停止车辆的驾驶操作。如果档位是倒车档位置或泊车档位置，也就是说，如果车辆处于没有必要向驾驶者报告行人的存在的商店停车场、或其它地点，则控制部分 39 结束控制序列。同时，如果档位既不在倒
车档位置，也不在泊车档位置，则控制部分 39 前进到步骤 S4。

在步骤 S4 中，控制部分 39 确定由车辆运动状态识别部分 35 所获取的主车辆的速度是否等于或小于规定值(50 公里/小时)。基于经验等将规定值预先设置为适于检测车辆是否将要停止的车辆速度。如果车辆速度等于或低于规定值，则由于可以假设没有必要向驾驶者报告移动体的存在，所以，控制部分 39 结束控制序列。同时，如果车辆速度不等于或低于规定值，则控制部分 39 前进到步骤 S5。

在步骤 S5 中，控制部分 39 通过参考存储于道路地图存储部分 33 中的详细地图数据，确定由位置识别部分 32 所计算的主车辆位置信息是否处于经修订的地图匹配状态。如果确定该主车辆位置信息并不匹配于详细地图数据，则控制部分 39 确定不能设置精确的信息提供区 110，且结束控制序列。如果确定主车辆位置信息处于地图匹配状态，则控制部分 39 前进到步骤 S6。

在步骤 S6 中，控制部分 39 基于主车辆位置信息和详细地图数据，从道路地图存储部分 33 读取指示车辆在其上行驶的道路的类型的道路类型信息。随后，通过确定车辆当前行驶的道路的类型是否为快速路或旁路，控制部分 39 确定车辆是否行驶在移动体并不存在的道路上。如果确定车辆行驶在快速路或旁路上，则由于可以假设没有必要向驾驶者报告移动体的存在，所以，控制部分 39 结束控制序列。如果确定车辆并未行驶在快速路或旁路上，则控制部分 39 前进到步骤 S7。

在步骤 S7 中，控制部分 39 基于由驾驶者操作量识别部分 36 所检测地制动信息、转弯信号信息和转向角度信息，确定车辆是否处于左转弯或右转弯，或者很可能马上将左转弯或右转弯的过程中。

当转向角度大于被设置为能够确定车辆正在左转弯或右转弯的值的规定转向角度 Rs 时，控制部分 39 可以确定车辆处于左转弯或右转弯当中。对于由驾驶者操作量识别部分 36 检测的转向角度和规定转向角度 Rs，使用绝对值，使得能够检测左转弯和右转弯，而不考虑实际的方向。当控制部分 39 检测到制动操作和转弯信号操作时，控制部分 39 确定车辆很可能马上将左转弯或右转弯。如果控制部分 39 确定车辆处于右转弯或左转弯当中，或者车辆很可能右转弯或左转弯，则由于其不能设置精确的信息提供区 110，所以，控制部分 39 结束控制序列。相反，如果确定车辆并非正在进行右转弯或左转弯，且也不大可能要进行右转弯或左转弯，则控制部分 39 前进到步骤 S8。
在步骤 S8，信息提供区确定部分 39b 设置在其内应当报告移动体存在的信息提供区 110。该信息提供区确定部分 39b 使用由车辆运动状态识别部分35 所获取的主车辆的速度、以及存储于信息存储模块 34 中的移动体的运动速度和联系时间 (time to contact, TTC) 信息，而设置信息提供区 110。随后，该信息提供区确定部分 39b 调整信息提供区 110。

更具体地，信息提供区确定部分 39b 使用下面的四个参数：主车辆的主车辆速度 Vv(公里/小时)，其是一个变量；移动体的预期的或假设的运动速度 Vp(公里/小时)，其是一个常量；信息提供时间 TTC_A(秒)，其指示来自定义在其中应当报告移动体的存在信息提供区 110 的车辆的规定的最大时间长度(常量)；以及信息提供时间 TTC_B(秒)，其指示来自定义在其中应当报告移动体的存在信息提供区 110 的主车辆的规定的最小时时间长度(常量)。

信息提供时间 TTC_A 是远离主车辆位置 103 的信息提供区 110 的一边的阀值。信息提供时间 TTC_A 被设置为这样的时间量：移动体距离车辆太远，使得即使报告移动体的存在对于驾驶者来说也不能感受到有用的效果；或者移动体太远，使得驾驶者不能将该移动体识别为障碍。

信息提供时间 TTC_B 是信息提供区 110 的较近的一边的阀值。该信息提供时间 TTC_B 被设置为这样的时间量：认为移动体过于接近主车辆，使得即使报告了移动体的存在、且该驾驶者开始操作以使主车辆减速，驾驶者也不能执行针对该移动体的适当的驾驶操作。

通过使用这些参数，信息提供区确定部分 39b 计算距主车辆位置 103 的信息提供区 110 的最远区距离 A 和距主车辆位置 103 的信息提供区 110 的最近区距离 B，如图 7 所示。使用下面所示的方程，针对于主车辆位置 103 的前进方向，计算最远区距离 A 和最近区距离 B。

最远区距离 A=Vv × TTC_A
最远区距离 B=Vv × TTC_B

然后，该信息提供区确定部分 39b 设置上基(top base)距离 C 和下基(below base)距离 D，其针对从对应于主车辆的前进方向的中线的左和右而被测定。使用下面所示的方程，计算上基距离 C 和下基距离 D。

上基距离 C=Vp × TTC_A
下基距离 D=Vp × TTC_B

基于这些计算，信息提供区确定部分 39b 可以设置信息提供区 110 的最
远线 110a 和信息提供区 110 的最近线 110b。最远线 110a 的长度等于上基距离 C 的两倍，且被定位为使得在距主车辆位置 103 等于最远区距离 A 的距离上、以主车辆的前进方向为中心。最近线 110b 的长度等于下基距离 D 的两倍，且被定位为使得在距主车辆位置 103 等于最近区距离 B 的距离上、以主车辆的前进方向为中心。随后，信息提供区确定部分 39b 可以将信息提供区 110 设置为梯形区域，其由最远线 110a、最远线 110b、连接最近线 110b 的右端（从主车辆位置 103 处观察）和最远线 110a 的右端的线段、以及连接最近线 110b 的左端（从主车辆位置 103 处观察）和最远线 110a 的左端的线段所围成。

下面，信息提供区确定部分 39b 修改使用主车辆的主车辆速度 Vv、移动体的预期运动速度 Vp、信息提供时间 TTC_A、以及信息提供时间 TTC_B 而设置的信息提供区 110。具体地，信息提供区确定部分 39b 基于便携式终端 1、信息提供服务器 2、以及车载设备 3 之间的通信延迟时间、便携式终端 1 向信息提供服务器 2 传送终端位置信息的通信循环周期、车载设备 3 向信息提供服务器 2 传送主车辆位置信息的通信循环周期、以及源自 GPS 误差的终端位置信息和主车辆位置信息的误差，而将在图 7 中示出的距离 A 到 D 修改为在图 8 中示出的距离 A' 到 D'。还可接受：只使用这些参数中的一个，或这些参数中任意组合，来修改信息提供区 110。

便携式终端 1、信息提供服务器 2、以及车载设备 3 之间通信的延迟时间被表示为最大通信延迟时间 Dmax(秒)和最小通信延迟时间 Dmin(秒)，其在信息存储部分 34 中被存储为恒定值。便携式终端 1 的通信循环周期 Pp(秒)、车载设备 3 的通信循环周期 Pp(秒)、以及 GPS 误差(米)也被存储于信息存储部分 34 中。将最大通信延迟时间 Dmax 计算为下面的时间量的总和，其中，每个都是最大的预测的时间量：便携式终端 1 的位置识别部分 22 获取从 GPS 卫星传送的 GPS 信号所需的等待时间（包括 GPS 信号获取循环周期）；便携式终端 1 计算终端位置信息的时间量；便携式终端 1 向信息提供服务器 2 传送终端位置信息的时间量；信息提供服务器 2 使用终端位置信息来更新简单地图数据 100 的时间量；从信息提供服务器 2 向车载设备 3 传送简单地图数据 102 的时间量；以及车载设备 3 接收简单地图数据 102。并将其存储在信息存储部分 34 中的时间量。同时，除了用于获得总数的每个单独的时间量为最小的预测的时间量以外，以与最大通信延迟时间 Dmax 相同的方式计算最小通信延迟时间 Dmin。实验性地获得最大通信延迟时间 Dmax 和最小通信延迟时
问题 Dmin。

便携式终端的通信循环周期 Pp 是在便携式终端 1 上预先设置的对应的时间量，并指示便携式终端 1 向信息提供服务器 2 传送终端位置信息的频率。车载设备 3 的通信循环周期 Pp 是在车载设备 3 上预先设置的对应的时间量，并指示车载设备 3 向信息提供服务器 2 传送车辆位置信息的频率。GPS 误差是在便携式终端 1 上获取的终端位置信息的计算值和实际位置之间的误差。

由于报告移动体的存在的定时被延迟了介于最大通信延迟时间 Dmax 和最小通信延迟时间 Dmin 之间的时间量，所以，信息提供区 110 从主车辆位置 103 偏离了对应于最大通信延迟时间 Dmax 和最小通信延迟时间 Dmin 的量。使用最大通信延迟时间 Dmax 将图 8 中所示的主车辆前进方向中的最远区距离 A' 修改为考虑到通信延迟的安全的一边。因此，如图 9 所示，信息提供区 110 的最远线 110a' 被设置为更远了等于最大通信延迟时间 Dmax 和主车辆的主车辆速度 Vv 的积(Dmax × Vv)的量的位置。同时，使用最小通信延迟时间 Dmin 来修改最近线 110b'，以考虑到一定会发生的通信延迟时间。换句话说，最近线 110b' 被设置为更远了等于最小通信延迟时间 Dmin 和主车辆的主车辆速度 Vv 的积(Dmin × Vv)的量的位置。

由于在每个通信循环周期更新在车载设备 3 上所保持的简单地图数据 102，所以，便携式终端 1 的通信循环周期 Pp 和车载设备 3 的通信循环周期 Pp 在主车辆的前进方向上并不影响信息提供区 110。

如图 10 所示，信息提供区确定部分 39b 在主车辆的前进方向上将信息提供区 110 扩大对应于 GPS 误差的量。信息提供区确定部分 39b 通过在下面的方程中使用存储于信息存储部分 34 中的 GPS 误差，主车辆速度 Vv，信息提供时间 TTC_A，以及信息提供时间 TTC_B 而完成所述扩大。GPS 误差 A = GPS 误差(恒定值) - Vv × (TTC_A - TTC_B)。GPS 误差 A 的计算值只用于：如果其大于 0，则修改信息提供区 110。信息提供区确定部分 39b 将存储于信息存储部分 34 中的恒定 GPS 误差设置为 GPS 误差 B。

如图 10 所示，信息提供区确定部分 39b 设置新的最远线 110a' 为在前进方向上从最远线 110a' 偏离了 GPS 误差 A 的量的位置(也就是说，在位于离开主车辆位置 103 等于最远区距离 A + 主车辆速度 Vv × 最大通信延迟时间 Dmax 的距离的位置)，并且，设置新的最近线 110b' 为在前进方向上从最近线 110b
偏离了 GPS 误差 B 的量的位置(也就是，在位于离主车辆位置 103 等于最近区距离 B+主车辆速度 Vv×最小通信延迟时间 Dmin 的距离的位置)。

因此，当考虑先前所述的通信延迟时间时，由下面的方程给出该从主车辆位置 103 到最远线 110a 的最远区距离 A’:

最远区距离 A’=Vv×(TTC_A+Dmax) +(GPS 误差-Vv×(TTC_A-TTC_B))。

当(GPS 误差-Vv×(TTC_A-TTC_B))的值小于 0 时，(GPS 误差-Vv×(TTC_A-TTC_B))这部分被设置为零。

同时，由下面的方程给出从主车辆位置 103 到最近线 110b 的距离 B’:

最近区距离 B’=Vv×(TTC_B+Dmin)-GPS 误差

由于如参考图 9 和 10 中说明的那样，最远线 110a 被修改为更远，而最近线 110b 被修改为更近，使得扩大了信息提供区 110，所以，该信息提供区确定部分 39b 也通过延长上基距离 C 和下基距离 D(其为垂直于主车辆前进方向的线段)来修改信息提供区 110 的宽度。上基距离 C 被延长移动体的预期运动速度 Vp 和最大通信延迟时间 Dmax 的积(Vp×Dmax)的长度，以使得最远线 110a 关于主车辆前进的方向在左右两边均被修整。下基距离 D 延长移动体的预期运动速度 Vp 和最小通信延迟时间 Dmin 的积(Vp×Dmin)的长度，以使得最近线 110b 关于主车辆前进的方向在左右两边均被修整。

另外，由于移动体有可能在与主车辆的前进方向相垂直的方向上移动，所以，信息提供区确定部分 39b 在与主车辆前进方向垂直的方向上，将信息提供区 110 扩大对应于便携式终端 1 的通信循环周期 Pp 和车载设备 3 的通信循环周期 Pv 的和(Pp+Pv)的量。源自便携式终端 1 的通信循环周期 Pp 和车载设备 3 的通信循环周期 Pv 的延迟的最大值是便携式终端 1 的通信循环周期 Pp 和车载设备 3 的通信循环周期 Pv 的和。使用该最大值，作为关于信息提供区 110 的效果的安全边上的恒定值。

因此，信息提供区确定部分 39b 基于图 12 中所示的便携式终端 1 的通信循环周期 Pp 和车载设备 3 的通信循环周期 Pv，在垂直于主车辆前进方向的方向上扩大信息提供区 110，并且，基于 GPS 误差而修改信息提供区 110 的宽度，以获得图 13 中所示的信息提供区 110。如果通过加上便携式终端 1 的通信循环周期 Pp，以及移动体的预测的运动速度 Vp 所获得的时间量在信息提供时间 TTC_A 和信息提供时间 TTC_B 之间，则在信息提供区 110 上没有效果。更具体地，如果信息提供区 110 扩大的长度
Vp×((Pp+Pv)-(TTC_A-TTC_B))大于零，则信息提供区确定部分 39b 通过延长上基距离 C 和下基距离 D 来扩大信息提供区 110。

由下面的方程给出经修改的上基距离 C' 和下基距离 D'：
上基距离 C' = Vp × (TTC_A + Dmax + (Pp + Pv - (TTC_A - TTC_B))) + GPS 误差
下基距离 D' = Vp × (TTC_B + Dmin + (Pp + Pv - (TTC_A - TTC_B))) + GPS 误差
关于上基距离 C' 和下基距离 D'，如果量 (Pp + Pv) - (TTC_A - TTC_B) 小于 0，则 ((Pp + Pv) - (TTC_A - TTC_B)) 的值被设置为零，且不修改信息提供区 110。

这样，通过执行步骤 S8，信息提供区确定部分 39b 可以考虑因信或提供信息的定的的系数 (也即通通信延迟时间、便携器终 1 的通信循环周期、车戴设备 3 的通信循环周期、以及 GPS 误差) 来修改信息提供区 110。此外，可以通过删除上面所示的方程中不被使用的参数，仅基于这些参数的一部分而修改信息提供区 110。

在步骤 S9 中，信息提供区确定部分 39b 通过参照在步骤 S8 中设置的信息提供区 110，以及在道路地图存储部分 33 中存储的详细地图数据，检测位于信息提供区 110 内的车辆在其上行驶的部分道路的曲率。例如，如图 14 所示，如果道路是曲弯的、使得最近线 110b 和最远线 110a 两者交于，且曲率对应于位于车辆的当前前进方向和朝向主车辆的前进目的地的方向之间的目的地点向角度，则使用将主车辆位置 103 连接到道路连接 120 与信息提供区 110 交叉点的点 121 的线段，来计算该目的地点向角度。如图 15 所示，如果道路长度 120 与信息提供区 110 的最远线 110a 的在信息提供区 110 的外部的位置上交叉，则假设目的地点向角度为无穷大 (∞)。

在步骤 S10 中，信息提供区确定部分 39b 确定在步骤 S9 中计算的目的地点向角度是否为无穷大，也就是说，道路是否在如图 15 所示的大曲率下弯曲。如果目的地点向角度为无穷大 (∞)，则信息提供区确定部分 39b 结束控制序列，因此停止设置信息提供区 110 的过程，以及报告移动体的存在的过程。同时，如果目的地点向角度不为无穷大 (∞)，则信息提供区确定部分 39b 进到步骤 S11。

在步骤 S11 中，信息提供区确定部分 39b 确定在步骤 S9 中发现的目的地点向角度是否大于预设的最大角度 (规定值)。正如下面解释的那样，提前将最大角度设置为在信息提供区 110 可以倾斜 (titled) 并设定的范围内的值。如果目的地点向角度小于最大角度，且道路的曲率很小，则信息提供区确定部分 39b
前进到步骤 S12。同时，如果目的地点向角度大于最大角度，且道路的曲率很大，则信息提供区确定部分 39b 前进到步骤 S13，而不基于主车辆在其上行驶的道路的曲率修改信息提供区 110。

在步骤 S12 中，信息提供区确定部分 39b 基于在步骤 S9 中所计算的目的地点向角度的大小，针对主车辆的前进方向而修改信息提供区 110。具体地，当主车辆进入道路中的弯曲时，如图 16 中的上部中的道路链接 120 所指示的那样，信息提供区确定部分 39b 旋转信息提供区 110，使得最远线 110a 和最近线 110b 与将主车辆位置 103 连接到道路链接 120 与信息提供区 110 的最远线 110a 的交叉的点 121 的线段垂直地交叉，因此设置具有新的最远线 110a’和新的最近线 110b’的信息提供区 110，且，其与所述线段为中心。

在步骤 S13 中，信息提供区确定部分 39b 通过参考信息提供区 110 和存储于道路地图存储部分 33 中的详细地图数据，确定在主车辆前进方向的前方是否立即存在需要主车辆右转弯或左转弯的 T 型交叉点 130。例如，如图 17 所示，如果 T 型交叉点 130 存在于主车辆位置 103 和信息提供区 110 之间，也就是说，T 型交叉点 130 存在于比最近线 110b 更接近于主车辆位置 103 的位置，则该信息提供区确定部分 39b 确定在主车辆前进方向的前方立即存在 T 型交叉点 130，并结束控制序列，因此而停止设置信息提供区 110 的过程和报告移动体的存在过程。

在步骤 S14 中，信息提供区确定部分 39b 通过参考信息提供区 110 和存储于道路地图存储部分 33 中的详细地图数据，确定在信息提供区 110 内的主车辆的前方是否存在 T 型交叉点 130。如果存在 T 型交叉点 130，则信息提供区确定部分 39b 前进到步骤 S15，且修改信息提供区 110。如果不存在 T 型交叉点 130，则信息提供区确定部分 39b 前进到步骤 S16，且不修改信息提供区 110。

在步骤 S15 中，信息提供区确定部分 39b 排除比 T 型交叉点 130 更远离主车辆位置 103 的信息提供区 110 的一部分。简而言之，当交叉点存在于主车辆的运动方向上方时，信息提供区确定部分 39b 设置信息提供区 110，使得其排除道路并不从该交叉点分支的区。例如，如图 19 所示，通过将最远线 110a 移动到更接近于主车辆位置 103，且大体上平行于与主车辆行驶的道路连接相垂直的道路链接的最远线 110a’的位置，而修改信息提供区 110 的梯形形状。在该实施例中，修改信息提供区 110 的梯形形状，使得最远线 110a’
和垂直于主车辆行驶的道路链接的道路链接之间的距离等于用作在步骤 S8 中设置信息提供区 110 的参数的 GPS 误差。

在步骤 S16 中，信息提供控制部分 39c 读取存储于信息存储部分 34 中、且构成表示便携式终端 1 的分布的信息的简单地图数据 102。独立于图 6 中所示的处理，响应于向信息提供服务器 2 传送主车辆位置信息，执行计算机处理，该计算机处理被配置为：通过从信息提供服务器 2 接收新的简单地图数据 102，而更新简单地图数据 102，且将其存储于信息存储部分 34 中。换句话说，简单地图数据 102 不仅在其被接收时被使用。此外，还在信息存储部分 34 中存储简单地图信息 102，且直到接收一组新的简单地图数据 102 之前，均使用同一简单地图信息 102。

在步骤 S17 中，信息提供控制部分 39c 比较在步骤 S16 中读取的简单地图数据 102 的通知必要区域 101b 和前所述设置的信息提供区 110。如果比较指示通知必要区域 101b 和信息提供区 110 重叠，则该信息提供控制部分 39c 确定应当利用信息提供部分 38 报告移动体的存在。如图 5 所示，即使只有一部分通知必要区域 101b 与信息提供区 110 重叠，优选地，该系统也将报告移动体的存在。

如图 6 所示，车载设备 3 设置信息提供区 110，并确定是否存在这样的状态，其中，在步骤 S1 到 S7 中，其可以报告移动体的存在，并且，在步骤 S8 到 S15 中，修改信息提供区 110。随后，如果其在步骤 S16 中确定通知必要区域 101b 存在于信息提供区 110 之内，则其在步骤 S17 中确定应当报告移动体的存在，并利用信息提供部分 38 报告移动体。

正如先前地详细描述，车载设备 3 基于安装了车载设备 3 的主车辆的前进速度和前进方向、定义其中应当报告移动体的存在信息提供区的主车辆的设定的最远距离和最近距离、以及移动体的设定的运动速度，来设置信息提供区 110。由于车载设备 3 可以通过简单地确定终端位置信息是否与信息提供区 110 重叠，而确定是否有必要报告移动体的存在，所以，可以减轻了报告关于移动体的信息的产生于主车辆上的计算机处理负担。更具体地，根据车载设备 3，没有必要计算主车辆位置信息和每个便携式终端的终端位置信息之间的相对位置关系，以及因此，计算机处理负担并未根据存在于主车辆附近的移动体的数量而增加。结果，可以减轻为了报告关于移动体的信息的产生于主车辆上的计算机处理负担。
另外，该车载设备 3 被配置为：设置从车辆位置 103 到信息提供区 110 的最短距离，使得可以通知处理中排除紧密接近主车辆 103 而存在的移动体。结果，进一步减少了计算机处理负担，且提高通知功能的可靠性。

根据车载设备 3，甚至可进一步减少计算机处理负担，这是由于，仅仅通过判定已经被划分为单位区域 101 的一组简单地图数据 102 的通知必要区域 101b 是否与信息提供区 110 重叠，而报告移动体的存在。

该车载设备 3 被配置为：基于发生在便携式终端 1 和信息提供服务器 2 之间的通信延迟时间、以及发生在信息提供服务器 2 和车载设备 3 之间的通信延迟时间，而修改信息提供区 110。结果，如果移动体移入到应当在延迟时间期间报告移动体的区域，那么，如果存在移动体将与主车辆路径相交的可能性，则可靠地报告该移动体。因此，由于存在于信息提供区 110 内的任何移动体的存在能够以可靠的方式被报告，所以，将能够提高系统的可靠性。

由于车载设备 3 被配置为基于其向信息提供服务器 2 传送主车辆位置信息的确定的通信循环周期和修改信息提供区 110，所以，由于传送主车辆位置信息的循环周期而发生的任何实际延迟可被反映在信息提供区 110 中。结果，根据车载设备 3，如果移动体移入到应当在延迟时间期间报告移动体的区中，那么，如果存在移动体将与主车辆路径相交的可能性，则可靠地报告移动体。因此，由于存在于信息提供区 110 中的任何移动体的存在能够以可靠的方式被报告，所以，能够提高系统的可靠性。

由于车载设备 3 被配置为基于便携式终端 1 向信息提供服务器 2 传送终端位置信息的确定的通信循环周期期间来修改信息提供区 110，所以，由于传送终端位置信息的循环周期而发生的任何实际延迟可被反映在信息提供区 110 中。结果，根据车载设备 3，如果移动体移入到应当在延迟时间期间报告移动体的区中，那么，如果存在移动体将与主车辆路径相交的可能性，则可靠地报告移动体。因此，由于存在于信息提供区 110 中的任何移动体的存在能够以可靠的方式被报告，所以，能够提高系统的可靠性。

由于车载设备被配置为基于由车载设备 3 所获取的主车辆的位置信息的误差和由便携式终端 1 所获取的终端位置信息的误差来修改信息提供区 110，所以，在信息提供区 110 中考虑 GPS 误差，并且，可以防止源自 GPS 误差的移动体未进入信息提供区 110 的不正确的确定。结果，由于存在于信息提供区 110 中的任何移动体的存在能够以可靠的方式被报告，所以，能够
提高系统的可靠性。

根据车载设备 3，当交叉点存在于主车辆的运动方向时，设置信息提供区 110，使得排除道路并不从交叉点分支的部分。结果，存在于移动体不可能与主车辆路径相交的地点的移动体的存在将不被报告，从而可提高通知功能的可靠性。

车载设备 3 被配置为当在主车辆将必须右转弯或左转弯的 T 型交叉点存在于主车辆的前进方向上、且主车辆已移向该 T 型交叉点时，停止设置信息提供区 110 的过程。结果，当由于左转弯或右转弯而使得主车辆很可能减速时，可避免报告移动体的存在，从而可提高通知功能的可靠性。

设计车载设备 3，使得当弯路存在于主车辆的前进方向时，基于道路的曲率设置信息提供区 110，使得在包括弯路的方向上将信息提供区 110 倾斜。通过基于弯路而修改信息提供区 110，可以精确地报告可能与主车辆路径相交的移动体的信息，从而可提高通知功能的可靠性。

车载设备 3 被配置为当主车辆所行驶的弯路的曲率大于规定值时，停止设置信息提供区 110 的过程。结果，可以防止移动体的存在的不必要的报告，从而可提高通知功能的可靠性。

车载设备 3 被配置为当主车辆行驶在快速路、旁路(bypass)、或不存在移动体的其它类型的道路上时，停止设置信息提供区 110 的过程。结果，当不存在移动体与主车辆路径相交的可能性时，不执行移动体的存在的报告，从而可提高通知功能的可靠性。

车载设备 3 被配置为当检测到停止主车辆的驾驶操作时，停止设置信息提供区 110 的过程。因此，当主车辆驶入例如商店的停车场、且不存在移动体与主车辆路径相交的可能性时，不执行移动体的存在的报告。结果，可提高通知功能的可靠性。

车载设备 3 被配置为当检测到主车辆左转弯或右转弯的驾驶操作(转弯信号或转向角度)时，停止设置信息提供区 110 的过程。因此，当具有报告移动体会干扰驾驶者的可能性时，不执行移动体的存在的报告。结果，可提高通知功能的可靠性。

车载设备 3 被配置为当检测到将主车辆的换档位置改变为倒车档位置或泊车档位置的驾驶操作时，停止设置信息提供区 110 的过程。结果，可以防止移动体的存在的不必要的报告，从而可提高通知功能的可靠性。
车载设备 3 被配置为当主车辆的速度等于或低于规定值时，停止设置信息提供区 110 的过程。结果，可以防止移动体的存在是不必要的报告，从而提高通知功能的可靠性。

车载设备 3 被配置为在已经报告移动体的存在之后的时间量内，停止设置信息提供区 110 的过程。这样，可以减少烦扰驾驶者的频繁报告的程度。

车载设备 3 被配置为当从主车辆开始运动到主车辆已经停止之间已经报告移动体存在的时间超过规定值时，停止设置信息提供区 110 的过程。结果，可以减少烦扰驾驶者的频繁报告的程度。

根据车载设备 3，从信息提供服务器 2 接收的简单地图数据被存储于信息存储部分 34。因此，即使从信息提供服务器 2 接收简单地图数据 102 的循环周期不同于在图 6 的控制序列中确定报告移动体的必要性的循环周期，也可在每次执行图 6 中所示的控制序列时，做出关于是否应当报告移动体存在的决定。

术语的一般性解释

在理解本发明的范围时，在这里使用的术语“包括”及其派生词意图为规定所述特征、元件、组件、组、整体、和/或步骤的存在是开放性术语，不排除其他未被描述的特征、元件、组件、组、整体、和/或步骤的存在。前面的内容也适用于诸如“包含”、“具有”及其派生词的具有相似含义的词。

并且，在以单数形式使用时，术语“部分”、“部件”、“部”、“成员”或“元件”可具有单个部分或多个部分的双重含义。

如在这里使用的用来描述由组件、部分、装置等执行的操作或功能术语“检测”包括不需要物理检测，而是包括用于进行操作或功能的确定、测定、建模、预测或计算的组件、部分、装置等。如在这里使用的用来描述组件、部分、或装置的一部分的术语“被配置”包括被构造和/或编程为执行期望功能的硬件和/或软件。

尽管仅已选择了所选实施例来说明本发明，但本领域的技术人员将从此公开中清楚，可在这里作出各种改变和修改，而不背离如在所附权利要求中定义的本发明的范围。例如，各种组件的大小、形状、位置或方向可以根据需要或期望而改变。示出的直接连接的或相互接触可以具有置于它们之间
的中间结构。可通过两个元件来执行一个元件的功能，并且，反之亦然。一个实施例的结构和功能可适用于另一个实施例。在特定实施例中不一定同时存在所有优点。相对于现有技术而唯一的每一个特征，单独或与其它特征的组合也应被视为：包括这样的特征所体现的结构和/或功能概念的、申请人的进一步的发明的独立的描述。由此，仅为了说明、而不是为了限制如由所附权利要求及其等价物定义的本发明的目的，提供对根据本发明的实施例的前面的描述。
图 1

图 2
图 5
图6

开始

否

已经提供信息的次数少于（<）X次？

是

自前一次提供信息到现在的时间等小于或等于（<）X分钟？

是

档位是P或R？

否

车辆速度等小于或等于（<）X公里/小时？

否

位置信息处于地图匹配状态？

是

道路是快速路或旁路？

否

车辆进行右或左转弯？

否

设置信息提供区

计算弯路的曲率的程度

存在大曲率？

否

存在小曲率？

否

修改信息提供区的角度

T型交叉点立即在前面？

否

T型交叉点在前面？

否

读取便携式终端分布信息

确定是否有必要提供信息

结束
图 15
图 16
图 19