
(19) United States
US 2003O126111A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0126111A1
Nareddy et al. (43) Pub. Date: Jul. 3, 2003

(54) METHOD AND SYSTEM FOR PARSING (52) U.S. Cl. .. 707/1
NAVIGATION INFORMATION

(57) ABSTRACT
(76)

(21)

(22)

(62)

(51)

Inventors: Krishnamohan Nareddy, Redmond,
WA (US); Radha Krishna Uppala,
Redmond, WA (US)

Correspondence Address:
PERKINS COE LLP
PATENTSEA
P.O. BOX 1247
SEATTLE, WA 98111-1247 (US)

Appl. No.: 10/320,091

Filed: Dec. 16, 2002

Related U.S. Application Data

Division of application No. 09/613,847, filed on Jul.
11, 2000.

Publication Classification

Int. Cl. ... - - - - - - - - - G06F 7700

HTTP-request

A method and System for providing customers with access to
and analysis of the navigation data collected at customer
web sites is provided. In one embodiment, a data warehouse
System collects customer data from the customer Web Sites
and Stores the data at a data warehouse Server. The customer
data may include navigation data (e.g., click Stream log
files), user attribute data of users of the customer web site
(e.g., name, age, and gender), product data (e.g., catalog of
products offered for sale by the customer), Shopping call
data (i.e., identification of the products currently in a user's
Shopping call), and So on. When the data warehouse server
receives customer data, it converts the customer data into a
format that is more conducive to processing by decision
Support System applications by which customers can analyze
their data. For example, the data warehouse Server may
analyze low-level navigation events (e.g., each HTTP
request that is received by the customer web site) to identify
high-level events (e.g., a user Session). The data warehouse
Server then Stores the converted data into a data warehouse.

104

106

Web 101
Browser

102

client -
SeWe

107

Ee
HTTP-response

html document 109

1Samba I-dLLH

US 2003/0126111A1 Jul. 3, 2003 Sheet 1 of 19 Patent Application Publication

US 2003/0126111A1 Jul. 3, 2003 Sheet 2 of 19 Patent Application Publication

JOSS3OOJA e?eG

US 2003/0126111A1

292| 92

Jul. 3, 2003. Sheet 3 of 19 Patent Application Publication

US 2003/0126111A1

9ZI?euJON

Jul. 3, 2003 Sheet 4 of 19

e?eG (200T

|

Patent Application Publication

| || ||

US 2003/0126111A1 Jul. 3, 2003 Sheet 5 of 19

||||||

Patent Application Publication

Patent Application Publication Jul. 3, 2003 Sheet 6 of 19 US 2003/0126111A1

Parse Log Data

501

Select next log entry

502 509

Y Output log file statistics All log entries
already selected

510

503 Identify sessions
Extract fields

511

504 Generate aggregate
statistics

Filter log entry -

Done

Filtered out

Normalize log entry

| Greatednenson
508

Fig. 5

Patent Application Publication Jul. 3, 2003 Sheet 7 of 19 US 2003/0126111A1

extension

Field corrupt

N

Return (Filterout
= false)

Fig. 6

Return (Filterout
= true)

Patent Application Publication Jul. 3, 2003 Sheet 8 of 19 US 2003/0126111A1

Entry
701

- 702

703

Normalize fields

(log entry)

Fig. 7

Patent Application Publication Jul. 3, 2003 Sheet 9 of 19 US 2003/0126111A1

Generate -
Dimensions (log entry)

801

Identify logical site

802

Identify user

803

Identify URI

804

Identify page type

805

Identify events

806

Identify other dimension

807

Add entry to log entry table

808

Update statistics

Fig. 8

Patent Application Publication Jul. 3, 2003. Sheet 10 of 19 US 2003/0126111A1

Identify
Logical Site

901

Select next site definition

All site
defs already

selected

(log entry)

905

Add default site def to dimension
table

Does entry
match site def

904

Add site defto dimension table

Fig. 9

Patent Application Publication Jul. 3, 2003 Sheet 11 of 19 US 2003/0126111A1

Identify User

1001

Extract user from cookie

(log entry)

Extract browser id/IP address as
USC

1006

Add user to dimension table

Fig. 10

Patent Application Publication Jul. 3, 2003 Sheet 12 of 19 US 2003/0126111A1

^ Identify
Page Type

1101

Select next page definition

All page
defs already
selected

(log entry)

Does entry
match page def

1104

Add page type to dimension
table

Fig. II

Patent Application Publication Jul. 3, 2003 Sheet 13 of 19 US 2003/0126111A1

Identify Events

1201

Select next type of event

1202

All events types
already selected

(log entry)

12O3

Select next event definition of
event type

All event defs
already selected

Does entry
match event def

Patent Application Publication Jul. 3, 2003 Sheet 14 of 19 US 2003/0126111A1

Identify Sessions

1301

Select next user

1ll users already
selected

Select next log entry for selected
USC

All log entries
already selected

New session

Y 1306

Add new session for selected
USC

Fig. 13

Patent Application Publication Jul. 3, 2003 Sheet 15 of 19 US 2003/0126111A1

Generate Aggregate
Statistics

1401

Select next fact table

1402
Y All fact tables

1403

already selected

N

Select next entry of fact table

1404

All entries
already selected

N

Aggregate dimension 1

1405

1405

Aggregate dimension N

Fig. 14

Patent Application Publication Jul. 3, 2003 Sheet 16 of 19 US 2003/0126111A1

Load Log Data

15O1

Create DB partitions

1502

Select next dimension table

All dimensions
already selected

1504

Load dimension table

1507

Load fact table All facts
already selected

Patent Application Publication Jul. 3, 2003. Sheet 17 of 19 US 2003/0126111A1

Load Dimension
Table

1601

Select next entry

All entries
already selected

N 1603

Retrieve entry from main
dimension table

Retrieved

1605

Add entry to main
dimension table

1606

Create mapping of local id to
main id

Fig. 16

Patent Application Publication Jul. 3, 2003 Sheet 18 of 19 US 2003/0126111A1

Load Fact Table

1701

Select next entry

All entries
already selected

Select next dimension

All dimensions
already selected

1705

Retrieve main id

1706 Y

Store entry in main fact table

Fig. 17

Patent Application Publication Jul. 3, 2003 Sheet 19 of 19 US 2003/0126111A1

Identify User Aliases

Referrer

Y 1802

Identify user

1803

Create user mapping

Fig. 18

US 2003/O126111A1

METHOD AND SYSTEM FOR PARSING
NAVIGATION INFORMATION

TECHNICAL FIELD

0001. The described technology relates to analyzing of
data relating to events generated by a computer program.

BACKGROUND

0002 Today's computer networking environments, such
as the Internet, offer mechanisms for delivering documents
between heterogeneous computer Systems. One Such net
work, the World Wide Web network, which comprises a
Subset of Internet Sites, Supports a Standard protocol for
requesting and receiving documents known as web pages.
This protocol is known as the Hypertext Transfer Protocol,
or “HTTP.” HTTP defines a message passing protocol for
Sending and receiving packets of information between
diverse applications. Details of HTTP can be found in
various documents including T. Berners-Lee et al., Hyper
text Transfer Protocol HTTP 1.0, Request for Comments
(RFC) 1945, MIT/LCS, May 1996. Each HTTP message
follows a Specific layout, which includes among other infor
mation, a header which contains information specific to the
request or response. Further, each HTTP request message
contains a universal resource identifier (a “URI”), which
Specifies to which network resource the request is to be
applied. A URI is either a Uniform Resource Locator
(“URL) or Uniform Resource Name (“URN”), or any other
formatted String that identifies a network resource. The URI
contained in a request message, in effect, identifies the
destination machine for a message. URLS, as an example of
URIs, are discussed in detail in T. Berners-Lee, et al.,
Uniform Resource Locators (URL), RFC 1738, CERN,
Xerox PARC, Univ. of Minn., December 1994.
0003 FIG. 1 illustrates how a browser application
enables users to navigate among nodes on the web network
by requesting and receiving web pages. For the purposes of
this discussion, a web page is any type of document that
abides by the HTML format. That is, the document includes
an “CHTML>” statement. Thus, a web page is also referred
to as an HTML document. The HTML format is a document
mark-up language, defined by the Hypertext Markup Lan
guage (“HTML') specification. HTML defines tags for
Specifying how to interpret the text and images Stored in an
HTML document. For example, there are HTML tags for
defining paragraph formats and for emboldening and under
lining text. In addition, the HTML format defines tags for
adding images to documents and for formatting and aligning
text with respect to images. HTML tags appear between
angle brackets, for example, <HTML>. Further details of
HTML are discussed in T. Berners-Lee and D. Connolly,
Hypertext Markup Language-2.0, RFC 1866, MIT/W3C,
November 1995.

0004. In FIG. 1, a web browser application 101 is shown
executing on a client computer 102, which communicates
with a server computer 103 by sending and receiving HTTP
packets (messages). HTTP messages may also be generated
by other types of computer programs, Such as Spiders and
crawlers. The web browser “navigates' to new locations on
the network to browse (display) what is available at these
locations. In particular, when the web browser “navigates'
to a new location, it requests a new document from the new

Jul. 3, 2003

location (e.g., the server computer) by sending an HTTP
request message 104 using any well-known underlying
communications wire protocol. The HTTP-request message
follows the Specific layout discussed above, which includes
a header 105 and a URI field 106, which specifies the
network location to which to apply the request. When the
server computer specified by URI receives the HTTP
request message, it interprets the message packet and sends
a return message packet to the Source location that origi
nated the message in the form of an HTTP-response mes
Sage 107. It also stores a copy of the request and basic
information about the requesting computer in a log file. In
addition to the standard features of an HTTP message, such
as the header 108, the HTTP-response message contains the
requested HTML document 109. When the HTTP-response
message reaches the client computer, the web browser
application extracts the HTML document from the message,
and parses and interprets (executes) the HTML code in the
document and displays the document on a display Screen of
the client computer as specified by the HTML tags. HTTP
can also be used to transfer other media types, Such as the
Extensible Markup Language (“XML') and graphics inter
change format (“GIF") formats.
0005. The World Wide Web is especially conducive to
conducting electronic commerce (“e-commerce”). E-com
merce generally refers to commercial transactions that are at
least partially conducted using the World Wide Web. For
example, numerous web sites are available through which a
user using a web browser can purchase items, Such as books,
groceries, and Software. A user of these web sites can browse
through an electronic catalog of available items to Select the
items to be purchased. To purchase the items, a user typi
cally adds the items to an electronic shopping call and then
electronically pays for the items that are in the Shopping cart.
The purchased items can then be delivered to the user via
conventional distribution channels (e.g., an overnight cou
rier) or via electronic delivery when, for example, Software
is being purchased. Many web sites are also informational in
nature, rather than commercial in nature. For example, many
Standards organizations and governmental organizations
have web sites with a primary purpose of distributing
information. Also, Some web sites (e.g., a Search engine)
provide information and derive revenue from advertise
ments that are displayed.
0006 The success of any web-based business depends in
large pall on the number of users who visit the business’s
web site and that number depends in large part on the
usefulness and ease-of-use of the web site. Web sites typi
cally collect extensive information on how its users use the
Sites web pages. This information may include a complete
history of each HTTP request received by and each HTTP
response sent by the web site. The web site may store this
information in a navigation file, also referred to as a log file
or click Stream file. By analyzing this navigation informa
tion, a web site operator may be able to identify trends in the
access of the web pages and modify the Web Site to make it
easier to use and more useful. Because the information is
presented as a Series of events that are not Soiled in a useful
way, many Software tools are available to assist in this
analysis. A web site operator would typically purchase Such
a tool and install it on one of the computers of the web site.
There are several drawbacks with the use of Such an
approach of analyzing navigation information. First, the
analysis often is given a low priority because the program

US 2003/O126111A1

mers are typically busy with the high priority task of
maintaining the web site. Second, the tools that are available
provide little more than Standard reports relating to low
level navigation through a web site. Such reports are not
very useful in helping a web site operator to visualize and
discover high-level access trends. Recognition of these
high-level acceSS trends can help a web site operator to
design the web site. Third, Web Sites are typically resource
intensive, that is they use a lot of computing resources and
may not have available resources to effectively analyze the
navigation information.
0007. It would also be useful to analyze the execution of
computer programs, other than Web Server programs. In
particular, many types of computer programs generate
events that are logged by the computer programs themselves
or by other programs that receive the events. If a computer
program does not generate explicit events, another program
may be able to monitor the execution and generate events on
behalf of that computer program. Regardless of how event
data is collected, it may be important to analyze that data.
For example, the developer of an operating System may want
to track and analyze how the operating System is used So that
the developer can focus resources on problems that are
detected, optimize Services that are frequently accessed, and
So on. The operating System may generate a log file that
contains entries for various types of events (e.g., invocation
of a certain System call).

BRIEF DESCRIPTION OF THE DRAWINGS

0008 FIG. 1 illustrates how a browser application
enables users to navigate among nodes on the web network
by requesting and receiving web pages.
0009 FIG. 2A is a block diagram illustrating compo
nents of the data warehouse System in one embodiment.
0.010 FIG. 2B is a block diagram illustrating details of
the components of the data warehouse System in one
embodiment.

0.011 FIG. 3 is a block diagram illustrating the Sub
components of the data processor component in one embodi
ment.

0012 FIG. 4 is a block diagram illustrating some of the
tables of the local data warehouse and the main data ware
house in one embodiment.

0013 FIG. 5 is a flow diagram illustrating the parse log
data routine that implements the parser in one embodiment.
0.014 FIG. 6 is a flow diagram of the filter log entry
routine in one embodiment.

0.015 FIG. 7 is a flow diagram illustrating the normalize
log entry routine.

0016 FIG. 8 is a flow diagram of the generate dimen
Sions routine in one embodiment.

0017 FIG. 9 is a flow diagram of the identify logical site
routine in one embodiment.

0018 FIG. 10 is a flow diagram of the identify user
routine in one embodiment.

0.019 FIG. 11 is a flow diagram of the identify page type
routine in one embodiment.

Jul. 3, 2003

0020 FIG. 12 is a flow diagram illustrating the identify
events routine in one embodiment.

0021 FIG. 13 is a flow diagram illustrating the identify
Sessions routine in one embodiment.

0022 FIG. 14 is a flow diagram of the generate aggregate
Statistics routine in one embodiment.

0023 FIG. 15 is a flow diagram of the import log data
routine implementing the importer in one embodiment.
0024 FIG. 16 is a flow diagram of the load dimension
table routine and one embodiment.

0025 FIG. 17 is a flow diagram of the load fact table
routine in one embodiment.

0026 FIG. 18 is a flow diagram illustrating the identify
user aliases routine in one embodiment.

DETAILED DESCRIPTION

0027. A method and system for providing customers with
access to and analysis of event data (e.g., navigation data
collected at customer web sites) is provided. The event data
may be stored in log files and Supplemented with data from
other Sources, Such as product databases and customer
invoices. In one embodiment, a data warehouse System
collects customer data from the customer web sites and
Stores the data at a data warehouse Server. The customer data
may include application event data (e.g., click stream log
files), user attribute data of users of the customer web site
(e.g., name, age, and gender), product data (e.g., catalog of
products offered for sale by the customer), Shopping call
data (i.e., identification of the products currently in a user's
Shopping cart), and So on. The data warehouse server
interacts with the customer Servers to collect to the customer
data on a periodic basis. The data warehouse Server may
provide instructions to the customer Servers identifying the
customer data that is to be uploaded to the data warehouse
Server. These instructions may include the names of the files
that contains the customer data and the name of the web
Servers on which the files reside. These instructions may also
indicate the time the day when the customer data is to be
uploaded to the data warehouse server. When the data
warehouse Server receives customer data, it converts the
customer data into a format that is more conducive to
processing by decision Support System applications by
which customers can analyze their data. For example, the
data warehouse Server may analyze low-level navigation
events (e.g., each HTTP request that is received by the
customer web site) to identify high-level events (e.g., a user
Session). The data warehouse server then Stores the con
verted data into a data warehouse. The data warehouse
Server functions as an application Service provider that
provides various decision Support System applications to the
customers. For example, the data warehouse Server provides
decision Support System applications to analyze and graphi
cally display the results of the analysis for a customer. The
decision Support System applications may be accessed
through a web browser. In one embodiment, the customer
Servers are connected to the data warehouse Server via the
Internet and the data warehouse Server provides data ware
housing Services to multiple customers.
0028. The data warehouse system may provide a data
processor component that converts the log files into a format

US 2003/O126111A1

that is more conducive to processing by the decision Support
System applications. In one embodiment, the converted data
is Stored in a data warehouse that includes fact and dimen
Sion tables. Each fact table contains entries corresponding to
a type of fact derived from the log files. For example, a web
page acceSS fact table may contain an entry for each web
page access identified in the log files. Each entry may
reference attributes of the web page access, Such as the
identity of the web page and identity of the accessing user.
The values for each attribute are stored in a dimension table
for that attribute. For example, a user dimension table may
include an entry for each user and the entries of the web
access fact table may include a user field that contains an
index (or Some other reference) to the entry of the user
dimension table for the accessing user. The user dimension
table may contain the names of the users and other user
Specific information. Alternatively, the user dimension table
may itself also be a fact table that includes references to
dimension tables for the attributes of users. The data ware
house may also include fact tables and dimension tables that
represent high-level facts and attributes derived from the
low-level facts and attributes of the log files. For example,
high-level facts and attributes may not be derivable from
only the data in a Single log entry. For example, the higher
level category (e.g., shoes or shirts) of a web page may be
identified using a mapping of web page URIs to categories.
These categories may be Stored in a category dimension
table. Also, certain facts, Such as the collection of log entries
that comprise a single user web acceSS Session or visit, may
only be derivable by analyzing a Series of log entries.
0029. The data processor component may have a parser
component and a loader component. The parser of the data
processor parses and analyzes a log file and Stores the
resulting data in a local data warehouse that contains infor
mation for only that log file. The local data warehouse may
be similar in Structure (e.g., Similar fact and dimension
tables) to the main data warehouse used by decision Support
System applications. The local data warehouse may be
adapted to allow efficient processing by the parser. For
example, the local data warehouse may be Stored in primary
Storage (e.g., main memory) for speed of access, rather than
in Secondary storage (e.g., disks). The parser may use parser
configuration data that defines, on a customer-by-customer
basis, the high-level data to be derived from the log entries.
For example, the parser configuration data may specify the
mapping of URIS to web page categories. The loader of the
data processor transferS the data from the local data ware
house to the main data warehouse. The loader may create
Separate partitions for the main data warehouse. These
Separate partitions may hold the customer data for a certain
time period (e.g., a month's worth of data). The loader adds
entries to the main fact tables (i.e., fact tables of the main
data warehouse) for each fact in a local fact table (i.e., fact
table of the local data warehouse). The loader also adds new
entries to the main dimension tables to represent attribute
values of the local dimension tables that are not already in
the main dimension tables. The loader also maps the local
indices (or other references) of the local dimension tables to
the main indices used by the main dimension tables.
0030 FIG. 2A is a block diagram illustrating compo
nents of the data warehouse System in one embodiment. The
data warehouse System includes customer components that
execute on the customer Servers and data warehouse com
ponents that execute on the data warehouse Server. The

Jul. 3, 2003

customer servers 210 and the data warehouse server 260 are
interconnected via the Internet 250. Customer components
executing on a customer Server includes a data collection
component 220 and a data viewer 230. The data viewer may
reside on a client computer of the customer, rather than a
Server. The data collection component collects the customer
data from the storage devices 240 of the customer servers.
The data viewer provides access for Viewing of data gener
ated by the decision Support System applications of the data
warehouse Server. In one embodiment, the data viewer may
be a web browser. The data warehouse server includes a data
receiver component 270, the data processor component 280,
the data warehouse 290, and decision Support System appli
cations 291. The data receiver component receives customer
data Sent by the data collection components executing at the
various customer web sites. The data processor component
processes the customer data and Stores it in the data ware
house. The decision Support System application provides the
customer with tools for analyzing and reviewing the cus
tomer data that is Stored in the main data warehouse.
Analysis performed on and reports generated from are
described in U.S. patent application No. (Attorney
Ref. No. 34821-8010US), entitled “Identifying and Report
ing on Combinations of Events in Usage Data,” and U.S.
patent application No. (Attorney Ref No. 34821
8013US), entitled “Extracting and Displaying Usage Data
for Graphical Structures,” which are being filed concurrently
and which are hereby incorporated by reference. In one
embodiment, each customer has its own Set of dimension
and fact tables so that the information of multiple customers
are not intermingled.

0031 FIG. 2B is a block diagram illustrating details of
the components of the data warehouse System in one
embodiment. The data collection component 220 includes a
monitor Sub-component 221 and a pitcher Sub-component
222. The data collection component is described in more
detail in U.S. patent application No. (Attorney Ref.
No. 34821-8001 US), entitled “Method and System for
Monitoring Resource via the Web,” which is being filed
concurrently and which is hereby incorporated by reference.
The pitcher is responsible for retrieving instructions from
the data warehouse Server, collecting the customer data in
accordance with the retrieved instructions, and uploading
the customer data to the data warehouse Server. The monitor
is responsible for monitoring the operation of the pitcher and
detecting when the pitcher may have problems in collecting
and uploading the customer data. When the monitor detects
that a problem may occur, it notifies the data warehouse
Server So that corrective action may be taken in advance of
the collecting and uploading of the customer data. For
example, the pitcher may use certain log on information
(e.g., user ID and password) to access a customer web server
that contains customer data to be uploaded. The monitor
may use that log on information to verify that the log on
information will permit access to the customer data. Access
may be denied if, for example, a customer administrator
inadvertently deleted from the customer web server the user
ID used by the pitcher. When the monitor provides advance
notification of a problem, the problem might be corrected
before the pitcher attempts to access the customer data. The
monitor also periodically checks the pitcher to ensure that
the pitcher is executing and, if executing, executing cor
rectly.

US 2003/O126111A1

0.032 The data receiver component of the data warehouse
Server includes a Status receiver Sub-component 271, a
catcher sub-component 272, an FTP server 273, a status
database 274, and a collected data database 275. The status
receiver receives Status reports from the customer Servers
and Stores the Status information in the Status database. The
catcher receives and processes the customer data that is
uploaded from the customer web sites and Stores the data in
the collected data database. The data processor component
includes a parser Sub-component 281 and a loader Sub
component 282. The parser analyzes the low-level events of
the customer data and identifies high-level events and con
verts the customer data into a format that facilitates pro
cessing by the decision Support System applications. The
loader is responsible for Storing the identified high-level
events in the data warehouse 290. In one embodiment, a
customer may decide not to have the data collection com
ponent executing on its computer Systems. In Such a case,
the customer server may include an FTP client 245 that is
responsible for periodically transferring the customer data to
the FTP server 273 of the data warehouse server. The data
receiver may process this customer data at the data ware
house Server in the same way as the pitcher processes the
data at the customer Servers. The processed data is then
Stored in the collected data database.

0.033 FIG. 3 is a block diagram illustrating the Sub
components of the data processor component in one embodi
ment. The data processor component 300 includes a parser
310, data storage area 320, and a loader 330. The data
processor component inputs parser configuration data 340
and a log file 350 and updates the main data warehouse 360.
The parser configuration data may include a mapping of
actual web sites to logical Sites and a mapping of a combi
nation of Uniform Resource Identifiers (“URIs”) and query
Strings of the log entries to page definitions (e.g., categories)
and event definitions. The parser processes the entries of the
log file to generate facts and dimensions to eventually be
Stored in the main data warehouse. The parser identifies
events in accordance with the parser configuration data. The
parser includes a filter log entry component 311, a normalize
log entry component 312, a generate dimensions component
313, an identify Sessions component 314, and a generate
aggregate Statistics component 315. The filter log entry
component identifies which log entries should not be
included in the main data warehouse. For example, a log
entry that has an invalid format should not be included. The
normalize log entry component normalizes the data in a log
entry. For example, the component may convert all times to
Greenwich Mean Time (“GMT). The generate dimensions
component identifies the various dimensions related to a log
entry. For example, a dimension may be the Uniform
Resource Identifier of the entry or the logical site identifier.
The identify Sessions component processes the parsed log
file data Stored in the local data warehouse to identify user
Sessions. A user Session generally refers to the concept of a
Series of web page accesses that may be related in Some way,
Such as by temporal proximity. The generate aggregate
Statistics component aggregates data for the log file being
processed as each log entry is processed or after the log file
is parsed. The data Storage area 320 includes a local data
warehouse 321. In one embodiment, the local data ware
house is Stored non-persistently (or temporarily) in main
memory of the computer System. The local data warehouse
may contain fact tables and dimension tables that correspond

Jul. 3, 2003

generally to the tables of the main data warehouse 360. The
loader retrieves the information from the local data ware
house and Stores the information in the main data ware
house. The loader includes a create partitions component
331, a load dimension table component 332, and a load fact
table component 333. The create partitions components
creates new partitions for the main data warehouse. A
partition may correspond to a collection of information
within a certain time range. For example, the main data
warehouse may have a partition for each month, which
contains all the data for that month. The load dimension
table component and the load fact table component are
responsible for loading the main data warehouse with the
dimensions and facts that are Stored in the local data
warehouse.

0034. In one embodiment, the log file is a web server log
file of a customer. The log file may be in the “Extended Log
File Format” as described in the document “http://
www.w3.org/TR/WD-logfile-960323" provided by the
World Wide Web Consortium, which is hereby incorporated
by reference. According to that description, the log file
contains lines that are either directives or entries. An entry
corresponds to a single HTTP transaction (e.g., HTTP
request and an HTTP response) and consists of a sequence
of fields (e.g., integer, fixed, URI, date, time, and String).
The meaning of the fields in an entry is specified by a field
directive specified in the log file. For example, a field
directive may specify that a log entry contains the fields
date, time, client IP address, Server IP address, and Success
code. Each entry in the log file would contain these five
fields.

0035. The parser configuration data defines logical sites,
page definitions, and event definitions. A logical Site is a
collection of one or more IP addresses and ports that should
be treated as a Single web site. For example, a web site may
actually have five web servers with different IP addresses
that handle HTTP requests for the same domain. These five
IP addresses may be mapped to the same logical site to be
treated as a Single web site. The page definitions define the
format of the URIs of log entries that are certain page types.
For example, a URI with a query String of “category=Shoes'
may indicate a page type of "shoes. Each event definition
defines an event type and a value for that event type. For
example, a log entry with a query String that includes
“search=shoes” represents an event type of “search” with an
event value of "shoes.' Another log entry with a query String
of “add=99ABC may represent an event type of “add” an
item to the Shopping cart with an event value of item number
“99ABC.

0036 FIG. 4 is a block diagram illustrating some of the
tables of the local data warehouse and the main data ware
house in one embodiment. These data warehouses are data
bases that include fact tables and dimension tables. A fact
table contains an entry for each instance of fact (e.g., web
page access). A dimension table contains an entry for each
possible attribute value of an attribute (e.g., user). The
entries of a fact table contain dimension fields that refer to
the entries into the dimension tables for their attribute
values. A table may be both a fact table and a dimension
table. For example, a user dimension table with an entry for
each unique user may also be a fact table that refers to
attributes of the users that are Stored in other dimension
tables. The data warehouses contain a log entry table 401, a

US 2003/O126111A1

user table 402, a logical site table 403, a URI table 404, a
referrer URI table 405, a page type table 406, event type
tables 407, a query string table 408, and a referrer query
string table 409. The log entry table is a fact table that
contains an entry for each log entry that is not filtered out by
the parser. The other tables are dimension tables for the log
entry table. The user table contains an entry for each unique
user identified by the parser. The logical Site table contains
an entry for each logical Site as defined in the parser
configuration data. The URI table contains an entry for each
unique URI of an entry in the log entry table. The referrer
URI table contains an entry for each referrer URI of the log
entry table. The page type table contains an entry for each
page type identified by the parser as defined in the parser
configuration data. The data warehouse contains an event

Jul. 3, 2003

entry table. The query String table contains an entry for each
unique query String identified in an entry of the log entry
table. The referrer query String contains an entry for each
unique referrer query String identified in an entry of the log
entry table.
0037 Table 1 is an example portion of a log file. The
“#fields' directive specifies the meaning of the fields in the
log entries. Each field in a log entry is Separated by a Space
and an empty field is represented by a hyphen. The #fields
directive in this example indicates that each entry includes
the date and time when the transaction was completed (i.e.,
“date” and “time”), the client IP address (i.e., “c-ip'), and so
on. For example, the first log entry has a data and time of
“2000-06-01 07:00:04' and a client IP address of
“1652183.161.

TABLE I

#Software: Microsoft Internet Information Server 4.0
#Version 1.0
#Date: 2OOO-06-01 07:00:04
#Fields: date time c-ip cs-usemame s-sitename s-computername s-ip cs-method cs-uri-stem cs-uri-query sc-status sc-win32
status sc-bytes cs-bytes time-taken s-port cs-version csCUser-Agent) cs(Cookie) cs(Referrer)
2000-06-01 07:00:04.165.21.83.161 - W3SVC2 COOK 002 206.191,163.41 GET /direetory/28. ASP - 200 0 148428 369
971.4 8O
http://alrecipes.com/Default.asp

HTTP/1.0 Mozilla/3.04+(Win95;+1) ASPSESSIONIDQQGGQGPG=JBCCFIPBBHHDANBAFFIGLGPH

2000-06-01 07:00:20 4.20.197.70 - W3SVC2 COOK 002 206.191,163.41 GET /Default.asp - 3020 408 259 3080
HTTP/1.0 Mozillaf4.0+(compatible:+Kevnote-Perspective+4.0) --
2000-06-01 07:00:20 4.20.197.70 - W3SVC2 COOK 002 206.191,163.41 GET /Default.asp - 2000 41245 266 20080
HTTP/1.0 Mozillaf4.0+(compatible:+Keynote-Perspective+4.0) --
2000-06-01 07:00:27 204.182.65.192 - W3SVC2 COOK 002 206.191,163.41 HEAD /Default.asp - 3020 25466 4080
HTTP/1.0 Ipswitch WhatsUp/3.0 --
2000-06-01 07:00:32 24.10.69.137 - W3SVC2 COOK 002 206.191,163.41 GET (directory/541.asp -2000 22427 459 421

ASPSESSIONIDOOGGQGPG=BHBCFIPBEJPNOMDPKCGLKNGC:

http://alrecipes.com/directory/34.asp
2000-06-01 07:00:34 192.102.216.101 - W3SVC2 COOK 002 206.191,163.41 GET fencyc/terms/L/7276.asp - 2000

ASPSESSIONIDOOGGOGPG=
PKBCFIPBIKONBPDHKDMMEHCE http://search.allrecipes.com/gsearch results.asp?site=allrecipes&alrecipes=allrecipes &

2000-06-01 07:00:34 216.88.216.227 - W3SVC2 COOK 002 206.191,163.41 GET /Default.asp - 2000 41253 258 18080
HTTP/1.1 Mozilla/4.0(compatible:+MSN+2.5:+MSN+2.5:+Windows+98) --
2000-06-01 07:00:36 199,203.4.10 - W3SVC2 COOK 002 206.191.163.41 GET /Default.asp - 3020 408 485 30 80
HTTP/1.0 Mozilla/4.0+(compatible: MSH:+5.01:+Windows+98;+TUCOWS) SITESERVER=ID=22f17fb3708b2278f3c

2000-06-01 07:00:37 199,203.4.10 - W3SVC2 COOK 002 206.191.163.41 GET /Default.asp - 200 041277 492 421 80
HTTP/1.0 Mozilla/4.0+(compatible:+MSH:+5.01; +Windous+98;+TUCOWS) SITESERVER=ID=22f17fh3708b2278f3c

2000-06-01 07:00:43 24.10.69.137 - W3SVC2 COOK 002 206.191.163.41 GET /directory/34.asp - 2000 17835 458 320
8O HTTP/1.0

com/directory/25.asp
2OOO-06-0 O7:00:47 199.2O3.4.10 - W3SVC2 COOK OO2 2.06.191163.41 GET

http://allrecipes.

fiumpsite.asp
jumpsite=5&Go.x=16&Go.y=14302 O 341 611 4080 HTTP/1.0 Mozillaf4.0+(compatible;+MSIE+5.01;+Windows--98;+
TUCOWS) SITESERVER=ID=22f17fb3708b227813.c426796a78e2a+ASPSESSIONIDQOGGQGPG=FCCCFIPBKJM
BDJJHBNCOEDG11 http://allrecipes.com/Default.asp
2000-06-01 07:00:47 24.10.69.137 - W3SVC2 COOK 002 206.191.163.41 GET /directory/538.asp - 2000 27471 459.881
8O HTTP/1.0 Mozilla/4.7+enH-(Win98:+U) ASPSESSIONIDQQGGQGPG=BBHCFIPBEJPNOMDPKCGLKNGC:
+ARSiteUser=1%2DC2B25364%2D3775%2D3775%2D11D4%2DBAC1%2D005.0049BD2E4+ARSites=ALR=1
http://alrecipes.com/directory/34.asp
2000-06-01 07:00:47 207.136.48.117 - W3SVC2 COOK 002. 206.191,163.41 GET /directory/511.asp - 2000 77593 369
12538 80 HTTP/1.0 Mozilla/3.01Gold+(Win95:+1) ASPSESSIONIDQQGGQGPG=MFACFIPBDBN PBFPBOENJKHJN:
+ARSiteUser=1%2DC2B251E5%2 D3775%211D4%2DBAC1%2D005.0049BD2E4;+ARSites=ALR=1
http://alrecipes.com/directory/506.asp
2000-06-01 07:00:49 192.102.216.101 - W3SVC2 COOK 002 206.191,163.41 GET fencye/A1.asp ARRefSite=
15&ARRefCookie=1-C2B253B8-3775-11D4-BAC1-005OO49BD2E42OOO 47193 457 26080 HTTP/1.0 Mozilla 4.7+
en+(X111+1;+SunOS+5.5.1+sun4U
http://porkrecipe.co/hints/tips.asp

table for each type of event defined in the parser configu
ration data. Each event table contains an entry for each event
value of that event is type specified in an entry of the log

ASPSESSIONIDOOGGOGPG=PKBCFIPBKONBPDHKDMMEHCE

0038 Table 2 is an example portion of parser configura
tion data. The logical Site definitions map a server IP
address, port, and root URI to a logical Site. For example, the

US 2003/O126111A1

entry “LOGICALSITEURIDEFINITION=209.114.94.26,
80./,1” maps all the accesses to port 80 of IP address
209.114.94.26 at URIs with a prefix "/" to logical site 1. The
page type definitions map a logical Site identifier, URI patter,
and query String pattern to a page type. For example, the
entry “PAGEKEYDEFINITION=news item, news item, 1,
prefix}=homepage include/industrynews detail.asp,
,<News.ItemID>if{Uri” indicates that a page type of “news
item” is specified for logical site 1 by a URI pattern of
"/homepage include/industrynews detail.asp.” The defini
tion also indicates that the event value is
“<News.ItemID>#{Uri,” where the URI of the log entry is
substituted for “{Uri and the value of News.ItemID in the
query string is substituted for “CNews.ItemID>.” The event
type definitions map a site identifier, URI pattern, and query
String patter to an event type and value. The definitions also
Specify the name of the event type and the name of the
dimension table for that event type. For example, the entry
“EVENTDEFINITION=View News Article, View News
Article, 1, prefix}=/homepage include/industrynews de
tail.asp, <News.ItemIdd=*, <News.ItemIdd” indicates that
View News Article event types are stored in the View News
Article dimension table. That event type is indicated by a
URI with "/Homepage include/industrynews detail.asp.”
and the event value is the string that follows “CNews
ItemId>=” in the query String.

TABLE 2

LOGICALSITEURIDEFINITION= 209.114.94.26.8O.f.1

Jul. 3, 2003

503. In block 503, the routine extracts the values for the
fields of the selected log entry. In block 504, the routine
invokes the filter log entry routine, which returns an indi
cation as to whether the selected log entry should be filtered
out. In decision block 505, if the filter log entry routine
indicates that the Selected log entry should be filtered out,
then the routine skips to block 508, else the routine contin
ues at block 506. In block 506, the routine invokes the
normalize log entry routine to normalize the values of the
fields of the selected log entry. In block 507, the routine
invokes the generate dimensions routine to update the
dimension tables based on the Selected log entry and to add
an entry into the log entry fact table. In block 508, the
routine updates the Statistics for the log file. For example, the
routine may track the number of log entries that have been
filtered out. The routine then loops to block 501 to select the
next log entry. In block 509, the routine outputs the log file
statistics. In block 510, the routine invokes the identify
Sessions routine that Scans the log entry table to identify the
user Sessions and updates a Session dimension table. In block
511, the routine invokes the generate aggregate Statistics
routine to generate various Statistics and then completes.

0040 FIG. 6 is a flow diagram of the filter log entry
routine in one embodiment. The filter log entry routine is
passed a log entry and determines whether the log entry

PAGEKEYDEFINITION= news item, news tem, 1, prefix} =/homepage include/industrynews detail.asp.
<News.ItemIdsh{Uri
PAGEKEYDEFINITION= page, page, 1... Uri}
EVENTDEFINITION= Login, Login, 1, prefix}=/registration/login.asp.,
EVENTDEFINITION= Logout, Logout, 1, prefix}=/registration/logout.asp.,
EVENTDEFINITION= Register Page 1, Register Page 1, 1, prefix}=/registration/register.asp.,
EVENTDEFINITION= Register Page 2, Register Page 2, 1, prefix}=/registration/register2.asp. <UserIDs=*,
EVENTDEFINITION= Registration Confirmation, Registration Confirmation, 1, prefix}=/registration/register3.asp.
EVENTDEFINITION= Abort Registration, Abort Registration, 1, prefix}=/registration/registrationabort.asp.,
EVENTDEFINITION= Member Services, Member Services, 1, prefix}=/registration/memberservices.asp.,
EVENTDEFINITION= Change Password, Change Password, 1, prefix}=/registration/changepassword.asp.,
EVENTDEFINITION= Profile Edit, Profile Edit, 1, prefix}=/registration/profile.asp.,
EVENTDEFINITION= Change Affiliation, Change Affiliation, 1, prefix}=/registration/changeafliliation.asp, <UserIDs,
EVENTDEFINITION= Change Secret Question, Change Secret Quesion, 1, prefix}=/registration/changesecretauestion.asp.,
EVENTDEFINITION= Forgot Infonnation, Forgot Informtation, 1, prefix/registration/forgotinfo.asp,
EVENTDEFINITION= 32 Forgot Password, Forgot Password, 1, prefix}=/registration/forgotpasssword.asp.,
EVENTDEFINITION= Forgot Signin, Forgot Signin, 1, prefix}=f registration/forgotsignin.asp.,
EVENTDEFINITION= View News Article, View News Article, 1, prefix}=/homepage include/industrynews detail.asp,
<News.ItemId=*,<News.ItemIds

0039 FIGS. 5-14 are flow diagrams of components of the
parser in one embodiment. FIG. 5 is a flow diagram illus
trating the parse log data routine that implements the main
routine of parser in one embodiment. The routine processes
each entry in the log file based on the parser configuration
data. The routine filters out certain log entries, normalizes
the attribute values of the log entries, and generates entries
in the dimension tables for the attributes of the log entries.
After processing all the log entries, the parser identifies user
sessions and generates various statistics. In blocks 501-508,
the routine loops Selecting and processing each log entry. In
block 501, the routine selects the next log entry of the log file
Starting with the first log entry. The routine may also
pre-process the header information of the log file to identify
the fields of the log entries. In decision block 1502, if all the
log entries have already been Selected, then the routine
continues at block 509, else the routine continues at block

should be filtered out. In blocks 601-607, the routine deter
mines whether the filter out conditions have been satisfied.
In decision block 601, the routine determines whether the
log entry has a field count problem. A field count problem
arises when the number of fields in the log entry does not
correspond to the number of expected fields for that log
entry. The number and types of fields may be defined in a
“fields' directive line of the log file. In decision block 602,
the routine determines whether the log entry is outside of a
Specified time range. The routine compares the time field of
the log entry to the time range. The time range may be
Specified So that only those log entries within that time range
are processed. In decision block 603, the routine determines
whether the IP address of the log entry should be ignored.
For example, a log entry may be ignored if the entry
originated from a Server whose function is to ping the
customer's Web Server at periodic intervals. In decision

US 2003/O126111A1

block 604, the routine determines whether the log entry
corresponds to a comment (e.g., a "#remarks' directive). In
decision block 605, the routine determines whether the
Success code associated with the log entry indicates that log
entry should be ignored. For example, if the Success code
indicates a failure, then the log entry may be ignored. In
decision block 606, the routine determines whether the log
entry is requesting a resource whose extension indicates that
the log entry should be ignored. For example, the routine
may ignore log entries requesting graphic files, Such as those
in the “.gif format. In decision block 607, the routine
determines whether the values within the fields of the log
entry are corrupt. For example, a value in the date field that
indicates a date of February 30th is corrupt. One skilled in
the ale would appreciate that the various filtering conditions
may be specified in a configuration file. For example, the
time range, IP addresses, and So on may be specified in the
configuration file. These configuration files may be specified
on a customer-by-customer basis.
0041 FIG. 7 is a flow diagram illustrating the normalize
log entry routine. The routine normalizes the values of the
fields in the passed log entry. In block 701, the routine
converts the time of the log entry into a Standard time Such
as Greenwich Mean Time. In block 702, the routine corrects
the time based on the variation between the times of the
customer Web Servers. For example, the time of one web
server may be five minutes ahead of the time of another web
Server. This correction may be based on current time infor
mation collected from computer Systems that generated the
events and then correlated to base current time information.
In block 703, the routine normalizes the values of the fields
of the log entry. This normalization may include processing
Search Strings to place them in a canonical form. For
example, a Search String of “back pack” may have a canoni
cal form of “backpack.” Other normalization of search
Strings may include Stemming of words (e.g., changing
“clothes” and “clothing” to “cloth'), synonym matching,
and first and last word grouping. The first word grouping for
the search strings of “winter clothing” and “winter shoes”
results in the string of “winter.”
0.042 FIG. 8 is a flow diagram of the generate dimen
Sions routine in one embodiment. This routine identifies a
value for each dimension associated with the passed log
entry and ensures that the dimension tables contains entries
corresponding to those values. In one embodiment, each
entry in a dimension table includes the attribute value (e.g.,
user identifier) and a hash value. The hash value may be used
by the loader when transferring information to the main data
warehouse. Also, each entry has a local identifier, which may
be an indeX into the local dimension table. The loader maps
these local identifiers to their corresponding main identifiers
that are used in the main data warehouse. In block 801, the
routine invokes a routine that identifies the logical Site
asSociated with the log entry and ensures that an entry for the
logical Site is in the logical Site dimension table. In block
802, the routine invokes a routine that identifies the user
asSociated with the log entry and ensures that an entry for the
user is in the user dimension table. In block 803, the routine
invokes a routine that identifies the URI associated with log
entry and ensures that an entry for that URI is in the URI
dimension table. In block 804, the routine invokes a routine
that identifies the page type based on the parser configura
tion data and ensures that an entry for that page type is in the
page type dimension table. In block 805, the routine invokes

Jul. 3, 2003

a routine that identifies the various events associated with
the log entry based on the parser configuration data and
ensures that an entry for each event type is in the corre
sponding event table. In block 806, the routine identifies
other dimensions (e.g., referrer URI) as appropriate. In block
807, the routine adds an entry to the log entry table that is
linked to each of the identified dimensions using the local
identifiers. In block 808, the routine updates the statistics
information based on the log entry and then returns.
0043 FIG. 9 is a flow diagram of the identify logical site
routine in one embodiment. This routine compares the Site
information of the passed log entry with the logical Site
definitions in the parser configuration data. In block 901, the
routine Selects the next logical site definition from the parser
configuration data. In decision block 902, if all the logical
Site definitions have already been Selected, then the routine
continues the block 905, else the routine continues at block
903. In decision block 903, if the URI of the log entry
matches the Selected logical Site definition, then the routine
continues at block 904, else the routine loops to block 901
to select the next logical site definition. In block 904, the
routine updates the logical Site dimension table to ensure
that it contains an entry for the logical Site defined by the
Selected logical Site definition. The routine then returns. In
block 905, the routine updates the logical site dimension
table to ensure that it contains a default logical Site definition
and then returns. The log entries that do not map to a logical
Site definition are mapped to a default logical Site.
0044 FIG. 10 is a flow diagram of the identify user
routine in one embodiment. This routine may use various
techniques to identify the user associated with the passed log
entry. In one embodiment, the Selection of the technique is
configured based on the customer web site. For example,
one customer may specify to use a cookie to identify users.
In absence of a user identifier in the cookie, the industry
norm is to identify users based on their IP addresses. This
routine illustrates a technique in which a combination of
cookies and IP addresses are used to identify a user. In block
1001, the routine extracts the user identifier from the cookie
asSociated with the log entry. The format of a cookie may be
Specified on a customer-by-customer basis. In decision
block 1002, if the extraction from the cookie was successful,
then the routine continues at block 1006, else the routine
continues at block 1003. The extraction may not be suc
cessful if, for example, the log entry did not include a
cookie. In block 1003, the routine extracts the IP address
from the log entry. In decision block 1004, if the IP address
is determined to be unique, then routine continues at block
1006, else the routine continues at block 1005. Certain IP
addresses may not be unique. For example, an Internet
Service provider may use one IP address for many of its
users. The Internet Service provider performs the mapping of
the one IP address to the various users. In block 1005, the
routine extracts the browser identifier from the log entry.
The combination of IP address and browser identifier may
uniquely identify a user. In block 1006, the routine updates
the user dimension table to ensure that it has an entry for this
user and then returns.

004.5 FIG. 11 is a flow diagram of the identify page type
routine in one embodiment. This routine uses the page type
definitions of the parser configuration data to identify the
page type associated with the log entry. In block 1101, the
routine Selects the next page type definition from the parser

US 2003/O126111A1

configuration data. In decision block 1101, if all the page
type definitions have already been Selected, then no match
ing page type has been found and the routine returns, else the
routine continues at block 1103. In decision block 1103, if
the log entry matches the Selected page type definition, then
the routine continues at block 1104, else the routine loops to
block 1101 to select the next page type definition. In block
1104, the routine updates the page type dimension table to
ensure that it contains an entry for the page type represented
by the Selected page type definition. The routine then
returns.

0.046 FIG. 12 is a flow diagram illustrating the identify
events routine in one embodiment. This routine determines
whether the log entry corresponds to any of the events
Specified in the parser configuration data. In block 1201, the
routine Selects the next type of event from the parser
configuration data. In decision block 1202, if all the event
types have already been Selected, then the routine returns,
else the routine continues at block 1203. In block 1203, the
routine Selects the next event definition of the Selected event
type. In decision block 1204, if all the event definitions of
the Selected event type have already been Selected, then the
log entry does not correspond to this type of event and the
routine loops to block 1201 to select the next type of event,
else the routine continues at block 1205. In block 1205, if the
log entry matches the Selected event definition, then the
routine continues at block 1206, else the routine loops to
block 1203 to select the next event definition of the selected
event type. In block 1206, the routine updates the dimension
table for the selected type of the event to ensure that it
contains an entry for the Selected event definition. The
routine then loops to block 1201 to select the next type of
event. In this way, the routine matches no more than one
event definition for a given event type. For example, if there
are two event definitions for the event type “Keyword
Search, then if the first one processed matches, then the
Second one is ignored.

0047 FIG. 13 is a flow diagram illustrating the identify
Sessions routine in one embodiment. This routine Scans the
log entry table of the local data warehouse to identify user
Sessions. In one embodiment, a user Session may be delim
ited by a certain period of inactivity (e.g., thirty minutes).
The criteria for identifying a Session may be configurable on
a customer-by-customer basis. In block 1301, the routine
Selects the next user from the user dimension table. In
decision block 1302, if all the users have already been
Selected, then the routine returns, else the routine continues
at block 1303. In block 1303, the routine selects the next log
entry for the Selected user in time order. In decision block
1304, if all log entries for the selected user have already been
selected, then the routine loops to block 1301 to select the
next user, else the routine continues at block 1305. In
decision block 1305, if the selected log entry indicates that
a new Session is starting (e.g., its time is more than 30
minutes greater than that of the last log entry processed),
then the routine continues at block 1306, else the routine
loops to block 1303 to select the next log entry for the
selected user. In block 1306, the routine updates a session
fact table to add an indication of the new session. The
routine then loops to block 1303 to select the next log entry
for the Selected user. The routine may also update the log
entries to reference their Sessions.

Jul. 3, 2003

0048 FIG. 14 is a flow diagram of the generate aggregate
Statistics routine in one embodiment. This routine generate
Statistics based on analysis of the fact and dimension tables
used by the parser. In block 1401, the routine selects the next
fact table of intent. In decision block 1402, if all the fact
tables have already been Selected, then the routine returns,
else the routine continues at block 1403. In block 1403, the
routine selects the next entry of the selected fact table. In
decision block 1404, if all the entries of the selected fact
table have already been Selected, then the routine loops to
block 1401 to select the next fact table, else the routine
continues at block 1405. In block 1405, the routine aggre
gates various Statistics about the Selected fact table. The
routine then loops to block 1404 to select the next entry of
the fact table.

0049 FIGS. 15-17 are flow diagrams illustrating compo
nents of the loader in one embodiment. FIG. 15 is a flow
diagram of the load log data routine implementing the main
routine of the loader in one embodiment. This routine
controls the moving of the data from the local data ware
house (created and used by the parser) into the main data
warehouse. In block 1501, the routine invokes the create
partitions routine to create partitions for the main data
warehouse as appropriate. In blocks 1502–1504, the routine
loops loading the dimension tables into the main data
warehouse. In block 1502, the routine selects the next
dimension table. In decision block 1503, if all the dimension
tables have already been Selected, then the routine continues
at block 1505, else the routine continues at block 1504. In
block 1504, the routine invokes the load dimension table
routine for the selected dimension table. The routine then
loops to block 1502 to select the next dimension table. In
blocks 1505-1507, the routine loops adding the entries to the
fact tables of the main data warehouse. In block 1505, the
routine selects the next fact table in order. The order in
which the fact tables are to be loaded may be specified by
configuration information. The fact tables may be loaded in
order based on their various dependencies. For example, a
log entry fact table may be dependent on a user dimension
table that is itself a fact table. In decision block 1506, if all
the fact tables have already been loaded, then the routine
returns, else the routine continues at block 1507. In block
1507, the routine invokes the load fact table routine for the
selected fact table. The routine then loops to block 1505 to
Select the next fact table.

0050 FIG. 16 is a flow diagram of the load dimension
table routine in one embodiment. This routine maps the local
identifiers used in the local data warehouse to the main
identifiers used in the main data warehouse. In block 1601,
the routine Selects the next entry from the dimension table.
In decision block 1602, if all the entries of the dimension
table have already been Selected, then the routine returns,
else the routine continues at block 1603. In block 1603, the
routine retrieves an entry from the dimension table of the
main data warehouse corresponding to the Selected entry. In
decision block 1604, if the entry is retrieved, then the routine
continues at block 1606, else the dimension table does not
contain an entry and the routine continues at block 1605. In
block 1605, the routine adds an entry to the dimension table
of the main data warehouse corresponding to the Selected
entry from the dimension table of the local data warehouse.
In block 1606, the routine creates a mapping of the local
identifier (e.g., index into the local dimension table) of the
Selected entry to the main identifier (e.g., index into the main

US 2003/O126111A1

dimension table) for that selected entry. The routine then
loops to block 1601 to select the next entry of the dimension
table.

0051 FIG. 17 is a flow diagram of the load fact table
routine in one embodiment. This routine adds the facts of the
local data warehouse to the main data warehouse. The
routine maps the local identifiers for the dimensions used in
the local warehouse to the main identifiers of dimensions
used in the main data warehouse. In block 1701, the routine
selects the next entry in the fact table. In decision block
1702, if all the entries of the fact table have already been
Selected, then the routine returns, else the routine continues
at block 1703. In block 1703, the routine selects the next
dimension for the selected entry. In decision block 1704, if
all the dimensions for the Selected entry have already been
Selected, then the routine continues at block 1706, else the
routine continues at block 1705. In block 1705, the routine
retrieves the main identifier for the Selected dimension and
then loops to block 1703 to select the next dimension. In
block 1706, the routine stores an entry in the fact table of the
main data warehouse. The routine then loops to block 1701
to select the next entry in the fact table.
0.052 FIG. 18 is a flow diagram illustrating the identify
user aliases routine in one embodiment. This routine tracks
the different user identifiers as a user Switches from one web
Site to another. In particular, the routine maps the user
identifiers used by a referrer web site to the user identifiers
used by the referred-to web site. In this way, the same user
can be tracked even though different web sites use different
identifiers for that user. This routine may be invoked as pail
of the parsing of the log files. In decision block 1801, if the
log entry indicates a referrer web site, then the routine
continues at block 1802, else the routine returns. In block
1802, the routine identifies the user identifier for the referrer
web site. In block 1803, the routine creates a mapping
between the referrer user identifier and the referred-to user
identifier. The routine then returns.

0.053 From the above description it will be appreciated
that although Specific embodiments of the technology have
been described for purposes of illustration, various modifi
cations may be made without deviating from the Spirit and
Scope of the invention. For example, the processing of the
parser may be performed by the data collection component
before Sending the data to the data warehouse Server.
Accordingly, the invention is not limited except by the
appended claims.

1. A method of processing data before updating a database
based on the processed data, the database having a main
table with a main identifier for each entry in the main table,
the method comprising:

identifying an entry that should be in the main table;
generating a local identifier for the entry;
adding the entry with the local identifier to a local table;
generating information to be Stored in the database that

references the entry in the local table using the local
identifier; and

after generating the information,
generating a main identifier for the entry;

Jul. 3, 2003

adding an entry with the main identifier to the main table;
and

Storing the generated information in the database with the
local identifier replaced with the main identifier.

2. The method of claim 1 wherein the local table is stored
in main memory.

3. The method of claim 1 wherein the table is a dimension
table of the database.

4. The method of claim 1 wherein the generated infor
mation is Stored in a fact table of the database.

5. The method of claim 1 wherein the local identifier is
generated based on key information.

6. The method of claim 5 including generating a hash
value based on the key information and Storing the hash
value in the entry of the local table.

7. The method of claim 6 including using the stored hash
value to locate entries in the main table.

8. The method of claim 1 wherein the processed data
relates to navigation information of a web site.

9. The method of claim 1 wherein the processed data is
click Stream data.

10. A method in a computer System for parsing informa
tion before updating data in a main database, the main
database having fact tables and dimension tables, the
method comprising:

creating a fact table and a dimension table corresponding
to a fact table and dimension table of the main database;

identifying from the information entries for the created
fact table and dimension table;

Storing the identified entries in the created fact table and
dimension table; and

analyzing the entries Stored in the created fact table and
dimension table.

11. The method of claim 10 wherein the parsed informa
tion relates to user interactions with web pages.

12. The method of claim 10 including updating data in the
main database based on the entries in the created fact table
and dimension table.

13. The method of claim 10 wherein the created fact table
and dimension table are Stored in main memory.

14. The method of claim 10 wherein the created fact and
dimension table are Stored in non-persistent memory.

15. The method of claim 10 wherein the created fact and
dimension table are Stored in temporary memory.

16. The method of claim 10 wherein the created fact and
dimension table are destroyed after information in the main
database is updated based on the created fact and dimension
table.

17. The method of claim 10 wherein the data in the main
database is updated based on an ordering of fact and
dimension tables.

18. A method in a computer System for identifying navi
gation paths through web pages based on user navigation
information, the method comprising:

analyzing the user navigation information to identify
entries associated with the same user; and

for each user,

identifying the web pages that are accessed by the user;
and

US 2003/O126111A1

Storing an indication of the identified web pages as a
navigation path in a persistent database.

19. The method of claim 18 wherein a sequence of
identified web pages for a user is designated as a Session.

20. The method of claim 19 wherein a session is delimited
by time between access of web pages by the user.

21. A method in a computer for processing navigation
information for web pages, the method comprising:

Selecting an entry of the navigation information;
identifying a uniform resource identifier of the Selected

entry; and
when the identified uniform resource identifier satisfies a

match criterion, Storing in a persistent database an
indication that the entry matches the criterion.

22. The method of claim 21 wherein criterion indicates
that the entry is for a web pages of a certain category.

23. The method of claim 21 wherein the criterion identi
fies an event.

24. The method of claim 21 wherein the criterion specifies
a type of web page.

25. A method in a computer System for identifying a user
who accesses a web page, the method comprising:

providing an indication of a request for a Second web
page, the request including Second information identi
fying a user who requested the Second web page and
first information identifying a user who requested a first
web page that included a reference to the second web
page, and

indicating the first information and the Second informa
tion identify the same user.

26. The method of claim 25 wherein the first information
is included as information of a referrer.

27. The method of claim 25 including Storing a mapping
of the first information to the second information.

28. The method of claim 27 including checking the
mapping to determine whether user information corresponds
to a user identified with other information.

29. The method of claim 25 wherein the first information
and second information are provided by different web
domains.

30. A method in a computer System for identifying high
level events from low-level events, the method comprising:

providing a plurality of event definitions that map low
level events to high-level events, and

for each low-level event,
determining whether the low-level event matches a pro

vided event definition; and
when a low-level event matches an event definition,

persistently Storing an indication of the high-level event
asSociated with the matching event definition.

31. The method of claim 30 wherein the low-level events
are navigation events.

32. The method of claim 30 wherein the low-level events
are derived from click Stream information.

33. The method of claim 30 wherein the indication of the
high-level event is persistently Stored in a data warehouse.

Jul. 3, 2003

34. A method in a computer System for processing click
Steam data, the method comprising:

receiving time Synchronization information for the click
Stream data;

adjusting times associated with the click Stream data
based on the received time Synchronization informa
tion; and

persistently Storing the adjusted times.
35. The method of claim 34 wherein the time synchroni

Zation information is based on current time information
received from a web server associated with the click Stream
data.

36. The method of claim 35 including sending a request
to the web server for current time information.

37. The method of claim 34 wherein the time synchroni
Zation information is based on current time information of a
Web Server and base time information.

38. A computer-readable medium containing instructions
for controlling a computer System to parse information
before updating data in a main database, the main database
having fact tables and dimension tables, by a method com
prising:

creating fact tables and dimension tables corresponding to
fact tables and dimension tables of the main database;

identifying from the information entries for the created
fact tables and dimension tables,

Storing the identified entries in the created fact tables and
dimension tables, and

analyzing the entries Stored in the created fact tables and
dimension tables.

39. The computer-readable medium of claim 38 wherein
the parsed information relates to user interactions with web
pageS.

40. The computer-readable medium of claim 38 including
updating data in the main database based on the entries in the
created fact tables and dimension tables.

41. The computer-readable medium of claim 38 wherein
the created fact tables and dimension tables are Stored in
main memory.

42. The computer-readable medium of claim 38 wherein
the created fact tables and dimension tables are Stored in
non-persistent memory.

43. The computer-readable medium of claim 38 wherein
the created fact and dimension tables are Stored in temporary
memory.

44. The computer-readable medium of claim 38 wherein
the created fact and dimension tables are destroyed after
information in the main database is updated based on the
created fact and dimension tables.

45. The computer-readable medium of claim 38 wherein
the data in the main database is updated based on an ordering
of fact and dimension tables.

46. A method in a computer System for processing of
Search Strings, the method comprising:

identifying a Search Sting in a log file;
identifying a canonical form of the Search String, and

US 2003/O126111A1 Jul. 3, 2003
11

Storing the identified canonical from So that Subsequent 48. The method of claim 46 wherein the identifying of a
processing of the Search String uses the canonical form. canonical form includes first or last word grouping.

49. The method of claim 46 wherein the identifying of a 47. The method of claim 46 wherein the identifying of a
canonical form includes removal of Spaces between words. canonical form includes Stemming of a word in the Search

String. k

