Title: WATERCRAFT LIFTS AND CABLE TIE-OFF DEVICE FOR WATERCRAFT LIFTS

Abstract: Novel cable tie-off devices for watercraft lift assemblies are disclosed and claimed herein. In certain embodiments, the cable tie-off devices are mounted onto the vertical pilings of the watercraft lift assembly without the use of bolts or other fasteners that directly penetrate the outer surface of the vertical pilings.
Published:
 — with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
APPLICATION FOR PATENT

TITLE: WATERCRAFT LIFTS AND CABLE TIE-OFF DEVICE FOR WATERCRAFT LIFTS

INVENTORS: WILLIAM GOLDEN AND MICHAEL KREMSER

This application claims the benefit of U.S. patent application serial number 10/694,431 filed October 27, 2003 in the United States Patent and Trademark Office, which is incorporated by reference herein in its entirety.

[001] The present invention is directed to watercraft lift assemblies comprising novel cable tie-off devices. In certain embodiments, the cable tie-off devices are mounted onto the vertical pilings of the watercraft lift assembly without the use of bolts or other fasteners that directly penetrate the outer surface of the vertical pilings. Consequently, the integrity of the vertical piling is better maintained compared to conventional cable-tie devices.

BRIEF DESCRIPTION OF THE FIGURES:

[002] Fig. 1 is a perspective view of a watercraft lift assembly employing embodiments of the inventive cable tie-off devices.

[003] Fig. 2 is an enlarged exploded top view of a vertical piling showing a pile cap embodiment of the inventive cable tie-off device.

[004] Fig. 3 is an enlarged view of a portion of a vertical piling showing an embodiment of a cable-tie off device secured thereon.

[005] Fig. 4 is a perspective view of a vertical piling showing the pile cap embodiment of the cable tie-off device illustrated in Fig. 2.

[006] Fig. 5 is an enlarged view of a vertical piling showing a second embodiment of a cap for mounting a winder assembly of the watercraft lift assembly.

[007] Fig. 6 is an exploded view of the wedge and housing portions of the cable tie-off device illustrated in Fig. 3.

[008] Fig. 7 is an exploded view of the wedge and housing portions of the cable tie-off device illustrated in Fig. 6 with a cable mounted thereon.

[009] Fig. 8 is an enlarged view of the platform portion of cable-tie device.
[010] Fig. 9 is an exploded view of the cap embodiment shown in Fig. 4 mounted on a round vertical piling.

[011] Fig. 10 is an exploded view of the cap embodiment shown in Fig. 4 mounted on a rectangular vertical piling.

[012] Fig. 11 is a perspective view of one embodiment of the watercraft assembly that may be employed with the cable-tie off device.

[013] Fig. 12 is a detailed, partially exploded view of the second pulley assembly connected to one of the transverse beams of the lifting frame.

[014] Fig. 13 is a perspective view of a motor/winch assembly illustrating an exemplary tie off of the first cable.

[015] Fig. 14 is a perspective view of a second embodiment of the watercraft assembly that may be employed with the cable-tie off device.

[016] Fig. 15 is a perspective view of a third embodiment of the watercraft assembly that may be employed with the cable-tie off device.

[017] Fig. 16 is a perspective view of the first pulley in combination with the first cable in the first and third embodiments of the watercraft assembly that may be employed with the cable-tie off device.

[018] Fig. 17 is a perspective view of the cable tie-off in combination with the first cable in the second embodiment of the watercraft assembly that may be employed with the cable-tie off device.

[019] Figs. 18A and 18B are enlarged views of other cable terminal end tie offs.

[020] Fig. 19 is a enlarged view showing a portion of one of the transverse beams of a watercraft assembly that may be employed with the cable-tie off device with a portion of the support frame secured thereon.

[021] Fig. 20A is a perspective view of a motor/winch assembly of the watercraft assembly that may be employed with the cable-tie off device.

[022] Fig. 20B is a perspective view of a spool bracket portion of the motor/winch assembly that may be used in the watercraft assembly that may be employed with the cable-tie off device.
DETAILED DISCUSSION OF THE PREFERRED EMBODIMENTS:

[023] The present invention, in certain aspects, is directed to watercraft lift assemblies, and more specifically, to improvements in cable tie-off devices used to secure the free end of lifting cables used in the pulley assemblies of watercraft lifts.

[024] The following discussion refers specifically to the improved cable-tie device. Referring now to Fig. 1, the present invention comprises a watercraft lift assembly 10 employing, in part, a series of cable tie-off devices 20, 200. It is important to note that the present invention is not limited to the watercraft lift design depicted in Fig. 1 in terms of size, number and arrangement of vertical pilings, transverse watercraft support beams, and lifting cables, for example, but may comprise other watercraft lift designs, such as those discussed further below. Moreover, the term “watercraft,” as used herein, refers to any vehicle designed for operation on any waterway and includes, but is not limited to, outboard motor boats, jet skis, inboard motor boats, pontoon boats, sailboats, jet boats, canoes, and the like. For ease of illustration, the watercraft is not shown in the figures.

[025] Referring now to Figs. 1 and 3, one embodiment of the cable tie-off device 20 comprises a jacket 21 secured about the outer sides of the vertical piling 11. The jacket 21 further comprises first and second opposing brackets 22 configured to engage the sides of the piling. As shown in Fig. 3, the brackets 22 are substantially C-shaped; however, it will be recognized by those of ordinary skill in the art who first have the benefit of this invention’s teachings and suggestions that the shape of the brackets may be modified if desired, in particular to conform better to the configuration and size of other vertical pilings, for example. Extending from the end of the brackets, and integral therewith, are fastening portions 23. When the brackets of the jacket are placed around the piling, adjacent fastening portions 23 of the respective brackets are aligned as shown in the figures and secured to one another by a bolt, screw, or similar fastener 60.

[026] Extending from the brackets is a platform 24 configured to maintain the cable 13 of the lifting device. Specifically, the platform 24 comprises a slot 30 and a housing portion 25 extending from, and in communication with, the slot 30. The platform 24 is also shown in Fig. 8, wherein the housing portion is removed to better illustrate the slot 30 [Note that the platform may be integrally welded, for example, to the bracket or it may be a separate piece fastened to the bracket through holes 31 in the base 32 of the platform, as
illustrated in Fig. 8.] The combination of the slot 30 and housing portion 25 are
designed to maintain a wedge 40 about which the free end of a lifting cable 13 is carried,
as shown in Figs. 3 and 6-7. As better shown in Figs. 6-7, the wedge 40 has a grooved
periphery 41 within which the cable 13 is carried. The housing portion 25 may be
oriented above the slot, as shown in Fig. 3, for example, wherein the jacket is secured
near the proximal end 14 of the piling 11, with the cable 13 hanging below the jacket 22
(see also device 20 in Fig. 1). Alternatively, the housing portion 25 may be oriented
below the slot 30, as shown at device 200 in Fig. 1, wherein the jacket is secured near the
distal end 15 of the piling with the cable 13 hanging above the jacket. In both
embodiments, the force applied upon the cable during operation of the watercraft lift will
cause the wedge 40/cable 13 combination to lock within the housing portion 25, thereby
minimizing any slippage of the cable during operation of the watercraft lift. For example,
the weight of the beams 12 (and watercraft if carried thereon) maintain the wedge/cable
combination within the housing portion in the proximal device 20, while the upward
driving force applied by operation of the winch assembly 70, winding the cable 13
upward to lift the beams 12, will maintain the wedge/cable combination within the
housing portion in the distal device 200.

[027] The figures illustrate the provision of the wedge-shaped housing portion 25 for
carrying and maintaining the cable wedge 40 therein, as discussed above, and this
embodiment is preferred for optimal stability. However, in some aspects of the present
invention, the housing portion may be omitted from the design entirely without departing
from the spirit of the invention. In these embodiments, the wedge/cable combination is
maintained within the slot 30 by the upward or downward force pulling the wedge/cable
firmly within the slot.

[028] It is important to note that the inventive device 20, 200 may be attached to any type
of vertical piling 11 used in watercraft lift assemblies, regardless of shape or material of
the piling. For example, the device 20, 200 may be secured to wood pilings, concrete
pilings, metal pilings, and the like. In addition, while Figs. 1 and 3, for example,
illustrate the device 20 secured to a round piling, the device may also be secured to a
square or rectangular shaped piling, and if desired, the design of the bracket may be
modified to better conform to the square or rectangular configuration of such pilings.
[029] Figs. 2, 4, and 9-10 illustrate another embodiment of the inventive cable tie-off device designed for attachment to the top (i.e. proximal end) of the piling. Specifically, the device comprises a cap 50 mounted onto the proximal end 14 of the piling. In Figs. 4 and 10 the cap 50 may be rectangular shaped to conform to the rectangular end of the piling. Alternatively, the rectangular cap may be secured to round vertical pilings (see Figs. 1 and 9). The cap 50 comprises a top portion 53 and side walls 54 that extend downward entirely around the vertical pilings sides as shown. The length (L) of the side walls is not critical, but should be sufficiently long enough to prevent the cap from sliding off the end of the piling, both during the operation of the watercraft lift as well as when there is a relatively light downward force being applied to the cap, the case being, for example, when there is no watercraft being carried by the lift.

[030] Extending from at least one side wall 54 of the cap 50 is a platform 51 configured to maintain the cable 13 of the lifting device. As illustrated in Figs. 4, 9-10, the platform 51 may be identical to the platform 24 shown in Fig. 3, for example. As in the embodiment shown in Fig. 3, the platform 51 comprises a slot 55 and a housing portion 52 extending from, and in communication with, the slot. The housing portion 52 may be identical to the housing portion shown in Fig. 3. As discussed above with respect to the cable tie-off embodiment shown in Fig. 3, the platform 51 may be integrally welded, for example, to the side walls 54 of the cap or it may be a separate piece fastened to the side walls 54 through holes in the base of the platform.

[031] The combination of the slot 55 and housing portion 52 are designed to maintain a wedge 40 about which the free end of a lifting cable 13 is carried. The wedge may be identical in design and use to that illustrated in Figs. 3 and 6 and discussed above.

Because the cap 50 is secured to the proximal end of the piling, the housing portion 52 is necessarily oriented above the slot, as shown in Figs. 2, 9-10, with the cable 13 hanging below the cap 50. As discussed above for the device 20, the force applied upon the cable during operation of the watercraft lift will cause the wedge 40/cable 13 combination to lock within the housing portion 52, thereby minimizing any slippage of the cable during operation of the watercraft lift. For example, the weight of the beams 12 (and watercraft, if carried thereon) maintain the wedge/cable combination within the housing portion 52 of the cap 50.
[032] For optimum fit, it is preferable that the inner width of the cap be only slightly larger than the respective width w or diameter d of the piling. Such dimensions allow for an essentially friction fit of the cap onto the proximal end 14 of the piling 11 which, in conjunction with the side walls 54 of the cap, prevent the cap from sliding off the piling 11 during operation of the watercraft lift assembly as well as when the lift assembly is not in use (see Fig. 9). If desired, however, additional fasteners 80 may be used to secure the cap 50 to the proximal end 14 of the piling, as shown in Fig. 10, for example.

[033] Fig. 5 illustrates a cap 500 similar to that depicted in Figs. 2, 4, 9-10, and comprises a top portion 530 and side walls 540 that extend downward entirely around the vertical piling’s sides. The difference between the two caps, however, is that instead of a cable-tie off device being secured to the cap 500, a winder assembly 70 is mounted onto the side walls 540 of the cap. For the reasons discussed above for the cap embodiment illustrated in Figs. 2, 4, and 9-10, the inner diameter or width of the cap 500 is preferably only slightly larger than the respective diameter or width of the piling. Moreover, like the cap 50 embodiment discussed above, the cap 500 for the winder assembly may be secured to rectangular vertical pilings (Fig. 5) or round pilings (Fig. 1). It is important to note that while Fig. 5 illustrates a winder assembly 70 secured to the cap 500, other devices may also be mounted thereon, including, but not limited to, motors.

[034] The following discussion is with reference to specific watercraft lift designs that may be employed with the inventive cable tie-off device described above.

[035] Fig. 11 illustrates the first embodiment of a watercraft lift assembly which, for ease of explanation, is referred herein as the “three-post/dual motor embodiment.” This embodiment comprises a support structure to which the motor/winches assemblies and terminal ends of the lifting cables are mounted or secured, respectively. Specifically, the support structure of the three-post/dual motor design illustrated in Fig. 11 comprises two vertical pilings 11 positioned on the proximal side P (i.e. dock side) of the watercraft (not shown). The vertical pilings are typically spaced about 7 feet to 12 feet from one another. A third vertical piling 12 is positioned on the distal side D of the watercraft (i.e. a distance away from the dock). As shown in Fig. 11, elongated transverse lifting beams 13 are positioned between the pilings by a pair of pulley assemblies and cables.
[036] The embodiment illustrated in Fig. 11 comprises a pair of motor/winch assemblies 14, each of which is secured separately to one of the proximal pilings 11. Each winch assembly 14 contains a rotatable spool 15 about which a length of lifting cable 20 is wound. In one embodiment, the spool is secured to a bracket piece 18 which in turn is secured to the motor assembly 17. One end of the cable is secured to the spool while the other end is tied off near the top end 11a of the piling (not shown) or to the winch assembly, as shown in Figs. 11 and 13. The cables may be stainless steel aircraft cable, nylon, or other types of cables or ropes known by those of ordinary skill in the art. The lifting cable 20 is further mounted onto a pulley wheel 30, as shown in Figs. 11 and 16. Preferably, about 12 feet to about 24 feet of cable are employed on this portion of the pulley assembly. The first pulley wheel 20 is mounted onto a bolt 21 which, in turn, is used to secure a pair of parallel pulley housing plates 22 to one another. The first pulley wheel 31 is clearly illustrated in Fig. 16, but is hidden from view by one of the parallel plates 22 in the remaining figures. In addition, only a small portion of parallel plates 22 are shown in Fig. 11; however, the plates are more clearly shown in Figs. 12 and 16. When the motor 14b is actuated to operate the winch 14, the spool rotates to release or wind the lifting cable 20 along the pulley wheel 30. It will be understood by those of ordinary skill in the art that all of the pulley wheels employed in all of the embodiments of the present invention are conventional pulley wheels, each having a sufficiently wide groove 31 for maintaining the lifting cables as they move thereon (see Fig. 16, for example).

[037] Also secured between the parallel plates 22 is a second pulley wheel 32 positioned subjacent to the first pulley wheel 30. The second pulley wheel 32 is mounted to a second bolt 27 that also serves to secure the parallel plates 22 to one another, as shown in Figs. 11 and 12. A second cable 33 is employed, wherein one end is secured to one of the vertical pilings 11 below the transverse lifting beams 13 (at 500, for example) and the other end is secured near the top end 12a of the third vertical piling (at 500, for example) as shown in Fig. 11. The remaining length of cable is aligned, in succession, over the second pulley wheel 32, beneath a third pulley wheel 34, along the top surface of the transverse beam, and beneath a fourth pulley wheel 35 mounted to the distal end 13a of the transverse beam, as shown in Figs. 11 and 12. A preferred length of this second cable
is 26 feet to 36 feet, although the skilled artisan, will recognize that the length may be
varied depending upon the size of the watercraft. Moreover, the third and fourth pulley
wheels 34, 35 are preferably mounted onto brackets 40 that are integral with opposing
ends of the transverse beams 13. Preferably, the latter pulley wheels 34, 35 are mounted
within brackets 40 using hollow bolts 50 with zerk fittings.

[038] When the motor/winch assembly in this embodiment is actuated via a single
switch (not shown) to lift the transverse lifting beams 13, the cable 20 pulls the plates 22
upward, thereby synchronistically raising the beams upward. Lowering the transverse
beams operates in the same fashion.

[039] Fig. 12 more clearly illustrates the pulley and cable components of the inventive
lifting apparatus. Not shown in Fig. 11 but shown in Fig. 12 are a second pair of parallel
plates 41. The lower ends 22a of the first pair of parallel plates 22 are secured via a bolt
27; as shown. The second pair of plates 41 provide for more stability during operation of
the lift assembly. In addition, the lift assembly preferably includes a cable tunnel 60
configured to protect the second cable 33 from damage. A vertical stabilizing member 63
may also be secured to each of the transverse beams to minimize side-to-side movement
of the boat hull. These features are preferably present in all of the embodiments
illustrated and described herein.

[040] Fig. 14 illustrates a second embodiment which, for ease of explanation, is referred
to herein as the “three-post/single motor design” 300. In this embodiment, three vertical
pilings 301 used for structural support are employed. Specifically, the three-post/single
motor embodiment illustrated in Fig. 14 comprises one vertical piling positioned on the
dock-side or proximal side P of the water craft (not shown). Two other vertical pilings
302 are positioned a distance away from the dock, for example, and more particularly on
the distal side D of the dock. These vertical pilings are typically spaced about 7 feet to
12 feet from one another. In this embodiment, the transverse lifting beams for carrying
the watercraft are positioned between the pilings as shown in Fig. 14.

[041] A winch assembly 14 is mounted near the top end of the first vertical piling 301.
The winch assembly includes a pair of rotatable spools 141 and a motor 14b for turning
the spools. A first cable 200 is wound about each of the spools 141, with one end of the
cable secured to the spool and the other end secured to a bolt 50 connecting the two
parallel pulley plates 22, as shown in Figs. 14 and 17. Preferably, these cables are from about 12 feet to about 24 feet in length, depending upon the size of the watercraft intended to be lifted.

[042] The three-post/single motor design 100 further includes a pair of pulley assemblies, each of the pulley assemblies positioned on one side of the proximal vertical piling 301 as well as one of the transverse lifting beams 13. More specifically, each of the pulley assemblies includes a pulley wheel 32 secured to the parallel plates by a bolt 50 connecting the two plates, as shown in Fig. 14. The pulley wheel 32 is positioned subjacent to the upper bolt 50 connecting the parallel plates 22. Each of the pulley assemblies further includes a second pulley wheel 34 positioned subjacent to the first pulley wheel 32 and mounted onto another bolt 50. A third pulley wheel 35 is positioned on each of the transverse beams 13 near the distal vertical piling 302 and held therein by a bolt 50, as shown in Fig. 12. Preferably, the pulley wheels 34,35 positioned on the transverse lifting beams 13 are mounted within brackets 40 using hollow bolts with zerk fittings 52, as described above for the first embodiment and illustrated in Fig. 12.

[043] The three post/single motor embodiment 100 further includes a set of second cables 33, with each cable having one end fixedly secured to one side of the proximal vertical piling 301 below the first end 13b of the transverse beam and the second end fixedly secured to and near the top end 302a of one of the distal side vertical pilings 302, as shown in Fig. 14. The remaining portion of each of the second cables is aligned, in succession, over the first pulley wheel 32, beneath the second pulley wheel 34, along the top surface of the transverse beam, and beneath the third pulley wheel 35 on the distal end 13a of the transverse beam. As shown in Fig. 2, the second and third pulley wheels 35,36 are mounted within brackets 40 using hollow bolts with zerk fittings 51.

Preferably, from about 26 feet to about 36 feet of cable 30 are used, depending upon the size of the watercraft intended to be lifted by the inventive lifting assembly.

[044] When the motor/winch assembly in this embodiment is actuated via a single switch (not shown) to lift the transverse lifting beams 13, the cable 200 pulls the plates upward, thereby synchronistically raising the transverse lifting beams 13. Lowering the transverse beams operates in the same fashion.
[045] Fig. 15 illustrates a third embodiment of a watercraft lift design. In this embodiment, which for ease of explanation is referred to herein as the “four post/dual motor” embodiment 200, the support structure of the assembly includes a first pair of vertical pilings 211 positioned on the proximal side P (i.e. dock side) of the watercraft W and a second pair of vertical pilings 212 positioned on the distal side D of the watercraft W. This embodiment further includes a pair of transverse lifting beams 13, which in combination with the other features of the invention, may be lowered or raised to accommodate a watercraft. Each of the two lifting beams 13 is positioned between adjacent distal and proximal pilings 211,212, as shown in Fig. 15. This embodiment includes a pair of winch/motor assemblies 14, each of which is secured to one of the proximal pilings 212 near the top end 213a at 500, as shown. Each of the winch/motor assemblies 14 includes a spool about which a cable 20 is wound. This first cable 20 is wound about each of the spools 15 (see Fig. 20A), with the cable having one end fixedly secured to the spool and a second end fixedly secured to either piling of the first pair of vertical pilings 211 or a portion of the winch assembly on each of the first pair of proximal pilings 211. The first cable 20 is mounted onto the first pulley wheel 34, as also described above and illustrated for the first embodiment (i.e. see Figs. 15-16), and serves to raise or lower the pulley wheel 30 via the motor/winch assembly 14.

[046] A second pulley wheel 34 is housed between a second pair of parallel housing plates 41 and subjacent to the first pulley wheel. Preferably, the second pulley wheel 34 is rotatably mounted on a bolt 50 securing the two parallel plates 41 together. This cable 20 is movably mounted on the first pulley wheel 30 for longitudinal movement upon activation of the motor.

[047] Each of the pulley assemblies further includes a third pulley wheel 34 positioned subjacent to the second pulley wheel 32 on the proximal end 13a of the lifting beam as well as a fourth pulley wheel 35 positioned on the distal end 13b of the lifting beam 13. The third pulley wheel 34 is further rotatably mounted on a bolt 50 secured between the brackets.

[048] The pulley assembly further includes a set of second cables 33, each having a first end secured to one side of the proximal vertical piling 211 beneath the transverse beam and a second end secured to and near the top of one of the two distal pilings to which it is
adjacent. The second cable 33 is further aligned, in succession, over the second pulley wheel 32, beneath a beneath the third pulley wheel 34, along the top surface of the beam, and beneath a fourth pulley wheel 35, wherein the fourth pulley wheel is mounted to the distal end of each of the elongated beams. Preferably, the third and fourth pulley wheels 34,35 positioned on the lifting beams are mounted within brackets 41 using hollow bolts with zerk fittings 51, as described above for the first and second embodiments illustrated herein.

[049] To operate the lifting apparatus, two switches actuated to activate the motor and winches of the motor/winch assembly, thereby causing the first cable 20 to raise or lower the two lifting beams, synchronistically.

[050] Fig. 15 illustrates a boat hull W (in phantom) positioned on the transverse lifting beams 13. Preferably, the lifting beams are further connected to one another by a pair of cross beams 300 positioned on the top surface of the lifting beams 13. Preferably, these cross beams 300 are covered with an artificial turf 301 or other suitable material to prevent slippage and scratching of the watercraft hull or bottom. As shown in Fig. 19, the cross beams may be secured to the transverse beams via an L-bracket 302, for example.

[051] The present invention is also directed to another cable tie-off design for safely securing the free end of the lifting cable 33 to the vertical piling. As shown in Figs. 18A-18B, the cable 33 is aligned within a grooved wedge 400. The wedge 400 is configured to fit within the slot 508 of a becket which has been bolted onto the vertical piling. Fig. 18B illustrates an L-shaped becket 500 secured to a vertical piling via bolts 502. The upward force of the cable during operation of the lifting apparatus causes the wedge/cable combination to lock into the slot 50 within the becket, thereby minimizing any slippage of the cable during operation.

[052] The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape, and materials, as well as in the details of the illustrated construction, may be made without departing from the spirit of the invention.
In the claims:

1. A watercraft lift assembly for selectively lifting a water craft into and out of a waterway, said assembly comprising:

 a. a support structure installed within said water way, said support structure comprising at least two vertical pilings, said at least two vertical pilings having outer sides and a proximal end;

 b. at least one transverse beam mounted between said vertical pilings, said beams configured for carrying said watercraft;

 c. a pulley assembly secured to said support structure and transverse beams, said pulley assembly including a set of lifting cables mounted thereon for selectively lifting said water craft into and out of said waterway, each of said set of cables having a free cable end for mounting to one of said pilings;

 d. a motor/winch assembly secured to said assembly for activating said pulley assembly; and

 e. a cable tie-off device for securing said free cable end to one of said vertical pilings, said cable tie-off device comprising (i) a jacket secured about the outer sides of the vertical piling, said jacket comprising first and second opposing brackets configured to engage the sides of the piling, each of said brackets having fastening portions extending from each end of the brackets, such that when said brackets are mounted onto the piling, the fastening portions of said first bracket are aligned with, and secured to, adjacent fastening portions of said second bracket by a fastener engaging each of said adjacent portions; (ii) said jacket further having at least one platform extending from the outer surface of one of said brackets, said
platform having a slot communicating therethrough; and (iii) a wedge configured to fit within said slot of said platform, said wedge further having a grooved periphery for maintaining a portion of said free cable end, such that when said wedge in combination with said portion of said free cable end are inserted within said slot, any force pulling said wedge further within said slot locks said wedge therein, thereby preventing slippage of said free cable end therein.

2. A watercraft lift assembly for selectively lifting a water craft into and out of a waterway, said assembly comprising:

 a. a support structure installed within said water way, said support structure comprising at least two vertical pilings, said at least two vertical pilings having outer sides and a proximal end;

 b. at least one transverse beam mounted between said vertical pilings, said beams configured for carrying said watercraft;

 c. a pulley assembly secured to said support structure and transverse beams, said pulley assembly including a set of lifting cables mounted thereon for selectively lifting said water craft into and out of said waterway, each of said set of cables having a free cable end for mounting to one of said pilings;

 d. a motor/winch assembly secured to said assembly for activating said pulley assembly; and

 e. a cable tie-off device for securing said free cable end to one of said vertical pilings, said cable tie-off device comprising (i) a jacket secured about the outer sides of the vertical piling, said jacket comprising first and second opposing brackets configured to engage the sides of the piling, each of said brackets having fastening portions extending from each end of the brackets, such that when said brackets are mounted onto the piling, the fastening
portions of said first bracket are aligned with, and secured to, adjacent fastening portions of said second bracket by a fastener engaging each of said adjacent portions; (ii) said jacket further having at least one platform extending from the outer surface of one of said brackets, said platform having a slot communicating therethrough and a housing disposed above, and in communication with, said slot; and (iii) a wedge configured to fit within said housing of said platform, said wedge further having a grooved periphery for maintaining a portion of said free cable end, such that when said wedge in combination with said portion of said free cable end, are inserted within said housing, any force pulling said wedge further within said housing locks said wedge therein, thereby preventing slippage of said free cable end therein.

3. A watercraft lift assembly for selectively lifting a watercraft into and out of a waterway, said assembly comprising:
 a. a support structure installed within said waterway, said support structure comprising at least two vertical pilings, said at least two vertical pilings each having outer sides and a proximal end;

 b. at least one transverse beam mounted between said vertical pilings, said beams configured for carrying said watercraft;

 c. a pulley assembly secured to said support structure and transverse beams, said pulley assembly including a set of lifting cables mounted thereon for selectively lifting said watercraft into and out of said waterway, each of said set of cables having a free cable end for mounting to one of said pilings;

 d. a motor/winch assembly secured to said assembly for activating said pulley assembly; and

 e. a cable tie-off device for securing said free cable end to near the proximal end of said vertical piling, above said transverse beams, said cable
tie-off device comprising (i) a cap secured to said proximal end of said vertical piling, said cap having a top portion and side walls integral with said top portion and extending downward entirely around said vertical piling sides; (ii) at least one platform extending from one of said side walls of said cap, said platform having a slot communicating therethrough; and (iii) a wedge configured to fit within said slot of said platform, said wedge further having a grooved periphery for maintaining a portion of said free cable end, such that when said wedge in combination with said portion of said free cable end are inserted within said slot, a force pulling said wedge further within said slot locks said wedge therein, thereby preventing slippage of said free cable end therein.

4. The watercraft lift assembly of claim 3, wherein said cap is securely maintained upon proximal end of said vertical piling in part by said force without use of mechanical fasteners penetrating said cap and said vertical piling.

5. A watercraft lift assembly for selectively lifting a water craft into and out of a waterway, said assembly comprising:

 a. a support structure installed within said water way, said support structure comprising at least two vertical pilings, said at least two vertical pilings each having outer sides and a proximal end;

 b. at least one transverse beam mounted between said vertical pilings, said beams configured for carrying said watercraft;

 c. a pulley assembly secured to said support structure and transverse beams, said pulley assembly including a set of lifting cables mounted thereon for selectively lifting said water craft into and out of said waterway, each of said set of cables having a free cable end for mounting to one of said pilings;
d. a motor/winch assembly secured to said assembly for activating said pulley assembly; and

e. a cable tie-off device for securing said free cable end to near the proximal end of said vertical piling, above said transverse beams, said cable tie-off device comprising (i) a cap secured to said proximal end of said vertical piling, said cap having a top portion and side walls integral with said top portion and extending downward entirely around said vertical piling sides; (ii) at least one platform extending from one of said side walls of said cap, said platform having a slot communicating therethrough and a housing disposed above, and in communication with, said slot; and (iii) a wedge configured to fit within said housing of said platform, said wedge further having a grooved periphery for maintaining a portion of said free cable end, such that when said wedge in combination with said portion of said free cable end are inserted within said housing, any force pulling said wedge further within said housing locks said wedge therein, thereby preventing slippage of said free cable end therein.

6. The watercraft lift assembly of claim 5, wherein said cap is securely maintained upon proximal end of said vertical piling in part by said force without use of mechanical fasteners penetrating said cap and said vertical piling.

7. A watercraft lift assembly for selectively lifting a water craft into and out of a waterway, said assembly comprising:
 a. a support structure installed within said water way, said support structure comprising at least two vertical pilings, said at least two vertical pilings each having outer sides and a proximal end;

 b. at least one transverse beam mounted between said vertical pilings, said beams configured for carrying said watercraft;
c. a pulley assembly secured to said support structure and transverse beams, said pulley assembly including a set of lifting cables mounted thereon for selectively lifting said water craft into and out of said waterway, each of said set of cables having a free cable end for mounting to one of said pilings;

d. a cap secured to the proximal end of said vertical piling, said cap having a top portion and side walls integral with said top portion and extending downward entirely around said vertical piling sides; and

e. a motor/winch assembly secured to one of said side walls of said cap for activating said pulley assembly.

8. The watercraft lift assembly of claim 7, wherein said cap is securely maintained upon proximal end of said vertical piling in part by said force without use of mechanical fasteners penetrating said cap and said vertical piling.

9. A watercraft lift assembly for selectively lifting a water craft into and out of a waterway, said assembly comprising:

a. a support structure installed within said water way, said support structure comprising first and second vertical pilings positioned on a proximal side of said watercraft and a third vertical piling positioned on a distal side of said watercraft;

b. a first transverse beam mounted between said first and third pilings and a second transverse beam mounted between said second and third pilings, said beams configured for carrying said watercraft;

c. two winch assemblies, wherein each of said winch assemblies is attached to one of said first and second pilings, each of said winch assemblies further including a rotatable spool and a motor for turning said spool;
d. a first cable wound about said spool, said cable having one end fixedly secured to said spool and a second end fixedly secured to either said piling or a portion of said winch assembly;

e. a pulley assembly secured to said support structure and one of said beams, said pulley assembly including a first pulley wheel housed between two parallel plates and rotatably mounted onto a first bolt connecting said parallel plates, and wherein said first cable is movably mounted on said first pulley wheel for longitudinal movement upon activation of said motor;

f. said pulley assembly further including a second pulley wheel housed between said two parallel plates and rotatably mounted onto a second bolt connecting said parallel plates, said second pulley wheel positioned subjacent to said first pulley wheel;

g. said pulley assembly further including a third pulley wheel positioned subjacent to said second pulley wheel and mounted within a bracket by a third bolt, wherein said bracket is further secured to a first end of said beam;

h. a second cable having a first end fixedly secured to one of said first and second pilings below said first end of said beam, and a second end fixedly secured onto and near a top end of said third piling, and wherein said second cable is further aligned, in succession, over said second pulley wheel, beneath said third pulley wheel, along a top surface of said beam, and beneath a fourth pulley wheel, said fourth pulley wheel mounted within a bracket by a bolt, wherein said bracket is further secured to a second end of one of said elongated beams; and
i. a cable tie-off device for securing said free cable end to one of said vertical pilings, said cable tie-off device comprising (i) a jacket secured about the outer sides of the vertical piling, said jacket comprising first and second opposing brackets configured to engage the sides of the piling, each of said brackets having fastening portions extending from each end of the brackets, such that when said brackets are mounted onto the piling, the fastening portions of said first bracket are aligned with, and secured to, adjacent fastening portions of said second bracket by a fastener engaging each of said adjacent portions; (ii) said jacket further having at least one platform extending from the outer surface of one of said brackets, said platform having a slot communicating therethrough and a housing disposed above, and in communication with, said slot; and (iii) a wedge configured to fit within said housing of said platform, said wedge further having a grooved periphery for maintaining a portion of said free cable end, such that when said wedge in combination with said portion of said free cable end, are inserted within said housing, any force pulling said wedge further within said housing locks said wedge therein, thereby preventing slippage of said free cable end therein; whereby when said motor is selectively actuated to raise or lower a water craft carried on said elongated beams, said winches on each of said first and second pilings are activated to synchronistically wind said first cable about said spool, thereby moving said first and second pulleys longitudinally along said second cable.

10. A watercraft lift assembly for selectively lifting a water craft into and out of a waterway, said assembly comprising:

a. a support structure installed within said water way, said support structure comprising a first vertical piling positioned on a proximal side of said watercraft and second and third vertical pilings positioned on a distal side of said watercraft;
b. a first transverse beam mounted between said first and second pilings and a second transverse beam mounted between said first and third pilings, said beams configured for carrying said watercraft;

c. a winch assembly mounted onto a top end of said first piling, said winch assembly further including a pair of rotatable spools and a motor for turning said spools;

d. a pair of first cables, wherein each of said first cables is wound about one of said spools and has one end fixedly secured to said spool and a second end fixedly secured to a first bolt connecting a pair of parallel plates;

e. a pair of pulley assemblies secured to said first piling and said transverse beams, wherein said pulley assemblies further includes a first pulley wheel housed between said two parallel plates, said first pulley wheel subjacent to said first bolt and rotatably mounted onto a second bolt, said second bolt further secured to a lower end of said parallel plates;

f. said pulley assembly further including a second pulley wheel positioned subjacent to said first pulley wheel and mounted within a bracket by a third bolt, wherein said bracket is further secured to a first end of said beam; and

g. a set of second cables, each having a first end fixedly secured to one side of said first piling below said first end of said beam, and a second end fixedly secured onto and near a top end of one of said second or third piling, and wherein said second cable is further aligned, in succession, over said first pulley wheel, beneath said second pulley wheel, along a top surface of said beam, and beneath a third pulley wheel, wherein said third pulley wheel is mounted within a bracket by a bolt, said bracket further secured to a second end of one of said elongated beams; and
h. a cable tie-off device for securing said free cable end to one of said vertical pilings, said cable tie-off device comprising (i) a jacket secured about the outer sides of the vertical piling, said jacket comprising first and second opposing brackets configured to engage the sides of the piling, each of said brackets having fastening portions extending from each end of the brackets, such that when said brackets are mounted onto the piling, the fastening portions of said first bracket are aligned with, and secured to, adjacent fastening portions of said second bracket by a fastener engaging each of said adjacent portions; (ii) said jacket further having at least one platform extending from the outer surface of one of said brackets, said platform having a slot communicating therethrough and a housing disposed above, and in communication with, said slot; and (iii) a wedge configured to fit within said housing of said platform, said wedge further having a grooved periphery for maintaining a portion of said free cable end, such that when said wedge in combination with said portion of said free cable end, are inserted within said housing, any force pulling said wedge further within said housing locks said wedge therein, thereby preventing slippage of said free cable end therein;

whereby when said motor is selectively actuated to raise or lower a water craft carried on said elongated beams, said pair of spools on each side of said first piling are activated to synchronistically wind said first cable about said spool, thereby moving said first bolt and second pulley longitudinally along said second cable to move said beam.

11. A watercraft lift assembly for selectively lifting a water craft into and out of a waterway, said assembly comprising:

a. a support structure installed within said water way, said support structure comprising a first pair of vertical pilings positioned on a proximal side of said watercraft and a second pair vertical pilings positioned on a distal side of said watercraft;
b. a pair of transverse beams, one of said pair of beams mounted between adjacent proximal and distal pilings; said beams configured for carrying said watercraft as said watercraft is selectively lifted into and out of said waterway by said watercraft lift assembly;

c. a pair of winch assemblies, each of said winch assemblies mounted onto a top end of one of said pair of first pilings, each of said winch assemblies further including a rotatable spool and a motor for turning said spool;

d. a first cable wound about each of said spools, said first cable having one end fixedly secured to said spool and a second end fixedly secured to a portion of said winch assembly on each of said first pair of pilings;

e. a pulley assembly secured to said support structure and each of said beams, said pulley assembly including a first pulley wheel housed between two parallel plates and rotatably mounted onto a first bolt connecting said parallel plates, and wherein said first cable is movably mounted on said first pulley wheel for longitudinal movement upon activation of said motor;

f. said pulley assembly further including a second pulley wheel housed between said two parallel plates and rotatably mounted onto a second bolt connecting said parallel plates, said second pulley wheel positioned subjacent to said first pulley wheel;

g. said pulley assembly further including a third pulley wheel positioned subjacent to said second pulley wheel and mounted onto a third bolt, said third pulley wheel and third bolt, in combination, further mounted to a first end of said beam;

h. a second cable having a first end fixedly secured to one of said first pair of pilings below said first end of said beam, and a second end fixedly secured onto and near a top end of one of said second pair of pilings, and wherein
said second cable is further aligned over said second pulley wheel, beneath said third pulley wheel, along a top surface of said beam, and beneath a fourth pulley wheel, said fourth pulley wheel mounted to a second end of one of said elongated beams;

i. a cable tie-off device for securing said free cable end to one of said vertical pilings, said cable tie-off device comprising (i) a jacket secured about the outer sides of the vertical piling, said jacket comprising first and second opposing brackets configured to engage the sides of the piling, each of said brackets having fastening portions extending from each end of the brackets, such that when said brackets are mounted onto the piling, the fastening portions of said first bracket are aligned with, and secured to, adjacent fastening portions of said second bracket by a fastener engaging each of said adjacent portions; (ii) said jacket further having at least one platform extending from the outer surface of one of said brackets, said platform having a slot communicating therethrough and a housing disposed above, and in communication with, said slot; and (iii) a wedge configured to fit within said housing of said platform, said wedge further having a grooved periphery for maintaining a portion of said free cable end, such that when said wedge in combination with said portion of said free cable end, are inserted within said housing, any force pulling said wedge further within said housing locks said wedge therein, thereby preventing slippage of said free cable end therein; and

whereby when said motors are selectively actuated to raise or lower a water craft carried on said elongated beams, said winches on said first pair of pilings are activated to synchronistically wind said first cable about said spool, thereby moving said second and third pulleys longitudinally along said second cables.
Fig. 2
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION DATA

PCT/US04/34639

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : B63C 7/00
US CL : 114/044

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 114/044; 405/1; 3; 403/16, 211

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.
See patent family annex.

- [] Special categories of cited documents:
 - [] later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - [] document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - [] document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - [] document member of the same patent family

Date of the actual completion of the international search

25 January 2005 (25.01.2005)

Date of mailing of the international search report

08 FEB 2005

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Authorized officer
[Signature]

Telephone No. 708-308-1113

Form PCT/ISA/210 (second sheet) (January 2004)