发明名称 具有抗菌活性的远红外发射粉末以及用含有该粉末的树脂涂覆的生物波钢板

摘要

本发明公开了远红外发射粉末及具有抗菌活性和远红外发射性能的树脂涂覆的钢板。除具有 0.9 或更高的发射率外，远红外发射粉末可抑制细菌的生长，其饱和水溶液的 pH 值为 7.5 - 10.5。在电磁屏蔽钢板上涂层厚度为 5 - 60 μm 的涂层材料而不干扰钢板的现有的电磁屏蔽性能，该涂层材料含有 5 - 100 重量份的上述粉末/100 重量份树脂。
1. 一种远红外发射粉末，其具有抗菌活性，其在饱和水溶液中的 pH 值范围是 7.5-10.5，并具有 0.9 或更高的远红外发射率。

2. 权利要求 1 所述的远红外发射粉末，其中远红外发射率为 0.92 或更高。

3. 权利要求 1 所述的远红外发射粉末，其中粉末的颗粒尺寸为 100 目或更小。

4. 权利要求 1 所述的远红外发射粉末，其中粉末的比表面积为 1.0 m²/g 或更大。

5. 权利要求 1-4 任一项所述的远红外发射粉末，其中所述的粉末由选自氢氧化镁、氧化镁、氢氧化锌、氧化锌、碳酸钙，它们的混合物及其含有部分这些物质的颗粒的材料制成。

6. 权利要求 5 所述的远红外发射粉末，其中所述的粉末由氢氧化镁制成。

7. 权利要求 5 所述的远红外发射粉末，其中所述的粉末含有至少 17 重量％的选自氢氧化镁、氧化镁、氢氧化锌、氧化锌、碳酸钙及它们的混合物的一种组分。

8. 具有抗菌活性和远红外发射性能的树脂涂层钢板，其具有干厚度为 5-60μm 的树脂涂层，所说的树脂涂层含有 5-100 重量份的远红外发射粉末/100 重量份树脂，所说的粉末在其饱和水溶液中的 pH 值范围是 7.5-10.5，并具有 0.9 或更高的远红外发射率。
9. 权利要求 8 所述的树脂涂覆钢板，其中远红外发射率为 0.92 或更高。

10. 权利要求 8 所述的树脂涂覆钢板，其中树脂涂层的厚度为 15-30μm。

11. 权利要求 8 所述树脂涂覆钢板，其中远红外发射粉末由选自氢氧化镁、氧化镁、氢氧化锌、氧化锌、碳酸钙、它们的混合物及含有部分这些物质的颗粒的材料制成。

12. 权利要求 8-11 任一项所述的树脂涂覆钢板，其中所述的钢板具有 0.85 或更高的远红外发射率，对细菌生长的抑制效率为 90% 或更高。

13. 权利要求 12 所述的树脂涂覆钢板，其中远红外发射率为 0.90 或更高。

14. 权利要求 8 或 12 所述的树脂涂覆钢板，其中远红外发射粉末为氧化锌，其用量为每 100 重量份树脂 5-100 重量份，以及对细菌的抑制活性的抑制效率为 90% 或更高。

15. 权利要求 8 或 12 所述的树脂涂覆钢板，其中远红外发射粉末为氧化锌，其用量为每 100 重量份树脂 20-100 重量份，对细菌的抑制活性的抑制效率为 90% 或更高。

16. 权利要求 8 或 12 所述的树脂涂覆钢板，其中远红外发射粉末为碳酸钙，其用量为每 100 重量份树脂 30-100 重量份，对细菌的抑制活性的抑制效率为 90% 或更高。

17. 权利要求 8 所述的树脂涂覆钢板，其中树脂为聚酯，远红外
发射粉末具有 0.90 或更高的远红外发射率，以及干厚度为 15-30μm。

18. 权利要求 17 所述的树脂涂覆钢板，其中钢板在远红外全波长带上平均具有 0.90 或更高的远红外发射率，在 5-8μm 范围的远红外波长带上的远红外发射率为 0.85 或更高。

19. 权利要求 8 或 17 所述的树脂涂覆钢板，其中钢板在 60Hz 的时变磁场中具有 2000 或更高的最大磁导率。

20. 权利要求 19 所述的树脂涂覆钢板，其中钢板为冷轧钢板，或含碳量为 0.02 重量％或更低，含铁量为 95 重量％或更高，或被冷轧钢板覆盖的钢板。

21. 权利要求 19 所述的树脂涂覆钢板，其中钢板为含有 0.5-3.5 重量％硅的硅钢板，或被硅钢板覆盖的钢板。

22. 权利要求 8 或 17 所述的树脂涂覆钢板，其中涂层含有 25-50 重量％的远红外发射粉末。
具有抗菌活性的远红外发射粉末
以及用含有该粉末的树脂涂覆的生物波钢板

技术领域
本发明涉及一种具有抗菌活性的远红外发射粉末，该粉末可应用于钢板以使其具有抗菌活性和远红外发射性能。另外，本发明涉及一种钢板，该钢板可屏蔽低频电磁波，并可用在需要抗菌活性和远红外辐射的场合。

背景技术
属于红外辐射的远红外辐射的波长为 2.5~20μm。在高于 0 K 的温度下，所有物质都产生远红外辐射，但是这种辐射广泛从被称为远红外发射器的特定陶瓷中产生。按照韩国专利公报 95-8584 的公开，远红外辐射的能量效率如此之高，归功于其通过应用广泛的辐射传递能量。

例如，远红外辐射对于人体的有益效果使远红外发射器可以应用于桑拿建筑物、电器、普通建筑物中。

按照韩国专利申请 88-1616 和 95-26761 的公开，典型的远红外发射器是硬玉和淡英斑岩。除此之外，已知过渡金属氧化物也具有高远红外发射率（韩国专利公开号 95-8584）。因这些远红外发射器几乎不具有导电性和导磁性，预计其具有电磁屏蔽能力。

有多种方法可以使钢板具有远红外发射能力。例如，按照日本专利公开号 95-248231 和 2000-171045 的公开，用远红外发射陶瓷涂覆钢板以提高其耐热性和能量效率。按照韩国专利申请 90-22365 的公开，可通过腐蚀将不锈钢板变为远红外发射器。韩国专利公开号
1998-83238 介绍了一种制造远红外发射钢板的方法，其中在诸如聚乙烯树脂等热固性树脂中加入含有诸如 Al₂O₃、SiO₂ 等的远红外发射陶瓷的沸石粉末，然后进行热处理。但是，由于选择了不合适的远红外发射器，该钢板在全波长范围内表现出仅 0.90 以下的远红外发射率。特别是，在已知对人体健康有益的 5-8μm 的波长带范围内，其远红外发射率仅为约 0.5-0.8。

参照图 1a 和 1b，显示了发射曲线。在图 4a 中常规 PCM（预涂覆金属）钢板的发射率对波长作图。图 4b 显示了 PCM 钢板和理想体的典型的发射率对波长作图。从曲线中可以看出，这些钢板没有显示出高频远红外发射。另外，不能预计这些钢板屏蔽低频电磁波。

按照条件的需要，需要钢板抑制微生物，以及显示高的远红外发射率。在这一点上，一些现有技术提出在钢板中应用抗菌物质以用于内部装修、厨房用具等。例如，韩国专利公开号 1996-58162 公开了在磷酸盐材料中浸渍的银 (Ag) 作为可用于钢板的抗菌物质。类似的，按照日本专利公开特开平 8-257493 和韩国专利公开号 1998-83239 的公开，具有抗菌活性的无机物质如 Zn 和 Ag 浸渍在具有远红外发射率的沸石载体中。可应用于钢板的抗菌物质的一个例子是光催化剂如 TiO₂（日本专利公开 2000-63733）。另外，美国专利 6,313,664 利用具有催化活性的金属与 TiO₂ 结合，使钢板具有抗菌活性。应用于钢板的大多数常规抗菌物质是基于金属离子的抗菌活性和 TiO₂ 的光学性能。但是，含有抗菌金属离子和光催化剂的载体不仅远红外发射率差，而且非常昂贵。

由于构成时变的、与生物体系具有不同相互作用的电场和磁场，发现电磁波对人体具有有害作用，这导致开发了多种用于屏蔽电磁波的方法和物质。对人体产生不利影响的人造波统称为有害波。

最近的研究证明了低频电磁波对生物体系的有害作用。特别地，
一系列提示了输电线周围的电磁场（60Hz）与致癌作用的相互作用的研究在全世界产生重大影响。

除了致癌作用，当长时间暴露于低频电磁波时，发现具有磁性的低频电磁波在人体内产生感应电流，这打破了各种离子如 Na⁺、K⁺、Cl⁻ 等的跨细胞膜生物平衡，对人体的激素分泌和免疫细胞产生不利影响。一项研究报道说磁场改变与睡眠有关的褪黑激素的分泌量，从而导致长期影响健康的失眠。

作为对来自电磁场的不利健康作用的环境因素的反应，最近许多国家通过立法降低从各种电器或电磁器中释放的电磁波的容许水平。另外，有关电磁场的规定用来来限制电器和/或电磁器的进口壁垒。例如，瑞典和其它欧洲国家禁止进口磁漏 2mG 或更高的电视或计算机监视器。

为处理这种有害的电磁波，在两方面开发了屏蔽技术：构造和材料。目前使用铜和铝作为电磁波的屏蔽。此外，本发明人在韩国专利申请 1999-52018 中描述了一种在低频具有优良的磁屏蔽效应的铜材料。但是，这样的非铁材料及具有优良电磁屏蔽性能的铜板不适合作为远红外发射器，因为它们的远红外发射率很差。
发明的公开

本发明人进行了广泛而全面的研究，发现某些碱性氧化物具有优良的远红外发射率，以及对微生物的抑制活性，可以应用于钢板上，从而产生了本发明。

因此，本发明的一个目的是克服现有技术中存在的上述问题，及提供一种具有抗菌活性、其饱和水溶液的 pH 为碱性，并具有远红外发射活性的远红外发射粉末。

本发明的另一个目的是提供一种树脂涂覆的钢板，该钢板具有抗菌活性及远红外发射活性。

本发明的第三个目的是提供了用含有远红外发射粉末的树脂涂覆的屏蔽电磁波的钢板，该钢板具有屏蔽电磁波及抗菌活性，并具有远红外发射性能。

按照本发明的一个方面，提供一种远红外发射粉末，该粉末具有抗菌活性，其饱和水溶液的 pH 值范围为 7.5-10.5，并显示出 0.9 或更高的远红外发射率。

按照本发明的另一方面，提供一种具有抗菌活性和远红外发射性能的树脂涂覆钢板，其树脂涂层的干厚度为 5-60μm，所说的树脂涂层中含有 5-100 重量份远红外发射粉末/100 重量份树脂，所说的粉末的饱和水溶液的 pH 值范围在 7.5-10.5，并具有 0.9 或更高的远红外发射率。

附图说明

以下结合附图的详细描述可以更清楚地理解本发明的上述及其他目的、特征和其它优点，附图中：
图 1a 为 ZnO 粉末和理想黑体的远红外发射曲线；
图 1b 为 MgO 粉末和理想黑体的远红外发射曲线；
图 2a 为显示含有与氢氧化镁和大肠杆菌结合的 MgO 的标准试样的照片；
图 2b 为显示培养图 2a 的标准试样 24 小时后大肠杆菌生长的照片；
图 3a 为显示含有与氢氧化锌和绿脓假单孢菌结合的 ZnO 的标准试样的照片；
图 3b 为显示培养图 3a 的标准试样 24 小时后绿脓假单孢菌的生长的照片；
图 4a 为常规聚酯 PCM 板的远红外发射率对波长所作的曲线；
图 4b 为常规聚酯 PCM 板和理想黑体的远红外发射率对波长所作的曲线；
图 5 为聚酯树脂的远红外发射率对波长所作的曲线；
图 6a 为 TiO₂ 粉末的远红外发射率对波长所作的曲线；
图 6b 为 MgO 粉末的远红外发射率对波长所作的曲线；
图 6c 为 CaCO₃ 粉末的远红外发射率对波长所作的曲线；
图 6d 为 ZnO 粉末的远红外发射率对波长所作的曲线；
图 7 为用含有 MnO 和 TiO₂ 粉末的聚酯树脂涂覆的生物波（biowave）钢板的远红外发射率对波长所作的曲线。

实施本发明的最佳方式

当与水分接触时，某些碱性金属氧化物粉末在其表面具有 M(OH) 或 M(OH)₂ 的形式（式中 M 为碱金属元素）的氢氧化物。这些氢氧化物碱性弱，但具有优良的远红外发射和有效的抗菌活性。

由于它们在水中的溶解度高，Na₂O、K₂O 和 CaO 粉末很容易与水分作用而分别形成 NaOH、KOH 和 Ca(OH)₂，同时产生大量的热。此外，Na₂O、K₂O 或 CaO 的水溶液的 pH 值为 11 或更高，碱性很强。因此，这些氧化物不适合作为远红外发射粉末，因为它们的碱性很高，
的抗菌且远红外发射性的 MgO、Mg(OH)₂、ZnO、Zn(OH)₂、CaCO₃ 或它们的混合物。如果氧化物或氢氧化物的用量低于 17 重量％，其粉末不显示优良的远红外发射率。

发射粉末优选具有 1.0 m²/g 或更大的比表面积。另外，优选粒子尺寸为 100 目或更小的发射粉末。当与粘合剂结合涂覆时，比表面积小或粒子尺寸大的远红外发射粉末使涂层不均匀。

本发明的发射粉末可以通过任何已知的方法制备。例如，通过来自钢铁厂的碱性耐火材料的水化作用可以获得 Mg(OH)₂。详细来说，当用作钢铁厂的碱性耐火材料的氧化镁（MgO）于水溶液中在 100℃或更高温度被加热和老化时，在耐火材料的表面形成氢氧化镁。另外，可以从海水获得氢氧化镁。

由于含有 MgO、Mg(OH)₂、ZnO、Zn(OH)₂、CaCO₃ 或它们的混合物的粉末为白色，将粉末与有色颜料混合而保持颜料的颜色。因此，可以获得理想颜色的将要涂覆到基材如钢板和塑料上的远红外发射粉末。

除了具有优越的远红外发射和抗菌活性，含有 MgO、Mg(OH)₂、ZnO、Zn(OH)₂、CaCO₃ 或它们的混合物的粉末对人体无害。因此，本发明的发射粉末与涂料或树脂结合，可以应用于任何需要抗菌活性和健康的远红外发射的场合。本发明发射粉末的说明性而非限制性的应用实例包括树脂涂覆的钢板、壁纸、家具和塑料管。

应用于钢板时，如上所述，发射粉末与树脂结合。应用于钢板的任何树脂可用来与本发明的发射粉末结合。可用于本发明的说明性而非限制性的树脂的例子包括聚酯树脂和丙烯酸树脂。

按照本发明，基于 100 重量份树脂，发射粉末的用量为 5-100 重
这对身体是有害的，尽管粉末形式的 Na₂O、K₂O 和 CaO 具有抗菌活性。

相反，MgO 和 ZnO 很难与水分或水反应。当 MgO 和 ZnO 粉末直接与水或水分接触时，它们只有极少量形成氢氧化物，由于这些氢氧化物的存在，粉末表面的 pH 值范围为 7.5-10.5。在碱性氧化物粉末的表面，与水分的反应如下面的化学式 1 所示：

\[\text{MgO, ZnO} + 2\text{H}_2\text{O} \rightarrow \text{Mg(OH)}_2, \text{Zn(OH)}_2 \]

通常微生物经不起环境变化。当环境的 pH 进入 7.5-10.5 的范围时，一些微生物的生长可能会受到有效的抑制。弱的碱性 pH 范围对人体无害，因此这些氢氧化物或氧化物用来制造类矿泉水、碱性食物、抗酸剂等。

与 MgO 和 ZnO 相反，CaCO₃ 不会因改变环境 pH 而具有抗菌活性。CaCO₃ 粉末本身具有抗菌活性，在水中的溶液度很小。但是，CaCO₃ 的抗菌活性比 MgO 和 ZnO 弱。在用与树脂结合的 CaCO₃ 涂覆钢板以使其具有抗菌活性时，CaCO₃ 的用量必须比 MgO、ZnO、Mg(OH)₂ 和 Zn(OH)₂ 更大。另外，MgO、ZnO、Mg(OH)₂、Zn(OH)₂ 和 CaCO₃ 在远红外波长带均具有 0.90 或更高的远红外发射率，优选 0.92 或更高。

按照本发明，具有 0.90 或更高、优选 0.92 或更高的远红外发射率，并具有 7.5-10.5 的 pH 或具有天然的抗菌活性的陶瓷粉末可以用作抗菌、远红外发射粉末（下文仅称作“发射粉末”）。

仅作说明而非限制的发射粉末的例子包括 MgO、Mg(OH)₂、ZnO、Zn(OH)₂、CaCO₃ 粉末或这些粉末的混合物。

按照本发明的一个实施方案，在发射粉末中优选含有 17 重量 %
量份，优选为 15-100 重量份。例如，当发射粉末的用量低于 5 重量份时，导致较差的抗菌活性和远红外发射性能。而随着树脂中的发射粉末的含量增加时，远红外辐射也增强。仅仅考虑远红外辐射因素，最好使用更多的发射粉末。但是，在 100 重量份树脂中超过 100 重量份的发射粉末时会导致涂层的粘结性能、与其它组分如颜料的相容性变差。

但是，临界抗菌活性所需的发射粉末量随发射粉末的不同而不同。例如，使树脂涂覆的钢板具有 90％或更高的抗菌能力所需的最小发射粉末量取决于所用的发射粉末。详细地说，为使钢板具有 90％或更高的抗菌能力，基于 100 重量份树脂，MgO 或 Mg(OH)₂的用量必须为 5 重量份或更高，ZnO 或 Zn(OH)₂的用量为 20 重量份或更高，CaCO₃ 的用量为 30 重量份或更高。

按照本发明，用于涂覆钢板的树脂组合物除含有发射粉末，根据情况需要还可以含有固化剂，消光剂，分散剂和其他添加剂。

当含有远红外发射粉末的树脂涂覆在钢板上时，钢板的远红外发射率随所得涂层的变厚而增加至某一程度。例如，当含有发射粉末的涂层组合物以 5μm 的干厚度涂覆在钢板上时，涂层的抗菌能力为 90％或更高，远红外发射率为 0.85 或更高。干厚度为 15μm 时，涂层的远红外发射率为 0.90 或更高。但是，远红外发射率一直增加，直到干厚度达到 60μm。超过 60μm 的干厚度使涂层的粘结力下降，而不增加远红外发射率。对于 PCM（预涂金属）钢板的情况，优选涂层的干厚度小于 30μm。考虑到上述条件，含有发射粉末的树脂优选在钢板上涂覆至 5-60μm 的干厚度，更优选为 15-30μm 的干厚度。

在树脂涂层中，优选远红外发射粉末的含量大约为 25-50 重量％。例如，如果远红外发射粉末的含量低于 25 重量％，发射率变差。另一方面，当使用超过 50 重量％的发射粉末时，发射率也不会进一步
增加。

在对人体有益的 5-8μm 的波长带上，聚酯树脂的远红外发射率为 0.5-0.8，这与在 5-20μm 范围之外的其他波长带上的远红外发射率相比较显著的差，如图 5 所示。因此，当使用聚酯树脂时，需要使用在 5-8μm 的波长带上具有高远红外发射率的发射粉末，从而需要聚酯树脂涂层的钢板在 5-8μm 的波长带上具有 0.85 或更高的远红外发射率，在 5-20μm 的远红外全波长带之外的其他范围的远红外发射率为 0.90 或更高。

在 5-8μm 的波长带上，MgO、Mg(OH)₂、ZnO、Zn(OH)₂ 和 CaCO₃ 均具有 0.90 或更高的远红外发射率。因此，在本发明中，将选自 MgO、Mg(OH)₂、ZnO、Zn(OH)₂、CaCO₃ 及它们的混合物中的任何一种与聚酯树脂结合并应用于钢板，都可取得在 5-8μm 的波长带上的理想远红外发射率。

按照本发明，含有远红外发射粉末的聚酯树脂涂层钢板上至干厚度为 15-60μm，优选干厚度为 15-30μm。例如，如果涂层厚度低于 15μm，得不到足够的远红外发射率。另一方面，超过 60μm 的涂层厚度对钢板的粘结性能变差。

当用与在 5-8μm 的波长带上具有 0.90 或更高的远红外发射率的远红外发射粉末混合的聚酯树脂涂覆钢板时，发现钢板在 5-20μm 的远红外全波长带的远红外发射率平均为 0.90 或更高，在 5-8μm 的波长带上其远红外发射率为 0.85 或更高。

应该理解本发明的发射粉末并不局限于用于本发明的钢板。如果本发明的发射粉末施用于其上，可应用于任何钢板。另外，将与本发明的远红外发射粉末混合的树脂涂层电镀到电磁屏蔽钢板上，从而制成生物波钢板，该钢板在抗菌活性和远红外发射方面均很优越，并具有优良
的电磁屏蔽效果。本文所用的术语“生物波钢板”是指可屏蔽有害的
电磁波（例如，60Hz 的人造电磁场）并发射有益的远红外辐射的钢板。

可用于本发明的电磁屏蔽钢板的例子是在 60Hz 的时变磁场中具
有 2000 或更高的最大磁导率的钢板，但不限于此。

含有 95 重量％或更高的铁及 0.02 重量％或更低的碳的钢板，在
60Hz 的时变磁场中能够显示 2000 或更高的最大磁导率。

碳含量超过 0.02 重量％会降低时变磁场（60Hz）中的最大磁导
率，使电磁屏蔽效果减弱。可用于本发明的钢板是含有 0.02 重量％或
更低的碳、95 重量％或更高铁的冷轧钢板，和含有 0.5-3.5 重量％硅的硅钢板。这些钢板可以电解方式或热浸方式镀锌、镀铬或涂覆树脂。

抗菌性发射粉末和生物波钢板可用来控制或除掉真菌，特别是大
肠杆菌和绿脓假单胞菌。因此，本发明的生物波钢板不仅可以用在需
要电磁场屏蔽和远红外发射的地方，而且可以用在需要除掉大肠杆菌
和绿脓假单胞菌的地方。

在对本发明作了总的描述之后，参照下面的特定具体实施例可以
进一步理解本发明，这些实施例仅出于说明的目的，如无另外指明，
无意限制本发明。

实施例 1

在 100g 水中分别加入下表 1 所列的各种碱性氧化物和氢氧化物
30g。加入碱性氧化物或氢氧化物后，测量水溶液的 pH 值，结果列在
表 1。在加入碱性氧化物或氢氧化物之前，预先测得蒸馏水的 pH 为
6.7。

还测得了碱性氧化物和氢氧化物的远红外发射率，结果列在表 1。
为此，借助于远红外分析仪，对表 1 所列的各种氧化物和氢氧化物的远红外发射率进行测量，然后根据波长在 50℃使用该分析仪测量理想黑体的远红外发射率。远红外发射率定义为样品的发射率与理想黑体的发射率的面积比。在图 1a 和图 1b 中分别给出了氧化锌和氧化镁的发射谱，同时给出了理想黑体的发射谱。

按照韩国建筑材料学会的 KICM-FIR-1002，通过摇瓶法测量 MgO 和 ZnO 粉末的抗菌活性。

大肠杆菌（ATCC 25922）和绿脓假单孢菌（ATCC 15422）与含有 MgO 和 ZnO 的发射粉末混合，制得标准试样，然后在肉汤中培养。发射粉末对细菌的抑制率表示成活细胞计数占标准试样的总活细胞计数的百分数。结果示于下表 1。另外，在培养之前以及培养 24 小时后，标准试样中的试验细菌示于图 2a 和 3b。

<table>
<thead>
<tr>
<th>材料号</th>
<th>粉末</th>
<th>饱和水溶液的 pH 值</th>
<th>远红外发射率</th>
<th>大肠杆菌死亡率(%)</th>
<th>绿脓假单孢菌死亡率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZnO</td>
<td>7.65</td>
<td>0.930</td>
<td>99.7</td>
<td>99.7</td>
</tr>
<tr>
<td>2</td>
<td>MgO</td>
<td>10.25</td>
<td>0.933</td>
<td>99.7</td>
<td>99.7</td>
</tr>
<tr>
<td>3</td>
<td>Zn(OH)₂</td>
<td>7.75</td>
<td>0.935</td>
<td>99.7</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Mg(OH)₂</td>
<td>10.45</td>
<td>0.941</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C. 1</td>
<td>TiO₂</td>
<td>6.7</td>
<td>0.923</td>
<td>81.5</td>
<td>0</td>
</tr>
<tr>
<td>C. 2</td>
<td>Al₂O₃</td>
<td>6.7</td>
<td>0.923</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. 3</td>
<td>SiO₂</td>
<td>6.7</td>
<td>0.918</td>
<td>10.5</td>
<td>0</td>
</tr>
<tr>
<td>C. 4</td>
<td>CaO</td>
<td>12.35</td>
<td>0.915</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C. 5</td>
<td>Na₂O</td>
<td>> 14</td>
<td>0.908</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C. 6</td>
<td>Ca(OH)₂</td>
<td>12.57</td>
<td>0.918</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C. 7</td>
<td>NaOH</td>
<td>> 14</td>
<td>0.909</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

从表 1 看出，白色的 Al₂O₃、TiO₂ 和 SiO₂ 粉末即使溶解时对蒸馏水的 pH 也没有影响。碱性氧化物 ZnO、MgO、CaO 和 Na₂O 的水溶液具有碱性 pH，因为它们部分溶解于其表面，分别形成氢氧化物
Zn(OH)_2、Mg(OH)_2、Ca(OH)_2 和 NaOH。而且，Zn(OH)_2、Mg(OH)_2、Ca(OH)_2 和 NaOH 粉末各自溶解的量与其相应的氧化物在水中的溶解量相同，然后测量所得水溶液的 pH 值。从表 1 的数据明显可以看出，氧化物的水溶液具有与其相应的氢氧化物粉末的水溶液几乎相同的 pH 值。这是因为当与水分接触时，如上所述，碱性氧化物 ZnO、MgO、CaO 和 Na_2O 在其表面上形成氢氧化物，这些氢氧化物使溶液的 pH 值增大。

强碱性的 CaO、Na_2O、Ca(OH)_2 和 NaOH 在实际应用中是不利的，原因是它们可以对人体造成不利影响。相反，ZnO、MgO、Zn(OH)_2 和 Mg(OH)_2 的碱性足够弱，不会对人体产生不利影响，但在足以抑制细菌生长方面很有效。

实施例 2

将 MgO 置入高压釜中，然后在 110℃下，使其水化不同的时间，得到具有不同 Mg(OH)_2 浓度的试样。通过热解重量分析法测量粉末中的 Mg(OH)_2 含量。水化含水量表示为进行热解重量分析时，重量变化占理论重量变化（Mg(OH)_2 = MgO + H_2O，30.8 重量％）的百分数。

表 2

<table>
<thead>
<tr>
<th>材料号</th>
<th>MgO 的初始颗粒尺寸</th>
<th>水化时间</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 小时(重量％)</td>
</tr>
<tr>
<td>C. 8</td>
<td>< 100 目</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>100-200 目</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>200-325 目</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>> 325 目</td>
<td>60</td>
</tr>
</tbody>
</table>

从表 2 中看出，随水化时间的增加，水化为 Mg(OH)_2 的 MgO 增多。还发现形成的 Mg(OH)_2 的含量取决于初始 MgO 颗粒尺寸。因此，将 MgO 粉化为更细的颗粒能够保证更大的 Mg(OH)_2 含量。
当 MgO 的颗粒尺寸为大约 100 目或更大时，即使时间延长，所产生的 Mg(OH)_2 的量也不会大到显示出充足的抗菌活性和远红外发射。因此，优选将 MgO 粉化为 100 目或更小的颗粒尺寸。

实施例 3

测定了实施例 2 的含有由 MgO 水化生成的 Mg(OH)_2 每个试样的颗粒尺寸，结果列于下表 3。颗粒尺寸的测量采用比表面积分析仪（Micromeritics Inc. 制造）进行。

<table>
<thead>
<tr>
<th>材料号</th>
<th>初始颗粒尺寸</th>
<th>比表面积随水化时间的变化 (m^2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 小时</td>
</tr>
<tr>
<td>C. 8</td>
<td>< 100 目</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>100~200 目</td>
<td>0.53</td>
</tr>
<tr>
<td>6</td>
<td>200~325 目</td>
<td>0.67</td>
</tr>
<tr>
<td>7</td>
<td>> 325 目</td>
<td>0.98</td>
</tr>
</tbody>
</table>

从表 3 的数据明显可以看出，粉末的比表面积随 MgO 水化时间的延长而增大。这是由于水化产生的微细的 Mg(OH)_2。但是，水化 6 小时后，发现比表面积不再增大，原因是在长时间的水化过程中，已经形成的 Mg(OH)_2 在生长。

同时，初始颗粒尺寸 100 目的 MgO 粉末得到的水化含量不超过 30%，比表面积也不会达到 1.0 m^2/g，即使水化时间长达 6 小时也不行。

实施例 4

借助于傅立叶变换红外光谱仪（Midac Corporation 制造），评价每个含有 Mg(OH)_2 的试样的远红外发射率。试样的远红外发射率及其制备条件、Mg(OH)_2 的含量总结在下表 4 中。

试样的远红外发射率表示为在 50℃下，试样的发射率对波长所作的发射曲线下覆盖的面积与理想黑体的发射曲线覆盖的面积之比。在
这一点上，试样的发射率对远红外发射带（2.5-20μm）中的波长所作的曲线下覆盖的面积定义为试样的远红外发射率。

表 4

<table>
<thead>
<tr>
<th>材料号</th>
<th>初始颗粒尺寸(目)</th>
<th>Rxn 时间 (小时)</th>
<th>Mg(OH)_2(重量%)</th>
<th>比表面积 (m²/g)</th>
<th>远红外发射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. 9</td>
<td>< 100</td>
<td>6</td>
<td>25</td>
<td>0.76</td>
<td>0.925</td>
</tr>
<tr>
<td>8</td>
<td>100~200</td>
<td>1</td>
<td>17</td>
<td>1.03</td>
<td>0.923</td>
</tr>
<tr>
<td>9</td>
<td>100~200</td>
<td>2</td>
<td>28</td>
<td>1.21</td>
<td>0.928</td>
</tr>
<tr>
<td>10</td>
<td>200~325</td>
<td>1</td>
<td>31</td>
<td>1.68</td>
<td>0.929</td>
</tr>
<tr>
<td>11</td>
<td>100~200</td>
<td>6</td>
<td>43</td>
<td>1.22</td>
<td>0.933</td>
</tr>
<tr>
<td>12</td>
<td>200~325</td>
<td>2</td>
<td>47</td>
<td>2.45</td>
<td>0.935</td>
</tr>
<tr>
<td>13</td>
<td>200~325</td>
<td>6</td>
<td>54</td>
<td>2.38</td>
<td>0.938</td>
</tr>
<tr>
<td>14</td>
<td>> 325</td>
<td>1</td>
<td>60</td>
<td>3.72</td>
<td>0.941</td>
</tr>
<tr>
<td>15</td>
<td>> 325</td>
<td>2</td>
<td>77</td>
<td>4.11</td>
<td>0.944</td>
</tr>
<tr>
<td>16</td>
<td>> 325</td>
<td>6</td>
<td>88</td>
<td>3.99</td>
<td>0.947</td>
</tr>
<tr>
<td>C. 10</td>
<td>> 325</td>
<td>0</td>
<td>60</td>
<td>0.98</td>
<td>0.916</td>
</tr>
</tbody>
</table>

从试样 8-16 可以看出，远红外发射率随 Mg(OH)_2 含量的增加几乎呈直线增加。Mg(OH)_2 含量的增加使微细颗粒的数量增加，并因此使比表面积增加。这说明含有 Mg(OH)_2 的粉末可以应用于远红外辐射涂料。相反，对比例 9 尽管远红外发射率优良，但不适合在涂料中应用，原因是它的比表面积小。

实施例 5

评价商用试剂级、纯度为 99%或更高的 MgO 粉末和从海水制得的试剂级 Mg(OH)_2 粉末的远红外发射率。通过傅立叶变换红外光谱仪测量，发现目前商用的 MgO 的远红外发射率为 0.904。另一方面，测得从海水制得的 Mg(OH)_2 粉末的远红外发射率为 0.946，仍然比商用的 MgO 的远红外发射率值高。根据这些结果，可以理解含有 Mg(OH)_2 的远红外发射粉末不限于 MgO 水化制得的 Mg(OH)_2，而且也可以从海水中提取 Mg(OH)_2。
实施例 6

如下表 5 所示，远红外发射粉末与聚酯树脂结合，制备涂层材料。此后，使用刮条涂布机将其以不同的干厚度涂覆在电磁屏蔽钢板上，每块钢板在时变低频磁场中的最大磁导率为 3000，碳含量为 0.003%。形成的干厚度也示于下表 5 中。施用涂层材料后，在 225℃下热固化工板上的涂层，制备聚酯树脂涂层的钢板。

评价聚酯树脂涂层的钢板在 5-20μm 的波长带上的远红外发射率，结果列在下表 5 中。

为测试钢板的抗菌活性，使用 KICM-FIR-1002 的压缩法。在标准试样（不含抗菌陶瓷）和含有抗菌发射粉末的试验试样中接种大肠杆菌（ATCC 25922）和绿脓假单孢菌（ATCC 15422），然后用其他试样覆盖试验试样，之后在 37℃下培养 24 小时。通过测量试验试样中的活细胞对标准试样中的活细胞的百分比，得到细菌的死亡率，结果列在下表 5。

表 5

<table>
<thead>
<tr>
<th>材料号</th>
<th>发射粉末</th>
<th>粉末(重量份/100重量份 PE)</th>
<th>涂层厚度(μm)</th>
<th>远红外发射率</th>
<th>大肠杆菌死亡率(%)</th>
<th>绿脓假单孢菌死亡率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. 11</td>
<td>无</td>
<td>0</td>
<td>20</td>
<td>0.834</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>MgO</td>
<td>30</td>
<td>5</td>
<td>0.867</td>
<td>99.3</td>
<td>93.4</td>
</tr>
<tr>
<td>18</td>
<td>MgO</td>
<td>30</td>
<td>10</td>
<td>0.895</td>
<td>99.9</td>
<td>99.3</td>
</tr>
<tr>
<td>19</td>
<td>MgO</td>
<td>5</td>
<td>20</td>
<td>0.868</td>
<td>98.5</td>
<td>93.6</td>
</tr>
<tr>
<td>20</td>
<td>MgO</td>
<td>10</td>
<td>20</td>
<td>0.890</td>
<td>98.9</td>
<td>94.9</td>
</tr>
<tr>
<td>21</td>
<td>MgO</td>
<td>20</td>
<td>20</td>
<td>0.923</td>
<td>99.3</td>
<td>93.7</td>
</tr>
<tr>
<td>22</td>
<td>MgO</td>
<td>30</td>
<td>20</td>
<td>0.924</td>
<td>99.3</td>
<td>99.3</td>
</tr>
<tr>
<td>C. 12</td>
<td>ZnO</td>
<td>15</td>
<td>20</td>
<td>0.904</td>
<td>29.7</td>
<td>88.7</td>
</tr>
<tr>
<td>23</td>
<td>ZnO</td>
<td>25</td>
<td>20</td>
<td>0.910</td>
<td>99.7</td>
<td>93.6</td>
</tr>
<tr>
<td>24</td>
<td>ZnO</td>
<td>35</td>
<td>20</td>
<td>0.912</td>
<td>99.6</td>
<td>93.8</td>
</tr>
<tr>
<td>C. 13</td>
<td>CaCO₃</td>
<td>10</td>
<td>20</td>
<td>0.897</td>
<td>24.5</td>
<td>20.0</td>
</tr>
<tr>
<td>C. 14</td>
<td>CaCO₃</td>
<td>20</td>
<td>20</td>
<td>0.916</td>
<td>96.7</td>
<td>80.6</td>
</tr>
<tr>
<td>25</td>
<td>CaCO₃</td>
<td>30</td>
<td>20</td>
<td>0.925</td>
<td>98.7</td>
<td>99.3</td>
</tr>
</tbody>
</table>
从表 5 明显可以看出，发现用比较材料号 11 处理的钢板远红外发射率极差，且没有抗菌活性。

从材料号 17 和 18 可以看出，随涂层厚度的增加，远红外发射率增加。但是，抗菌活性与涂层厚度有关。甚至厚度为 5-10μm 时，也能得到超过 90% 的死亡率。另外，尽管材料号 17 和 18 远红外发射率有某种程度地不佳，仍然显示超过 90% 的死亡率。基于这样的性能，材料号 17 和 18 可以应用作耐指纹涂层和薄膜涂层，以及 PCM 涂层。但是，材料号 17 和 18 的远红外发射率也超过 0.85，满足远红外发射器的最低要求。

每 100 重量份聚酯树脂含 5-10 重量份 MgO 足以得到 90% 或更高的死亡率。用材料号 19 和 20 涂覆的钢板的远红外发射率低至 0.85-0.90，但对细菌具有有效的抑制活性。但是，优选 MgO 的用量是每 100 重量份树脂 10 重量份或更高，以取得 90.0 或更高的远红外发射率。

对于 100 重量份树脂，大肠杆菌和绿脓假单孢菌的 90% 或更高的死亡率需要使用 20 重量份或更多的 ZnO （材料号 23 和 24），或 30 重量份或更多的 CaCO3 （材料号 25）。

实施例 7

用韩国专利公开 1998-8329 号中描述的 PCM 涂层法制得的远红外发射钢板在 5-8μm 的波长带上具有低至 0.5-0.8 的远红外发射率，如图 4a 和 4b 所示。这被认为归因于这样的一个事实，即聚酯树脂在 5-8μm 的波长带上的远红外发射率低，如图 5 所示。

在特定的波长带上测定多种材料的远红外发射率，结果如图 6a 至 6d 所示，并总结于下表 6 中。
表 6

<table>
<thead>
<tr>
<th>材料号</th>
<th>发射器</th>
<th>备注</th>
<th>远红外发射率 /5-8μm</th>
<th>远红外发射率 /5-20μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>常规</td>
<td>PCM 板</td>
<td>韩国专利公开号 1998-8329</td>
<td>0.5-0.8</td>
<td>< 0.90</td>
</tr>
<tr>
<td>C. 15</td>
<td>PCM 树脂</td>
<td>聚乙烯</td>
<td>0.70</td>
<td>0.829</td>
</tr>
<tr>
<td>C. 16</td>
<td>TiO₂</td>
<td>粉末</td>
<td>0.830</td>
<td>0.923</td>
</tr>
<tr>
<td>C. 17</td>
<td>Al₂O₃</td>
<td>粉末</td>
<td>0.823</td>
<td>0.923</td>
</tr>
<tr>
<td>C. 18</td>
<td>SiO₂</td>
<td>粉末</td>
<td>0.870</td>
<td>0.918</td>
</tr>
<tr>
<td>26</td>
<td>ZnO</td>
<td>粉末</td>
<td>0.901</td>
<td>0.930</td>
</tr>
<tr>
<td>27</td>
<td>MgO</td>
<td>粉末</td>
<td>0.925</td>
<td>0.943</td>
</tr>
<tr>
<td>28</td>
<td>CaCO₃</td>
<td>粉末</td>
<td>0.923</td>
<td>0.940</td>
</tr>
<tr>
<td>29</td>
<td>MgO+TiO₂</td>
<td>MgO 50 重量%</td>
<td>0.912</td>
<td>0.928</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TiO₂ 50 重量%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

从表 6 可以看出，测定了多个远红外发射率，其按照波长带随发射器的不同而不同。发现 MgO、CaCO₃ 和 ZnO（材料号 26 和 28）和至少含有这些氧化物之一的混合物（材料号 29）在 5-20μm 的波长带上显示出优良的远红外发射率。即使波长带缩窄至 5-8μm 的范围，其远红外发射率仍然很优良。因此，发射粉末 MgO、CaCO₃ 和 ZnO 可用于提高聚酯树脂在 5-8μm 的波长带上的发射。

实施例 8

发射粉末以预定量与用于 PCM 的聚酯树脂结合，制备涂层材料。发射粉末的种类和用量见下表 7。

然后，使用刮条涂布机将涂层材料以不同的干厚度涂覆在电磁屏蔽钢板上，每块钢板在低频最大磁导率为 3000，碳含量为 0.003%。形成的干厚度也列在下表 7 中。施涂层材料后，在 225℃下热固化钢板上的涂层以制备聚酯树脂涂层的钢板。评价聚酯树脂钢板在波长带上的远红外发射率，结果列在下表 7 中。
表 7

<table>
<thead>
<tr>
<th>材料号</th>
<th>涂层粉末</th>
<th>粉末重量份/100</th>
<th>涂层厚度（μm）</th>
<th>远红外发射率/5-8μm</th>
<th>远红外发射率/5-20μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. 19</td>
<td>无</td>
<td>0</td>
<td>20</td>
<td>0.721</td>
<td>0.834</td>
</tr>
<tr>
<td>C. 20</td>
<td>TiO₂</td>
<td>30</td>
<td>20</td>
<td>0.742</td>
<td>0.890</td>
</tr>
<tr>
<td>C. 21</td>
<td>Al₂O₃</td>
<td>30</td>
<td>20</td>
<td>0.728</td>
<td>0.902</td>
</tr>
<tr>
<td>C. 22</td>
<td>MgO</td>
<td>10</td>
<td>20</td>
<td>0.790</td>
<td>0.890</td>
</tr>
<tr>
<td>C. 23</td>
<td>CaCO₃</td>
<td>30</td>
<td>20</td>
<td>0.798</td>
<td>0.903</td>
</tr>
<tr>
<td>C. 24</td>
<td>CaCO₃</td>
<td>30</td>
<td>30</td>
<td>0.860</td>
<td>0.927</td>
</tr>
<tr>
<td>30</td>
<td>MgO</td>
<td>20</td>
<td>20</td>
<td>0.858</td>
<td>0.923</td>
</tr>
<tr>
<td>31</td>
<td>MgO</td>
<td>80</td>
<td>20</td>
<td>0.868</td>
<td>0.927</td>
</tr>
<tr>
<td>32</td>
<td>CaCO₃</td>
<td>30</td>
<td>20</td>
<td>0.859</td>
<td>0.925</td>
</tr>
<tr>
<td>33</td>
<td>ZnO</td>
<td>25</td>
<td>25</td>
<td>0.857</td>
<td>0.912</td>
</tr>
<tr>
<td>34</td>
<td>MgO+TiO₂</td>
<td>MgO 25</td>
<td>TiO₂ 25</td>
<td>0.854</td>
<td>0.916</td>
</tr>
</tbody>
</table>

从对比材料号 19 可以看出，用不含任何远红外发射粉末的聚酯树脂涂覆的钢板在 5-8μm 的波长带上有低的远红外发射率，原因是聚酯树脂本身的远红外发射率低。在聚酯树脂中含有 Al₂O₃ 或 TiO₂ 的情况下（对比材料号 20 和 21），在 5-20μm 的波长带中测得的远红外发射率平均较高，但当波长带缩窄至 5-8μm 时，远红外发射率很差。

相反，从材料号 30-35 可以看出，当含有 MgO、CaCO₃ 和 ZnO 时，即使用聚酯树脂涂覆，测定显示钢板具有 0.85 或更高的远红外发射率，原因是远红外发射粉末在 5-8μm 的波长带上有优秀的远红外发射率，补偿了聚酯树脂低劣的发射率。

当相对于聚酯树脂发射粉末的用量太少时，例如，每 100 重量份聚酯树脂 10 重量份用量，如对比材料号 8 所示，不能得到足够的远红外发射性能。另一方面，发射粉末用量过多时，例如，每 100 重量份聚酯树脂 100 重量份发射粉末，会带来与其它添加剂的相容性的问题，以及使涂布性能劣化。

如图 7 所示，象材料号 35 那样用含有 MgO 与 TiO₂ 的混合物的
聚酯树脂涂覆钢板时，也检测到在 5-8μm 的波长带上具有优良的远红外发射率。

实施例 8

测量了按照实施例 8 的表 7 所示的条件涂覆的钢板，以及碳含量为 0.003 重量％，在时变磁场中的最大磁导率为 3000 的冷轧钢板在 60Hz 的电磁屏蔽效率和屏蔽效果。

由相同的材料制成的所有试样，冷轧钢板和树脂涂覆的钢板显示的电磁屏蔽效率分布在 94.5 至 95.5％的范围内。考虑到试验误差，这些值基本是相等的。也发现电磁屏蔽效果分布在 99 至 99.2％的窄范围内。

即使使用含有这样的远红外发射粉末的聚酯树脂涂覆，钢板固有电和磁的屏蔽性能也不会改变。因此，本发明的远红外发射粉末可以应用于电磁屏蔽钢板以生产生物波钢板。

实施例 9

为选择适用于生物波钢板的材料，测定了已知的对人体友好电磁屏蔽钢板、多种钢和非钢材料的低频磁屏蔽效率。关于这一点，按下式计算磁屏蔽效率：

$$\text{磁场屏蔽效率} = \frac{\text{外加磁场} - \text{发射磁场}}{\text{外加磁场}} \times 100$$

也测定了 60Hz 下时变磁场中的最大磁导率。结果总结在下表 8 中。
<table>
<thead>
<tr>
<th>材料号</th>
<th>板</th>
<th>组成和性能</th>
<th>最大磁导率</th>
<th>屏蔽效率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. 24</td>
<td>纯铜</td>
<td>Cu ≥99.9%</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>C. 25</td>
<td>纯铝</td>
<td>Al ≥99.9%</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>C. 26</td>
<td>冷轧钢板</td>
<td>0.04%C-99%≤Fe</td>
<td>1350</td>
<td>74.8</td>
</tr>
<tr>
<td>36</td>
<td>冷轧钢板</td>
<td>0.003%C-99%≤Fe</td>
<td>3700</td>
<td>96.4</td>
</tr>
<tr>
<td>37</td>
<td>冷轧钢板</td>
<td>0.02%C-99%≤Fe</td>
<td>2100</td>
<td>90.4</td>
</tr>
<tr>
<td>38</td>
<td>硅钢板</td>
<td>99%Fe-1%非定向硅</td>
<td>4800</td>
<td>98.2</td>
</tr>
<tr>
<td>39</td>
<td>硅钢板</td>
<td>97%Fe-3%定向硅</td>
<td>18000</td>
<td>99.0</td>
</tr>
<tr>
<td>C. 27</td>
<td>不锈钢板</td>
<td>70%Fe-18%Ni-8%Cr-4%其他元素</td>
<td>12</td>
<td>1.55</td>
</tr>
<tr>
<td>C. 28</td>
<td>坡莫合金</td>
<td>60%Ni-30%Fe-10%其他元素</td>
<td>25000</td>
<td>99.3</td>
</tr>
</tbody>
</table>

纯铜和纯铝板（对比材料号 24 和 25）均具有优良的导电性，但最大磁导率太差而不适用于低频磁场。对比材料号 27 的不锈钢板也不适用于本发明，原因是其最大磁导率在 60Hz 的时变磁场中太低。当含有超过 0.02 重量%的碳时，象对比材料号 26 那样，冷轧钢板在 60Hz 的时变磁场中的最大磁导率显著降低，因此不适合作为生物波钢板。坡莫合金如对比材料号 28 显示出极高的磁导率，但除在经济上不合理以外，其 Fe 含量也太低。

实施例 10

将含有 Mg(OH)_2 的粉末（远红外发射率 0.941）、硬玉粉末（远红外发射率 0.934）和淡英斑岩粉末（远红外发射率 0.956）加工成比表面积为 1.0m²/g 或更大的微细粉末。然后，将这些发射粉末以特定的比例与有机涂层材料混合，有机涂层材料例如，诸如那些含有丙烯酸树脂涂层的典型涂层、稀释剂、二甲苯溶剂等。含有发射粉末的涂层以不同的厚度涂层到实施例 9 的材料号 36 的钢板上。干燥后，借助于傅立叶变换红外光谱仪（Midac Corporation 制造），按涂层厚度评价如形成的含有不同的发射粉末量的涂层的远红外发射率。将远红外发射粉末在涂层（为蒸发稀释剂而干燥后的）中的重量百分数（下
文称“涂层中的发射器含量”），以及其依赖于涂层厚度的远红外发射率归纳列在下表9中。

表9

<table>
<thead>
<tr>
<th>材料号</th>
<th>粉末</th>
<th>涂层中的发射器（wt%）</th>
<th>涂层厚度（μm）</th>
<th>远红外发射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. 29</td>
<td>无</td>
<td>0</td>
<td>0</td>
<td>0.759</td>
</tr>
<tr>
<td>C. 30</td>
<td>无</td>
<td>0</td>
<td>30</td>
<td>0.838</td>
</tr>
<tr>
<td>C. 31</td>
<td>Mg(OH)₂</td>
<td>10</td>
<td>30</td>
<td>0.877</td>
</tr>
<tr>
<td>40</td>
<td>Mg(OH)₂</td>
<td>25</td>
<td>30</td>
<td>0.921</td>
</tr>
<tr>
<td>41</td>
<td>Mg(OH)₂</td>
<td>33</td>
<td>30</td>
<td>0.937</td>
</tr>
<tr>
<td>42</td>
<td>Mg(OH)₂</td>
<td>50</td>
<td>30</td>
<td>0.940</td>
</tr>
<tr>
<td>C. 32</td>
<td>Mg(OH)₂</td>
<td>67</td>
<td>30</td>
<td>0.939</td>
</tr>
<tr>
<td>43</td>
<td>Mg(OH)₂</td>
<td>33</td>
<td>10</td>
<td>0.890</td>
</tr>
<tr>
<td>44</td>
<td>Mg(OH)₂</td>
<td>33</td>
<td>20</td>
<td>0.930</td>
</tr>
<tr>
<td>45</td>
<td>Mg(OH)₂</td>
<td>33</td>
<td>60</td>
<td>0.941</td>
</tr>
<tr>
<td>C. 33</td>
<td>Mg(OH)₂</td>
<td>33</td>
<td>90</td>
<td>0.941</td>
</tr>
<tr>
<td>46</td>
<td>硬玉粉末</td>
<td>33</td>
<td>30</td>
<td>0.930</td>
</tr>
<tr>
<td>47</td>
<td>淡黄土岩</td>
<td>33</td>
<td>30</td>
<td>0.940</td>
</tr>
</tbody>
</table>

从表9的数据明显可以看出，纯铁的冷轧钢板（对比材料号29）和仅用不含远红外发射粉末的有机涂料涂覆的冷轧钢板（对比材料号30）的远红外发射率很差。发现用发射粉末涂覆钢板的远红外发射率大大地依赖于涂层中的发射器含量。当涂层中的发射器含量为10 重量%或更低时，就象对比材料号31那样，钢板的发射率在发射效率方面有所降低。另一方面，当涂层中的发射器含量超过60 重量%时，如对比材料号32，或涂层厚度超过60μm，如对比材料号33，不能进一步提高钢板的远红外发射效率，并观察到涂层的粘结力劣化。

相反，具有含有发射粉末的16-60μm厚涂层的钢板，如材料号40-47，表现出优良的发射效率。

实施例11

磁场屏蔽试验结果显示，实施例10中材料号40-47的钢板的低
频磁场屏蔽效率范围是 90 至 91%，考虑到实验误差，该值与材料号 37 的钢板的值是相等的。因此，本发明的钢板可以用作屏蔽有害波长并发射有益的远红外辐射的生物波钢板。

5 工业实用性

如上文所述的本发明的远红外发射粉末具有优良的抗菌活性和远红外发射性能。而且远红外发射粉末可以应用于电磁屏蔽钢板而不会干扰钢板的固有电磁屏蔽效果。因此，本发明提供了屏蔽有害的低频电磁波、发射有益的远红外辐射、且对细菌的生长具有抑制活性的生物波钢板。

10 以示例的方式描述了本发明，应该理解所用的术语是为了进行描述而非限制。通过以上的教导，本发明的多种改进和变化是可能的。因此，应该理解在附带的权利要求的范围内，可在具体描述的范围之外实践本发明。
图1b
图2a

抗菌试验
MgO(0小时)
大肠杆菌ATCC 25922
抗菌试验
MgO(24小时后)
大肠杆菌ATCC 25922

图2b
图3a

抗菌试验
ZnO(0小时)
绿脓假单胞菌ATCC 15442
抗菌试验
ZnO(24小时后)
绿脓假单胞菌ATCC 15442

图3b
图4a
图4b
图5
图6a
图6b
图6d
图7