To all whom it may concern:

Leo M. Anderson and May L. Anderson, citizens of the United States, residing at Ramsey, New Jersey, have invented certain new and useful improvements in Combination Feeders, Fountains, and Heaters, of which the following is a specification, reference being had to the accompanying drawings.

The invention relates to new and useful improvements in poultry apparatus and more particularly to a combination evaporator, fountain and heater for poultry.

The object of our invention is to provide a device which can be used for feeding poultry with grain, grit, charcoal and water from the same vessel and also for drinking purposes by means for heating the same.

Another object of the invention is to provide an apparatus of the above character which will possess advantages as to ease of efficiency and durability, is inexpensive in manufacture and at the same time is simple in construction and operation.

With the above and other objects in view, the invention consists in the novel features of construction and the combination and arrangement of parts to be hereinafter more fully described, pointed out in the claims and shown in the accompanying drawings, in which—

Fig. 1 is a side elevation of a heater constructed in accordance with our invention.

Fig. 2 is a vertical sectional view.

Fig. 3 is a transverse sectional view taken on the line 3-3 of Fig. 2.

Referring more particularly to the drawings, 1 indicates the heater which comprises a cylindrical body divided into four segmental compartments 2, 3, 4 and 5, the lower portions of the compartments having floors 6 which incline from the central portion of the heater downwardly to the outer edges of the compartment. Three of these compartments are formed near their lower ends with inwardly depressed portions 7 which are formed with openings 8 to provide troughs 9, the bottoms of which are defined by the outwardly and downwardly inclined floors 6. The inwardly depressed portions 7 extend below the inwardly curved upper edges portions of the troughs, and it will thus be apparent that any material placed in these compartments will flow downwardly and outwardly into the troughs until the latter have been filled substantially to the lower edges of the inwardly depressed portions 7, said portions forming contracted outlets for the materials or substances as they pass from the main part of the compartments to the troughs at the bottom thereof.

The body portion of the device which defines the compartment 5 is formed with an opening 10, which is of slightly less width than the distance between the outer edges of the two partitions that form the sides of this compartment to leave portions in the nature of flanges 11', as best illustrated in Fig. 3. A water container 11 is adapted to be disposed within the compartment 5 and is formed with a downwardly and inwardly sloping bottom 12, adapted to rest upon the floor 6 of said compartment, with an inwardly depressed portion 13 corresponding in shape and function to the inwardly depressed portions 7, and with a trapezoid 14 which is similar to the troughs 9 in shape and function and which fits down within an upwardly projecting flange 15 which extends up from the main body portion of the device slightly above the floor 6 of the compartment 5.

The tank 11 is provided near its upper end with an outwardly projecting nipple 16 having an opening through which the tank may be filled, said opening being normally closed by means of a cap 16. The tank or water container 11 is provided with a handle 17, whereby it may be easily removed from the heater and carried to any desired point there it can be conveniently filled this handle and the top of the tank 11 being covered by a conical lid 20, which is formed with a flange extending around the upper edge of the main body portion of the device as well as the water tank or container, and which is provided with a handle as shown, whereby it may be easily removed and applied. The tank or container 11 is securely but removably held in operative relation to the other parts by the flanges 15 at the sides, the flange 16 at the bottom and the flange of the lid or cover 20 at the top.

The lower portion of the heater is provided with a compartment 18 to receive a lamp or other heating element, which will be disposed directly beneath the compartments 2, 3, 4 and 5, the floor of said compartment being raised slightly above that of the compartments above.
partitions forming the roof of the heating compartment. A suitable door 19 is provided in one side of the heating compartment and is supplied with suitable locking means in order to provide for inspection, insertion or removal of the lamp and for various other purposes.

In the operation, the compartments 2, 3, and 4 and the tank 11 are filled with their respective substances when the cover 20 is placed in position. The heater or heating element 21 is then placed in its compartment 18 and lighted and immediately warms up the material that is within the compartments. It will be seen that the heating, being arranged to take place on the lower portion of the compartments, tends to heat the material that will come out first to the troughs, which arrangement insures that the portions which the poultry eat are at the desired temperature. In the case of a lamp, the heat can be easily graduated and, even should it be removed temporarily, the heated water in its respective compartment will tend to keep the other compartments warm for a considerable length of time.

By the arrangement of the depressions 7 and 13 and the upwardly curved edges 8 and 14, the troughs formed thereby will be filled at all times by the downward movement of the substances contained in the various compartments, the inclined floors of the compartments assisting in the downward movement of the substances.

The chief advantage of this apparatus is that it is automatic in its action, it is convenient in every way, efficient in its use, sanitary, and can be manufactured at a comparatively low cost.

In the present application, it will be apparent that we have shown and described our improved apparatus as divided into four compartments, but it will be apparent that the device may be constructed in various sizes and divided into as many compartments as desired without sacrificing any of the novel features of the invention.

While we have shown and described the preferred form of our invention, it will be obvious that various changes in the details of construction and in the proportions may be resorted to for successfully carrying our invention into practice without sacrificing any of the novel features or departing from the scope of the appended claim.

What we claim is:

A combination feeder, fountain, and heater, comprising a casing divided into a plurality of vertically elongated compartments formed with outwardly and downwardly inclined bottoms, sundry of said compartments being formed near their lower ends with inwardly depressed portions and with troughs at their lower ends, the depressed portions having outlets which are disposed below the upper edges of the troughs, for the purpose specified, the remaining compartment of the device being formed with an opening and with longitudinally extending flanges defining the sides of said opening and with a bottom flange projecting upwardly above the outer edge of its floor, a water tank receivable in the last named compartment and formed with a downwardly and outwardly sloping floor and an inwardly depressed portion just above said floor and with a trough which fits down behind the upwardly projecting flange and for which the depressed portion constitutes an outlet, said longitudinal flanges extending over said water tank at the sides thereof, and a lid for said compartments.

In testimony whereof we have affixed our signatures in the presence of two witnesses.

LEO M. ANDERSON.
MAY L. ANDERSON.

Witnesses:

August Keen,
Avin Storms.