19485 A1 |00 001 0 0 00O O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

15 December 2005 (15.12.2005)

(10) International Publication Number

WO 2005/119485 A1l

(51) International Patent Classification’: GOG6F 15/16,
15/173
(21) International Application Number:
PCT/US2005/019037

(22) International Filing Date: 31 May 2005 (31.05.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/575,658
11/139,090

29 May 2004 (29.05.2004)
27 May 2005 (27.05.2005)

Us
UsS

(71) Applicant (for all designated States except US): IRON-
PORT SYSTEMS, INC. [US/US]; 1100 Grundy Lane,
Suite 100, San Bruno, CA 94066 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SLATER, Charles,
S. [US/US]; 1119 Timberpine Court, Sunnyvale, CA
94086 (US). CLEGG, Paul, J. [US/US]; 5005 Palmetto
Avenue #56, Pacifica, CA 94044 (US). EVANS, Brennan,
H. [US/US]; 337 Claredon Road, Burlingame, CA 94010
(US). SCHLAMPP, Peter [US/US]; 350 Alabama Street,
#19, San Francisco, CA 94110 (US).

(74) Agent: HOLMES, Craig, G.; Hickman Palermo Truong
& Becker, 2055 Gateway Place, Suite 550, San Jose, CA

95110, (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR MAIL FLOW MONITORING

w={ (57) Abstract: An approach for monitoring electronic messages received at a server is disclosed. Message information for a plurality
1, of electronic messages received at the server is determined and stored in a queue. Based on the queue, aggregate information is
& generated for a particular network address of a plurality of network addresses. The aggregate information is generated for each time
& interval of a plurality of time intervals and displayed for the plurality of time intervals. In some implementations, input from a user
is received, and based on the input, a modification is made regarding how future electronic messages from the particular network
address are handled by the server. In some implementations, combined aggregate information is generated for two or more network
addresses and then displayed. In some implementations, aggregate policy information indicating which policies have been applied
to the electronic messages is generated and displayed for the time intervals.

=

WO 2005/119485 PCT/US2005/019037

METHOD AND APPARATUS FOR MAIL FLOW MONITORING

PRIORITY CLAIM AND RELATED APPLICATIONS

[0001] This application claims domestic priority under 35 U.S.C. §119(e) from prior
U.S. provisional application Ser. No. 60/575,658, entitled “PROVIDING TEMPORARY
ACCESS TO A NETWORK DEVICE, USING DESTINATION DOMAIN-BASED
BOUNCE PROFILES, MONITORING THE FLOW OF MESSAGES FROM
SENDERS, AND CONTROLLING THE FLOW OF MESSGES FROM SENDERS,”
filed May 29, 2004, naming Paul J. Clegg, Charlie S. Slater, R. Brian Harrison, Lonhyn
Jasinskyj, Ben Cottrell, Eric Huss, Craig Sprosts, Krishna Srinivasan, Peter Schlampp,
Shun Chen, Robert Brahms, Daniel Quinlan, and Brennan H. Evans as inventors, the
entire disclosure of which is hereby incorporated by reference for all purposes as if fully
set forth herein.

[0002] This application is related to: (1) co-pending non-provisional application

Ser. No. 10/cce,ccc (Attorney Docket No 60063-0055), filed concurrently with the
present application, entitled “MANAGING CONNECTIONS AND MESSAGES AT A
SERVER BY ASSOCIATING DIFFERENT ACTIONS FOR BOTH DIFFERENT
SENDERS AND DIFFERENT RECIPIENTS,” naming Paul J. Clegg, Eric Huss, Craig
Sprosts, Shun Chen, Robert Brahms, and Daniel Quinlan as inventors, and (2) co-pending
non-provisional application Ser. No. 10/ddd,ddd (Attorney Docket No. 60063-0053), filed
concurrently with the present application, entitled “MANAGING CONNECTIONS,
MESSAGES, AND DIRECTORY HARVEST ATTACKS AT A SERVER,” naming
Paul J. Clegg, Eric Huss, Craig Sprosts, Krishna Srinivasan, Shun Chen, Robert Brahms,

and Daniel Quinlan as inventors.

FIELD OF THE INVENTION
[0003] The present invention generally relates to processing electronic messages, and
more specifically, to monitoring the flow of electronic messages from senders to a server

that processes electronic messages.

BACKGROUND
[0004] The approaches described in this section are approaches that could be pursued,
but not necessarily approaches that have been previously conceived or pursued.

Therefore, unless otherwise indicated, the approaches described in this section are not

-1-

WO 2005/119485 PCT/US2005/019037

prior art to the claims in this application and are not admitted to be prior art by inclusion
in this section.

[0005] Mail transfer agents (MTA’s) typically receive a large number of email
messages, anywhere from hundreds of messages per hour to hundreds of thousands of
messages per hour. Because of the increasing problems of the tremendous volume of
unsolicited commercial email (i.e., spam) and from a significant percentage of email
messages being infected with viruses, administrators of MTA’s would like to be able to
monitor the flow of email messages to the MTA’s in an easy and efficient manner in
order to take steps to deal with spam and virus infected email messages.

[0006] However, traditional mail flow monitoring approaches only allow the
administrators to see the overall total flow of email messages into the MTA, and these
approaches do not allow the administrators to distinguish between email messages that
the administrators want to let into the system served by the MTA (e.g., legitimate email
messages from the company’s partners and customers) from email messages that the
administrators want to avoid, such as spam that often comprises the majority of messages
being sent to the MTA or virus infected email messages that can cause significant harm to
a company’s electronic files and systems.

[0007] Furthermore, traditional mail flow monitoring approaches require that
administrators analyze old, historical mail flow information, which is inconvenient and
only allows the administrators to see what has happened in the past. These approaches
restrict an administrator’s ability to respond to immediate problems.

[0008] In addition, such traditional mail flow monitoring approaches require
considerable skill and effort by administrators to process the historical data and analyze
the aggregated results to determine whether any trends are present that would be of
interest, such as identifying spikes in the volume of incoming email messages that may be
indicative of spam or a virus outbreak. Even if administrators are able to successfully
analyze the historical data, the administrators still must configure the MTA’s to change
the manner in which future messages will be processed, such as by manually modifying a
configuration file, which can be cumbersome and inconvenient.

[0009] Based on the foregoing, it is desirable to provide improved techniques for
monitoring of the flow of email messages to an MTA that can enable the administrator of
the MTA to distinguish between desirable and undesirable flow of email messages.

Furthermore, there is a need for an approach that allows the flow of email messages to be

WO 2005/119485 PCT/US2005/019037

monitored based on more up to date information and that allows an administrator to easily

identify patterns and specify actions to be taken based on that information.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present invention is depicted by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

[0011] FIG. 1 is a block diagram that depicts a high level overview of a system for
monitoring email messages received by a server, according to an embodiment;

[0012] FIG. 2 is a flow diagram that depicts an approach for monitoring email
messages received by a server, according to an embodiment;

[0013] FIG. 3 is a block diagram depicting an example of a graphical user interface
for use in monitoring email messages, according to an embodiment;

[0014] FIG. 4 is a block diagram depicting another example of a graphical user
interface for use in monitoring email messages, according to an embodiment; and
[0015] FIG. 5 is a block diagram that depicts a computer system upon which

embodiments of the invention may be implemented.

DETAILED DESCRIPTION
[0016] A method and apparatus for monitoring email messages receive by a server is
described. In the following description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the art that the present invention
may be practiced without these specific details. In other instances, well-known structures
and devices are depicted in block diagram form in order to avoid unnecessarily obscuring
the present invention.
[0017] In the following description, the various functions shall be discussed under
topic headings that appear in the following order:

L STRUCTURAL AND FUNCTIONAL OVERVIEW

A. Introduction

B. Structural Overview of Monitoring Email Messages
C. Functional Overview of Monitoring Email Messages

II. COLLECTING AND AGGREGATING MESSAGE INFORMATION
A. Using a Queue to Store Message Information

3-

WO 2005/119485 PCT/US2005/019037

B. Types of Counters for Collecting Message Information
C. Aggregating Message Information for Multiple Network Addresses
D. Aggregating Message Information for Different Time Intervals

III. DISPLAYING AND USING MESSAGE INFORMATION

A. Generating Message Information Displays

B. Message Information Display Examples

C. Identifying Patterns in Message Information Displays
D. Taking Actions Based on Message Information Displays
E. Alerts and Alarms Based on Message Information

IV. IMPLEMENTATION MECHANISMS AND EXAMPLES
Time Interval Resolution

Intervals and Time Boundaries

Aggregating Reporting Intervals

Managing Counters

Recording Counters

Command Line Interface

Data Structures and Related Definitions

On-Disk Database and Report Generation

Host Access Table (HAT) and Recipient Access Table (RAT)
Managing Information Relating to Electronic Messages
Determining a Reputation Score for a Sender

Controlling Mail Injection

2 FrREC-"@ma®EOO0w R

Controlling the Number of Connections Made to a Recipient
Domain

N. Limiting Directory Harvest Attacks

0. Example System Performance Characteristics
V. HARDWARE OVERVIEW

A. General Hardware Overview

B. Hardware Examples

WO 2005/119485 PCT/US2005/019037

VI. EXTENSIONS AND ALTERNATIVES

L STRUCTURAL AND FUNCTIONAL OVERVIEW

A. Introduction

[0018] Techniques are provided for gathering data about the flow of email messages
into a system through a server, such as an MTA, and displaying the data to allow a user to
identify patterns in the message flows and thereby take actions based on the identified
patterns. For example, as email messages are received by the MTA, message information
that includes the different network addresses from which the email messages are received
at the MTA can be determined. For each network address, an object in memory is used to
store message information for a set of time intervals of a specified time period (e.g., in six
10 second intervals for the current minute).

[0019] The impact on the processing and delivery of email messages by the MTA is
minimized because only the current interval of the current time period (e.g., the current
10 second interval of the current minute) is updated as messages are received. After the
end of each time period, the data for the intervals of the older time periods (e.g., the older
minutes) are aggregated by a separate process and written to disk. Based on the message
information that has been written to disk by time period (e.g., for each minute), aggregate
information for a network address is generated for longer time periods, such as by hour
and by day. Note that use of a minute as the specified time period having 10 second
intervals is only an example, and any time period having two or more intervals can be
used.

[0020] The number of messages being received at the MTA from a particular network
address, such as an Internet protocol (IP) address, can be tracked and displayed on a
graph that is part of a graphical user interface (GUI) presented to a user. The message
information displayed to the user can further be aggregated over a group of network
addresses, such as a range of IP addresses or a domain name.

[0021] The user, such as administrator of the mail server, can inspect the graph to
identify any patterns or abnormalities, such as a spike in the incoming flow of email
messages from a particular network address. Such an unusual spike in the number of
messages being received could indicate that the unusual influx of email messages are

unsolicited commercial emails, such as spam, that the user would like to limit. Asa

-5-

WO 2005/119485 PCT/US2005/019037

result, the administrator would likely determine that some action should be taken to
minimize the impact from the influx of potential spam, such as by throttling the rate at
which email messages from the particular network address are accepted by the MTA.
[0022] The administrator can take action by clicking on the appropriate button in the
GUI, such as a “BLACKLIST” button or a “THROTTLE” button, so that selection of one
of these buttons causes a modification to the MTA’s configuration so that the network
address is either added to a blacklist or added to a list of network addresses that are
subject to being injection rate limited, respectively. Similarly, if an unusual mail flow
pattern is determined to be desirable, such as a spike being caused at a large company
when an outside contractor is sending all of the company’s employees copies of a press
release that the employees should receive, the administrator can click on a
“WHITELIST” button to modify the MTA’s configuration to allow all such messages to
be accepted, thereby avoiding such messages from inadvertently being treated as spam by
a later applied spam policy.

[0023] In addition, approaches are described that track the application of policies to
the flow of messages, such as a spam policy, a virus policy, or more generally any type of
action taken for one or more network addresses and display the results plus allow for
generation of standard or custom reports. For example, the mail flow monitoring system
can present the user with a graphical representation of the mail flow over time for one or
more network addresses or for all mail flow into the system, along with a classification of
how many of the messages were identified as belonging to one or more categories, such
as spam, potentially virus infected, blacklisted, whitelisted, greylisted (e.g., subject to
injection control, such as throttling to limit the rate at which email messages are accepted
by the MTA), or other categories of treatment or lack thereof.

[0024] Mail flow monitoring functions can track a number of different message
attributes or characteristics. For example, detailed information can be provided about
incoming messages (e.g., the number of messages received or the number of recipients
identified in email messages from an IP address), outgoing messages (€.g., the number of
messages sent to a particular domain), and processing statistics (e.g., the percentage of
messages subject to one or more policies). Other sources can be accessed for data on the
email messages, such as the SenderBase service provided by IronPort Systems, Inc., of
San Bruno, California, that supplies network owner names and global information for a

sender profile. Message information can be aggregated and tabular results presented by

WO 2005/119485 PCT/US2005/019037

grouping data on one or more network addresses, domains, network owners, or any other
sender identifiers, along with time series data by the same groupings.

[0025] Mail flow monitoring can be implemented in a hierarchical fashion, such as at
a low level that interacts with a data store or real time data inputs, at a middle level that
composes tables and aggregates, and at a high level interface that finalizes the data for

presentation to the user, such as through a graphical user interface.

B. Structural Overview of Monitoring Email Messages

[0026] FIG. 1 is a block diagram that depicts a high level overview of a system for
monitoring email messages received by a server, according to an embodiment. For
simplicity, FIG. 1 only depicts a limited number of senders of email messages and
recipients of those email messages, although in practice any number of senders and
recipients can accommodated by the approaches described herein.

[0027] FIG. 1 depicts a server 100 that is communicatively coupled to a network 170
that is also communicatively coupled to domains 192, 194, 198. For example, server 100
can be implemented as an MTA connected to the Internet to which a number of domains
are also connected. For simplicity, FIG. 1 depicts only three domains, but in practice
there can be any number of domains communicatively coupled to network 170.

[0028] As shown in FIG. 1, domain 192 includes a sender A 192a and a sender B
192b, domain 194 includes sender C 194c, and domain 198 includes sender D 198d.
However, in practice, each domain can include any number of senders.

[0029] Server 100 is communicatively coupled to a display 130 that is used to present
information to an administrator 140, such as through a browser-based graphical user
interface (GUI). Server 100 is also communicatively coupled to a database 120 that can
be used to store information generated as part of a mail flow monitoring process. Finally,
server 100 is communicatively coupled to a domain 150 that includes recipients 150a-
150c that are identified as a recipient A 150a, a recipient B 150D, and a recipient C 150c.
[0030] Server 100 includes a monitor 110, a queue 112, an aggregator 114, a graph
module 118, and a set of counters 116a-116d that are identified as counters A 116a,
counters B 116b, counters C 116¢, and counters D 116d.

[0031] Monitor 110 determines connection information for incoming connections to
server 100 and message information for email messages received by server 100 from the
senders of the email messages. The connection information and message information is

stored in a queue 112 that can be subsequently processed by aggregator 114 to aggregate

7-

WO 2005/119485 PCT/US2005/019037

the connection information for connections to server 100 from different senders and to
aggregate the message information for the email messages from different servers for
recipients serviced by server 100. After the message information for an email message is
stored in queue 112, the processing of the email message is performed, and depending on
how the email message is processed, the email message may or may not be delivered to
the intended recipient in domain 150, such as recipient A 150a, recipient B 150b, or
recipient C 150c.

[0032] By having monitor 110 store the message information in queue 112 for
subsequent processing by aggregator 114, the impact of the monitoring process on the
handling of incoming connections and the subsequent flow and processing of email
messages by server 100 is minimized. The analysis of the information stored in

queue 112 by aggregator 114 may lag the receipt of email messages by server 100 by a
relatively short time, such as a few seconds or a couple of minutes, so that the aggregate
information produced by aggregator 114 is generated substantially in real time with the
receipt of email messages by server 100.

[0033] Queue 112 can be implemented in any of a number of ways. For example,
server 100 can create a “mailFlowHost” object for each IP address and store the objects in
an in-memory dictionary. The key to the dictionary is a tuple containing the remote IP
address, local IP address, remote port, and local port. For a current time period, such as
the current minute, each mailFlowHost object records message information in 10 second
intervals. An in-memory dictionary, referred to as the “current dictionary,” stores the
information for the current interval. At the end of each 10 second interval, the “old”
dictionaries are stored in an interval table, which are represented in FIG. 1 by counters A
116a, counters B 116b, counters C 116¢, and counters D 116d.

[0034] As message information is obtained from the incoming email messages,
monitor 110 gets the mailFlowHost object for the current interval from the current
dictionary until the current time minute is over, after which monitor 110 creates new
mailFlowHost objects for the next minute, with the current dictionary being used for the
current 10 second interval of the next minute in the same fashion. Data from the
dictionaries corresponding to old minutes are aggregated and written to disk, such as
database 120, and from there the minute data is rolled up into longer time periods, such as
hours and days.

[0035] The mail flow monitoring approach described herein can track one or more

statistics for each sender, such as the number of messages received by server 100 from the

-8-

WO 2005/119485 PCT/US2005/019037

sender, the number of recipients for which email messages are received from the sender,
the amount of information (e.g., the number of kB) received from the sender, and the
number of connections received from the sender. The mail flow monitoring approach
described herein can also track the later application of one or more policies to the email
messages from the sender, such as how many are blacklisted, whitelisted, or greylisted, or
the percentage of messages received from the sender in a particular time period that are
determined to be spam or that fail a virus check.

[0036] At the end of periodic intervals, such as at the end of every minute, the
information in counters A 116a, counters B 116b, counters C 116¢, and counters D 116d
are aggregated and stored by aggregator 114 in database 120. Then counters A 116a,
counters B 116b, counters C 116¢, and counters D 116d can be reset to zero or replaced
with new sets of counters to count for the next time interval, such as the next minute.
[0037] Graph module 118 accesses the data for a set of time intervals that is stored in
database 120 and generates one or more graphs or plots to be presented through display
130 so that administrator 140 can review and analyze the data and then specify actions, as
appropriate, for the handling of future email messages from a particular sender.

[0038] Data stored in database 120 can also be aggregated in any of a number of
ways. For example, the data in database 120 can be aggregated over longer time periods,
such as by each hour for a day, and presented to administrator 140 by graph module 118
through display 130. Data stored in database 120 can also be aggregated for multiple
senders, such as by combining data for sender A 192a and sender B 192b, and then
displaying the compiled data on all email received from domain 192 to administrator 140
through display 130.

[0039] Server 100 can include other modules, components, and functions than those
described with respect to FIG. 1 herein. For example, server 100 can include a spam
policy module and a virus policy module for applying spam and virus policies,
respectively. Also, the individual components of server 100 as depicted in FIG. 1 can be
combined with each other, such as by combining monitor 110 and aggregator 114, or the
individual components can be implemented as several different components, such as by
implementing aggregator 114 as a time aggregator for aggregating message information
over time and a sender aggregator for aggregating message information for two or more

senders.

WO 2005/119485 PCT/US2005/019037

C. Functional Overview of Monitoring Email Messages

[0040] FIG. 2 is a flow diagram that depicts an approach for monitoring email
messages received by a server, according to an embodiment. For explanation purposes,
FIG. 2 is described with reference to the system overview of FIG. 1, although the
approach of FIG. 2 is not limited to the particular system depicted in FIG. 1. Also, FIG. 2
is described with reference to handling email messages, although any type of electronic
message can be used with the approach depicted in FIG. 2.

[0041] In block 210, email is received at a server. For example, an email message
from sender C 194c and addressed to recipient C 150c is received by server 100.

[0042] In block 214, the network address for the sender of the email plus other email
attributes are identified. For example, monitor 110 identifies the IP address for sender

C 194c based on the header for the received email message. Other information about the
email message can also be determined, such as the size of the email and how many
recipients at domain 150 are included in the “TO” field of the email.

[0043] In block 220, a determination is made as to whether the current minute has
expired. For example, a host object can be used for each IP address by server 100 to
collect message information. An in-memory dictionary, represented as queue 112 in FIG.
1, is used for the current host objects to track message information. The key to the
dictionary is a tuple containing the remote IP address of the sender, the local IP address of
server 100, the remote port for the sender, and the local port of server 100 for the
connection.

[0044] Message information is tracked for a current time period, such as the current
minute, and the current time period is broken down into a number of smaller intervals,
such as 10 second intervals for the current minute. A dictionary for each 10 second
interval is stored in an interval table, with the dictionary for the current 10 second interval
referred to as the “current dictionary” and the dictionaries for past second intervals
referred to as “old dictionaries.”

[0045] If in block 220, the current minute period has expired, the process continues to
block 244, but if the current minute period has not expired, the process continues to
block 222.

[0046] In block 222, the host object for the current minute is retrieved. For example,

the current dictionary that corresponds to the current 10 second interval of the current

-10-

WO 2005/119485 PCT/US2005/019037

minute period and that has the host object for the network address of the sender is
retrieved. The process continues to block 230.

[0047] In block 224, a host object for the new minute period is created. For example,
if the current time indicates that the current minute period corresponding to the current
dictionary has elapsed (i.e., the time indicates that the next minute has begun), a new host
object and corresponding dictionaries are created to track message information for IP
addresses for the next minute.

[0048] From block 224, the process continues to block 228, where the flush process is
triggered that begins with block 240. For example, if a new host object is created in
block 224, that signifies that a new minute period has begun, which allows the message
information stored in the old dictionaries for the old minute or minutes to be aggregated
in a “flush” process and then written to disk, as described below with respect to block
240. From block 228, the process continues to block 230.

[0049] In block 230, the message information for the email in stored in the host
object. For example, monitor 110 can store the IP address and other attributes of the
email message that are determined in block 214 in the current dictionary (represented by
queue 112) for the current 10 second interval of the current minute.

[0050] From block 230, the processing of the email is completed in block 234. For
example, server 100 can apply one or more policies, such as a spam policy, a virus policy,
or any other type of policy to the email message. Depending on the outcome of applying
the applicable policies, server 100 may either delete the email, quarantine the email,
bounce the email, or forward the email to recipient C 150c. Depending on the
configuration of server 100, the results of applying one or more of those policies and the
final disposition of the email can also be tracked by server 100 through the use of a
corresponding counter.

[0051] In block 228, the flush process is triggered. For example, the flush process is
triggered after a minute time period has passed, thereby enabling the message information
stored in the old dictionaries for that prior minute period (e.g., the old minute) to be
aggregated. The flush process begins with block 240. .,

[0052] Tn block 240, the oldest minute period is found. For example, when the flush
process was triggered in block 228, there may be data stored in the old dictionaries for
more than just one past minute period, and therefore, the oldest minute is selected to

process first.

-11-

WO 2005/119485 PCT/US2005/019037

[0053] In block 244, the data for the minute period is aggregated. For example, the
old dictionaries for each 10 second interval for the old minute period are used to form a
minute summary for the old minute period for each host object. Note that because only
old dictionaries are flushed and because only the current dictionary for the current
interval is updated, a race condition does not exist and therefore there is no need for
locking. Also, by triggering the flush process by the creation of new host objects, the
need to use a timeout is eliminated.

[0054] In block 248, the minute data is written to disk. For example, the minute
summaries generated in block 244 are written to an on-disk queue of files, such as on
database 120. As a specific example, the data from each host object can be copied to a
fixed-length binary record in an on-disk file, with one file created for each minute.

[0055] In block 250, a determination is made whether there are more old minutes to
flush. For example, in block 240, there could have been two or more old minutes, so the
oldest minute was selected, but now the next oldest minute is to be processed.

[0056] If in block 250, there are no more old minutes to flush, the process continues
to block 254, which indicates that the flush is complete. However, if in block 250 there
are additional old minutes to flush, the process returns to block 240 where the next oldest
minute period is found and the flushing process begins again.

[0057] In block 260, the rollup process begins. For example, the rollup process takes
the minute summaries written to disk in block 248 and aggregates the minute information
into longer periods. The rollup process can be triggered in a number of ways, including
but not limited to, the expiration of a timeout or by a request. For example, a time
counter can be used to implement a timeout so that when the timeout expires, a rollup is
performed, thereby allowing for rollups to be made at periodic intervals (e.g., to rollup the
data every hour or every day). As another example, the rollup can be initiated in response
to a request, such as a query to database 120 for message information that is stored in the
minute summary form but has not been aggregated for longer time periods.

[0058] In block 264, the minute files are aggregated to an appropriate hour directory.
For example, at the expiration of an hourly timeout, the minute files for the past hour can
be aggregated and stored in a directory for the corresponding hour.

[0059] In block 268, the hour directories are aggregated to an appropriate day
directory. For example, at the expiration of a daily timeout, the hour directories for the

past day can be aggregated and stored in a directory for the corresponding day. Although

-12-

WO 2005/119485 PCT/US2005/019037

not illustrated in FIG. 2, other rollups may be performed, such as for a 12 hour period, by
the half hour, or by the week, month, quarter, or year.

[0060] In block 270, aggregate information is extracted and displayed to a user. For
example, graph module 118 can receive a request from administrator 140 through a GUI
interface on display 130 for historical mail flow information for a particular IP address.
In response to the request, graph module 118 accesses database 120 to retrieve the
requested information for display to administrator 140.

[0061] As a specific example, the number of emails received each minute for the last
hour can be determined based on the data stored in database 120, and the data is then
presented to administrator 140 using display 130. The user can be provided with a
graphical display through a GUI of the number of emails received per minute over the
course of the last hour. The system can provide administrator 140 with input options for
selecting the sender or IP address of interest, the information to be displayed, and the time
period over which the information is desired. Note that the GUI can include options for
allowing administrator 140 to specify a group of two or more senders for which data is to
be displayed, such as the senders associated with a primary domain, a network owner, a
range of network addresses, a subnet, a fully qualified domain name (FQDN), a classless
inter-domain routing (CIDR) block, an organization, a reputation or reputation score, a
subdomain, or any other desired identifier that can be shared by two or more senders. In
addition, multiple groupings of senders can be combined and displayed.

[0062] In block 274, input from the user is received. For example, along with
displaying the number of emails received from sender C 194c over the last hour, the
graphical display can include one or more objects that are each associated with one or
more actions, such as a “blacklist” button, a “whitelist” button, and a “greylist” button
next to the graphical display. By selecting a desired button, administrator 140 can specify
how future emails from sender C 194c are to be handled, such as by selecting the
“placklist” button to prevent delivery of future emails from sender C 194c.

[0063] In block 280, based on the input received in block 234, a modification is made
to how future emails from the network address will be handled by the server. For
example, if the user in block 234 selected the “blacklist” button to specify that sender C
194c¢ should be blacklisted, the IP address for sender C 194c is added to the blacklist
being used by server 100. As aresult, future emails from sender C 194¢ would not be
delivered and instead would be deleted or bounced back, depending on how server 100 is

configured to use the blacklist.

13-

WO 2005/119485 PCT/US2005/019037

1L COLLECTING AND AGGREGATING MESSAGE INFORMATION

[0064] Data about email messages can be collected by measuring inbound and
outbound flows of the email messages, including bytes, recipients, messages,
connections, success conditions, failure conditions, and actions taken, such as those
specified in a host access table (HHAT) and a recipient access table (RAT) and the
application of various policies, such as spam and virus policies. The HAT and RAT are
described in the implementation mechanisms below.

[0065] Typically, such measurements are collected by network address over short
time intervals (e.g., 10 second intervals). The data for the intervals are stored in memory
in dictionaries and then aggregated over a longer period (e.g., each minute) and then
stored to disk. Minute data can then be aggregated further, such as by hour or day. The
aggregated message information, whether aggregated by minute, hour, day, or some other
time period, can be used to analyze email message traffic over a desired time interval and
over multiple network addresses to represent the traffic flow. Reports can be generated
based on one or more sender identifiers, such as by the user specifying one or more
domain names, network addresses, IP addresses, subnets, ranges of IP addresses, fully
qualified domain names, any level domains, CIDR blocks or portions of CIDR blocks,
SenderBase organization ID’s, or a SenderBase reputation score. SenderBase is

described in the Implementation Mechanisms section below.

A. Using a Queue to Store Message Information

[0066] As messages are received at a server, one or more atributes of the messages
are stored in a queue so that the impact of monitoring the flow of messages at the server is
minimized. For example, as each message is received at the server, the network address,
size, and number of recipients for the message is determined and collected by an object,
such as a mailFlowHost object, for the network address. Additional messages have their
attributes stored in other objects that are part of the queue as well. The objects can be
grouped into dictionaries, and each dictionary can correspond to one time iﬁterval ina
longer time period, such as 10 second time intervals in a minute. The dictionary for the
current time interval is called the current dictionary, and the dictionaries for past time
intervals are called old dictionaries.

[0067] The dictionaries can be keyed in any suitable manner. For example, a tuple

containing the remote IP address, local IP address, remote port, and local port can be

-14-

WO 2005/119485 PCT/US2005/019037

used. An interval table is used to store the current dictionary and old dictionary. When
an email message is retrieved, the monitor 110 can retrieve the current dictionary from
interval table, and then the monitor 110 can retrieve the mailFlowHost object for the
sender’s network address from the current dictionary for updating the message
information stored therein based on the email message that has been received by the
MTA.

[0068] The determination of the message information for messages received at the
server is typically performed based on the header information of the message. The
determination of the message information is made shortly after initial receipt of the
message and before any other message processing, such as the application of a spam
detection engine or a virus scanning engine that may ultimately prevent the message from
being delivered.

[0069] Analysis of the information stored in the queue is performed by one or more
modules or threads that are part of the server, or perhaps even by another server with
access to the queue. For example, after the end of a current period, such as after the
current minute has passed, a “flush” process can be used to aggregate message
information from the old dictionaries that correspond to one or more old time periods,
such as past minutes.

[0070] The result of the flush process for a particular old minute is a summary of the
message information by network address for the old minute. The summary can be written
to an on-disk queue of files, such as writing the minute summaries to database 120. The
flush process copies the message information from each mailFlowHost object to a fixed-
length binary record in an on-disk file, with one file being used for each old minute.
[0071] Because only old dictionaries are flushed and because only the current
dictionary is updated, there is no concern over a race condition occurring and no need for
locking because the current dictionary is not used by the flush process, and the flush
process is independent of the monitoring process that stores the message information for
incoming electronic messages into the current dictionary.

[0072] Once the flush process is complete, a separate rollup process can be used to
aggregate the information stored on disk into longer time intervals. For example, the
minute summaries can be rolled up into hourly summaries and stored in a corresponding
hour directory on disk. Similarly, minute or hour data can be rolled up into daily

summaries and stored in a corresponding daily directory on disk.

-15-

WO 2005/119485 PCT/US2005/019037

[0073] Note that while the examples herein are described in terms of 10 second
intervals, minute periods, hours, and days, any desired time intervals, periods, and
multiples of the periods can be used. For example, 5 second intervals can be used by the
mailFlowHost objects for storing data in the current dictionaries, and old dictionaries can
be aggregated and stored on disk for 30 second periods that are latter rolled up to minute
periods or longer periods.

[0074] As a result of using the queue to store information on email messages as the
emails are received at the server, the mail flow monitoring process can be performed with
minimal impact on other processing and eventual delivery of the emails, while allowing a
near real-time processing of the information in the queue to allow the administrator of the
MTA to monitor mail flow information substantially in real time, with a time lag on the

order of only 90 seconds in a typical implementation.

B. Types of Counters for Collecting Message Information

[0075] Any of a number of different counters can be used for collecting message
information about the flow of email messages through the system, and the counters can be
based on any kind of sender identifier, such as a network address and other that are
described herein. For example, counters can be used to track the actions taken based on
rules in the HAT and RAT, such as a counter for the number of recipients that are blocked
from a sending IP address based on injection control or the number of connections
refused from a domain due to the maximum number of connections being exceeded. As
another example, counters can track the number of messages identified by the system as
spam, such as by the Brightmail anti-spam engine, or the number of messages determined
to be infected with a virus, such as by Sophos anti-virus engine.

[0076] In addition, counters can be established for different actions taken based on
sender identifiers. For example, one counter can track the number of messages rejected
for a CIDR block that is listed for a rule in the HAT, while another counter can track the
number of messages rejected for a specified domain name that is listed in the HAT. In
general, a counter can be used for any sender identifier listed on the left side of the HAT
and RAT and count the number of messages affected by the action or rule specified on the
right side of the HAT and RAT.

[0077] Each different type of counter can track multiple network addresses, so that a
counter tracking the total number of email messages received by the MTA includes

information for multiple, or perhaps even all, the network addresses from which the MTA

-16-

WO 2005/119485 PCT/US2005/019037

has received email messages during the time interval. Counters can be implemented as a
set of objects, such as the mailFlowHost objects described above.

[0078] In addition, counters can be grouped together in a “dictionary” for a particular
time interval. For example, if the time interval is a 10 second interval and there are five
different counters, a “current dictionary” would include all five counters. Upon
expiration of the time interval, a new current dictionary is created for the counters. After
the end a specified time period, such as after each minute has elapsed, the old dictionaries
are aggregated and written to disk, and then the old dictionaries are released. As the
message information is summarized for different time periods and written to disk,
aggregate directories can be created that aggregate the stored message information over

longer time intervals, such as for each hour or for each day, in a separate rollup process.

C. Aggregating Message Information for Multiple Network Addresses

[0079] In general, while message information is placed in the queue for each
message, and counters are used for different network addresses, counters corresponding
to multiple network addresses can be used and message information for different network
addresses can be combined to generate aggregate message information for two or more
network addresses. For example, message information can be aggregated for two or more
senders based on one or more of the following: a primary domain (described further
below), a network owner (described further below), a range of IP addresses, a subnet, a
fully qualified domain name (FQDN), a classless inter-domain routing (CIDR) block, an
organization (described further below), a reputation or reputation score, a subdomain, or
any other attribute that can be shared among two or more senders or network addresses.
[0080] As a specific example, message information can be aggregated based on the
concept of a “primary domain.” For example, yahoo.com, aol.com and honda.co.jp are
examples of primary domains that are affiliated with a particular organization, such as
Yahoo!, America Online, and Honda of Japan, respectively. By associating individual IP
addresses that connect to the system with the corresponding domain name, message
information that is collected based on network addresses can be aggregated based on the
associated primary domains that are based on some or all of the network addresses
associated with the primary domain.

[0081] As another specific example, message information can be aggregated based on
the network owners for individual network addresses based on a database that includes a

mapping of network addresses to network owners, such as the SenderBase service

-17-

WO 2005/119485 PCT/US2005/019037

provided by IronPort Systems, Inc., of San Bruno, California. For example, when a
connection is received from an IP address at the MTA, the system can issue a query to
SenderBase to obtain the SenderBase information for the IP address, such as the network
owner, SenderBase organization ID, and perhaps even a reputation score. As a result, a
network owner that has a many IP addresses that are not otherwise organized in a manner
that would allow for the IP addresses to be traced back to the network owner without the
use of such a database can have all of the network owner’s IP addresses grouped together.
Then the system can aggregate, report, and display aggregated message information for
the network owner based on some or all of the IP addresses associated with the network

owner.

D. Aggregating Message Information for Different Time Intervals

[0082] As described above, the processing of message information stored in the queue
is performed at periodic intervals, such as over one minute increments resulting in series
of one-minute snapshots of the different message attributes tracked by the counters.
However, the message information that is aggregated for the single minute snapshots can
then be further aggregated over longer periods, such as to provide hourly summaries or
daily reports. In general, any level of data, from the lowest level information from the
smallest aggregation interval to all data collected, can be reported and displayed to the

user.
II. DISPLAYING AND USING MESSAGE INFORMATION

A. Generating Message Information Displays

[0083] Message information displays can be generated to include one or more graphs
or plots of the data for a set of time intervals so that a user, such as an administrator of an
MTA, can review the data to determine what actions, if any, should be taken. For
example, block 230 of FIG. 2, displaying the aggregate information to a user, can be
performed by graph module 118 of FIG. 1, which in turn can be implemented using a
graphics routine, graphics application, or some other suitable graphing mechanism. As a
specific example, graph module 118 can obtain input from the user, such as a particular
IP address and time period, access the stored data of database 120 for the specified IP
address and time period, and generates a plot or graph of the data to be shown on display
130 to administrator 140 of FIG. 1.

-18-

WO 2005/119485 PCT/US2005/019037

[0084] The graphical display of the data for a set of time intervals can be generated in
any of a number of ways. For example, a graphics application or module can be included
in server 100, with the graphics application or module being capable of generating a
graphical plot of the data that can be converted into an graphical image to be included in a
web-browser shown on display 130. The graphics application or module can be a
standalone application or incorporated into one or more applications executing on server
100, and any appropriate standard graphing tool can be used.
[0085] As another example, aggregator 114 of FIG. 1 can access the desired data
from database 120 and include the data in a web page sent to display 130, in which the
web page includes a graphics widget that can generate a plot of the data in the browser
window shown to administrator 140.
[0086] Using the appropriate graphics module, application, or widget, the user
specifies a query to obtain the desired information for a particular type of graphical
representation. For example, for a line plot, the user can specify data over a time range,
say a few hours, so that there is a sufficient number of data points (e.g., 100-200 data
points, such as a data point for every minute) to have a meaningful graphical
representation of the data, as with mail flow graph 410 of FIG. 4 that is discussed below.
As another example, a small set of individual data points can be represented in a bar plot,
with one data point per category or bar, as illustrated by applied policy graph 420 of FIG.
4 that is discussed below. As yet another example, a tabular representation of the data
uses one value per row for a particular data category, as in mail flow summary 350 of
FIG. 3 that is discussed below.
[0087] The data in database 120 can be organized into one or more tables for efficient
access to the data. For example, an “IP rollup” table can summarize the data by IP
address, whereas a “Domain rollup” table summarizes the database by domain name.
[0088] The following are the steps than can be followed for three examples of queries
that can be made to database 120 to retrieve data for graphical representation to the user
for a company called “Abcd” with a website at “www.abcd.com™:
Query 1
(2) Find the set of IP addresses belonging to “mx1.abcd.com or
mx2.abcd.com” for the period X...Y that were observed by the server.
(b) Create a query handle for period X...Y from the “IP rollup” table.
(c) Use “hour” aggregation, but sample every other value when generating the

result set.

-19-

WO 2005/119485 PCT/US2005/019037

Query 2
(2) Find the SenderBase organization ID for “Abcd.”
(b) Create a query handle for period X...Y from the “IP rollup” table.
(c) Query against the “hour” and “minutes” tables but aggregate all results to a
single value.
Query 3
(a) Create a query handle for period X...Y from the “Domain rollup” table.
(b) Filter on “abed.com”.

(c) Use “hour” aggregation.

B. Graphical User Interface and Message Information Display Examples

[0089] FIG. 3 is a block diagram depicting an example of a graphical user interface
300 for use in monitoring email messages, according to an embodiment. One or more of
the features of graphical user interface 300 can be generated by graph module 118 of
FIG. 1, such as by using one of the techniques described above, thereby performing the
function of displaying the aggregate information to a user represented by block 230 of
FIG. 2.

[0090] GUI 300 includes the following representative features: a quick search feature
310, a quick report feature 320, a recipient graph 330, a connection attempt graph 340,
and a mail flow summary 350.

[0091] Quick search feature 310 allows the user to enter a sender identifier, such as a
network address (e.g., IP address), domain, or network owner, into a text input box,
following which the user can select the “Search” button to initiate a search on the input
provided in the text input box. In response to initiating the quick search, GUI 300
displays results specific to the search criteria, in a format similar to that of GUI 300. In
addition, the information for a specific network address or other sender identifier can
include one or more buttons adjacent to the recipient graph 330 to allow the user to easily
indicate a policy to be applied to the identified network address or sender identifier, such
as by clicking on a “Blacklist” button to add the network address to the blacklist being
applied by the MTA.

[0092] Quick report feature 320 allows the user to select a particular report from a
drop down list of predefined reports, such as a report of the “Top IP’s by recipients
blocked (past day).” The user can use the drop down box to select the desired quick
report and then select the “Get Report” button to obtain the desired report. The available

-20-

WO 2005/119485 PCT/US2005/019037

Quick Reports can be configured by the manufacturer of the MTA, the administrator of
the MTA at the customer location, or a combination thereof.

[0093] Recipient graph 330 provides an overview of the number of recipients over the
displayed time interval, which is from 10:00 AM of one day to 10:00 AM of the
following day in the exampled depicted in FIG. 3. The graph plots the number of
recipients per minute over the 24-hour period, thereby indicating to the user how many
recipients are identified in the email messages received by the MTA eéch minute. GUI
300 can include other features not shown in FIG. 3, such as drop down menus in a menu
bar, to allow the user to change the time interval for which data is displayed in recipient
graph 330, as well as the network address or other sender identifier for which the data is
to be displayed.

[0094] Connection attempt graph 340 provides a summary of the results of the
connection attempts by connection policy, such as whether the connections were
accepted, throttled (e.g., the rate at which connections were accepted were limited to be
less than a specified rate), relayed (e.g., the connection to the MTA was to relay the email
message to another server), or blocked/rejected over a specified time interval. In the
example of FIG. 3, the data reflected in connection attempt graph 340 is for the same time
period shown in recipient graph 330, namely the 24-hour period from 10:00 AM of one
day to 10:00 AM of the next day.

[0095] Mail flow summary 350 provides overall email message flow statistics for the
MTA along with a breakdown of the total data by a specified type of sender identifier,
such as primary domain as depicted in mail flow summary 350. Mail flow summary 350
can provide any of a number of statistics, including but not limited to, the following: the
number of email messages received, the number of received email messages that were
undesired, the number of email messages that were blocked by a rule (e.g., such as those
specified in the HAT and RAT), the percentage of email messages identified as spam by
the Brightmail anti-spam engine, the percentage of email messages identified as
containing a virus by the Sophos anti-virus engine, and the number of connections
rejected/blocked. The user can review the information provided in mail flow summary
350 to determine which senders are injecting the most mail into the MTA, which senders
have the most mail blocked by a rule, which senders have the most mail identified as
spam or being infected with a virus, and which senders have the most connections

rejected.

21-

WO 2005/119485 PCT/US2005/019037

[0096] FIG. 4 is a block diagram depicting another example of a graphical user
interface 400 for use in monitoring email messages, according to an embodiment. One or
more of the features of graphical user interface 400 can be generated by graph module
118 of FIG. 1, such as by using one of the techniques described above, thereby
performing the function of displaying the aggregate information to a user represented by
block 230 of FIG. 2.

[0097] GUI 400 includes the following representative features: a mail flow graph
410, an applied policy graph 420, a quick search feature 430, and a quick report feature
440.

[0098] Mail flow graph 410 depicts the rate at which recipients are being injected into
the MTA, how many of the injected recipients are being blocked as spam, such as by
using Brightmail, and how many of the injected recipients are being blocked based on a
reputation filter, such as by comparing reputation scores. As an example of the latter,
reputation scores from a service such as from SenderBase can be used and associated with
the incoming email messages, and a filter can specify that only messages having a
specified reputation score or greater are to be accepted, while the remaining email
messages with unacceptable reputation scores are not accepted for delivery.

[0099] As shown in FIG. 4, mail flow graph 410 provides the indicated information
for a week’s time. Other GUI controls not illustrated in FIG. 4, such as a menu bar with a
series of menus containing sets of commands, can allow the user to change the time
period for the data to be displayed in mail flow graph 410.

[0100] Applied policy graph 420 provides a breakdown of the treatment of the received
email messages, such as the percentage of email messages that have been blocked due to
a blacklist, the percentage of email messages allowed based on a whitelist, the percentage
of email messages that have been subject to injection control (e.g., throttling or
graylisting), and the percentage of messages whose disposition is otherwise unknown or
not included in the other indicated categories. The message information displayed for
applied policy graph 420 corresponds to the same time period displayed in mail flow
graph 410.

[0101] Quick search feature 430 allows the user to use a sender type object 434 to specify
the type of sender identifier to search on (e.g., network address, domain name, subnet,
etc.) through a drop down box of available sender identifiers along with a search

term object 432. Once the type of sender identifier is selected and the search term

22

WO 2005/119485 PCT/US2005/019037

entered, the user selects the “Search” button 436 to execute the search and obtain the
desired message information for the specified sender identifier.

[0102] Quick report feature 440 allows the user to generate a report selected from report
listing 44 based on a desired sender identifier that is input to sender identifier object 442.
Once the desired report and sender identifier are specified, the user can retrieve the report

by clicking on the “Get Report” button 446.

B. Identifying Patterns in Message Information Displays

[0103] The use of a GUI for displaying message information based on the flow of email
messages in the system, such as in the forms of graphs and tables illustrated in FIG. 3 and
FIG. 4, allows the user to identify patterns, such as that a virus attack is underway or a
spam campaign has targeted the recipients for the MTA. For example, in FIG. 4, mail
flow graph 410 depicts a large increase in the number of recipients blocked based on the
reputation filter during Friday and Saturday. The user can then request a report on the IP
addresses from which the reputation filter blocked messages were received, and then add
some or all of the IP addresses identified thereby to the HAT with an appropriate rule,
such as that the selected IP addresses are to be blacklisted or subject to mail injection rate
limitations.

[0104] As another example, in FIG. 3, recipient graph 330 can include an additional line
that indicates the average number of recipients per minute that is based on the message
information received over the past thirty days. The additional line can be displayed
simultaneously with the current message flow information for the 24-hour period
indicated, thereby allowing the user to compare the last day’s data to the same data
averaged over the previous month. A significant increase in comparing the current
information to the previous month’s average information may be an indication of a
current spam or virus attack. The user can then investigate the details of where the extra
email messages are coming from, such as by using mail flow summary 350, and then

decide what actions, if any, should be taken.

C. Taking Actions Based on Message Information Displays

[0105] In some implementations, the system for displaying message information based on
the flow of email messages in the system includes one or more graphical objects, such as
buttons or pull down menus, that allow the user to take actions based on the information

being displayed. For example, if the display includes a mail flow graph that depicts the

-23-

WO 2005/119485 PCT/US2005/019037

number of messages being received over that last six hours from an IP address and that
shows an unusually large spike in the number of messages received over the last thirty
minutes, the user can click on one or more buttons that cause the system to take a
specified action. As a specific example, if the user determines that the spike is likely the
result of a virus attack or a hit and run spammer, the user can click on a button on the
display labeled “BLACKLIST” to have the IP address showing the spike in messages
blacklisted. Such a capability can be referred to as a “one button blacklist” feature.
[0106] As another specific example, the user can click on a button labeled
“WHITELIST” to have the messages allowed, such as when the user determines the IP
address is that of a trusted partner who is unlikely to be the source of virus infected
messages or spam. As yet another example, the user can click on a button labeled
“GREYLIST” to have the flow of messages from the IP address limited, such as by
employing a mail injection control approach (e.g., throttling) to limit the rate at which
recipients are injected to the MTA by the IP address. Clicking on the “GREYLIST”
button may result in a dialog box being presented to the user to obtain additional
information from the user, such as the maximum allow injection rate or an expiration time
following which injection control is to no longer be applied.

[0107] The system can implement the action represented by the user’s use of such
graphical objects, such as the buttons described above, by using any one of a number of
approaches. For example, when a button is clicked by the user, the system can generate
an appropriate rule and add the rule to the HAT or RAT, such as that the identified IP
address be blacklisted, whitelisted, or greylisted.

D. Alerts and Alarms Based on Message Information

[0108] In some implementations, the mail flow monitoring system can compare message
information to thresholds, limits, or other specified values, and generate an alert message
to the administrator of the MTA or present an alarm message on a display. For example,
the system can compute a thirty day average, such as that the MTA is having

100 recipients/day injected from a particular IP address. The system can then compare
the mail flow from the particular IP address for the current day to the thirty-day average.
If the difference between the data for the current day and the thirty day average exceeds a
specified amount, such as a threshold level of a 500% increase, the system can send an
alert message to one or more individuals associated with the MTA and/or display an

alarm message on a display associated with the MTA to call attention to the situation.

24-

WO 2005/119485 PCT/US2005/019037

[0109] The alert or alarm that is generated and sent allows the user of the MTA to review
the message information about the flow of email messages in the system and take an
action. For example, a 500% increase in the number of injected recipients from a
particular IP address may indicate a hit and run type of spam campaign, and as a result,
the user can take an appropriate action, such as using mail flow injection control to limit
the number of recipients being injected to the MTA to a particular amount, such as the

thirty day average, or such as blacklisting the IP address for the next several hours.

IV. IMPLEMENTATION MECHANISMS AND EXAMPLES

[0110] The following implementation mechanisms are examples of the ways in which the
techniques described herein may be implemented. However, a particular implementation
can include fewer or more features than are represented by the following examples, and

other implementations can include none of the following examples yet still implement the

approaches described herein.

A. Time Interval Resolution

[0111] In some implementations, the monitoring system manages various counters
(inbound and outbound connections, recipients, messages, bytes, and various success and
failure conditions) by network address, such as an IP address. Domain name service
(DNS) and Senderbase information that is observed by the system can also be recorded by
network address and used in report generation. The time interval for the report can be
specified in any appropriate increment, such as minutes, hours, days, weeks, months, or
years.

[0112] For example, the number of minutes specified can range from 1 to 120 and is
counted backwards from the most recent minute boundary prior to the current time. As
another example, the number of hours specified can range from 1 to 72 and is counted
backwards from the most recent hour boundary prior to the current time. Counters related
to an inbound simple mail transfer protocol (SMTP) session are recorded at the time the
event happens and then aggregated by a background task and converted to a sorted,
indexed format suitable for generating reports. Measurement and reporting can be
performed on a global basis, while an identifier of the sender that is injecting email to the
system (e.g., an “injectorID”) and an index into the list of injectors, is recorded in each

database record.

25-

WO 2005/119485 PCT/US2005/019037

[0113] Mail flow reports provide options for sorting by any of a number of attributes,
including but not limited to, recipients, connections, messages, or bytes received. In
some implementations, the number of "top" entries reported is a command option and
defaults to ten. In addition, the user can specify a fully qualified domain name (FQDN),
any level domain, a network address, an IP address, a range of IP addresses or a subnet in
CIDR net/bits format, or a SenderBase ID. Individual reports can specify ranges of
minutes, hours or days. In some implementations, all reports are for a single injector and
a single MTA. However, off-box post processing tools can create reports that aggregate
per-injector measurements for a single host or measurements for multiples hosts.

[0114] Data can be collected in any suitable time interval. For example, data can be
collected for one-minute intervals and per-minute data sets are aggregated to 10-minute
data sets and written to disk. As a result, no more than 10 minutes of measurement data

can be lost as a result of a reboot.

B. Intervals and Time Boundaries

[0115] Monitoring email messages can provide each customer that has an MTA with
reports that match that customer’s time zone and reporting requirements. Daily reports
typically fall on day boundaries and monthly reports fall on month boundaries. For
weekly reports, the customer generally wants to be able to specify the day the week ends
and have the weekly report start and end on a day boundary.
[0116] All work is done in "local time" with the epoch adjusted from GMT to timezone.
For example, a customer on the west coast can operate the system in Pacific Daylight
Time (PDT), and therefore days start at 00:00 PDT and end at 23:59.59 PDT.
[0117] Totals for one-minute intervals are recorded to disk in "minute directories" with
names that include the number of LocalMinutes since the epoch. These minute
directories are put in hour directories and the hour directories put in day directories. The
naming convention is:
IDB.Day.[LocalDays)/IDB.Hour.[LocalHours]/IDB.Minutes.[LocalMinute

s]
[0118] For example:

IDB.Day.12264/IDB.Hour.294343/IDB.Minutes.17660580

-26-

WO 2005/119485 PCT/US2005/019037

[0119] is used to store data for the first minute of the first hour of July 31, yyyy (local
time).
[0120] All numbers refer to the beginning of the time period. In the above example
IDB.Day.12264 is used to store data for the day beginning July 31, yyyy (local time);
IDB.Hour.294343 the hour on that day beginning at 00:00 (local time),
IDB.Minutes.17660580 refers to the minute beginning 00:00 (local time).
[0121] A time range is specified as:

min <=t <max

[0122] The following are definitions relating to time intervals:

Name Definition

Seconds since the epoch adjusted by the difference between localtime
and GMT.

LocalSeconds

Days since the epoch with day boundaries matching the current time

zone. Note that not all days have 86400 seconds, and therefore
LocalDays converting from days to seconds by multiplying by 86400 seconds is

not always correct since the epoch adjusted by the difference between

localtime and GMT.

Hours since the epoch. With rare exceptions (e.g. the hour of change
LocalHours to or from daylight savings time), LocalHours can be converted to

LocalSeconds by multiplying 3600.

) Minutes since the epoch. With rare exceptions, LocalMinutes can be
LocalMinutes o
converted to LocalSeconds by multiplying 60.

[0123] For Daylight Savings time, in the spring, no values are recorded or reported for
the hour that is lost when the clock is advanced. For example, if local time "springs
forward" from 01:00 to 02:00, no traffic is reported for the hourly report corresponding to
that hour. The daily report includes only 23 hours of data. In the fall, the clock is
"slowed-down" during the "fall-back" hour so that each minute contains two minutes
worth of data. The hourly report for the fallback hour contains a total corresponding 120
"real" minutes, and therefore, the daily report for that day contains 25 hours of data.
[0124] Suppose that a user wants all the data for the month of July. To specify a time

range, the user needs the first second in July and the first second in August. For

227-

WO 2005/119485 PCT/US2005/019037

explanation purposes, denote these limits as "startTime" and "endTime," respectively.

The following is an example:
current_time = list(time.localtime (time.time()))
current time[5] = 0
current time = tuple(current_ time)
in time = time.strptime ('07/01 00:00', 'em/%d FH:3M')
the time = current_time{0:1] + in_time[1:5] + current_time[5:]

startTime = time.mktime (the_time)

in time = time.strptime ('08/01 00:00°', 'em/%d $H:%3M')
the time = current_time([0:1] + in_time[1:5] + current_time[5:]

endTime = time.mktime (the_time)

[0125] The first day directory is computed by mailrpt.getLocalDay as follows:

>>> startTime

1057042800.0

>>> ctime (startTime)

'Tue Jul 1 00:00:00 yyyy'

>>> mailrpt.getlLocalDay (startTime)
12234

[0126] The day after the last day directory is as follows:

>>> endTime

1059721200.0

>>> ctime (endTime)

'Fri Aug 1 00:00:00 yyyy'

>>> mailrpt.getLocalDay (endTime)

12265

[0127] The range of days is:

12234 <= d < 12265

[0128] The report is created by totaling the counters the databases in IDB.Day.12234
through IDB.Day.12264.

[0129] The above description of what directories are used is not needed to retrieve the
data for July. All that is needed is startTime and endTime. A “mailrpt” API can be used

that works as follows:

8.

WO 2005/119485 PCT/US2005/019037

baselIDBdir = '/var/log/godspeed!

rspec = mailprt.reportSpec('day', baseIDBdir)
rspec.startSeconds = startTime
rspec.endSeconds = endTime

iDict = mailrpt.fetchIPintervals (rspec)

C. Aggregating Reporting Intervals

[0130] Aggregation of on-disk directories is done by a background thread. The thread
aggregates Interval Dictionaries to Minute Dictionaries that contain counters
corresponding to a 60-second period of time. Minute Dictionaries are aggregated to Hour
Dictionaries and Hour Dictionaries are aggregated to Day Dictionaries. After
aggregation, the thread sorts by network address and by each type of counter. The cost of
doing these sorts in the background is low. Having pre-sorted data allows for the

reporting commands to provide the desired interactive response time.

D. Managing Counters

[0131] In some implementations, counters are initially recorded by time-interval and
network address. At message-processing time, counters are kept in a “Current
Dictionary,” which can be implemented as a small dictionary that corresponds to a short
interval of time (e.g., 10 seconds). A background thread aggregates counters into larger
dictionaries with more network addresses and counters that correspond to longer time
mtervals. As aresult of performing aggregation in the background instead of during
normal message processing, message latency is low and large sets of counters can be
efficiently processed in a batch mode.

[0132] Message information can be recorded on time interval boundaries. For example,
date for minute reports are recorded on minute boundaries and data for hour reports are
recorded on hour-boundaries. If the report interval is specified in minutes, at most

60 seconds worth of counters are missing from the report as a result of the time of the
report not falling on a minute boundary. If the report interval is specified in hours, at
most 60 minutes of counters are missing from report as a result of the time of the report
not falling on an hour boundary.

[0133] In addition, so-called “Mixed-unit intervals" (hours plus last N minutes) can be
used. As an alternative, mixed unit intervals can be omitted, and a user that needs a

report for the last hour and a half can request a 90-minute interval.

229

WO 2005/119485 PCT/US2005/019037

[0134] The server can count recipients in any of a number of ways, including but not

limited to, the following:

1. Count the number of RCPT TO commands received.

2. Count the number of RCPT TO commands to which the server replies
"250 recipient ... ok".

3. Count the number of RCPT TO commands associated with messages that

are enqueued for delivery.

[0135] The server can count messages in any of a number of ways, including but not

limited to, the following:
1. Count the number of DATA commands received.

2. Count the number of DATA commands to which the server replied “354
go ahead”.

3. Count the number of DATA commands to which the server enqueues the

message and replies "250 ok".

E. Recording Counters

[0136] How counters are recorded can depend on what is being counted. For example,
some counters relate to events at the start of a session, such as messages and recipients
and may be referred to as inbound counters, while other counters and relate to events
during a session, such as application of a policy. In recording counters for some
implementations, an IP tuple can be used. An IP Tuple is a tuple containing remote IP
address, local IP address, remote port, and local port.
[0137] The subset of the IP Tuple used to index inbound counters consists of the IP of the
connecting host (Remote IP) and the IP of the injector (Local IP). As a debug and test
| option, the Local Port can be set in the tuple, but by default it is set to zero. The remote
port is ignored and the value of Remote Port is set to zero in the IP Tuple. The entire IP
Tuple is used as a key in the host object dictionary and the entire tuple is stored on disk.
In addition, the local and remote port can be used.
[0138] At the start of a session, a “session.run” method is invoked. If access is set to

TCPREFUSE (e.g., to refuse the connection from the sender), a connection counter called

-30-

WO 2005/119485 PCT/US2005/019037

the HostCounter.connectionFailures counter is incremented and the connection is closed.
Otherwise, a session object is created and SMTP processing starts. The HAT may also
used to limit the number of recipients. The index of the matching HAT rule is recorded.
Senders matching the default HAT rule ("ALL") are considered "unclassified senders".
[0139] During the SMTP session, counters for messages, recipients and bytes are
incremented and stored in the host object. Counters for messages and recipients are
incremented and stored in the session object by code that controls per-session limits.
[0140] When a Current Interval expires, a new Current dictionary, corresponding a new
Current Interval is created. The interval is checked each time a new connection is
accepted or a DATA command is processed. If necessary, a new host object is created.
Processing of other commands such as RCPT TO or STARTTLS does not cause a new
host object to be created.

[0141] At the time an interval expires, some updates to the current dictionary may be
pending. However, when the inbound message handling threads complete these pending
updates (usually within a second of the expiration event), the old dictionary becomes a
read-only Interval Dictionary.

[0142] After a minute boundary has passed, the 10 second interval dictionaries that are
more than one-minute old are "rolled up" to one-minute dictionaries and these
dictionaries are written to disk. As a result, the Current Interval is at least 50 seconds
ahead of the most recent interval dictionary included in the rollup. This means that for a
host object to be written to disk prior to completion of all updates to that object, at least
50 seconds will elapse since the last connection or data command from that host. In some
implementations, testing the age of a counter object prior to every update can be
performed. However, in general, the 50-second buffer approach is often a suitable
optimization of performance and update integrity, although the data on disk will not
include the most recent 60 seconds of traffic.

[0143] Per-minute dictionaries are written do disk on an event driven basis. The creation
of a new interval dictionary, causes a test to see if enough time has passed to write
per-minute dictionaries do disk. In a typical implementation, fewer than 13 10-second
interval dictionaries are stored in memory. If there is a steady flow of mail, a per minute
dictionary, representing traffic for the 60 seconds prior to the minute boundary that was

passed about 60 seconds ago, is written about once per minute.

31-

WO 2005/119485 PCT/US2005/019037

F. Command Line Interface

[0144] The user interface for accessing the monitoring system can include a command
line interface (CLI) that can be incorporated into the CLI for the MTA. For example, the
CLI for monitoring email messages can include an enhanced topin command and new
select and report commands, as described below. A configuration command can control
the resources devoted to counters.

[0145] The topin command reports on counters for the last 5 minutes. The default is to
sort by recipients (in descending order) and display the top ten records. Other sort fields
that can be specified are messages, bytes received, or connections.

[0146] The following is a sample of the topin command:
topin

Injector: Public_ SMTP (port 25)

Status as of: Fri Mar 21 10:59:21 yyvyy
Remote hostname IP address connections messages recipients
bytes

© [0147] An optional number of records and field(s) to sort by can be specified. For

example:
topin 20 messages bytes

[0148] sorts first by messages and then by bytes.

[0149] The select command controls what records are used to generate a report by
specifying the time interval and key selection criteria. With the select command, the user
can limit the records used to the topin or report commands to domain names within a

domain, a range of IP addresses or a subnet in CIDR net/bits format. For example:
select domain=edu

[0150] limits topin and report to domains containing “edu.”
[0151] The interval option can be used to change the length of the time in minutes that

the report and topin commands use. For example, to set the time interval to last ten

minutes.

select interval=10

232-

WO 2005/119485 PCT/US2005/019037

[0152] The start and stop options set the start time and stop time for a reporting interval.
The selection rule is: start <= time < stop. Times are in the timezone configured by the

user. The format is:

[0153] where '%m' is the number of the month, '%d' is the day of the month, '%H' is the
hour in the range of 0 to 23, '%M' is the minute and '%Y" is the 4-digit year. These
commands, for example, cause the topin and report command to use data from 16:30 to

17:00 on March 3, yyyy:
select start='3 20 16:30 yyyy'

select stop='3 20 17:00 yyyy'

[0154] The other formats accepted are:
'gm %d $H:%M!

[0155] where the missing values for year month and day are derived from the local time
on the system.

[0156] The report command is used to select the fields to display. The names of fields
are define in the “mailFlowHost Object". For example, the command "report ip recipients
messages" causes IP address, recipients and messages to be displayed.

[0157] The number of records displayed can be limited by using the "limit" option. For
example, "report limit=50" causes at most 50 records to be displayed. The command
"report limit=all" causes all records matching the select criteria to be displayed. The
default limit is 25.

[0158] The "sort" option specifies the field to sort by (in descending order). For example,

report sort=messages domain messages recipients bytes

[0159] displays domain, messages recipients, and bytes, sorted by messages.

-33-

WO 2005/119485 PCT/US2005/019037

G. Data Structures and Related Definitions

[0160] This section defines data structures and technical terms that are used with a
system that includes the use of counters for monitoring email messages at a server, such
as an MTA.

[0161] A database is used to record counters by network address, such as by remote IP
address. Auxiliary information relating to the remote IP address, including but not
limited to the fully qualified domain name (FQDN) and the SenderBaselD, are also
recorded. For each remote IP address observed in the current recording interval, an
inbound host Counter is allocated, such as for tracking the number of recipients,
messages, and bytes received from the remote IP address, and the resulting message
information is recorded in a mailFlowHost object. For example, the mailFlowHost object
can be configured so that there is a one-to-one correspondence between fields in the
mailFlowHost object and the fields in the database record. Such a class provides a good
model for memory-efficient storage of counters per IP address or per domain name. The
HostCounter object described in the next section is implemented in a similar way.

[0162] The mailFlowHost object can include one or more of the following fields:
- remoteIP - the IP address of Remote host
- localIP - the IP address of the MTA
- remotePort - the Port address of Remote host
- localPort - the Port address of the MTA
- remote hostname - if not None, cached hostname
- recipientsIn
- recipientRejectsIn
- RATrecipientRejectsIn
- tooManyrecipientRejectsIn
- messagesIn
- bytesIn
- connectionAcceptsIn
- connectionFailuresIn
- connectionRejectsIn
- starttlsSuccessesln
- starttlsFailuresIn
- recipientsoOut
- recipientRejectsOut
- messagesOut
- bytesOut

- connectlonAcceptsOut

-34-

WO 2005/119485 PCT/US2005/019037

- connectionFailuresOut
- connectionRejectsOut
- starttlsSuccessesOut
- starttlsFailuresOut

- SenderBaseOrgID

- SenderBaseReputationScore
- HATruleIndex

- interval

- spamScanMsgsIn

- spamFoundMsgsIn

- virusFoundMsgsIn

- bounces

- doubleBounces

- recipientsUnknownIn

[0163] A Recording Interval is a period or time during which a set of InjectorHost objects
(or InjectorDomain objects) containing measurements for an IP address (or domain name)
is created.

[0164] An IP Tuple is a tuple containing remote IP address, local IP address, remote port,
and local port.

[0165] An Interval Dictionary stores the measurement data collected during a recording
interval. Each Interval Dictionary entry contains an IP Tuple as a key and a HostCounter
as a value.

[0166] The Domain Mapping Database records the view of the mapping between IP
addresses and fully qualified domain names.

[0167] The Current Interval is the current Recording Interval.

[0168] The Current Dictionary is the Interval Dictionary for the Current Interval.

[0169] The Current Domain Dictionary is the Interval Domain Dictionary for the Current
Interval.

[0170] IPv4 addresses are typically used. Typically, an IP address is kept in host byte
order to simplify sorting and aggregation.

[0171] For each RCPT TO command, a recipient counter is incremented. If processing a
DATA command is successful, the message counter is incremented by one. In a typical
scenario, each time the message counter goes up by one the recipient counter goes up by
one or more, but it is possible for either of these counters to increase while the other

remains constant.

-35-

WO 2005/119485 PCT/US2005/019037

[0172] The following table illustrates one approach for a server to count the processing of
SMTP commands. Note that, for clarity, the MAIL FROM commands required by the
protocol are not included in the table. In this example, total recipients are incremented
once for each RCPT TO command and total messages are incremented once for each

DATA command.

Event Total Recipients Total Messages

RCPT TO 1 0
RCPT TO 2 0
RCPT TO 3 0
DATA 3 0
(FAIL) 3 0
RCPT TO 4 0
RCPT TO 5 0
RCPT TO 6 0
DATA 6 0
(OK) 6 1
RCPT TO 7 1
DATA 7 1
(OK) 7 2
RCPT TO 8 2
DATA 8 2
(OK) 8 3
DATA 8 3
(OK) 8 4

[0173] Each host object has 32-bit HATruleIndex field containing two 16-bit numbers is
recorded. The first number (high 16 bits) is the sender group ID and the second number
(low 16 bits) is the policy ID. The directory of mappings is kept in a configuration data
file.

[0174] The sender group ID of one is reserved for the "ALL" group. The "ALL" group
applies to senders that did not match any other group. These may also be referred to as

"Unclassified Senders". The sender group ID of zero is reserved for a sender group that

-36-

WO 2005/119485 PCT/US2005/019037

does not have a name. This is also treated as an "Unclassified Sender". The sender group
ID is returned by HATSenderGroup::get name id().

[0175] The external representation of the sender's reputation score is an ASCII string
ranging from "-10.0" to "10.0". A positive number implies a "good" reputation, i.e. a
legitimate sender of email messages that people want to receive. A negative number
implies a "bad" reputation, a spammer. A reputation score of "0.0" implies that the
sender's reputation is neutral. This external representation is supported by the internal

representation as shown in the following example:
SenderBaseReputationScore
3 2 1 0
01234567890123456789012345¢67829°01
R e et T T Sk et st S R RS
| flags V| reputationScore |

i e et et It R TR R R RN R AR

[0176] The internal representation of the reputation score ("reputationScore") is a "signed
short", which is a 15-bit number ranging from -32000 to +32000 (decimal), and a sign bit.
The internal representation of the reputation score is stored in a 32-bit field that includes
the signed short in the low-order 16-bits while flags are stored in the high 16 bits. The
lowest order flag bit, validReputationScore or 'V' in the diagram above, indicates that the
reputationScore is valid.

[0177] The external format reputation scores are converted to internal representation by

the following steps:

o Convert to float, then multiply by 3200, and convert to integer.
» Store as a signed short in reputationScore.
o Set the valid bit ("V").

[0178] In some implementations, the conversion is int(320*float(sbrs)), where ‘sbrs’ is
the SenderBase reputation score. For example, the internal representation of "10.0"
would be 32000 (decimal). The internal representation of 9.12 would be 29184.

[0179] The internal format reputation scores are converted to external representation by

the following steps:

-37-

WO 2005/119485 PCT/US2005/019037

o Test the valid bit ("V").

o Extract the integer from signed short in reputationScore.

« Divide integer by 3200.

o Convert the string with one digit after decimal point ('%.1f % x).

[0180] For example, the internal value 31040 would be converted to "9.7".

[0181] At the time a mailFlowHost is created, the 32-bit SenderBaseReputationScore
field is initialized to zero. Because the validReputationScore bit, 'V, is not set, this is not
considered a valid score and is reported as "NA". When a reputationScore is recorded,
the V' bit is set.

[0182] The number of RCPT TO commands from remote hosts that match the HAT rule:
"ALL", which is also called, "Unclassified Recipients".

[0183] In some implementations, the HAT group 1 is reserved for "ALL”, while in other
implementations, zero may be used. Prior to writing a per-minute network address file,
the value of the HATruleIndex is tested to determine it the remote host is unclassified. If
it is, the number of recipientsIn is added to the number of recipientsUnknownIn.

[0184] The following code fragment shows how the HATruleIndex and I_recipientsn are

used to compute I_recipientsUnknownIn:

HATgroup = (ip dict(k].I_HATruleIndex >> 16) & OxOFFFFL
if HATgroup == 0 or HATgroupMaybe == 1:
newdict [k] .I_recipientsUnknownIn +=

ip dict[k] .I_recipientsIn

[0185] Recipient based injection control is done on an hourly limit by IP address,
network, SenderBase Organization or domain name. In some implementations, there is
also a limit on the number of recipients per message. The tooManyrecipientRejectsIn
counter is incremented when a recipient is rejected because one of these limits has been

exceeded.

H. On-Disk Database and Report Generation

[0186] An “on-disk database” can be used to store message information collected by the

monitoring system. For example, the on-disk database can consist of a data file and a set

-38-

WO 2005/119485 PCT/US2005/019037

of index files with a network address for the key, or the on-disk database can consist of a
data file and index file with the domain name as the key.

[0187] The on-disk database efficiently uses disk space, while allowing for generation of
reports in a reasonable period of time (e.g., no more than two seconds to display the top
ten for any field). The data file consists of keys and fields that are sorted by key, and the
index files are simple key and single field that are sorted by field. This format easily
allows for a top-ten report, and a binary search will provide suitable performance for
other types of reports.

[0188] A small amount of overhead may be added to these formats in order to facilitate
the use of a free, no-objectionable-license database tool, and a conversion tool can
translate from this dense storage format to a standard database format.

[0189] The on-disk IP database has an IP Tuple in host byte order as its key set. Within
the key set, the primary key is the IP address of the remote host (remotelP, in host byte

order). The data file has the following record format:

Position = Name Length Description
32

Key [0] remoteIP Remote IP Address
bits
32

Key [1] localIP Loocal IP Address
bits

. 16

Key[2] remotePort Remote Port
bits
16

Key [3] localPort Local Port
bits
32 Number of RCPT TO commands

Field[0] recipientsIn .
bits accepted

. 32 Number of RCPT TO commands
Field[1] recipientRejectslIn
bits rejected

32 Number of RCPT TO commands
Field[2] RATrecipientRejectsIn
bits rejected by RAT

Number of RCPT TO commands
32 rejected by recipient limit
Field[3] tooManyrecipientRejectsIn
bits (from HAT or SenderBase
limit)
32 Number of messages enqueued

Field[4] messagesIn)
bits for delivery

-39-

Field[7]

Field[8]

Field[9]

Field[10]

Field[11]

Field[12]

Field[13]

Field[14]

Field[15]

Field[16]

Field[17]

Field[18]

Field[19]

Field[20]

Field[21]

WO 2005/119485
Field[5] bytesIn
Field[6] connectionAcceptsIn

connectionFailuresIn

connectionRejectsIn

starttlsSuccessesIn

starttlsFailuresIn

recipientsOut

recipientRejectsOut

messagesOut

bytesOut

connectionSuccessesOut

connectionFailuresOut

connectionRejectsOut

starttlsAcceptsOut

starttlsFailuresOut

SenderBaseOrgID

64
bits

32
bits

32
bits
32
bits
32
bits

32
bits
32
bits
32
bits

32
bits

64
bits

32
bits

32
bits

32
bits

32
bits

32

SenderBaseReputationScore

bits

-40-

PCT/US2005/019037

Total bytes received,
excluding SMTP protocol

messages

Number of successful inbound

connections

Failures during inbound

connection setup

Number of inbound connections

rejected

STARTTLS commands

successfully processed

TLS failures after STARTTLS

command received

RCPT TO commands that

succeeded

RCPT TO commands that were

rejected

Message sent and server

responded "OK"

Total bytes sent, excluding

SMTP protocol messages

Outbound connections

established and accepted

Outbound connection setup

fajilures (in TCP)

Outbound connections

established then rejected

STARTTLS commandsg that
established a secure

connection

STARTTLS commands that failed

Sender Base Organization ID

flags + signed short. See

Section "2.4.13

WO 2005/119485 PCT/US2005/019037

SenderBaseReputationScore"

32 Number used to report on hat
Field[22] HATruleIndex
bits group and policy

i 32 Messages scanned by anti-spam
Field[23] spamScanMsgsIn
bits gsoftware

32

Field[24] spamFoundMsgsIn Messages classified as SPAM
bits
32 Messages classified as

Field[25] virusFoundMsgsIn
bits containing a virus

32 Messages from sender that we
Field[26] bounces
bits bounced

X 32 (possibly) double bounces
Field[27] doubleBounces
bits discarded

Total for group "ALL",
32
Field[28] recipientsUnknownIn computed from HATruleIndex at
bits
rollup

[0190] The IP tuple (remotelP, locallP, remotePort, localPort) is the key. In addition to
the 96-bit key, this record contains 27 32-bit values and two 64-bit values. Thus, each
data record consumes 6 + (27 * 4) + (2 * 8), a total of 136 bytes. This record length is
recorded in the README file that describes the database as follows:

remoteIP (32 bits) messagesIn (32 bits)
[0191] Twenty-six of the index files contain 8 bytes per IP address. Two of the index

files (bytesIn and bytesOut) contain 12 bytes per IP address. For each IP address, a
records in the index files consume 232 bytes , and the data record consumes 136 bytes.
This is a total of 368 bytes per key.

[0192] The Domain Mapping Database is an alternate way to view the IP database.
"Reverse DNS" mappings of IP address are stored by domain name. The key to the
Domain Database is the fully qualified domain name (FQDN). Fields include IP address,
FirstObserved, (a timestamp that indicates when the mapping was first observed),
LastObserved (a timestamp that indicates when the mapping was most recently observed),
UseCount (number of times this mapping was used), MatchingAQueries (the number of

times the "forward" or "A" mapping was observed), and SenderBaseID. Note the

41-

WO 2005/119485

PCT/US2005/019037

mapping between IP address and domain name does not always follow a simple, regular

pattern.

[0193] In some implementations, report generation will occur in these stages:

Sort IP addresses.

Sl S A o

Aggregate records.

Extract IP addresses from Domain Database.

Extract IP database records for each interval selected.

[0194] By this method, a report domain report can be generated with one pass over the IP

database for each interval within the time frame selected. A similar method is used to

report by SenderBaselD.

[0195] The following table shows the domain names an IP addresses for some of Cisco's

mail exchangers:

Domain Name

proxy0.cisco.com.
proxy5.cisco.com.
proxyé .cisco.com.

proxy9.cisco.com.

IP Address
128.107.241.178
64.103.36.137
203.41.198.245

192.135.250.71

[0196] To generate a report for cisco.com for the time period 9:00 <=t < 10:00, the

following steps will be followed:

1. Extract the IP addresses 128.107.241.178, 64.103.36.137, 203.41.198.245 and
192.135.250.71 from Domain Database.

2. Sort IP addresses in ascending order (e.g., 64.103.36.137, 128.107.241.178,
192.135.250.71, 203.41.198.245)

3. Extract records for these four IP addresses from the 9:00 Hourly IP database.

4. Aggregate counters from these records.

5. Report a total for cisco.com.

[0197] A Domain Mapping Database is used to convert Domain Names to IP address and

to convert SenderBaseIDs to IP addresses. For example, the data file can have the

following fields:

47

WO 2005/119485 PCT/US2005/019037

Position Description Length
DomainName length of FQDN in bytes,

i 32 bits
Length including null

. variable (Key Length
Key DomainName
BYTES)

Field{[o0] IP address 32 bits
Field[1] firstObserved 32 bits
Field[2] lastObserved 32 bits
Field[4] ptrQueries 32 bits
Field[5] MatchingAQueries 32 bits
Field[6] NonMatchingAQueries 32 bits
Field[7] SenderBaselD 32 bits

[0198] The DomainName is a null-terminated string that represents the fully qualified
domain name returned by the PTR lookup. The Domain data file is sorted by Domain
Name; the IP index file is sorted by IP address. There are two copies of this file, one
sorted by Domain, the other sorted by SenderBaseID. The sort by domain is done as

follows:

1. Split the domain name into the strings delimited by periods.
2. Domains are sorted in lexical order of the string furthest to the right.

3. Subsorts are done by the next string from the right until all strings are exhausted

[0199] The following is an example list of sorted domains:
mail.atheros.com
nsl.atlanticasp.com
one.atomicservers.com
two.atomicservers.com
ns59.attbi.com
ns60.attbi.com
ns6l.attbi.com

ns62.attbi.com

-43-

WO 2005/119485 PCT/US2005/019037

pixie.artic.edu

nsl.azwestern.edu

[0200] The right-hand most strings are "com" and "edu", so the "com" strings come
before the "edu" strings. Among the dot coms, the next strings from the right are
"atheros", "atlanticasp”, "atomicservers" and "attbi". The first three characters of these
strings differ: "ath", comes before "atl", which comes before "ato", which comes before
"att". Within "attbi.com", "ns59" comes before "ns60", and so on. Even though the letter
"p" comes after the letter "n", "pixie.artic.edu" comes before "nsl.azwestern.edu” because
"artic" comes before "azwestern".

[0201] The files that form a database (index files and the data files) are stored together
within a subdirectory that also contains a description (README) file that describes the
database. This README file is written last, and the presence of the README file
indicates that the database is complete. The name of the directory identifies the time
interval covered by the database by specifying its units and end time in units since the
epoch.

[0202] For example, the directory "IDB.Hour.291815" contains the hourly rollup that

is 291815 hours since the epoch. This directory also contains up to 60 subdirectories that
are minute rollups. For example the subdirectory "IDB.Minutes.17508848" contains the
rollup for the minute that is 17508848 minutes since the epoch.

[0203] The location of this directory can be set with a configuration variable. In some
implementations, the directory will appear to the ftp user as 'MFM' and therefore, after
connecting via FTP, the user will be able to enter “cd MFM” and access the database
hierarchy.

[0204] Counters are incremented and written for each per minute database. A separate
process, 1ptd, aggregates the databases to hours days and weeks and months. The rptd
process is also responsible for deleting old databases and removing databases when
necessary to stay below a disk limit. If a disk limit is exceeded the oldest database is
removed first.

[0205] The rptd process does hourly aggregation of the previous hour one minute after
the hour. The rptd process uses the README file as confirmation that each one-minute
database is complete. If the README file is not present, the directory is not used. If any
of the expected 60 directories are missing, or if any one-minute directory does not contain

a README file, rptd writes a log message.

-44-

WO 2005/119485 PCT/US2005/019037

[0206] Daily databases can be rolled up to weekly databases, or monthly databases, or
both. The maximum number of daily weekly and monthly databases is configurable. If
weekly databases are made, the limit on the number of daily databases may specified to
not be less than eight. If monthly roll-ups are done, the limit on the number of daily
databases can be specified to be not be less than 32.

[0207] The limit on total disk used by mail Flow Monitor databases is configurable. The
default limit is 40 GB. Log messages will warn the user each time the amount of space
available decreases by a specified amount, such as by 1 GB.

[0208] The domain index into the IP database depends on the number of mappings
between IP addresses and FQDNSs and the average FQDN length. The domain index is
typically less than 500,000 mappings, with each mapping consuming 100 bytes (e.g., less
than 50 MB total). This amount is storage is significantly smaller as compared to the set
of IP databases.

[0209] The per-record usage the IP database is 332. A 500,000 record Weekly Database
requires 166 million bytes of disk space. A 200,000 record Daily Database requires

66.4 million bytes of disk space. A 20,000 record Hourly Database requires 6.6 million
bytes. A 2,000 record Minute Database required 0.7 million bytes. The table below

shows some alternative disk allocations:

GB per
Minute GB for Minute GB Per
Total Gigabytes Minute Hourlies
Databases Databases Hourly
Database
18.753 120 0.0007 0.084 72 0.0066
2.684 120 0.0007 0.084 72 0.0066
GB for GB per GB for
Dailies GB per Daily GB for Dailies =~ Weeklies
Hourlies Weekly ‘Weeklies
0.475 14 0.0664 0.930 104 0.166 17.264
0.475 32 0.0664 2.125 0 0.166 0

[0210] Given that the long-term (i.e., weekly or monthly) rollups tends to have a large

number of records, long-term rollups need not be kept on local disk. For example, 32

-45-

WO 2005/119485 PCT/US2005/019037

dailies can be kept, but no monthly or weekly rollups. Each week (or month), the

customer could generate reports from the dailies and store the reports off-box.

[0211] Reports are generated by specifying the following:

W b=

Level of resolution (e.g., by week, by day, by hour, or by minute).
Time period (e.g. last three hours).
Sort criteria (e.g. top recipients).

Number of records to display.

[0212] Many organizations review traffic on a weekly basis. The following are examples

of daily-resolution reports that can be generated for the past week, and thus these reports

are examples of those that can be included in quick report feature 320 and quick report
feature 440:

Top 50 IPs, sorted by recipientRejects

Top 20 domains, sorted by recipientRejects

Top 30 IPs, matching the ALL HAT rule, sorted by recigientsln (top
unclassified IPs by recipientsIn)

Top 10 second-level domains, data derived from IP addresses
matching the ALL HAT rule, sorted by recipientsIn past weekFind

senders that are not classified

Top 15 senderbase organizations, data derived from IP address

matching the ALL HAT rule, sorted by tooManyrecipientRejects

[0213] The reporting system will compute per cent change in recipients attempted per the

following formulas:

recipientsAttempted = recipientsAccepted + recipientsRejected
avergaRecipientsAttempted30Day = sum30Day (recipientsAttempted) /
30

percentChangeRecipientsAttempted = (thisDayRecipientsAttempted /
avergeRecipientsAttempted30Day - 1) * 100

-46-

WO 2005/119485 PCT/US2005/019037

[0214] If the system has been collecting data for less than 30 days (e.g. a new install),

then the average can be computed over the number of days for which data have been

collected.

L Host Access Table (HAT) and Recipient Access Table (RAT)

[0215] In some implementations, a host access table (HAT) maintains a set of rules that
control incoming connections and treatment of messages received from remote hosts.
Each injector (e.g., each sender of email messages to the MTA) can be associated with a

separate HAT. Typically, there are five basic access rules included in the HAT, as

follows:

(1) ACCEPT - the connection is accepted, with injection limited
by the recipient access table (RAT).

(2) RELAY - the connection is accepted, and injection to any
recipient is allowed (the RAT is bypassed) .

(3) REJECT - the connection is refused, with the sender getting
a 4xx or 5xx SMTP message, but no messages are accepted
(e.g., a polite refusal).

(4) TCPREFUSE - the connection is accepted but immediately
dropped, so that the sender receives nothing in return
(e.g., refused at the TCP level; a not so polite refusal).

(5) CONTINUE - the mapping is ignored, and processing of the HAT

continues, and if the connection matches a later entry that
is not “CONTINUE,” that later matching entry is used

instead.

[0216] In addition to the five basic access rules, one or more of the following parameters
can be specified for by host. In some implementations, the following parameters are
allowed for the “ACCEPT” and “RELAY” access rules, but not the remaining basic

access rules.

(1) max_concurrency - specifies the maximum number of
connections allowed from the host.

(2) max_message_size - specifies the maximum message size from
the host.

(3) max_msgs_per_session - specifies the maximum number of
messages that may be injected per session (typically counts
successfully injected messages).

(4) max_rcpts_per_msg - specifies the maximum number of

recipients allowed per message.

47-

WO 2005/119485

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

PCT/US2005/019037

smtp_banner text - specifies the SMTP banner displayed when
a host first connects.

smtp_banner_ code - specifies the SMTP codes used in the SMTP
banner.

tls - specifies whether or not TLS (transport layer
security) is to be used or required (allowed values include
“on”, “off”, and “require”).

max_rcpts_per hour - specifies the maximum number of
recipients that will be accepted for the given host, per
hour (e.g., for injection control).

max_rcpts_per hour code - specifies the SMTP response code
to be given to a host who has exceed the maximum recipient
per hour limit; can use a default of 452 per RFC2821.
max_rcpts_per hour text - specifies the SMTP response
message to be given a host who has exceed the maximum
recipient per hour limit.

use_sb - specifies whether to query SenderBase for
information and whether to use the SenderBase information to
craft the name of the counter to be incremented (allowed
values include “on” and “off”).

netmask - specifies the size of the mask to apply to the IP
address to craft the name of the counter to increment;
allowed values are numbers between 0 and 32; a value of 0
means that a single counter will result for all IP addresses

that matched this or a similarly masked HAT entry.

[0217] In some implementations, a row in the HAT consists of four parts: (1) an entry

name, referred to as a “label”, (2) a host specification, referred to as “hosts”, (3) an access

rule, referred to as “access”, and (4) a parameter list, referred to as “params”. These four

items can be defined as follows:

(1)

(2)

(3)

(4)

“iabel” - a label is a name given to a HAT entry and in some
implementations, obeys the same naming convention as for
filters in that the label starts with a letter or
underscore, but after the initial character, the label can
include letters, numbers, underscores, or hyphens.

“hosts” - a host specification, and can include more than
one listed host; see the host syntax examples below.
“access” - is the selected basic access rule (e.g.,
“ACCEPT”, “RELAY”, “REJECT”, “TCPREFUSE”, or “CONTINUE”).

“params” - a list of parameter name/value pairs.

-48-

WO 2005/119485 PCT/US2005/019037

[0218] In some implementations, the hosts are listed in order from top to bottom, and the
first non-CONTINUE rule to match is used.

[0219] Examples of host specifications are given below. Multiple addresses can be used,
as well as being grouped together.

e mn.n.n.n - IP address.

e n.n.n. | n.n.n | n.n. | n.n | n. | n - partial IP addresses.
e n.n.n.n-n | n.n.n-n. | n.n-n. | n-n. - range of IP
addresses.

e fgdn - fully qualified domain name.

e .partialhost - everything with the partialhost domain.

e n/c | n.n/c | n.n.n/ec | n.n.n.n/c - CIDR address blocks.
o sbo:<something> - SenderBase organization ID.

e sbrs[nl:n2] - SenderBase reputation score (“x” matches if

nl<= x < n2).

e ALL - special keyword that matches ALL addresses (used as a

catch-all for when no previous rule matches) .

[0220] On the right hand side of the HAT, actions can be listed, such as the basic access
rules, or a variable can be used, as denoted by a leading $ as part of the variable name.
Once a variable is specified, the variable can be used on the right hand side, with the
values assigned to the variable being substituted automatically, which can provide a

convenient form of shorthand notation.

[0221] The following is an example HAT:

This is an example HAT table. Comments like these will be lost during

the import process.

Here we define three variables, "$BLACKLIST", "$WHITELIST", and
"SGREYLIST"

Variable definition lines may not have labels.

$BLACKLIST REJECT { smtp_banner_ text="You have been
blacklisted." }
SWHITELIST ACCEPT { max_concurrency = 600,

-49.

WO 2005/119485 PCT/US2005/019037

max_message_size = 20M,
smtp_banner code = 220,
smtp banner text = "Hello there." }
$GREYLIST ACCEPT { max_message_size = 5M,
max_rcpts_per_ hour = 5Kk,
max_rcpts_per_ hour text =
"You have exceeded 5,000 recipients this hour.
If you feel this limit is too low, please contact mailadmin@mycompany.com",
use_sb = Y,
netmask = 24
}
This next line is an example of a simple entry. It uses "IronPort_ SB"
as the label, uses an SenderBase ID as the host, uses the SWHITELIST
predefined behavior as the action, and has the line comment of

"TronPort Organization". This comment can be saved in the system and

H= 3= 3=k dE

will always be mapped to this entry.
IronPort_SB: 5b0:4988397762 $WHITELIST (IronPort Organization)

This next example is indicative of what might have been merged in from an
older HAT table. It has no label and does not refer to any predefined
behavior.

10.1.1.2 RELAY

This is an entry with no hosts.

EmptyList: SGREYLIST

This example shows how one can assign a behavior to multiple hosts at
once.
Note the comments applied to each host in the group in parenthesis.
These
comments will be mapped to those hosts and saved internally. The
comments
on the end of the line, using # signs, are also legal, but need not be
saved during the import process.
Personal_ IPs:
10.1.1.7 (Joe's Computer), # Joe's computer
10.1.2.255/24 (Tom's Computer) # Tom's computer

ACCEPT { max_message_size=20M }

This example shows separation with only whitespace (no commas)

Cut_and_Pasted from_SenderBase:

-50-

WO 2005/119485 PCT/US2005/019037

=
N
Wow oW oW
PIRCIRT NS

$BLACKLIST

A blacklist is for people from whom messages are not desired.
Uses a predefined behavior.

Blacklisted: 10.1.1.3 (SpamCo), 10.1.1.18 (Spamatron) $BLACKLIST

This example shows the use of a SenderBase Reputation score...
Looks_Like_Spam:
sbrs[-10:-7.5] (Catch low reputations)
$BLACKLIST

The "ALL" entry must always appear last, and defines the behavior for any
incoming connection that doesn't match the previous rules.

ALL $GREYLIST (Rate limit everyone else.)

[0222] For new injectors, default HATs can be established. For example, a new public
injector can use “ALL ACCEPT” while a new private injector can use “ALL RELAY.”
[0223] The following is a list of parameters that can be used in the HAT. For each
parameter, the list includes the parameter name (which can include letters, digits, and
underscores) followed by an “=" sign, and then the value. The value can be a number or a
string, and numbers can be followed by the letter “M” which multiplies the number by
1,048,576. Numbers followed by the letter k are multiplied by 1,024. A simple string
value is just a sequence of alphanumeric characters (with no spaces). If a more complex
string is needed, then it can be enclosed with double quotes. Backslash is the escape
character used in a quoted string. Parameters can be continued on the next line as long as
there is some whitespace at the beginning of the line. Quoted strings do not need the
whitespace, but if it exists, then it will be removed. This syntax is defined in ABNF form

as specified in RFC2234.

VCHAR = %x21-7E ; visible (printing) characters
ALPHA = $x41-5A | %$x61-7A ; A-% / a-z

SP = %x20

HTAB = %x09 ; horizontal tab

DIGIT = %x30-39 ; 0~-9

-51-

WO 2005/119485

ALNUM =
float =
space =
line break =
WSP =
allowed policy =
denied _policy =
policy =
line_label =
behavior_label =
range =

Snum =

ip-addr =
ip-block =
ip-range =
netsize =
ip-cidr =
sub-domain =
glob-hostname =

fgdn =

fgdn.
senderbase_id =
senderbase_rep =

host =

host_block =

paren_comment?]*]? |

definition =
line_break

policy definition =
rightside =
label definition =

host line =
unit =
number =
guote =
dgquote =

gchar =

PCT/US2005/019037
ALPHA | DIGIT
[- | +]? DIGIT+ ["." DIGIT+]?
SP | HTAB
CR | LF | CRLF | comment
space | line break
'ACCEPT' | 'RELAY' | 'CONTINUE'
"REJECT" ['TCPREFUSE'
allowed policy | denied_policy
[A-Za-z_]+[A-Za-z0-9_-1*%
$[A-Za-z_]+[A-Za-20-9_-]1%*
DIGIT{1,3} "-" DIGIT{1,3} ; values from 0 to 255
DIGIT{1,3} ; representing a decimal integer
; value in the range 0 through 255
Snum ["." Snum] {3}
Snum ["." Snum]{0,3} ["."]?
[snum "."]{0,3} range
DIGIT{1,2} ; value in range 0 through 32
Snum ["." Snum]{0,3} "/" netsize
ALNUM [ALNUM | "-" | "_"]* ALNUM

[v." sub-domain]+
sub-domain ["." sub-domain]+ ; Note: This is a loose

; specification of a

"sbo:" DIGIT+ ; SenderBase IDs are integers
"sbrs [" space* float space* : space* float space* "]"
ip-addr | ip-block | ip-range |

ip-cidr | f£gdn | glob-hostname | senderbase_id

[host paren comment? [[',' | WSP] WSP* host

'ALL’

policy [space+ param block]? WSP* paren_comment?

policy [space+ param block]? WSP* line break

definition | label WSP* paren_comment? line_break

behavior label WSP+ policy definition

[line_label:]? host_block WSP+ rightside
k| oM | e

[0-9]+ unit?

%0x27

$0x22

$x01-21 | %x23-%x26 | %x28-%x5b | %x5d-%xff

-52-

WO 2005/119485 PCT/US2005/019037

; Any characters except \, ", and '
string = Any number of printable characters except quotes, which
must be escaped if they match the quotes used to delimit

the string. (How to best represent this?)

comment = WSP* '#' string line_break
paren_comment = WSP* ' (' [%x01-%x28|%x29-%x5b]|%x5d-sxfE[\\[\)]* ")’

; Bny characters except \ and), but allow \\ and

; \) as escape patterns for those characters

squote_string = quote [gchar | dquote | line break | escape quotel]*

quote

dquote_string = dquote [gchar | quote | line break | escape dquote]*

dquote

quoted string = squote string | dquote_string

option = ton' | 'off' | 'require'

numerical_param = 'max_concurrency' | 'max_message_size' |
'max_msgs_per_session' | 'max_rcpts_per_msg' |
'smtp_banner code' | 'rate_limit' |
'max_rcpts_per hour' | 'max_rcpts_per_hour_code' |
'netmask’

string param = 'smtp banner text' | 'max_rcpts_per_hour_ text' |
'tls' | 'use_sb'

param = numerical_param space* '=' space* number |
string param space* '=' space¥* quoted_string

params = param [[',' | WSP] WSP+ param]*

param block = '{' WSP* params WSP* '}’

table = entry*

entry = comment | label definition | host_line

[0224] A HAT can be imported into the system, and comments made with the # sign are
stripped out. The file can be internally represented with two data structures, one
containing the list of behavior definitions, and the other containing the list of the
mappings between hosts and behaviors.

[0225] Behavior definitions can be stored as a dictionary that is keyed off the names of
the definitions. The value of each key is a tuple of a behavior code and a dictionary of
parameters. The five behavior codes are “CONTINUE”, “ACCEPT”, “RELAY?”,
“REJECT”, and “TCPREFUSE”. Any entry with a behavior that is not “CONTINUE” is

one that may be matched during IP address processing.

-53-

WO 2005/119485 PCT/US2005/019037

[0226] The following is an example of a set of behavior definitions, following by a

representation of the data structure.

$BLACKLIST REJECT { smtp banner text="You have been
blacklisted." }
SWHITELIST ACCEPT { max_concurrency = 600,

max_messadge_size = 20M,
smtp_banner code = 220,
smtp_banner text = "Hello there." }
SGREYLIST) ACCEPT { max_message_size = 5M,
max_rcpts_per_hour = 5k,
max_rcpts_per_hour_ text =
"You have exceeded 5,000 recipients this hour.
If you feel this limit is too low, please contact mailadmin@mycompany.com"
}
behaviors = {'BLACKLIST':
('REJECT', {'smtp_banner_ text':'You have been
blacklisted.}),
'WHITELIST' :
('ACCEPT', {'max concurrency':600,
'max_message_size':12582912,
'smtp_banner_ code':220,
'smtp banner text':'Hello there.' N,
'"GREYLIST':
('"ACCEPT!, {'max_message_size':5242880,
'max_rcpts_per_hour':5120,
'max_rcpts_per_hour_text':'You have exceeded 5,000

recipients this hour.\nIf you feel this limit is too low, please contact

mailadmin@mycompany.com'}),

}

[0227] The mapping of hosts to behaviors can be implemented as an ordered list. Each
element of the list is a tuple containing: (1) the label (or None if there is no label), (2) a
list of lists of hosts (each nested list is an aggregate), (3) the behavior (either a string, if
referring to a behavior definition, or a behavior tuple, as above, if the definition is

“inline™), and (4) an entry comment (or None, if there is not comment associated with the

entry).

-54-

WO 2005/119485 PCT/US2005/019037

[0228] Each host is represented itself as a tuple of three values: the type (e.g., IP address,
hostname, or SenderBase organization ID), the host itself (e.g., an IP address, CIDR
block, domain name, etc.), and a comment (or None, if there is no associated comment).
[0229] The following shows an example set of HAT mappings, followed by the

representation of the data structure.

Personal_IPs:
10.1.1.7 (Joe's Computer), # Joe's computer
10.1.2.255/24 (Tom's Computer) # Tom's computer
ACCEPT { max message_size=20M }
Blacklisted: .spamco.com (SpamCo), sbo:1234 (Spamatron) $BLACKLIST

(Spammers)

HAT mappings = [("Personal_ IPs",

[("10.1.1.7", "Joe's Computer"),
("10.1.2.255/24", "Tom's Computer")],
"ACCEPT",

{"max_message_size":20971520},

None) ,

("Blacklisted",
[(".spamco.com", "SpamCo"),
("sbo:1234", "Spamatron")l,
"SBLACKLIST",

"Spammers") ,

]

[0230] In some implementations, a recipient access table (RAT) specifies which
recipients will be accepted. The RAT specifies the recipient address, which may be a
partial address or hostname, and whether to accept the recipient address or to reject the
recipient address. In some implementations, the RAT can be used to denote recipient
addresses that are not subject to injection control by the HAT.

[0231] For example, for some commonly used addresses, such as “postmaster” at a
particular domain, the user does not want the system to limit messages addressed to such
common addresses. As a specific example, if the system restricts message injection from
an IP address, the user typically would want that sender to be able to send a message to
the “postmaster”” email address to inquire as to why the sender’s messages are being

limited. This can be particularly useful in situations in which an IP address is being

-55-

WO 2005/119485 PCT/US2005/019037

limited by the system inadvertently, such an IP address associated with a partner
company, as opposed to an IP address associated with a spammer. If such senders could
not have a way in which to get a message through to the mail administrator of the
recipient host, the user may have a difficult time learning that an IP address is being
limited that should not be since the messages from the sender inquiring as to the limited
message flow would itself be blocked by the injection control portion of the system.
[0232] Optionally, the SMTP response to the “RCPT TO” command can be included for
the recipient. Each injector has its own RAT. The hosts are listed in order from top to
bottom, and in some implementations, the first rule to match is used.

[0233] Examples of the addresses that can be used in the RAT include the following.
Multiple addresses can be specified.

e user@domain - a complete emall address.

fgdn - a fully qualified domain name.
e .partialhost- everything with the partialhost domain.
e user@ - anything with the given username.

e ALL - special keyword that matches ALL addresses, typically

used as a catch-all when no other addresses are matched.

[0234] Typically, there are two access rules included in the RAT, as follows:
(1) ACCEPT - the connection is accepted, with injection limited
by the recipient access table (RAT). -
(2) REJECT - the connection is refused, the sender gets a 4xXX or

5xx SMTP message, but no messages are accepted.
[0235] The following is an example RAT.

yahoo. com ACCEPT
example.com REJECT smtp_response_code=554 smtp_banner_text="Go away."

postmaster@ ACCEPT smtp_response_code=250

smtp_response_text="Postmaster mail accepted."

ALL REJECT

[0236] For new injectors, default RATs can be established. For example, a new public
injector can use “ALL REJECT” while a new private injector can use “ALL ACCEPT.”
[0237] Generally, the format of the RAT is the same as for the HAT except for the

address and access fields.

-56-

WO 2005/119485 PCT/US2005/019037

J. Managing Information Relating to Senders of Electronic Messages

(1) Overview

[0238] This section describes approaches and techniques for collecting, aggregating, and
managing information relating to the senders of electronic messages. In one aspect, the
techniques include obtaining a first set of data from a first source and related to one or
more message senders each sending one or more electronic messages, obtaining a second
set of data from a second source and related to the one or more message senders each
sending one or more electronic messages, determining message volume information
related to the one or more message senders based on the first set of data and the second
set of data, and providing the message volume information related to the one or more
message senders.

[0239] In another aspect, the approaches include receiving one or more messages from a
particular message sender, sending a request for message volume information related to
the particular message sender, receiving the message volume information related to the
particular message sender, where the message volume information related to the
particular message sender was determined by obtaining a first set of data from a first
source and related to one or more message senders each sending one or more electronic
messages, obtaining a second set of data from a second source and related to the one or
more message senders each sending one or more electronic messages, determining
message volume information related to the one or more message senders based on the
first set of data and the second set of data, and limiting delivery of messages from the
particular message sender based on the message volume information related to the
particular message sender.

[0240] In another aspect, the approaches include receiving one or more messages from a
particular message sender, sending a request for message volume information related to
the particular message sender, receiving the message volume information related to the
particular message sender, where the message volume information related to the
particular message sender was determined by obtaining a first set of data from a first
source and related to one or more message senders each sending one or more electronic
messages, obtaining a second set of data from a second source and related to the one or
more message senders each sending one or more electronic messages, determining
message volume information related to the one or more message senders based on the

first set of data and the second set of data, and blocking delivery of a particular message

-57-

WO 2005/119485 PCT/US2005/019037

from the particular message sender based on the message volume information related to

the particular message sender.

(2) Example Information about an Email Sender

[0241] Example information that a data processing unit may collect for message senders
are: time of the first request for information about that email sender, volume over time of
requests for information about that email sender, percentage of total volume of all
requests for information about that email sender, network owner of the IP address from
which the message is sent, network topology information for the area of the network in
which the IP address of the email sender is located, category of enterprise or organization
to which the email sender belongs, time that the IP address of the sender last changed
ownership, geographical location of the email sender, geographical information about the
path the email message has taken, or any other appropriate information.

[0242] The time of the first request for information about a particular email sender may
be obtained by keeping information related to each request for information for each
sender about which information is requested. Whenever information is requested for a
sender, a record or set of records related to the request for information may be recorded or
modified. For example, if no information for that sender has been recorded previously,
then a new record or set of records is created and the time of the first request is recorded.
[0243] A data processing unit collects the volume over time of requests for information
about an email sender or group of senders. The calculation of volume over time may be
performed in any appropriate manner and for any appropriate time periods. For example,
the volume over time may be calculated as the number of requests for information about a
particular sender or group of senders over a day, week, month, 30-day period, or year. As

another example, the volume over time is calculated as a percentage as follows:

Percent volume over time T =
(number of information requests for a particular sender or
group of senders for time T) / (total number of information

requests for all senders for time T)

[0244] Alternatively, the volume over time may be calculated as an estimate of total
number of messages a particular sender or group of senders has sent on the entire Internet

as follows:

Estimated Total Number of Messages over Time T =

-58-

WO 2005/119485 PCT/US2005/019037

Estimated Total Number of Messages on Internet over time T *

Percent volume over time T

[0245] Alternatively, the volume over time may be calculated logarithmically to provide
a magnitude value as follows:

Magnitude value for time T= 10 + log;, (Percent volume over time

T)

[0246] Another example of a volume over time calculation is the fluctuation in volume
over time. For example, one or more of the following can be used: determine the
fluctuation in volume over time as a percentage or absolute change in any appropriate
volume calculation over time T1 as compared to time T2, where T1 < T2; determine a
percentage or absolute change in any appropriate volume calculation over time T1 as
compared to time T2, where T1 and T2 do not overlap; determine a percentage or
absolute change in any appropriate volume calculation over time T1 as compared to time
T2, where T1 < T2 and T2 represents the entire time range for which information about a
sender or group of senders has been collected; or any other appropriate calculation.
[0247] A data processing unit determines the network owner associated with a message
sender based on the IP address from which the message is sent. Also, a network owner
can be determined by geographical location, domain name, or any other appropriate
identifier associated with the sender. In other implementations, a network owner is
determined by querying a list or data structure of known network owners of IP addresses,
or a determination of network owner may be based on domain name, geographical
location, or any appropriate information.

[0248] Network owners are typically broken up into one or more groups, herein called
network operators. For example, an Internet Service Provider (ISP) may be listed as the
network owner for a large block of IP addresses. In such an example, the network
operators of portions of the IP addresses owned by the network owner (the ISP) may be
used by an email gateway or other server or application to indicate blocking a message,
bouncing a message, throttling messages from a sender or group of senders, or displaying
the information based on the network owner or network operator.

[0249] The network operators of IP addresses within a set of IP addresses owned by a
single network owner are estimated by assigning separate blocks of IP addresses to
separate operators, receiving information from the network owner indicating which IP

addresses are operated by which network operators, or estimating network operators

-59-

WO 2005/119485 PCT/US2005/019037

based on domain names associated with the IP addresses. For example, an ISP is a
network owner and owns a block of IP addresses at “152.2.*.*”, In such an example, the
block of IP addresses may be broken up into blocks of 256 IP addresses: “152.2.1.%”,
“152.2.2.%7,...,152.2.256.%”

[0250] The decision whether to break up a network owner may be based on the number
of IP addresses owned by the network owner or by the category of the ISP. For example,
if an ISP owns 1024 IP addresses, it may be useful to divide the 1024 IP addresses into
four sets of 256 IP addresses and assign a network operator to each. In such an example,
any blocking, throttling, or other action taken based on the network operator will not
effect all of the potential message senders with IP addresses owned by the ISP, but will
effect only a portion of the senders. As another example, an email-marketing firm that
owns 1024 IP addresses may not have its 1024 IP addresses divided into multiple network
operators. In such an example, any and all messages may be considered to come from the
same company and should be, if appropriate, blocked, throttled, or any appropriate action
taken. Assigning a network operator to a set of IP addresses comprises assigning a new
network owner corresponding to the network operator for the set of IP addresses.

[0251] The data processing unit obtains network topology information for the area of the
network in which the IP address of the email sender is located. In some implementations,
network topology information that is associated with a particular sender includes network
owners of IP addresses near the IP address of the particular sender, network owners of
other IP addresses associated with the same geographical area, or any appropriate
network topology information. For example, a particular sender has a particular IP
address. If that IP address is near one or more other IP addresses that are suspected spam
senders, then the IP address may be rated as more likely to produce spam. As a specific
example, an IP address is near another if the two IP addresses have the same high-order
significant bits, where the number of bits that are high-order significant bits may be any
number of bits, including from 1 bit to 31 bits.

[0252] The data processing unit obtains the category of the enterprise or organization
associated with the email sender. For example, the categories associated with email
message senders can be airlines, Fortune 500 companies, Fortune 1000 companies,
Fortune 1500 companies, ISPs, banks, or any appropriate category. .

[0253] The data processing unit records the change of ownership of an IP address. In
some implementations, the change of ownership is recorded by clearing previous

information about the IP address or indicating that the owner of the IP address is

-60-

WO 2005/119485 PCT/US2005/019037

unknown. Information that may be cleared about the IP address or other indicator may
include the first recorded request about a message, volume of requests, or any other
appropriate information. In one embodiment, the information request handler keeps track
of the number of times that an IP address changes owners. The information about change
of ownership combined with other information, such as message volume information,
may be used to indicate that a sender may be sending spam.

[0254] The data processing unit records geographical location of the email sender. For
example, the geographical location of the email sender is determined by the IP address,
domain name, or a look up table indicating the geographical location of the email sender.
Geographical information may be useful in determining which messages are valid. As
another example, if a particular email recipient never receives email from China, then a
message from China may be more likely to be spam.

[0255] The data processing unit obtains geographical information about the path the
email message has traveled, or the geographical path, based on the header information in
the email message. The header information in the email message may indicate a path the
email message has taken since it was sent. Geographical information may be determined
based on the header information in any appropriate manner, including determined by the
IP address, domain name, or other look up table indicating the geographical location of
gateways the email message has traversed.

[0256] The techniques described herein are in no way limited to using the types of
information that are described herein. Any appropriate type of information related to the
email sender, email messages, or email recipient may be used. For example, information
related to email messages may include information in the content of the message, such as
the existence of keywords or tokens. An example of email recipient information may be
the amount of spam a particular email recipient receives. For example, if 90% of the
email that a particular email recipient receives is spam, then that information may be used

to aid in the estimation of whether an email directed to that recipient is spam.

(3) Example Process for Managing Information Related to Electronic Messages

[0257] The following is an example of a process for collecting, processing, and making
available information related to electronic messages.

[0258] First, data related to information about email senders is obtained. Various types
of data that may be obtained from the following: an email gateway, an information

request handler, an email client, or any other appropriate source. As a specific example,

61-

WO 2005/119485 PCT/US2005/019037

data is obtained by requesting the information from the information source.
Alternatively, the information source may provide the information based on any
appropriate event or based on any appropriate schedule instead of being provided in
response to arequest. The data may also be obtained by performing a DNS zone transfer.
Additionally, multiple sets of data for one or more email senders may be obtained from
multiple sources or from the same source at two or more different times.

[0259] Next, the data related to information about email senders is processed. For
example, multiple sets of data related to email senders obtained from multiple sources or
obtained from the same source at different times may be taken in aggregate and
processed. As another example, processing the data includes determining one or more of
the following: a volume of messages over time, the percentage of message sent by a
message sender compared to all messages sent, a magnitude value, a change of absolute
or percentage of total messages of a particular time period as compared to a different time
period, a change of absolute or percentage of total messages during a particular time
period as compared to absolute or percentage of total messages since the first request for
information about the sender was received, or any other appropriate calculation. As
another example, a data processing unit calculates a magnitude value for a particular
network owner associated with a particular message sender and determines the change in
the magnitude value as compared to the magnitude value for the previous day.

[0260] In some implementations, processing information related to a message sender
includes storing information related to the message sender in a database, flat file, or other
storage mechanism. For example, processing information related to a message sender
includes determining the network owner or network operator associated with the message
sender. As another example, the IP address, domain name, geographical location, or
network topology of the message sender is used to determine the network owner or
network operator associated with the message sender. The decision whether to associate
a network owner or network operator with a message sender is based on whether the IP
address or domain name of the message sender is in a set of IP addresses or domain
names associated with the network owner or network operator.

[0261] The determination of which network operator to associate with a message sender
is made by dividing the set of IP addresses for a network owner associated with a
message sender into two or more network operators and determining which network
operator to associate with a message sender based on which network operator is

associated with a set of IP addresses containing the IP address of the message sender. A

-62-

WO 2005/119485 PCT/US2005/019037

network owner is divided into network operators based on the category of the network
owner, based on the number of IP addresses associated with the network owner, based on
information about one or more network operators within the network operator, or any
other appropriate decision. For example, a message sender is associated with an IP
address, which is associated with a particular network owner. The particular network
owner is an ISP that owns 1024 IP addresses. The network owner is split into four
network operators, each corresponding to 256 IP addresses. The message sender’s IP
address fall into the range associated with a particular network operator, and the message
sender is associated with the particular network operator.

[0262] Processing the data related to information about email senders includes
determining or storing category information for network owners and network operators.
Determining the category information for network owners or network operators may
include receiving the category information through a GUI, via an electronic interface, or
from an email gateway, information request handler, email client, or any appropriate
source. Alternatively, the category information may be determined automatically using
an automatic categorizer based on keyword detection, Naive Bayes, or any other
appropriate categorization mechanism. Determining the category information includes
accessing a list containing category information and cross-referencing it to message
senders, network owners, or network operators. The category information includes a list
of airlines, Fortune 500 companies, Fortune 1000 companies, Fortune 1500 companies,
ISP’s, or any other appropriate category.

[0263] Processing the data related to information about email senders includes
determining information related to the history of an IP address associated with the
message sender. The information about the history of the of the IP address includes
determining when a first request for information was made about the message sender,
how many requests have been made about the sender, how many requests over time have
been made about the sender, how often the IP address has changed network owners, when
the IP address last changed ownership, and any other appropriate information. For
example, a data processing unit processes data related to an IP address’ history in order to
determine and store when a request for information about the email sender was first
made.

[0264] Processing the data related to information about email senders includes
determining geographical information. An external electronic service is queried to

determine the geographical location of a message sender. The geographical location of a

-63-

WO 2005/119485 PCT/US2005/019037

message sender is determined by looking up the location of the IP address associated with
the message sender in a lookup table or by querying an electronic service, and then the
geographical path of a message is determined. The geographical locations of hubs,
routers, or gateways through which the email traveled are determined. The information
about hubs, routers, or gateways through which the email traveled is determined by
parsing the message header. For example, a data processing unit parses the header of a
message from a message sender in order to determine the geographical location of all
hubs, routers, and gateways through which the email has traveled.

[0265] Next, information related to email senders is made available. The information is
made available via a graphical user interface or an electronic interface, and the
information is made available by responding to requests for information about message
senders, by sending it to an interested party based on particular rules, or by making the
data available in a public or private website.

[0266] The graphical user interface, by which the information related to email senders is
made available, can be from a web site, a graphical interface to a computer program, or
any other appropriate graphical interface. Single items or multiple data items as
described herein are presented in the graphical user interface.

[0267] The information related to email senders may also be made available via an
electronic interface. For example, the electronic interface is a DNS-like interface.
Alternatively, any appropriate electronic interface may be used, including a web service,
arsync gateway, a FTP server, a HTTP server, a HTTPS server, a defined remote
procedure call interface, a TCP/IP sockets interface, a UDP interface, or any other

appropriate interface.

K. Determining a Reputation Score for a Sender

[0268] In some implementations, a reputation of a message sender is determined by
obtaining two or more lists from two or more list providers, then determining which lists
of the two or more lists indicate the message sender, and then determining a reputation
score for the message sender based on which lists of the two or more lists indicate the
message sender.

[0269] In addition, an indication can be provided that a message is unsolicited based on a
reputation score. Also, information from the two or more lists can be stored in an
aggregate list data structure, and determining what lists indicate the message sender

includes querying the aggregate list data structure. In a related feature, a particular list is

-64-

WO 2005/119485 PCT/US2005/019037

one of the two or more lists and the particular list contains one or more entries, and
storing information from the two or more lists in the aggregate list data structure includes
determining the difference of the particular list with a previous version of the particular
list, storing entries of the particular list that were not in the previous version of the
particular list in the aggregate list data structure, and removing from the aggregate list
data structure entries that are not in the particular list but were in the previous version of
the particular list.

[0270] In yet another related feature, determining the reputation score includes
determining an individual score for each list of the two or more lists and determining an
output score based on the individual score for each list in the two or more lists. Also,
determining the output score includes determining an aggregate score based on the
individual score for each list of the two or more lists, determining a normalized score
based on the aggregate score, and determining the output score based on the normalized
score.

[0271] In some implementations, the individual score for each list in the two or more lists
each includes an individual probability and a list of probabilities includes the individual
probability for each list in the two or more lists, and determining the aggregate score
based on the individual score for each list of the two or more lists includes performing a
Chi Squared calculation on the list of probabilities. In related features, the approach
includes one or more of the following: receiving a request for the reputation of the
message sender; receiving the request for the reputation of the message sender by
receiving a request formatted as a DNS request; the message sender is associated with a
particular IP address; determining what lists of the two or more lists indicate the message
sender includes determining for a particular list of the two or more lists whether the
particular IP address of the message sender is contained in an IP address range indicated
by the particular list; and if a particular list indicates an IP address range, seiting a bit
corresponding to the particular list in a particular list bit mask data structure
corresponding to the IP address range.

[0272] In some implementations, setting the bit corresponding to the particular list is
performed for each list of the two or more lists, and the sender corresponds to a particular
IP address, the particular IP address is contained within a first IP address range that has
associated with it a first list bit mask, and the IP address is contained within a second IP
address range associated with a second list bit mask. In addition, determining which lists

of the two or more lists indicate the message sender can be accomplished by performing

-65-

WO 2005/119485 PCT/US2005/019037

an “or” operation on the first list bit mask and second list bit mask to produce a third list
bit mask and determining what bits are set in the third list bit mask.

[0273] Some implementations can include receiving a message from a message sender,
obtaining a reputation score of the message sender, where the reputation score of the
message sender was determined by obtaining two or more lists from two or more list
providers, determining which lists of the two or more lists indicate the message sender,
determining the reputation score for the message sender based on which lists of the two or
more lists indicate the message sender, and if the reputation score is worse than a first
predefined threshold, indicating that the message is unsolicited.

[0274] Related features include one or more of the following: if the reputation score is
better than a second predefined threshold, an indication is made that the message is valid,
where the first predefined threshold is different from the second predefined threshold; if
the reputation score is better than the first predefined threshold and worse than the second
predefined threshold, indicating that the message is not estimated as either valid or
invalid; sending a request for the reputation score of the message sender; obtaining the
reputation score of the message sender by receiving a response to the request for the
reputation score of the message sender; and sending the request for the reputation score of
the message sender includes sending a particular request formatted as a DNS request.
[0275] The following example for determining a reputation score is described assuming
that the sender is associated with an TP address. The techniques described herein,
however, are in no way limited to use of IP address as an identifier of a sender. In other
embodiments, the sender is identified by domain name, email address, geographical
location, or any appropriate mechanism.

[0276] First, a score is obtained corresponding to each list. For example, this score is
obtained by determining, for each blacklist, whether the sender’s IP address is in the
particular list. If the IP address is indicated in the particular list, then the score for the list
represents a certain percentage likelihood that the message is an unsolicited electronic
message (often higher than 50%). If the IP address is not indicated in the particular list,
then the score for the list still represents a certain percentage likelihood that the message
is an unsolicited message (often less than 50%).

[0277] In another example, this score is obtained by determining, for each “white” list,
whether the sender’s IP address is in the particular list. A white list is a list of IP
addresses and ranges that are believed to be associated with senders of legitimate

electronic messages. If the IP address is indicated in the particular list, then the score for

-66-

WO 2005/119485 PCT/US2005/019037

the list represents a certain percentage likelihood that the message is unsolicited (often
less than 50%). If the IP address is not indicated in the particular list, then the score for
the list represents a certain percentage likelihood that the message is unsolicited (often
higher than 50%).

[0278] In other examples, a white list or blacklist will contain ranges of IP addresses and
exceptions to those IP addresses, thereby including all IP addresses in a range except
those that are excluded. The white lists and blacklists contain integer or floating point
values indicating scores for IP address ranges and IP addresses, and these scores are used
to determine an aggregate score for an IP address with respect to the lists. Also, an
aggregate list data structure is queried to determine which lists indicate the sender.
[0279] Next, an aggregate score is generated based on the scores for each list determined
above. For example, the score for each list is a percentage likelihood that a message is
unsolicited and the aggregate score is an aggregate percentage likelihood that is generated
based on the individual percentages likelihoods. As another example, this aggregate
percentage likelihood is based on a weighted average of the individual percentages
likelihoods, a sum or product of the individual percentages likelihoods, a polynomial of
the individual percentages likelihoods, or any appropriate calculation. As yet another
example, the aggregate percentage is based in part on the Chi Squared function over the
probabilities, a Robinson calculation, a Bayes calculation, or any other appropriate
mechanism. As a specific example, the Chi Squared function is depicted in the Python
Programming Language (www.python.org) code.

[0280] Next, the aggregate score is mapped to a normalized score. For example, the
aggregate score is an aggregate percentage, and the normalized score is a mapped
percentage that has the range from 0% to 100%, and this step is performed by mapping
the aggregate percentage to the normalized range from 0% to 100%. As another example,
this mapping is linear, piecewise linear, cubic, polynomial, or uses any other appropriate
function. As a specific example, a piecewise linear method of mapping the aggregate
function is used and comprises determining the known lowest possible probability (LP),
the known average probability (AP), the known highest possible probability (HP), and
linearly mapping percentages from LP to AP to 0% to 50% and percentages from AP to
HP to 50% to 100%. In equation form, with aggregate probability represented as P, this

can be represented as follows:
Mapped Percentage (MP) = { if (P < AP); (P - LP) * 50 / (AP -
LP)

-67-

WO 2005/119485 PCT/US2005/019037

{ else; (P - AP) * 50 / (HP - AP) + 50.
[0281] For example, if LP is 30%, AP is 40% and HP is 80%, then percentages from 30%
to 40% would map to 0% to 50% and percentages from 40% to 80% would map to 50%
to 100%. In such an example, 35% would map to 25% and 60% would map to 75%.
[0282] In related examples, LP is determined by performing the calculations of the
previous step using the lowest possible score (e.g. percentage) for each of the lists, and
HP is determined by performing the calculations of the previous step using the highest
possible score (e.g. percentage) for each of the lists, and AP is determined by performing
the calculations of the previous step using a random sample of possible values and
averaging the result.
[0283] Next, the normalized score is mapped to an output score. In one embodiment, a
mapped percentage is mapped to an output (mapped) score. In various embodiments, this
mapping is linear, piecewise liner, cubic, piecewise cubic, polynomial, or piecewise
polynomial, exponential, piecewise exponential, or any appropriate mapping. In one

embodiment, this mapping is performed by using a piecewise function such as:
Mapped Score (MS) = { if MP < .5 ; (-log (MP)/ log (2) - 1) / lo_k
{ else ; 1.0/hi_k * (1- 1/log(2) * (log (1/(1-MP)
)
[0284] where lo_k and hi_k are constants. It may be beneficial to use hi_k and lo_k

values approximately in the range of 0.5 and 2.0. It may be beneficial to use hi_k and
lo_k values approximately in the range of 0.6 and 1.0. Hi_k and lo_k may each have the
same value or may have different values.

[0285] These examples of determining a reputation score for an electronic message
sender are based on which lists indicate the IP address of the sender. A result of this

example is the determination of a composite score for the sender of the email messages.

L. Controlling Mail Injection

[0286] The most basic approach to controlling the injection of mail to a system from a
sender is to either allow all messages from the sender or to reject all messages from the
sender. Such an “all or nothing” approach is simple and easy to implement, but it may
not be appropriate in all situations, and thus, it is desirable to have the ability to define a
“grey” area between allowing everything and allowing nothing such that some messages
will always be allowed, but at a certain point, messages will be rejected or limited.

Allowing some but not all messages may be referred to as injection control because the

-68-

WO 2005/119485 PCT/US2005/019037

rate at which senders can send or “inject” email messages to an MTA is limited or
controlled. Other equivalent terminology includes “throttling” the flow of messages
because some but not all messages are allowed in a given time, and thus the overall rate at
which email messages are being accepted by the MTA from the sender is being limited or
throttled to a specified rate.

[0287] The ability to throttle mail injection, or to control the rate at which one or more
senders can send messages to a recipient domain, can be useful for a number of reasons.
For example, a high injection rate can be indicative of spam, which is generally
undesirable. As a specific example, if a company with a mail gateway device that
normally receives a few hundred email messages per hour suddenly begins to receive
over a thousand message each hour from a particular IP domain, it is likely that the email
messages are part of a spam campaign from the IP domain.

[0288] As another example, a large influx of otherwise desired messages over a short
period of time can cause problems for the recipient domain, including crashing the
recipient domains mail servers. As a specific example, if a large company works with an
outside contractor to send press releases, copies of which are to be sent to all the
employees of the large company, the mail servers at the large company could experience
stability problems due to the large number of messages being sent in a short period of
time. Since the large company wishes to have each employee receive the press release,
but the large company also wants to avoid stability problems with its mail servers, the
ability to control and limit the rate that the messages containing the press release are
received can be beneficial.

[0289] The threshold point at which a sender, or a remote injector, of email messages is
to be controlled depends on the particular implementation and can be configured by the
user of the system, such as the administrator of an MTA, although a default value can also
be used even if the user has not specified a value. For example, a sender injecting

200 messages/hour may be indicative of a spammer at a small company having only 50
employees, but for a large company with 10,000 employees, such an injection rate may be
perfectly normal for mail from non-spam sources.

[0290] Once the threshold limit is reached on the rate that a sender is injecting messages,
one of a number éf approaches can be taken to limit the rate at which subsequent
messages are injected. For example, the injection of the messages can be artificially
slowed over each connection. However, a spammer can circumvent this approach by

opening more connections, although as described herein, the number of connections can

-69-

WO 2005/119485 PCT/US2005/019037

also be limited. As another example, the recipients can be rejected by the recipient
domain, such as be sending a 452 SMTP error code that indicates that the sender has
injected too many recipients. This allows the system to continue to count recipients,
which can be done after the message is accepted but prior to forwarding the message to
the recipient. As additional examples, TCP_REFUSE or accept_then_close can be used
instead of sending a 4xx SMTP error code (e.g., a polite refusal, in contrast to the less
polite TCP_REFUSE or accept_then_close approaches).

[0291] Mail injection can be controlled based on one or more rules, such as one or more
entries in the HAT. As data is accumulated via the counters, that measured data is
compared to the parameters in the HAT to determine if any actions are to be taken. Itis
possible that more than one action will apply to a particular situation. For example, a
HAT entry may exist specifically for IP address 1.2.3.4, plus another entry for the CIDR
block of 1.2.3/24, both of which would apply to a connection from IP address 1.2.3.4. As
aresult, the system determines which of the two entries to apply. In some
implementations, the HAT is order specific such that the first entry in the HAT that
matches to the connection is used. Thus, if the entry for CIDR block 1.2.3/24 is listed
before the entry for IP address 1.2.3.4, the action for the entry for CIDR block 1.2.3/24 is
used. In other implementations, each entry in the HAT includes a priority identifier, and
the entry with the highest priority identifier is used.

[0292] Any of a number of attributes can be matched in the HAT, including but not
limited to, one or more of the following: a network address, an IP address, an IP address
range, a CIDR block, an exact FQDN match, a partial FQDN match, and a SenderBase
organization ID. As a catch-all or default entry, a default value, such as “ALL,” can be
used for controlling the injection rate when no other HAT entry matches, and thus the
“ALL” entry can catch senders that are otherwise unclassified (e.g., not matched by any
other HAT entries).

[0293] For limiting injection and providing injection control, the HAT can include a
parameter that specifies the maximum number of recipients in a particular time period,
such as the maximum number of recipients per hour (e.g., max_rcpts_per_hour). For
example, once the specified limit is reached, the system does not accept any more
recipients for the remainder of the time period (e.g., until the end of the hour for an hour-
based counter). The HAT can also include a parameter (e.g., max_rcpts_per_hour_text)
for the user to specify a custom SMTP response message to be used if a recipient is

rejected due to such a rate limitation, as well as the SMTP code that should be returned

-70-

WO 2005/119485 PCT/US2005/019037

(e.g., max_rcpts_per_hour code for which the default can be set to SMTP code 452).
The system can be configured to use a default text response if the user does not specify a
custom response. For example, the default text response can be “Too many recipients
injected this hour” for an hourly based injection rate counter/limitation.

[0294] In the situation in which the catch-all HAT entry “ALL” is used, and it is that
entry that is matched on the counter that exceeds the specified limit, additional handling
can be performed if the system is configured to work with SenderBase. For example, if
SenderBase has supplied a Flow Control Coefficient, the rate limit specified for the
“ALL” entry in the HAT can be multiplied by the coefficient prior to comparison to the
counter. Thus, the coefficient is a positive floating point number that is greater than zero
and can typically is less than or equal to one. However, it is possible that the coefficient
could be greater than one, depending on the output from SenderBase and approach used
to determine the coefficient.

[0295] Typically, the counter used for controlling mail injection is the rate at which
recipients are accepted by the recipient host domain. A recipient is considered to be
“accepted” if the recipient is not rejected due to rate limiting of the mail flow. Asa
result, if the recipient is rejected due to improper email address format or because the
system is not supporting relaying, the counter is not incremented. However, in other
implementations, the counter is incremented regardless of the reason for the recipient

being rejected.

M. Controlling the Number of Connections to a Recipient Domain

[0296] Techniques are described for controlling the number of connections to a recipient
domain or recipient host. For example, the system establishes a counter for the number of
connections to a recipient host, such as an MTA, and when the number of connections
exceeds a specified number, no further connections are allowed until the number of
current connections drops below the specified number. As a specific example, a mail
server may have a limit of 50 connections at any given time, so that when the 51st
connection is attempted, the mail server refuses to establish the connection with the
sending host.

[0297] In some implementations, the number of allowed connections is counted based on
one or more sender identifiers. For example, the number of connections from an IP
address can be limited to a specified number, and the number of connections from another

IP address can be limited to another specified number. In general, any type of sender

71-

WO 2005/119485 PCT/US2005/019037

identifier can be used, including but not limited to, one or more of the following: a
network address, an IP address, a range of IP addresses, a list of IP addresses, a domain, a
fully qualified domain name, a SenderBase organization ID, and a reputation score, such
as a SenderBase reputation score.

[0298] In one embodiment, the maximum number of connections is specified by a
parameter in the HAT. For example, a variable called “max_concurrency” is used to
specify the number of connections for the associated sender identifier. In general, any
type or combination of sender identifiers can be used on the left side of the HAT so that
the system aggregates connections from all of the corresponding sender IP addresses and
compares the aggregate number of connections to the specified maximum number of
connections, and when the limit is exceeded, each connection is treated with the REJECT
action.

[0299] In addition, in some implementations, one or more sender identifiers can be
excluded from the counter that is compared to the maximum number of allowable
connections. For example, the user can add an entry to the RAT to specify one or more
IP addresses or other sender identifiers that are not to be counted against the maximum

number of connections for the sender identifier that is specified in the HAT.

N. Limiting Directory Harvest Attacks

[0300] In one embodiment, the system tracks the number of invalid recipient addresses,
and when a specified number of invalid recipient addresses have been received, the
system no longer sends a bounce message to the sender. For example, a spammer can use
a directory harvest attack to generate a list of valid email addresses for a host domain.
Because the recipient host typically generates a bounce message when a message is
addressed to an invalid email address, the spammer can determine valid email addresses
based on the lack of a bounce message, thereby constructing a directory of valid email
addresses at the recipient host. While directory harvest attacks can be prevented by never
sending bounce messages, there will be messages that include invalid addresses, due to
typographical errors in entering the address for example, for which a bounce message
should be desired. The approach described herein allows a limited number of bounce
messages, but at a certain point, bounce messages are no longer returned to the sender of
the emails having invalid email addresses, based on the assumption that when the
specified limit is reached, the likely cause of so many invalid recipient addresses is that a

directory harvest attack is occurring.

-72-

WO 2005/119485 PCT/US2005/019037

[0301] For example, the HAT can include a rule that associates a sender identifier with a
variable, such as max_invalid_rcpts_per_hour, that specifies the maximum allowed
number of invalid email recipient addresses in a given time period, such as one hour. A
counter is used to track the number of invalid email addresses from the sender. So long
as the counter does not exceed the specified limit, invalid addresses are treated in the
typical fashion, with an SMTP response being sent back to inform the sender that the
email address is invalid (e.g., a bounce message). However, when the counter exceeds
the specified maximum number of invalid email addresses during the time period, bounce
messages are no longer sent to the sender and the messages are dropped. At the end of
the time period, the counter is reset to zero and begins tracking the number of invalid
recipients from the sender once again.

[0302] As aresult, when a directory harvest attack occurs, some of the initial messages
sent by the sender are treated in the normal fashion with bounce messages generated and
sent for any invalid addresses. The spammer can determine based on the initial messages
some valid and invalid email addresses. However, after the limit is reached and the
invalid recipient address messages begin to simply be dropped, the spammer no longer
receives any bounce messages, and thus the spammer is incorrectly led to believe that all
the messages are addressed to valid email addresses, when in fact many or perhaps even
most are not. When the spammer uses the subsequently created list of allegedly valid
email addresses, most will then bounce at a later time during a spam mailing campaign, or
will be treated again as a subsequent directory harvest attack.

[0303] The specified limit on the number of invalid recipient addresses can be set by the
user, such as the administrator for the MTA, and the MTA can be configured with a
default value and whether to have directory harvest attack prevention enabled or not. A
limit of zero can be used to disable the limit. As an example, a typical recommended
value for the maximum number of invalid recipients can be 10 invalid recipients per hour
per sender identifier (e.g., HAT entry).

[0304] Sender identifiers for directory harvest prevention work in the same manner as for
mail flow injection control and limiting the number of connections. Thus, the sender is
keyed off of the string value in the HAT host entry that matches the incoming connection,
or the constructed string value if the use SenderBase (e.g., “use_sb”) option is active.
[0305] In some implementations, the analysis of whether recipient addresses is performed
outside of the SMTP conversation. Thus, whether the recipient address is invalid is

determined after the SMTP conversation. Any bounce messages generated for invalid

-73-

WO 2005/119485 PCT/US2005/019037

recipient addresses must be sorted by the spammer to determine why the attempted
delivery failed, which servers to further deter the directory harvest attack.

[0306] For purposes of designating the start of a directory harvest attack, some
implementations may use the time at which the first invalid recipient email address that
exceeds the specified limit occurs. The detection of a directory harvest attack can be
logged and reported to SenderBase, if desired. The identification of a directory harvest
attack can include additional information, such as the IP address of the sender from which
the invalidly addressed messages originate, the reversed DNS results for the sender’s IP
address, the HAT entry that matched the sender, and the threshold limit for the number of
invalid recipients.

[0307] Optionally, an alert message can be sent to the user or administrator of the
recipient host, and the mail flow monitoring system can track the number of recipients
being rejected after the start of a directory harvest attack. For the alert sent to the user,
one or more of the following items of information can be included: notification of a
potential directory harvest attack, the fact that a message has been dropped (instead of
bounced), the IP address of the sender of the dropped message, the reversed DNS results
of the sender’s IP address, the HAT entry that matched the sender, the threshold/limit set
for the number of invalid recipients per period of time, the Envelope Sender from the
message envelope, the Envelope Recipient(s) from the message envelope, and the
Message Headers.

[0308] The following is a CLI example for establishing the parameters for directory

harvest attack prevention.

Enter the maximum number of recipients per message. Type DEFAULT to inherit

the

value from the default settings.

[1000] >

Would you like to specify a custom SMTP response? [N] >

Do you want to enable rate limiting per host? (Yes/No/Default) [Y]>
Yes

Enter the maximum number of recipients per hour from a remote host.

[100]> 1000

74

WO 2005/119485 PCT/US2005/019037

Would you like to specify a custom SMTP limit exceeded response?

[Y]>

Enter the SMTP code to use in the response. 452 is the standard code.

[452] >

Enter your custom SMTP response. Press Enter on a blank line to
finish.

Too many recipients received this hour

Would you like to enable Directory Harvest Attack Prevention

per host (Yes/No/Default) [l1> Y

Enter the maximum number of invalid recipients per hour from a remote
host.

[10]>

[0309] In addition, an optional web interface can be used by the user to configure

directory harvest attack prevention, along with other features as described herein.

0. Example System Performance Characteristics

[0310] The following example system performance characteristics provide an indication
of the performance of the email message monitoring system, although other
implementations can have widely different performance characteristics than those
provided herein. Thus, the following is to be considered in an exemplary sense of the
possible capabilities of the approaches described herein.

[0311] Assume that an email system receives email messages from 1000 different IP
addresses in a given minute-long period. For such a mail flow, the process of counting
bytes and messages by IP address slows the transfer rate of email messages by about two
tenths of one per cent (e.g., the message processing latency is determined by:

time with_counting < 1.002 * time_no_counting).

[0312] Other system performance characteristics of this exemplary system include, but

are not limited to, the following:

1. Ability to track 500,0000 unique IP addresses and 500,000 unique domain names

in daily database.
2. Ability to track 1000 unique IP address in a 10-second interval.

-75-

WO 2005/119485 PCT/US2005/019037

3. Algorithm(s) support O(n*log(n)) as the number network addresses.

4. Background copy of counters from memory to disk consumes no more than 1 per
cent of CPU.

5. Total background aggregation (including copy to disk) consumes no more than 3
per cent of CPU.

6. Memory usage no more than 1000 bytes per network address per interval
(includes both IP-indexed database and domain-name-indexed database).

7. 15 megabytes of RAM used by the email message monitor in typical system.

8. Atmost 50 megabytes of RAM used by email message monitor.

V. HARDWARE OVERVIEW

A. General Hardware Overview

[0313] The approach for monitoring email messages received at a sender described herein
may be implemented in a variety of ways and the invention is not limited to any particular
implementation. The approach may be integrated into an email system or a mail transfer
agent (MTA), or may be implemented as a stand-alone mechanism. Furthermore, the
approach may be implemented in computer software, hardware, or a combination thereof.
[0314] FIG. 5 is a block diagram that depicts a computer system 500 upon which an
embodiment may be implemented. Computer system 500 includes a bus 502 or other
communication mechanism for communicating information, and a processor 504 coupled
with bus 502 for processing information. Computer system 500 also includes a main
memory 506, such as a random access memory (RAM) or other dynamic storage device,
coupled to bus 502 for storing information and instructions to be executed by processor
504. Main memory 506 also may be used for storing temporary variables or other
intermediate information during execution of instructions to be executed by processor
504. Computer system 500 further includes a read only memory (ROM) 508 or other
static storage device coupled to bus 502 for storing static information and instructions for
processor 504. A storage device 510, such as a magnetic disk or optical disk, is provided
and coupled to bus 502 for storing information and instructions.

[0315] Computer system 500 may be coupled via bus 502 to a display 512, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device

76~

WO 2005/119485 PCT/US2005/019037

514, including alphanumeric and other keys, is coupled to bus 502 for communicating
information and command selections to processor 504. Another type of user input device
is cursor control 516, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 504 and for
controlling cursor movement on display 512. This input device typically has two degrees
of freedom in two axes, a first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0316] The invention is related to the use of computer system 500 for implementing the
techniques described herein. According to one embodiment, those techniques are
performed by computer system 500 in response to processor 504 executing one or more
sequences of one or more instructions contained in main memory 506. Such instructions
may be read into main memory 506 from another machine-readable medium, such as
storage device 510. Execution of the sequences of instructions contained in main
memory 506 causes processor 504 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used in place of or in combination
with software instructions to implement the invention. Thus, embodiments of the
invention are not limited to any specific combination of hardware circuitry and software.
[0317] The term “machine-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 504 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,
such as storage device 510. Volatile media includes dynamic memory, such as main
memory 506. Transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 502. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

[0318] Common forms of machine-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any
other optical medium, punchcards, papertape, any other physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other medium from which a
computer can read.

[0319] Various forms of computer readable media may be involved in carrying one or

more sequences of one or more instructions to processor 504 for execution. For example,

-77-

WO 2005/119485 PCT/US2005/019037

the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
500 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data on bus 502. Bus 502 carries
the data to main memory 506, from which processor 504 retrieves and executes the
instructions. The instructions received by main memory 506 may optionally be stored on
storage device 510 either before or after execution by processor 504.

[0320] Computer system 500 also includes a communication interface 518 coupled to bus
502. Communication interface 518 provides a two-way data communication coupling to
a network link 520 that is connected to a local network 522. For example,
communication interface 518 may be an integrated services digital network (ISDN) card
or amodem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 518 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 518 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

[0321] Network link 520 typically provides data communication through one or more
networks to other data devices. For example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data equipment operated by an
Internet Service Provider (ISP) 526. ISP 526 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Internet” 528. Local network 522 and Internet 528 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 520 and through communication
interface 518, which carry the digital data to and from computer system 500, are
exemplary forms of carrier waves transporting the information.

[0322] Computer system 500 can send messages and receive data, including program
code, through the network(s), network link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested code for an application program

through Internet 528, ISP 526, local network 522 and communication interface 518.

-78-

WO 2005/119485 PCT/US2005/019037

[0323] The received code may be executed by processor 504 as it is received, and/or
stored in storage device 510, or other non-volatile storage for later execution. In this

manner, computer system 500 may obtain application code in the form of a carrier wave.

B. Hardware Examples

[0324] The techniques disclosed herein can be implemented on devices that are used as a
mail server between one network and another, such as between the network of a company
and the Internet. Such devices may be referred to as mail gateway appliances (MGA’s)
because they act as a gateway between the networks and act as a mail server for sending
and receiving email messages. As examples, the IronPort A-Series Appliances and C-
Series Appliances produced by IronPort Systems, Inc., of San Bruno, California, can be
used to implement one or more of the techniques described herein. These appliances are
described in more detail below. However, the techniques described herein can be used
with any suitable mechanism, not just IronPort’s MTA’s or any other manufacturer’s
MTA’s.

[0325] The IronPort A-Series family includes two mail transport agents, the A30 and
A60, which provide high performance email delivery to a large number of recipients,
such as for commercial email delivery of transaction confirmations or customer
newsletters. The A30 can deliver 600,000 email messages per hour, and the A60 can
deliver 1,000,000 messages per hour, both of which are much greater than can be
achieved by traditional open-source mail transport agents (MTAs), such as general-
purpose servers running sendmail or qmail. Mail transport agents such as the IronPort A-
Series family of Messaging Gateway Appliances™ are sometimes referred to as
“injectors™ because such mail transport agents inject messages into another mail transport
agents, such as by sending email through the Internet from a sender that is associated with
one mail transport agent to a recipient that is associated with another mail transport agent.
[0326] The IronPort C-Series family includes three email security appliances, the C10,
C30 and C60, which provide threat protection, block spam and viruses, and enable
corporate email policy enforcement. The email security appliances in the C-Series family
are deployed between an organization’s firewall and groupware servers, such as
Exchange™, Notes™, and GroupWise™, to power and protect email flowing in from or

out to the Internet.

-79-

WO 2005/119485 PCT/US2005/019037

[0327] The different A-Series and C-Series appliances include some or all of the
following IronPort technologies: Stackless Threads™, I/O-Driven Scheduling ™,
AsyncFS™, Reputation Filters™, and SenderBase™.

[0328] The IronPort Stackless Threads™ technology allows a C-series email security
appliance to handle up to 10,000 simultaneous connections. With Stackless Threads,
each thread is allocated memory as needed, in contrast to traditional approaches in which
each thread is allocated a fixed and dedicated memory stack that is typically very
generous to avoid stack overflow errors. The allocation of memory on an as needed basis
with Stackless Threads more efficiently uses memory and increases concurrency while
eliminating the risk of security holes and system crashes from stack overflows.

[0329] The IronPort I/O-Driven Scheduling ™ technology optimally schedules service
for each connection. As with Stackless Threads, IronPort’s I/O Driven Scheduling
allocates system resources as needed. Tasks are scheduled around the availability of
transmission control protocol (TCP) connections for reading or writing, so that when a
TCP connection becomes available, I/O-Driven Scheduling grants system resources to the
associated task until such time as the connection is no longer capable of I/O. This
approach avoids the needless rotation through multiple tasks that is characteristic of
traditional preemptive multitasking operating systems in which a scheduler cycles
through each task to ensure that no task is starved and to allocate a predetermined time
slice of the CPU. Such traditional approaches are inefficient for Internet message
delivery that is typically not bound by CPU processing, and thus the traditional
approaches incur a substantial performance decrease due to excessive context switching.
In addition, with /O-Driven Scheduling, the thread switches happen at the completion of
an I/O read or write, so that threads are not left hanging in the middle of an operation and
the memory management in each thread is simplified.

[0330] The IronPort AsyncFS™ technology provides an asynchronous file system, which
is optimized for message queuing. In traditional messaging systems, each message is
allocated a separate and unique file that must be written, read, and deleted. Managing
these files in traditional approaches becomes prohibitive when receiving hundreds of
thousands of messages per hour, and in addition, modifying any file involves multiple
disk accesses to update data within a file and multiple disk accesses to update inodes
(e.g., maps of pointers to each bloc of data within a file that are stored on disk). With
AsyncFS, messages are stored in batches, not individual files, which reduces the number

of basic read/write operations. Furthermore, each queue data structure, which governs the

-80-

WO 2005/119485 PCT/US2005/019037

order of message delivery, doubles as an inode that maps where messages are stored on
disk. These “inode queues” are stored in RAM instead of on disk, further reducing the
read/write operations. In the event of a system disruption or failure that removes the
inode queues from RAM, AsyncFS reads message data from disk as it rebuilds the inode
queues in RAM and resume message delivery.

[0331] IronPort’s Reputation Filters™ are used to intelligently throttle, or even block,
suspicious senders. The appliance receives inbound mail and performs a threat
assessment of the sender, resulting in a reputation score generated by SenderBase, as
described below. The appliance then applies mail flow policies that are specified by an
administrator to the inbound mail based on the reputation score. More suspicious senders
are automatically throttled or blocked, and recognized senders (e.g., customers or
corporate partners) are granted more generous policies, such as bypassing spam filters,
larger message sizes, and TLS encryption. Reputation Filters™ allow for a flexible
response, thereby minimizing the effects of denial of service attacks, directory harvest
attacks, and fraudulent mail, along with reducing false positives.

[0332] IronPort’s Reputation Filters™ work with SenderBase™, a sender reputation
service created by IronPort, and Bonded Sender™, an email certification program created
by IronPort. SenderBase provides objective data about the identity of email senders to
allow email administrators to identify and block IP addresses from which unsolicited
commercial email originates or to-verify the authenticity of legitimate incoming email
from business partners, customers, or other important sources. SenderBase includes an
open database that has been adopted by more than 13,000 ISPs, corporations, and
universities. SenderBase processes queries for more than 500 million messages per day
to provide a real-time view into the global volume of mail being sent by any given IP
address. SenderBase measures other parameters, such as whether an IP address is an
open proxy, if mail receivers are sending spam complaints about the IP address, ifits
DNS resolves properly and accepts return mail, its country of origin, and its presence on a
variety of blacklists. The parameters are used as input to a statistical algorithm that
scores the reputation of the sender on a scale of -10 to +10.

[0333] The different A-Series and C-Series appliances include one or both of the
following non-IronPort technologies: the Sophos™ anti-virus technology and the
Brightmail™ anti-spam technology.

[0334] The C-Series appliances and optionally the A60 appliance include the Sophos™

anti-virus technology. Sophos employs multiple techniques to detect and clean all major

-81-

WO 2005/119485 PCT/US2005/019037

forms of viruses, including advanced emulation technology to detect polymorphic viruses
and an on-line decompressor for scanning multi-layer attachments. Administrators can
take any of several actions to handle messages that are identified as being infection by
Sophos. For example, actions include cleaning the message, dropping the attachment,
modifying the subject header, deleting the entire infected message, sending an optional
notification, or a combination of these actions. The Sophos engine shares information
with the IronPort C-Series Mail Flow Monitor to provide real-time and historical reports.
During a virus outbreak, the period from the start of the outbreak until an anti-virus
identify file is deployed can be covered by IronPort’s content scanning technology to
identify viruses based on known patterns, or messages can be deleted or archived until
new identity files are updated.

[0335] The C-Series IronPort appliances include the Brightmail™ anti-spam technology,
which is optimized to work with IronPort’s AsyncOS™. Brightmail uses real-time
methods to identify spam through Brightmail’s Probe Network™ and generates
approximately 30,000 new rules a day. Automatic rule updates are used, with rules
automatically downloaded from the Brightmail servers typically every ten minutes to
provide real-time protection. Administrators can take any of several actions to handle
messages that are flagged as spam by Brightmail. The actions include sending the
messages to a per-recipient web quarantine, marking up the subject header, adding an
additional “X-header,” sending the message to an alternate folder in the user’s mailbox,
deleting or bouncing the message, or a combination of these actions. The Brightmail
system shares information with the IronPort C-Series Mail Flow Monitor to provide real-

time and historical reports that are available at any time.

VI. EXTENSIONS AND ALTERNATIVES

[0336] In the foregoing description, the invention has been described with reference to
specific embodiments thereof. It will, however, be evident that various modifications and
changes may be made thereto without departing from the broader spirit and scope of the
invention. For example, although examples have illustrated the use of network addresses
and IP addresses as a particular type of network address, these types of sender identifiers
are used for explanation purposes only and embodiments of the invention are not limited
to any particular type of network address or more generally any type of sender identifier.
As another example, while the examples are described with reference to email or email

messages, the approaches described herein can be applied to any type of electronic

-82-

WO 2005/119485 PCT/US2005/019037

message, not just email messages. Thus, the specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive sense. The invention includes
other contexts and applications in which the mechanisms and processes described herein
are available to other mechanisms, methods, programs, and processes.

[0337] In addition, in this description, certain process steps are set forth in a particular
order, and alphabetic and alphanumeric labels are used to identify certain steps. Unless
specifically stated in the disclosure, embodiments of the invention are not limited to any
particular order of carrying out such steps. In particular, the labels are used merely for
convenient identification of steps, and are not intended to imply, specify or require a
particular order of carrying out such steps. Furthermore, other embodiments may use

more or fewer steps than those discussed herein.

-83-

WO 2005/119485 PCT/US2005/019037

CLAIMS

‘What is claimed is:

O 00 1 Y W bW N =

—_
_ O

O 0 39 AN R W

e e e e
wn W N = O

A method for monitoring electronic messages received at a server, comprising:

determining message information for a plurality of electronic messages that is
received at said server;

storing said message information in a queue;

based on said queue, generating aggregate information for a particular network
address of a plurality of network addresses, wherein said aggregate
information is generated for each time interval of a plurality of time intervals,
and wherein said particular network address is included in said message
information for one or more electronic messages of said plurality of electronic
messages; and

displaying said aggregate information for said plurality of time intervals.

A method as recited in Claim 1,wherein said plurality of electronic messages is a first

plurality of electronic messages, and the method further comprises:

determining additional message information for a second plurality of electronic
messages that is received at said server after said first plurality of electronic
messages is received at said server; '

storing said additional message information in said queue;

based on said queue, generating additional aggregate information for said particular
network address of said plurality of network addresses, wherein said
additional aggregate information is generated for an additional time interval,
and wherein said particular network address is included in said additional
message information for one or more electronic messages of said second
plurality of electronic messages; and A

displaying both at least a portion of said aggregate information for one or more time
intervals of said plurality of time intervals and said additional aggregate

information for said additional time interval.

-84-

N

0 NN N W s W (S T P o8

W o0 I & O B W N =

00 NN N B W N

WO 2005/119485 PCT/US2005/019037

A method as recited in Claim 1, further comprising:

receiving, from a user, input that is associated with said particular network address;
and

based on said input, modifying how one or more future electronic messages received

at said server from said particular network address are handled by said server.

A method as recited in Claim 3, wherein modifying how said one or more future
electronic messages are handled by said server includes performing one action
selected from the group consisting of (a) blocking future electronic messages received
at said server from said particular network address, (b) allowing future electronic
messages received at said server from said particular network address, and (c)
allowing some future electronic messages received at said server from said particular
network address and blocking other future electronic messages received at said server

from said particular network address.

A method as recited in Claim 1, wherein said message information includes a
particular counter that is selected from the group consisting of (a) a first counter that
indicates how many electronic messages are received at said server from said
particular network address, (b) a second counter that indicates how many bytes are
received at said server from said particular network address, (c) a third counter that
indicates how many recipients are identified in electronic messages that are received
at said server from said particular network address, and (d) a counter that indicates
how many connections are received by said server from said particular network

address.

A method as recited in Claim 1, further comprising:

determining that a policy has been applied to one or more electronic messages of said
plurality of electronic messages;

generating aggregate policy information for said particular network address, wherein
said aggregate policy information is generated for each time interval of said
plurality of time intervals, and wherein said aggregate policy information
indicates how many times said policy has been applied to electronic messages

from said particular network address; and

-85-

W N e

W 0 39 O »n S~ W N = ~N N o AW N

—
(e

WO 2005/119485 PCT/US2005/019037

displaying said aggregate policy information for said plurality of time intervals.
7. A method as recited in Claim 6, wherein said policy is selected from the group
consisting of a blacklist policy, a whitelist policy, a greylist policy, a spam policy,

and a virus policy.

8. A method as recited in Claim 1, further comprising:
based on said message information, generating combined aggregate information for at
least two network addresses of said plurality of network addresses over each
time interval of said plurality of time intervals, wherein said combined
aggregate information is based on said aggregate information for each
network address of said at least two network addresses; and

displaying said combined aggregate information for said plurality of time intervals.

9. A method as recited in Claim 8, wherein:

each IP address of said at least two network addresses is associated with an identifier
that is determined based on said message information for said each network
address of said at least two network addresses; and

said identifier is selected from the group consisting of a network address, an Internet
Protocol (IP) address, a partial IP address, a first range of IP addresses, a
primary domain, a subdomain, a fully qualified domain name (FQDN), a
partial FQDN, a classless inter-domain routing (CIDR) block, a partial CIDR
block, a subnet, an organization identifier, a network owner, a reputation

score, and a second range of reputation scores.

-86-

O 0 NN U B W

[—
[l

O 0 N1 Y L R WN e

o e)
AW N = O

WO 2005/119485 PCT/US2005/019037

10.

11.

A method as recited in Claim 1, further comprising:

for said particular network address of said plurality of network addresses, determining
an average number of electronic messages received at said server from said
particular network address over a specified time interval, based on aggregate
information for said particular network address for two or more previous
specified time intervals;

for said particular network address, determining a current number of electronic
messages received at said server from said particular network address over
said specified time interval; and

displaying a comparison of said average number of electronic messages to said

current number of electronic messages.

A machine-readable medium carrying one or more sequences of instructions for

monitoring electronic messages received at a server, wherein execution of the one or

more sequences of instructions by one or more processors causes the one or more

processors to perform the steps of:

determining message information for a plurality of electronic messages that is
received at said server;

storing said message information in a queue;

based on said queue, generating aggregate information for a particular network
address of a plurality of network addresses, wherein said aggregate
information is generated for each time interval of a plurality of time intervals,
and wherein said particular network address is included in said message
information for one or more electronic messages of said plurality of electronic
messages; and

displaying said aggregate information for said plurality of time intervals.

-87-

© 0 N O L A LN =

N e e e e T
N N L BN, O

<N N B W N

WO 2005/119485 PCT/US2005/019037

12.

13..

A machine-readable medium as recited in Claim 11,wherein said plurality of

electronic messages is a first plurality of electronic messages, and the

machine-readable medium further comprises instructions which, when executed by

the one or more processors, cause the one or more processors to perform the steps of:

determining additional message information for a second plurality of electronic
messages that is received at said server after said first plurality of electronic
messages is received at said server;

storing said additional message information in said queue;

based on said queue, generating additional aggregate information for said particular
network address of said plurality of network addresses, wherein said
additional aggregate information is generated for an additional time interval,
and wherein said particular network address is included in said additional
message information for one or more electronic messages of said second
plurality of electronic messages; and

displaying both at least a portion of said aggregate information for one or more time
intervals of said plurality of time intervals and said additional aggregate

information for said additional time interval.

A machine-readable medium as recited in Claim 11, further comprising instructions

which, when executed by the one or more processors, cause the one or more

processors to perform the steps of:

receiving, from a user, input that is associated with said particular network address;
and

based on said input, modifying how one or more future electronic messages received

at said server from said particular network address are handled by said server.

-88-

O 00 NN O B W

—
O

O 00 I O »n H W N =

O o0 N O W s W N =

—_
—_ O

WO 2005/119485 PCT/US2005/019037

14.

15.

16.

A machine-readable medium as recited in Claim 13, wherein the instructions for
modifying how said one or more future electronic messages are handled by said
server further comprise instructions which, when executed by the one or more
processors, cause the one or more processors to perform the step of performing one
action selected from the group consisting of (a) blocking future electronic messages
received at said server from said particular network address, (b) allowing future
electronic messages received at said server from said particular network address, and
(c) allowing some future electronic messages received at said server from said
particular network address and blocking other future electronic messages received at

said server from said particular network address.

A machine-readable medium as recited in Claim 11, wherein said message
information includes a particular counter that is selected from the group consisting of
(a) a first counter that indicates how many electronic messages are received at said
server from said particular network address, (b) a second counter that indicates how
many bytes are received at said server from said particular network address, (c) a
third counter that indicates how many recipients are identified in electronic messages
that are received at said server from said particular network address, and (d) a counter
that indicates how many connections are received by said server from said particular

network address.

A machine-readable medium as recited in Claim 11, further comprising instructions

which, when executed by the one or more processors, cause the one or more

processors to perform the steps of:

determining that a policy has been applied to one or more electronic messages of said
plurality of electronic messages;

generating aggregate policy information for said particular network address, wherein
said aggregate policy information is generated for each time interval of said
plurality of time intervals, and wherein said aggregate policy information
indicates how many times said policy has been applied to electronic messages
from said particular network address; and

displaying said aggregate policy information for said plurality of time intervals.

-89-

O 00 N O U b~ W N -

W 0 ~3 & i s~ W N =

—
(o]

WO 2005/119485 PCT/US2005/019037

17.

18.

19.

A machine-readable medium as recited in Claim 16, wherein said policy is selected
from the group consisting of a blacklist policy, a whitelist policy, a greylist policy, a

spam policy, and a virus policy.

A machine-readable medium as recited in Claim 11, further comprising instructions

which, when executed by the one or more processors, cause the one or more

processors to perform the steps of:

based on said message information, generating combined aggregate information for at
least two network addresses of said plurality of network addresses over each
time interval of said plurality of time intervals, wherein said combined
aggregate information is based on said aggregate information for each
network address of said at least two network addresses; and

displaying said combined aggregate information for said plurality of time intervals.

A machine-readable medium as recited in Claim 18, wherein:

each IP address of said at least two network addresses is associated with an identifier
that is determined based on said message information for said each network
address of said at least two network addresses; and

said identifier is selected from the group consisting of a network address, an Internet
Protocol (IP) address, a partial IP address, a first range of IP addresses, a
primary domain, a subdomain, a fully qualified domain name (FQDN), a
partial FQDN, a classless inter-domain routing (CIDR) block, a partial CIDR
block, a subnet, an organization identifier, a network owner, a reputation

score, and a second range of reputation scores.

-90-

O 00 N O O bh W N =

e e
W N = O

O o0 ~I & W b~ W N =

T e T = T = S S =
AN B W N = O

WO 2005/119485 PCT/US2005/019037

20.

21.

A machine-readable medium as recited in Claim 11, further comprising instructions

which, when executed by the one or more processors, cause the one or more

processors to perform the steps of:

for said particular network address of said plurality of network addresses, determining
an average number of electronic messages received at said server from said
particular network address over a specified time interval, based on aggregate
information for said particular network address for two or more previous
specified time intervals;

for said particular network address, determining a current number of electronic
messages received at said server from said particular network address over
said specified time interval; and

displaying a comparison of said average number of electronic messages to said

current number of electronic messages.

An apparatus comprising:

a processor; and

a memory coupled to the processor, the memory containing one or more sequences of
instructions for monitoring electronic messages received at a server, wherein
execution of the one or more sequences of instructions by the processor causes
the processor to perform the steps of:

determining message information for a plurality of electronic messages that is
received at said server;

storing said message information in a queue;

based on said queue, generating aggregate information for a particular network
address of a plurality of network addresses, wherein said aggregate
information is generated for each time interval of a plurality of time intervals,
and wherein said particular network address is included in said message
information for one or more electronic messages of said plurality of electronic
messages; and

displaying said aggregate information for said plurality of time intervals.

91-

O 00 3 O L B W=

[e e e T
~N N RN —m O

NN RN

A DN AW N

WO 2005/119485 PCT/US2005/019037

22.

23.

24,

An apparatus as recited in Claim 21,wherein said plurality of electronic messages is a

first plurality of electronic messages, and wherein the memory further contains one or

more sequences of instructions which, when executed by the processor, cause the

processor to perform the steps of:

determining additional message information for a second plurality of electronic
messages that is received at said server after said first plurality of electronic
messages is received at said server;

storing said additional message information in said queue;

based on said queue, generating additional aggregate information for said particular
network address of said plurality of network addresses, wherein said
additional aggregate information is generated for an additional time interval,
and wherein said particular network address is included in said additional
message information for one or more electronic messages of said second
plurality of electronic messages; and

displaying both at least a portion of said aggregate information for one or more time
intervals of said plurality of time intervals and said additional aggregate

information for said additional time interval.

An apparatus as recited in Claim 21, wherein the memory further contains one or

more sequences of instructions which, when executed by the processor, cause the

processor to perform the steps of:

receiving, from a user, input that is associated with said particular network address;
and

based on said input, modifying how one or more future electronic messages received

at said server from said particular network address are handled by said server.

An apparatus as recited in Claim 23, wherein the instructions for modifying how said
one or more future electronic messages are handled by said server further comprise
instructions which, when executed by the processor, cause the processor to perform
the step of performing one action selected from the group consisting of (a) blocking
future electronic messages received at said server from said particular network

address, (b) allowing future electronic messages received at said server from said

-92-

O 0 3 O D A W N

O 0 N AN U AW

—
—_ O

WO 2005/119485 PCT/US2005/019037

25.

26.

217.

28.

particular network address, and (c) allowing some future electronic messages
received at said server from said particular network address and blocking other future

electronic messages received at said server from said particular network address.

An apparatus as recited in Claim 21, wherein said message information includes a
particular counter that is selected from the group consisting of (a) a first counter that
indicates how many electronic messages are received at said server from said
particular network address, (b) a second counter that indicates how many bytes are
received at said server from said particular network address, (c) a third counter that
indicates how many recipients are identified in electronic messages that are received
at said server from said particular network address, and (d) a counter that indicates
how many connections are received by said server from said particular network

address.

An apparatus as recited in Claim 21, wherein the memory further contains one or

more sequences of instructions which, when executed by the processor, cause the

processor to perform the steps of:

determining that a policy has been applied to one or more electronic messages of said
plurality of electronic messages;

generating aggregate policy information for said particular network address, wherein
said aggregate policy information is generated for each time interval of said
plurality of time intervals, and wherein said aggregate policy information
indicates how many times said policy has been applied to electronic messages
from said particular network address; and

displaying said aggregate policy information for said plurality of time intervals.

An apparatus as recited in Claim 26, wherein said policy is selected from the group
consisting of a blacklist policy, a whitelist policy, a greylist policy, a spam policy,

and a virus policy.

An apparatus as recited in Claim 21, wherein the memory further contains one or
more sequences of instructions which, when executed by the processor, cause the

processor to perform the steps of:

-93.

O 0 39 N n B

fum—y
O 00 3 O W pHh W N [w]

— = e e
w N = O

WO 2005/119485 PCT/US2005/019037

29.

30.

based on said message information, generating combined aggregate information for at
least two network addresses of said plurality of network addresses over each
time interval of said plurality of time intervals, wherein said combined
aggregate information is based on said aggregate information for each
network address of said at least two network addresses; and

displaying said combined aggregate information for said plurality of time intervals.

An apparatus as recited in Claim 28, wherein:

each IP address of said at least two network addresses is associated with an identifier
that is determined based on said message information for said each network
address of said at least two network addresses; and

said identifier is selected from the group consisting of a network address, an Internet
Protocol (IP) address, a partial IP address, a first range of IP addresses, a
primary domain, a subdomain, a fully qualified domain name (FQDN), a
partial FQDN, a classless inter-domain routing (CIDR) block, a partial CIDR
block, a subnet, an organization identifier, a network owner, a reputation

score, and a second range of reputation scores.

An apparatus as recited in Claim 21, wherein the memory further contains one or

more sequences of instructions which, when executed by the processor, cause the

processor to perform the steps of:

for said particular network address of said plurality of network addresses, determining
an average number of electronic messages received at said server from said
particular network address over a specified time interval, based on aggregate
information for said particular network address for two or more previous
specified time intervals;

for said particular network address, determining a current number of electronic
messages received at said server from said particular network address over
said specified time interval; and

displaying a comparison of said average number of electronic messages to said

current number of electronic messages.

-94-

PCT/US2005/019037

WO 2005/119485

115

oct
3Svav1lvd

P86l
d

HIAN3S

861
NIVAOd

(1)

[DId

61
J
d3dN3S

61
NIVNOQ

MHOMLAN

3061 q051 BOGT
9 g v
IN3IdIOTY IN3IdIOTY INE =N
051 NIVWOQ
vl 0¢l
HO LY 1SININGY AV1dSId
— arr
il TINAOW
HOLYOIHOOY HdVY9
4
A q 5917 5 3N3NO
SYALNNOD SY3AINNOD
®I T o
SYILNNOD SYALNNOD dOLINOW
00F ¥3AN3S

azel
8 d3dN3S

a6l
NIVAOd

24
YV 43AN3S

PCT/US2005/019037

WO 2005/119485

2/5

7 DA

v€C
VAE!

3HL 40 ONISS3O0ud 3131dINOD

A

0€C
103740 LSOH NI

TIVINT HO4 NOILYWHOANI 3OVSSIN JHOLS

A A

A

144
SS3004d HSN1d ¥399dL

)

08¢
Y3AAUIS IHL AG
aI1ANVH 38 TIIM SSIMaav
MHOMLAN FHL WON4 STIVINT
IHNLN4 MOH AJIGOI
*INdNI 3HL NO a3sv
TIZ 4
m_mw: 3137402
JHL WO LNdNI IAIZOTM HSM1
k3 ON
mmmwwoh 4
NOILYAMOINI SLyoTuoey | STA -~ NSAIAOL o
AVIdSIA ONY Y1VA 1OVELX3 NS
H 00z ENL
892
AHOL0TMIA AYA -
J1VIMdOYddY 8vc
0L S3OLOTMIa ¥sId oL
¥NOH ALYOTHOOY V.LVQ FLANIN TLINM
4 x
d\|@_N HNOH e
AHOL0THIA
21¥14dOYddY OL ST o
ALNNIN LYOTUDOY "
L o
5 aodad
$S300¥d dNTI0Y NI JLNNIA LSITT0 aNid

L_______._._____._.__...._._..._...__._._,_._______._._._.]
]

744
dofd3d FLNNIN M3N J04
103780 LSOH 31V3d0

¢
d3didxd

S3A

0cc

JLNNIA
INTHHND FHL
SVH

444
AHVNOILOIA
TVAYILNI NOYA
103rgo LSOH 3N

ON

7%

S3ALNGIELLY NIVWT ¥3HLO
SN1d TV 40 ¥3AN3S {04
SS3HAAY HHOMLIAN A4ILNZAI

A

0lc

HIANHIS VY 1V
TIVW3 3AI303Y

M

PCT/US2005/019037

WO 2005/119485

315

WOO'ZAX
WOO aoay
(SH3aN3S TIv) WLOL
NOLLSANGD | SIMIAS% v THORE % T1NY A8 43H0078 a3”ISIANN GENERER NivivOd
d3H10 SIN3IdIO3d d34dN3S
AAVYIANNS MOTd TIVIN
4
0se
n_m_v_u.uo._m_ om_>,.\._m_m om_._ﬁomz._. om.E.moo< weg) weg uweg E&S E.% Emm weqy
_._u_.._.._l_u_ / \ +000'z - 000'052
+000'7 '
Looo's \ ooo.com
% Looo's i -000'05.
=000°0} - 000'000'}
AJIMOd MO14 IV {(4LNNIN Y3d SINIAT)
A8 SdNZLLY NOLLOANNOD JNIL H3JAO SINIIdIO3Y
/ 0z¢ ’ 0i€
125 N 0ce \
0 (AVALSYd) a3x0074 SINIIHIOTH Ag S.di dOL HINMO MHOMLAN HO
‘NIVWOQ ‘SS3Haav di ¥31N3
14043
139 140434 MOINO HOYV3S HOWVY3S MOINO

0¢ (IN9) 30V4HTLNI ¥3ASN TYOIHAVHD

IT

PCT/US2005/019037

WO 2005/119485

4/5

v DIA

NMONMNN - €
d31S3LHm-¢
J3LSMNAI™O - |
daLsImovia-o

0

N
\

%01

T%02

T%0E

HdVdD ADI'0d d4lddY

-%0%

+%05

0cy

T A | 715043y
14043y M 1H0a3d |z
N | ¥4I LNIANI ¥IANTS
iy 140434 MIIND
/
ofy omh
pey- [SSTMAAV dI] 3JAL HIANIS
o 0000000000 WY3ILHOHVY3S
HOHV3S zey HOHVY4S MOIND
NOS VS Iyd MNHL Q3M S3NL NOW
N-000'6
ommwm.nm - 000°05
7 L 000'52
NOILYLNd3 u .
- 000'001
aooid 3 —000'62)
TVINLHOMG m — 000051
- 000'G.1
[(ENERE)<! \
SIN3IdIOFY 000002
HdVYd9 MOT4 TIVIN

00F JOVAHILNI ¥3ISN VOIHAYHD

-
0Ly

PCT/US2005/019037

WO 2005/119485

5/5

9¢S

8¢S

DI
¥25
1SOH
005
! — m ST
< | g 708 i 1OMINOD
MIOMLAN [STIOMEN JOV4HILNI “ JOSHAY
W01 | NOILVIINNNINOD H0SSID0Nd |
ds| | s G
m ks m | 30IA3Q LNdNI
LINYILNI | m
| Mo_>mo %0¢ |
05 m WO wiowan | |7
M | 0 NIV i —1 Av1dsIa
J

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US05/19037

A CLASSIFICATION OF SUBJECT MATTER
PC(7) GOGF 15/16, 15/173
US CL 709/206, 223, 224, 245

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

US. : 709/206, 223, 224, 245

Minimum documentation searched (classification system followed by classification symbols)

IEEE, ACM

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPAT, USPGPUB, EPO, JPO, Derwent

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
US 2004/0073617 Al (MILLIKEN et al) 15 April 2004 (15.04.2004), paragraphs 67-90. 1-30
US 2004/0083230 Al (CAUGHEY) 29 April 2004 (29.04.2004), whole document. 1-30
A US 2004/0064371 Al (CRAPO) 1 April (01.04.2004), whole document. 1-30
A US 2003/0110224 Al (CAZIER et al) 12 June 2003 (12.06.2003), whole document. 1-30
A US 2004/0093384 Al (SHIPP) 13 May 2004 (13.05.2004), whole docment. 130

E__I Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document definingthe general state of the art which is not considered to be of
particular relevance

“B” eatlier application or patent published on or after the intematicnal filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as

“T” later document published after the intemational filing date or priarity date
and not in conflict with the application but cited to understand the
principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y” documnent of particular relevance; the claimed invention cannot be

specified) considered to involve an inventive step when the docurent is combined
with one or moare other such documents, such combination being obvious
“O" document referring to an oral disclosure, use, exhibition or other means toa person skilled in the art
“P” document published prior to the intemational filing date but later than the “&” document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date %ﬂiﬁ ﬁ:ﬁw 2{3@ tional search report
e
26 September 2005 (26.09.2005) -) .
Name and mailing address of the ISA/US Authorized Ofﬁce;//
Mail Stop PCT, Attn: ISA/US 7
Commissioner for Patents Andrew Caldw)er/ /
P.O. Box 1450 3
Alexandria, Virginia 22313-1450 Telephone No. ‘57 1-272-2100
Facsimile No. (571) 273-8300 e

Form PCT/ISA/210 (second sheet) (April 2005)

/

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

