

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2720831 C 2017/07/25

(11)(21) **2 720 831**

(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2009/04/02
(87) Date publication PCT/PCT Publication Date: 2009/10/22
(45) Date de délivrance/Issue Date: 2017/07/25
(85) Entrée phase nationale/National Entry: 2010/10/06
(86) N° demande PCT/PCT Application No.: EP 2009/053958
(87) N° publication PCT/PCT Publication No.: 2009/127530
(30) Priorité/Priority: 2008/04/18 (ITMI2008A000714)

(51) Cl.Int./Int.Cl. *C23F 13/18* (2006.01)

(72) **Inventeurs/Inventors:**
TETTAMANTI, MICHELE, IT;
TREMOLADA, SIMONE, IT

(73) **Propriétaire/Owner:**
INDUSTRIE DE NORA S.P.A., IT

(74) **Agent:** MACRAE & CO.

(54) Titre : ANODE POUR PROTECTION CATHODIQUE

(54) Title: ANODE FOR CATHODIC PROTECTION

(57) Abrégé/Abstract:

The invention relates to an anode for cathodic protection in form of strip with a catalyst-coated metal part continuously integral with an insulating element of polymer material. The activated metal part and the insulating material can be arranged on opposite faces of the strip, or the insulating element can consist of two rails accommodating the edges of the metal part. The insulating element can be painted with a coloured or luminescent pigment to favour its identification and facilitate the putting in place of the anode.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
22 October 2009 (22.10.2009)(10) International Publication Number
WO 2009/127530 A3

(51) International Patent Classification:

C23F 13/18 (2006.01)

CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/EP2009/053958

(22) International Filing Date:

2 April 2009 (02.04.2009)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

MI2008A000714 18 April 2008 (18.04.2008) IT

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **TETTAMANTI, Michele** [IT/IT]; Via Santa Caterina 36, I-22079 Villa-guardia (Como) (IT). **TREMOLADA, Simone** [IT/IT]; Via Ardigò 34B, I-20052 Monza (IT).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(74) Agent: Patentanwälte Reitstötter Kinzebach; Sternwartzstr. 4, 81679 München (DE).

(88) Date of publication of the international search report:

18 March 2010

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

WO 2009/127530 A3

(54) Title: ANODE FOR CATHODIC PROTECTION

(57) Abstract: The invention relates to an anode for cathodic protection in form of strip with a catalyst-coated metal part continuously integral with an insulating element of polymer material. The activated metal part and the insulating material can be arranged on opposite faces of the strip, or the insulating element can consist of two rails accommodating the edges of the metal part. The insulating element can be painted with a coloured or luminescent pigment to favour its identification and facilitate the putting in place of the anode.

ANODE FOR CATHODIC PROTECTION

FIELD OF THE INVENTION

The present invention relates to an anode for cathodic protection of reinforced
5 concrete structures.

BACKGROUND OF THE INVENTION

The corrosion phenomena affecting reinforced concrete structures are well known to the experts in the field. The steel reinforcement inserted in the cementitious structures
10 to improve the mechanical properties thereof normally works in a passivation regime induced by the concrete alkaline environment; however, after some time, the ion migration across the porous surface of the concrete induces a localised attack to the protective passivation film. Another form of concrete decay is represented by the phenomenon of carbonatation, i.e. the formation of calcium carbonate by reaction of
15 the lime in the cementitious mixture with atmospheric carbon dioxide: the calcium carbonate lowers the alkali content of the cement (from pH 13.5 to pH 9) bringing iron to an unprotected status. The most common method to extend the lifetime of reinforced concrete structures exposed to atmospheric agents consists of the cathodic polarisation of the steel reinforcement. In this way, the latter becomes the site of a
20 cathodic oxygen reduction, thereby suppressing the corrosion and dissolution anodic reactions. This system, known as cathodic protection of reinforced concrete, is carried out by coupling anodic structures of various kinds to the concrete, in whose respect the reinforcement to be protected acts as the cathodic counterelectrode; the electrical currents involved, supplied by an external rectifier, transit across the electrolyte
25 consisting of the porous concrete partially soaked with salty solution. It is known that the cathodic protection of a reinforcement cage may be achieved by means of a distributed anode system, for instance consisting of an arrangement of mesh strip anodes, installed on the reinforcement cage and electrically insulated from the metal by means of spacers made of plastic or cementitious material. The anode system is
30 embedded into the structure during the construction, at the time of casting the concrete. A weak direct current (typically 1 to 30 mA per m² of reinforcement) applied to the

anode and distributed across the whole structure imposes the cathodic potential required for the reinforcement protection.

The application of prefabricated insulating spacers of plastic or cementitious material to valve metal anodes in form of mesh strips is for instance disclosed in EP 0534392, 5 specifying how the spacers are generally secured in a first step to the metal cage to be protected; the anode strips are subsequently secured to the spacers, for instance by insertion in appropriate slits provided in the spacers. Alternatively, the step of securing the anode strips to the spacers may be carried out by way of pins, bolts or clips, or by using adhesives. This operation is apparently lengthy and cumbersome, especially in 10 those spots offering a less comfortable installation due to a difficult access or to an insufficient lighting. This operation also presents a certain risk of error, because an accidental mistake in the positioning or in the fixing step may cause the anode strip to be locally put in electrical contact with the metal reinforcement cage.

Another kind of discrete spacer for anode strips employed in the cathodic protection 15 of reinforced concrete is disclosed in EP 0560452, wherein parallelepipeds of cementitious material with embedded insulating fibres, obtained by moulding, are positioned on the structure to be protected before laying down the anodes. Also in this case, the overall operation appears laborious, scarcely practical in zones of difficult access and not exempt from risks of error. The cementitious spacer is stiff 20 and has a predefined length, which limits its use to not-too-complex structures.

SUMMARY OF THE INVENTION

In one embodiment, the present invention relates to an anode for cathodic protection in form of composite strip comprising a conductive element, such as a metal substrate 25 provided with a superficial catalytic coating (activated element), and an insulating polymer element continuously integral therewith. The composite strip, optionally rolled into a coil, can thus be directly unwound or otherwise laid down on the metal cage to be protected with no need for a previous positioning of discrete spacers. The continuous coupling between the activated element and the insulating element 30 minimises the risk of accidental contacts between the activated substrate and the metal reinforcement to be protected.

The composite strip can be prefabricated coupling the activated element and the polymer insulating element by co-lamination or mechanical interlocking, by insertion in a foldable structure or by any other fastening means.

5 In one embodiment, the metal substrate is a strip of mesh or of solid, punched or expanded sheet of titanium, provided with a superficial catalytic coating. The catalytic coating can contain noble metals, optionally in form of oxides.

The insulating element can be manufactured by moulding starting from a polymer material of various types, for example polyethylene or polypropylene.

10 In one embodiment, the insulating polymer element is a continuous strip equipped with a multiplicity of holes or openings. This can favour a suitable contact of the concrete, poured in a phase subsequent to the anode positioning, with the activated substrate. The openings may have different sizes and geometries, such as to prevent an excessive blinding of the activated substrate, according to the contingent needs.

15 In one embodiment, the insulating polymer element is a continuous strip provided with a multiplicity of holes or openings consisting of a foldable structure, suitable for housing the activated element in its interior and optionally equipped with fastening means to keep it in the folded position, said fastening means for instance consisting of removable articles such as push buttons, hooks, rivets, bolts or clips.

20 In another embodiment, the insulating polymer element comprises concave parts dimensioned so as to adapt to the profile of the reinforcement cage to be protected; for instance, each concave part may be arranged so as to match the corresponding bar of the reinforcement cage. This can contribute to hold the composite strip anodes in position during the phase of concrete casting, 25 preventing them from sliding.

In another embodiment, the insulating polymer element is magnetic, which can also contribute to hold the composite strip anodes in position during the phase of concrete casting and prevent them from sliding.

30 In another embodiment, the insulating polymer element comprises a pair of rails or guides suitable for accommodating or enclosing the edges or the activated element. In this way the resulting composite strip is free of cutting edges, thereby facilitating the handling and positioning thereof.

In another embodiment, the insulating polymer element comprises a continuous polymer strip provided with a multiplicity of holes or openings juxtaposed to the

activated element, and a pair of rails suitable for accommodating or enclosing the activated element and the continuous polymer strip juxtaposed thereto.

In another embodiment, the insulating polymer element comprises a coloured

5 pigmentation, which can help its identification at first glance from the activated

metal part. In another embodiment, the insulating polymer element comprises a

luminescent pigmentation, for instance phosphorescent, fluorescent or

10 bioluminescent.

The use of coloured or luminescent pigmentations can be particularly helpful for

the installation in poorly lighted spots, allowing to verify more easily the overall

15 alignment of the cathodic protection system, for example in correspondence of the

exposed areas or of junction zones of the reinforcement cage.

In one embodiment, a cathodic protection system comprises one or more anodes

in form of composite strip according to one of the above illustrated embodiments

embedded in a reinforced concrete structure, wherein the composite anodes

15 contact the bars of the reinforcement cage only with the polymer insulating part,

the exposed parts of the activated metal substrate being entirely surrounded by

concrete.

Some exemplifying embodiments of the invention are described hereafter with

reference to the attached drawings, which are provided with the only purpose of

20 illustrating the mutual arrangement of the different elements in particular

embodiments of the invention; in particular, drawings shall not intended as

reproductions to scale.

BRIEF DESCRIPTION OF THE DRAWINGS

25 - Fig. 1 shows a cross-section of one embodiment of an anode in form of
composite strip (Fig. 1A), a top-view of a segment of the insulating element
alone (Fig. 1B) and a top-view of a segment of composite strip obtained by
juxtaposition of the same insulating element with an anode mesh (Fig. 1C);
- Fig. 2 shows a top-view of another embodiment of insulating element (Fig.
30 2A) and a top-view of a segment of composite strip obtained by
juxtaposition of the same insulating element with an anode mesh (Fig. 2B);
- Fig. 3 a top-view of a segment of another embodiment of insulating element
consisting of a foldable element (Fig. 3A) and the relevant cross-section
(Fig. 3B);

- Fig. 4 shows a cross-section of another embodiment of anode in form of composite strip comprising an insulating element provided with concave parts;
- Fig. 5 shows a cross-section of another embodiment of anode in form of composite strip comprising an insulating element comprising a pair of rails.

5

DETAILED DESCRIPTION OF THE DRAWINGS

An example of anode for cathodic protection in form of composite strip, as shown in Fig. 1, is obtained by integral continuous juxtaposition of a conductive element 10 consisting of an activated anode mesh (100) to an insulating polymer element (200) along their whole length; the juxtaposition of the two elements is well visible in Fig. 1A, showing a cross-section view. As it is shown in the top-view of Fig. 1B, the insulating polymer element (200) is equipped with suitable holes (201) of different diameter, in order to diminish the anode mesh blinding effect; Fig. 1C is a 15 top-view of the composite strip as seen from the insulating polymer element (200) side, across whose holes the activated anode mesh (100) is visible.

Fig. 2 shows another embodiment of anode for cathodic protection in form of composite strip, analogous to the one of Fig. 1 but with a different hole arrangement; Fig. 2A shows the insulating polymer element (200) equipped with 20 holes (201) alone, according to a top-view, analogously to figure 1B, while Fig. 2B shows a top-view of the composite strip as seen from the insulating polymer element (200) side, across whose holes the activated anode mesh (100) is visible, analogously to Fig. 1C.

Fig. 3 shows another embodiment of insulating polymer element for composite strip anode; in particular, Fig. 3A is a top-view of an insulating polymer element 25 consisting of a foldable structure, and Fig 3B is the corresponding cross-section view. The insulating element (200) comprises a polymer strip equipped with suitable holes (201) and an assembly of insulating ribbons (210), optionally knurled and provided with a coloured or luminescent pigmentation, integral with 30 the polymer strip and fixed to a rigid edge (220) in a mutually parallel arrangement. On said rigid edge (220) fastening means are arranged, for instance consisting of a multiplicity of push buttons (221) suitable for cooperating with a multiplicity of seats (222) upon folding the insulating element along its longitudinal axis (300) after insertion of the activated element (not shown). This embodiment can have

the advantage of allowing the continuous fixing of the activated element to the insulating polymer element by aid of a simple mechanical assemblage operation. The use of knurled ribbons can contribute keeping the anode in position during the concrete casting. The ribbon pigmentation as described can help reducing the 5 costs by allowing an easier and safer positioning without having to resort to the pigmentation of the whole insulating element.

Fig. 4 is another embodiment of anode for cathodic protection in form of composite strip, shown in a cross-section in analogy with Fig. 1A. Also in this case, the anode is obtained by integral continuous juxtaposition of a conductive element consisting 10 of an activated anode mesh (100) to an insulating polymer element (200) along their whole length; additionally, the insulating polymer element (200) is provided with concave parts (202) suitable for matching the profile of the reinforcement bars of an armed concrete structure.

Fig. 5 shows a cross-section view of a different embodiment of anode for cathodic 15 protection in form of composite strip; in this case, the insulating polymer element (200) consists of a pair of rails in whose interior the activated anode mesh (100) is inserted.

Although a number of particular embodiments were illustrated, a person of skill in 20 the art will appreciate the possibility of introducing changes to such embodiments or to conceive different embodiments without departing from the scopes of the invention.

For instance, while anodes comprising polymer elements equipped with circular holes were depicted in the drawings, other examples may contemplate polymer 25 elements having holes of different shapes, or polymer elements in form of mesh. In the drawings there is also depicted by way of example an insulating polymer element consisting of a foldable structure equipped with a series of knurled ribbons and with fastening means for restraining the same in the folded position consisting of push buttons; in other embodiments, an insulating polymer element can consist of a foldable structure of different geometry or having different, 30 optionally removable fastening means for restraining the same in the folded position.

In the drawings there is also depicted by way of example an anode comprising a polymer element provided with equally spaced concave parts; in other examples, the anode comprises polymer elements provided with concave parts with a

different spacing, for instance in order to better adapt to particular reinforcement cage geometries.

The previous description shall not be intended as limiting the invention, which may be used according to different embodiments without departing from the scopes

5 thereof, and whose extent is solely defined by the appended claims.

Throughout the description and claims of the present application, the term "comprise" and variations thereof such as "comprising" and "comprises" are not intended to exclude the presence of other elements or additives.

The discussion of documents, acts, materials, devices, articles and the like is
10 included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention before the priority date of each claim of this application.

CLAIMS:

1. An anode for cathodic protection in form of a prefabricated composite strip comprising a conductive element coupled to an insulating polymer element continuously integral therewith, said conductive element comprising a metal substrate provided with a superficial catalytic coating, wherein said insulating polymer element is equipped with a multiplicity of concave parts for matching the profile of a multiplicity of reinforcement bars of an armed concrete structure.
2. The anode according to claim 1, wherein said insulating polymer element is coloured or luminescent.
3. The anode according to claim 1 or 2, wherein said insulating polymer element is magnetic.

1/4

Fig. 1A

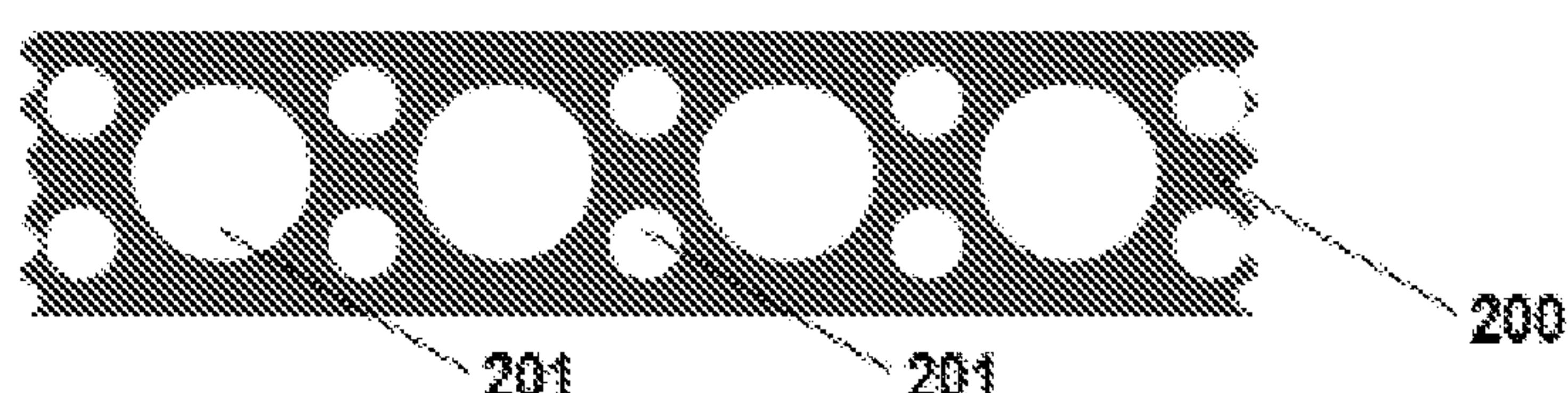


Fig. 1B

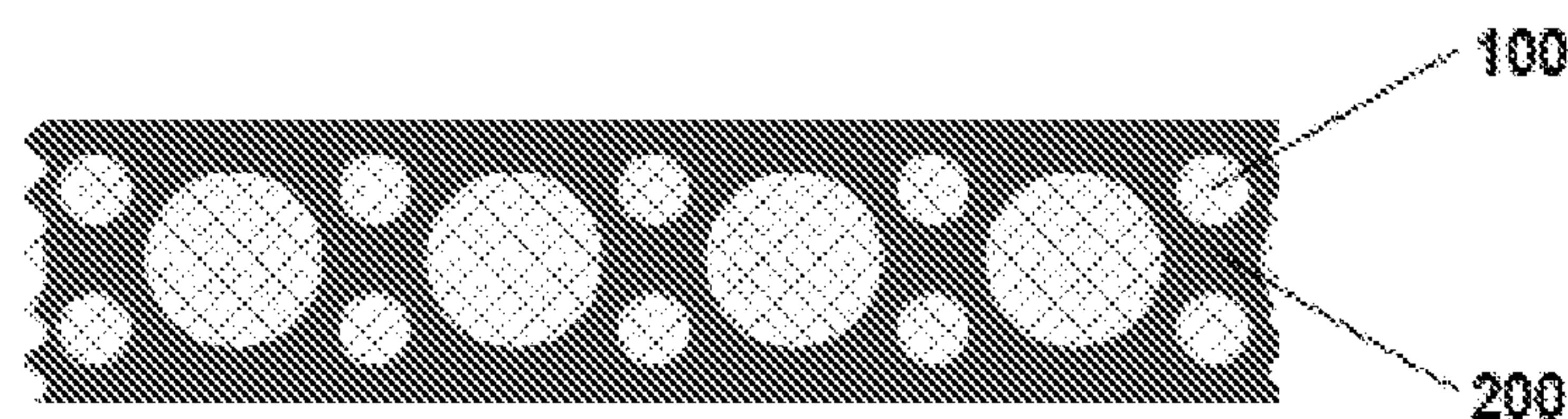


Fig. 1C

2/4

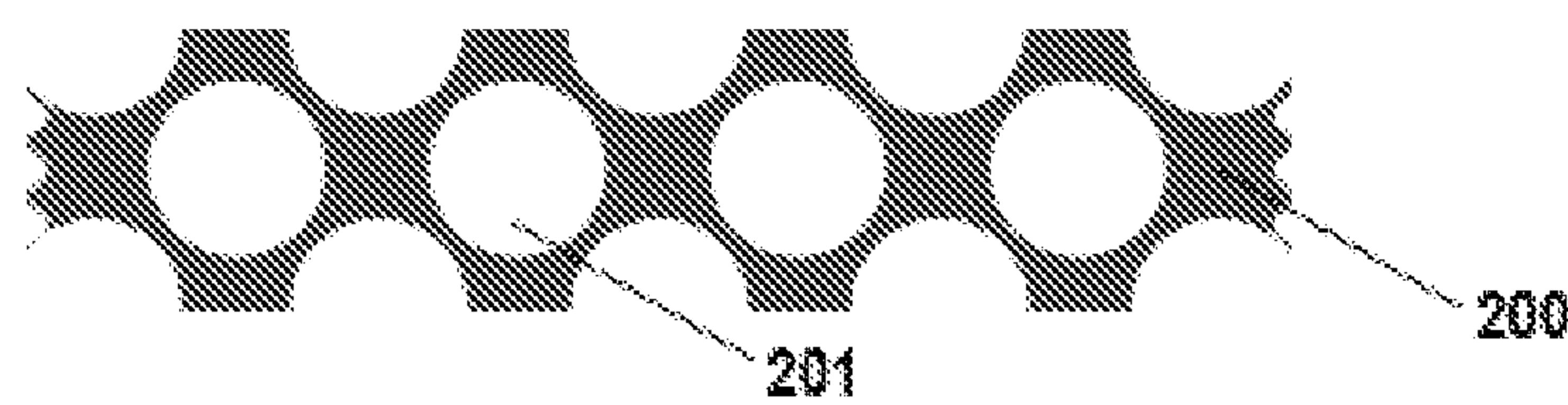


Fig. 2A

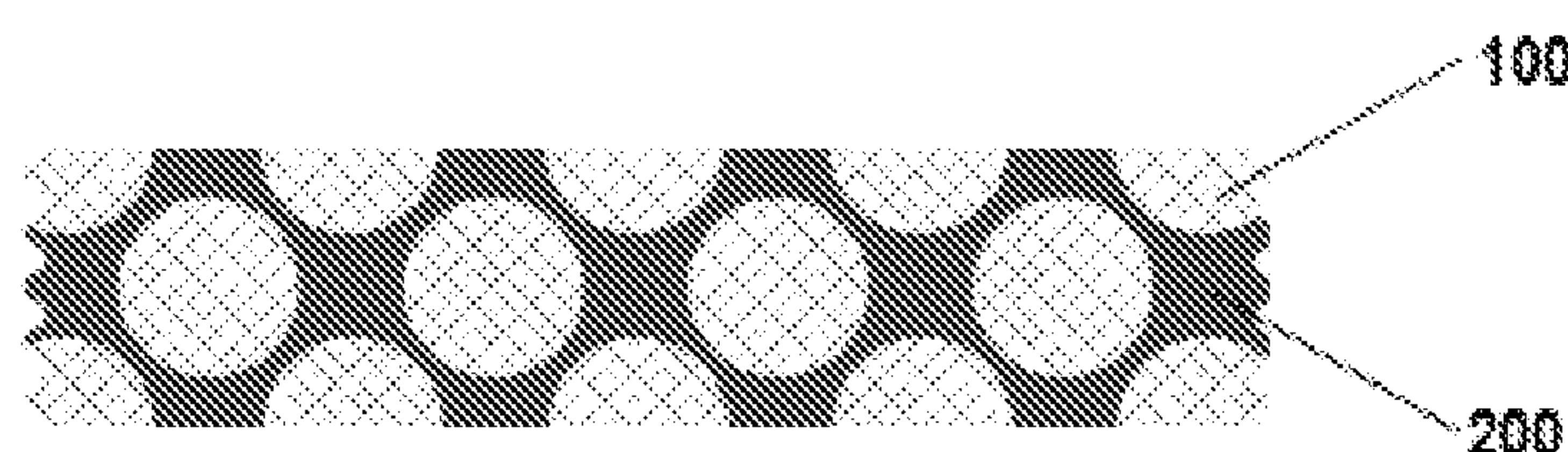


Fig. 2B

3/4

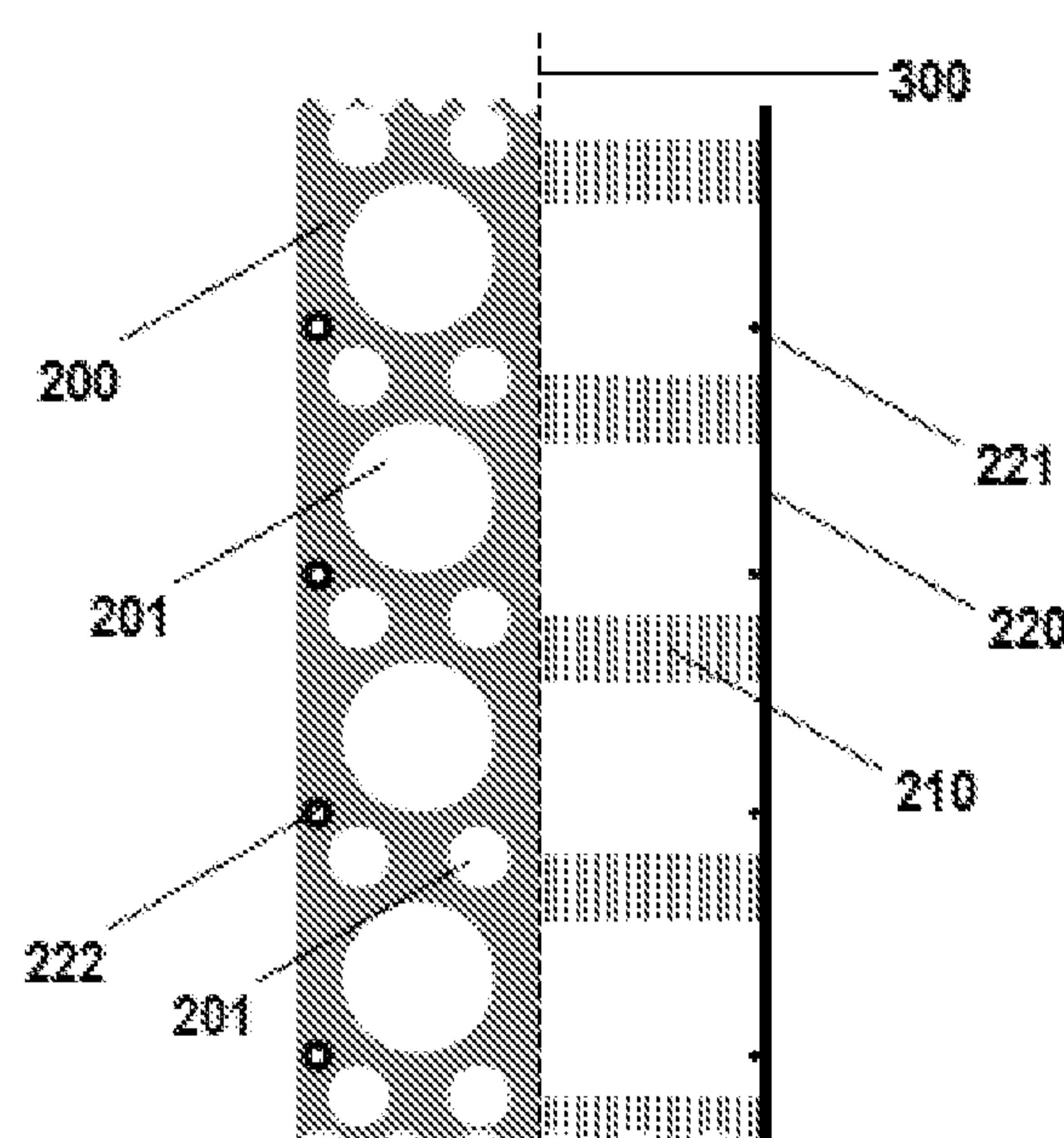


Fig. 3A

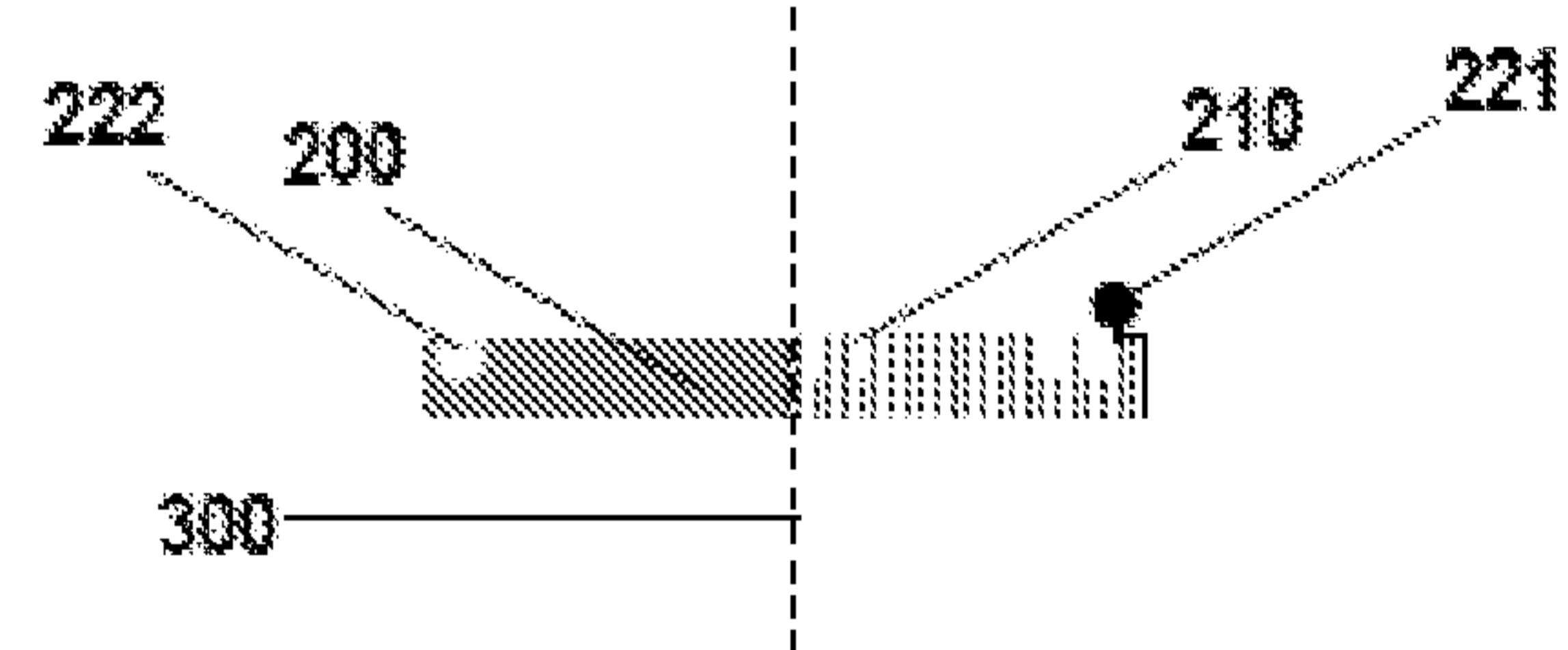


Fig. 3B

4/4

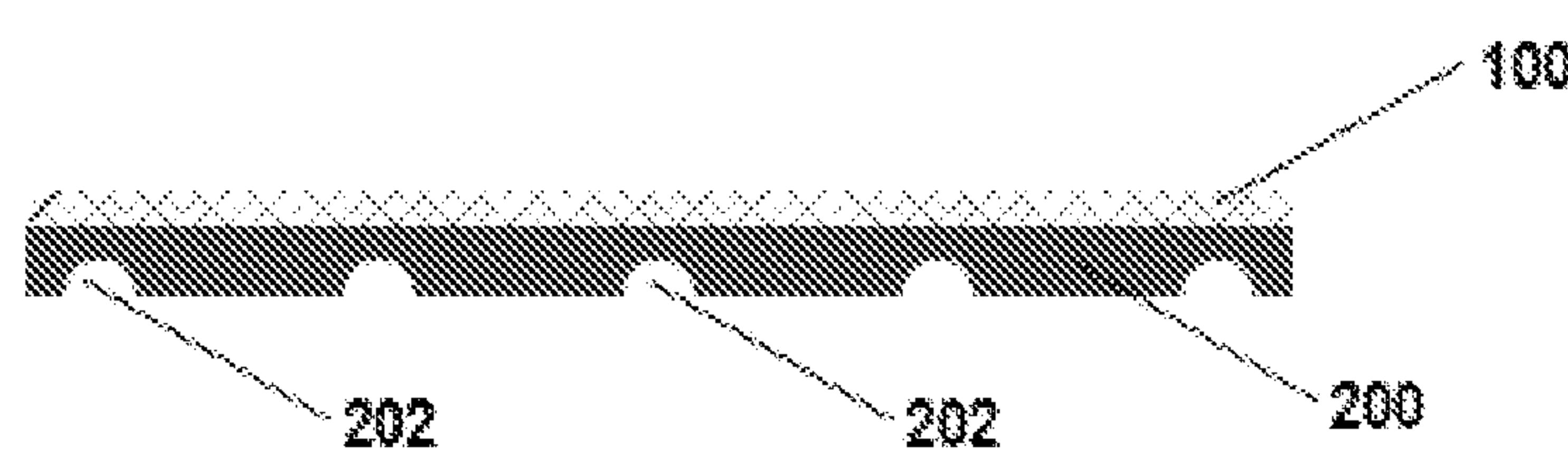


Fig. 4

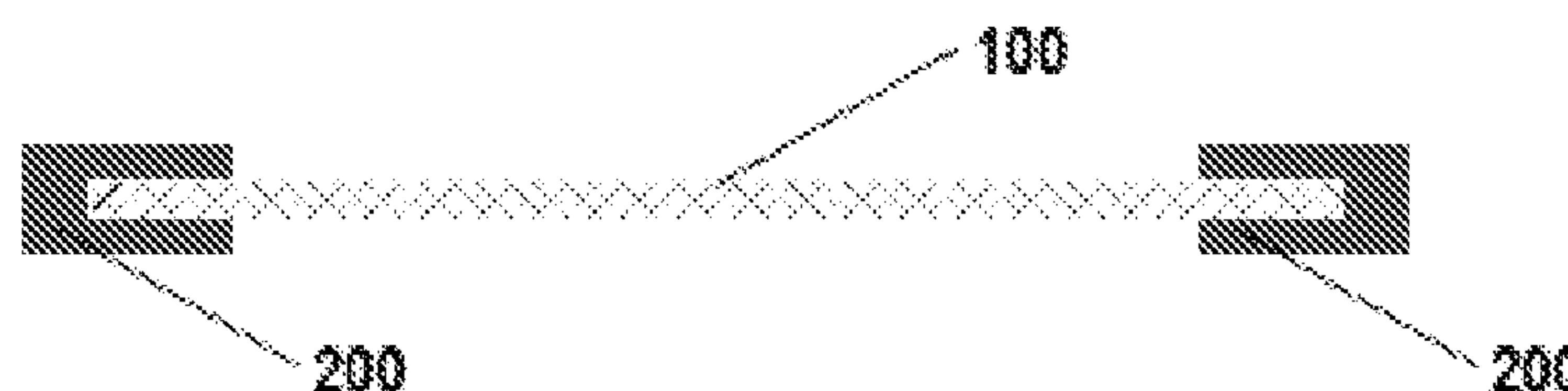


Fig. 5