Crimping apparatus are provided for use with a crimping machine. The crimping apparatus includes a support structure and a plurality of retainers movably attached to the support structure and radially arranged about an axis of the crimping apparatus. Each retainer includes an engagement structure configured to removably connect a crimping member to the retainer. The crimping apparatus is configured to be removably positioned with respect to a crimping machine while the retainers remain movably attached to the support structure. Methods of crimping with a crimping machine and a crimping apparatus are also provided.
FIG. 4
CRIMPING APPARATUS AND METHODS OF CRIMPING WITH RETAINERS

FIELD OF THE INVENTION

[0001] The present invention relates to crimping apparatus and methods of crimping, and more particularly to crimping apparatus and methods of crimping with retainers.

BACKGROUND OF THE INVENTION

[0002] Conventional die cage assemblies are known to be used with a crimping machine to crimp a fitting on an end of a hose. For example, a die cage assembly may be used with a ProCrimp™ 1390 crimping machine available from Eaton Aeroquip Inc. of Maumee, Ohio. Such a crimping machine may be used with various die cage assemblies, such as the die cage assembly disclosed by U.S. Pat. No. 6,484,552 which is incorporated by reference herein in its entirety. Die cage assemblies can be convenient to properly align die segments with respect to the crimping machine. Moreover, die cage assemblies can also provide a unitary structure that simplifies carrying and installation of the die segments by an operator setting up the crimping machine. However, a separate die cage assembly must be purchased for each desired predetermined crimping arrangement. Providing alternative crimping arrangements can be expensive since a separate die cage assembly must be purchased for each contemplated crimping arrangement.

[0003] Other crimping machines are known to receive alternative sets of crimp die segments, as disclosed for example, by U.S. Pat. No. 6,257,042. However, such crimping machines do not contemplate use of a removable die cage assembly with a crimping machine.

SUMMARY OF THE INVENTION

[0004] Accordingly, it is an aspect of the present invention to obviate problems and shortcomings of conventional die cage assemblies.

[0005] In accordance with one aspect, a crimping apparatus is provided for use with a crimping machine. The crimping apparatus comprises a support structure and a plurality of retainers movably attached to the support structure and radially arranged about an axis of the crimping apparatus. Each retainer includes an engagement structure configured to removably connect a crimping member to the retainer. The crimping apparatus is configured to be removably positioned with respect to a crimping machine while the retainers remain movably attached to the support structure.

[0006] In accordance with another aspect, a crimping apparatus is provided for use with a crimping machine. The crimping apparatus comprises a support structure and a plurality of retainers movably attached to the support structure and radially arranged about an axis of the crimping apparatus. Each retainer includes an engagement structure. The crimping apparatus further includes a plurality of crimping members that are each configured to be removably connected to a corresponding one of the retainers by the engagement structure of the corresponding retainer. The crimping apparatus also includes a connecting structure configured to substantially inhibit a relative movement between the crimping apparatus and a portion of a crimping machine along a direction that is substantially parallel to the axis of the crimping apparatus. The connecting structure is configured to permit removable mounting between the crimping apparatus and a crimping machine while the retainers remain movably attached to the support structure.

[0007] In accordance with another aspect, a crimping apparatus comprising a support structure, a plurality of retainers with an engagement structure, a plurality of crimping members, and a connecting structure. The method comprising the steps of providing a first element and a second element and then mounting the crimping apparatus to the crimping machine by engaging the connecting structure of the crimping apparatus with a corresponding structure of the crimping machine. The method further includes the step of removably connecting each of the crimping members to a corresponding one of the plurality of retainers with the engagement structure of the corresponding retainer. The method still further includes the step of moving each of the retainers with respect to the support structure with the crimping machine to clamp the second element to the first element with the crimping members.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The foregoing and other aspects of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:

[0009] FIG. 1 is a side elevational view of one example of a crimping apparatus in accordance with aspects of the present invention;

[0010] FIG. 2 is a rear view of the crimping apparatus of FIG. 1;

[0011] FIG. 3 is a front view of the crimping apparatus of FIG. 1;

[0012] FIG. 3A is a sectional view of the crimping apparatus taken along line 3A-3A of FIG. 3;

[0013] FIG. 3B is a sectional view of the crimping apparatus taken along line 3B-3B of FIG. 3;

[0014] FIG. 3C is a sectional view of the crimping apparatus taken along line 3C-3C of FIG. 3;

[0015] FIG. 3D is a sectional view of the crimping apparatus taken along line 3D-3D of FIG. 3;

[0016] FIG. 4 is a front view of the crimping apparatus of FIG. 1 with a first portion and a second portion, wherein the second portion is moved completely out of engagement with the first portion;

[0017] FIG. 5 is a front view of the rear member of the support structure;

[0018] FIG. 5A is a sectional view of the rear member taken along line 5A-5A of FIG. 5;

[0019] FIG. 5B is a sectional view of the rear member taken along line 5B-5B of FIG. 5;

[0020] FIG. 6 is a rear view of the front member of the support structure;

[0021] FIG. 6A is a sectional view of the front member taken along line 6A-6A of FIG. 6;
FIG. 6B is a sectional view of the front member taken along line 6B-6B of FIG. 6;

FIG. 7 is a side elevational view of one example of a crimping member set being carried by one example of a crimping apparatus of FIG. 1 prior to being mounted to the crimping machine;

FIG. 8 is a rear view of the crimping member set and carrying tool of FIG. 7;

FIG. 9 is a front view of the crimping member set and carrying tool of FIG. 7;

FIG. 9A is a sectional view of the crimping member set and carrying tool taken along line 9A-9A of FIG. 9;

FIG. 9B is a sectional view of the crimping member set and carrying tool taken along line 9B-9B of FIG. 9;

FIG. 10 depicts a schematic view of an example crimping machine and the example crimping apparatus of FIG. 1 prior to being mounted to the crimping machine;

FIG. 11 depicts the crimping apparatus and crimping machine of FIG. 10 with the crimping apparatus being mounted to the crimping machine and the crimping member set and crimping tool of FIG. 7 being aligned with an axis of the crimping apparatus;

FIG. 12 depicts the crimping member set being inserted into an interior area of the crimping apparatus;

FIG. 12A depicts a partial sectional view of FIG. 12 illustrating a protrusion of a crimping member being aligned with an aperture of an engagement structure of a retainer;

FIG. 13 depicts the retainers being pressed against a cam ring of the crimping machine to move the retainers toward the axis of the crimping apparatus;

FIG. 13A depicts a partial sectional view of FIG. 13 illustrating the protrusion of the crimping member being received within the aperture and engaging a latch of the engagement structure;

FIG. 14 depicts the tool of FIG. 13 being removed from the crimping member set;

FIG. 14A depicts a partial sectional view of the crimping apparatus illustrated in FIG. 14;

FIG. 14B depicts a partial sectional view of the crimping apparatus moved away from the cam ring such that the retainers, together with the crimping members move radially away from the axis of the crimping apparatus;

FIG. 15 depicts the crimping apparatus of FIG. 14B moved further away from the cam ring of the crimping machine and having a second portion of a support structure being moved completely out of engagement with a first portion of the support structure;

FIG. 16 depicts a second element and an end of a first element being inserted through an alternative passage into the interior area of the crimping apparatus, and thereafter moving the second portion to engage the first portion of the support structure;

FIG. 17 depicts the second element and the end of the first element being inserted in the interior area with the second portion engaged with the first portion of the support structure just prior to crimping the second element to the first element;

FIG. 18 depicts the retainers being pressed against the cam ring of the crimping machine to move the retainers and crimping members toward the axis of the crimping apparatus and thereby crimp the second element to the end of the first element; and

FIG. 19 depicts the second portion being moved completely out of engagement with the first portion and removing the second crimped element out of the interior area of the crimping apparatus by way of the alternative passage.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. Further, in the drawings, the same reference numerals are employed for designating the same elements.

In accordance with aspects of the present invention, a crimping apparatus is provided for use with a crimping machine. One example of a crimping apparatus incorporating aspects of the present invention is illustrated in FIGS. 1-4. The crimping apparatus 100 includes a support structure 110 and a plurality of die members 140 movably attached to the support structure 110.

Although not required, examples of support structures 110 can include a front member 112 and a rear member 114 that is attached, such as fixedly attached, to the front member 112. For instance, one or more spacers may be used to attach the rear member to the front member. Spacers can comprise a wide range of structures configured to provide attachment between the front and rear member. For example, as shown, the spacers can comprise one or more spacer blocks 118a, 118b and/or spacer tubes 116a, 116b positioned between at least portions of the front and rear member. In further examples, such spacers may be radially arranged about an axis 102 of the crimping apparatus in a wide variety of patterns. In one example, a pair of the spacers may be diametrically opposed to one another. As shown in FIGS. 1, 3 and 3A, the spacers can comprise a pair of diametrically opposed spacer tubes 116a, 116b. Features of the first spacer tube 116a are illustrated in the cross section of FIG. 3B wherein the second spacer tube 116b may include identical features. Each spacer tube 116a, 116b may be provided with a fastener that extends through the interior of the tube 116a, 116b to attach the front member 112 to the rear member 114. A wide variety of fasteners may be used such as a screw, nut and bolt combination, or the like. In the illustrative example shown in FIG. 3B, a screw 117a can be inserted through the spacer tube 116a to fasten the front member 112 to the rear member 114. Likewise, a similar screw 117b may be provided to extend through the spacer tube 116b.

In addition, or alternatively, the spacers can comprise one or more spacer blocks to enhance the structural integrity of the support structure. For example, as shown in FIGS. 3 and 3A, the spacers can comprise a pair of diametrically opposed spacer blocks 118a, 118b. Features of the first spacer block 118a are illustrated in the cross section of FIG. 3A wherein the second spacer block 118b may include
identical features. Each end of the spacer block 118a, 118b can include one or more alignment pins 119a and one or more screws 119b. For example, one or more alignment pins 119a can be provided to help position the front member 112 and the rear member 114 with respect to each corresponding end of the spacer blocks. Moreover, one or more screws 119b may be provided to attach the front member 112 and the rear member 114 to each corresponding end of the spacer blocks.

[0046] Examples of crimping apparatus in accordance with the present invention may include a unitary support structure including a single portion. Alternatively, the support structure can include two or more portions that cooperate to provide the crimping apparatus. For instance, as shown, the support structure 110 can include a first portion 120 and a second portion 130. The second portion 130 can engage the first portion 120 to define an axial passage 108 into an interior area 103 of the crimping apparatus 100. As shown in FIG. 4, the second portion 130 can also be configured to be moved to define an alternative passage 109 into the interior area 103. For example, the second portion 130 can be pivoted to the first portion 120 to selectively define an alternative passage. In further examples, an alternative passage can be provided by providing a second portion 130 that can be moved completely out of engagement with the first portion 120. For example, as shown in FIG. 4, the second portion 130 can be designed to be moved completely out of engagement with the first portion 120 to selectively define the alternative passage 109 into the interior area 103 of the crimping apparatus 100. The alternative passage 109 can be designed to accommodate various elements that, due to the size and/or shape of the elements, might not otherwise be introduced into the interior area 103 by way of the axial passage 108. In the illustrated embodiment, the first and second portions 120, 130 are each designed to include at least one retainer 142 movably attached thereto. Although not shown, further examples one of the portions 120, 130 may be provided without any of the retainers. In further examples one of the portions 120, 130 may be provided with all of the retainers.

[0047] Various structural arrangements may be provided to create the first and second portions 120, 130. For example, as shown in FIGS. 1, 3, 4, and 6, the front member 112 can be provided with a first front member 124 and a second front member 134. As shown in FIGS. 1, 2, and 5, the rear member 114 can be provided with a first rear member 122 and a second rear member 132. The front portion 120 can be formed with the first rear member 122 attached, such as fixedly attached, to the first front member 124 while the second portion 130 can be formed with the second rear member 132 attached, such as fixedly attached, to the second front member 134.

[0048] In further examples, the crimping apparatus can also include an optional registration structure to facilitate a predetermined orientation between the first and second portions 120, 130 of the support structure 110. Various portions of the crimping apparatus 100 can comprise the registration structure. For example, the front member 112 and/or the rear member 114 of the support structure 110 can be provided with one or more registration structures. Various types of registration structures may also be used in accordance with aspects of the present invention. In one example, the registration structure can comprise an alignment plate mounted to one side of the front and/or rear member to provide registration between the first and second portions. In the illustrated example, the registration structure can comprise a tongue and groove structure 170 although other registration structures may be provided in further examples. Many different structural arrangements may provide a tongue and groove structure. For example, the tongue and/or groove may be machined from portions of the crimping apparatus such that the tongue and/or groove are integral with the structure. In the illustrated example, opposed grooves 172a/173a, 172b/173b are machined into abutting locations of the first and second portions 120, 130. Another piece, e.g., a registration pin 174a, 174b, may be fastened to one of the grooves to define the tongue portion. For instance, as shown in FIG. 5, the rear member 114 comprises two tongue and groove structures 170 that are each defined by a registration pin 174a and two grooves 172a, 173a adapted to each simultaneously receive portions of the registration pin 174a. Indeed, as shown in FIGS. 5, 5A, and 5B, each tongue and groove structure 170 comprises a groove 172a defined in the first rear member 122 and a groove 173a defined in the second rear member 132. A registration pin 174a can be mounted with respect to one of the grooves 172a, 173a. Mounting of the registration pin 174a may be provided by a fastener, adhesive, welding and/or other mounting structures. In the illustrated example, a screw 176a can be provided to extend through a counterbore in the registration pin 174a to mount the registration pin 174a with respect to the first rear member 122. Once mounted, a portion of a corresponding registration pin 174a longitudinally extends within the corresponding groove 172a defined in the first rear member 122. Another portion of each corresponding registration pin 174a extends out of the corresponding groove 172a to define the tongue portion of the tongue and groove structure 170. The tongue portion is configured to be received in a corresponding groove 173a defined in the second rear member 132. Therefore a predetermined orientation may be achieved between the first and second rear members 122, 132 by way of one or more tongue and groove structures 170 and/or other registration structures.

[0050] In addition, or alternatively, the front member 112 can be provided with one or more tongue and groove structures or other registration structures. As shown in FIG. 6, the illustrative example of the front member 112 comprises two tongue and groove structures 170 that are each defined by a registration pin 174b and two grooves 172b, 173b adapted to each simultaneously receive portions of the registration pin 174b. As shown in FIGS. 6, 6A and 6B, each tongue and groove structure 170 comprises a groove 172b defined in the first front member 124 and a groove 173b defined in the second front member 134. A registration pin 174b of each tongue and groove structure can be mounted with respect to one of the grooves 172b, 173b, for example, as described with respect to the registration pin 174a above. For instance, a screw 176b can be provided to extend through a counterbore in the registration pin 174b to mount the registration pin 174b with respect to the front member 124. Once mounted, a portion of a corresponding registration pin 174b longitudinally extends within the corresponding groove member 124. Another portion of each corresponding registration pin 174b extends out of the corresponding groove 172b to define the tongue portion of the tongue and groove structure 170. The tongue portion is configured to be received in a corresponding groove 173b.
defined in the second front member 134. Therefore, like the first and second rear members 122, 132, a predetermined orientation may be achieved between the first and second front members 124, 134 by way of one or more tongue and groove structures 170 and/or other registration structures. As shown, each tongue includes a cylinder of substantial semi-circular cross section while the groove comprises a substantial semi-circular groove configured to receive the tongue. In further examples, the tongue and groove may comprise other shapes such as rectangular, square, triangular or other cross sectional shapes.

[0051] The crimping apparatus 100 can be used with a wide range of crimping machines. For example, the crimping apparatus 100 can be used with a ProCrimp™ 1390 crimping machine available from Eaton Aeroquip Inc. of Maumee, Ohio. An Aeroquip ProCrimp™ 1390 crimping machine is illustrated somewhat schematically as reference number 500 in FIGS. 10-19. It is understood that other crimping machines may be used with one or more aspects of the present invention. Regardless of the crimping machine used, the crimping apparatus 100 can be configured to be movably positioned with respect to the crimping machine while the retainers 142 remain movably attached to the support structure 110.

[0052] As shown in the partial schematic views of FIGS. 10 and 11, the crimping apparatus 100 can include a connecting structure 160 configured to permit mounting of the crimping apparatus 100 to the crimping machine 500 to substantially inhibit a relative movement between the crimping apparatus 100 and the portion of the crimping machine 500 along a direction 104 that is substantially parallel to the axis 102 of the crimping apparatus 100. The connecting structure 160 can also be configured to permit dismounting of the crimping apparatus 100 from the crimping machine 500 by permitting a relative movement between the crimping apparatus 100 and the portion of the crimping machine 500 along a direction 106 that is substantially perpendicular to the axis 102 of the crimping apparatus 100. In addition, or alternatively, the connecting structure 160 may be configured to permit dismounting of the crimping apparatus 100 from the crimping machine 500 by permitting a relative movement between the crimping apparatus 100 and the portion of the crimping machine 500 along one or more other directions that are not substantially perpendicular to the axis of the crimping apparatus.

[0053] The connecting structure 160 can comprise a wide range of structures and can comprise a plurality of identical or different connecting members. In one example, a tool such as a wrench or screw driver can be used to tighten a connecting member to mount the crimping apparatus to the crimping machine. Once appropriately mounted with the tool, the connecting structure can substantially inhibit a relative movement between the crimping apparatus and a portion of the crimping machine along a direction that is substantially parallel to the axis of the crimping apparatus. Moreover, upon loosening and/or removal of the screws or bolts with the tool, the connecting structure can also be configured to permit dismounting of the crimping apparatus from the crimping machine by permitting a relative movement between the crimping apparatus and the portion of the crimping machine along a direction that is substantially perpendicular to the axis of the crimping apparatus.

[0054] In further examples, the connecting structure can be designed to permit toolless removable mounting between the crimping apparatus and the crimping machine. For example, toolless removable mounting can include mounting the crimping apparatus to the crimping machine without the use of tools. Toolless removable mounting can also include dismounting the crimping apparatus from the crimping machine without the use of tools. In further examples, toolless removable mounting can include mounting and dismounting between the crimping apparatus and the crimping machine without the use of tools. Providing a toolless connecting structure can be beneficial to permit mounting and/or dismounting between the crimping apparatus and the crimping machine with reduced time and effort. Various connecting structures may be provided to permit toolless removable mounting between the crimping apparatus and the crimping machine. For example, a latching or interlocking arrangement may be provided. In one example a tongue and groove structure may be provided. One example of the tongue and groove structure can comprise a dovetail structure although other tongue and groove structures may be provided.

[0055] As shown in FIGS. 10 and 11, the connecting structure 160 provides toolless removable mounting between the crimping apparatus 100 and the crimping machine 500. Referring to FIGS. 1 and 2, the connecting structure 160 can comprise a first connecting device 161 and/or a second connecting device 163. The first connecting device 161 can comprise a groove structure along the first connecting device may be provided, additionally or alternatively, with a tongue structure. As shown, the groove structure comprises a pair of slots 162a, 162b although one or more than two slots may be provided in further examples. The slots 162a, 162b are configured to receive a corresponding shank of a screw 502 (see FIG. 10) attached to a press plate 504 of the crimping machine 500. The second connecting device 163 comprises a tongue of a tongue and groove structure although the second connecting device may be provided, additionally or alternatively, with a groove structure. In the illustrated example, the tongue comprises a screw 164 attached to the rear member 114 and configured to be received in a corresponding slot (not shown) of the press plate 504.

[0056] If the support structure 110 is provided with a first portion 120 and a second portion 130, as described above, it is also contemplated that each portion 120, 130 of the support structure 110 may be provided with at least one connecting member to facilitate axial alignment between the portions and concurrent movement between the press plate and the portions of the support structure. For example, as shown, the first portion 120 of the support structure 110 is provided with the first connecting member 161 while the second portion 130 of the support structure 110 is provided with the second connecting member 163. The connecting members 161, 163 are configured to mount the crimping apparatus 100 to the crimping machine 500 such that the first and second portions 120, 130 of the support structure 110 are axially aligned with respect to one another. Moreover, the connecting members 161, 163 permit concurrent movement between the press plate 504 and first and second portions 120, 130 of the support structure 110. Providing each portion 120, 130 of the support structure 110 with a connecting member also permits removal of one or more of the portions from the crimping machine while the remaining portions of
the support structure remain connected to the crimping machine. For example, as shown in FIGS. 15 and 16, the first portion 120 remains connected to the press plate 504 while removing the second portion 130 from the first portion 120.

[0057] It is also contemplated that at least one portion of the support structure 110 may be provided without a connecting member configured to directly connect to the crimping machine while at least one other portion of the support structure includes a connecting member configured to directly connect to the crimping machine. For example, the first portion 120 may be provided with a connecting member to connect to the crimping machine while the second portion 130 does not include a connecting member to connect directly to the crimping machine. In such embodiments, the first and second portions 120, 130 may be configured to attach to one another such that the second portion 130 is indirectly attached to the crimping machine by way of the first portion 120. For example, the first portion 120 may include a connecting member to directly attach the first portion 120 to the crimping machine. A latching structure, fastening arrangement, or other attaching structure may be used to attach the second portion 130 to the first portion 120. The attachment between the first and second portions 120, 130 can facilitate axial alignment between the portions. Moreover, the connection between the first portion 120 and the press plate 504 and the connection between the first and second portions 120, 130 can facilitate concurrent movement between the press plate 504 and the portions of the support structure 110.

[0058] The support structure 110 can comprise a wide variety of configurations to permit movable attachment of a plurality of retainers 142 to the support structure 110. For instance, the front member 112 and/or the rear member 114 can be configured to permit movable attachment of the retainers 142. As shown in FIGS. 1 and 6, the front member 112 can comprise a plurality of guide channels 141 radially arranged about the axis 102 of the crimping apparatus 100. As shown in FIGS. 1 and 3C, each of the guide channels 141 is adapted to slidingly receive a first end portion 149a of a corresponding retainer 142 to allow each retainer 142 to move with respect to the support structure 110 in a direction toward and away from the axis 102 of the crimping apparatus 100. As shown in FIGS. 3C and 5, the rear member 114 can comprise a pair of guide channels 115a, 115b associated with each retainer 142 that are configured to receive an end of a corresponding guide pin 144 to define the maximum and minimum movements of the retainers 142. Although a pair of guide channels 115a, 115b are illustrated, it is understood that a single or more than two guide channels may be associated with each retainer 142. Each of the guide channels 115a, 115b are configured to receive an end of a guide pin 144 extending from a second end portion 149b of a corresponding retainer 142 to limit movement of the retainers 142. As further illustrated in FIG. 3C, one or all of the guide channels 115a, 115b associated with each retainer 142 may include a biasing member, such as a compression spring 145. The compression spring 145 can be positioned in the guide channels to act against the guide pins 144 to bias each retainer 142 away from the axis 102, thereby maximizing the interior area 103 of the crimping apparatus 100. Each of the guide channels 115a, 115b may be provided with a similar compression spring 145 to increase the force exerted on the retainers 142. As shown in FIG. 3C, each retainer 142 further includes one side comprising a cam surface 146 that flares outwardly from the axis 102 in a direction from the first end portion 149a to the second end portion 149b of the retainer 142.

[0059] The die members 140 can include various structures and sizes for performing a crimping action with the crimping machine 500. For example, as shown, each die member 140 includes a retainer 142 configured to removedly connect a separate crimping member 182 to the retainer 142. Thus, the crimping apparatus 100 including retainers 142 can be sold separately from the crimping members 182. The crimping apparatus 100 can therefore act as a master assembly that can receive different sets of crimping members to provide a wide variety of alternative crimping arrangements. Only one master assembly needs to be purchased and one or more less expensive crimping sets may be purchased to provide alternative crimping arrangements for effectively crimping elements having different sizes and/or shapes.

[0060] Each retainer 142 can further comprise an engagement structure 150 configured to removably connect a crimping member 182 to the retainer 142. Various engagement structures may be used in accordance with aspects of the present invention. For example, a dovetail joint, tongue and groove structure, or other connecting structure may be used. In accordance with one example, the engagement structure can include an aperture and/or a latch. In one example, the engagement structure illustrated and described with respect to FIGS. 8-10 of U.S. Pat. No. 6,257,042, which is herein incorporated by reference, may be used in accordance with aspects of the present invention. As shown in FIGS. 3D and 12A, the engagement structure 150 can include an aperture 152 extending through a press surface 143 of the retainer 142. The aperture 152 is configured to selectively receive a protrusion 190 from a corresponding crimping member 182. As further shown, the engagement structure 150 can also include a latch configured to engage the protrusion 190 of the crimping member 182 to removably connect the crimping member 182 to the retainer 142. Although a wide variety of latches may be used, the illustrated latch comprises a pin 156 with a rounded end portion 156a that is biased to extend into the aperture 152. The pin 156 can include a shoulder 156b configured to act as a stop to limit the extent that the round end portion 156a may move into the aperture 152. A biasing member, such as the illustrated compression spring 158, is configured to extend within a bore 147 in the retainer 142. An end cap 159 is threaded into an end of the bore 147 to retain the spring 158 and the pin 156 and to provide a precompression to the spring 158 to bias the end portion 156a into the aperture 152.

[0061] A plurality of crimping members may also be provided for attaching to the retainers. For example, a protrusion 190 from each crimping member 182 may be extended within the aperture 152 to be engaged by the latch for removably connecting the crimping member 182 to the corresponding retainer 142. Each crimping member 182 may be separately connected to each corresponding retainer 142. Alternatively, a plurality of crimping members 182 may be simultaneously connected to each corresponding retainer 142. For example, in accordance with one example, each crimping member 182 of a crimping member set 180 may be simultaneously attached to a corresponding one of each of the retainers 142. FIG. 7 illustrates a crimping member set 180 being supported by an optional tool 200.
The tool 200 may be provided to support the crimping members 182 for simultaneous attachment to the corresponding retainers 142. As shown in FIGS. 7, 8, 9, 9A and 9B, the tool 200 includes a handle 202 attached to a first side 205A of an alignment plate 204. A plurality of carrying pins 208 can be attached to the alignment plate 204 to extend from the second side 205B of the alignment plate 204. As shown in FIG. 9A, each carrying pin 208 is configured to be received in a corresponding carrying bore 184 axially defined in an end of each crimping member 182. As shown in FIG. 9B, the alignment plate 204 may include one or more magnets 210 configured to attract the crimping members 182 toward the second side 205B of the alignment plate 204 while the carrying pins 208 of the tool 200 are inserted in the carrying bores 184 of the crimping members. The alignment plate 204 can also include slots 206a, 206b configured to provide appropriate alignment between the crimping member set 180 and the retainers 142. Each slot 206a, 206b is configured to receive a respective alignment protrusion 113a, 113b such as the head of a screw, extending from the front face of the front member 112 to provide rotational alignment between the crimping member set 180 and the retainers 142.

Methods of crimping with the example crimping machine 500 and the example crimping apparatus 100 will now be described with reference to FIGS. 10-19. Portions of the crimping machine 500 and/or the crimping apparatus 100 may be shown in somewhat schematic form in FIGS. 10-19. Although not required in all embodiments, the connecting structure 160 of the crimping apparatus 100 can be designed to permit toolless removable mounting between the crimping apparatus 100 and the crimping machine 500. For example, as shown in FIGS. 10 and 11, the crimping apparatus 100 can be mounted on the crimping machine 500 or dismounted from the crimping machine 500 by moving the crimping apparatus 100 along a direction 106 that is substantially perpendicular to the axis 102 of the crimping apparatus 100. By way of a mounting movement, the slots 162a, 162b of the crimping apparatus 100 respectively receive the corresponding screws 502 extending from the press plate 504 of the crimping machine 500. In addition, the screw 164 of the crimping apparatus 100 is received by a corresponding slot (not shown) in the press plate 504. Once mounted, as shown in FIG. 11, the connecting structure 160 substantially inhibits a relative movement between the crimping apparatus 100 and the press plate 504 of the crimping machine 500 along the direction 104 that is substantially parallel to the axis 102 of the crimping apparatus 100.

Example methods of the present invention can include the step of selecting a crimping member set 180 from a plurality of alternative crimping member sets. The crimping member set 180 can be selected to accommodate a particular crimping arrangement. Once selected, the tool 200 is engaged with the crimping member set 180 to carry the crimping members 182 and help install the crimping members to the retainers 142. For example, as further shown in FIG. 11, the crimping member set 180 and crimping tool 200 of FIG. 7 can be aligned with the axis 102 of the crimping apparatus 100. The crimping member set 180 can then be inserted in direction 101a along the axis 102 until the crimping member set 180 is received within the interior area 103 of the crimping apparatus 100.

As shown in FIG. 12, once appropriately inserted, the alignment plate 204 of the tool 200 abuts the front surface of the front member 112 to provide appropriate axial alignment between the crimping member set 180 and the retainers 142 of the crimping apparatus 100. Moreover, alignment protrusions 113a, 113b extending from the front surface of the front member 112 can be received in the corresponding slots 206a, 206b of the alignment plate 204 to provide appropriate rotational alignment between the crimping member set 180 and the retainers 142. As shown in FIG. 12A, once the crimping member set 180 is rotationally and axially aligned with respect to the retainers 142, the protrusion 190 of each crimping member 182 is aligned with the corresponding aperture 152 of the engagement structure 150 of each retainer 142.

After achieving axial and rotational alignment between the crimping member set 180 and the retainers 142, the crimping machine 500 is activated to push the retainers 142 in direction 510a against the cam ring 506 as shown in FIG. 13. As shown in FIG. 13A, a movement in direction 510a causes the cam surface 146 of each retainer 142 to slide against an inner surface 508 of the cam ring 506. Movement in the direction 510a therefore causes each retainer 142 to move in direction 512a toward the axis 102 of the crimping apparatus 100 against the bias of compression springs 145. After sufficient movement of each retainer 142 in direction 512a, the rounded end portion 156a of each pin 156 engages a beveled cam surface 192a of each protrusion 190. Further movement in direction 512a, presses the beveled cam surface 192a against the rounded end portion 156a of the pin 156 to cause portions of the pin 156 to move out of the aperture 152 against the bias of the spring 158. The rounded end portion 156a eventually biases back in the opposite direction to be received in the groove 194 of the protrusion 190. Once the end portion 156a is received in the groove 194 of the protrusion 190, the crimping member 182 is removably connected to the corresponding retainer 142 by the engagement structure 150 of the corresponding retainer 142.

It will be appreciated that the machine can be used to move the tool and the crimping member set in the opposite direction 510b can cause the crimping members 182 to disconnect from the retainers 142. Indeed, movement in the opposite direction 510b moves the retainers 142 out of engagement with the cam ring 506 of the crimping machine 500. Therefore, the compression springs 145 again bias the retainers 142 to extend outwardly away from the axis 102 of the crimping apparatus 100. As the tool 200 still engages the crimping members 182, the springs 145 cause another bevelled cam surface 192b (see FIG. 12A) of each protrusion 190 to act against the rounded end 156a of each pin 156 to disengage each of the protrusions 190 from the corresponding latch of each retainer 142.

Alternatively, the crimping members 182 can be left connected to the retainers 142. Indeed, as shown in FIGS. 14 and 14A, once the crimping members 182 are connected to the retainers 142, the tool 200 can be moved along direction 101b to disengage the carrying pins 208 of the tool 200 from the carrying bores 184 of each crimping member 182. As shown in FIGS. 14 and 14A, the tool 200 can be removed from the crimping member set 180 while each crimping member 182 remains connected to a corresponding one of the retainers 142. Next, as shown in FIG. 143, the crimping machine 500 can be activated to move the
press plate 504 along direction 510b. As the cam surface 146 of each retainer 142 is moved out of engagement with the inner surface 508 of the cam ring 506, the compression spring 145 (see FIG. 3C) causes the retainers 142 and connecting crimping members 182 to move in direction 512b to a retracted position. The crimping apparatus 100 is then configured to receive first and second element 600, 602 to be crimped by the predetermined crimping arrangement associated with the chosen crimping member set 180.

As shown in FIG. 16, a second element 602 can be inserted over an end of the first element 600. Next, if size permits, the second element 602 and the end of the first element 600 can be inserted through the interior area of the cam ring 506 and, referring to FIG. 3, through the axial passage 108 and into the interior area 103 of the crimping apparatus 100. In further examples, if the support structure 110 is provided with a first portion 120 and a second portion 130, an oversized second element and end of the first element can be inserted through an alternative passage 109. For example, as shown in FIGS. 4 and 15, the second portion 130 can be moved out of engagement with the first portion 120 of the support structure 110. As shown in FIG. 16, the second element 602 and the end of the first element 600 can then be inserted through the interior area of the cam ring 506 and then through the alternative passage 109 of the crimping apparatus 100. Next, the second portion 130 is again reengaged with the first portion 120 to close the alternative passage 109 as shown in FIG. 17.

After appropriate positioning of the second element 602 and the end of the first element 600 into the interior area 103 of the crimping apparatus 100, the crimping machine 500 is again activated to push the retainers 142 and connected crimping members 182 in direction 510a against the cam ring 506 as shown in FIG. 18. Once sufficiently pushed in direction 510a, the crimping members 182 crimp the second element 602 to the first element 600. After crimping, the crimping machine 500 can be activated to move the crimping apparatus out of engagement with the cam ring 506 as shown in FIG. 19. The second element 602 and the end of the first element 600 can then be removed by way of the axial passage 108 (see FIG. 3). Alternatively, if the support structure 110 is provided with first and second portions 120, 130, the second portion 130 can be moved relative to the first portion 120 to create an alternative passage 109 (see FIG. 4). Next, the second element 602 and the end of the first element 600 can then be removed by way of the alternative passage 109.

The concepts of the present invention may be used with different types of crimping machines. For example, as described above, crimping machines may be employed with a press plate configured to move the crimping apparatus to engage a stationary cam ring. In another example, a crimping machine may be used wherein the crimping apparatus remains stationary and the cam ring is moved to engage the stationary crimping apparatus to perform the crimping procedure. In another example, crimping machines may be designed to simultaneously move the crimping apparatus and the cam ring to perform the crimping function.

From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.

What is claimed:
1. A crimping apparatus for use with a crimping machine, the crimping apparatus comprising:
a support structure; and
a plurality of retainers movably attached to the support structure and radially arranged about an axis of the crimping apparatus, each retainer including an engagement structure configured to removably connect a crimping member to the retainer, wherein the crimping apparatus is configured to be removably positioned with respect to a crimping machine while the retainers remain movably attached to the support structure.

2. The crimping apparatus of claim 1, further comprising a connecting structure configured to permit mounting of the crimping apparatus to a crimping machine to substantially inhibit a relative movement between the crimping apparatus and a portion of a crimping machine along a direction that is substantially parallel to the axis of the crimping apparatus.

3. The crimping apparatus of claim 2, wherein the connecting structure is further configured to permit dismounting of the crimping apparatus from a crimping machine by permitting a relative movement between the crimping apparatus and a portion of a crimping machine along a direction that is substantially perpendicular to the axis of the crimping apparatus.

4. The crimping apparatus of claim 2, wherein the connecting structure permits toolless removable mounting between the crimping apparatus and a crimping machine.

5. The crimping apparatus of claim 1, wherein the engagement structure of each retainer comprises an aperture.

6. The crimping apparatus of claim 1, wherein the engagement structure of each retainer further comprises a latch.

7. The crimping apparatus of claim 6, wherein the engagement structure comprises a pin with an end portion that is biased to extend into the aperture.

8. The crimping apparatus of claim 1, further comprising a plurality of crimping members that are each configured to be removably connected to a corresponding one of the retainers by the engagement structure of the corresponding retainer.

9. The crimping apparatus of claim 8, wherein the engagement structure of each retainer comprises an aperture and the crimping members each include a protrusion configured to be inserted into the aperture of a corresponding one of the plurality of retainers.

10. The crimping apparatus of claim 9, wherein the engagement structure of each retainer comprises an aperture and the crimping members each include a protrusion configured to be inserted into the aperture of a corresponding one of the plurality of retainers.

11. The crimping apparatus of claim 10, wherein the engagement structure of each retainer further comprises a latch configured to removably engage the protrusion of the corresponding crimping member.

12. The crimping apparatus of claim 1, wherein the support structure includes a first portion and a second portion configured to move relative to one another to selectively define an alternative passage into an interior area of the crimping apparatus.

13. The crimping apparatus of claim 12, further comprising registration structure configured to facilitate a predetermined orientation between the first and second portions of the support structure.
14. A crimping apparatus for use with a crimping machine, the crimping apparatus comprising:

a support structure;

a plurality of retainers movably attached to the support structure and radially arranged about an axis of the crimping apparatus, each retainer including an engagement structure;

a plurality of crimping members that are each configured to be removably connected to a corresponding one of the retainers by the engagement structure of the corresponding retainer; and

a connecting structure configured to substantially inhibit a relative movement between the crimping apparatus and a portion of a crimping machine along a direction that is substantially parallel to the axis of the crimping apparatus, wherein the connecting structure is configured to permit removable mounting between the crimping apparatus and a crimping machine while the retainers remain movably attached to the support structure.

15. The crimping apparatus of claim 14, wherein the connecting structure is further configured to permit dismounting of the crimping apparatus from a crimping machine by permitting a relative movement between the crimping apparatus and a portion of a crimping machine along a direction that is substantially perpendicular to the axis of the crimping apparatus.

16. The crimping apparatus of claim 14, wherein the connecting structure permits toolless removable mounting between the crimping apparatus and a crimping machine.

17. The crimping apparatus of claim 14, wherein the support structure includes a first portion and a second portion configured to move relative to one another to selectively define an alternative passage into an interior area of the crimping apparatus.

18. The crimping apparatus of claim 17, further comprising a registration structure configured to facilitate a predetermined orientation between the first and second portions of the support structure.

19. A method crimping with a crimping machine and a crimping apparatus comprising a support structure, a plurality of retainers with an engagement structure, a plurality of crimping members, and a connecting structure, the method comprising the steps of:

providing a first element and a second element;

toollessly mounting the crimping apparatus to the crimping machine by engaging the connecting structure of the crimping apparatus with a corresponding structure of the crimping machine;

removably connecting each of the crimping members to a corresponding one of the plurality of retainers with the engagement structure of the corresponding retainer; and

moving each of the retainers with respect to the support structure with the crimping machine to crimp the second element to the first element with the crimping members.

20. The method of claim 19, further comprising the step of defining an alternative passage into an interior area of the crimping apparatus by moving a second portion of the support structure with respect to a first portion of the support structure.

* * * * *