发明名称
微波炉和它的控制方法

摘要
一种微波炉及其控制方法，采用连接到外部装置的数据接收区，该装置可连接到互联网，从外部装置接收烹饪数据，一驱动区利用从互联网接收的烹饪数据执行烹饪操作，微波炉包括储存从互联网接收到的烹饪数据的存储器，用户从互联网提供的宽范围的烹饪菜单中选择所期望的菜单来烹饪，也能按用户喜爱调节，替换和储存从互联网接收的烹饪数据。
1. 一种微波炉，其包括：
 数据接收区，与可连接到互联网的外部装置连接，用于接收来自外部装置的烹饪数据；
 驱动区，用于利用从互联网接收的烹饪数据进行烹饪操作；以及
 接口区，其用于将来自外部装置的数据转换成合适的用于微波炉内微机的电压电平。

2. 如权利要求 1 的微波炉，其特征是烹饪数据至少包括菜单，输出功率水平和烹饪时间中的一个。

3. 如权利要求 1 的微波炉，其特征是接口区包括一电容器，波形检测由外部装置输入的信号，一电阻器，分配波形检测的信号，获得分配的电压，一个齐纳二极管，稳定所分配的电压。

4. 如权利要求 1 的微波炉，其特征是接口区包括一个由一单独插头做成的输入端，通过该插头输入从外部装置输入的数据。

5. 如权利要求 1 的微波炉，其特征是还包括一显示区，用于显示从外部装置接收的烹饪数据，一存储区，用于储存从外部装置接收的烹饪数据。

6. 如权利要求 5 的微波炉，其特征是还包括输入装置，用于在存储区内存储，或从存储区内读出烹饪数据。

7. 如权利要求 6 的微波炉，其特征是还包括用户输入区，包括一通常指令输入区，供以后输入通常的微波炉操作指令，一互联网指令输入区，用于用户输入互联网指令，控制接收和处理来自外部装置的烹饪数据。

8. 如权利要求 1 的微波炉，其特征是还包括一用户输入区，其输入部分调节从外部装置接收的烹饪数据。

9. 如权利要求 1 的微波炉，其特征是还包括一用户输入区，具有烹饪菜单储存部分，用于至少预储存一烹饪数据，一输入部件，用于由外部装置所接收的烹饪数据替代预储存的烹饪菜单，和用于储存从外部
装置接收的烹饪数据。

10. 如权利要求9的微波炉，其特征是烹饪菜单额外部件由至少微机和存储器中的一个组成。

11. 一种控制微波炉的方法，该方法包含下述步骤：
 (a) 从连接互联网的外部装置接收烹饪数据；
 (b) 将来自外部装置的烹饪数据转化成用于微波炉中微机的合适的电压水平；
 (c) 根据微机的指令利用从外部装置接收的烹饪数据进行烹饪操作。

12. 如权利要求11的方法，其特征是烹饪数据至少由菜单名，输出电压电平和烹饪时间之一组成。

13. 如权利要求11的方法，其特征是还包括步骤（d），储存从外部装置接收到的烹饪数据。

14. 如权利要求13的方法，其特征是还包括步骤（e），用从外部装置接收的烹饪数据替换预存的时间。

15. 如权利要求14的方法，其特征是还包括步骤（f），显示从外部装置接收的烹饪数据。

16. 如权利要求15的方法，其特征是还包括步骤（g），调节从外部装置接收的烹饪数据。

17. 如权利要求11的方法，其特征是还包括步骤（d），用外部装置接收的烹饪数据替代预储存的烹饪数据，并储存从外部装置接收的烹饪数据。

18. 如权利要求11的方法，其特征是还包括步骤（d），显示从外部装置接收的烹饪数据。

19. 如权利要求11的方法，其特征是还包括步骤（d），调节从外部装置接收的烹饪数据。
说明书

5

微波炉和它的控制方法

技术领域

本发明涉及一种微波炉和它的控制方法，尤其是一种微波炉和能够从互联网接收烹饪数据并按按照所接收的烹饪数据进行烹饪操作的方法。

10

背景技术

通常，微波炉利用磁控管产生的微波烹饪食品。为了最合意的烹饪结果，微波炉包括一种人为的烹饪功能，用户能自动调节输出功率的大小，以及微波炉的烹饪时间。还存在一种自动烹饪功能，通过选择菜单，不须要再另外调节烹饪时间等就可自动烹饪食品。还有，微波炉也包括显示功能，显示微波炉，菜单等的操作状态，使用户很方便地操作微波炉。

通常，微波炉包括控制其内预设有关各种烹饪数据的信息。预设各种烹饪数据信息似乎很方便，根据各个国家的不同，用户喜欢或不喜欢等原因，就会有很宽范围的烹饪菜单，对于要在微波炉内储存如此宽的烹饪控制数据存在一定的限制。另，即使大量的烹饪控制信息储存在微波炉内，由于根据他/她的偏爱、喜好等原因通常由用户用于烹饪的材料数量有限，因此储存大量烹饪控制信息对实际应用并无很大帮助。

最近，许多计算机的用户从互联网获得信息。利用互联网时，可获得这样一种宽范围的烹饪控制信息，用户可以选择他/她所喜欢的烹饪菜单。因此，就需要发展一种能通过互联网接收烹饪食谱的微波炉。

发明内容

本发明经研制克服了上述所提到的相关问题。因此，本发明的第一个目的在于提供一种能从互联网接收烹饪食谱的微波炉，并按照所接收
的烹饪食谱进行烹饪操作，和存储从互联网输出的烹饪食谱。

本发明的第二个目的在于，提供一种控制上述微波炉的方法。
完成上述第一目的的微波炉包括：数据接收区，用于将连接到互联网的外部装置连接，用于接收来自外部装置的烹饪数据；驱动区，用于利用从互联网接收的烹饪数据进行烹饪操作；以及接口区，其用于将来自外部装置的数据转换成合适的用于微波炉内微机的电压电平。烹饪数据至少包括菜单名，输出功率水平，和烹饪时间。

数据接收区包括一个接口区，用于将来自外部装置的数据转换成可用于微波炉的合适的电压电平。

利用二极管接口区波检测从外部装置输入的信息，将所检测的信号由一个电阻器分配，再用一个齐纳二极管分稳该分配的电压。

接口区的输入端由一个声频音插件构成，通过该插件输入来自外部装置的数据。

本发明的微波炉还包括一个显示区，显示从外部装置接收到的烹饪数据，一个储存区，储存从外部装置接收到的烹饪数据，用于储存或读出储存在存储区内的数据，一个用户输入区，具有输入部件，调节从外部装置接收到的烹饪数据。

按本发明的微波炉还包括一个用户输入区，具有可预存储至少一种烹饪数据的烹饪菜单储存部分，一个输入部分，用于由外部装置接收到的烹饪数据替换预存储的烹饪菜单的烹饪数据，并用于储存从外部装置接收的烹饪数据，烹饪菜单储存装置最好由一个微机或存储器构成。

由一个微波炉控制方法实现本发明的第二目的，该方法包括下述步骤：(a) 从连接互联网的外部装置接收烹饪数据；(b) 将来自外部装置的烹调数据转换成用于微波炉中微机的合适的电压水平；(c) 根据微机的指令利用从外部装置接收的烹饪数据进行烹饪操作。

烹饪数据包括至少一菜单名，输出功率水平和烹饪时间。

按本发明的控制方法还包括步骤(d) 存储从外部装置接收到的烹饪数据，步骤(e) 用外部装置接收到的烹饪数据替换在烹饪菜单存储器内预存的烹饪数据，并储存从外部装置接收到的烹饪数据。

按本发明的控制方法还包括步骤(f) 显示从外部装置接收到的烹饪
数据，步骤（g）调节从外部装置接收到的烹饪数据。

另，利用微波炉的控制方法完成本发明的第二目的。该方法包括：
(a) 接收从连接到互联网的外装装置的烹饪数据，(b) 储存从外装装置接收到的烹饪数据。

利用本发明的微波炉和控制方法，用户可以从互联网接收到的烹饪数据来烹饪食品，同时可按用户的喜爱，由他/她调节，替换或储存来自互联网的烹饪数据。由此，由于用户可从互联网提供的宽范围烹饪菜单中选择和烹饪他/她所希望的烹饪菜单中的菜，所以用户可以充分的利用微波炉。

本发明的一种对微波炉的更完善的应用和由此带来的诸多优点，将参见下述结合附图对发明作出详细的描述后得到更好的理解，附图中的相同的参考符号表示类似的部件。

附图说明

图 1 是说明微波炉功能的方块图；
图 2 是根据本发明优选实施例的微波炉外形的透视图；
图 3 是说明图 2 所示微波炉功能的控制方框图；
图 4 是图 2 连接互联网的微波炉示意方框图；
图 5A 和 5B 是表示图 4 各个实施例的接口电路的视图；
图 6A 和 6B 是表示 PC 机的连接终端和图 4 微波炉的接口的视图；
图 7A 和 7B 是表示用符号 A 连接的流程图，说明本发明微波炉的操作。

具体实施方式

下面将描述本发明优选实施例的微波炉结构。

参见图 1，微机 10 根据用户通过用户输入区 20 的输入选择操作一个载荷驱动区 40，同时在显示区 30 上显示该状态。

用户输入区 20 包括一菜单选择区 21，用于选择自动烹饪操作用的各种菜单，一输出选择区 22，用于选择输出电平，一数字输入区 23，用于输入烹饪时间，一操作执行区 24，用于按设置条件驱动微波炉，一
操作消除区 25，用于取消微波炉的操作驱动。上述各区可以用按键和度盘实施。

载荷驱动区 40 包括磁控管，冷却风扇，灯和驱动马达，执行微波炉的烹饪操作。

图 2 是本发明优选实施例的微波炉 200 的外形透视图。如图所示，微波炉 200 包括，一用户输入区 110，具有一通常指令输入区 120 和形成在主体 210 的前侧的互联网指令输入区 130。

还有，微波炉 200 包括数据输入口 142，用于输入可连接到互联网的外部装置的输出区的信号，例如 PC 机的串行接口。

微波炉 200 还包括显示区 30，用于显示由输入区 110 输入的用户的选择，显示区 30 也显示从互联网输入到微波炉 200 的数据。

图 3 是控制图，用于说明图 2 的微波炉的功能。如图 3 所示，微波炉 200 的用户输入区 110 包括一个通常指令输入区 120 和互联网指令输入区 130。

通常指令输入区 120 包括菜单选择区 21（图 1），用于选择自动烹饪操作的各种菜单。一输出选择区 22，用于选择输出电平，一数字输入区 23，用于输入烹饪时间，一操作执行区 24，用于按预设条件驱动微波炉，一操作消除区 25，用于取消微波炉 200 的操作。

互联网指令输入区 130 包括：一预设标记键 131，一删除键 132，一调节键 133，一替换键 134，一选择键 135，一确认键 136，一消除键 137 和一复位键 138。

预设标记键 131，储存由互联网接收的烹饪数据到微波炉 200 的存储器 150 内，并依次显示储存在存储器 150 内的接收数据。

删除键 132，当储存在存储器 150 内的整个数据范围显示在显示区 30 上时，删除存储器 150 的某些数据。

调节键 133，按用户的要求调节由互联网输入微波炉的数据。

替换键 134，用微波炉 200 的微机 100 从互联网接收到的烹饪数据替代微波炉 200 的存储器 150 内预设的烹饪数据。

选择键 135，从显示区 40 上显示的数据中选择某个数据，并用替换键 134 选择欲替代的微机 100 内的烹饪数据。
确认键 136，在储存从互联网输入的烹饪数据替代由选择键 135 选择的烹饪数据时使用该键。

消除键 137，用于消除各键 131，132，133，134，135，136 和 37 的操作，并重设原始数据。

重设键 130，恢复储存在存储器 150 内的数据作为默认数据，该默认数据是基本上储存在微波炉 200 的微机 100 内的烹饪数据。

在图 3 中，微波炉 200 包括：数据接收区 140，连接到一个可连接互联网的外部装置的数据接收区 140，用于接收从可连接的互联网，如 PC 机的外部装置的烹饪数据。数据接收区 140 包括数据输入口 142，用于接收来自外部装置的数据。一接口区，用于将外来外部装置的数据转换成微机的合适电压电平。

还有微波炉 200 包括：一载荷驱动区 40，具有磁控管，冷却风扇，灯和驱动马达，执行微波炉的烹饪操作；微机 100，用于按输入信号合适地控制微波炉 200 内各部件的操作；一存储器 150，用于储存通过接收区 140 由互联网输入的数据；一显示区 30，用于显示来自输入区 110 或数据接收区 140 输入的数据。

图 4 表示图 2 微波炉与互联网连接的示意框图。如图 4 所示，微波炉 200 与可连接互联网的外部装置连接，如本实施例中的 PC300 机。PC300 机提供互联网浏览键对互联网进行浏览，一通讯程序，用于通过输出口，如 RS232C 系列输出口 310 等，从网页得到输出数据。通讯程序利用从网页下载相同的内容安装到 PC300 上。因此，利用安装在 PC300 上的互联网浏览键把用户连接到网页的他/她所需的烹饪位置。当用户敲击不同的数据，如菜单名，功率水平，烹饪时间等时，相应的数据从烹饪位置转换到 PC300，然后由通讯程序通过 RS232C 串行接口 310 输入到微波炉 200 的数据输入口 142。

图 5A 和 5B 表示根据各个实施例的图 4 的接口电路示意图。如图 5A 和 5B 所示，接口区 144 转换从 PC300 的 RS232C 系列输入口 310 的信号，并将转换的信号输入到微机 100 的输入端 P1（图 3）。即，来自 RS232C 系列输出口 310 的输出信号被转换成具有微机 100 所需的合适电压电平的信号。根据微机 100 的中断特性，自 RS232C 系列输出口 310 的输出
信号在图 5A 的接收区 144a 内被倒相，或可转换成微机 100 所需的合适
电压电平的信号，不用如图 5B 的接口区 144 内的倒相。

如图 5A 所示，接口区 144a 包括一个二极管 D，它可根据 RS232C
口 310 的输出信号来开/关。通常，RS232C 口 310 的输出信号是一个幅
度为－15V －15V 范围内的脉冲信号 S1G1。脉冲信号通过二极管 D，
经电阻 R1 加到晶体管 TR 的基极，在这种情况下，由于经电阻 R2 连接
晶体管驱动电源到晶体管 TR 的集电极，则输入一定的倒相电源（如 5V），
将输出的倒相信号输入到微机 100，作为微机 100 的输入信号 G1G2。

图 5B 的接口区 144b 有一二极管 D，它根据 RS232C 口 310 的输出
信号开/关。脉冲信号通过二极管 D，并由电阻器 R3 和 R4 分配。由电
阻器 R3 和 R4 分配的脉冲信号用齐纳二极管 ZD 稳定，然后输入到微机
100，作为微机 100 的输入信号 G1G3。图 5a 和图 5b 的相倒置和非相倒
置接口电路分别由微机 100 交替使用。

图 6A 和图 6B 表示 PC 机的连接终端和图 4 的微波炉的接口，如图
6A 所示，PC300 的 RS232C 串行接口 310 的输入/输出 312 连接到普
通的声频扬插件 400，为了进行连接，使用输入/输出口 312 的输电插头
和接地插头（如图 6 中的 PIN3 和 PIN7），由于声频扬插件 400 通常有
包括地线在内的三条线，所以互联网的数据可以通过声插件 400 从 RS232C 的输入/输出口 312 传输。声频扬插件 400 插入形成在微波炉 200
上的数据输入口 142（图 2），声频扬插件 400 被插入声频插件数据输
入区，将来自传输插头 PIN3 的输出脉冲信号加到二极管 D。

微机 100 显示通过接口区 144 输入的数据，并起动烹饪操作。进一
步，微机 100 按照互联网的指令输入区 130 的选择键输入，并储存输入
数据在存储器 150 内。

下面介绍具有上述结构的微波炉 200 的操作。

图 7A 和 7B 是用参考符号 A 表示的说明本发明微波炉操作的流程
图。

微波炉 200 的数据接收区 140 经阳插头 400（图 4）与 PC 机 300 的
RS232C 串行接口 310 连接。

用户接通微波炉 200，并将 PC300 连接互联网，用户接收来自互联
网的网页位置的烹饪数据，即，用户敲击微波炉烹饪信息（菜单名，功率水平，驱动时间等），于是，将烹饪数据转换到 PC300，所接收的数据利用安装在 PC300 内的通讯程序输入 PC232C 串行接口 310。通常，输出数据是一个脉冲信号，输出数据经阳插头 400 输入到数据接收区 140，被输入到数据接收区的数据在接口区转换成合适电压电平的脉冲信号供微机 100 使用，然后加到微机 100 上。

在对来自接口区 144 的（步骤 S1）的输入脉冲信号进行检测时，微机 100 在显示区 30（步骤 S2）显示将从接口区 144 输入的烹饪数据。烹饪数据包括菜单，功率水平，烹饪时间等，还包括通常预设的微波炉的烹饪菜单内的烹饪条件，当烹饪数据显示在显示区 30 上时，用户检查从互联网输入的烹饪数据。

在检测操作实施键 24（步骤 S3 和 S4）的输入时，微机 100 执行根据相应的烹饪数据（步骤 S4b）的烹饪操作，当完成烹饪操作时，微机 100 回到 C，检查是否有任何键的输入（步骤 S3）。

在检测浏览键 131 的输入时（步骤 S5），此时来自互联网的数据显示在显示区 30 上，微机 100 将显示的烹饪数据储存存储器 150 内（步骤 S6），再回到 C，同时检测浏览键 131 的输入，此时烹饪数据没有从互联网接收，或此时烹饪数据不显示在显示区 30 上，微机 100 依次根据浏览键输入数字，显示储存在存储器 150 内的烹饪数据。

同时，在微机 100 检测调节键 133 的输入时（步骤 S7），用户能利用选择键 135 选择来自所选择的输入数据（步骤 S8），然后微机 100 回到 C，检测是否有任何的键输入（步骤 S3）。

在检测替换键 134 的输入时（步骤 S9），微机 100 将整个储存在微机 100 内的烹饪菜单范围显示在显示区 30 上（步骤 S10），用户用选择键 135 选择这些预储存的烹饪菜单中的一个（步骤 S11），由互联网输入新的烹饪菜单替代。在选择欲替代的烹饪菜单时，用于按压确认键 136。在检测该确认键 136 受到按压时（步骤 S12），微机 100 剔去经选择的预储存的烹饪菜单的烹饪数据，并储存最新的从互联网输入的烹饪菜单数据（步骤 S13），然后微机 100 回到 C，以检查是否存在任何键的输入（步骤 S3）。
同时，在检测该消除键 137 受到按压，而不是确认键 136 时（步骤 S14），微机 100 不储存从互联网输入的显示在显示区 30 上的烹饪数据，并回到 C，检查是否存在任何键的输入（步骤 S3）。

图 7B 是图 7A 流程图的继续，用于在检测复位键 138 的输入时控制微波炉 200 的过程。

在检测互联网指令输入区 130 的复位键 138 的输入时（步骤 S15），微机 100 在显示区 30 上显示储存在存储器 150 内的数据。在这种情况 下，在测定该确认键 136 受压时（步骤 S17），微机 100 删去当前储存在存储器 150 内的数据，并储存默认数据（步骤 S18），该默认数据是预存在微机 100 内的数据。在检测该消去键 137 受压，而不是确认键时（步骤 S19），微机 100 回到 C，即，在检测复位键 138 的输入后，微机 100 不检测确认键 136 的输入，清除键 137 仍由键输入结果操作。

还有，在检测删除键 132 的输入时（步骤 S20），微机 100 在显示区 30 上显示在存储器 150 内的数据（步骤 S21），用户利用选择键 135 选择欲删除的数据（步骤 S22）。在此情况下，当检测确认键 136 的输入时（步骤 S23），微机 100 删除来自存储器 150 的选择数据（步骤 S24）。如上所述，在检测删除键 132 的输入后（步骤 S25），微机 100 回到 C（步骤 S3）。如上所述，在检测删除键 132 的输入后（步骤 S20），微机 100 仍检查确认键 136 或消除键 137 的输入（步骤 S23 和 S25）。

在微机 100 没有检测到复位键 138 或删除键 132 的任何输入时（步骤 S15 和 S20），微机 100 回到 C（步骤 S3）。

如上所述，按本发明的微波炉和它的控制方法，用户可利用从互联网收到的烹饪数据来烹饪，他/她可按喜爱来调节，替代或储存来自互联网的烹饪数据。

因此，可充分利用微波炉，因为他/她可利用互联网提供的宽范围的烹饪菜单来选择和按用户需要的烹饪，也可以为以后的使用储存烹饪数据。

本发明已参见附图作出了具体的描述，须知，本领域的技术人员可以对其在形式上或内容上作出改变，而不偏离本发明的精神和范围。
图 3
图 7A
图7B

在显示区显示存储器内存储的数据

确认键是否按下？

删除当前输入存储器内的数据，存储器内存储的数据。

消选键是否按下？

是否按下确认键？

是否按消选键？

从存储器删除选择的数据

在显示区上显示存储器内存储的数据

互联网键输入区的删除键是否按下？

是否按确认键？

是否按消选键？

回到C