APPARATUS FOR VULCANIZATION AND MOULDING OF VEHICLES TYRES

Abstract: An apparatus for moulding and vulcanisation of tyres for vehicle wheels includes a vulcanisation press (3) and a vulcanisation mould (2) associated with the press (3), said apparatus comprising: a pair of plates and a plurality of mould sectors that are mutually movable between an open condition and a closed condition; at least one plurality of sector carriers designed to support the mould sectors and movable together with said sectors; a plurality of guide means on which the plurality of sector carriers slides for movement of the mould sectors from the closed condition to the open condition and vice versa; at least part of the sector carriers having at least one spring device (10) designed to exert a thrust action adapted to ensure sliding of the sector carrier on the guide element in a substantially parallel direction.
Published: with international search report
APPARATUS FOR VULCANIZATION AND MOULDING OF VEHICLES TYRES

Description

The present invention relates to an apparatus for moulding and vulcanisation of tyres for vehicle wheels.

In a tyre production cycle it is provided that, subsequently to a building process during which a green tyre is obtained through assembling of the different tyre components, a moulding and vulcanisation process be carried, said process aiming at stabilising the tyre structure according to a desired geometric conformation usually characterised by a particular tread pattern.

To this end, the tyre is introduced into a vulcanisation apparatus of the type disclosed, for example, in US Patent No. 5,234,326 in the name of the same Applicant.

This apparatus comprises a pair of plates adapted to be moved close to each other and designed to operate on the tyre bead and sidewalls, and at least one crown of circumferentially distributed mould sectors radially movable close to each other to operate at the tyre tread band. In more detail, the plates and sectors are mutually movable between an open condition at which they are spaced apart to enable loading of the tyres under manufacture and a closed condition at which they define a moulding cavity having a geometric configuration matching the outer surfaces of the tyre to be obtained. For the moulding and vulcanisation operation, a vulcanisation bladder of elastomeric material filled with steam and/or other fluid at high
temperature and pressure and placed inside the tyre enclosed in the moulding cavity, is provided to be inflated. In this way, the tyre is pushed against the inner walls of the moulding cavity and stabilised into the geometric conformation imposed on it, following cross-linking.

The moulding sectors, supported by appropriate sector carriers, are brought to the closed or open condition by a vulcanisation press that, acting by means of mechanical connections on the sector carriers, operates sliding of the latter on suitable guide elements and, as a result, movement of the mould sectors.

The Applicant has ascertained that the moulding and vulcanisation apparatuses as above described have some problems.

In fact, it was observed that during shifting of the mould sectors, above all towards the closed condition, sliding of the sector carriers on the respective guide elements, due to the weight of the sector carriers themselves, may involve jamming and uneven wear of the guide elements. In fact, the sector carriers by the action of their weight, tend to separate from the guide elements generating a relative slight rubbing between said parts.

The uneven wear of the guide elements may give rise to wrong positioning of the sector carriers in the closed condition and, as a result, of the mould sectors. Thus geometric and/or structural faults such as burr and step formation, can occur on the tyre tread band.

The Applicant has perceived that important improvements
can be achieved if during movement from and towards the closed condition the sector carriers are guided in their sliding along the respective guide elements in such a manner that they can slide substantially parallel to the respective guide elements.

The Applicant has now found that the presence of moulding faults in the tread band of a tyre following the vulcanisation operation can be eliminated or in any case reduced by providing at least part of the sector carriers with at least one spring device designed to exert a thrust action adapted to ensure a substantially parallel sliding of each sector carrier on the respective guide element.

In a first aspect, the invention relates to an apparatus for moulding and vulcanisation of tyres for vehicle wheels, including a vulcanisation press and a vulcanisation mould associated with said press, said apparatus comprising:

- a pair of plates adapted to be moved close to each other and designed to operate on the tyre bead and sidewalls;

- a plurality of circumferentially distributed mould sectors adapted to be radially movable close to each other to operate at the tread band of the tyre; the plates and sectors being mutually movable between an open condition at which they are spaced apart to enable loading of the tyres being worked, and a closed condition at which they define a moulding cavity having a geometric configuration matching the outer surfaces of the tyre to be obtained;

- a plurality of sector carriers, designed to support the mould sectors and movable together with said sectors;
- actuating means operatively connected to the sector carriers and the vulcanisation press to operate movement of the mould sectors from the closed condition to the open condition and vice versa;

5 - a plurality of guide elements on which said plurality of sector carriers slides for movement of the mould sectors from the closed condition to the open condition and vice versa;

wherein:

10 at least part of said sector carriers has at least one spring device designed to exert a thrust action capable of achieving sliding of each sector carrier on the respective guide element in a substantially parallel direction.

15 In particular, preferably each spring device is designed to exert a thrust action in the direction of the vertical central axis Z-Z₁ of the sector carrier so as to maintain the latter pressed against the respective guide elements.

Preferably, each sector carrier comprises two spring devices each of which is located close to a side end of the sector carrier so as to carry out balancing of the forces acting on the vertical central axis Z-Z₁ of the sector carrier.

Each spring device may be advantageously provided to be disposed so as to abut, at least on closure of the mould, against a spring device of the adjacent sector carrier.

According to a preferred aspect, each spring device is housed in a suitable seat formed in the sector carrier so as to project therefrom for abutment, at least on
closure of the mould, against the spring device of the adjacent sector carrier.

Preferably each spring device comprises: a piston element and at least one spring adapted to exert a thrust action on said piston element.

In accordance with a preferred embodiment', at least part of the sector carriers has at least one second spring device designed to exert a thrust action directed radially outwards on the adjacent sector carrier.

Preferably, each sector carrier comprises two second spring devices located at the side ends of each sector carrier.

Advantageously, each second spring device comprises a plurality of leaf springs at least partly contained in a receiving seat formed in the sector carrier and fastened thereto in a removable manner.

Further features and advantages will become more apparent from the detailed description of a preferred but not exclusive embodiment of an apparatus for moulding and vulcanisation of tyres for vehicle wheels in accordance with the present invention. This description will be set out hereinafter with reference to the accompanying drawings, given by way of non-limiting example, in which:

- Fig. 1 is a diagrammatic section view of part of the apparatus of the invention with a mould portion in a closed condition to enable processing of the tyre to be vulcanised;

- Fig. 2 is a diagrammatic section view of part of the
apparatus of the invention with a mould portion in an open condition to enable removal of the vulcanised tyre;
- Fig. 3 shows a cross-section view along axis I-I' in Fig. 2 of a mould portion according to the present invention;
- Fig. 4 is an enlarged view of an embodiment of the first spring device in accordance with the invention;
- Fig. 5 is a cross-section view along axis II-II' in Fig. 2 of a mould portion according to the invention.

With reference to the drawings, an apparatus for moulding and vulcanisation of tyres for vehicle wheels in accordance with the present invention has been generally denoted with 1.

Apparatus 1 comprises a vulcanisation mould 2 associated with a vulcanisation press 3 only diagrammatically shown as it can be made in any manner convenient for a person skilled in the art. Mould 2 can be made up of two side portions 4 of annular conformation known as "plates" that are coaxially opposite along the central axis Y-Y' of the mould, axially movable relative to each other and substantially corresponding to the sidewalls of the tyre to be manufactured.

Disposed between said plates 4 is a central annular portion comprising a plurality of mould sectors 7 (usually in a number varying between four and ten), circumferentially disposed around the mould axis Y-Y'; a plurality of sector carriers 6, each provided to support several mould sectors 7 and a cone-shaped ring 5 at a radially outermost position with respect to the sector carriers 6 to support said sector carriers 6 in
an axially slidable manner.

Sectors 7 are radially movable in both ways at right angles to the central vertical axis Y-Y\(^1\) of the mould between a closed position (shown in Fig. 1) at which they define with the opposite plates 4 close to each other, a moulding cavity conforming in shape to the outer surfaces of the tyre to be obtained, and an open position (shown in Fig. 2) at which they are spaced apart, the plates 4 being spaced apart too, and allow removal of the vulcanised tyre.

The mould sectors 7 are designed to operate, when the mould is in a closed position, on the tread band of the tyre to define a so-called tread pattern in said band, and to this end they are provided, on their inner surfaces designed to come into contact with the tread band, with a plurality of surface ridges so as to generate longitudinal and/or transverse grooves delimiting the ribs and/or blocks of the desired tread pattern.

Plates 4 on the contrary and as previously mentioned, operate on the tyre sidewalls and, if raised portions are wished to be made thereon to define graphic identification elements of the tyre (such as the tyre trademark or size) for example, they are usually provided with corresponding cavities adapted to generate said raised portions.

The sector carriers 6 are jointly moved between a closed position and an open position by movement of the cone-shaped ring 5, in turn operatively connected to the vulcanisation press 3. In particular, the sector carriers 6 have an inclined surface 16 adapted to
cooperate with a corresponding inclined surface 17 of the cone-shaped ring 5. A guide plate 8 is placed between the corresponding inclined surfaces 16 and 17, said guide plate 8 being secured in a removable manner to the inclined surface 17 of the cone-shaped ring 5 to enable sliding of the sector carrier 6 thereon. In accordance with the present invention, at least part of the sector carrier 6 plurality has at least one first spring device 10 designed to exert a thrust action in the direction of the vertical central axis Z-Z₁ of each sector carrier 6 to keep the latter pressed against the guide plates 8 of the cone-shaped ring 5, thereby ensuring a substantially parallel sliding of the sector carrier on the guide 8. Thus jamming of the sector carrier on the guide 8 is avoided during the closing movement of the mould, as well as uneven wear of the guide plates 8.

In the present specification by vertical central axis Z-Z₁ of the sector carrier it is intended a vertical axis parallel to the vertical axis Y-Y₁ of the mould and passing through the centre of gravity of the sector carrier itself.

According to a preferred embodiment shown in the drawings, each sector carrier 6 has two spring devices 10 disposed to a symmetric position relative to axis Z-Z' at the side ends of each sector carrier 6 so that said spring devices carry out balancing of the forces acting on the vertical central axis Z-Z₁ of the respective sector carrier 6; see Fig. 3.

Each first device 10 is such disposed that, on closing of the mould 2, it abuts against a spring device 10 of the adjacent sector carrier 6. In detail, each spring
device 10 is housed in a suitable seat 14 formed in the sector carrier 6 in such a manner as to jut out with respect to said seat 14 for abutment, during movement of the mould from the open to the closed condition, against a spring device 10 of the adjacent sector carrier 6.

Each device 10 has a piston element 9 and at least one spring 13 designed to exert a thrust action on the piston element 12. In detail, the piston element 12 is provided with an abutment head 22 and a rod 21 at least partly slidable within the seat 14.

The spring 13 is a helical-type spring coaxially mounted around the rod 21 to exert a thrust action on the abutment head 22.

According to another embodiment, as shown in Fig. 4, the spring device 10 could have two helical springs 13, 13' disposed one after the other so as to differentiate the type of thrust that is wished to be applied to the piston element 12. In this case, an abutment ring 11 is interposed between the springs 13, 13'.

Alternatively, the spring device 10 could be represented by any device known to a person skilled in the art and capable of exerting a thrust action on the sector carrier 6 to maintain said sector carrier pressed against the guide plates 8 of the cone-shaped ring 5, thereby ensuring a substantially parallel sliding of the sector carrier 6 on the guide plate 8.

In another preferred embodiment of the present invention, to ensure a simultaneous radial closing and opening movement of the sector carriers 6, capable of
being relied on to obtain a precise final positioning,
at least part of said sector carriers 6 has at least
one second spring device 12 designed to exert a thrust
action directed radially outwards on the adjacent
sector carrier 6.

In detail, as shown in Fig. 5, each sector carrier 6
comprises two spring devices 12 disposed in a
corresponding location at the side ends of each sector
carrier 6.

Each second spring device 32 is made up of a plurality
of radially superposed leaf springs 33, depending on
the spring features that are wished to be obtained.

Each plurality of leaf springs 33 is contained at least
partly in a receiving seat 15, formed in the sector
carrier to which it is fastened in a removable manner,
and at least partly in the adjacent sector carrier on
which it exerts a force directed in a radial direction.

Alternatively, the second spring devices 32 can be
represented by any device commonly known to a person
skilled in the art and capable of exerting a thrust
action directed radially outwards on the adjacent
sector carrier 6 with respect to the sector carrier 6
to which such a device is fastened.
CLAIMS

1. An apparatus for moulding and vulcanisation of tyres for vehicle wheels, including a vulcanisation press (3) and a vulcanisation mould (2) associated with said press (3), said apparatus comprising:
 - a pair of plates (4) adapted to be moved close to each other and designed to operate on the tyre bead and sidewalls;
 - a plurality of circumferentially distributed mould sectors (7) adapted to be radially movable close to each other to operate at the tread band of the tyre; the plates (4) and sectors (7) being mutually movable between an open condition at which they are spaced apart to enable loading of the tyres being worked, and a closed condition at which they define a moulding cavity having a geometric configuration matching the outer surfaces of the tyre to be obtained;
 - a plurality of sector carriers (6), designed to support the mould sectors and movable together with said sectors (7);
 - actuating means (5) operatively connected to said sector carriers (6) and said vulcanisation press (3) to operate movement of said mould sectors (7) from the closed condition to the open condition and vice versa;
 - a plurality of guide elements (8) on which said plurality of sector carriers (6) slides for movement of the mould sectors (7) from the closed condition to the open condition and vice versa;

wherein:
 at least part of said sector carriers (6) has at least one first spring device (10) designed to exert a thrust action capable of achieving sliding of each sector carrier (6) on the respective guide element (8) in a substantially parallel direction.
2. An apparatus for moulding and vulcanisation of tyres for vehicle wheels as claimed in claim 1, wherein each first spring device (10) is such disposed that it exerts said thrust action in the direction of the vertical central axis Z-Z\textsubscript{1} of its sector carrier (6) so as to maintain the latter pressed against the guide elements (8).

3. An apparatus for moulding and vulcanisation of tyres for vehicle wheels as claimed in claim 2, wherein each sector carrier (6) comprises two spring devices (10) each of which is located close to a side end of the sector carrier (6).

4. An apparatus for moulding and vulcanisation of tyres for vehicle wheels as claimed in claim 3, wherein each spring device (10) is such disposed that it abuts, on closure of the mould (2), against a spring device (10) of the adjacent sector carrier (6).

5. An apparatus for moulding and vulcanisation of tyres for vehicle wheels as claimed in claim 4, wherein each spring device (10) is housed in a suitable seat (14) formed in the sector carrier (6) in such a manner as to jut out with respect to said seat (14) for abutment, on closure of the mould (2), against the spring device (10) of the adjacent sector carrier (6).

6. An apparatus for moulding and vulcanisation of tyres for vehicle wheels as claimed in claim 5, wherein each spring device (10) comprises: a piston element (12) and at least one spring (13; 13') adapted to exert a thrust action on said piston element (12).

7. An apparatus for moulding and vulcanisation of tyres
for vehicle wheels as claimed in claim 1, wherein at least part of said sector carriers (6) has at least one second spring device (32) designed to exert a thrust action directed radially outwards on the adjacent sector carrier (6).

8. An apparatus for moulding and vulcanisation of tyres for vehicle wheels as claimed in claim 1, wherein each second spring device (32), each located at a side end of the respective sector carrier (6).

9. An apparatus for moulding and vulcanisation of tyres for vehicle wheels as claimed in claim 7, wherein each second spring device (32) comprises a plurality of leaf springs (33) at least partly contained in a receiving seat (15) and fastened thereto in a removable manner.
INTERNATIONAL SEARCH REPORT

PCT/IB2006/003360

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC:

INV. B29D30/06 B29C33/20

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B29C B29D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 653 293 A1 (SEDEPRO [FR]) 17 May 1995 (1995-05-17) column 6, line 38 - column 7, line 26; claims 1-5,9,17; figures 1-5</td>
<td>1-9</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 415 781 A1 (BRIDGESTONE CORP [JP]) 6 May 2004 (2004-05-06) paragraphs [0015] - [0019]; claim 1; figures 1,2a, 2b</td>
<td>1-9</td>
</tr>
<tr>
<td>X</td>
<td>US 2006/008547 A1 (OHARA MASAAMI [JP]) 12 January 2006 (2006-01-12) paragraphs [0031] - [0033]; claims 1,4; figures 1-5</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

* Special categories of cited documents

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

13 July 2007

Date of mailing of the international search report

31/08/2007

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2

NL-2280 HV Rijswijk

Tel (+31-70) 340-2040, Tx 31 651 epo nl

Fax (+31-70) 340-3016

Authorized officer

Deubler, Ulrich
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 204 036 A (MACMILLAN KENNETH T [US])</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>20 April 1993 (1993-04-20) column 7, line 4 - column 8, line 33; claims 1,4,5,13; figures 1-4,12,14</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 0 569 909 A1 (SEDEPRO [FR])</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>18 November 1993 (1993-11-18) column 2, line 52 - column 4, line 35; claims 1-5,8; figures 1-5</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 2005/115710 A (BRIDGESTONE CORP [JP]; OGAWA YUICHIRO [JP])</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>8 December 2005 (2005-12-08) figure 8</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2135577 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1106746 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69420227 Dl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69420227 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2136150 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2712229 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7186303 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2130832 CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5639326 A</td>
</tr>
<tr>
<td>EP 1415781</td>
<td>06-05-2004</td>
<td>wo 03008169 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004170715 Al</td>
</tr>
<tr>
<td>US 2006008547</td>
<td>12-01-2006</td>
<td>DE L02005020469 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006021357 A</td>
</tr>
<tr>
<td>US 5204036</td>
<td>20-04-1993</td>
<td>NONE:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 191675 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9301810 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2096205 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1078681 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9300888 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69301059 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69301059 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69328373 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69328373 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2083223 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2144537 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3241867 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6155475 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002046420 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 2988989 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2116197 CI</td>
</tr>
<tr>
<td>wo 2005115710</td>
<td>08-12-2005</td>
<td>EP 1749632 Al</td>
</tr>
</tbody>
</table>

Foun PCT/ISA/210 (patent family annex) (April 2005)