发明名称
基于多机热备份的应用服务运行处理系统

摘要
本发明提出了一种基于多机热备份的应用服务运行处理系统，该系统在应用多机热备份的基础上，通过若干个应用程序运行单元以及若干个服务数据库单元之间的通信控制及切换联机运行策略，联机运行的应用程序运行单元不需要直接参与热备份数据处理，其对外提供应用服务的处理性能得到了保证，而且只有当系统中各个服务数据库单元均获取到联机运行的应用程序运行单元运行状态异常时才会触发应用程序运行单元的主备用切换，大大降低了误切换操作的几率，并且应用程序运行单元、服务数据库单元都可独立进行主备用切换，使得主备用切换的过度更加的平缓和迅速，很好的提升了多机热备份系统切换运行应用服务的流畅度和稳定性。
1. 基于多机热备份的应用服务运行处理系统，其特征在于，包括若干个应用程序运行单元以及若干个服务数据库单元；每个应用程序运行单元分别与各个服务数据库单元数据通信连接，各个服务数据库单元之间相互数据通信连接；

每个服务数据库单元能够独立地向应用程序运行单元提供服务所需的服务数据并存储来自应用程序运行单元的服务数据，还能够通过心跳机制实时地监测联机运行的应用程序运行单元的运行状态是否正常；

每个应用程序运行单元在启动后首先处于待机备用状态，并能够独立于一个服务数据库单元联机运行对外提供服务，将对外提供服务时产生的增量的服务数据传输至与之联机运行的服务数据库单元加以存储；在系统整体启动运行时，触发系统中的一个待机备用状态的应用程序运行单元主动切换进入联机主用状态，向系统中一个服务数据库单元请求联机，并在联机成功后运行提供服务；在系统启动后，当应用程序运行单元处于待机备用状态时，实时地从系统中各个服务数据库单元获取联机运行的应用程序运行单元的运行状态，当从各个服务数据库单元均获取到联机运行的应用程序运行单元运行状态异常时，则通过与系统中各个服务数据库单元通信来判断系统中是否已存在其它联机运行的应用程序运行单元，若是，则继续保持待机备用状态，若否，则主动切换进入联机主用状态，向原联机运行的服务数据库单元请求联机，并在联机成功后运行提供服务；当应用程序运行单元处于联机主用状态时，实时监测联机运行的服务数据库单元运行状态是否正常，当联机运行的服务数据库单元运行状态异常时，通知系统中各个未联机运行的服务数据库单元从联机运行的服务数据库单元备份服务数据，当联机运行的服务数据库单元运行状态异常时，切换选择另一个服务数据库备份完整的服务数据库单元请求联机，并在切换联机成功后运行提供服务；当应用程序运行单元自身运行状态异常时，自行重新启动。

2. 根据权利要求1所述基于多机热备份的应用服务运行处理系统，其特征在于，每个应用程序运行单元包括应用程序运行处理模块，监控模块和切换控制模块；

所述应用程序运行处理模块在启动时首先进入待机备用状态，并向切换控制模块发送工作模式切换请求，然后根据切换控制模块的控制而运行，当应用程序运行处理模块被控制切换至联机主用状态时，应用程序运行处理模块主动向原联机运行的服务数据库单元请求联机，在联机成功后运行提供服务，并将对外提供服务时产生的增量的服务数据传输至与之联机运行的服务数据库单元加以存储；当应用程序运行处理模块自身运行状态异常时，则重新启动其所在的应用程序运行单元；

所述监控模块具有备用工作模式和主用工作模式，在应用程序运行处理模块处于待机备用状态时，监控模块运行备用工作模式，用于实时地从系统中各个服务数据库单元获取联机运行的应用程序运行单元的运行状态，并在从各个服务数据库单元均获取到联机运行的应用程序运行单元运行状态异常时，向切换控制模块发送工作模式切换请求；在应用程序运行处理模块处于联机主用状态时，监控模块运行主用工作模式，用于实时监测联机运行的服务数据库单元运行状态是否正常，在联机运行的服务数据库单元运行状态正常时，通知系统中各个未联机运行的服务数据库单元从联机运行的服务数据库单元备份服务数据，在联机运行的服务数据库单元运行状态异常时，向切换控制模块发送联机切换指令；

所述切换控制模块具有主用工作模式和备用工作模式，在应用程序运行处理模块处于待机备用状态时，切换控制模块运行备用工作模式，用于在接收到工作模式切换请求时，
通过与系统中各个服务数据库单元通信来判断系统中是否存在其它联机运行的应用程序运行单元，若是，则控制应用程序运行处理模块继续保持待机备用状态，若否，则控制应用程序运行处理模块切换进入联机主用状态，在应用程序运行处理模块处于联机主用状态时，切换控制模块运行主用工作模式，用于在接收到联机切换指令时，控制应用程序运行处理模块切换选择另一个服务数据库备份完整的服务数据库单元请求联机，并在切换联机成功后控制应用程序运行处理模块继续维持联机主用状态。

3. 根据权利要求1所述基于多机热备份的应用服务运行处理系统，其特征在于，每个服务数据库单元包括服务数据存储模块、备份联机处理模块、心跳包收发模块和联机状态通知模块；

所述服务数据存储模块用于存储服务数据；

所述备份联机处理模块在启动时处于热备份状态，用于根据系统联机运行的应用程序运行单元的通知对联机运行的服务数据库单元中的服务数据进行增量备份，将增量备份的服务数据传送到服务数据存储模块加以存储，并等待系统中的应用程序运行单元请求联机；当系统中有应用程序运行单元请求联机时，备份联机处理模块进入联机运行状态，与请求联机的应用程序运行单元进行联机处理，在联机成功后从服务数据存储模块调取应用服务器的服务数据提供给联机运行的应用程序运行单元，并将联机运行的应用程序运行单元传送的对外提供应用服务时产生的增量的数据传送到服务数据存储模块加以存储；当备份联机处理模块自身运行状态异常时，则重新启动其所在的服务数据库单元；

所述心跳包收发模块用于通过与系统中其它服务数据库单元通信来监测系统中是否存在联机运行的应用程序运行单元，若存在，则通过心跳机制向联机运行的应用程序运行单元收发心跳包，通过心跳包实时地监测系统中联机运行的应用程序运行单元的运行状态是否正常；

所述联机状态通知模块用于向系统中各个应用程序运行单元发送系统中是否存在联机运行的应用程序运行单元以及联机运行的应用程序运行单元的运行状态。
基于多机热备份的应用服务运行处理系统

技术领域

[0001] 本发明涉及通信技术领域和网络应用服务技术领域，特别涉及一种基于多机热备份的应用服务运行处理系统。

背景技术

[0002] 随着科学技术的发展，计算机系统的应用变得越来越广泛，在很多应用领域中计算机系统的可靠性要求相当高。如果计算机出现故障，可能会导致很多严重的后果，在一些特殊应用领域中，不仅仅是会带来各种经济损失，严重的还有可能会危及到人们的生命安全。容错技术是构建高可靠性计算机系统最有力的手段之一，它是指当计算机软硬件由于物理实现、环境影响、操作错误或者是设计缺陷等原因产生异常行为时，维持系统正常工作的技术。

[0003] 备份技术是常用的容错技术之一，是为了应付文件、数据丢失或损坏等可能出现的意外情况，将电子计算机存储设备中的数据复制到大容量备份存储设备中，以备意外发生或者其它需要情形时再从大容量备份存储设备中调取所需数据的技术手段。按备份系统的准备程度划分，备份可分为冷备份、温备份和热备份三大类。相比于冷备份和温备份技术而言，热备份技术因其异常、故障时切换恢复处理时间较短，备份数据完整性、一致性较好，数据丢失可能性小等优点，应用更为广泛。热备份技术，允许备份系统在主用状态的应用服务系统正常运行期间进行实时的数据备份，以保持备份系统与当前主用的应用服务系统之间的数据同步，也可定时从备份系统上恢复数据到主用的应用服务系统。采用热备份的系统在运行时，一旦主用的应用服务系统发生异常或故障，不用追补或只需追补很少的孤立数据，备份系统可快速接替原主用的应用服务系统提供应用服务，恢复服务业务的正常运行。

[0004] 现有技术中，可通过购买专用的第三方备份软件或硬件作为备份系统来实现数据热备份，但通常这种专用的热备份第三方备份软件或硬件价格非常昂贵，而且由于其通常由第三方独立开发，很难与运营商自主运营的应用服务系统之间无缝兼容结合，因此系统中的主备用切换运行也比较好出现较多的故障。

[0005] 另一种现有技术中比较常用的热备份系统运行实现方法是多机热备份运行技术，即建立两个或多个（两个以上）应用服务系统，每个应用服务系统都主要由应用程序和服务数据库构成，服务数据库用于存储和提供服务数据，应用程序与服务数据库进行服务数据的通信并对外提供应用服务；在这两个或多个应用服务系统中，其中一个作为主用、其它作为备用，在主用应用服务系统的应用程序与备用应用服务系统的应用程序之间建立数据通信连接，让备用端的应用程序通过主用端的应用程序的数据连接从主用端服务数据库中热备份数据，由备用端应用程序实时监控主用端应用程序；当某个备用端的应用程序发现主用的应用服务系统出现异常或故障时，则其所在的应用服务系统主动切换作为新的主用端运行，接替原主用端提供应用服务。这种多机热备份运行技术不需要依赖于专用的第三方备份软件或硬件，成本相对较低，而且多个应用服务系统之间的统一性较高，无缝兼容结合
性能好，故障率更低。但现有的这种多机热备份运行技术对应用系统中应用程序的任务负荷比较高，因此应用程序的处理逻辑改动较大，相应导致前期开发的工作量较大；主应用系统在对外提供应用服务的同时还兼备处理与备用端之间的热备份数据通信处理，容易导致主用端应用程序对外提供应用服务的处理性能下降；并且使用备用端应用程序监控主用端应用系统，有时确实是由主用端应用系统发生异常或故障引发主备用切换操作，但有时也可能因为主、备用之间通信网络中断导致主用端应用系统误判断为主用端应用系统故障，从而在主用应用系统运行正常的情况下发生不必要的误切换操作，增加了整体系统的切换操作负荷以及误切换操作引起的某些应用延迟等问题；而且一旦进行主备用切换则交换整个应用服务系统(即由一个备用应用服务系统的应用程序和服务数据库完全接替作为新的主用端提供应用服务)，如果切换后新的主用端存在任何的准备不足(例如应用系统的对外网络连接准备不足，或者服务数据库的数据备份不完全等)，又将导致对外提供应用服务的业务的过渡平稳性受到影响；因此，采用现有热多机热备份运行技术的系统，其多方面的流畅度和稳定性都存在一定的缺陷。

发明内容

[0006] 针对现有技术的上述不足，本发明的目的在于提供一种基于多机热备份的应用服务运行处理系统，以解决现有技术中依赖于第三方备份软件或硬件来实现数据热备份成本过高、故障较多而依赖现有热多机热备份运行技术又可能出现误切换操作、切换运行应用服务的流畅度和稳定性不佳等问题，提升多机热备份系统对外提供应用服务的流畅度和稳定性。

[0007] 为解决上述技术问题，实现发明目的，本发明采用的技术方案如下；

[0008] 基于多机热备份的应用服务运行处理系统，包括若干个应用程序运行单元以及若干个服务数据库单元；每个应用程序运行单元分别与各个服务数据库单元数据通信连接，各个服务数据库单元之间相互数据通信连接；

[0009] 每个服务数据库单元能够独立地向应用程序运行单元提供服务所需的数据库并存储来自应用程序运行单元的服务数据，还能够通过心跳机制实时地监测联机运行的应用程序运行单元的运行状态是否正常；

[0010] 每个应用程序运行单元在启动后首先处于待机备用状态，并能够独立与一个服务数据库单元联机运行对外提供应用服务，将对外提供应用服务时产生的增量的服务数据传输至与之联机运行的服务数据库单元加以存储；当应用程序运行单元处于待机备用状态时，实时地从系统中各个服务数据库单元获取联机运行的应用程序运行单元的运行状态，当从各个服务数据库单元均获取到联机运行的应用程序运行单元运行状态异常时，则通过与系统中各个服务数据库单元通信来判断系统中是否已存在其它联机运行的应用程序运行单元，若是，则继续保持待机备用状态；若否，则主动切换进入联机主用状态，向原联机运行的服务数据库单元请求联机，并在联机成功后运行应用服务；当应用程序运行单元处于联机主用状态时，实时监测联机运行的服务数据库单元运行状态是否正常，当联机运行的服务数据库单元运行状态异常时，通知系统中各个未联机运行的服务数据库单元从联机运行的服务数据库单元备份服务数据，当联机运行的服务数据库单元运行状态异常时，切换选择另一个服务数据库单元备份完整的服务数据库单元请求联机，并在切换联机成功后运行
提供应用服务；当应用程序运行单元自身运行状态异常时，自行重新启动。
[0011] 上述基于多机热备份的应用服务运行处理系统中，具体而言，每个应用程序运行单元主要由应用程序运行处理模块、监控模块和切换控制模块构成；
[0012] 所述应用程序运行处理模块在启动时首先进入待机备用状态，并向切换控制模块发送工作模式切换请求，然后根据切换控制模块的控制而运行；当应用程序运行处理模块被控制切换至联机主用状态时，应用程序运行处理模块主动向原联机运行的服务数据库单元请求联机，在联机成功后运行提供应用服务，并将对外提供应用服务时产生的增量的服务数据传输至与之联机运行的服务数据库单元加以存储；当应用程序运行处理模块自身运行状态异常时，则重新启动其所在的应用程序运行单元；
[0013] 所述监控模块具有备工作模式和主用工作模式；在应用程序运行处理模块处于待机备用状态时，监控模块运行备工作模式，用于实时地从系统中各个服务数据库单元获取联机运行的应用程序运行单元的运行状态，并在从各个服务数据库单元均获取到联机运行的应用程序运行单元运行状态异常时，向切换控制模块发送工作模式切换请求；在应用程序运行处理模块处于联机主用状态时，监控模块运行主用工作模式，用于实时监测联机运行的服务数据库单元运行状态是否正常。在联机运行的服务数据库单元运行状态正常时，通知系统中各个未联机运行的服务数据库单元从联机运行的服务数据库单元备份服务数据，在联机运行的服务数据库单元运行状态异常时，向切换控制模块发送联机切换指令；
[0014] 所述切换控制模块具有主用工作模式和备工作模式；在应用程序运行处理模块处于待机备用状态时，切换控制模块运行备工作模式，用于在接收到工作模式切换请求时，通过与系统中各个服务数据库单元通信来判断系统中是否已存在其它联机运行的应用程序运行单元，若是，则控制应用程序运行处理模块继续保持待机备用状态，若否，则控制应用程序运行处理模块切换进入联机主用状态；在应用程序运行处理模块处于联机主用状态时，切换控制模块运行主用工作模式，用于在接收到联机切换指令时，控制应用程序运行处理模块切换选择另一个服务数据库备份完整的服务数据库单元请求联机，并在切换联机成功后控制应用程序运行处理模块继续保持联机主用状态。
[0015] 上述基于多机热备份的应用服务运行处理系统中，具体而言，每个服务数据库单元主要由服务数据存储模块、备份联机处理模块、心跳包收发模块和联机状态通知模块构成；
[0016] 所述服务数据存储模块用于存储服务数据；
[0017] 所述备份联机处理模块在启动时处于热备份状态，用于根据系统中联机运行的应用程序运行单元的运行状态选择的服务数据存储模块中的服务数据进行增量备份，将增量备份的服务数据传送到服务数据存储模块加以存储，并等待系统中的应用程序运行单元请求联机；当系统中有应用程序运行单元请求联机时，备份联机处理模块进入联机运行状态，与请求联机的应用程序运行单元进行联机处理，在联机成功后，服务数据存储模块即开始应用服务所需的服务数据提供给联机运行的应用程序运行单元，并将联机运行的应用程序运行单元传送的对外提供应用服务时产生的增量的服务数据传送到服务数据存储模块加以存储；当备份联机处理模块本身运行状态异常时，则重新启动其所在的备份服务数据库单元；
[0018] 所述心跳包收发模块用于通过与系统中其它服务数据库单元通信来监测系统中
是否存在联机运行的应用程序运行单元，若存在，则通过心跳机制向联机运行的应用程序运行单元发送心跳包，通过心跳包实时地监测系统中联机运行的应用程序运行单元的运行状态是否正常；

[0019] 所述联机状态通知模块用于向系统中各个应用程序运行单元发送系统中是否存在联机运行的应用程序运行单元以及联机运行的应用程序运行单元的运行状态。

[0020] 相比于现有技术，本发明具有下述优点：

[0021] 1、本发明基于多机热备份的应用服务运行处理系统，只有在联机运行的应用程序运行单元出现运行异常或故障时，才会使得系统中各个服务数据库单元均监测到应用程序运行单元运行状态异常，从而触发待机备用状态的应用程序运行单元才会尝试进行主备切换操作，而当联机运行的应用程序运行单元运行状态正常却因通讯网络原因与系统中部分服务数据库单元通讯异常时，不会导致系统中全部的服务数据库单元均监测到应用程序运行单元运行状态异常，因此也不会触发待机备用状态的应用程序运行单元尝试进行主备切换操作，大大降低了联机主用状态的应用程序运行单元运行状态正常的情况下发生不必要的误切换操作的几率，减少了整体系统因不必要的误切换操作引起的系统延迟问题，提升了多机热备份系统对外提供应用服务的流畅度。

[0022] 3、本发明基于多机热备份的应用服务运行处理系统中，应用程序运行单元进入联机主用状态后，不需要直接参与热备份数据通信处理，而是由联机运行的服务数据库单元直接从联机运行的服务数据库单元备份数据服务数据。因此应用程序运行单元不会因热备份数据通信处理导致对提供应用服务的性能影响下降，使得系统对外提供应用服务的性能得到了保证。

[0023] 3、本发明基于多机热备份的应用服务运行处理系统中，由于每个服务数据库单元都能够独立地向应用程序运行单元提供应用服务所需的服务数据，同时每个应用程序运行单元也能够独立与一个服务数据库联机运行对外提供应用服务，并且只针对出现故障，运行状态异常的应用程序运行单元或者服务数据库单元单独进行主备切换，这样以来，只切换服务数据库单元，不切换联机运行的应用程序运行单元时保证了对外提供应用服务的网络连接稳定性，而只切换应用程序运行单元、不切换联机运行的服务数据库单元时则保证了服务数据设备和机制的稳定性，从而使得主备切换的过度更加的平稳和迅速，提升了多机热备份系统对外提供应用服务的稳定性。

[0024] 4、本发明基于多机热备份的应用服务运行处理系统中，各个应用程序运行单元和各个数据库单元均可以采用分布式部署设置，分布式部署既可综合利用多个部署节点硬件资源，将单点负载转移到多个部署节点，提高系统整体效率，又可降低由于单个节点故障而引起系统失效的风险。

[0025] 5、本发明基于多机热备份的应用服务运行处理系统中，在现有技术多机热备份系统的基础上，只需要在应用程序运行单元中增加上述的监控模块和切换控制模块，在服务数据库单元增加上述的心跳包收发模块和联机状态通知模块，并且应用若干个相同模块构建的应用程序运行单元以及若干个相同模块构建的服务数据库单元，即可构建本发明基于多机热备份的应用服务运行处理系统，其开发成本和维护成本都比较低，工作量也比较小，从而进一步解决了期开发的工作量较大、开发成本高的问题。
附图说明
[0026] 图1为本发明基于多机热备份的应用服务运行处理系统的构架图例。

具体实施方式
[0027] 下面结合附图和实施例对本发明的技术方案进一步说明。
[0028] 在现有技术中，由于依赖于第三方备份软件或硬件来实现数据热备份成本过高，
故障较多，而依赖现有机热备份运行技术又可能出现误切换操作、切换操作应用服务的
流畅度和稳定性不佳等问题。针对此，本发明提出了一种基于多机热备份的应用服务运
行处理系统，该系统在采用多机热备份的基础上，通过若干个应用程序运行单元以及若干
个服务数据库单元之间的通信控制及切换联机运行策略，使得出现误切换操作的几率大幅
降低，也很好的提升了切换运行应用服务的流畅度和稳定性。
[0029] 图1所示，本发明基于多机热备份的应用服务运行处理系统，包括若干个应用
程序运行单元以及若干个服务数据库单元，每个应用程序运行单元分别与各个服务数据
库单元数据通信连接，各个服务数据库单元之间相互数据通信连接，每个服务数据库单元能
够独立地向应用程序运行单元提供应用服务所需的服务数据并存储来自应用程序运行单
元的服务数据，还能够通过心跳机制实时地监测联机运行的应用程序运行单元的运行状态
是否正常，每个应用程序运行单元在启动后首先处于待机备用状态，并能够独立与一个服
务数据库单元联机运行对外提供应用服务，将对外提供应用服务时产生的增量的数据服务
传输至与之联机运行的服务数据库单元加以存储。当应用程序运行单元处于待机备用状态
时，实时地从系统中各个服务数据库单元获取联机运行的应用程序运行单元的运行状态；
当从各个服务数据库单元均获取到联机运行的应用程序运行单元运行状态异常时，则通过
与系统中各个服务数据库单元通信来判断系统中的是否存在联机运行的应用程序运行
单元，若是，则继续保持待机备用状态，否则，则主动切换进入联机主机状态，向原联机运
行的服务数据库单元请求联机，并在联机成功后运行提供应用服务；当应用程序运行单元
处于联机主机状态时，实时监测联机运行的服务数据库单元运行状态是否正常，当联机运
行的服务数据库单元运行状态正常时，通知系统中各个未联机运行的服务数据库单元从联
机运行的服务数据库单元备份服务数据，当联机运行的服务数据库单元运行状态异常时，
切换至另一个服务数据库备份服务数据的数据库单元请求联机，并在切换联机成功后运行
提供应用服务；当应用程序运行单元自身运行状态异常时，自新重新启动。
[0030] 本发明基于多机热备份的应用服务运行处理系统，其系统运行机制如下：首先，在
系统整体启动运行时，系统中各个应用程序运行单元都处于待机备用状态，而各个服务数
据库单元也都处于热备份状态。此时由于系统中不存在联机运行的应用程序运行单元，因
此各个服务数据库单元获取到的联机运行的应用程序运行单元运行状态都是异常的，从而
触发系统中的某个待机备用状态的应用程序运行单元主动切换进入联机主机状态，向系统
中一个数据库单元请求联机，并在联机成功后运行提供应用服务。在这里，系统中具体
首先由哪一个应用程序运行单元进行联机运行，可以是根据系统中预设的优先级而确定，
也可以是根据系统随机进行选择确定，也可以是由多个应用程序运行单元通过竞争而确
定，系统中不同的系统应用环境可以采用相适宜的联机选择条件。此后，如果只是
原联机运行的应用程序运行单元故障导致了运行状态异常，则系统中每个服务数据库单元

8
都会监测到并通知给系统中处于待机备用状态的应用程序运行单元，从而触发一个新的应用程序运行单元从待机备用状态切换进入联机主用状态，与原联机运行的服务数据库单元进行联机运行，而如果同一时间还有其它处于待机备用状态的应用程序运行单元也被触发尝试请求联机，但由于检测到系统中是否已存在联机运行的应用程序运行单元，便会继续保持待机备用状态，原本联机运行的应用程序运行单元因运行状态异常导致自身重新启动后，则进入待机备用状态；如果只是原联机运行的服务数据库单元运行状态出现异常，则联机运行的应用程序运行单元切换选中另一个服务数据备份完整的服务数据库单元请求联机，并在切换联机成功后运行提供应用程序，原本联机运行的服务数据库单元因运行状态异常导致自身重新启动后，则会收到当前联机运行的应用程序运行单元通知从当前联机运行的服务数据库单元备份服务数据，进入热备份状态。作为一种比较特殊的情形，如果原联机运行的应用程序运行单元和数据库单元同时出现了故障而均运行状态异常，那么系统中每个服务数据库单元都会检测到原联机运行的应用程序运行单元运行状态异常，并通知给系统中处于待机备用状态的应用程序运行单元，从而触发一个新的应用程序运行单元从待机备用状态切换进入联机主用状态，与原联机运行的服务数据库单元进行联机运行，而新进入联机主用状态的应用程序运行单元在联机后又会检测到原联机运行的服务数据库单元运行状态异常，从而又触发切换选中另一个服务数据备份完整的服务数据库单元请求联机，并在切换联机成功后运行提供应用程序。至于每次进行主备切换操作时的具体由哪一个应用程序运行单元进行联机运行，或者具体选择哪一个服务数据库单元进行联机运行，是根据系统中预设定的优先级而确定，也可以是根据系统随机进行选择确定，也可以是通过请求竞争而确定，等，根据不同的系统应用环境可以采用相适应的联机选择条件。

可以看到，在本发明基于多机热备的应用服务运行处理系统中，由于没有采用现有技术中主备端应用程序与备用端应用程序直接数据连接的方式进行数据通信，而是由系统中的每个应用程序运行单元分别与各个服务数据库单元数据通信连接，各个服务数据库单元之间相互数据通信连接，当某个应用程序运行单元进入联机主用状态后，只需要进行常规的对外提供应用服务处理，以及通知系统中各个未联机运行的服务数据库单元从联机运行的服务数据库单元备份服务数据等，而不需要直接参与热备份数据处理，而由未联机运行的服务数据库单元直接从联机运行的服务数据库单元备份服务数据，因此应用程序运行单元不会因热备份数据通信处理导致对外提供应用服务的处理性能下降；另一方面，由于系统中各个处于待机备用状态的应用程序运行单元不再依赖与联机运行的应用程序运行单元通讯获取其运行状态是否异常，而是实时地从系统中各个服务数据库单元获取联机运行的应用程序运行单元的运行状态，并且当从各个服务数据库单元均获取到联机运行的应用程序运行单元运行状态异常时，待机备用状态的应用程序运行单元才判定联机运行的应用程序运行单元出现异常而尝试主备切换操作，这样一来，只有在联机运行的应用程序运行单元确实出现运行异常或故障时，才会使得系统中各个服务数据库单元均监测到应用程序运行单元运行状态异常，从而触发待机备用状态的应用程序运行单元才会尝试进行主备切换操作，而当联机运行的应用程序运行单元运行状态正常却因通讯网络原因与系统中部分服务数据库单元通讯异常时，不会导致系统中全部的服务数据库单元均监测到应用程序运行单元运行状态异常，因此也不会触发待机备用状态的应用程序运行单元尝试进行主备切换操作，大大降低了联机主用状态的应用程序运行单元运行状态正常的
情况下发生不必要的误切换操作的几率，减少了系统因不必要的误切换操作引起的服
务延迟问题，提升了多机热备份系统对外提供应用服务的流畅度；再一方面，由于系统中每
个服务数据库单元都能够独立地向应用服务提供应用服务所需的数据库，同时每个应用
程序运行单元也都能够独立与一个服务数据库单元联机运行对外提供应用服务，
因此系统中的各个应用服务单元和各个服务数据库单元均可以采用分布式部署设
置，分布式部署既可综合利用多个部署节点硬件资源，将单点负载转移到多个部署节点，提高
系统整体效率，又可降低由于单个节点故障而引起系统失效的风险，并且在系统中只是联
机运行的应用程序运行单元故障或者只是联机运行的服务数据库单元故障，则相应地进
行主备应用程序运行单元的切换或者仅进行主备应用服务数据库单元的切换，而联机运行
未出现故障的应用程序运行单元或服务数据库单元则不进行主备切换，这样一来，只切
换服务数据库单元，不切换联机运行的应用程序运行单元时保证了对外提供应用服务的网
络连接稳定性，而只应用服务单元或服务数据库单元时保证了服务数据的独立性和稳
定性，从而使得主备切换的过度次数的平稳和迅速，提升了多机热备份系统对外提供应用服务的稳定性。

[0032] 为了进一步降低系统设计的复杂度，本发明还提供了一种作为优化设计的应用程
序运行单元模块构架。该优化设计方案中，系统中的每个应用服务单元主要由应用程
序运行处理模块、监控模块和切换控制模块构成。应用程序运行处理模块在启动时首先进
入待机备用状态，并向切换控制模块发送工作模式切换请求，然后根据切换控制模块的控
制而运行；当应用程序运行处理模块被控制切换至联机主用状态时，应用程序运行处理模
块主动向原联机运行的服务数据库单元请求联机，在联机成功后运行提供应用服务，并将
对外提供应用服务所产生的增量数据传输至与之联机运行的服务数据库单元加以存
储；当应用程序运行处理模块自身处于单机备用状态时，则重新启动其所在的应用程序运行
单元。监控模块具有备用工作模式和主用工作模式，在应用程序运行处理模块处于待机备
用状态时，监控模块运行备用工作模式，用于实时地从系统中各个服务数据库单元获取联
机运行的应用程序运行单元的状态，并在从各个服务数据库单元获取到联机运行的
应用程序运行单元运行状态异常时，向切换控制模块发送工作模式切换请求；在应用程序
运行处理模块处于联机主用状态时，监控模块运行主用工作模式，用于实时监测联机运行
的服务数据库单元运行状态是否正常，在联机运行的服务数据库单元运行状态正常时，通
知系统中各个未联机运行的服务数据库单元从联机运行的服务数据库单元备份数据数
据，在联机运行的服务数据库单元运行状态异常时，向切换控制模块发送联机切换指令。切
换控制模块具有主用工作模式和备用工作模式；在应用程序运行处理模块处于待机备用状
态时，切换控制模块运行备用工作模式，用于在接收到工作模式切换请求时，通过与系统中
各个服务数据库单元通信来判断系统中是否已存在其它联机运行的应用程序运行单元。若
是，则控制应用程序运行处理模块继续保持待机备用状态，若否，则控制应用程序运行处理
模块切换进入联机主用状态；在应用程序运行处理模块处于联机主用状态时，切换控制模
块运行主用工作模式，用于在接收到联机切换指令时，控制应用程序运行处理模块切换选
择另一个服务数据库备份完整的服务数据库单元请求联机，并在切换联机成功后控制应用程
序运行处理模块继续保持联机主用状态。

[0033] 相应地，本发明还提供了一种作为优化设计的服务数据库单元模块构架。该优化
设计方案中，系统中的每个服务数据库单元主要由服务数据存储模块、备份联机处理模块、心跳包收发模块和联机状态通知模块构成。服务数据存储模块用于存储服务数据。备份联机处理模块在启动时处于热备份状态，用于根据系统中联机运行的应用程序运行单元的通知对联机运行的服务数据库单元中的服务数据进行增量备份，将增量备份的服务数据传送到服务数据存储模块加以存储，并等待系统中的应用程序运行单元请求联机；当系统中有应用程序运行单元请求联机时，备份联机处理模块进入联机运行状态，与请求联机的应用程序运行单元进行联机处理，在联机成功后从服务数据存储模块调取应用服务所需的服务数据提供给联机运行的应用程序运行单元，并将联机运行的应用程序运行单元传送的对外提供应用服务时产生的增量的服务数据传送到服务数据存储模块加以存储。当备份联机处理模块自身处于状态异常时，则重新启动其所在的服务数据库单元。心跳包收发模块用于通过与系统中其它服务数据库单元通信来监测系统中是否存在联机运行的应用程序运行单元，若存在，则通过心跳机制向联机运行的应用程序运行单元发送心跳包，通过心跳包实时地监测系统中联机运行的应用程序运行单元的运行状态是否正常。联机状态通知模块用于向系统中各个应用程序运行单元发送系统中是否存在联机运行的应用程序运行单元以及联机运行的应用程序运行单元的运行状态。

(0034) 采用上述的优化设计模块构架方案，可以看到，在应用程序运行单元中的应用程序运行处理模块是现有技术多机热备份系统对外提供应用服务业务的必备常规功能模块，而在服务数据库单元中的服务数据存储模块、备份联机处理模块也是现有技术多机热备份系统对外提供应用服务业务的必备常规功能模块，因此在现有技术多机热备份系统的基础上，在服务数据库单元增加上述的心跳包收发模块和联机状态通知模块，并采用若干个相同模块构架的应用程序运行单元以及若干个相同模块构架的服务数据库单元，可构建本发明基于多机热备份的应用服务运行处理系统，其开发成本和维护成本都比较低，工作量也比较小，从而进一步解决了期开发的工作量较大、开发成本高的问题。

(0035) 最后说明的是，以上实施例仅用来说明本发明的技术方案而非限制，尽管参照较佳实施例对本发明进行了详细说明，本领域的普通技术人员应当理解，可以对本发明的技术方案进行修改或者等同替换，而不脱离本发明技术方案的宗旨和范围，其均应涵盖在本发明的权利要求范围当中。
图 1