Abstract: A method and system for computer programming using speech and one or two hand gesture input is described. The system generally uses a plurality of microphones and cameras as input devices. A configurable event recognition system is described allowing various software objects in a system to respond to speech and hand gesture and other input. From this input program code is produced that can be compiled at any time. Various speech and hand gesture events invoke functions within programs to modify programs, move text and punctuation in a word processor, manipulate mathematical objects, perform data mining, perform natural language internet search, modify project management tasks and visualizations, perform 3D modeling, web page design and web page data entry, and television and DVR programming.
Information about Correction:
see Notice of 10 November 2011
TITLE OF INVENTION
Process for providing and editing instructions, data, data structures, and algorithms in a computer system.

TECHNICAL FIELD

CROSS REFERENCE TO RELATED APPLICATION

[0002] This application claims the benefit of application serial number 61134196 filed July 8th 2008.

BACKGROUND OF THE INVENTION
Humans naturally express continuous streams of data. Capturing this data for human computer interaction has been challenging because of the vast amount of data and the inherent way humans communicate is far from the basic operations of a computer.

The human also expresses something in a way that assumes some knowledge not known by a computer. The human input must be translated in some way that results in meaningful output. To reduce this disparity historically tools such as punch cards, mice and keyboards were used to reduce the possible number of inputs so that human movements such as pressing a key results in a narrowly defined result. While these devices allowed us to enter sequences of instructions for a computer to process, the human input was greatly restricted. Furthermore, it has been shown that keyboard input is much slower than speech input and there is significant time wasted in both verifying and correcting misspellings and moving of the hand between the keyboard and mouse.

Speech recognition in the last 40 years was one technique created widening the range and increasing the speed of computer input. But without additional context speech recognition results in at best a good method for dictation and at worst endless disambiguation. Hand gesture recognition in the last 25 years also widened the range of computer input however, like speech recognition, without additional context the input was ambiguous. Using hand gestures has historically required the user to raise their arms in some way for input tiring the user.
The idea of combining such speech and gesture modalities for computer input was conceived at least 25 years ago and has been the subject of some research. A few computing systems have been built during this period that accept speech and gesture input to control some application. Special gloves with sensors to measure hand movements were used initially and video cameras subsequently to capture body movements. Other sensing techniques using structured light and ultrasonic signals have been used to capture hand movements. While there is a rich history of sensing and recognition techniques little research has resulted in an application that is useful and natural proven by everyday use. Without a different approach to processing computer inputs the keyboard and mouse will remain the most productive forms of input.

Computer programming generally consists of problem solving with the use of a computer and finding a set of instructions to achieve some outcome. Historically, programs were entered using punch cards, magnetic tape, and with a keyboard and mouse. This has resulted in the problem solver spending more time getting the syntax correct so the program will execute correctly than finding a set of steps that will solve the original problem. In fact, this difficulty is so bad that an entire profession of programming had developed. Additionally, many programs are written over and over again as implementations of common requirements are not shared.

SUMMARY OF THE INVENTION AND ADVANTAGES

This summary provides an overview so that the reader has a broad understanding of the invention. It is not meant to be comprehensive or delineate any scope of the invention. In one aspect of the invention, a method of capturing sensing data and routing related events is disclosed. Computer input can come from many sensors producing input data that must be transformed into useful information and consumed by various programs on a computer system. Speech and gesture input are used in this system as the main input method. Speech input is achieved through a basic personal computer microphone and gesture input is achieved through camera(s). When sensing data is acquired, it is transformed into meaning full data that must be routed to software objects desiring such input. Microphone data is generally transformed into words and camera data is transformed initially into 3D positions of the fingers. This data is recognized by various speech and gesture
components that will in turn produce new events to be consumed by various software objects.

[0004] In another aspect of the invention, a facility to configure the routing of sensor input and recognition of sensor data to an application. This facility may take the form of a program interface, a standalone graphical user interface, or an interface in a Integrated Development Environment. Example words or gestures to recognize can be made and assigned to specific named events. Further, the data passed to the recognizer and data passed on can be configured. The method of interpretation of events can be selected.

[0005] In another aspect of the invention is the method of searching for finger parts for two hands. This method involves searching for light patterns to initially find unique lighting characteristics made by common lighting hand interaction. Hand constraints are applied to narrow the results of pattern matching. After the hand center is estimated, startpoints are determined and each finger is traversed using sample skin colors. Generally the hand movement from frame to frame is small so that the next hand or finger positions can be estimated reducing the required processing power required. Light patterns consist of patterns of varying colors. Part of the pattern to find may be skin color while the other part is a darker color representing a crack between fingers. There are many possible obstructions in traversing a finger. These include rings, tattoos, skin wrinkles, and knuckles. The traversal consists of steps that ensures the traversal of the finger in presence of the obstructions. Knuckle and fingertip detectors are used to determine various parts of the finger. The 3D positions of fingertips are then reported.

[0006] In another aspect of the invention is the method of computer programming with speech and gesture input. This involves using an integrated development environment (IDE) that receives speech and gesture events, fully resolves these events and emits code accordingly. When the user performs some combination of speech and gesture, local object and local and internet libraries are searched to find a function matching the input. This results in the generation of instructions for the program. In the case that full matching cannot be found a disambiguation dialog is started. As an example, by touching a variable i and speaking "Add this to this" and touching the List variable A results in instruction A.Add(i). Metadata for various language constructs is used in the matching process. Statements may be rearranged through the speech and gesture matching process.
The desired program can be described in natural language and corresponding program elements are then constructed. Variable, Function, Class, and Interface naming is something that is commonly critiqued. Various methods of naming may be selected via speech and gestures. These include but are not limited to Verbose, TypeVerbose, and Short. For example, a red bag variable may be represented by RedBag, oRedBag, or even RB. Lines of instructions or statements or parts of instructions may be re-arranged in a direct access and manipulation method. Pieces may be temporally stored on fingertip in order to re-arrange instructions.

Inheritance of objects is also determined by speech and gestures. The method of programming can be used with any language including assembly and natural language.

In another aspect of the invention, utilizing speech and gestures, punctuation may be added during dictation and blocks of text may be rearranged in a word processing environment. Menu areas also appear from the recognition of speech and gestures. Lists of properties may be changed in a quick manner by touching the property and stating the change or new value. The output may be modified causing the rewriting of current instructions. Various other operations are enabled with this method including the direct manipulation of mathematics, equations, and formalisms. Spreadsheet manipulation, presentation assembly, data mining, hierarchical to-do list execution, game definition, project management software manipulation, data compression, control point manipulation, visualization modification, grammar definition and modification, state machine and sequence diagram creation and code generation, web page design and data entry, Internet data mining, television media programming.

These techniques may be used in a desktop computer environment, portable device, or wall or whiteboard environment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the communication architecture, configuration, and hardware components to software objects.

FIG. 2 illustrates an example graphical user interface that can be used to configure a recognizer, route events, route data, and select sensors and
interpretation method, and adding handler for events in code. This drawing also shows how example speech words and graphical gestures can be recorded and tested.

FIG. 3 illustrates the process for identifying finger and hand parts.

FIG. 4a illustrates various light patterns that are matched in the process of Figure 3.

FIG. 4b illustrates a texture filter to identify variations in skin.

FIG. 4c illustrates a fingertip detector.

FIG. 4d illustrates how the process of Figure 3 works on a hand.

FIG. 5 illustrates the process of traversing a finger for the process in Figure 3.

FIG. 6 illustrates an example event handler for speech and gesture for an Integrated Development Environment that process speech and gesture events to construct programming language instructions.

FIG. 7 illustrates an example of code development with speech and gesture events along with example metadata and various program information that can be selected or referred to while programming.

FIG. 8 illustrates an example of describing a program and code that is constructed, the parts of speech for a sample speech input and resulting code, and various speech input resulting in the same instruction.

FIG. 9 illustrates the process of changing the naming style of variables and the effect. Illustrates how instructions may be attached to fingers while rearranging code.

FIG. 10 illustrates the process of mapping fields of one object to another, interface metadata, and changing the inheritance map for some classes

FIG. 11 illustrates how gestures are used in dictation and text selection and movement in word processing. This figure also shows how a user may select an object and send it to another person.

FIG. 12 illustrates Menu areas that may appear during a gesture. Here the user selects a circular object and expands fingers and a context menu appears

FIG. 13 illustrates properties that are modified by selecting a property with a hand gesture and speaking the change in value
FIG. 14 illustrates a example of modifying the output of a program that results in changes to the instructions.

FIG. 15 illustrates an example of speech and gestures to indicate that a group of instruction should run in parallel.

FIG. 16 illustrates an example of direct manipulation of mathematical entities or formalisms, along with the concept of factoring using speech and gestures.

FIG. 17 illustrates an example of Matrix decomposition or factoring, factoring a number into factors, and combining numbers in to a product.

FIG. 18 illustrates an example of direct manipulation of matrix elements selecting a column, performing matrix inversion and transposition using speech or gestures.

FIG. 19 illustrates direct random access changing values in a matrix, row and column changes, performing operations on and retrieving characteristic information of a matrix through speech and gestures.

FIG. 20 illustrates set operations, construction of category diagrams, and term manipulation of equations using speech and gestures.

FIG. 21 illustrates the use speech and gestures to manipulate a spreadsheet.

FIG. 22 illustrates the use of speech and gestures to assemble a presentation.

FIG. 23 illustrates the use of speech and gestures to perform data mining steps.

FIG. 24 illustrates a hierarchical to-do list and the definition of a game using speech and gestures.

FIG. 25 illustrates game definition, in-game instructions, and game interface using speech and gestures.

FIG. 26a illustrates the direct manipulation of a Gantt chart and project management data using speech and gestures.

FIG. 26b illustrates using speech and gestures to change the compression of data.

FIG. 26c illustrates the raising of the palm to pause an application, speech synthesis/dialog, or to begin undoing an operation.
[0042] FIG. 27 illustrates the selection of examples or selection of menu areas in construction software, the continue and reverse gestures applied to a scrolling list, and the modification of control points in 3D design.

[0043] FIG. 28 illustrates an extrusion process, subdivision, and selection of forward and inverse kinematic limits, and axes and link structures.

[0044] FIG. 29 illustrates the manipulation of an equation and visualization for a function of time and frequency using speech and gestures.

[0045] FIG. 30 illustrates the use of speech and gestures to define and modify a grammar.

[0046] FIG. 31 illustrates direct entry and modification of operational, axiomatic, and denotational semantics, and text file/XML document using speech and gestures.

[0047] FIG. 32a illustrates the use of speech and gestures in the definition and modification of a state machine resulting in code that can be executed.

[0048] FIG. 32b illustrates the use of speech and gestures in the definition and modification of a sequence diagram resulting in code that can be executed.

[0049] FIG. 32c illustrates the use of speech and gestures in the design of a web page.

[0050] FIG. 33 illustrates the use of speech and gestures in the description of the web page operation and code modification, and population of web page data.

[0051] FIG. 34 illustrates using speech and gestures to perform natural language queries and optimization problem definition using internet data.

[0052] FIG. 35 illustrates entering instructions in television/media to perform recording, playlist modification, and fine, course, and channel direction.

[0053] FIG. 36 illustrates entering program instructions in assembly language and in Hardware Description Language (HDL) using speech and gestures.

[0054] FIG. 37 illustrates common environments and hardware that can be used in connection with these methods.

DETAILED DESCRIPTION OF THE INVENTION

[0055] The process, method, and system disclosed consists of a speech recognition system, gesture recognition system, and an Integrated Development
Environment (IDE) and methods for interactions using the system. The system has a
image acquisition sub-system 100 that manages the interface to various cameras and
processor load, and produces frames for the hand segmentation and analysis broadcast
sub-system 106. Various techniques can be used to image the hands in this system.
Stereovision cameras can be used as illustrated in Figure 37, 3730 and 3778, or in concert
with additional cameras 3700,3720, and desktop cameras 3774. Alternatively, these
cameras may be single camera systems using the time of flight principle to sense the
distance between the camera and the hands. If stereo cameras are used then standard
triangulation techniques are used to determine the depth component. Component 106
produces desired features of hand data, namely the hand center and fingertip position in
three dimensions, and sends this information to various recipient objects and recognizers.
Each gesture Event Service 200 operates in sub-system 106 and determines what
information is broadcasted. Similarly, subsystem 102 manages the signal input from one
or more microphones. These may be individual or array microphones. Subsystem 108
performs speech analysis and recognition by the speech event service 200. This event
service determines what data is passed to various recipients configured to receive this
data. Various recognizers, 112.1 14.1 16.1 18, can be configured to recognize different
events from the hardware event services. A recognizer may just recognize gesture data as
in 112 from the 3D fingertip points passed from 106, or a recognizer may receive both
gesture and speech data. In this latter case 3D fingertip positions and words can be
received. A configuration system 112 may be used either programmatically or by
graphical user interface as example in Figure 2 illustrates. This configuration system
determines what data is sent to various recognizers from various hardware event services.
Finally in figure 1, a software object or application 120 may receive events from any
event source. The application may receive events itself that are then routed to interior
objects and interior objects may receive events directly from the event source. For
example, an object may be configured to receive an event from a Speech/Gesture 114
recognizer that is configured to locate a finger 'tap' gesture along with the speech
utterance 'this'.

[0055] Event routing and configuration is achieved through a graphical
user interface such as in figure 2 or through a programmatic method. A recognizer is
configured by selecting an event service from 202 and selecting the data used in 208. If
the recognizer is to pass data on, then block 210 is used. Speech events 220 and Gesture
events 234 are used to determine what events the recognizer should attempt
locate. The recognizer will use the method selected in 204. For example, if Free is
selected, the the recognizer will fire an event when the speech event and the gesture
event occurs together anywhere within some time period. For example, if the user
says 'this' and taps their finger resulting in a 'tap' gesture then the recognizer will fire
event name 214 if the speech event and gesture event occurred within 1 second.

[0057] Gesture events may be defined by capturing 230 a segment of
hand motion 226 and creating a new gesture event 234. 218 shows the live capture.
222 allows the trimming of the initial part of the capture and trim right 224 allows the
trimming of the right part of the capture. When the capture and trimming is complete,
the gesture may be played back with the recognized finger gesture 232 below. Both
left and right hands may be captured 236 for gesture event recognition. In the IDE
environment, an event handler may be added to the code via 216.

[0058] To recognize hand and finger position in 3D the process
illustrated in figures 3,4, and 5 is used. This method is invariant to skin color and
takes advantage of typical light patterns found when examining hands. One such light
pattern is a upside-down V shaped skin region 400 next to a darker crack region 402.
This pattern occurs mainly in regions in the hand as shown in figure 4d. An optional
automatic thresholding step 300 using light patterns may be implemented which turns
the color image into a binary image with some high number of light patterns found on
each hand at distances like those between typical knuckles. If a binary threshold is
done then the light patterns in step 302 will need to be binary with the skin area being
one color and the crack area the other. In the preferred embodiment, color processing
is used with estimated skin and crack colors. After these areas are found better skin
and crack areas are be found by sampling. The light patterns 302 are found as
indicated in figure 4d by comparing a sample of the light patterns to locations in the
current frame. If two hands are to be found and are found then the results are
clustered 322 for two hands so that one set of light patterns found will belong to a left
hand and one set to a right hand. The hand center 416 is then estimated 306 from the
light patterns located. Hand constraints are applied 308 which involve removing
found light patterns too close together and too far away. For example, a light pattern
must be removed if it is within 15 pixels or 1cm of another. This value will change
depending on the posture of the hand and camera setup. A second constraint is that
the light patterns found must be within a certain distance of another. Third, light
patterns found together should form a somewhat linear relationship, that is, the top
knuckles are generally linear and thus so should the light patterns.

[0059] It should be noted that it is okay but not preferred if there are
extra light patterns found. These will be filtered out later in the process. If there are
any changes 310 to the center estimate after some light patterns are removed the
process is repeated. Then finally the top knuckles are estimated and the fingers are
initially labeled along there linear appearance 312. For example, if there are four light
patterns, then knuckles are labeled for all fingers and the thumb. If less than four,
then they are labeled as fingers with other possible fingers on either side. Then, the
starting points 418 for finger traversal are determined 314. Since there is assumed
skin area found by the light patterns, a pixel around each side of the skin area serves
as a starting point. The skin is sampled and this color is used to begin the finger
traversal. This occurs for each finger. The finger is then traversed using an angle
called Major Angle. This represents the angle between the top of each light pattern
and the hand center estimate. This sets a general direction for traversal.

[0060] The fingers are then traversed 338 looking for a goal feature
such as a fingertip. If all fingertips were found then the recognition is considered
good, else bad. The traversal step is able to estimate fingertips not found and will
result in a good recognition even though they were not found.

[0061] If the recognition was not bad then a predictive step may be
made using a kalman filter or by tracking center values from a previous frame. With
30 frames per second processing most a center value on a finger traversal may serve
as the next starting point 334. However, it is preferred that the search area is reduced
encompassing the previous area where the light patterns were found before
proceeding to the next frame 332, 330.

[0062] Figure 5 illustrates the process of finger traversal. The first
step in a broad sense it to look around and make sure that there are two sides to the
ginger. Initially in the traversal this will not be the case because of hand orientation,
lighting, and thresholding if performed. The traversal attempts to step to best points
in the presence of rings, wrinkles, tattoos, hair, or other foreign elements on the
fingers. A safe distance is determined in the following way. A reference line is
drawn between the tops of two neighboring light patterns. A best step 502 must be
taken in the direction of the major angle until traversing the perpendicular to the
major angle results in finding both edges of the fingers. This safe distance line is
shown in figure 4d 420. Traversal 424 represents the best steps. Once the traversal is past the safe distance 504, both sides of the finger are determined. This may occur at each step or a sampling of steps. The major angle / calc angle 506 represent follow the bone structure of the finger. After some distance, the LookAhead distance 510, a search is done for the goal feature or the fingertip 512. Various tip detectors 414 may be used for this feature. A successful one is shown in figure 4c. The center values 404, 408 calculated during the traversal follow the bone structure 406. With each step past the LookAhead point, three additional traversals are made at some configurable angle from the centerline or bone. The angle should be larger for wider fingers and small for smaller fingers such as the smallest finger. If three edges are found then the fingertip has been found. If the tip is not found then the process returns to 502 to take another step. If the tip is found, the fingertip is recorded. If all five tips have been found the data is reported 526.

[0063] It can be worth doing an additional type of recognition 528 to locate starting points for traversal on missing fingers. This may include scanning neighboring regions for similar skin colors. If a start point is determined and after it's finger traversal, the resulting fingertip is very near a fingertip already found then the starting point was part of a finger traversed.

[0064] After using the final start point for finger traversal missing fingertip may be estimated from previous frames and posture history and hand constraints. Calc Angle is used instead of Major Angle after the safe distance and is represented by line 406 calculated from sample center values.

[0065] Gesture and Speech Enabled IDE

[0066] The gesture and speech enabled integrated development environment is able to receive 3D hand gestures events and speech events. The development environment is used to construct programs from various components both local to the computer and from a network such as the internet. The IDE assembles these components along with instructions and translates them into a format that can be executed by a processor or set of processors. The IDE has some ability to engage in dialog with the user while disambiguating human input. The IDE need not be a separate entity from the operating system but is a clustering of development features.

[0067] Figure 6 represents the method of event processing by the IDE. New events arrive 622 and are received 600. Gesture events proceed to be resolved
602 to determine what they are referring to. Some gestures refer to the selection of objects in which case a hit test is performed to determine which object has been selected. For example, for a tap gesture event will invoke a hit test. The IDE must search 606 its local objects to match the event set with metadata for the local objects.

If a function matches, that function is executed. This is usually the case for events such as a speech event for the utterance "Create a class". The IDE will cause the creation of class as specified by the language. Other events such as selection of blocks of code are handled by the IDE. If no match is found then local and network libraries are searched 608. If there is a match then code for that function is created 618. If no match is found a process of interactive disambiguation 612, 614, 616, 620 is invoked. The IDE will attempt to understand the received events by finding the closest meanings and query the user in some way to narrow the meanings until the event can be fully resolved, or, the user exits the disambiguation process. If the meaning is determined by this process, the code for the function is created. This disambiguation process is not confined to just creating code but for any object such as disambiguating the entry of function parameters for a code statement. A user may exit the disambiguation through some utterance or gesture such as the lifting of the hand.

This process also enables the visual construction of programs.

It is more natural to work graphically on parts of a program that will be used in a graphical sense, such as a graphical user interface. The speech and gesture based IDE facilitates the construction of such an interface. The user interface can be made up of individual objects each with some graphical component to fully create the interface. This interface may be used locally on a machine or used over a network such as the internet. In the latter case, the html user interface model may be used as shown in Figure 32c. The programmer may design the interface using a speech and gesture enabled library of objects to create Images, Hyperlinks, Text, Video, and other user interface elements, and further program the functionality of these components in a declarative or imperative way 3300, including giving certain elements the ability to respond to gesture and speech input.

Figure 7 illustrates one example in the programming process. The user has created a variables i and A 700 and defined i 702 by stating "let i = 5". The user states "Add that" 706 and selects the variable i, which causes a tap gesture event. The user then states "to that" 710 and selects variable A 708 creating a second
tap gesture event. The tap events are resolved using hit tests to be variables \i\ and \A\.
This input is then matched to the function \Add\ using the class \714, 716\ and function \718,720,722\ metadata for a List class. The code is then generated for this function, \A\.\Add\(i)\ 712\ which adds an integer to a list \A\.
In the programming process various

5

entities may be referenced through speech and gesture. For example, variables can be
referred not only from the code in view but from the displays of variables,
\730,732,734,736,738\.
The display of entities may vary depending on one particular
user's preference and what parts of the program the user is currently working on.
The \Add\ function is defined in \724\ and has statement metadata \726\ and the function

10

statements \728\.

\[0070\]

A program can be described in an interactive dictation way
allowing the programmer to make some statements about the program and the IDE
making some program interpretation. For example in Figure \8\ the user utters
sentences \800\ and \802\.
The utterances are parsed and code is produced accordingly.
Since the Bag is not defined it uses a common interpretation of a bag from an network
or local resource. Two bags are created \804\.
The bags are colored according to the
sentence parse of \800\ and \802\.
The marbles are also created similarly.
An example
parse is \806\ in reference to statement \808\.
The code is created in a similar way to
\712\.
Many user inputs may result in the same action as shown in \812,814,816\.

15

There are many ways to change the color of a marble.
The first "Color the red
marble blue" is similar to \712\ in that a color set property is matched.
The second
utterance "change the red marble's color to blue" resolves to change a property
(color) of the red marble.
The third utterance and gesture "make that [tap] blue" \814
resolves again to changing an objects color property to blue.
A hit test is performed
to resolve the tap gesture.
The RedMarble object identifier is found.
The specific
language and compiler designers have some involvement in how a match is made
from the events to the creation of code for a program.
For example, if a language
does not have classes, the IDE should not try to create one if the programmer utters
"create a class".
So the programmer may perform direct entry as in Figure \7\, or may

20

elect to describe how the program works as in Figure \8\ and make modifications as the
program is developed.

\[0071\]

Program modification can take many forms and is fully enabled
by speech and gesture input.
For example, in Figure \9\, the display style of variables
of a program may be changed to suit an individual programmer or some best practice
within some group of programmers. Here 900 the programmer selects the variable and states a style change. 900, 902, and 904 illustrate example variable styles for called 'verbose', 'TypeVerbose', and 'Short'.

In the arrangement of instructions and program parts, the hand may act as a kind of clipboard storing instructions to be re-inserted while editing as shown in 912,914,916.

Event matching metadata may be added to any development construct including interfaces 1010,1012. In Figure 10, an interface for ICoUection is defined with interface metadata and function metadata.

This process is not limited to particular types of language. For example, in Figure 36 metadata is added to a module in a Hardware Description Language and assembly language.

Fields may be mapped between objects in two systems so that they may exchange data 1000,1002,1004,1006. This can be done using some speech and gesture utterance. 1008 indicates some function required such as concatenating two fields for map to a single field in the other system. A user or programmer may utter "concatenate Field three and four and map it to Field three". Alternatively, the user may utter "concatenate this [tap] to this [tap] and map it to here [tap]". This results in both speech and gesture events.

Further illustrated in Figure 10, the programmer may define and change the inheritance hierarchy for any object using speech and gesture events.

Word Processing

One of the problems with dictation is that it is unclear whether the speaker is desiring direct input, giving commands to a program, or describing what they are dictating and how it is displayed. Using hand gestures along with speech resolves many of these problems. For example, while dictating the sentence "In the beginning, there were keyboards and mice." The user would normally have to say the words 'comma' and 'period'. But this is awkward. Especially if the sentence was "My friend was in a coma, for a very long period". Using hand gestures as parallel input to speech as shown in 1100, the sentence is conveyed nicely.

Punctuation gestures are performed to insert appropriate punctuation during dictation.

Hand gestures may also be useful in selecting beginning and ending text positions in a paragraph to remove or rearrange the text as shown at 1112,1114,1116.
[0080] Sending Data

[0081] Simple data transfers are enabled with gesture input. The user selects an object and drags the object to a contact name.

[0082] Menu Areas

[0083] Menu areas are displayed in response to speech and gesture input as indicated in Figure 12. The user may select and object 1200 and object 1206 and perform a spreading or stretching motion 1202 and 1204 invoking a menu area 1208, 1210. The user may then select areas of the menu to perform some operation or selection.

[0084] Quick property modification

[0085] Object property values may be modified in a quick fashion as shown in Figure 13. Here 1300, a list of properties is displayed and corresponding values 1304. The user may select and state quickly what the new value should be. Here the properties are "Color, Left Position, Top Position, Style". The user may touch these and utter "[tap]Blue [tap] 135 [tap] 211 [tap] Cool" 1306 shown without the gesture tap events.

[0086] Output Modification

[0087] Frequently in program development the output is not as desired. So instead of making blind changes to the program to fix the output, the user or programmer may make changes to the output directly and disambiguate the code changes desired. This is depicted in Figure 14. A print statement is made resulting in output. The programmer does not like the spacing and number format of the output. The programmer then may use a combination of speech 1402 and hand gestures 1408, 1410 and 1414 to reduce the space 1406 and round the number 1414. As described, simple selection tap gestures are used. However, other gestures may be used without the speech input with the same result. These gestures can be natural - a contracting of the hand after selection to reduce the space, and swiping the finger after selecting the area to round.

[0088] The resulting code is in 1412 and resulting output 1414.

[0089] Instruction Execution Location

[0090] Many times for efficient execution code will need to run in parallel. A programmer may explicitly indicate what instructions should run in parallel and on what processor or group of processors. Figure 15 illustrates various methods to achieve this. The user may select with a hand gesture a range of
instructions and make an utterance 1502 so that the compiler or runtime knows 1504
1506 to run these in parallel. A second way of achieving the same result is 1508 1510
and 1512. Two instructions may be made to run in parallel by moving them into a
parallel position.

[0091] Grammar Definition
[0092] Grammars 3000 may be defined and changed with speech and
gesture events as illustrated in Figure 30. Grammar development is made with similar
speech and hand gesture events as described previously. For example, adding a new
expression production results in the short style production 'expr'. Individual
components of the grammar can be selected or accessed 3020 using gestures as
described previously.

[0093] Assembly Language Development
[0094] Programming in assembly language, Figure 36, is similar to
other code development described previously. Menu areas are formed to allow the
hand gesture selection of registers, instructions, and memory locations from various
segments 3630. Metadata may be added to functions such as 3610 and a combination
of speech and gesture input is made to produce a statement such as 3620.

[0095] Mathematical Formalism and Operations
[0096] The concise expression of functions and relations are important
in mathematics whether they be through some set of symbols and variables or
described through natural language. Creating and modifying mathematic entities
using a computer has been difficult in the past in part to having to select different
parts with cursor keys on a keyboard, or using a mouse. Enabling mathematical
objects to respond to speech and hand gesture input alleviates this problem. Figure 16
thru 20 illustrate examples and methods for manipulating mathematical objects. In
1600 we have a summation that may be modified by selecting various parts and
speaking the new values. Here the user selects 1604 and 1602 by hand gestures 1606
and states changes "1 2 10" to change the lower and upper bounds of the summation
and the function x.

[0097] 1622 illustrates the gesture progression 1614 1616 1618 of a
factoring or decomposition of an equation 1612 into factors 1620. Figure 17
illustrates the factoring or decomposition of a matrix 1700 by selecting 1702 the
matrix and performing a gesture sequence 1708 1704 resulting in the optional display
of a menu area 1706 to select a type of decomposition. The resulting decomposition
is 1712. Similarly, numbers may be factored or decomposed into factors as shown in 1714 1716 1718, or, combined or fused through the selection 1720 1722 and hand gesture sequence 1724 resulting in the optional display 1728 and selection 1726 to perform a multiplication of the selected numbers, finally resulting in 1730.

Selection of groups of elements may be made using speech and hand gesture input as illustrated in Figure 18, 1800 and other operations may be performed through speech and hand gesture input. 1802 1804 1806 1810 indicate an matrix inverse operation. 1812 1814 and 1816 indicate a transpose operation. 1900 1902 and 1904 illustrate direct random access and modification of mathematical objects. 1910 1906 and 1908 illustrate the access and modification of structure of the matrix by inserting a column. Operators may be applied to matrices such as addition illustrated in 1914 and 1912 resulting in 1913. 1916 and 1918 illustrate that matrix system characteristic values and vectors may be determined through the use of speech and gestures.

Set operations can be performed through speech and hand gesture input, for example, illustrated in Figure 20. The creation of union 2006 and intersection 2010 can be made by selecting two sets 2000 and invoking the operation through some speech and gesture input. Similarly sets of data may be handled in a similar way 2012 2014 2016.

Category diagrams 2018 can be construction with speech and gesture input with access to all parts of the diagram. This construction can result in an operational system based on the relation described in the diagram. In other words, creating a diagrammatic relationship results in the creation of code and/or metadata for the code. 2020 and 2022 illustrate the random access and direct manipulation of equations, by changing function composition and rearrangement of terms in an addition operation.

Programming Language Formalisms

Operational, Axiomatic, and Denotational Semantics may also be created and modified directly using speech and hand gestures. This is illustrated in Figure 31. The user may provide some speech or gesture input to modify the individual properties of semantics, whether the structure of the semantic or by direct entry.

Spreadsheet
Entering data and functions in spreadsheets can be cumbersome as it is difficult to make selections and enter the desired functions using a keyboard and mouse. Usually there is quite a bit of back and forth movement between the keyboard and mouse. With speech and hand gesture input there is little. Figure 22 illustrates some operations exemplifying this. The user selects a cell, with a hand gesture, to add a function 2104 and makes utterance 2106 additionally selecting two cells 2102. There is no typing, and no large hand movements. Similarly, row or column operations can be done as illustrated in 2108 and 2110.

Presentation Assembly

A presentation 2200 is assembled using speech and hand gesture input. Presentation title, bullet text, and other objects such as graphics, video, and custom application may arranged. The presentation itself is configured 2202 to respond to various events including speech and hand gesture input. Other inputs may include items such as a hand held wand or pointer. These speech and gesture inputs allow the user to interact with onscreen objects during the presentation.

Data Mining

Data mining is complemented with speech and gesture input as illustrated in figure 23. The user may retrieve some data, classify the data 2300 using hand gestures to draw arcs and uttering 2302. Further the user may label areas as indicated in 2304. The user may also cluster data through speech and gesture input and indicated in 2306 and 2310.

Hierarchical to-do list execution

Figure 24 illustrates a hierarchical to do list where a user may make a gesture to indicate an item location and utter a item, such as "Find highest paying interest checking account". Now, there may be a number of steps involved in fulfilling this item as indicated in 2400 2402. This forms an optimization problem that the computer or computer agents may assist in. Result disambiguation and requery are done subsequently.

Game Development and Interaction

The code for a game may be produced from a hand gesture and spoken description as illustrated in Figure 24, 2404 2406 and figure 25 2500. Here the user makes a reference to a desired property 2406 of an object and selects it 2408 using a hand gesture. A character in the game may receive instructions to follow through play speech and hand gesture movement 2502. A player may give in game
instructions. For example as illustrates in 2504 and 2506, a player may give a
baseball pitcher the sign for curveball.

Examples may also be displayed to disambiguate the input as illustrated in Figure 27. The game developer desires to put a river in a game and

wants to select 2704 different wave styles 2700. Examples are shown and the developer may change parameters 2702 for the desired effect.

Project Management

In the project management process, tasks are estimated and tracked. Figure 26a illustrates the use of hand gestures to select and enter tasks, start and finish dates 2602 2604, and modifying a graphic representing time. Here general expansion and contraction of the hand modifies the finish date or percentage of the task completed.

Data Compression

Data may be compressed interactively using hand gesture and speech input. Figure 26b illustrates this process. 2610 indicates uncompress or low compressed data and 2616 illustrates the expanding or contracting of the hand to compress the data to 2614. Optionally, speech and compression parameters 2612 may be utilized.

Rate and Direction

Frequently computer users want to continue some operation. This can be achieved using speech and hand gestures as well as illustrated in 2706 through 2712. The user desires to scroll through a list and makes a continue gesture 2706 wagging the finger back and forth with continuous motion. Multiple fingers may wag back and forth for faster or courser increments. The speed of wagging can also determine speed of the scroll. To reverse the direction, a thumb is lifted and the continue gestures may, continue.

Graphics and 3 Dimensional Modeling

Control points in modeling may be manipulated with speech and hand gesture input as illustrated in 2716 2718 and 2720. Here the modeler selects a control point with their finger and moves it to a desired location. Other operations can be done including multiple point selection and extrusion as illustrated in 2800 2810 and 2820, and subdivision as illustrated in 2830 and 2840. Forward and inverse kinematic systems 2850 are constructed from speech and hand gesture input. Joint angle, rate, and torque limits can be defined 2850
Direct Manipulation of function parameters and its visualization

Frequently signals are used as input to a system to test some system function. These signals may be represented by an equation such as 2900. Speech and hand gestures are used to directly modify the variables in the equation or the actual visualization 2920. Figure 29 illustrates this in detail. Variables A and theta may be changed by selecting them with a hand gesture and uttering the new value. For example, "change A to 5". Alternatively, a gesture may be made on the visualization 2920 to achieve similar effect. In this case both the magnitude A and the angle theta are modified by the gesture.

An XML document or text file may be directly created or modified through the use of speech and hand gestures and shown in 3120. In this XML file elements may be created, named with direct manipulation of values and attributes.

State Machine and Sequence Diagrams

State machines and sequence diagrams can be created and manipulated 3206 using speech and hand gesture input. In Fig 32a, two states are created using pointing hand gestures and uttering 'create two states'. The user then may draw arcs using a finger resulting in edges between states 3200a 3200b 3202 and state the condition resulting in moving from one state to the other. The resulting system is then fully operational and may respond to input.

Similarly, a sequence diagram in Fig 32b created 3208 through speech and gesture input allows two system A and B 3200a 3200b to communicate through messages 3204. After sequence diagram is defined system is fully operational and may respond to input.

Natural language search query

A major part of efficient goal satisfaction is locating blocks of information that reduce the work required. Humans rarely state all of the requirements of some goal and often change the goal along the way in the satisfaction process in presence of new information. Frequently a concept is understood but cannot be fully articulated without assistance. This process is iterative and eventually the goal will become satisfied. Speech and hand gesture input is used in optimization and goal satisfaction problems. A user may want to find pictures of a cat on the internet with many attributes (Figure 34) but cannot state all of the attributes initially.
as there are tradeoffs and the user does not even know all of the attributes that
describe the cat. For example, it may be the case that cats with long ears have short
tails so searching for a cat with long ears and a long tail will return nothing early in
the search.

5 A user may have a picture of a cat and utter 3400 "Find
pictures of cats that like this one." A tap gesture event is recognized as the user
touches 3410 a picture of a cat. A result from local and internet resources produces
the natural language result 3420. The user may then narrow the results again through
an utterance "like that but long haired" 3425.

10 Other search queries are illustrated in 3430 and 3440 with
gesture inputs on the right side 3450. Internet results may also be links with the
desired attributes.

[00131] Media Recording and Programming
[00132] Instructions may be given to devices to manipulate audio and

15 video. In addition to using continuous hand gestures for incrementing and
decrementing channel numbers as shown in 3520, speech and hand gestures are used
to create lists of recorded audio or video, daily playlists, playing back specific media,
and the order of playback, as shown in 3500. Instructions need not be displayed to be
stored or executed.

20
CLAIMS

What is claimed is:

1. A method of computer programming comprising:
 interpreting hand gestures as programming input; and
 interpreting spoken utterances as programming input.

2. The method of claim 1, further comprising receiving and resolving references implied in programming input.

3. The method of claim 1, further comprising searching at least one of local objects, local libraries, and network libraries to match metadata to programming input.

4. The method of claim 1, further comprising identifying functions similar in metadata to programming input intent.

5. The method of claim 1, further comprising a disambiguation process.

6. The method of claim 1, further comprising producing instructions from programming input.

7. The method of claim 1, further comprising execution of a function corresponding to matched metadata with programming input.

8. The method of claim 1, further comprising style naming.

9. The method of claim 1, further comprising defining of inheritance relationship between entities.

10. The method of claim 1: further comprising adding metadata to any programming language element.

11. The method of claim 1: further comprising mapping fields between two system objects.

12. The method of claim 1: further comprising rearranging instructions.

13. The method of claim 1: further comprising parallelizing a set of instructions.

14. The method of claim 1: further comprising defining a grammar.

15. The method of claim 1: further comprising displaying speech and gesture enabled menu areas.

16. The method of claim 1: further comprising entering and modifying operational, axiomatic, and denotational semantics.
17. The method of claim 1: further comprising editing of instructions and data while a program is stopped, paused, or running.

18. The method of claim 1: further comprising modifying a set of instructions from the modification of the output of a set of instructions.

19. The method of claim 1: further comprising modifying a set of properties.

20. The method of claim 1: further comprising diagramming an executable state machine.

21. The method of claim 1: further comprising diagramming an executable sequence diagram.

22. A method of data and event processing comprising:
 allocation of computer system resources to sensor input;
 transforming sensor data into broadcast or narrowcast application data for event recognition;
 recognizing events from transformed sensor data; and
 sending of event notifications and data to a plurality of objects.

23. The method of claim 22: further comprising facilitating the configuration of said data and event processing by means of a programming interface or a speech and hand gesture enabled graphical user interface.

24. The method of claim 22: further comprising defining speech and hand gesture example patterns used by recognizers to generate events.

25. The method of claim 23: further comprising selecting an interpretation method from said programming or said speech and hand gesture enabled graphical user interface.

26. The method of claim 23: further comprising selecting of both left and right hands to be used by the recognizers.

27. The method of claim 23: further comprising defining specific event names.

28. The method of claim 23: further comprising selecting what data is used and routed by objects and recognizers.

29. The method of claim 23: further comprising adding an event handler.

30. The method of claim 23: further comprising adding a recognizer.
31. A method comprising finding parts of hands on one or more hands using light patterns from one or more cameras.

32. The method of claim 31: further comprising determining start points for traversing individual fingers.

33. The method of claim 32: further comprising sampling skin near a finger traversal start point.

34. The method of claim 32: further comprising traversing a finger using a best point in presence of rings, wrinkles, tattoos, hair, or other foreign elements.

35. The method of claim 32: further comprising identifying a finger tip by means of a configurable set of tip detectors.

36. The method of claim 32: further comprising estimating the positions of missing fingers.

37. The method of claim 35: further comprising using a safe distance.

38. The method of claim 35: further comprising using a look ahead distance.

39. A system comprising:
 at least one image sensor and at least one microphone;
 a module to transform sensor data into broadcast or narrowcast application data for event recognition;
 a set of speech and hand gesture recognizers;
 a set of computer applications enabled to receive speech and hand gesture event input.

40. The system of claim 39, wherein the computer application is an integrated development environment.

41. The system of claim 39, wherein the computer application has facilities determining punctuation and text location within a document from speech and hand gesture input.

42. The system of claim 39, wherein the computer application has facilities wherein speech and hand gesture input determines mathematical operations performed on an object.

43. The system of claim 42, wherein the operations are one of selection and replacement, factoring, combining, decomposing, multiplication, division, addition, subtraction, direct entry, group selection, inverse, transpose, random access,
matrix row/column changes, union, intersection, difference, complement, Cartesian product, term rearrangement, and equation and visualization modification.

44. The system of claim 39, wherein the computer application manipulates spreadsheets.

45. The system of claim 44, wherein the spreadsheet application modifies spreadsheet cell data and functions through speech and hand gesture events.

46. The system of claim 39, wherein the computer application builds presentations.

47. The system of claim 39, wherein the computer application performs data mining.

48. The system of claim 39, wherein the computer application performs project management.

49. The system of claim 48, wherein the entry of task names, start and finish dates, and timeline visualizations are manipulated with speech and hand gesture input.

50. The system of claim 39, wherein the computer application performs data compression.

51. The system of claim 39, wherein the computer application performs game application design.

52. The system of claim 51, wherein the game is configured to receive speech and hand gestures for baseball signs.

53. The system of claim 39, wherein the computer application performs continuous actions from a continue hand gesture.

54. The system of claim 39, wherein the computer application performs a reversing action from a reversing hand gesture.

55. The system of claim 39, wherein the computer application performs one of control point movement, multiple control point selection, extrusion, forward and inverse kinematic limit determination.

56. The system of claim 39, wherein the computer application facilitates an internet search.

57. The system of claim 56, wherein the computer application performs natural language query from speech and hand gesture input.

58. The system of claim 39, wherein the computer application facilitates entering data on a web page.
59. The system of claim 39, wherein the computer application facilitates the entry of instructions to record audio and video, determines the channel number, and the order of media playback through speech and hand gesture events.

60. The system of claim 59, wherein the set of gestures comprise fine and course channel increment and decrement, and reverse direction.

61. The system of claim 39, wherein the computer application performs one of pausing of a dialog, or undoing an operation from speech and hand gesture input.

62. The system of claim 39, wherein the computer application facilitates an optimization hierarchical to do list.

63. The system of claim 39: wherein the computer application displays speech and hand gesture enabled menu areas.

64. The system of claim 39: wherein said system is embedded in one of a desktop computer, a communication enabled slate computer, a communication enabled portable computer, a communication enabled car computer, a communication enabled wall display, a communication enabled whiteboard.
Fig 2
Start

300

Automatically Threshold using Light Patterns

302

Search For Light Patterns

304

Two Hands?

306

No

Estimate Hand Center (for each hand)

308

Apply Hand Constraints

310

Yes

Changes to Search Results or Hand Center?

312

No

Estimate Knuckles / Label Fingers

314

Determine Start Points for Finger Traversal

316

Sample Skin Color / Assign Skin Configuration

318

Determine Major Angle for each finger

320

Perform Threshold Operation

322

Cluster Results if 2 Hands

324

Sample Video Frame(s)

326

Adjust Search Area

328

Perform Threshold Operation

330

Sample Video Frame(s)

332

Adjust Search Area

334

Predict Next Hand/Finger Positions

336

No

Recognition Bad?

338

Yes

Traverse Fingers

Fig 3
Traverse Finger Start

- Look Around Startpoint using Major Angle
 - Step to Best Point in presence of rings, wrinkles, tattoos, hair, or other foreign elements.
 - Past Safe Distance?
 - Yes: Look Left and Right 90 degrees from Major Angle/Calc Angle
 - No: Past LookAhead Distance?
 - Yes: Look Ahead for Tip of Finger (Apply Tip Detectors)
 - No: Tip Found?
 - Yes: Record Finger Tip Position
 - No: Last Startpoint?
 - Yes: Record and Report 3D Hand Data
 - No: Last Startpoint?
 - Yes: Record and Report 3D Hand Data
 - No: Get Next Finger Startpoint

Perform other recognition method to locate a point on missing finger(s)

Retry for missing information?
- Yes: Estimate Hand/Finger Information not found
- No: Record and Report 3D Hand Data

Fig 5
Fig 6
int i;
List A:

i = 5; // "let i = 5"
"Add that[tap].."

Resulting instruction: A.Add(i); // "Add that [tap] to [tap]"

%Class Metadata :%
%Description: (A List) %

List Class:

%Function Metadata :%
%MetaName: MetaValue%
%Description: (Adds an integer to a List)%

Void Add(int i)
{
 %Statement Metadata :%
 Set[Current] = i;
 Current = Current + 1;
}

Fig 7
"We have a red bag and a blue bag."

"We have a red marble and a blue marble."

using Internet.Bag;
using Internet.Marble;

Bag RedBag; Redbag.color = "Red";
Bag BlueBag; Bluebag.color = "Blue";

Marble RedMarble; RedMarble.color = "Red";
Marble BlueMarble; BlueMarble.color = "Blue";

(Verb Phrase
 - Verb Determiner Adjective Noun Preposition Determiner Adjective Noun.)

"Add the red marble to the red bag."

Redbag.Add(RedMarble);

"Color the red marble blue", "change the red marble's color to blue", "make that [tap] blue"

RedMarble.color = "Blue";

Fig 8
Fig 9

Bag RedBag;
Bag oRedBag;
Bag RB;
A.Add();
i=i+1;

"Verbose"
"TypeVerbose"
"Short"
% Interface Metadata: %

% Description: (Interface to a Collection) %

Interface ICollection
{
 % Description: (Appends an integer to a Collection) %
 void Add(int x);
}

Fig 10
In the beginning there were keyboards and mice

This section shall apply to lands conveyed by interim conveyance or patent to a Regional Corporation pursuant to this chapter which are made subject to a mining claim or claims located under the general mining laws, including lands conveyed prior to November 2, 1995. Effective on November 2, 1995, the Secretary, acting through the Bureau of Land Management and in a manner consistent with section 1613(g) of this title, shall transfer to the Regional Corporation administration of all mining claims determined to be entirely

Fig 11
Print("This is a test", Temperature, Humidity)

"Shorten this space."

"Round that [tap] to 2 places."

Print("This is a test"; Space(3); Format(Temperature, 2F); Space(3); Humidity)

This is a test 123.52 6.34

Fig 14
Fig 15
Fig 16
SVD / QR / Other decomposition

\[
\begin{bmatrix}
4 & 0 \\
3 & -5
\end{bmatrix}
\]

\[
U \quad S \quad V
\]

\[
\begin{bmatrix}
-0.4472 & -0.8944 \\
-0.8944 & 0.4472
\end{bmatrix}
\begin{bmatrix}
6.3246 & 0 \\
0 & 3.1623
\end{bmatrix}
\begin{bmatrix}
-0.7071 & -0.7071 \\
-0.7071 & -0.7071
\end{bmatrix}
\]

Fig 17
Selection

Inverse

Transpose

Fig 18
Direct Random Access

\[
\begin{bmatrix}
4 & 0 \\
3 & -5
\end{bmatrix}
\]

Two, Three, Zero

\[
\begin{bmatrix}
2 & 3 \\
0 & -5
\end{bmatrix}
\]

Row/Column Changes

\[
\begin{bmatrix}
2 & 0 \\
3 & -5
\end{bmatrix}
\]

"Insert a column here"

\[
\begin{bmatrix}
2 & 3 & 0 \\
0 & -5 & 0
\end{bmatrix}
\]

Operations

\[
A = \begin{bmatrix}
2 & 0 \\
3 & -5
\end{bmatrix}
\]

"Add A and B"

\[
B = \begin{bmatrix}
6 & 4 \\
10 & -5
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 0 \\
3 & -5
\end{bmatrix} + \begin{bmatrix}
6 & 4 \\
10 & -5
\end{bmatrix} = \begin{bmatrix}
8 & 4 \\
13 & -10
\end{bmatrix}
\]

Eigenvectors/Eigenvalues

\[
A = \begin{bmatrix}
4 & 0 \\
3 & -5
\end{bmatrix}
\]

"Show me Eigenvalues and the vectors"

\[
V = \begin{bmatrix}
0 & 0.9487 \\
1.000 & 0.3162
\end{bmatrix}
\]

\[
D = \begin{bmatrix}
-5 & 0 \\
0 & 4
\end{bmatrix}
\]

Fig 19
Set Operations: Union, Intersection, Difference, Complement, Cartesian Product

\(A = \{1, 0, 0, 1\} \quad B = \{0, 0, 0, 1\} \)

Union
\[
\{1, 0, 0, 1\} \quad 2004 \quad \bigcup_{A,B} \quad 2006 \quad \{1, 0, 0, 1\}
\]

Intersection
\[
\{0, 0, 0, 1\} \quad 2010 \quad \bigcap_{A,B} \quad 2014 \quad \{0, 0, 0, 1\}
\]

Commutative Category Diagram
\[
f'
\]
\[
X \arrow{g'} \downarrow{W} \rightarrow Z \arrow{g} \downarrow{Y} \rightarrow f
\]

Random Access and Direct Manipulation of Equations

\[f \circ g' = g \circ f' \]
\[y = mx + b \]
\[g' \circ f = g \circ f' \]
\[y = b + mx \]

Fig 20
Fig 21

Fig 22
"Cluster the data with 4 means"

"Classify here [arc] here [arc] and here [arc]"

"Classify as HighHeat-LowTraffic"

"Classify as HighHeat-HighTraffic"

"Classify as LowHeat-LowTraffic"

"Classify as LowHeat-HighTraffic"

Fig 23
There are three Monsters

Monster 1
Long teeth and drools
Dragon like face
Rat like tail
Hair like this [tap]
Very fast and can smell humans from quite a distance
Attacks by offering the human an investment fund

"Hair Like this [tap]"
"The player may run around this [tap] path which is 15 kilometers. The path has a brick surface like this [tap], and there are walls like those in my last game developed."

"Watch this [tap] side."

Human player giving curveball sign
[two fingers downs]

In game instructions - baseball

Fig 25
\[Y = A \sin \phi \quad A: 10 \quad \phi: 23.3333 \]

\[A: 5 \quad \phi: 50.31 \]

Time / Frequency Equation and Visualization Modification

```
expr  ->  expr - term  { print('\textquotesingle-\textquotesingle) }  
         |  expr + term  { print('\textquotesingle+\textquotesingle) }

term  ->  term / factor  { print('\textquotesingle/\textquotesingle) }
         |  term * factor  { print('\textquotesingle*\textquotesingle) }
         |  factor

factor  ->  ( expr )
         |  number  { print(number.value) }
         |  id  { print(id.lexval) }
```

Fig 29

Fig 30
Operational, Axiomatic, and Denotational Semantics.

\[
\begin{align*}
< B, s > & \Rightarrow false \\
< \text{while } B \text{ do } C, s > & \Rightarrow s
\end{align*}
\]

Assign: \{ P[V=E] \} V := E \{ P \}

Evaluate: Expression \rightarrow (\text{State} \rightarrow \text{State})

XML format document/file

\[
\begin{align*}
<\text{head}> \\
<\text{one}> \text{test} <\text{/one}> \\
<\text{/head}>
\end{align*}
\]

Fig 31
Fig 32a

Fig 32b

Fig 32c
<title> My Title </title>

<script type="text/javascript">
 document.write("Hello World!")
</script>
"Find pictures of cats that look like [this] one."

"Like that but long haired"

"Show me pseudocode for a FFT[tap]"

"Show me a list of books on Programming[tap]"

"Show me the weather in New York[tap], Los Angeles[tap], and Dallas[tap]."

Fig 34
Media, Recording capabilities

"Record this [tap] show each week"

"Add this [tap] show to daily playlist"

"Assemble a playlist of video with alligator attacks"

Play back this [tap] set

Show 1

Show 2

Fine Channel Increment

Course Channel Increment

Reverse Directions

3500

3520

Fig 35
.model small
.stack
.data
message db "Hello world"

.code
main proc
 mov ax, seg message
 mov ds, ax

 mov ah, 09
 lea dx, message
 int 21h

 mov ax, 4c00h
 int 21h
main endp
end main

% module metadata%
module XNOR(A, B, F);
 input A;
 Input B;
 output F;
 reg F;

always @(A or B)
begin
 F <= A ^= B;
end
endmodule

"We have inputs A and B with output F"

Fig 36
Fig 37
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 09/49987

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) ... d s 571-272-4300

Facsimile No. 571-273-3201

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

USPC: 704/231

USPC: 704/1, 2, 200, 231, 235, 246; 715/200, 255, 700, 716; 382/100, 155, 159

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

Electronic databases: PUBWEST: (PGPB.USPTEPAP-JPAB); Google Scholar

Search Terms Used: hand gesture, hand sign or movement or motion, computer, spoken, utterance, speech, speak, voice, vocal, spoken input, spoken or gesture or hand programming, hand or gesture input, resolve, interpret, analyze etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2007/0274561 A1 (RHOADS et al.) 29 November 2007 (29.11.2007), abstract and para [0028], [0032], [0036], [0072]-[0073], [0077]-[0080], [0089], [0095], [0099], [0101]-[0102], [0109], [0229], [0237]-[0240], [0250], [0262], [0282], [0297], [0310], [0331], [0363]-[0364], [0368], [0372], [0375], [0379]-[0382], [0464], [0490], [0526], [0579], [0601], [0615], [0741]-[0750], [1003].</td>
<td>1-4, 6-8, 11-12, 15, 17-19, 22-25, 27-31, 39, 42-44, 46-51, 55-56, 58, 63-64</td>
</tr>
<tr>
<td>Y</td>
<td>US 2002/0135618 A1 (MAES et al.) 26 September 2002 (26.09.2002), abstract and para [0033], [0037], [0051], [0123], [0195], [0198], [0200], [0226].</td>
<td>5, 10, 16</td>
</tr>
<tr>
<td>Y</td>
<td>US 2006/004680 A1 (ROBARTS et al.) 05 January 2006 (05.01.2006), abstract and para [0160], [0180]-[0182], [0208].</td>
<td>9, 62</td>
</tr>
<tr>
<td>Y</td>
<td>US 2003/020080 A1 (GALANES et al.) 23 October 2003 (23.10.2003), abstract and para [0044], [0051], [0056]-[0057], [0153]-[0154], [0161].</td>
<td>13-14, 20</td>
</tr>
<tr>
<td>Y</td>
<td>US 2006/0123358 A1 (LEE et al.) 08 June 2006 (08.06.2006), abstract and para [0019], [0021], [0024].</td>
<td>21</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"C" document member of the same patent family

Date of the actual completion of the international search 18 November 2009 (18.11.2009)

Date of mailing of the international search report 30 NOV 2009

Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450,Alexandria, Virginia 22313-1450 Facsimile No. 757-722-3241

Authorized officer Lee W. Young

Form PCT/ISA/2 10 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2007/0268275 A1 (WESTERMAN et al.) 22 November 2007 (22.11.2007), abstract and para [0009], [0032], [0034], [0040]-[0041], [0044]-[0045], [0126]-[0127], [0130]-[0134], [0141]-[0142], [0150], [0175], [0179]-[0180], [0182], [0184]-[0185], [0187], [0192], [0206]-[0207], [0216], [0245].</td>
<td>26, 32-38, 53-54</td>
</tr>
<tr>
<td>Y</td>
<td>US 2007/0016862 A1 (KUZMIN) 18 January 2007 (18.01.2007), abstract and para [0060], [0069], [0072], [0079], [0104].</td>
<td>41</td>
</tr>
<tr>
<td>Y</td>
<td>US 2002/0032564 A1 (EHSANI et al.) 14 March 2002 (14.03.2002), abstract and para [0002], [0024], [0072]-[0074], [0086], [0213]-[0216], [0248].</td>
<td>45, 57</td>
</tr>
<tr>
<td>Y</td>
<td>US 2007/0072705 A1 (ONO) 29 March 2007 (29.03.2007), abstract and para [0040], [0053], [0076].</td>
<td>52</td>
</tr>
<tr>
<td>Y</td>
<td>US 2007/0113182 A1 (HOLLEMAN) 17 May 2007 (17.05.2007), abstract and para [0021], [0023], [0027]-[0028], [0038], [0047]-[0048].</td>
<td>59-60</td>
</tr>
</tbody>
</table>