(57) Abrégé/Abstract:
To provide a transmission control device of a motorcycle which can detect a predetermined traveling state based on the difference in rotational speed between a front wheel and a rear wheel, and can execute a shift-change control suitable for the traveling state. A transmission control device of a motorcycle includes a shift-change control instruction part for performing an automatic shift change of an AMT (automatic manual transmission) in response to at least vehicle-speed information, a first sensor for detecting a rotational speed of a front wheel WF which constitutes a driven wheel, a second sensor for detecting a rotational speed of a rear wheel WR which constitutes a driving wheel, a rotational speed difference detection means for detecting a difference in rotational speed between front and rear wheels, a shift-change inhibition state detection means for detecting a state in which a transmission is not shifted, a shift-change control instruction part for determining a shift change based on the detected state of the traveling state, a shift control motor for performing a shift change, and an AMT valve for actuating the shift control motor.

(54) Titre : DISPOSITIF DE COMMANDE DE TRANSMISSION DE MOTOCYCLE
(54) Title: TRANSMISSION CONTROL DEVICE OF MOTORCYCLE
(57) *Abrégé(suite)/Abstract(continued):*

wheel WR which constitutes a drive wheel, and a rotational-speed-difference detection means for detecting the difference in rotational speed between the front wheel and the rear wheel. The control part inhibits the automatic shift change when the rotational speed of the rear wheel WR becomes larger than the rotational speed of the front wheel WF by a predetermined value or more. The transmission control device is configured to interrupt the transmission of a driving force to the rear wheel WR by disconnecting a clutch by driving a valve 4 when a separation quantity between the front wheel WF and a road surface becomes a predetermined value or more during the inhibition of the automatic shift change. The separation quantity between the front wheel WF and the road surface is obtained by measuring a distance between the front wheel WF and the road surface using a photo sensor.
ABSTRACT OF THE DISCLOSURE

To provide a transmission control device of a motorcycle which can detect a predetermined traveling state based on the difference in rotational speed between a front wheel and a rear wheel, and can execute a shift-change control suitable for the traveling state. A transmission control device of a motorcycle includes a shift-change control instruction part for performing an automatic shift change of an AMT (automatic manual transmission) in response to at least vehicle-speed information, a first sensor for detecting a rotational speed of a front wheel WF which constitutes a driven wheel, a second sensor for detecting a rotational speed of a rear wheel WR which constitutes a drive wheel, and a rotational-speed-difference detection means for detecting the difference in rotational speed between the front wheel and the rear wheel. The control part inhibits the automatic shift change when the rotational speed of the rear wheel WR becomes larger than the rotational speed of the front wheel WF by a predetermined value or more. The transmission control device is configured to interrupt the transmission of a driving force to the rear wheel WR by disconnecting a clutch by driving a valve 4 when a separation quantity between the front wheel WF and a road surface becomes a predetermined value or more during the inhibition of the automatic shift change. The separation quantity between the front wheel WF and the road surface is obtained by measuring a distance between the front wheel WF and the road surface using a photo sensor.
TRANSMISSION CONTROL DEVICE OF MOTORCYCLE

FIELD OF THE INVENTION
The present invention relates to a transmission control device of a motorcycle, and more particularly to a transmission control device of a motorcycle which detects a predetermined traveling state based on the difference in rotational speed between a front wheel and a rear wheel, and executes a shift-change control suitable for the traveling state.

BACKGROUND OF THE INVENTION
Conventionally, there has been known a technique in which a detection means for detecting a rotational speed is respectively mounted on front and rear wheels of a vehicle, and a specific control is executed when the difference arises between the rotational speed of the front wheel and the rotational speed of the rear wheel.

JP-UM-A-3-2926 discloses a four-wheel drive-type four-wheeled vehicle which arranges an electromagnetic clutch between an engine and a continuously variable transmission, wherein a control device detects a fact that the vehicle travels on a slippery road due to the accumulation of snow or the like when a period in which the difference in rotational speed between the front wheel and the rear wheel exceeds a predetermined value is continued for a predetermined time, and when such determination is performed, the control device changes over the electromagnetic clutch to a direct engagement state even when the vehicle travels at a predetermined speed or less thus preventing a partial clutch
engagement state of the electromagnetic clutch from being continued for a long time.

However, in JP-UM-A-3-2926, a technique which detects a traveling state particular to a motorcycle by detecting the difference in rotational speed between the front wheel and the rear wheel of the motorcycle and changes over a shift-change control of an automatic transmission to a different state from a normal state has not been studied.

It is an object of the present invention to provide a transmission control device of a motorcycle which can overcome the above-mentioned drawbacks of the prior art, can detect a predetermined traveling state based on the difference in rotational speed between the front wheel and the rear wheel, and can execute a shift-change control suitable for the traveling state.

SUMMARY OF THE INVENTION
The present invention is firstly characterized in that, in a transmission control device of a motorcycle which includes a control part for performing an automatic shift change of a transmission in response to at least vehicle-speed information, a first sensor for detecting a rotational speed of a front wheel which constitutes a driven wheel, a second sensor for detecting a rotational speed of a rear wheel which constitutes a drive wheel, and a rotational-speed-difference detection means for detecting the difference in rotational speed between the front wheel and the rear wheel based on information from the first sensor and the second sensor, the control part inhibits the automatic shift change when the rotational speed of the rear wheel becomes larger than the rotational speed of the front wheel and the difference in rotational speed between the front wheel and the rear wheel becomes a predetermined value or more.

According to the first technical feature of the present invention, the transmission control device of the motorcycle includes the control part for performing the automatic shift change of the transmission in response to at least vehicle-speed information, the first sensor for detecting the rotational speed of the front wheel which constitutes the driven wheel, the second sensor for detecting the rotational
speed of the rear wheel which constitutes the drive wheel, and the rotational-speed-difference detection means for detecting the difference in rotational speed between the front wheel and the rear wheel based on information from the first sensor and the second sensor, and the control part inhibits the automatic shift change when the rotational speed of the rear wheel becomes larger than the rotational speed of the front wheel and the difference in rotational speed between the front wheel and the rear wheel becomes a predetermined value or more. In this manner, by detecting a predetermined traveling state which occurs at the time of accelerating the motorcycle such as a state that the front wheel is separated from the road surface or a state that the rear wheel slips against the road surface and by inhibiting the automatic shift change during such a traveling state, it is possible to prevent the rotational speed of the rear wheel from being largely changed.

Further, the present invention is secondly characterized in that the transmission control device is configured to interrupt the transmission of a driving force to the rear wheel by disconnecting a clutch when a separation quantity between the front wheel and a road surface becomes a predetermined value or more during the inhibition of the automatic shift change.

According to the second technical feature of the present invention, the transmission control device is configured to interrupt the transmission of the driving force to the rear wheel by disconnecting the clutch when the separation quantity between the front wheel and the road surface becomes a predetermined value or more during the inhibition of the automatic shift change. Accordingly, it is possible to prevent the separation quantity between the front wheel and the road surface from becoming a predetermined value or more when the front wheel is separated from the road surface due to the acceleration.

Further, the present invention is thirdly characterized in that the separation quantity between the front wheel and the road surface is obtained by calculating a distance between the front wheel and the road surface using a photo sensor.
According to the third technical feature of the present invention, the separation quantity between the front wheel and the road surface is obtained by measuring a distance between the front wheel and the road surface using a photo sensor. Accordingly, it is possible to directly measure the separation quantity between the front wheel and the road surface thus acquiring the accurate separation quantity.

Further, the present invention is fourthly characterized in that the transmission control device includes a sensor for detecting a stroke quantity of a rear shock unit provided for suspending the rear wheel from a vehicle body, and the control part determines whether or not the separation quantity between the front wheel and the road surface reaches a predetermined value based on whether or not the stroke quantity reaches a predetermined value.

According to the fourth technical feature of the present invention, the transmission control device includes the sensor for detecting the stroke quantity of the rear shock unit provided for suspending the rear wheel from the vehicle body, and the control part determines whether or not the separation quantity between the front wheel and the road surface reaches a predetermined value based on whether or not the stroke quantity reaches a predetermined value. Accordingly, it is possible to detect whether or not the separation quantity between the front wheel and the road surface reaches a predetermined value using a simple device such as a displacement sensor for detecting the reciprocating movement.

Further, the present invention is fifthly characterized in that the transmission control device further includes a means for respectively detecting air pressure of the front wheel and air pressure of the rear wheel, and the control part determines whether or not the separation quantity between the front wheel and the road surface reaches a predetermined value based on whether or not the air pressure of the rear wheel is larger than the air pressure of the front wheel and the difference in air pressure between the front wheel and the rear wheel reaches a predetermined value.
According to the fifth technical feature of the present invention, the transmission control device further includes a means for respectively detecting air pressure of the front wheel and air pressure of the rear wheel, and the control part determines whether or not the separation quantity between the front wheel and the road surface reaches a predetermined value based on whether or not the air pressure of the rear wheel is larger than the air pressure of the front wheel and the difference in air pressure between the front wheel and the rear wheel reaches a predetermined value. Accordingly, it is possible to detect whether or not the separation quantity between the front wheel and the road surface reaches a predetermined value using a highly useful device which is used also for the maintenance before and after traveling or the like.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are shown in the drawings, wherein:

Fig. 1 is a system constitutional view of an automatic manual transmission according to one embodiment of the present invention and devices around the automatic manual transmission.

Fig. 2 is a block diagram showing the constitution of an AMT control unit according to one embodiment of the present invention and devices around the AMT control unit.

Fig. 3 is a flowchart showing a flow of an automatic shift-change inhibition control.

Fig. 4 is a graph showing one example of a transition of rotational speeds of the front and rear wheels at the time of acceleration.

Fig. 5 is a flowchart showing a flow of the automatic shift-change inhibition control and a clutch interruption control according to one embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, a preferred embodiment of the present invention is explained in detail in conjunction with drawings. Fig. 1 is a system constitutional view of an automatic manual transmission (hereinafter, referred to as an AMT) which constitutes an automatic transmission applied to a motorcycle and devices around the AMT. The driving of the AMT 16 connected to an engine 11 is controlled by a clutch-use hydraulic device 17 and an AMT control unit 18. The engine 11 includes a throttle-by-wire (TBW) type throttle body 19, and the throttle body 19 includes a motor 20 for opening and closing the throttle.

The AMT 16 includes a multi-stage transmission gear 21, a first clutch 22, a second clutch 23, a shift drum 24, and a shift control motor 25 for rotating the shift drum 24. A large number of gears constituting the transmission gear 21 are respectively joined to or loosely fitted on a main shaft 26, a counter shaft 27 and a speed-change gear output shaft 28. The main shaft 26 is constituted of an inner main shaft 26a and an outer main shaft 26b, the inner main shaft 26a is joined to the first clutch 22, and the outer main shaft 26b is joined to the second clutch 23. A clutch (not shown in the drawing) which is displaceable in the axial direction of the main shaft 26 is mounted on the main shaft 26, while a clutch (not shown in the drawing) which is displaceable in the axial direction of the counter shaft 27 is mounted on the counter shaft 27. End portions of shift forks 29 are respectively engaged with cam shafts (not shown in the drawing) formed on these clutches and the shift drum 24.

To the output shaft of the engine 11, that is, to a crankshaft 30, a primary drive gear 31 is joined, and the primary drive gear 31 is meshed with a primary driven gear 32. The primary driven gear 32 is joined to the inner main shaft 26a by way of the first clutch 22 and, at the same time, is joined to an outer main shaft 26b by way of the second clutch 23.

A counter shaft output gear 33 which is joined to the counter shaft 27 is meshed with an output driven gear 34 joined to the speed-change gear output shaft 28. A drive sprocket wheel 35 is joined to the speed-change gear output shaft 28, and a driving force is transmitted to a rear wheel WR (see Fig. 2) which constitutes a
drive wheel by way of a drive chain (not shown in the drawing) wound around
the drive sprocket wheel 35. Further, in the inside of the AMT 16, an engine
rotational speed sensor 36 arranged to face an outer periphery of the primary
driven gear 32 in an opposed manner and a gear position sensor 38 for detecting
a present gear stage position based on a rotational position of the shift drum 24
are arranged. Further, on the throttle body 19, a throttle sensor 47 which outputs
a throttle opening signal is mounted.

The clutch-use hydraulic device 17 includes an oil tank 39 and a pipe passage 40
for feeding oil stored in the oil tank 39 to the first clutch 22 and the second clutch
23. On the pipe passage 40, a pump 41 and a valve 42 are mounted, and a
regulator 44 is arranged on a return pipe passage 43 connected to the pipe
passage 40. The valve 42 is configured to apply oil pressure to the first clutch 22
and the second clutch 23 individually. Further, a return pipe passage 45 for
returning oil is also provided to the valve 42.

To the AMT control unit 18, a mode switch 49 for changing over an operation of
the AMT control unit 18 between an automatic shift-change (AT) mode and a
manual shift-change (MT) mode, and a shift select switch 50 which instructs the
AMT control unit 18 to perform a shift-up (UP) operation or a shift-down (DN)
operation are connected. The AMT control unit 18 includes a microcomputer
(CPU), and is configured to automatically or semi-automatically change over a
gear stage position of the AMT 16 by controlling the valve 42 and the shift
control motor 25 in response to output signals of the respective sensors and
switches.

The AMT control unit 18 automatically changes over the transmission gear 21 in
response to information such as a vehicle speed, an engine rotational speed, and
throttle opening when the AT mode is selected. On the other hand, when the MT
mode is selected, the AMT control unit 18 performs a shift changing operation of
the select switch 50 to shift up or shift down the transmission gear 21 in
accordance with the shift-change manipulation of the select switch 50. Here, also
when the MT mode is selected, the AMT control unit 18 may be configured to
execute an auxiliary automatic shift control for preventing the excessive rotation or the stall of the engine.

In the clutch-use hydraulic device 17, oil pressure is applied to the valve 42 by the pump 41, and the oil pressure is controlled by the regulator 44 for preventing the oil pressure from exceeding an upper limit value. When the valve 42 is opened based on an instruction from the AMT control unit 18, the oil pressure is applied to the first clutch 22 or the second clutch 23 so that the primary driven gear 32 is joined to the inner main shaft 26a or the outer main shaft 26b by way of the first clutch 22 or the second clutch 23. Further, when the valve 42 is closed and the application of the oil pressure is stopped, the first clutch 22 and the second clutch 23 are biased in the direction which disconnects the engagement between the primary driven gear 32 and the inner main gear 26a or the outer main gear 26b due to a return spring (not shown in the drawing) incorporated in the first clutch 22 and the second clutch 23.

The shift control motor 25 rotates the shift drum 24 in accordance with the instruction from the AMT control unit 18. When the shift drum 24 is rotated, the shift fork 29 is displaced in the axial direction of the shift drum 24 along a shape of a cam groove formed in an outer periphery of the shift drum 24 so as to move the clutch. Due to the movement of the clutch, the meshing of the gears on the counter shift 27 with the gears on the main shaft 26 is changed and hence, the transmission gear 21 is shifted up or down.

Fig. 2 is a block diagram showing the constitution of the AMT control unit according to one embodiment of the present invention and devices around the AMT control unit. In Fig. 2, parts identical with the parts shown in Fig. 1 are given the same symbols. The AMT control unit 18 includes a shift-change control instruction part 60 which stores a shift-change map 61 therein, a shift-change inhibition state detection means 62, and a rotational speed difference detection means 63. The shift-change control instruction part 60 which constitutes a control part is configured to drive the shift control motor 25 and the valve 42 in accordance with the shift-change map 61 formed of a three-dimensional map based on an output signal of the engine rotational speed sensor 36, an output
signal of the throttle opening sensor 53, and an output signal of the gear position sensor 38 and the vehicle-speed information.

The transmission control device of the motorcycle according to this embodiment includes a first sensor 51 for detecting a rotational speed of the front wheel WF which constitutes a driven wheel and a second sensor 52 for detecting a rotational speed of the rear wheel WR which constitutes a drive wheel. The transmission control device is configured to detect the difference in rotational speed between the front wheel and the rear wheel using the rotational-speed difference detection means 63. Here, the detection of a vehicle speed during normal traveling, to consider the difference between an outer diameter of the front wheel and an outer diameter of the rear wheel, may be performed using either one of the first sensor 51 and the second sensor 52.

Here, when the motorcycle is accelerated, there may occur a phenomenon such as "front-wheel floating traveling" in which the motorcycle travels only by the rear wheel WR in a state that the front wheel WF is separated from a road surface, or "wheel spin" in which a driving force of the rear wheel WR exceeds a frictional force between a tire and the road surface so that the driving force is not transmitted to a road surface thus causing a slip of the rear wheel. In such a case, for example, when the transmission control device is configured to detect vehicle-speed information used as the reference of the shift-change control only using the second sensor 52, even in the front-wheel floating traveling state or in the wheel spin state, the automatic shift change is sequentially performed in accordance with the rotational speed of the rear wheel WR. This shift change operation may fluctuate the rotational speed of the rear wheel WR thus giving rise to a possibility, for example, that a posture of a vehicle body during the front-wheel floating traveling is changed or, a grip force of the rear wheel WR is suddenly restored during the wheel spin traveling. To cope with the above-mentioned drawback, the transmission control device of the motorcycle according to the present invention is characterized in that the transmission control device detects the rotational speed of the front wheel and the rotational speed of the rear wheel respectively, and when it is detected that the rotational speed of the rear wheel WR is larger than the rotational speed of the front wheel.
WF by a predetermined value or more, it is determined that the floating of the front wheel or the wheel spin occurs, and the automatic shift change of the transmission is inhibited.

The rotational-speed difference detection means 63 calculates the difference in rotational speed between the front wheel and the rear wheel by comparing information obtained by the first sensor 51 which detects the rotational speed of the front wheel WF constituting the driven wheel and information obtained by the second sensor 52 which detects the rotational speed of the rear wheel WR constituting the drive wheel. Further, when it is detected that the rotational speed of the rear wheel WR becomes larger than the rotational speed of the front wheel WF by a predetermined value or more, the shift-change inhibition state detection means 62 transmits a signal that the shift change of the motorcycle is to be inhibited to the shift-change control instruction part 60 so that the shift-change operation is inhibited. Here, a front-wheel lift quantity sensor 54, a rear shock stroke quantity sensor 55 and front and rear wheel air-pressure sensors 56 which respectively input output signals to the shift-change inhibition state detection means 62 are explained later.

Fig. 3 is a flowchart showing a flow of the automatic shift-change inhibition control according to the present invention. When the rotational speeds of the front and rear wheels are respectively detected by the first sensor 51 and the second sensor 52 in step S1, the difference in rotational speed between the front wheel and the rear wheel is calculated by the rotational speed difference detection means 63 in step S2. Then, in step S3, it is determined whether or not the rotational speed of the rear wheel is larger than the rotational speed of the front wheel. When the determination in step S3 is affirmative, the processing advances to step S4. In step S4, it is determined whether or not the difference in rotational speed between the front wheel and the rear wheel reaches a predetermined value by the shift-change inhibition state detection means 62. When the determination in step S4 is affirmative, the processing advances to step S5. Here, when the determinations in step S3 and the determination in step S4 are negative, the processing returns to step S1. Then, in step S5, a shift-change inhibition instruction is outputted to the shift-change control instruction part 60.
so as to inhibit the shift-change operation of the AMT 16 by inhibiting the driving of the shift control motor 25 and the valve 42. Accordingly, a series of automatic shift change inhibition control is finished. Here, when the motorcycle returns to the normal traveling state from the front-wheel floating traveling state or the wheel spin state during a period in which the automatic shift change is inhibited, it is possible to changeover the automatic shift-change inhibition control to the normal automatic shift change control.

Here, the first sensor 51 and the second sensor 52 may preferably be formed of a non-contact sensor which can measure a passing interval of a pickup portion mounted on the vehicle wheel using a Hall element or the like. Further, the rotational speed of the rear wheel WR may be calculated by a sensor (not shown in the drawing) which detects a rotational speed of the shift gear in the inside of the AMT 16 or the like in place of the second sensor 52.

Fig. 4 is a graph showing one example of the transition of the rotational speeds of the front and rear wheels at the time of acceleration. In this embodiment, as shown in Fig. 4, after starting the acceleration, the front wheel WF starts to separate from the road surface at a point of time t1, and the difference in rotational speed between the front wheel WF and the rear wheel WR reaches Ns at a point of time t2. Here, in this graph, even during a period before the point of time t1 indicative of the normal acceleration state before the front-wheel floating traveling, the slight difference is generated between the rotational speed Nf of the front wheel WF and the rotational speed Nr of the rear wheel WR. This slight difference directly indicates the difference in rotational speed generated by the difference between the outer diameter of the front wheel and the outer diameter of the rear wheel.

The front wheel WF is rotated only by an inertial force immediately after the front wheel starts separation from the road surface at the point of time t1 and, thereafter, the rotational speed of the front wheel is gradually decreased. To the contrary, the rotational speed of the rear wheel WR is gently increased. When the difference in rotational speed becomes a predetermined value Ns (for example, 10km/h when becomes as a vehicle speed) or more at the point of time
t2, the shift-change operation (shift-up or shift-down) of the AMT 16 is inhibited. Accordingly, there is no possibility that a change of the driving force which a rider can hardly expect is generated due to the automatic shift change during the front-wheel floating traveling thus preventing the rider from feeling discomfort.

On the other hand, when the wheel spin state occurs at the time of acceleration, the rotational speed \(N_r \) of the rear wheel WR is sharply increased compared to the rotational speed \(N_f \) of the front wheel WF and hence, the difference in rotational speed becomes the predetermined value \(N_s \) or more. Also in this case, by inhibiting the automatic shift change, it is possible to prevent the occurrence of change of the driving force on the rear wheel WR during the wheel spin state which a rider hardly expect.

Further, in this embodiment, when a separation quantity between the front wheel WF and the road surface, that is, a lift quantity of the front wheel WF becomes a predetermined value or more during the front-wheel floating traveling, a clutch disconnection control which prevents the further increase of the lift quantity by interrupting the transmission of the driving force to the rear wheel WR is also executed. Accordingly, as shown in Fig. 2, to the shift-change inhibition state detection means 62, information from the front-wheel lift quantity sensor 54, the rear shock stroke quantity sensor 55, and the front and rear wheel air-pressure sensors 56 is inputted.

The front-wheel lift quantity sensor 54 may preferably be formed of a non-contact sensor such as a photo sensor which is arranged in the vicinity of an axle of the front wheel WF and directly measures a distance between the front wheel WF and the road surface. The shift-change inhibition state detection means 62 instructs the shift-change control instruction part 60 to disconnect the clutches when the front-wheel lift quantity sensor 54 detects that the lift quantity of the front wheel WF becomes a predetermined value or more. The shift control instruction part 60 controls driving of the valve 42 so as to disconnect both the first clutch 22 and the second clutch 23 (see Fig. 1) and hence, the transmission of the driving force to the rear wheel WR is interrupted. Accordingly, a force which acts in the direction to separate the front wheel WF from the road surface is not
generated and hence, the vehicle body of the motorcycle changes the posture thereof in the direction to reduce the lift quantity of the front wheel WF.

Further, the rear shock stroke quantity sensor 55 is a sensor which can be used in place of the front-wheel lift quantity sensor 54. As a type of rear-wheel-side suspension of a motorcycle, there has been known the constitution in which a swing arm (not shown in the drawing) which pivotally and rotatably supports the rear wheel WR is pivotally and rockably supported on a rear portion of the vehicle body frame and a rear shock unit which constitutes a shock absorber having a spring is arranged between the swing arm and the vehicle body frame thus suspending the rear wheel WR from a vehicle body. In a case that the motorcycle having such constitution performs the front-wheel floating traveling, when a load of the rear wheel is increased along with the increase of the lift quantity of the front wheel, a shrinking quantity of the rear shock unit also tends to be increased.

This embodiment focuses on the relationship between the lift quantity of the front wheel and the shrinking quantity of the rear shock unit, and determines whether or not the lift quantity of the front wheel reaches a predetermined value based on a signal from a sensor for detecting a stroke quantity of the rear shock unit. As the sensor for detecting the stroke quantity, a displacement sensor which has the simple constitution compared to a photo sensor can be used. Here, the relationship between the lift quantity of the front wheel and the shrinking quantity of the rear shock unit is also influenced by a driving force imparted to the rear wheel WR or the like and hence, throttle opening or the like may be added as one of parameters constituting disconnection conditions of the clutch.

Further, the front and rear wheel air-pressure sensors 56 are formed of a sensor which can be used in place of the above-mentioned two sensors. As described above, in a case that the motorcycle performs the front-wheel floating traveling, when the load of the rear wheel is increased along with the increase of the lift quantity of the front wheel, the air pressure of the rear wheel WR tends to be increased compared to the front wheel WF from which a load is removed. This embodiment focuses on the relationship between the lift quantity of the front wheel...
wheel and the change of the air pressure of the front and rear wheels, and estimates whether or not the lift quantity of the front wheel reaches a predetermined value based on the output signal from the sensor which always detects air pressure. Here, the front and rear wheel air-pressure sensors 56 may preferably be configured such that the front and rear wheel air-pressure sensors 56 can be mounted on an air valve or the like of the respective front and rear wheels independently, include a signal transmission antenna and a built-in power source, and can transmit detected air pressure to a control part in a form of electric wave signals. Further, with the use of such air pressure sensor, it is also possible to perform the maintenance before and after the traveling, the detection of tire puncture during traveling and the like and hence, it is possible to allow such a highly useful device to also play a role of detecting a lift state of the front wheel.

Fig. 5 is a flowchart showing a flow of the automatic shift-change inhibition control and the clutch interruption control. This flowchart shows the flow when the clutch interruption control is executed subsequent to the automatic shift-change inhibition control shown in Fig. 3. In Fig. 5, step S1 to step S5 are substantially equal to step S1 to step S5 shown in Fig. 3. When the automatic shift-change control of the transmission is inhibited in step S5, in subsequent steps S6 to S8, for preventing the lift quantity of the front wheel WF from becoming a predetermined value or more at the time of front-wheel floating traveling, various determinations are executed using various sensors. Here, the predetermined value of the lift quantity of the front wheel WF may be set to a value which allows an erection angle of the vehicle body with respect to the road surface to assume 45 degree, for example.

In step S6, it is determined whether or not the lift quantity of the front wheel WF becomes the predetermined value or more by the front-wheel lift quantity sensor 54. Further, in step S7, it is determined whether or not the stroke quantity (shrinking quantity) of the rear shock detected by the rear shock stroke quantity sensor 55 becomes a predetermined value or more. Further, in step S8, with respect to the air pressure of the front wheel and the air pressure of the rear wheel detected by the front wheel air-pressure sensor 56 and the rear wheel air-
pressure sensor 56 respectively, it is determined whether or not the air pressure of the rear wheel WR is larger than the air pressure of the front wheel WF and whether or not the difference in air pressure between the rear wheel WR and the front wheel WF becomes a predetermined value or more. Further, when the determination made in any one of steps S6, S7 and S8 is affirmative, the processing advances to step S9, and the disconnection control of the clutch is executed by the shift-change control instruction part 60. Accordingly, a series of processing is finished. Here, when the respective determinations made in all steps S6, S7 and S8 are negative, it is determined that the lift quantity of the front wheel WF does not become the predetermined value or more and hence, the processing is finished without executing the disconnection control of the clutch.

Here, the above-mentioned constitution of the transmission control device of the motorcycle includes three kinds of sensors consisting of the front-wheel lift quantity sensor 54, the rear shock stroke quantity sensor 55, and the front and rear wheel air-pressure sensors 56. However, the transmission control device may be configured to include at least any one of these sensors. Further, the clutch disconnection control shown in steps S6 to S9 may be executed parallel to the shift-change inhibition control instead of being executed after executing the shift-change inhibition control. Accordingly, even when the front wheel WF is suddenly lifted due to the sharp acceleration so that the lift quantity of the front wheel WF becomes the predetermined value or more before the difference in rotational speed between the rear wheel WR and the front wheel WF reaches the predetermined value, it is possible to speedily disconnect the clutch thus decreasing the lift quantity of the front wheel.

As has been explained heretofore, according to the transmission control device of the motorcycle of the present invention, the rotational speed detection means is respectively mounted on the front and rear wheels, and when it is detected that the rotational speed of the rear wheel WR is larger than the rotational speed of the front wheel WF by the predetermined value or more, the automatic shift change of the transmission is inhibited. Accordingly, there exists no possibility that the change of driving force attributed to the automatic shift change occurs
on the rear wheel WR in the front-wheel floating traveling state or in the wheel spin state of the motorcycle thus preventing the rider from feeling discomfort.

The difference in rotational speed between the front wheel and the rear wheel for executing the shift-change inhibition control, and the execution conditions of the shift-change inhibition control and the like are not limited to the conditions used in the above-mentioned embodiment, and various modifications are conceivable as such conditions. For example, as an execution condition of the shift-change inhibition control, it may be possible to add a condition that the rotational speed of the rear wheel WR is set to a predetermined value (for example, 50km/h when expressed as a vehicle speed) or less or the like. Further, the automatic transmission may be constituted of a V-belt-type continuously variable transmission which drives a shift change pulley using an actuator.

Although various preferred embodiments of the present invention have been described herein in detail, it will be appreciated by those skilled in the art, that variations may be made thereto without departing from the spirit of the invention or the scope of the appended claims.
THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A transmission control device of a motorcycle comprising:
 a control part for performing an automatic shift change of a transmission in response to at least vehicle-speed information;
 a first sensor for detecting a rotational speed of a front wheel which constitutes a driven wheel;
 a second sensor for detecting a rotational speed of a rear wheel which constitutes a drive wheel; and
 a rotational-speed-difference detection means for detecting the difference in rotational speed between the front wheel and the rear wheel based on information from the first sensor and the second sensor, wherein
 the control part inhibits the automatic shift change when the rotational speed of the rear wheel becomes larger than the rotational speed of the front wheel and the difference in rotational speed between the front wheel and the rear wheel becomes a predetermined value or more.

2. A transmission control device of a motorcycle according to claim 1, wherein the transmission control device is configured to interrupt the transmission of a driving force to the rear wheel by disconnecting a clutch when a separation quantity between the front wheel and a road surface becomes a predetermined value or more during the inhibition of the automatic shift change.

3. A transmission control device of a motorcycle according to claim 2, wherein the separation quantity between the front wheel and the road surface is obtained by calculating a distance between the front wheel and the road surface using a photo sensor.

4. A transmission control device of a motorcycle according to claim 2, wherein the transmission control device includes a sensor for detecting a stroke quantity of a rear shock unit provided for suspending the rear wheel from a vehicle body, and the control part determines whether or not the separation quantity between the front wheel and the road surface reaches a predetermined
value based on whether or not the stroke quantity reaches a predetermined value.

5. A transmission control device of a motorcycle according to claim 2, wherein the transmission control device further includes a means for respectively detecting air pressure of the front wheel and air pressure of the rear wheel, and the control part determines whether or not the separation quantity between the front wheel and the road surface reaches a predetermined value based on whether or not the air pressure of the rear wheel is larger than the air pressure of the front wheel and the difference in air pressure between the front wheel and the rear wheel reaches a predetermined value.
FIG. 3

AUTOMATIC SHIFT-CHANGE INHIBITION CONTROL

S1

DETECT ROTATIONAL SPEEDS OF FRONT AND REAR WHEELS

S2

CALCULATE DIFFERENCE IN ROTATIONAL SPEED BETWEEN FRONT AND REAR WHEELS

S3

ROTATIONAL SPEED OF REAR WHEEL LARGER THAN ROTATIONAL SPEED OF FRONT WHEEL?

S4

DIFFERENCE IN ROTATIONAL SPEED BETWEEN FRONT AND REAR WHEELS REACH PREDETERMINED VALUE?

S5

INHIBIT AUTOMATIC SHIFT-CHANGE OPERATION OF TRANSMISSION

RETURN

FIG. 4

VEHICLE-WHEEL ROTATIONAL SPEED (N)

REAR-WHEEL ROTATIONAL SPEED Nr

FRONT-WHEEL ROTATIONAL SPEED Nf

0 t1 t2 TIME (t)

Ns
FIG. 5

AUTOMATIC SHIFT-CHANGE INHIBITION CONTROL AND CLUTCH INTERRUPTION CONTROL

1. DETECT ROTATIONAL SPEEDS OF FRONT AND REAR WHEELS

2. CALCULATE DIFFERENCE IN ROTATIONAL SPEED BETWEEN FRONT AND REAR WHEELS

3. ROTATIONAL SPEED OF REAR WHEEL LARGER THAN ROTATIONAL SPEED OF FRONT WHEEL?

4. DIFFERENCE IN ROTATIONAL SPEED BETWEEN FRONT AND REAR WHEELS REACH PREDETERMINED VALUE?

5. INHIBIT AUTOMATIC SHIFT-CHANGE OPERATION OF TRANSMISSION

6. LIFT QUANTITY OF FRONT WHEEL BECOMES PREDETERMINED VALUE OR MORE?

7. STROKE QUANTITY OF REAR SHOCK BECOMES PREDETERMINED VALUE OR MORE?

8. AIR PRESSURE OF REAR WHEEL LARGER THAN AIR PRESSURE OF FRONT WHEEL AND DIFFERENCE IN AIR PRESSURE BETWEEN REAR AND FRONT WHEELS BECOMES PREDETERMINED VALUE OR MORE?

9. DISCONNECT CLUTCH

RETURN