

US 20140274806A1

(19) **United States**

(12) **Patent Application Publication**
O'Hagan et al.

(10) **Pub. No.: US 2014/0274806 A1**
(43) **Pub. Date: Sep. 18, 2014**

(54) **INFLUENZA VIRUS REASSORTMENT**

NOVARTIS AG, Basel (CH)

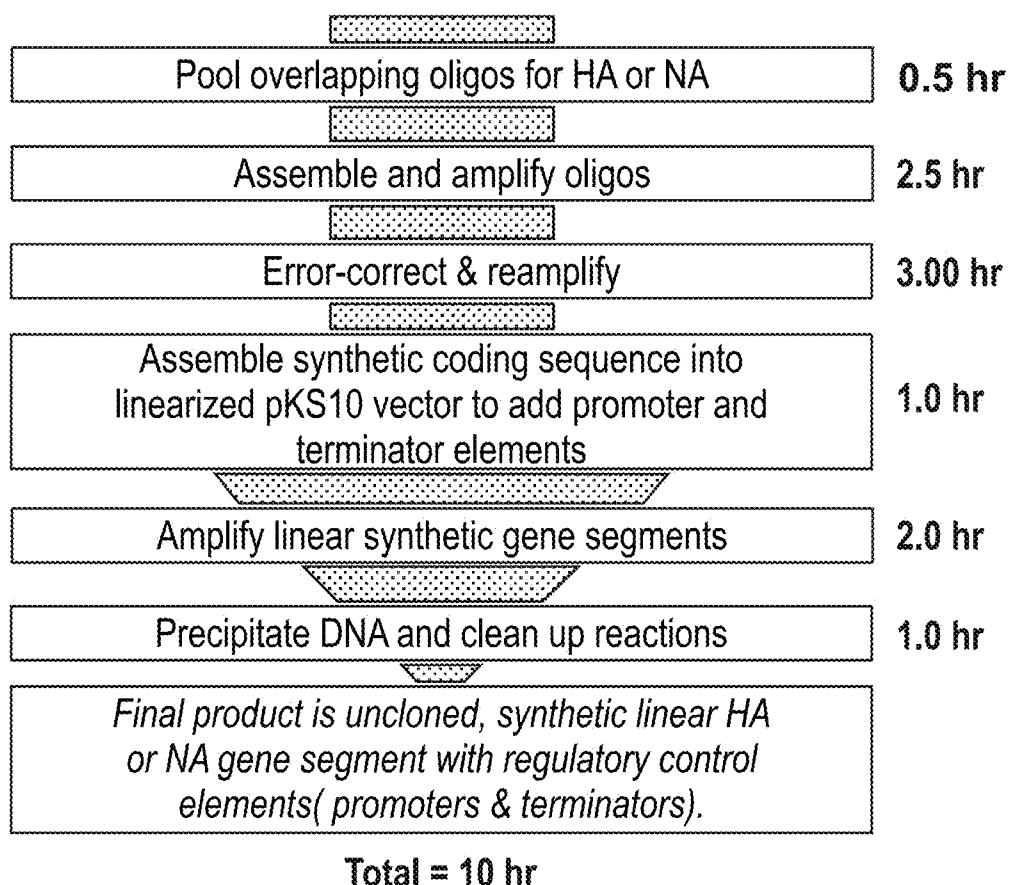
(71) Applicants: **Synthetic Genomics Vaccines**, La Jolla, CA (US); **Novartis AG**, Basel (CH)

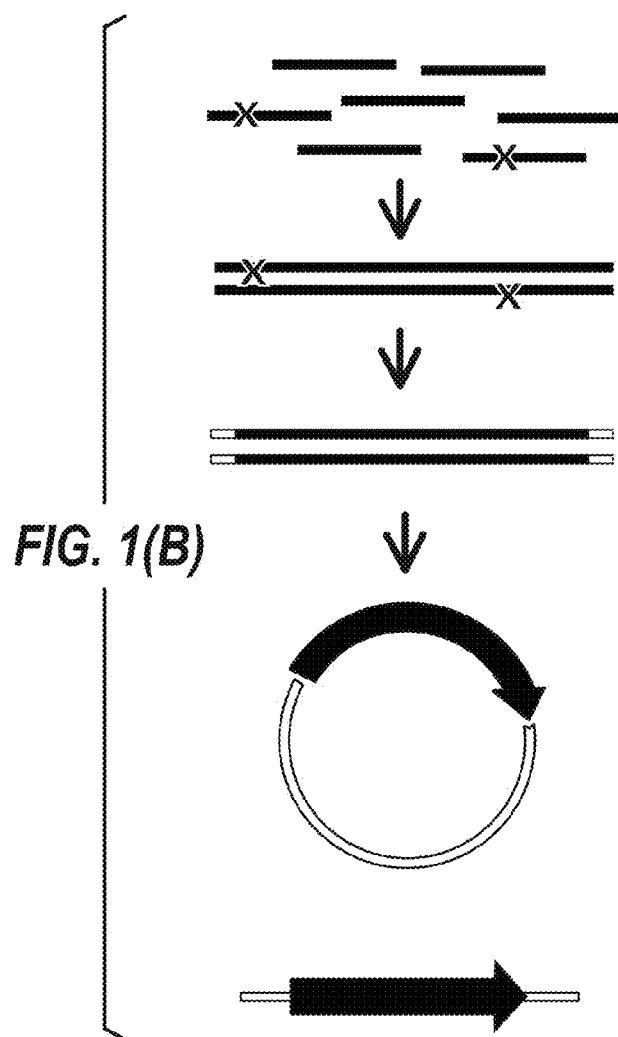
(21) Appl. No.: **13/841,752**

(72) Inventors: **Derek O'Hagan**, Winchester, MA (US); **Peter Mason**, Sommerville, CA (US); **Pirada Suphaphiphat, I**, Brookline, MA (US); **Daniel G. Gibson**, Carlsbad, CA (US); **David E. Wentworth**, Rockville, MD (US); **Timothy B. Stockwell**, Chantilly, VA (US); **John I. Glass**, Germantown, MD (US)

(22) Filed: **Mar. 15, 2013**

Publication Classification


(51) **Int. Cl.**
CI2N 7/00 (2006.01)


(52) **U.S. Cl.**
CPC *CI2N 7/00* (2013.01)
USPC **506/17; 435/235.1; 435/5**

(73) Assignees: **SYNTHETIC GENOMICS VACCINES**, La Jolla, CA (US);

(57) ABSTRACT

Improved methods for the production of reassortant influenza viruses are provided.

FIG. 1(A)

FIG. 1(C)

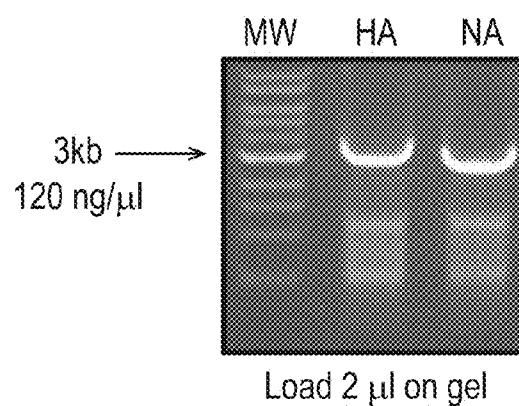
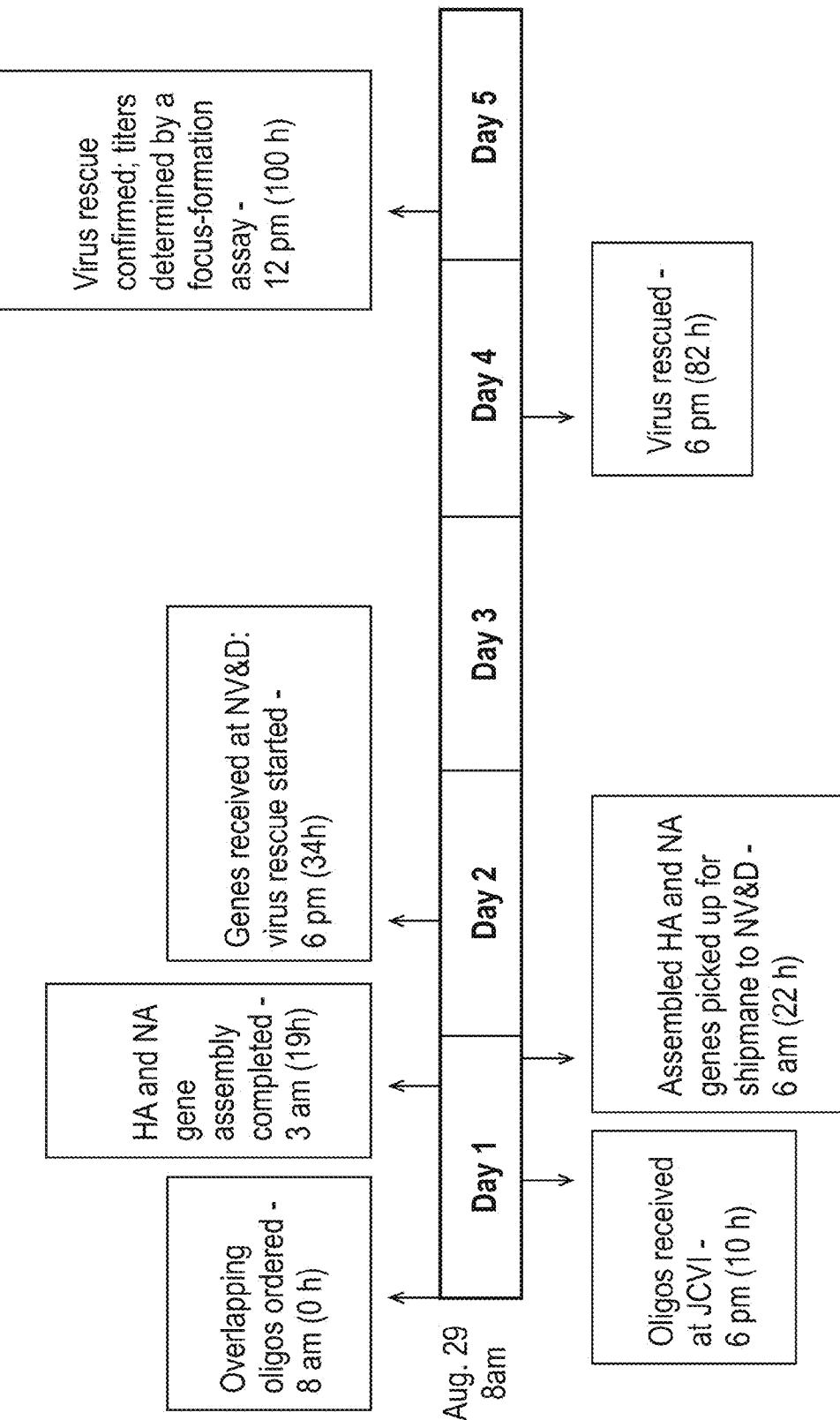
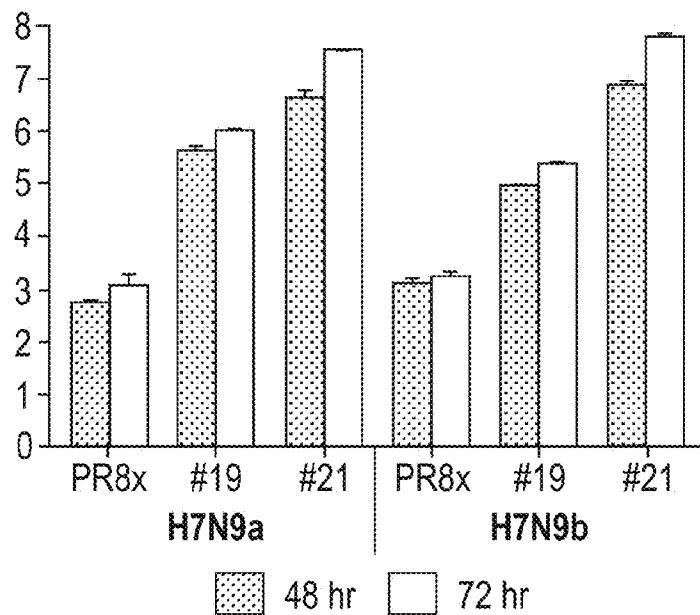
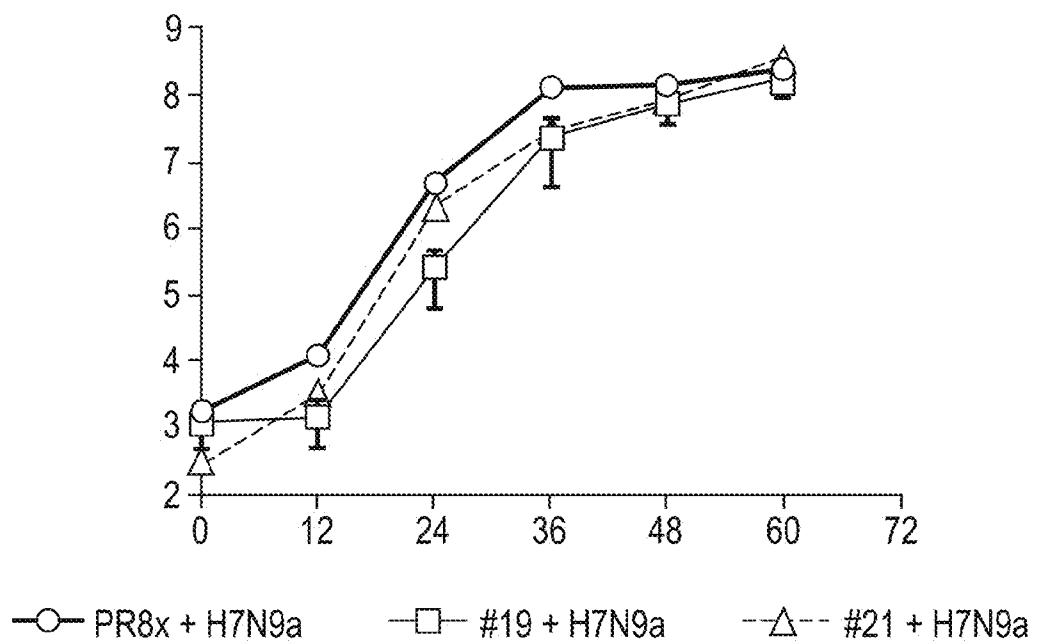
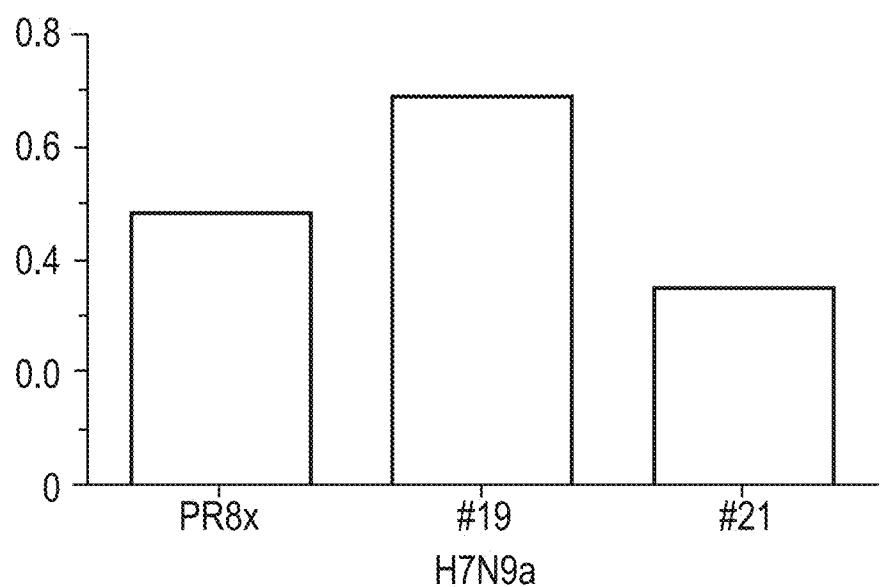






FIG. 2

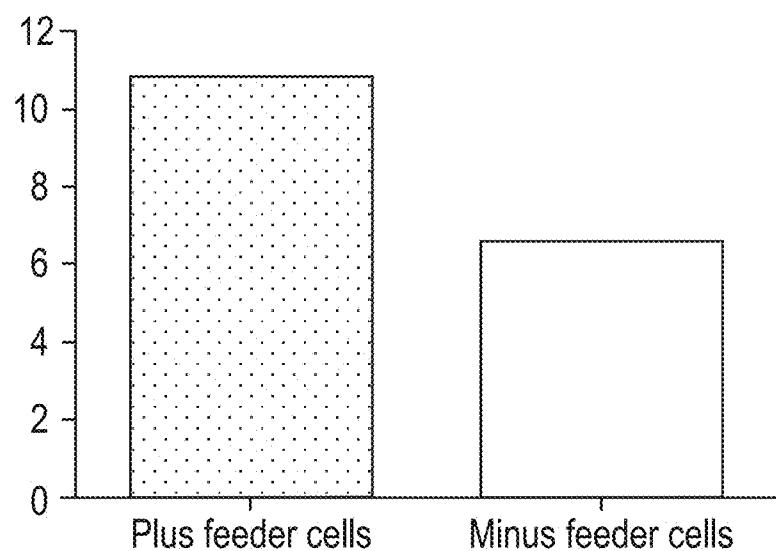

FIG. 3(A)**FIG. 3(B)**

FIG. 3(C)

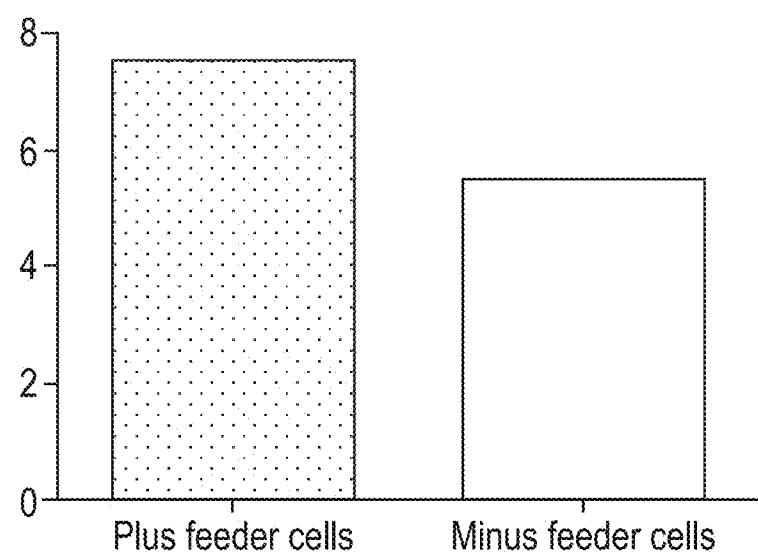
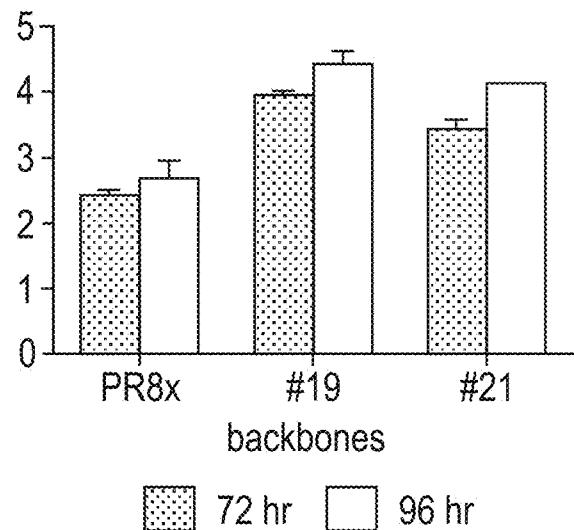


FIG. 4(A)

PR8x-WSN HA+NA


FIG. 4(B)

PR8x-A/CA HA+NA

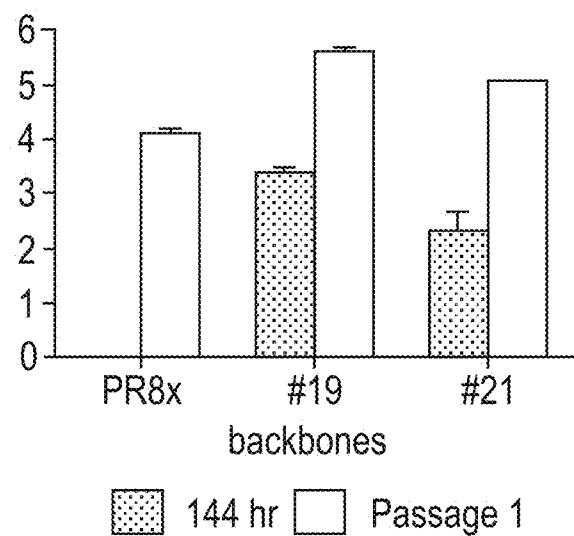
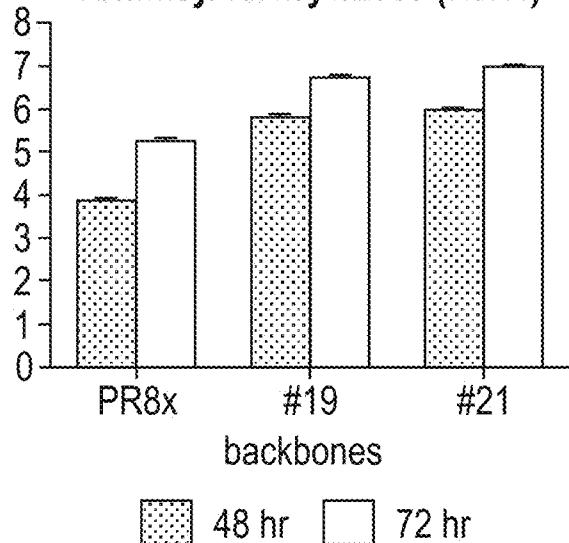
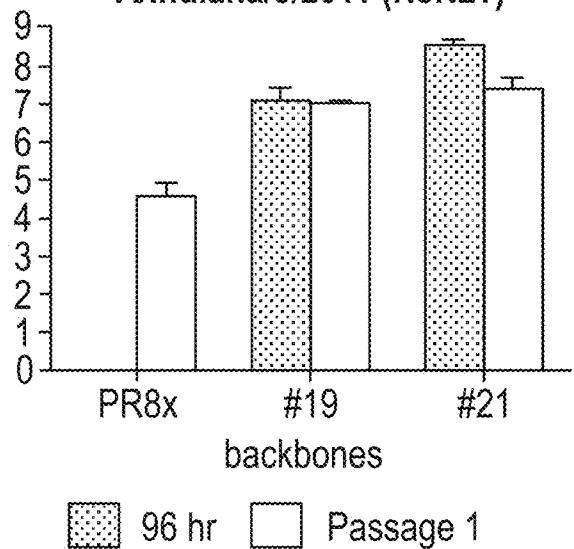


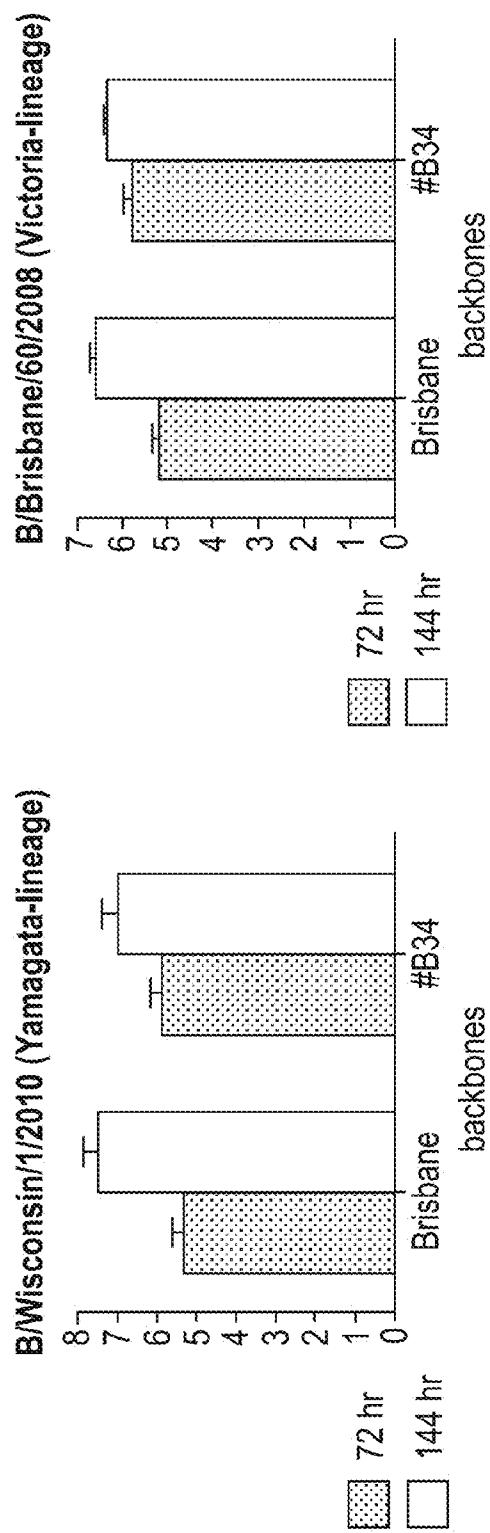
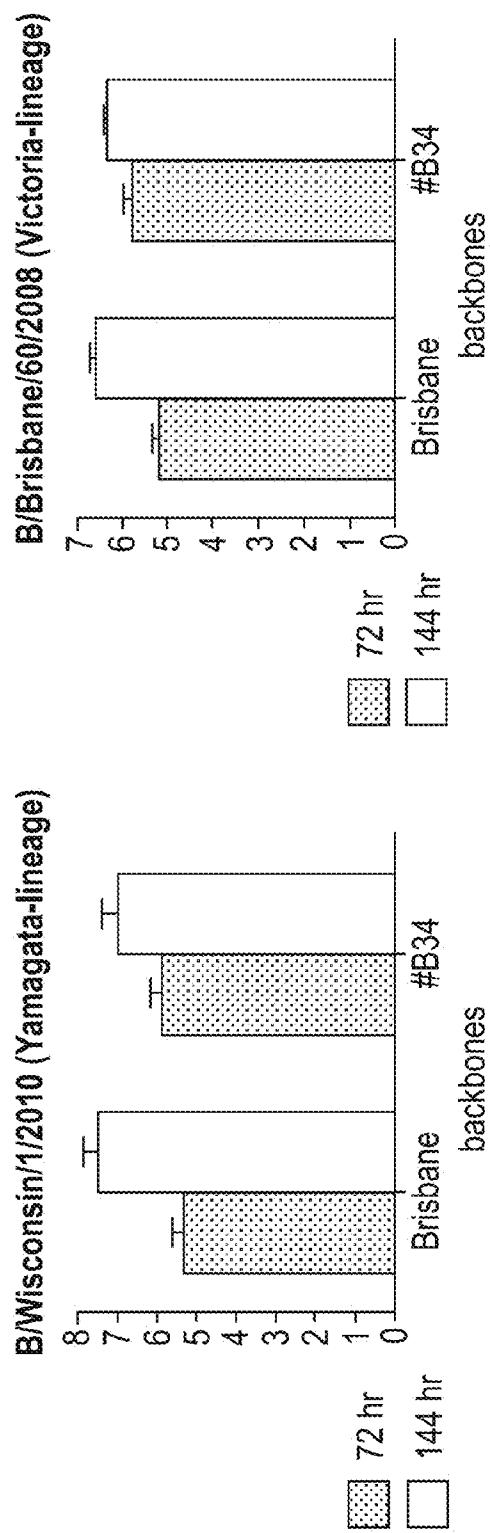
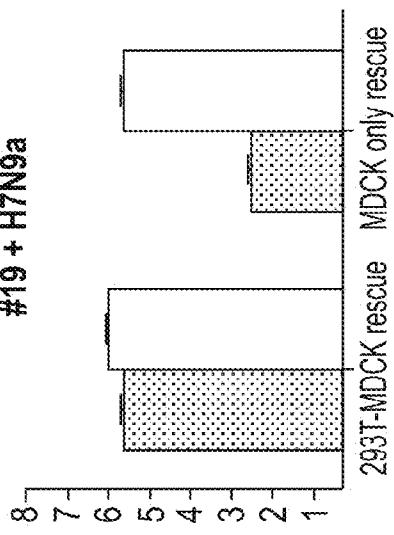
FIG. 5(A)

A/Brisbane/10/2010 (H1N1)

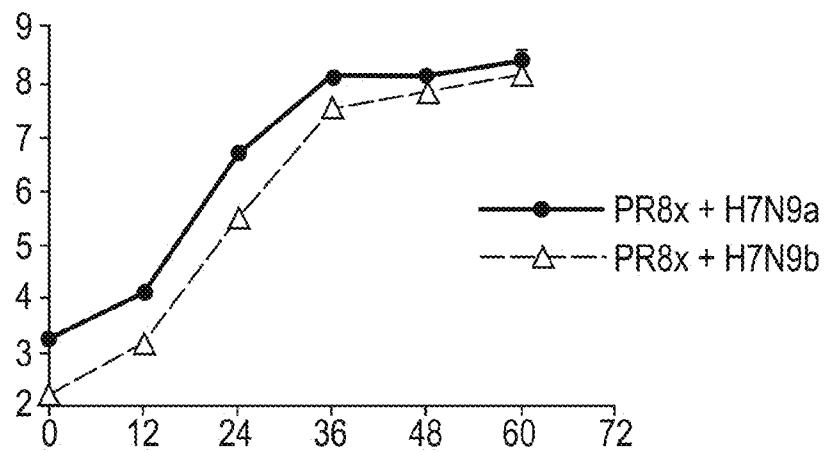

FIG. 5(B)

A/Victoria/361/2011 (H3N2)






FIG. 5(C)

A/turkey/Turkey1/2005 (H5N1)


FIG. 5(D)

A/Indiana/8/2011 (H3N2v)

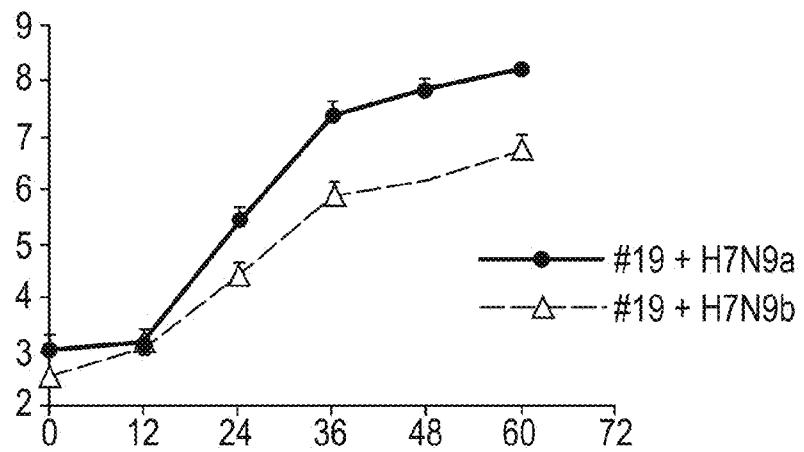
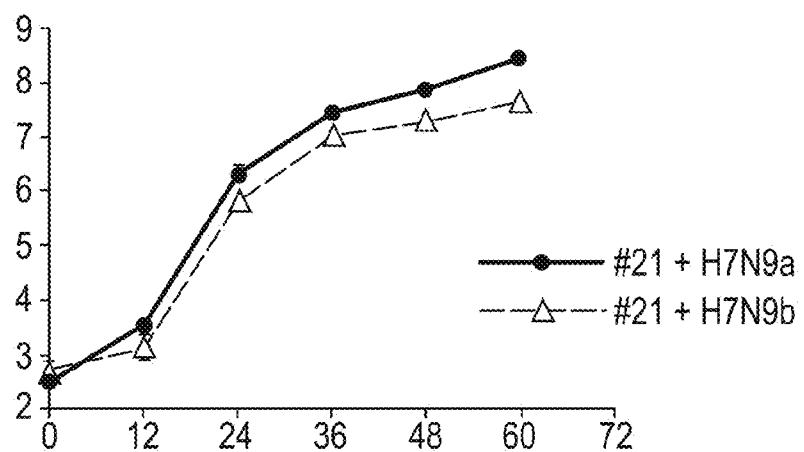
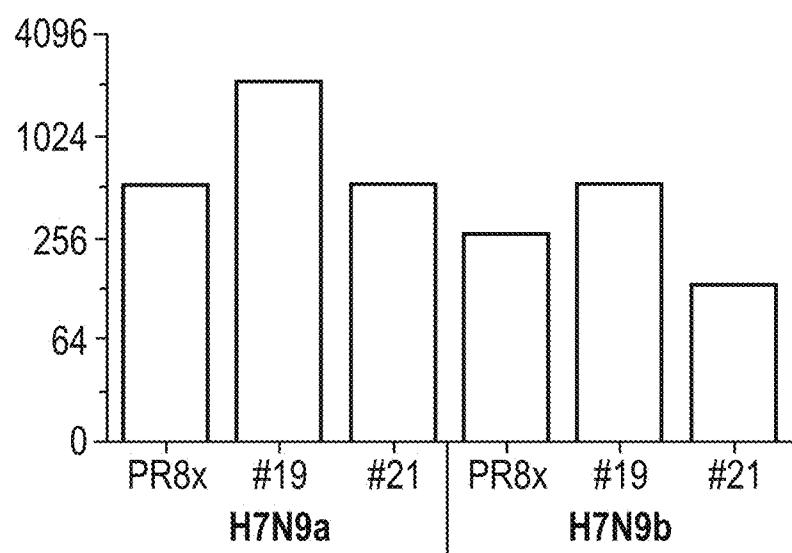
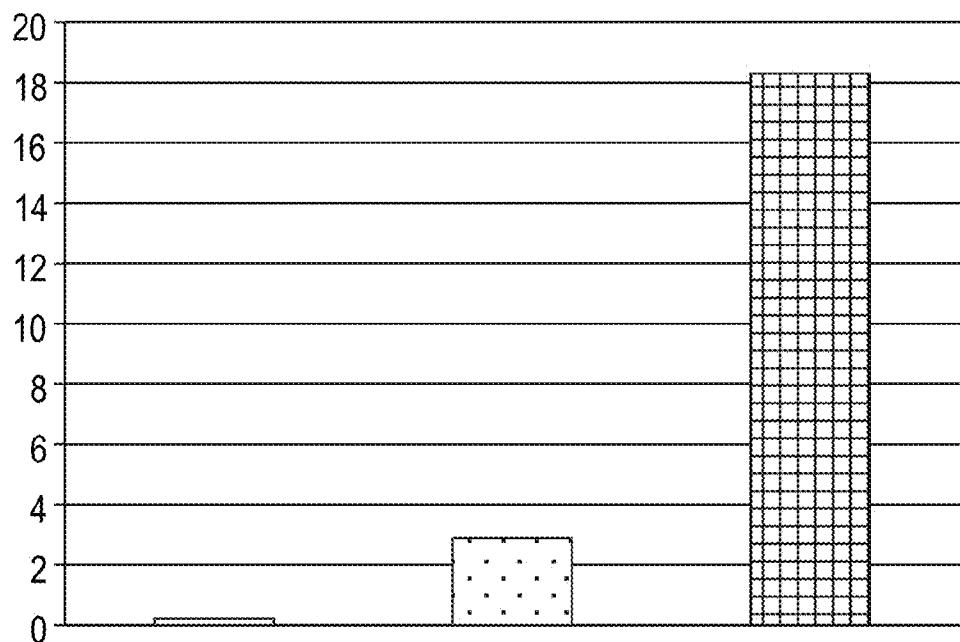
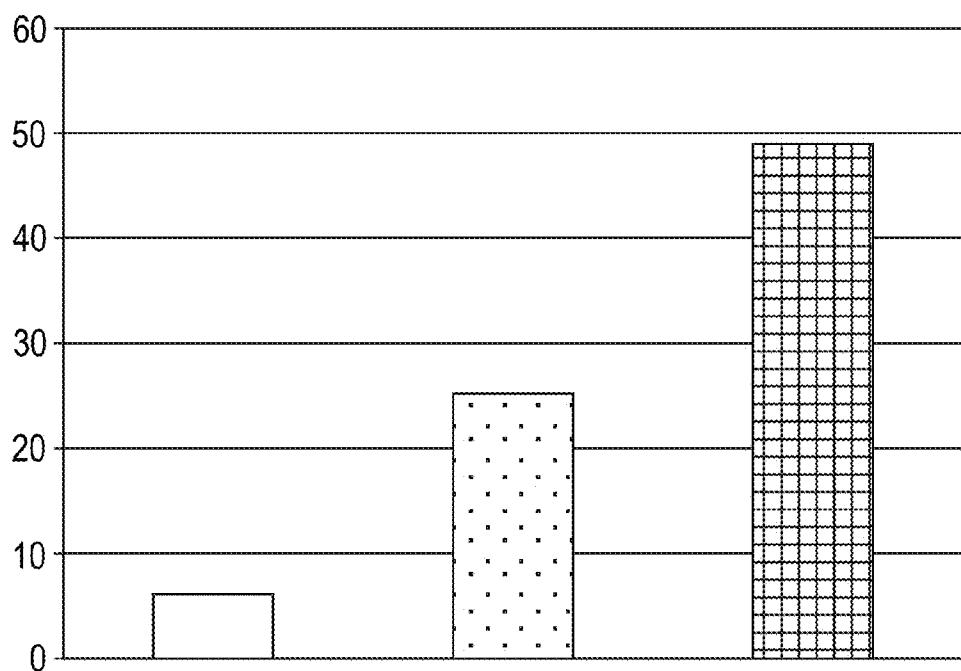


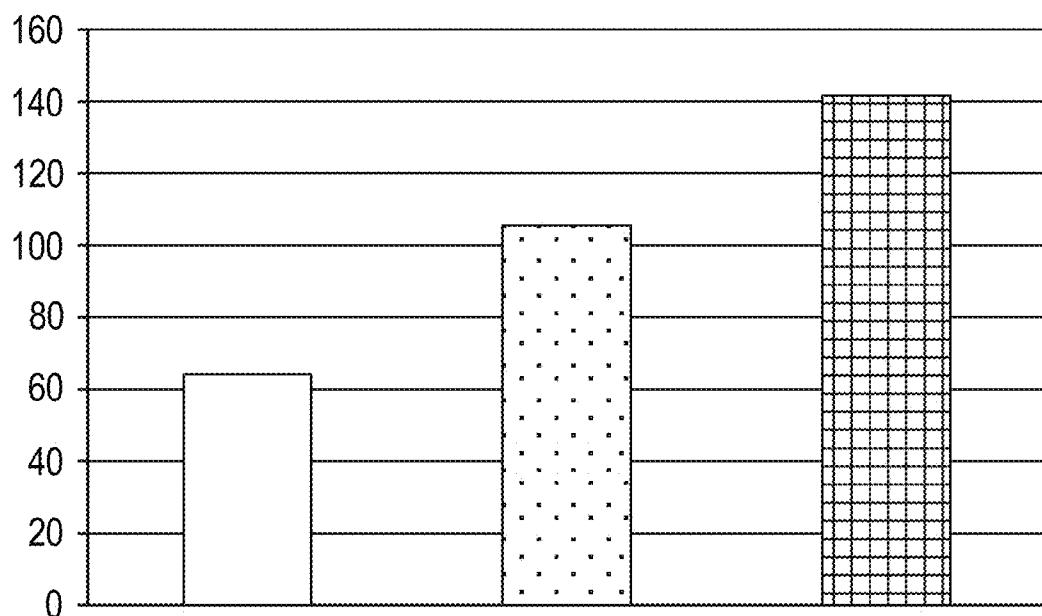
FIG. 5(E)**FIG. 5(F)****#19 + H7N9a****FIG. 6**

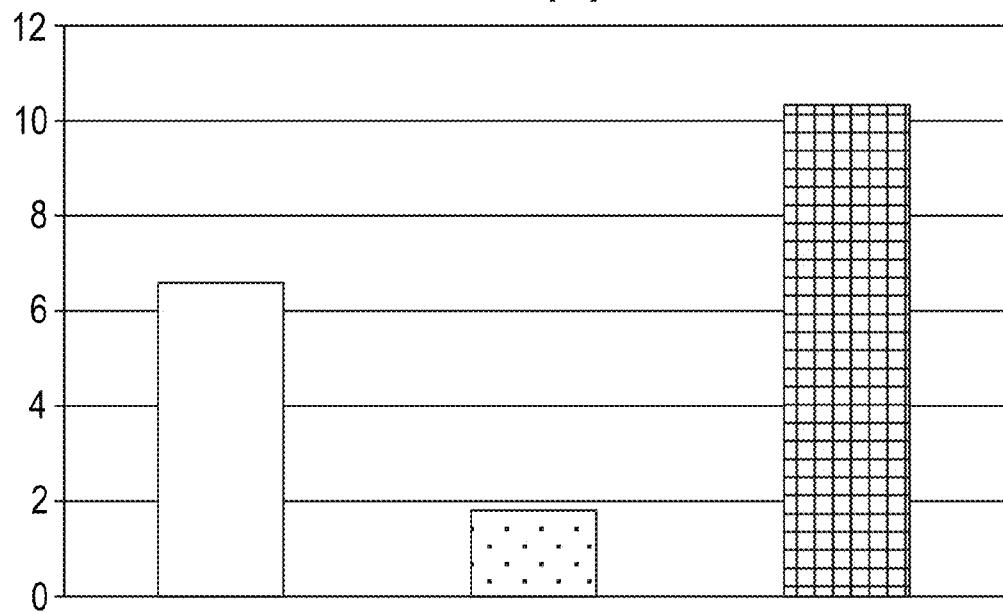

FIG. 7(A)

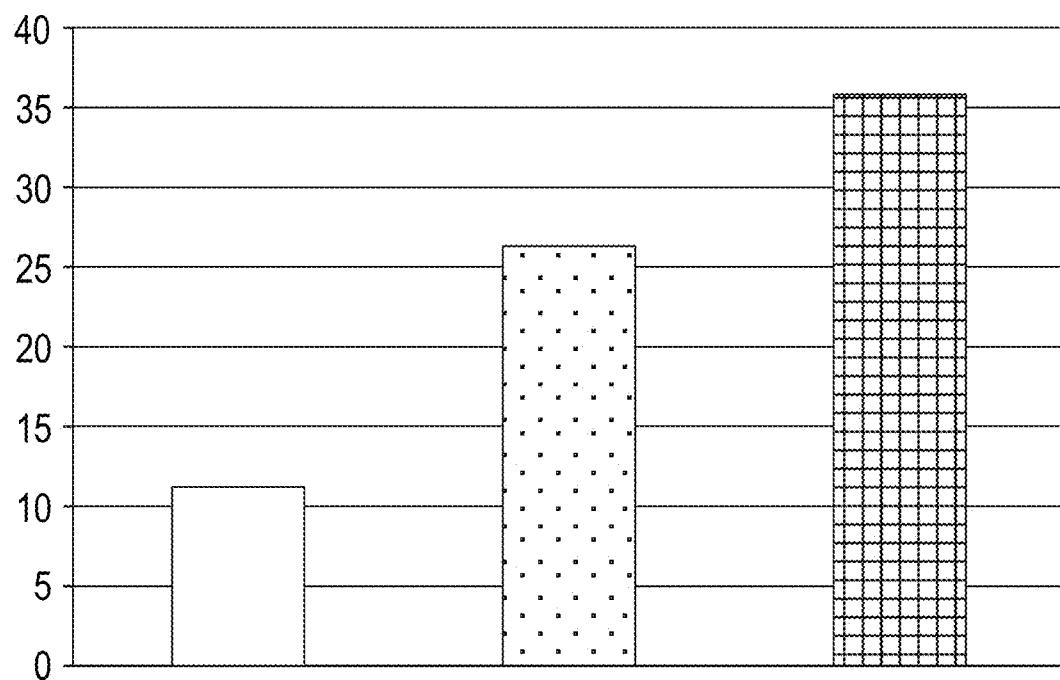

FIG. 7(B)


FIG. 7(C)


FIG. 8


FIG. 9(A)


FIG. 9(B)


FIG. 10(A)

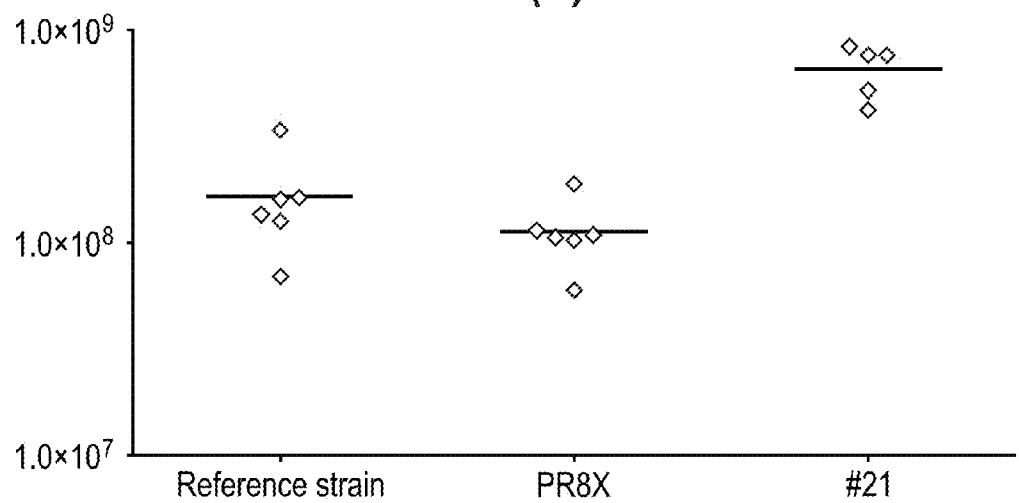

FIG. 10(B)

FIG. 11

FIG. 12(A)

FIG. 12(B)

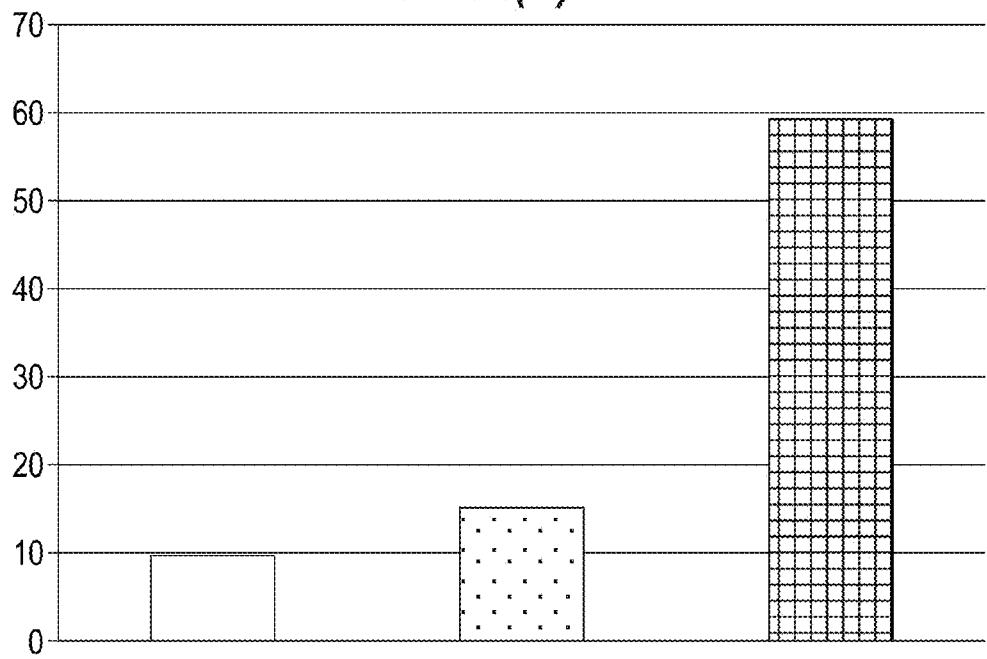


FIG. 13

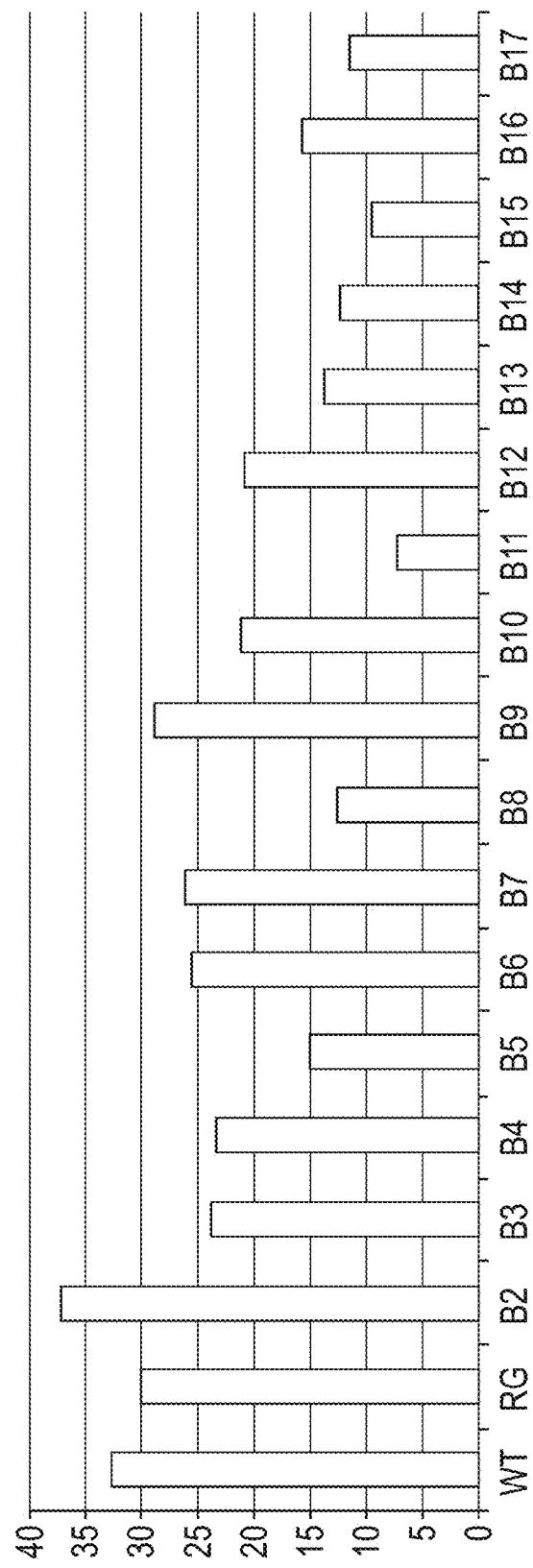
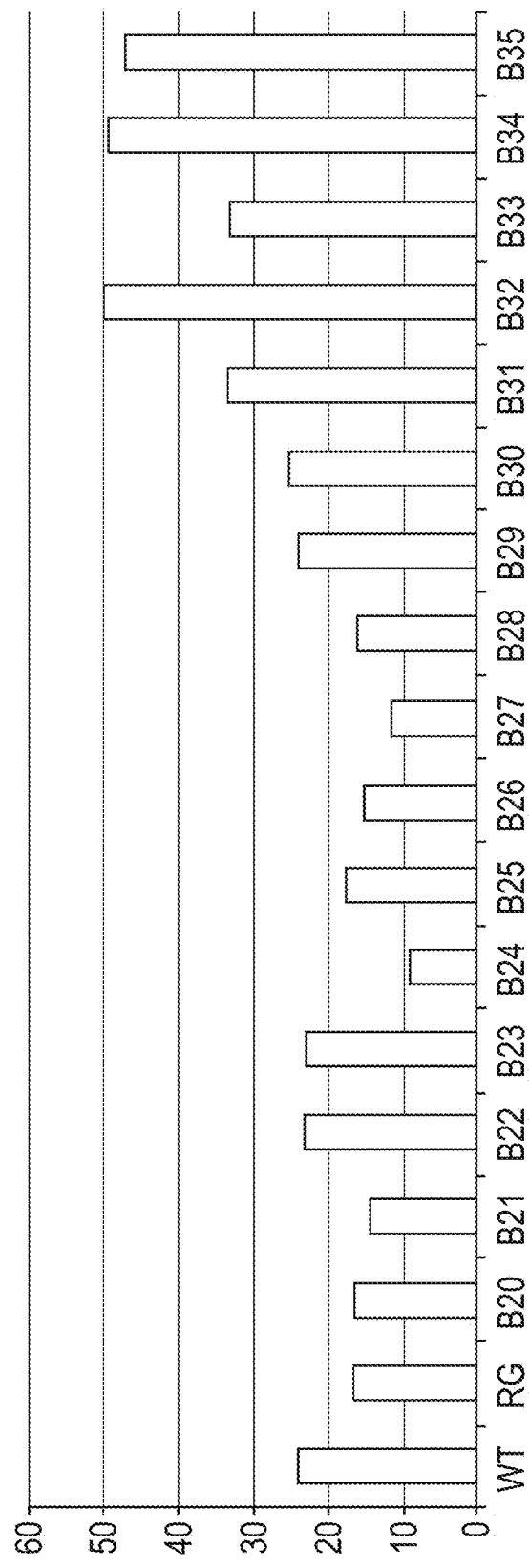



FIG. 14

INFLUENZA VIRUS REASSORTMENT

STATEMENT OF GOVERNMENT SUPPORT

[0001] This invention was supported in part with Government support under BARDA Contract No. HHSO10020100061C awarded by Office of Public Health Emergency Preparedness, Biomedical Advanced Research and Development Authority. The Government has certain rights in the invention.

[0002] The influenza virus sequence database used for UTR construction and the generation of a library of synthetic gene segments was funded in part by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services under Contract No. HHSN272200900007C.

TECHNICAL FIELD

[0003] This invention is in the field of influenza virus reassortment. Furthermore, it relates to manufacturing vaccines for protecting against influenza viruses.

BACKGROUND ART

[0004] The 2009 H1N1 influenza pandemic response was the fastest global vaccine development effort in history. Within six months of the pandemic declaration, vaccine companies had developed, produced, and distributed hundreds of millions of doses of licensed pandemic vaccines. Unfortunately, the response was not fast enough as substantial vaccine quantities were available only after the second pandemic wave had peaked. This delay was at least partially due to the late availability of a high-yielding influenza strain which could be used for vaccine production.

[0005] One way of obtaining a high-yielding influenza strain is to reassort the circulating vaccine strain with a faster-growing high-yield donor strain. This can be achieved by co-infecting a culture host with the circulating influenza strain and the high-yield donor strain and selecting for reassortant viruses which contain the hemagglutinin (HA) and neuraminidase (NA) segments from the vaccine strain and the other viral segments (i.e. those encoding PB1, PB2, PA, NP, M₁, M₂, NS₁ and NS₂) from the donor strain. Another approach is to reassort the influenza viruses by reverse genetics (see, for example references 1 and 2).

[0006] As the 2009 experience has shown, the traditional methods for reassorting influenza viruses may not be fast enough to provide sufficient amounts of influenza vaccine during a pandemic. In particular, valuable time is lost in preparing the high-yielding seed virus. There is therefore still a need in the art to provide methods which allow the rapid generation of high-yielding seed viruses in order to further decrease the time it takes between the emergence of an influenza pandemic and the provision of an influenza vaccine. The prior art had suggested solving this problem by preparing HA segments synthetically (see, for example, references 3, 4 and 5). The fastest reported time frame in which the influenza viruses can be prepared using these methods is nine days. Furthermore, these techniques rely on the use of 293T cells which have a high transfection efficacy but which are not approved for vaccine manufacture. There is therefore a need in the art to provide further and improved methods for preparing reassortant influenza viruses.

SUMMARY OF PREFERRED EMBODIMENTS

[0007] In some aspects, the invention provides methods which allow a faster preparation of influenza viruses. For example, the invention provides a method of preparing an influenza virus, comprising the steps of (a) preparing one or more expression construct(s) which comprise(s) coding sequences for expressing at least one segment of an influenza virus genome; (b) introducing into a cell which is not 293T one or more expression construct(s) which encode(s) the viral segments of an influenza virus, wherein at least one expression construct is the expression construct prepared in step (a); and (c) culturing the cell in order to produce a reassortant influenza virus from the expression construct(s) introduced in step (b); wherein steps (a) to (c) are performed in a time period of 124 hours or less. The cell is preferably a non-human cell or a human non-kidney cell.

[0008] Also provided is a method of preparing an influenza virus comprising the steps of (a) preparing one or more expression construct(s) which comprise(s) coding sequences for expressing at least one segment of an influenza virus genome; (b) introducing into a cell one or more expression construct(s) which encode(s) the viral segments of an influenza virus, wherein at least one expression construct is the expression construct prepared in step (a); and (c) culturing the cell in order to produce a reassortant influenza virus from the expression construct(s) introduced in step (b); wherein steps (a) to (c) are performed in a time period of 100 hours or less.

[0009] The invention also provides a method of preparing an influenza virus comprising the steps of (a) providing a synthetic expression construct which comprises coding sequences for expressing at least one segment of an influenza virus genome by (i) synthesising a plurality of overlapping fragments of the synthetic expression construct, wherein the overlapping fragments span the complete synthetic expression construct, and (ii) joining the fragments to provide the synthetic expression construct; (b) introducing into a cell which is not 293T one or more expression construct(s) which encode(s) the viral segments of an influenza virus, wherein at least one expression construct is the synthetic expression construct prepared in step (a); and (c) culturing the cell in order to produce a reassortant influenza virus from the viral segments introduced in step (b); wherein steps (a) to (c) are performed in a time period of 124 hours or less. The cell is preferably a non-human cell or a human non-kidney cell.

[0010] The methods may further comprise a step (d) contacting a cell which is of the same cell type as the cell used in step (c) with the virus produced in step (b) to produce further reassortant influenza virus.

[0011] The invention also provides a method of preparing an influenza virus, comprising the steps of (a) providing a synthetic expression construct which comprises coding sequences for expressing at least one segment of an influenza virus genome by (i) synthesising a plurality of overlapping fragments of the synthetic expression construct, wherein the overlapping fragments span the complete synthetic expression construct, and (ii) joining the fragments to provide the synthetic expression construct; (b) introducing into a cell one or more expression construct(s) which encode(s) the viral segments of an influenza virus, wherein at least one expression construct is the synthetic expression construct prepared in step (a); (c) culturing the cell in order to produce a reassortant influenza virus from the viral segments introduced in step (b); and (d) contacting a cell which is of the same cell type as the cell used in step (c) with the virus produced in step

(c) to produce further reassortant influenza virus; wherein steps (a) to (c) are performed in a time period of 124 hours or less. The cell used is preferably not 293T.

[0012] Further provided is a method of preparing an influenza vaccine, comprising the steps of (a) contacting a cell with the reassortant influenza virus prepared by a method according to the invention; (b) culturing the cell in order to produce an influenza virus; and (c) preparing a vaccine from the influenza virus produced in step (b). The cell used in the method is preferably a human non-kidney cell or a non-human cell. Alternatively, or in addition, the cell used in step (a) is of the same cell type as the cell which was used to rescue the influenza virus in the methods discussed in the preceding paragraphs. This is preferred because it facilitates regulatory approval, avoids conflicting culture conditions and avoids the need to retain two different cell types. The cell used is preferably not 293T as this cell is not approved for human vaccine manufacture.

[0013] The invention also provides a method of preparing a synthetic expression construct which encodes a viral segment from an influenza virus, comprising: (a) providing the sequence of at least part of the coding region of the HA or NA segment from an influenza virus; (b) identifying the HA and/or NA subtype of the influenza virus from which the coding region is derived; (c) providing a UTR sequence from an influenza virus with the same HA or NA subtype as the subtype identified in step (b); and (d) preparing a synthetic expression construct which encodes a viral segment comprising the coding sequence and the UTR.

The Synthetic Expression Construct

[0014] The synthetic expression construct is a DNA molecule which comprises coding sequences for expressing one or more viral RNA segment(s) of an influenza virus genome. The encoded segments can be expressed and then function as viral RNAs which can be packaged into virions to give recombinantly expressed virus. Thus the synthetic expression construct is suitable for producing an influenza virus by reverse genetics, either alone or in combination with other expression constructs.

[0015] The synthetic expression construct can be produced by (i) synthesising a plurality of overlapping fragments of the synthetic expression construct, wherein the overlapping fragments span the complete synthetic expression construct, and (ii) joining the fragments to provide the synthetic expression construct.

[0016] The method can involve notionally splitting the desired DNA sequence into fragments which can be prepared by a chosen DNA synthesis method e.g. by phosphoramidite chemistry. References 6 and 7 report that the entire 16,299 base pair mouse mitochondrial genome could be synthesized from 600 overlapping 60-base oligonucleotides. The method uses Phusion DNA polymerase (New England Biolabs [NEB]), T5 exonuclease (Epicentre) and Taq DNA ligase (NEB) to join multiple DNA fragments during a brief 50° C. reaction (6). The inventors have discovered that this method can be used to generate synthetic DNA copies of the influenza virus genome and that the resulting method is particularly advantageous because it is rapid and readily automated. Joining the fragments in step (ii) of the methods described above can thus comprise contacting the fragments with a DNA polymerase and a DNA ligase. The method can be practised with any DNA polymerase which can amplify DNA, including Phusion™ DNA polymerase and Taq DNA™ poly-

merase. Preferably, the methods use a high fidelity DNA polymerase, such as Phusion™ DNA polymerase, PFU™, AccuPrime™ Taq DNA Polymerase, AMPLITAQ™ GOLD DNA pol, T5 DNA polymerase, phi29 DNA polymerase, VENTR™ DNA pol, Deep Vent DNA pol. etc. This is preferred because it decreases the error rate of the resulting DNA molecule. Suitable DNA ligases are also known to the skilled person and include Taq™ DNA ligase, AMPLIGASE thermostable DNA ligase, and Tfi ligase. Reference 8 also discusses suitable ligases which can be used.

[0017] Suitable buffers and reaction conditions are described in references 6 and 7 and are also known to the skilled person. The methods can be performed at a temperature between 40° C. and 60° C., for example at a temperature between 45° C. and 55° C. or at a temperature of about 50° C. Preferably, the fragments are incubated with the DNA polymerase and the DNA ligase for a time period of between 15 and 60 minutes.

[0018] The synthetic expression constructs may be assembled from fragments with a size of about 30 nucleotides, at least 30 nucleotides, 40-60 nucleotides or at least 61 nucleotides. The fragments may also have a length of less than 40 nucleotides, less than 50 nucleotides, less than 60 nucleotides, less than 100 nucleotides, less than 200 nucleotides, less than 500 nucleotides, less than 1000 nucleotides, less than 5000 nucleotides, or less than 10000 nucleotides. Preferably, the synthetic expression constructs are assembled from fragments with a size of between 61 and 100 nucleotides, for example between 61 and 74 nucleotides. Such fragments are longer than the fragments used in the prior art. For example, references 6 and 7 used fragments with a length of 60 nucleotides. By using longer fragments, the inventors found that the speed for obtaining synthetic expression constructs was increased. This was unexpected as a skilled person would have expected longer fragments to be thermodynamically unfavourable and that it would be harder for overlaps to anneal to each other.

[0019] The fragments are synthesised and joined to give the synthetic expression constructs. This can be achieved by performing more than one joining (e.g. ligation) step. For example, some of the DNA fragments may be joined to give longer fragments, and these longer fragments can then be joined again, etc. until the complete synthetic expression construct is eventually prepared. Where the molecule is assembled step-wise in this fashion, the fragments at each stage may be maintained as inserts in vectors e.g. in plasmids or BAC or YAC vectors.

[0020] The synthetic expression construct may also be assembled using a single joining step (e.g. a single ligation step) and this is preferred because it allows for a faster assembly of the synthetic expression construct. In these embodiments, fragments which span the entire synthetic expression construct are treated with a joining agent (e.g. a DNA ligase) which assembles the whole synthetic expression construct in a single reaction.

[0021] The fragments can be designed to overlap, thereby facilitating the assembly in the correct order and this is preferred when the synthetic expression construct is assembled in a single joining step. It is preferred that the fragments overlap by at least 15 nucleotides, at least 20 nucleotides, at least 40 nucleotides or at least 60 nucleotides. This is preferred because the inventors have found that this increased overlap allowed rapid synthesis of the fragments with high accuracy. Thus the method may involve the synthesis of a

plurality of overlapping fragments of the desired synthetic expression construct, such that the overlapping fragments span the complete synthetic expression construct. Both ends of each fragment overlap with a neighbouring 5' or 3' fragment, except for the terminal fragments of a linear molecule where no overlap is required (but if a circular molecule is desired, the two terminal fragments may overlap). Assembly of fragments during the synthetic process can involve in vitro and/or in vivo recombination. For in vitro methods, digestion with a 3' exonuclease can be used to expose overhangs at the terminus of a fragment, and complementary overhangs in overlapping fragments can then be annealed, followed by joint repair ("chewback assembly"). For in vivo methods, overlapping clones can be assembled using e.g. the TAR cloning method disclosed in reference 9. For fragments <100 kbp (e.g. easily enough to encode all segments of an influenza virus genome) it is readily possible to rely solely on in vitro recombination methods.

[0022] Other synthetic methods may be used. For instance, reference 10 discloses a method in which fragments of about 5 kbp are synthesised and then assembled into longer sequences by conventional cloning methods. Unpurified 40 base synthetic oligonucleotides are built into 500-800 bp synthons by automated PCR-based gene synthesis, and these synthons joined into multisynthon ~5 kbp segments using a small number of endonucleases and "ligation by selection." These large segments can subsequently be assembled into longer sequences by conventional cloning. This method can readily provide a 32 kbp DNA molecule, which is easily enough to encode a complete influenza virus. Similarly, reference 11 discloses a method where a 32 kb molecule was assembled from seven DNA fragments which spanned the complete sequence. The ends of the seven DNAs were engineered with unique junctions, thereby permitting assembly only of adjacent fragments. The interconnecting restriction site junctions at the ends of each DNA are systematically removed after assembly.

[0023] Following the assembly of the synthetic expression construct, it is possible to amplify the whole or part of the synthetic expression construct. Methods for DNA amplification are known in the art and include, for example, polymerase chain reaction (PCR). Where only part of the synthetic expression construct is amplified it is preferred to amplify the part of the expression construct which encodes the one or more viral segments.

[0024] One drawback of the reference 6 method is that only 3% of the synthetic products have the correct sequence. In the prior art this problem was solved by cloning and sequencing subassemblies, and sets of error-free sequences were selected for subsequent rounds of assembly. Whilst this addresses the problem of errors in the resulting DNA molecule, the method is time-consuming and thus not suitable for use in a method which requires high speed and accuracy. The inventors have thus addressed the problem of error correction differently. In particular, they have discovered that the error rate can be decreased significantly by including an alternative error correction step. The invention thus provides a method of preparing a synthetic expression construct, comprising the steps of (i) synthesising a plurality of overlapping fragments of the synthetic expression construct, wherein the overlapping fragments span the complete synthetic expression construct, (ii) joining the fragments to provide a DNA molecule; (iii) melting the DNA molecule; (iv) re-annealing the DNA in the presence of an agent which excises mismatched nucleotides

from the DNA molecule; and (v) amplifying the DNA to produce the synthetic expression construct. By including this additional step, the inventors were able to obtain full-length sequences in which 80-100% had the correct sequence. The DNA in step (v) can be amplified using DNA polymerases, preferably high-fidelity DNA polymerases, as known in the art and described above.

[0025] Suitable conditions for melting (i.e. dissociating the DNA double helix into single strands) and re-annealing DNA are known in the art. For example, the DNA can be melted by heating it to a temperature of at least 90° C. Likewise, the DNA can be re-annealed by reducing the temperature. The agent used to excise mismatched nucleotides is usually an enzyme such as, for example, the Res 1 enzyme (which is available in the ErrASE™ error correction kit (Novic Biotech)), Cel I, T7 endonuclease I, S1 nuclease, T7 endonuclease, *E. coli* endo. V, Mung Bean endo., etc.

[0026] A synthetic expression construct may include one or more "watermark" sequences. These are sequences which can be used to identify or encode information in the DNA. It can be in either noncoding or coding sequences. Most commonly, it encodes information within coding sequences without altering the amino acid sequences. For DNAs encoding segmented RNA viral genomes, any watermark sequences are ideally included in intergenic sites because synonymous codon changes may have substantial biological effects for encoded RNA segments.

[0027] The synthetic expression construct may be linear (14) or circular. Circular synthetic expression constructs can be made by circularising linear constructs and vice versa. Methods for such circularisation are described in ref. 14. Linearisation of a circular molecule can be achieved in various easy ways e.g. by utilising one or more restriction enzyme (s), or by amplification from a template (including a circular template) using a nucleic acid amplification technique (e.g. by PCR).

[0028] Where the synthetic expression construct is circular, it is possible to contact the DNA following step (ii) with an agent (for example an enzyme) that degrades linear DNA. This has the advantage that linear synthetic expression constructs are selectively removed, thus selecting for the circular product. Suitable agents are known in the art and include, for example, T5 exonuclease, lambda exonuclease, and exonuclease III.

[0029] The synthetic expression construct may be incorporated into a vector, such as a plasmid or other episomal construct, using conventional techniques known in the art. The 3' and/or 5' terminal fragment of the synthetic expression construct may comprise an overhang which is complementary to an overhang on the vector, which facilitates the cloning of the synthetic expression construct (such that, for example, the synthetic expression construct may be cloned into an overhang created by a restriction enzyme). The vector may provide the regulatory sequences which are necessary to express the viral RNA segments from the DNA construct (e.g. RNA pol I promoter, RNA pol II promoter; RNA polymerase I transcription termination sequence, RNA polymerase II transcription termination sequence etc.). This can be advantageous because these sequences do then not need to be included in the synthetic expression construct. It is also possible to clone a synthetic expression construct without regulatory sequences into a vector that provides these sequences and subsequently amplifying a linear synthetic expression construct which comprises the original synthetic expression

construct in conjunction with the regulatory sequences so that the resulting synthetic expression construct can then be used to express the viral segments.

Expression Constructs

[0030] The invention produces influenza viruses through reverse genetics techniques. In these techniques, the viruses may be produced in culture hosts using a synthetic expression construct which comprises coding sequences for expressing at least one segment of an influenza virus genome, as described in the preceding sections. The synthetic expression construct can drive expression in a eukaryotic cell of viral segments encoded therein. The expressed viral segment RNA can be translated into a viral protein that can be incorporated into a virion.

[0031] The term "synthetic expression construct" refers to an expression construct which has been prepared synthetically as described in the preceding sections, or which is derived from an expression construct prepared in this manner (for example by DNA amplification). It also encompasses vectors which comprise such an expression construct. The term "expression construct" encompasses both synthetic expression construct as well as expression constructs which were not prepared synthetically.

[0032] The synthetic expression construct may encode all the viral segments which are necessary to produce an influenza virus. Alternatively, it may encode one, two, three, four, five, six, or seven viral segments. Where the synthetic expression construct does not encode all the viral segments which are necessary to produce an influenza virus, the remaining viral segments are provided by one or more further expression construct(s). These one or more further expression constructs may also be synthetic expression constructs or they may be expression constructs which have been generated using alternative methods such as, for example, the methods described in reference 12.

[0033] Where the synthetic expression construct does not encode all the viral segments which are necessary to produce an influenza virus, the synthetic expression construct may encode the neuraminidase (NA) and/or hemagglutinin (HA) segments and the remaining vRNA encoding segments, excluding the HA and/or NA segment(s), are included on a different expression construct. This has the advantage that only the expression construct comprising the HA and/or NA segments needs to be replaced when a new influenza vaccine strain emerges (e.g. a new pandemic influenza virus or a new seasonal influenza virus).

[0034] The expression constructs may be uni-directional or bi-directional expression constructs. Where a host cell expresses more than one transgene (whether on the same or different expression constructs) it is possible to use uni-directional and/or bi-directional expression.

[0035] Bi-directional expression constructs contain at least two promoters which drive expression in different directions (i.e. both 5' to 3' and 3' to 5') from the same construct. The two promoters can be operably linked to different strands of the same double stranded DNA. Preferably, one of the promoters is a pol I promoter and at least one of the other promoters is a pol II promoter. This is useful as the pol I promoter can be used to express uncapped vRNAs while the pol II promoter can be used to transcribe mRNAs which can subsequently be translated into proteins, thus allowing simultaneous expression of RNA and protein from the same construct.

[0036] The pol I and pol II promoters used in the expression constructs may be endogenous to an organism from the same taxonomic order from which the host cell is derived. Alternatively, the promoters can be derived from an organism in a different taxonomic order than the host cell. The term "order" refers to conventional taxonomic ranking, and examples of orders are primates, rodentia, carnivora, marsupialia, cetacean, etc. Humans and chimpanzees are in the same taxonomic order (primates), but humans and dogs are in different orders (primates vs. carnivora). For example, the human pol I promoter can be used to express viral segments in canine cells (e.g. MDCK cells) [13]. Where more than one expression construct is used within an expression system, the promoters may be a mixture of endogenous and non-endogenous promoters.

[0037] The expression construct will typically include an RNA transcription termination sequence. The termination sequence may be an endogenous termination sequence or a termination sequence which is not endogenous to the host cell. Suitable termination sequences will be evident to those of skill in the art and include, but are not limited to, RNA polymerase I transcription termination sequence, RNA polymerase II transcription termination sequence, and ribozymes. Furthermore, the expression constructs may contain one or more polyadenylation signals for mRNAs, particularly at the end of a gene whose expression is controlled by a pol II promoter.

[0038] An expression construct may be a vector, such as a plasmid or other episomal construct. Such vectors will typically comprise at least one bacterial and/or eukaryotic origin of replication. Furthermore, the vector may comprise a selectable marker which allows for selection in prokaryotic and/or eukaryotic cells. Examples of such selectable markers are genes conferring resistance to antibiotics, such as ampicillin or kanamycin. The vector may further comprise one or more multiple cloning sites to facilitate cloning of a DNA sequence.

[0039] As an alternative, an expression construct may be a linear expression construct. Such linear expression constructs will typically not contain any amplification and/or selection sequences. However, linear constructs comprising such amplification and/or selection sequences are also within the scope of the present invention. An example of a method using such linear expression constructs for the expression of influenza virus is described in reference 14.

[0040] Where the expression construct is a linear expression construct, it is possible to linearise it before introduction into the host cell utilising a single restriction enzyme site. Alternatively, it is possible to excise the expression construct from a vector using at least two restriction enzyme sites. Furthermore, it is also possible to obtain a linear expression construct by amplifying it using a nucleic acid amplification technique (e.g. by PCR).

[0041] Where the expression construct is not a synthetic expression construct, it may be generated using methods known in the art. Such methods were described, for example, in reference 15.

[0042] The expression constructs of the invention can be introduced into host cells using any technique known to those of skill in the art. For example, expression constructs of the invention can be introduced into host cells by employing electroporation, DEAE-dextran, calcium phosphate precipitation, liposomes, microinjection, or microparticle-bombard-

ment. Once transfected, the host cell will recognise genetic elements in the construct and will begin to express the encoded viral RNA segments.

[0043] The expression construct(s) can be introduced into the same cell type which is subsequently used for the propagation of the influenza viruses. Alternatively, the cells into which the expression constructs are introduced and the cells used for propagation of the influenza viruses may be different. In some embodiments, cells may be added following the introduction of the expression construct(s) into the cell, as described in reference 16. This is particularly preferred because it increases the rescue efficiency of the viruses further and can thus help to reduce the time required for viral rescue. The cells which are added may be of the same or a different cell type as the cell into which the expression construct(s) is/are introduced, but it is preferred to use cells of the same cell type as this facilitates regulatory approval and avoids conflicting culture conditions.

[0044] Where the expression host is a canine cell, such as a MDCK cell line, protein-coding regions may be optimised for canine expression e.g. using a promoter from a wild-type canine gene or from a canine virus, and/or having codon usage more suitable for canine cells than for human cells. For instance, whereas human genes slightly favour UUC as the codon for Phe (54%), in canine cells the preference is stronger (59%). Similarly, whereas there is no majority preference for Ile codons in human cells, 53% of canine codons use AUC for Ile. Canine viruses, such as canine parvovirus (a ssDNA virus) can also provide guidance for codon optimisation e.g. 95% of Phe codons in canine parvovirus sequences are UUU (vs. 41% in the canine genome), 68% of Ile codons are AUU (vs. 32%), 46% of Val codons are GUU (vs. 14%), 72% of Pro codons are CCA (vs. 25%), 87% of Tyr codons are UAU (vs. 40%), 87% of His codons are CAU (vs. 39%), 92% of Gln codons are CAA (vs. 25%), 81% of Glu codons are GAA (vs. 40%), 94% of Cys codons are UGU (vs. 42%), only 1% of Ser codons are UCU (vs. 24%), CCC is never used for Phe and UAG is never used as a stop codon. Thus protein-coding genes can be made more like genes which nature has already optimised for expression in canine cells, thereby facilitating expression.

Reverse Genetics

[0045] Reverse genetics for influenza viruses can be practised with 12 expression constructs to express the four proteins required to initiate replication and transcription (PB1, PB2, PA and NP) and all eight viral genome segments. To reduce the number of expression constructs, however, a plurality of RNA polymerase I transcription cassettes (for viral RNA synthesis) can be included on a single expression construct (e.g. sequences encoding 1, 2, 3, 4, 5, 6, 7 or all 8 influenza vRNA segments), and a plurality of protein-coding regions with RNA polymerase II promoters on another expression construct (e.g. sequences encoding 1, 2, 3, 4, 5, 6, 7 or 8 influenza mRNA transcripts) [17]. It is also possible to include one or more influenza vRNA segments under control of a pol I promoter and one or more influenza protein coding regions under control of another promoter, in particular a pol II promoter, on the same expression construct. This is preferably done by using bi-directional expression constructs.

[0046] Known reverse genetics systems involve expressing viral RNA (vRNA) molecules from pol I promoters, bacterial RNA polymerase promoters, bacteriophage polymerase promoters, etc. As influenza viruses require the presence of viral

polymerase to initiate the life cycle, systems may also provide these proteins e.g. the system further comprises expression constructs that encode viral polymerase proteins such that expression of both types of DNA leads to assembly of a complete infectious virus. It is also possible to supply the viral polymerase as a protein.

[0047] Where reverse genetics is used for the expression of influenza vRNA, it will be evident to the person skilled in the art that precise spacing of the sequence elements with reference to each other is important for the polymerase to initiate replication. It is therefore important that the sequence encoding the viral RNA is positioned correctly between the pol I promoter and the termination sequence, but this positioning is well within the capabilities of those who work with reverse genetics systems.

[0048] In order to produce a recombinant virus, a cell must express all segments of the viral genome which are necessary to assemble a virion. The expression constructs preferably provide all of the viral RNA and proteins, but it is also possible to use a helper virus to provide some of the RNA and proteins, although systems which do not use a helper virus are preferred.

[0049] In some embodiments an expression construct will also be included which leads to expression of an accessory protein in the host cell. For instance, it can be advantageous to express a non-viral serine protease (e.g. trypsin) as part of a reverse genetics system.

Viral Segments

[0050] The synthetic expression construct encodes one or more viral segments. During the early days of an influenza pandemic it is not unusual to have sequences of the circulating strains available which include only the complete coding region but incomplete untranslated regions (UTRs). Awaiting the complete segment sequence (including the coding region and the UTRs) before commencing production of viruses costs time and delays the provision of the vaccines. The inventors have provided an improved method for preparing a synthetic expression construct encoding a viral segment, which method reduces the time required to obtain the viral segment. The method comprises the steps of: (a) providing the sequence of at least part of the coding region of the HA or NA segment from an influenza virus; (b) identifying the HA and/or NA subtype of the virus from which the coding region is derived; (c) providing a UTR sequence from an influenza virus with the same HA or NA subtype as the subtype identified in step (b); and (d) preparing a synthetic expression construct which encodes a viral segment comprising the coding sequence and the UTR.

[0051] The sequence of the coding region of the viral segment can be provided by sequencing the circulating strain. The sequence may also be obtained from other sources such as, for example, a health care authority. Preferably, the whole coding region is used in the method as this will facilitate the determination of the HA or NA subtype of the virus from which the coding region is derived. It is also possible to use at least part of the coding region provided the coding region is complete enough to allow the determination of the HA or NA subtype. This will generally be the case where a fragment covering at least 90%, at least 95%, or at least 99% of the full-length coding region is available. The viral segment used in the analysis is preferably the HA or NA segment.

[0052] The HA and/or NA subtype of the virus from which the coding sequence is derived can be determined using stan-

dard methods in the art. For example, the sequence of the coding region can be aligned to the sequences of coding regions from viruses with known HA and/or NA subtypes. The coding regions which are aligned need, of course, be the coding region of the same viral segment (e.g. the HA or NA segment). Influenza viral segments from viruses with the same HA and/or NA subtype will show the highest sequence identity between the sequences. Suitable programs for performing the analysis are known in the art and include BLAST™.

[0053] In order to provide a suitable UTR for the viral segment, the UTR of the viral strain which showed the highest sequence identity in step (a) can be used. Alternatively, the UTR can be identified by determining the consensus sequences of UTRs from viral strains with the same HA or NA subtype. This can be achieved by aligning two or more influenza strains with the same HA or NA subtype and determining the conserved residues in the UTRs. For example, the consensus sequence may be determined by aligning the UTRs from 2, 5, 10, 15, 20, 30 or more influenza strains with the same HA or NA subtype. The consensus UTR sequence can then be used to prepare the complete DNA molecule. Suitable programs for aligning multiple sequences are known in the art and include ClustalW2™.

[0054] Where the DNA molecules are prepared using a consensus UTR sequence, it is not necessary to determine this consensus sequence every time. Instead, the analysis can be performed for influenza virus strains with various HA and NA subtypes and the resulting UTRs for each HA and NA subtype can be kept in a database. Once the HA or NA subtype of the circulating strain has been determined it is then necessary only to choose the UTR of an influenza strain with the same HA or NA subtype from the database.

[0055] The DNA molecule comprising the coding sequence and the identified UTRs can be prepared by any of the methods described herein.

The Culture Host

[0056] The influenza viruses are typically produced using a cell line, although primary cells may be used as an alternative. The cell will typically be mammalian, although avian or insect cells can also be used. Suitable mammalian cells include, but are not limited to, human, hamster, cattle, primate and dog cells. In some embodiments, the cell is a human non-kidney cell or a non-human cell. Various cells may be used, such as kidney cells, fibroblasts, retinal cells, lung cells, etc. Examples of suitable hamster cells are the cell lines having the names BHK21 or HKCC. Suitable monkey cells are e.g. African green monkey cells, such as kidney cells as in the Vero cell line [18-20]. Suitable dog cells are e.g. kidney cells, as in the CLDK and MDCK cell lines. Suitable avian cells include the EBx cell line derived from chicken embryonic stem cells, EB45, EB14, and EB14-074 [21].

[0057] Further suitable cells include, but are not limited to: CHO; MRC 5; PER.C6 [22]; FRhL2; WI-38; etc. Suitable cells are widely available e.g. from the American Type Cell Culture (ATCC) collection [23], from the Coriell Cell Repositories [24], or from the European Collection of Cell Cultures (ECACC). For example, the ATCC supplies various different Vero cells under catalogue numbers CCL 81, CCL 81.2, CRL 1586 and CRL-1587, and it supplies MDCK cells under catalogue number CCL 34. PER.C6 is available from the ECACC under deposit number 96022940.

[0058] Preferred cells for use in the invention are MDCK cells [25-27], derived from Madin Darby canine kidney. The original MDCK cells are available from the ATCC as CCL 34. It is preferred that derivatives of these or other MDCK cells are used. Such derivatives were described, for instance, in reference 25 which discloses MDCK cells that were adapted for growth in suspension culture ('MDCK 33016' or '33016-PF', deposited as DSM ACC 2219). Furthermore, reference 28 discloses MDCK-derived cells that grow in suspension in serum free culture ('B-702', deposited as FERM BP-7449). In some embodiments, the MDCK cell line used may be tumorigenic, but it is also envisioned to use non-tumorigenic MDCK cells. For example, reference 29 discloses non-tumorigenic MDCK cells, including 'MDCK-S' (ATCC PTA-6500), 'MDCK-SF101' (ATCC PTA-6501), 'MDCK-SF102' (ATCC PTA-6502) and 'MDCK-SF103' (ATCC PTA-6503). Reference 30 discloses MDCK cells with high susceptibility to infection, including 'MDCK.5F1' cells (ATCC CRL 12042).

[0059] It is possible to use a mixture of more than one cell type in the methods of the invention, but it is preferred to use a single cell type e.g. using monoclonal cells.

[0060] The cells used in the methods of the invention are preferably cells which are suitable for producing an influenza vaccine that can be used for administration to humans. Such cells must be derived from a cell bank system which is approved for vaccine manufacture and registered with a national control authority, and must be within the maximum number of passages permitted for vaccine production (see reference 31 for a summary). Examples of suitable cells which have been approved for vaccine manufacture include MDCK cells (like MDCK 33016; see reference 25), CHO cells, Vero cells, and PER.C6 cells. The methods of the invention preferably do not use 293T cells as these cells are not approved for vaccine manufacture.

[0061] Preferably, the cells used for preparing the virus and for preparing the vaccine are of the same cell type. For example, the cells may both be MDCK, Vero or PerC6 cells. This is preferred because it facilitates regulatory approval as approval needs to be obtained only for a single cell line. It also has the further advantage that competing culture selection pressures or different cell culture conditions can be avoided. The methods of the invention may also use the same cell line throughout, for example MDCK 33016.

[0062] The influenza viruses prepared according to the methods of the invention may subsequently be propagated in eggs. The current standard method for influenza virus growth for vaccines uses embryonated SPF hen eggs, with virus being purified from the egg contents (allantoic fluid). It is also possible to passage a virus through eggs and subsequently propagate it in cell culture and vice versa.

[0063] Preferably, the cells are cultured in the absence of serum, to avoid a common source of contaminants. Various serum-free media for eukaryotic cell culture are known to the person skilled in the art e.g. Iscove's medium, ultra CHO medium (BioWhittaker), EX-CELL (JRH Biosciences). Furthermore, protein-free media may be used e.g. PF-CHO (JRH Biosciences). Otherwise, the cells for replication can also be cultured in the customary serum-containing media (e.g. MEM or DMEM medium with 0.5% to 10% of fetal calf serum).

[0064] The cells may be in adherent culture or in suspension.

Reassortant Viruses

[0065] The reassortant influenza strains produced by the methods of the invention contain viral segments from a vaccine strain and one or more donor strain(s). The vaccine strain is the influenza strain which provides the HA segment of the reassortant influenza strain. The vaccine strain can be any strain and can vary from season to season.

[0066] A donor strain is an influenza strain which provides one or more of the backbone segments (i.e. those encoding PB1, PB2, PA, NP, M₁, M₂, NS₁ and NS₂) of the influenza strain. The NA segment may also be provided by a donor strain or it may be provided by the vaccine strain. The reassortant influenza strains of the invention may also comprise one or more, but not all, of the backbone segments from the vaccine strain. As the reassortant influenza virus contains a total of eight segments, it will therefore contain x (wherein x is from 1-7) viral segments from the vaccine strain and 8-x viral segments from the one or more donor strain(s).

[0067] The reassortant influenza virus strains may grow to higher or similar viral titres in cell culture and/or in eggs in the same time (for example 12 hours, 24 hours, 48 hours or 72 hours) and under the same growth conditions compared to the wild-type vaccine strain. In particular, they can grow to higher or similar viral titres in MDCK cells (such as MDCK 33016) in the same time and under the same growth conditions compared to the wild-type vaccine strain. The viral titre can be determined by standard methods known to those of skill in the art. Usefully, the reassortant viruses of the invention may achieve a viral titre which is at least 5% higher, at least 10% higher, at least 20% higher, at least 50% higher, at least 100% higher, at least 200% higher, or at least 500% higher than the viral titre of the wild-type vaccine strain in the same time frame and under the same conditions. The reassortant influenza viruses may also grow to similar viral titres in the same time and under the same growth conditions compared to the wild-type vaccine strain. A similar titre in this context means that the reassortant influenza viruses grow to a titre which is within 3% of the viral titre achieved with the wild-type vaccine strain in the same time and under the same growth conditions (i.e. wild-type titre±3%).

[0068] The reassortant viruses of the invention can contain the backbone segments from two or more donor strains, or at least one (i.e. one, two, three, four, five or six) backbone viral segment from a donor strain as described herein. The backbone viral segments are those which do not encode HA or NA. Thus, backbone segments will typically encode the PB1, PB2, PA, NP, M₁, M₂, NS₁ and NS₂ polypeptides of the influenza virus.

[0069] When the reassortant viruses of the invention are reassortants comprising the backbone segments from a single donor strain, the reassortant viruses will generally include segments from the donor strain and the vaccine strain in a ratio of 1:7, 2:6, 3:5, 4:4, 5:3, 6:2 or 7:1. Having a majority of segments from the donor strain, in particular a ratio of 6:2, is typical. When the reassortant viruses comprise backbone segments from two donor strains, the reassortant virus will generally include segments from the first donor strain, the second donor strain and the vaccine strain in a ratio of 1:1:6, 1:2:5, 1:3:4, 1:4:3, 1:5:2, 1:6:1, 2:1:5, 2:2:4, 2:3:3, 2:4:2, 2:5:1, 3:1:2, 3:2:1, 4:1:3, 4:2:2, 4:3:1, 5:1:2, 5:2:1 or 6:1:1.

The reassortant influenza viruses may also comprise viral segments from more than two, for example from three, four, five or six donor strains.

[0070] Where the reassortant influenza virus comprises backbone segments from two or three donor strains, each donor strain may provide more than one of the backbone segments of the reassortant influenza virus, but one or two of the donor strains can also provide only a single backbone segment.

[0071] Where the reassortant influenza virus comprises backbone segments from two, three, four or five donor strains, one or two of the donor strains may provide more than one of the backbone segments of the reassortant influenza virus. In general the reassortant influenza virus cannot comprise more than six backbone segments. Accordingly, for example, if one of the donor strains provides five of the viral segments, the reassortant influenza virus can only comprise backbone segments from a total of two different donor strains.

[0072] In general a reassortant influenza virus will contain only one of each backbone segment. For example, when the influenza virus comprises the NP segment from B/Brisbane/60/08 it will not at the same time comprise the NP segment from another influenza strain.

[0073] Strains which can be used as vaccine strains include strains which are resistant to antiviral therapy (e.g. resistant to oseltamivir [32] and/or zanamivir), including resistant pandemic strains [33].

[0074] The reassortant influenza strains produced by the methods of the invention may comprise segments from a vaccine strain which is an inter-pandemic (seasonal) influenza vaccine strain. It may also comprise segments from a vaccine strain which is a pandemic strain or a potentially pandemic strain. The characteristics of an influenza strain that give it the potential to cause a pandemic outbreak are: (a) it contains a new hemagglutinin compared to the hemagglutinins in currently-circulating human strains, i.e. one that has not been evident in the human population for over a decade (e.g. H2), or has not previously been seen at all in the human population (e.g. H5, H6 or H9, that have generally been found only in bird populations), such that the human population will be immunologically naïve to the strain's hemagglutinin; (b) it is capable of being transmitted horizontally in the human population; and (c) it is pathogenic to humans. A vaccine strain with H5 hemagglutinin type is preferred where the reassortant virus is used in vaccines for immunizing against pandemic influenza, such as a H5N1 strain. Other possible strains include H5N3, H9N2, H2N2, H7N1 and H7N7, and any other emerging potentially pandemic strains. The invention is particularly suitable for producing reassortant viruses for use in vaccine for protecting against potential pandemic virus strains that can or have spread from a non-human animal population to humans, for example a swine-origin H1N1 influenza strain.

[0075] The methods of the invention can be used to prepare reassortant influenza A strains and reassortant influenza B strains.

Reassortant Influenza A Viruses

[0076] Where the methods are used to prepare reassortant influenza A strains, the strains may contain the influenza A virus HA subtypes H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16 or H17. They may contain the influenza A virus NA subtypes N1, N2, N3, N4, N5, N6, N7, N8 or N9. Where the vaccine strain is a seasonal influenza

strain, it may have a H1 or H3 subtype. In one aspect of the invention the vaccine strain is a H1N1 or H3N2 strain.

[0077] The reassortant influenza A viruses preferably comprise at least one backbone viral segment from the donor strain PR8-X. Thus, the influenza viruses of the invention may comprise one or more genome segments selected from: a PA segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 9, a PB1 segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 10, a PB2 segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 11, a M segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 13, a NP segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 12, and/or a NS segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 14. The reassortant influenza A virus may comprise all of these backbone segments.

[0078] Alternatively, or in addition, the reassortant influenza A virus may comprise one or more backbone viral segments from the 105p30 strain. Thus, where the reassortant influenza A virus comprises one or more genome segments from the 105p30 strain, the viral segments may have sequences selected from: a PA segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 42, a PB1 segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 43, a PB2 segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 44, a M segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 46, a NP segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 45, and/or a NS segment having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NO: 47. The reassortant influenza A virus may comprise all of these backbone segments.

[0079] The reassortant influenza viruses may comprise backbone segments from two or more influenza donor strains. The inventors have found that such reassortant influenza A viruses grow particularly well in culture hosts. For example, the inventors have found that a reassortant influenza A virus comprising the NP, PB1 and PB2 segments from 105p30 and the M, NS and PA segments from PR8-X provided a higher rescue efficiency and grew faster compared to reassortant influenza A viruses which comprise all backbone segments from PR8-X. Likewise, a reassortant influenza A strain comprising the PB1 segment from A/California/4/09 and the other backbone segments from PR8-X often had greater rescue efficiencies and HA yields than reassortant influenza A viruses which comprise all backbone segments from PR8-X. Such reassortant influenza A viruses are particularly suitable for use in the methods of the invention because the increased rescue efficiency increases the speed further by which seed viruses for vaccine manufacture can be obtained.

[0080] Reassortant influenza A viruses with backbone segments from two or more influenza donor strains may com-

prise the HA segment and the PB1 segment from different influenza A strains. In these reassortant influenza viruses the PB1 segment may be from donor viruses with the same influenza virus HA subtype as the vaccine strain. For example, the PB1 segment and the HA segment may both be from influenza viruses with a H1 subtype. The reassortant influenza A viruses may also comprise the HA segment and the PB1 segment from different influenza A strains with different influenza virus HA subtypes, wherein the PB1 segment is not from an influenza virus with a H3 HA subtype and/or wherein the HA segment is not from an influenza virus with a H1 or H5 HA subtype. For example, the PB1 segment may be from a H1 virus and/or the HA segment may be from a H3 influenza virus. Where the reassortants contain viral segments from more than one influenza donor strain, the further donor strain (s) can be any donor strain. For example, some of the viral segments may be derived from the A/Puerto Rico/8/34 or A/Ann Arbor/6/60 influenza strains. Reassortants containing viral segments from the A/Ann Arbor/6/60 strain may be advantageous, for example, where the reassortant virus is to be used in a live attenuated influenza vaccine.

[0081] The reassortant influenza A virus may also comprise backbone segments from two or more influenza donor strains, wherein the PB1 segment is from the A/California/07/09 influenza strain. This segment may have at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, at least 99% identity or 100% identity with the sequence of SEQ ID NO: 24. The reassortant influenza A virus may have the H1 HA subtype. It will be understood that a reassortant influenza virus according to this aspect of the invention will not comprise the HA and/or NA segments from A/California/07/09.

[0082] The reassortant influenza strains may comprise the HA segment and/or the NA segment from an A/California/4/09 strain. Thus, for instance, the HA gene segment may encode a H1 hemagglutinin which is more closely related to SEQ ID NO: 70 than to SEQ ID NO: 50 (i.e. has a higher degree sequence identity when compared to SEQ ID NO: 70 than to SEQ ID NO: 50 using the same algorithm and parameters). SEQ ID NOs: 70 and 50 are 80% identical. Similarly, the NA gene may encode a N1 neuraminidase which is more closely related to SEQ ID NO: 99 than to SEQ ID NO: 51. SEQ ID NOs: 99 and 51 are 82% identical.

[0083] The reassortant influenza A virus may also comprise at least one backbone viral segment from the A/California/07/09 influenza strain. When the at least one backbone viral segment is the PA segment it may have a sequence having at least 95%, at least 96%, at least 97% or at least 99% identity with the sequence of SEQ ID NO: 23. When the at least one backbone viral segment is the PB1 segment, it may have a sequence having at least 95%, at least 96%, at least 97% or at least 99% identity with the sequence of SEQ ID NO: 24. When the at least one backbone viral segment is the PB2 segment, it may have a sequence having at least 95%, at least 96%, at least 97% or at least 99% identity with the sequence of SEQ ID NO: 25. When the at least one backbone viral segment is the NP segment it may have a sequence having at least 95%, at least 96%, at least 97% or at least 99% identity with the sequence of SEQ ID NO: 26. When the at least one backbone viral segment is the M segment it may have a sequence having at least 95%, at least 96%, at least 97% or at least 99% identity with the sequence of SEQ ID NO: 27. When the at least one backbone viral segment is the NS

segment it may have a sequence having at least 95%, at least 96%, at least 97% or at least 99% identity with the sequence of SEQ ID NO: 28.

[0084] Where a reassortant influenza A virus comprises the PB1 segment from A/Texas/1/77, it preferably does not comprise the PA, NP or M segment from A/Puerto Rico/8/34. Where a reassortant influenza A virus comprises the PA, NP or M segment from A/Puerto Rico/8/34, it preferably does not comprise the PB1 segment from A/Texas/1/77. In some embodiments, the invention does not encompass reassortant influenza A viruses which have the PB1 segment from A/Texas/1/77 and the PA, NP and M segments from A/Puerto Rico/8/34. The PB1 protein from A/Texas/1/77 may have the sequence of SEQ ID NO: 29 and the PA, NP or M proteins from A/Puerto Rico/8/34 may have the sequence of SEQ ID NOs 30, 31 or 32, respectively.

[0085] The backbone viral segments may be optimized for culture in the specific culture host. For example, where the reassortant influenza viruses are cultured in mammalian cells, it is advantageous to adapt at least one of the viral segments for optimal growth in the culture host. For example, where the expression host is a canine cell, such as a MDCK cell line, the viral segments may have a sequence which optimises viral growth in the cell. Thus, the reassortant influenza viruses of the invention may comprise a PB2 genome segment which has lysine in the position corresponding to amino acid 389 of SEQ ID NO: 3 when aligned to SEQ ID NO: 3 using a pairwise alignment algorithm, and/or asparagine in the position corresponding to amino acid 559 of SEQ ID NO: 3 when aligned to SEQ ID NO: 3 using a pairwise alignment algorithm. Also provided are reassortant influenza viruses in accordance with the invention in which the PA genome segment has lysine in the position corresponding to amino acid 327 of SEQ ID NO: 1 when aligned to SEQ ID NO: 1 using a pairwise alignment algorithm, and/or aspartic acid in the position corresponding to amino acid 444 of SEQ ID NO: 1 when aligned to SEQ ID NO: 1, using a pairwise alignment algorithm, and/or aspartic acid in the position corresponding to amino acid 675 of SEQ ID NO: 1 when aligned to SEQ ID NO: 1, using a pairwise alignment algorithm. The reassortant influenza strains of the invention may also have a NP genome segment with threonine in the position corresponding to amino acid 27 of SEQ ID NO: 4 when aligned to SEQ ID NO: 4 using a pairwise alignment algorithm, and/or asparagine in the position corresponding to amino acid 375 of SEQ ID NO: 4 when aligned to SEQ ID NO: 4, using a pairwise alignment algorithm. Variant influenza strains may also comprise two or more of these mutations. It is preferred that the variant influenza virus contains a variant PB2 segment with both of the amino acids changes identified above, and/or a PA which contains all three of the amino acid changes identified above, and/or a NP segment which contains both of the amino acid changes identified above. The influenza A virus may be a H1 strain.

[0086] Alternatively, or in addition, the reassortant influenza A viruses may comprise a PB1 segment which has isoleucine in the position corresponding to amino acid 200 of SEQ ID NO: 2 when aligned to SEQ ID NO: 2 using a pairwise alignment algorithm, and/or asparagine in the position corresponding to amino acid 338 of SEQ ID NO: 2 when aligned to SEQ ID NO: 2 using a pairwise alignment algorithm, and/or isoleucine in the position corresponding to amino acid 529 of SEQ ID NO: 2 when aligned to SEQ ID NO: 2 using a pairwise alignment algorithm, and/or isoleu-

cine in the position corresponding to amino acid 591 of SEQ ID NO: 2 when aligned to SEQ ID NO: 2 using a pairwise alignment algorithm, and/or histidine in the position corresponding to amino acid 687 of SEQ ID NO: 2 when aligned to SEQ ID NO: 2 using a pairwise alignment algorithm, and/or lysine in the position corresponding to amino acid 754 of SEQ ID NO: 2 when aligned to SEQ ID NO: 2 using a pairwise alignment algorithm.

[0087] The preferred pairwise alignment algorithm is the Needleman-Wunsch global alignment algorithm [34], using default parameters (e.g. with Gap opening penalty=10.0, and with Gap extension penalty=0.5, using the EBLOSUM62 scoring matrix). This algorithm is conveniently implemented in the needle tool in the EMBOSS package [35].

[0088] The choice of donor strain for use in the methods of the invention can depend on the vaccine strain which is to be reassorted. As reassortants between evolutionary distant strains might not replicate well in cell culture, it is possible that the donor strain and the vaccine strain have the same HA and/or NA subtype. In other embodiments, however, the vaccine strain and the donor strain can have different HA and/or NA subtypes, and this arrangement can facilitate selection for reassortant viruses that contain the HA and/or NA segment from the vaccine strain. Therefore, although the 105p30 and PR8-X strains contain the H1 influenza subtype these donor strains can be used for vaccine strains which do not contain the H1 influenza subtype.

[0089] Reassortants of the donor strains wherein the HA and/or NA segment has been changed to another subtype can also be used. The H1 influenza subtype of the 105p30 or PR8-X strain may be changed, for example, to a H3 or H5 subtype.

[0090] Thus, an influenza A virus may comprise one, two, three, four, five, six or seven viral segments from the 105p30 or PR8-X strains and a HA segment which is not of the H1 subtype. The reassortant donor strains may further comprise an NA segment which is not of the N1 subtype.

[0091] The reassortant donor strains may comprise at least one, at least two, at least three, at least four, at least five, at least six or at least seven viral segments from the 105p30 or PR8-X strains of the invention and a H1 HA segment which is derived from a different influenza strain.

[0092] The 'second influenza strain' used in the methods of the invention is different to the donor strain which is used.

Reassortant Influenza B Viruses

[0093] The invention can also be used to prepare reassortant influenza B strains.

[0094] For example, the methods can be used to produce a reassortant influenza B virus which comprises the HA segment from a first influenza B virus and the NP and/or PB2 segment from a second influenza B virus which is a B/Victoria/2/87-like strain. The B/Victoria/2/87-like strain may be B/Brisbane/60/08.

[0095] The methods can also be used to produce reassortant influenza B viruses comprising the HA segment from a first influenza B virus and the NP segment from a second influenza B virus which is not B/Lee/40 or B/Ann Arbor/1/66 or B/Panama/45/90. For example, the reassortant influenza B virus may have a NP segment which does not have the sequence of SEQ ID NOs: 80, 100, 103 or 104. The reassortant influenza B virus may also have a NP segment which does not encode the protein of SEQ ID NOs: 19, 23, 44 or 45. The reassortant influenza B virus may comprise both the NP and

PB2 segments from the second influenza B virus. The second influenza B virus is preferably a B/Victoria/2/87-like strain. The B/Victoria/2/87-like strain may be B/Brisbane/60/08.

[0096] The invention can also be used to produce a reassortant influenza B virus comprising the HA segment from a B/Yamagata/16/88-like strain and at least one backbone segment from a B/Victoria/2/87-like strain. The reassortant influenza B virus may comprise two, three, four, five or six backbone segments from the B/Victoria/2/87-like strain. In a preferred embodiment, the reassortant influenza B virus comprises all the backbone segments from the B/Victoria/2/87-like strain. The B/Victoria/2/87-like strain may be B/Brisbane/60/08.

[0097] The methods are also suitable for producing a reassortant influenza B virus comprising viral segments from a B/Victoria/2/87-like strain and a B/Yamagata/16/88-like strain, wherein the ratio of segments from the B/Victoria/2/87-like strain and the B/Yamagata/16/88-like strain is 1:7, 2:6, 4:4, 5:3, 6:2 or 7:1. A ratio of 7:1, 6:2, 4:4, 3:4 or 1:7, in particular a ratio of 4:4, is preferred because such reassortant influenza B viruses grow particularly well in a culture host. The B/Victoria/2/87-like strain may be B/Brisbane/60/08. The B/Yamagata/16/88-like strain may be B/Panama/45/90. In these embodiments, the reassortant influenza B virus usually does not comprise all backbone segments from the same influenza B donor strain.

[0098] The methods can also be used to produce a reassortant influenza B virus which comprises:

- a) the PA segment of SEQ ID NO: 71, the PB1 segment of SEQ ID NO: 72, the PB2 segment of SEQ ID NO: 73, the NP segment of SEQ ID NO: 74, the NS segment of SEQ ID NO: 76 and the M segment of SEQ ID NO: 75; or
- b) the PA segment of SEQ ID NO: 71, the PB1 segment of SEQ ID NO: 78, the PB2 segment of SEQ ID NO: 73, the NP segment of SEQ ID NO: 74, the NS segment of SEQ ID NO: 82 and the M segment of SEQ ID NO: 81; or
- c) the PA segment of SEQ ID NO: 71, the PB1 segment of SEQ ID NO: 78, the PB2 segment of SEQ ID NO: 79, the NP segment of SEQ ID NO: 74, the NS segment of SEQ ID NO: 76 and the M segment of SEQ ID NO: 75; or
- d) the PA segment of SEQ ID NO: 30, the PB1 segment of SEQ ID NO: 72, the PB2 segment of SEQ ID NO: 73, the NP segment of SEQ ID NO: 74, the NS segment of SEQ ID NO: 76 and the M segment of SEQ ID NO: 75; or
- e) the PA segment of SEQ ID NO: 71, the PB1 segment of SEQ ID NO: 72, the PB2 segment of SEQ ID NO: 73, the NP segment of SEQ ID NO: 74, the NS segment of SEQ ID NO: 82 and the M segment of SEQ ID NO: 81.

[0099] Influenza B viruses currently do not display different HA subtypes, but influenza B virus strains do fall into two distinct lineages. These lineages emerged in the late 1980s and have HAs which can be antigenically and/or genetically distinguished from each other [36]. Current influenza B virus strains are either B/Victoria/2/87-like or B/Yamagata/16/88-like. These strains are usually distinguished antigenically, but differences in amino acid sequences have also been described for distinguishing the two lineages e.g. B/Yamagata/16/88-like strains often (but not always) have HA proteins with deletions at amino acid residue 164, numbered relative to the 'Lee40' HA sequence [37]. In some embodiments, the reassortant influenza B viruses of the invention may comprise viral segments from a B/Victoria/2/87-like strain. They may comprise viral segments from a B/Yamagata/16/88-like

strain. Alternatively, they may comprise viral segments from a B/Victoria/2/87-like strain and a B/Yamagata/16/88-like strain.

[0100] Where the reassortant influenza B virus comprises viral segments from two or more influenza B virus strains, these viral segments may be derived from influenza strains which have related neuraminidases. For instance, the influenza strains which provide the viral segments may both have a B/Victoria/2/87-like neuraminidase [38] or may both have a B/Yamagata/16/88-like neuraminidase. For example, two B/Victoria/2/87-like neuraminidases may both have one or more of the following sequence characteristics: (1) not a serine at residue 27, but preferably a leucine; (2) not a glutamate at residue 44, but preferably a lysine; (3) not a threonine at residue 46, but preferably an isoleucine; (4) not a proline at residue 51, but preferably a serine; (5) not an arginine at residue 65, but preferably a histidine; (6) not a glycine at residue 70, but preferably a glutamate; (7) not a leucine at residue 73, but preferably a phenylalanine; and/or (8) not a proline at residue 88, but preferably a glutamine. Similarly, in some embodiments the neuraminidase may have a deletion at residue 43, or it may have a threonine; a deletion at residue 43, arising from a trinucleotide deletion in the NA gene, which has been reported as a characteristic of B/Victoria/2/87-like strains, although recent strains have regained Thr-43 [38]. Conversely, of course, the opposite characteristics may be shared by two B/Yamagata/16/88-like neuraminidases e.g. S27, E44, T46, P51, R65, G70, L73, and/or P88. These amino acids are numbered relative to the 'Lee40' neuraminidase sequence [39]. The reassortant influenza B virus may comprise a NA segment with the characteristics described above. Alternatively, or in addition, the reassortant influenza B virus may comprise a viral segment (other than NA) from an influenza strain with a NA segment with the characteristics described above.

[0101] The backbone viral segments of an influenza B virus which is a B/Victoria/2/87-like strain can have a higher level of identity to the corresponding viral segment from B/Victoria/2/87 than it does to the corresponding viral segment of B/Yamagata/16/88 and vice versa. For example, the NP segment of B/Panama/45/90 (which is a B/Yamagata/16/88-like strain) has 99% identity to the NP segment of B/Yamagata/16/88 and only 96% identity to the NP segment of B/Victoria/2/87.

[0102] Where the reassortant influenza B virus of the invention comprises a backbone viral segment from a B/Victoria/2/87-like strain, the viral segments may encode proteins with the following sequences. The PA protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 83. The PB1 protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 84. The PB2 protein may have at least 97%, at least 98%, at least 99% or 100% identity with the sequence of SEQ ID NO: 85. The NP protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 86. The M₁ protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 87. The M₂ protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 88. The NS₁ protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 89. The NS₂ protein may have at least 97% identity, at least 98%,

at least 99% identity or 100% identity to the sequence of SEQ ID NO: 90. In some embodiments, the reassortant influenza B virus may also comprise all of these backbone segments.

[0103] Where the reassortant influenza B viruses of the invention comprise a backbone viral segment from a B/Yamagata/16/88-like strain, the viral segment may encode proteins with the following sequences. The PA protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 91. The PB1 protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 92. The PB2 protein may have at least 97%, at least 98%, at least 99% or 100% identity with the sequence of SEQ ID NO: 93. The NP protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 94. The M₁ protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 95. The M₂ protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 96. The NS₁ protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 97. The NS₂ protein may have at least 97% identity, at least 98%, at least 99% identity or 100% identity to the sequence of SEQ ID NO: 98.

[0104] The invention can be practised with donor strains having a viral segment that has at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95% or at least about 99%, or 100% identity to a sequence of SEQ ID NOS 71-76 or 77-82. Due to the degeneracy of the genetic code, it is possible to have the same polypeptide encoded by several nucleic acids with different sequences. For example, the nucleic acid sequences of SEQ ID NOS: 33 and 34 have only 73% identity even though they encode the same viral protein. Thus, the invention may be practised with viral segments that encode the same polypeptides as the sequences of SEQ ID NOS 71-76 or 77-82.

[0105] Reassortant viruses which contain an NS segment that does not encode a functional NS protein are also within the scope of the present invention. NS1 knockout mutants are described in reference 40. These NS1-mutant virus strains are particularly suitable for preparing live attenuated influenza vaccines.

[0106] The 'second influenza strain' used in the methods of the invention is different to the donor strain which is used.

Backbone Libraries

[0107] In order to supply influenza vaccines rapidly during a pandemic it is important that the reassortant influenza viruses can grow to high viral titres in a short time frame. The inventors have discovered that it can be useful to test a number of reassortant influenza viruses comprising the HA and NA segments of the vaccine strain in combination with different backbones in order to identify the fastest growing reassortants. The invention thus provides a library comprising two or more influenza backbones. For example, the library may comprise 5, 10, 15, 20, 30, 40, 50, 100 or 200 different influenza backbones. The backbones may be included on expression constructs in the library. In some embodiments, the library may not comprise expression constructs which encode the HA and/or NA segments of influenza viruses as these segments will come from the circulating influenza

strain. The library may comprise at least one influenza backbone as described in the preceding sections.

[0108] Each expression construct in the library may encode all the backbone segments of an influenza virus. It is also possible to include expression constructs which do not encode all the backbone segments. For example, the library may comprise expression constructs which encode one, two, three, four, five, six or seven viral backbone segment(s).

[0109] When a new circulating strain is identified, the HA and NA segments of that strain may be included in an expression construct (which may be a synthetic expression construct). This expression construct and the expression constructs in the library can be co-transfected into host cells (which are preferably all of the same cell line or the same cell type). Cells which receive expression constructs that encode all the viral segments of an influenza virus will produce reassortant influenza viruses from these expression constructs. In this manner, it is possible to produce a number of different reassortant influenza viruses which all comprise the same HA and NA segments but which will have different backbone segments. The growth rate of these reassortant influenza viruses can be determined using standard methods in the art and the fastest growing reassortant can be selected for vaccine production.

Virus Preparation

[0110] In one embodiment, the invention provides a method for producing influenza viruses comprising steps of (a) infecting a culture host with a reassortant virus of the invention; (b) culturing the host from step (a) to produce the virus; and optionally (c) purifying the virus produced in step (b).

[0111] The culture host may be cells or embryonated hen eggs, as described above. Where cells are used as a culture host in this aspect of the invention, it is known that cell culture conditions (e.g. temperature, cell density, pH value, etc.) are variable over a wide range subject to the cell line and the virus employed and can be adapted to the requirements of the application. The following information therefore merely represents guidelines.

[0112] As mentioned above, cells are preferably cultured in serum-free or protein-free media.

[0113] Multiplication of the cells can be conducted in accordance with methods known to those of skill in the art. For example, the cells can be cultivated in a perfusion system using ordinary support methods like centrifugation or filtration. Moreover, the cells can be multiplied according to the invention in a fed-batch system before infection. In the context of the present invention, a culture system is referred to as a fed-batch system in which the cells are initially cultured in a batch system and depletion of nutrients (or part of the nutrients) in the medium is compensated by controlled feeding of concentrated nutrients. It can be advantageous to adjust the pH value of the medium during multiplication of cells before infection to a value between pH 6.6 and pH 7.8 and especially between a value between pH 7.2 and pH 7.3. Culturing of cells preferably occurs at a temperature between 30 and 40° C. When culturing the infected cells (step b), the cells are preferably cultured at a temperature of between 30° C. and 36° C. or between 32° C. and 34° C. or at 33° C. This is particularly preferred, as it has been shown that incubation of infected cells in this temperature range results in production of a virus that results in improved efficacy when formulated into a vaccine [41].

[0114] Oxygen partial pressure can be adjusted during culturing before infection preferably at a value between 25% and 95% and especially at a value between 35% and 60%. The values for the oxygen partial pressure stated in the context of the invention are based on saturation of air. Infection of cells occurs at a cell density of preferably about $8\text{--}25\times10^5$ cells/mL in the batch system or preferably about $5\text{--}20\times10^6$ cells/mL in the perfusion system. The cells can be infected with a viral dose (MOI value, "multiplicity of infection"; corresponds to the number of virus units per cell at the time of infection) between 10^{-8} and 10, preferably between 0.0001 and 0.5.

[0115] Virus may be grown on cells in adherent culture or in suspension. Microcarrier cultures can be used. In some embodiments, the cells may thus be adapted for growth in suspension.

[0116] The methods according to the invention also include harvesting and isolation of viruses or the proteins generated by them. During isolation of viruses or proteins, the cells are separated from the culture medium by standard methods like separation, filtration or ultrafiltration. The viruses or the proteins are then concentrated according to methods sufficiently known to those skilled in the art, like gradient centrifugation, filtration, precipitation, chromatography, etc., and then purified. It is also preferred according to the invention that the viruses are inactivated during or after purification. Virus inactivation can occur, for example, by β -propiolactone or formaldehyde at any point within the purification process.

[0117] The culture host may be eggs. The current standard method for influenza virus growth for vaccines uses embryonated SPF hen eggs, with virus being purified from the egg contents (allantoic fluid). It is also possible to passage a virus through eggs and subsequently propagate it in cell culture and vice versa.

Vaccine

[0118] The invention utilises virus produced according to the method to produce vaccines.

[0119] Vaccines (particularly for influenza virus) are generally based either on live virus or on inactivated virus. Inactivated vaccines may be based on whole virions, split virions, or on purified surface antigens. Antigens can also be presented in the form of virosomes. The invention can be used for manufacturing any of these types of vaccine.

[0120] Where an inactivated virus is used, the vaccine may comprise whole virion, split virion, or purified surface antigens (for influenza, including hemagglutinin and, usually, also including neuraminidase). Chemical means for inactivating a virus include treatment with an effective amount of one or more of the following agents: detergents, formaldehyde, β -propiolactone, methylene blue, psoralen, carboxyfullerene (C60), binary ethylamine, acetyl ethyleneimine, or combinations thereof. Non-chemical methods of viral inactivation are known in the art, such as for example UV light or gamma irradiation.

[0121] Virions can be harvested from virus-containing fluids, e.g. allantoic fluid or cell culture supernatant, by various methods. For example, a purification process may involve zonal centrifugation using a linear sucrose gradient solution that includes detergent to disrupt the virions. Antigens may then be purified, after optional dilution, by diafiltration.

[0122] Split virions are obtained by treating purified virions with detergents (e.g. ethyl ether, polysorbate 80, deoxycholate, tri-N-butyl phosphate, Triton X-100, Triton N101, cetyltrimethylammonium bromide, Tergitol NP9, etc.) to produce

subvirion preparations, including the 'Tween-ether' splitting process. Methods of splitting influenza viruses, for example are well known in the art e.g. see refs. 42-47, etc. Splitting of the virus is typically carried out by disrupting or fragmenting whole virus, whether infectious or non-infectious with a disrupting concentration of a splitting agent. The disruption results in a full or partial solubilisation of the virus proteins, altering the integrity of the virus. Preferred splitting agents are non-ionic and ionic (e.g. cationic) surfactants e.g. alkylglycosides, alkylthioglycosides, acyl sugars, sulphobetaines, betaines, polyoxyethylenealkylethers, N,N-dialkyl-Glucamides, Hecameg, alkylphenoxy-polyethoxyethanols, NP9, quaternary ammonium compounds, sarcosyl, CTABs (cetyl trimethyl ammonium bromides), tri-N-butyl phosphate, Cetavlon, myristyltrimethylammonium salts, lipofectin, lipofectamine, and DOT-MA, the octyl- or nonylphenoxy polyoxyethanols (e.g. the Triton surfactants, such as Triton X-100 or Triton N101), polyoxyethylene sorbitan esters (the Tween surfactants), polyoxyethylene ethers, polyoxyethylene esters, etc. One useful splitting procedure uses the consecutive effects of sodium deoxycholate and formaldehyde, and splitting can take place during initial virion purification (e.g. in a sucrose density gradient solution). Thus a splitting process can involve clarification of the virion-containing material (to remove non-virion material), concentration of the harvested virions (e.g. using an adsorption method, such as CaHPO_4 adsorption), separation of whole virions from non-virion material, splitting of virions using a splitting agent in a density gradient centrifugation step (e.g. using a sucrose gradient that contains a splitting agent such as sodium deoxycholate), and then filtration (e.g. ultrafiltration) to remove undesired materials. Split virions can usefully be resuspended in sodium phosphate-buffered isotonic sodium chloride solution. Examples of split influenza vaccines are the BEGRIVACTM, FLUARIXTM, FLUZONETM and FLUSHIELDTM products.

[0123] Purified influenza virus surface antigen vaccines comprise the surface antigens hemagglutinin and, typically, also neuraminidase. Processes for preparing these proteins in purified form are well known in the art. The FLUVIRINTTM, AGRIPPALTM and INFLUVACTM products are influenza sub-unit vaccines.

[0124] Another form of inactivated antigen is the virosome [48] (nucleic acid free viral-like liposomal particles). Virosomes can be prepared by solubilization of virus with a detergent followed by removal of the nucleocapsid and reconstitution of the membrane containing the viral glycoproteins. An alternative method for preparing virosomes involves adding viral membrane glycoproteins to excess amounts of phospholipids, to give liposomes with viral proteins in their membrane.

[0125] The methods of the invention may also be used to produce live vaccines. Such vaccines are usually prepared by purifying virions from virion-containing fluids. For example, the fluids may be clarified by centrifugation, and stabilized with buffer (e.g. containing sucrose, potassium phosphate, and monosodium glutamate). Various forms of influenza virus vaccine are currently available (e.g. see chapters 17 & 18 of reference 49). Live virus vaccines include MedImmune's FLUMISTTM product (trivalent live virus vaccine).

[0126] The virus may be attenuated. The virus may be temperature-sensitive. The virus may be cold-adapted. These three features are particularly useful when using live virus as an antigen.

[0127] HA is the main immunogen in current inactivated influenza vaccines, and vaccine doses are standardised by reference to HA levels, typically measured by SRID. Existing vaccines typically contain about 15 µg of HA per strain, although lower doses can be used e.g. for children, or in pandemic situations, or when using an adjuvant. Fractional doses such as $\frac{1}{2}$ (i.e. 7.5 µg HA per strain), $\frac{1}{4}$ and $\frac{1}{8}$ have been used, as have higher doses (e.g. 3x or 9x doses [50,51]). Thus vaccines may include between 0.1 and 150 µg of HA per influenza strain, preferably between 0.1 and 50 µg e.g. 0.1-10 µg, 0.5-5 µg, etc. Particular doses include e.g. about 45, about 30, about 15, about 10, about 7.5, about 5, about 3.8, about 3.75, about 1.9, about 1.5, etc. per strain.

[0128] For live vaccines, dosing is measured by median tissue culture infectious dose (TCID₅₀) rather than HA content, and a TCID₅₀ of between 10⁶ and 10⁸ (preferably between 10^{6.5}-10^{7.5}) per strain is typical.

[0129] Influenza strains used with the invention may have a natural HA as found in a wild-type virus, or a modified HA. For instance, it is known to modify HA to remove determinants (e.g. hyper-basic regions around the HA1/HA2 cleavage site) that cause a virus to be highly pathogenic in avian species. The use of reverse genetics facilitates such modifications.

[0130] As well as being suitable for immunizing against inter-pandemic strains, the compositions of the invention are particularly useful for immunizing against pandemic or potentially-pandemic strains. The invention is suitable for vaccinating humans as well as non-human animals.

[0131] Other strains whose antigens can usefully be included in the compositions are strains which are resistant to antiviral therapy (e.g. resistant to oseltamivir [52] and/or zanamivir), including resistant pandemic strains [53].

[0132] Compositions of the invention may include antigen (s) from one or more (e.g. 1, 2, 3, 4 or more) influenza virus strains, including influenza A virus and/or influenza B virus provided that at least one influenza strain is a reassortant influenza strain of the invention. Compositions wherein at least two, at least three or all of the antigens are from reassortant influenza strains of the invention are also envisioned. Where a vaccine includes more than one strain of influenza, the different strains are typically grown separately and are mixed after the viruses have been harvested and antigens have been prepared. Thus a process of the invention may include the step of mixing antigens from more than one influenza strain. A trivalent vaccine is typical, including antigens from two influenza A virus strains and one influenza B virus strain. A tetravalent vaccine is also useful [54], including antigens from two influenza A virus strains and two influenza B virus strains, or three influenza A virus strains and one influenza B virus strain.

Pharmaceutical Compositions

[0133] Vaccine compositions manufactured according to the invention are pharmaceutically acceptable. They usually include components in addition to the antigens e.g. they typically include one or more pharmaceutical carrier(s) and/or excipient(s). As described below, adjuvants may also be included. A thorough discussion of such components is available in reference 55.

[0134] Vaccine compositions will generally be in aqueous form. However, some vaccines may be in dry form, e.g. in the form of injectable solids or dried or polymerized preparations on a patch.

[0135] Vaccine compositions may include preservatives such as thiomersal or 2-phenoxyethanol. It is preferred, however, that the vaccine should be substantially free from (i.e. less than 5 µg/ml) mercurial material e.g. thiomersal-free [46,56]. Vaccines containing no mercury are more preferred. An α -tocopherol succinate can be included as an alternative to mercurial compounds [46]. Preservative-free vaccines are particularly preferred.

[0136] To control tonicity, it is preferred to include a physiological salt, such as a sodium salt. Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml. Other salts that may be present include potassium chloride, potassium dihydrogen phosphate, disodium phosphate dehydrate, magnesium chloride, calcium chloride, etc.

[0137] Vaccine compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 290-310 mOsm/kg. Osmolality has previously been reported not to have an impact on pain caused by vaccination [57], but keeping osmolality in this range is nevertheless preferred.

[0138] Vaccine compositions may include one or more buffers. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer (particularly with an aluminum hydroxide adjuvant); or a citrate buffer. Buffers will typically be included in the 5-20 mM range.

[0139] The pH of a vaccine composition will generally be between 5.0 and 8.1, and more typically between 6.0 and 8.0 e.g. 6.5 and 7.5, or between 7.0 and 7.8. A process of the invention may therefore include a step of adjusting the pH of the bulk vaccine prior to packaging.

[0140] The vaccine composition is preferably sterile. The vaccine composition is preferably non-pyrogenic e.g. containing <1 EU (endotoxin unit, a standard measure) per dose, and preferably <0.1 EU per dose. The vaccine composition is preferably gluten-free.

[0141] Vaccine compositions of the invention may include detergent e.g. a polyoxyethylene sorbitan ester surfactant (known as 'Tweens'), an octoxynol (such as octoxynol-9 (Triton X-100) or t-octylphenoxyethoxyethanol), a cetyl trimethyl ammonium bromide ('CTAB'), or sodium deoxycholate, particularly for a split or surface antigen vaccine. The detergent may be present only at trace amounts. Thus the vaccine may include less than 1 mg/ml of each of octoxynol-10 and polysorbate 80. Other residual components in trace amounts could be antibiotics (e.g. neomycin, kanamycin, polymyxin B).

[0142] A vaccine composition may include material for a single immunisation, or may include material for multiple immunisations (i.e. a 'multidose' kit). The inclusion of a preservative is preferred in multidose arrangements. As an alternative (or in addition) to including a preservative in multidose compositions, the compositions may be contained in a container having an aseptic adaptor for removal of material.

[0143] Influenza vaccines are typically administered in a dosage volume of about 0.5 ml, although a half dose (i.e. about 0.25 ml) may be administered to children.

[0144] Compositions and kits are preferably stored at between 2° C. and 8° C. They should not be frozen. They should ideally be kept out of direct light.

Host Cell DNA

[0145] Where virus has been isolated and/or grown on a cell line, it is standard practice to minimize the amount of residual cell line DNA in the final vaccine, in order to minimize any potential oncogenic activity of the DNA.

[0146] Thus a vaccine composition prepared according to the invention preferably contains less than 10 ng (preferably less than 1 ng, and more preferably less than 100 pg) of residual host cell DNA per dose, although trace amounts of host cell DNA may be present.

[0147] It is preferred that the average length of any residual host cell DNA is less than 500 bp e.g. less than 400 bp, less than 300 bp, less than 200 bp, less than 100 bp, etc.

[0148] Contaminating DNA can be removed during vaccine preparation using standard purification procedures e.g. chromatography, etc. Removal of residual host cell DNA can be enhanced by nuclease treatment e.g. by using a DNase. A convenient method for reducing host cell DNA contamination is disclosed in references 58 & 59, involving a two-step treatment, first using a DNase (e.g. Benzonase), which may be used during viral growth, and then a cationic detergent (e.g. CTAB), which may be used during virion disruption. Treatment with an alkylating agent, such as β -propiolactone, can also be used to remove host cell DNA, and advantageously may also be used to inactivate virions [60].

Adjuvants

[0149] Compositions of the invention may advantageously include an adjuvant, which can function to enhance the immune responses (humoral and/or cellular) elicited in a subject who receives the composition. Preferred adjuvants comprise oil-in-water emulsions. Various such adjuvants are known, and they typically include at least one oil and at least one surfactant, with the oil(s) and surfactant(s) being biodegradable (metabolisable) and biocompatible. The oil droplets in the emulsion are generally less than 5 μm in diameter, and ideally have a sub-micron diameter, with these small sizes being achieved with a microfluidiser to provide stable emulsions. Droplets with a size less than 220 nm are preferred as they can be subjected to filter sterilization.

[0150] The emulsion can comprise oils such as those from an animal (such as fish) or vegetable source. Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils. Jojoba oil can be used e.g. obtained from the jojoba bean. Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used. 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol, while not occurring naturally in seed oils, may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils. Fats and oils from mammalian milk are metabolizable and may therefore be used in the practice of this invention. The procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art. Most fish contain metabolizable oils which may be readily recovered. For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein. A number of branched chain oils are synthesized biochemically in 5-carbon isoprene units

and are generally referred to as terpenoids. Shark liver oil contains a branched, unsaturated terpenoids known as squalene, 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, which is particularly preferred herein. Squalane, the saturated analog to squalene, is also a preferred oil. Fish oils, including squalene and squalane, are readily available from commercial sources or may be obtained by methods known in the art. Another preferred oil is α -tocopherol (see below).

[0151] Mixtures of oils can be used.

[0152] Surfactants can be classified by their 'HLB' (hydrophilic/lipophile balance). Preferred surfactants of the invention have a HLB of at least 10, preferably at least 15, and more preferably at least 16. The invention can be used with surfactants including, but not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAXTM tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxy-polyethoxyethanol) being of particular interest; (octylphenoxy)polyethoxyethanol (IGEPAL CA-630/NP-40); phospholipids such as phosphatidylcholine (lecithin); nonylphenol ethoxylates, such as the TergitolTM NP series; polyoxyethylene fatty ethers derived from lauryl, cetyl, stearyl and oleyl alcohols (known as Brij surfactants), such as triethyleneglycol monolauryl ether (Brij 30); and sorbitan esters (commonly known as the SPANs), such as sorbitan trioleate (Span 85) and sorbitan monolaurate. Non-ionic surfactants are preferred. Preferred surfactants for including in the emulsion are Tween 80 (polyoxyethylene sorbitan monooleate), Span 85 (sorbitan trioleate), lecithin and Triton X-100.

[0153] Mixtures of surfactants can be used e.g. Tween 80/Span 85 mixtures. A combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxy-polyethoxyethanol (Triton X-100) is also suitable. Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.

[0154] Preferred amounts of surfactants (% by weight) are: polyoxyethylene sorbitan esters (such as Tween 80) 0.01 to 1%, in particular about 0.1%; octyl- or nonylphenoxy polyoxyethanols (such as Triton X-100, or other detergents in the Triton series) 0.001 to 0.1%, in particular 0.005 to 0.02%; polyoxyethylene ethers (such as laureth 9) 0.1 to 20%, preferably 0.1 to 10% and in particular 0.1 to 1% or about 0.5%.

[0155] Where the vaccine contains a split virus, it is preferred that it contains free surfactant in the aqueous phase. This is advantageous as the free surfactant can exert a 'splitting effect' on the antigen, thereby disrupting any unsplit virions and/or virion aggregates that might otherwise be present. This can improve the safety of split virus vaccines [61].

[0156] Preferred emulsions have an average droplets size of <1 μm e.g. \leq 750 nm, \leq 500 nm, \leq 400 nm, \leq 300 nm, \leq 250 nm, \leq 220 nm, \leq 200 nm, or smaller. These droplet sizes can conveniently be achieved by techniques such as microfluidisation.

[0157] Specific oil-in-water emulsion adjuvants useful with the invention include, but are not limited to:

[0158] A submicron emulsion of squalene, Tween 80, and Span 85. The composition of the emulsion by volume can be about 5% squalene, about 0.5% polysorbate 80 and about 0.5% Span 85. In weight terms, these ratios become 4.3% squalene, 0.5% polysorbate 80 and 0.48% Span 85. This adjuvant is known as 'MF59' [62-64], as described in more detail in Chapter 10 of ref. 65 and chapter 12 of ref. 66. The MF59 emulsion advantageously includes citrate ions e.g. 10 mM sodium citrate buffer.

[0159] An emulsion comprising squalene, a tocopherol, and polysorbate 80. The emulsion may include phosphate buffered saline. These emulsions may have by volume from 2 to 10% squalene, from 2 to 10% tocopherol and from 0.3 to 3% polysorbate 80, and the weight ratio of squalene:tocopherol is preferably <1 (e.g. 0.90) as this can provide a more stable emulsion. Squalene and polysorbate 80 may be present in a volume ratio of about 5:2 or at a weight ratio of about 11:5. Thus the three components (squalene, tocopherol, polysorbate 80) may be present at a weight ratio of 1068:1186:485 or around 55:61:25. One such emulsion ('AS03') can be made by dissolving Tween 80 in PBS to give a 2% solution, then mixing 90 ml of this solution with a mixture of (5 g of DL a tocopherol and 5 ml squalene), then microfluidising the mixture. The resulting emulsion may have submicron oil droplets e.g. with an average diameter of between 100 and 250 nm, preferably about 180 nm. The emulsion may also include a 3-de-O-acylated monophosphoryl lipid A (3d MPL). Another useful emulsion of this type may comprise, per human dose, 0.5-10 mg squalene, 0.5-11 mg tocopherol, and 0.1-4 mg polysorbate 80 [67] e.g. in the ratios discussed above.

[0160] An emulsion of squalene, a tocopherol, and a Triton detergent (e.g. Triton X-100). The emulsion may also include a 3d-MPL (see below). The emulsion may contain a phosphate buffer.

[0161] An emulsion comprising a polysorbate (e.g. polysorbate 80), a Triton detergent (e.g. Triton X-100) and a tocopherol (e.g. an α -tocopherol succinate). The emulsion may include these three components at a mass ratio of about 75:11:10 (e.g. 750 μ g/ml polysorbate 80, 110 μ g/ml Triton X-100 and 100 μ g/ml α -tocopherol succinate), and these concentrations should include any contribution of these components from antigens. The emulsion may also include squalene. The emulsion may also include a 3d-MPL (see below). The aqueous phase may contain a phosphate buffer.

[0162] An emulsion of squalane, polysorbate 80 and poloxamer 401 ("PluronicTM L121"). The emulsion can be formulated in phosphate buffered saline, pH 7.4. This emulsion is a useful delivery vehicle for muramyl dipeptides, and has been used with threonyl-MDP in the "SAF-1" adjuvant [68] (0.05-1% Thr-MDP, 5% squalane, 2.5% Pluronic L121 and 0.2% polysorbate 80). It can also be used without the Thr-MDP, as in the "AF" adjuvant [69] (5% squalane, 1.25% Pluronic L121 and 0.2% polysorbate 80). Microfluidisation is preferred.

[0163] An emulsion comprising squalene, an aqueous solvent, a polyoxyethylene alkyl ether hydrophilic non-ionic surfactant (e.g. polyoxyethylene (12) cetostearyl

ether) and a hydrophobic nonionic surfactant (e.g. a sorbitan ester or mannide ester, such as sorbitan monolaurate or 'Span 80'). The emulsion is preferably thermoresversible and/or has at least 90% of the oil droplets (by volume) with a size less than 200 nm [70]. The emulsion may also include one or more of: alditol; a cryoprotective agent (e.g. a sugar, such as dodecylmaltoside and/or sucrose); and/or an alkylpolyglycoside. The emulsion may include a TLR4 agonist [71]. Such emulsions may be lyophilized.

[0164] An emulsion of squalene, poloxamer 105 and Abil-Care [72]. The final concentration (weight) of these components in adjuvanted vaccines are 5% squalene, 4% poloxamer 105 (pluronic polyol) and 2% Abil-Care 85 (Bis-PEG/PPG-16/16 PEG/PPG-16/16 dimethicone; caprylic/capric triglyceride).

[0165] An emulsion having from 0.5-50% of an oil, 0.1-10% of a phospholipid, and 0.05-5% of a non-ionic surfactant. As described in reference 73, preferred phospholipid components are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, sphingomyelin and cardiolipin. Submicron droplet sizes are advantageous.

[0166] A submicron oil-in-water emulsion of a non-metabolisable oil (such as light mineral oil) and at least one surfactant (such as lecithin, Tween 80 or Span 80). Additives may be included, such as QuilA saponin, cholesterol, a saponin-lipophile conjugate (such as GPI-0100, described in reference 74, produced by addition of aliphatic amine to desacylsaponin via the carboxyl group of glucuronic acid), dimethyldioctadecylammonium bromide and/or N,N-di octadecyl-N,N-bis (2-hydroxyethyl)propanediamine.

[0167] An emulsion in which a saponin (e.g. QuilA or QS21) and a sterol (e.g. a cholesterol) are associated as helical micelles [75].

[0168] An emulsion comprising a mineral oil, a non-ionic lipophilic ethoxylated fatty alcohol, and a non-ionic hydrophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) [76].

[0169] An emulsion comprising a mineral oil, a non-ionic hydrophilic ethoxylated fatty alcohol, and a non-ionic lipophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) [76].

[0170] In some embodiments an emulsion may be mixed with antigen extemporaneously, at the time of delivery, and thus the adjuvant and antigen may be kept separately in a packaged or distributed vaccine, ready for final formulation at the time of use. In other embodiments an emulsion is mixed with antigen during manufacture, and thus the composition is packaged in a liquid adjuvanted form.

[0171] The antigen will generally be in an aqueous form, such that the vaccine is finally prepared by mixing two liquids. The volume ratio of the two liquids for mixing can vary (e.g. between 5:1 and 1:5) but is generally about 1:1 and this is most preferred. Where concentrations of components are given in the above descriptions of specific emulsions, these concentrations are typically for an undiluted composition, and the concentration after mixing with an antigen solution will thus decrease (e.g. it will be half the concentration where the antigen and the adjuvant are mixed at a ratio of 1:1).

Packaging of Vaccine Compositions

[0172] Suitable containers for compositions of the invention (or kit components) include vials, syringes (e.g. disposable syringes), nasal sprays, etc. These containers should be sterile.

[0173] Where a composition/component is located in a vial, the vial is preferably made of a glass or plastic material. The vial is preferably sterilized before the composition is added to it. To avoid problems with latex-sensitive patients, vials are preferably sealed with a latex-free stopper, and the absence of latex in all packaging material is preferred. The vial may include a single dose of vaccine, or it may include more than one dose (a 'multidose' vial) e.g. 10 doses. Preferred vials are made of colourless glass.

[0174] A vial can have a cap (e.g. a Luer lock) adapted such that a pre-filled syringe can be inserted into the cap, the contents of the syringe can be expelled into the vial (e.g. to reconstitute lyophilised material therein), and the contents of the vial can be removed back into the syringe. After removal of the syringe from the vial, a needle can then be attached and the composition can be administered to a patient. The cap is preferably located inside a seal or cover, such that the seal or cover has to be removed before the cap can be accessed. A vial may have a cap that permits aseptic removal of its contents, particularly for multidose vials.

[0175] Where a component is packaged into a syringe, the syringe may have a needle attached to it. If a needle is not attached, a separate needle may be supplied with the syringe for assembly and use. Such a needle may be sheathed. Safety needles are preferred. 1-inch 23-gauge, 1-inch 25-gauge and $\frac{5}{8}$ -inch 25-gauge needles are typical. Syringes may be provided with peel-off labels on which the lot number, influenza season and expiration date of the contents may be printed, to facilitate record keeping. The plunger in the syringe preferably has a stopper to prevent the plunger from being accidentally removed during aspiration. The syringes may have a latex rubber cap and/or plunger. Disposable syringes contain a single dose of vaccine. The syringe will generally have a tip cap to seal the tip prior to attachment of a needle, and the tip cap is preferably made of a butyl rubber. If the syringe and needle are packaged separately then the needle is preferably fitted with a butyl rubber shield. Preferred syringes are those marketed under the trade name "Tip-Lok"™.

[0176] Containers may be marked to show a half-dose volume e.g. to facilitate delivery to children. For instance, a syringe containing a 0.5 ml dose may have a mark showing a 0.25 ml volume.

[0177] Where a glass container (e.g. a syringe or a vial) is used, then it is preferred to use a container made from a borosilicate glass rather than from a soda lime glass.

[0178] A kit or composition may be packaged (e.g. in the same box) with a leaflet including details of the vaccine e.g. instructions for administration, details of the antigens within the vaccine, etc. The instructions may also contain warnings e.g. to keep a solution of adrenaline readily available in case of anaphylactic reaction following vaccination, etc.

Methods of Treatment, and Administration of the Vaccine

[0179] The invention provides a vaccine manufactured according to the invention. These vaccine compositions are suitable for administration to human or non-human animal subjects, such as pigs or birds, and the invention provides a method of raising an immune response in a subject, comprising

the step of administering a composition of the invention to the subject. The invention also provides a composition of the invention for use as a medicament, and provides the use of a composition of the invention for the manufacture of a medicament for raising an immune response in a subject.

[0180] The immune response raised by these methods and uses will generally include an antibody response, preferably a protective antibody response. Methods for assessing antibody responses, neutralising capability and protection after influenza virus vaccination are well known in the art. Human studies have shown that antibody titers against hemagglutinin of human influenza virus are correlated with protection (a serum sample hemagglutination-inhibition titer of about 30-40 gives around 50% protection from infection by a homologous virus) [77]. Antibody responses are typically measured by hemagglutination inhibition, by microneutralisation, by single radial immunodiffusion (SRID), and/or by single radial hemolysis (SRH). These assay techniques are well known in the art.

[0181] Compositions of the invention can be administered in various ways. The most preferred immunisation route is by intramuscular injection (e.g. into the arm or leg), but other available routes include subcutaneous injection, intranasal [78-80], oral [81], intradermal [82,83], transcutaneous, transdermal [84], etc.

[0182] Vaccines prepared according to the invention may be used to treat both children and adults. Influenza vaccines are currently recommended for use in pediatric and adult immunisation, from the age of 6 months. Thus a human subject may be less than 1 year old, 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old. Preferred subjects for receiving the vaccines are the elderly (e.g. ≥ 50 years old, ≥ 60 years old, and preferably ≥ 65 years), the young (e.g. ≤ 5 years old), hospitalised subjects, healthcare workers, armed service and military personnel, pregnant women, the chronically ill, immunodeficient subjects, subjects who have taken an antiviral compound (e.g. an oseltamivir or zanamivir compound; see below) in the 7 days prior to receiving the vaccine, people with egg allergies and people travelling abroad. The vaccines are not suitable solely for these groups, however, and may be used more generally in a population. For pandemic strains, administration to all age groups is preferred.

[0183] Preferred compositions of the invention satisfy 1, 2 or 3 of the CPMP criteria for efficacy. In adults (18-60 years), these criteria are: (1) $\geq 70\%$ seroprotection; (2) $\geq 40\%$ seroconversion; and/or (3) a GMT increase of ≥ 2.5 -fold. In elderly (>60 years), these criteria are: (1) $\geq 60\%$ seroprotection; (2) $\geq 30\%$ seroconversion; and/or (3) a GMT increase of ≥ 2 -fold. These criteria are based on open label studies with at least 50 patients.

[0184] Treatment can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. In a multiple dose schedule the various doses may be given by the same or different routes e.g. a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Administration of more than one dose (typically two doses) is particularly useful in immunologically naïve patients e.g. for people who have never received an influenza vaccine before, or for vaccinating against a new HA subtype (as in a pandemic outbreak). Multiple doses will typically be administered at least 1 week apart (e.g. about 2 weeks, about

3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, etc.).

[0185] Vaccines produced by the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional or vaccination centre) other vaccines e.g. at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated *H. influenzae* type b vaccine, an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a meningococcal conjugate vaccine (such as a tetravalent A-C-W135-Y vaccine), a respiratory syncytial virus vaccine, a pneumococcal conjugate vaccine, etc. Administration at substantially the same time as a pneumococcal vaccine and/or a meningococcal vaccine is particularly useful in elderly patients.

[0186] Similarly, vaccines of the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional) an antiviral compound, and in particular an antiviral compound active against influenza virus (e.g. oseltamivir and/or zanamivir). These antivirals include neuraminidase inhibitors, such as a (3R,4R,5S)-4-acetyl-amino-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylic acid or 5-(acetylamino)-4-[(aminoiminomethyl)-amino]-2,6-anhydro-3,4,5-trideoxy-D-glycero-D-galactonon-2-enonic acid, including esters thereof (e.g. the ethyl esters) and salts thereof (e.g. the phosphate salts). A preferred antiviral is (3R,4R,5S)-4-acetylamino-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylic acid, ethyl ester, phosphate (1:1), also known as oseltamivir phosphate (TAMIFLUTM).

Other Biologicals

[0187] Whilst the invention has been described with reference to influenza viruses and influenza vaccines, the invention can also be used for the production of other viruses which can be produced by reverse genetics, as well as other viral vaccines. For example, the methods of the invention are particularly suitable for producing viruses such as dengue virus, rotaviruses, measles virus, rubella virus, coronaviruses.

[0188] Other biologicals which can be produced recombinantly can also be produced by the methods of the invention. Suitable examples include antibodies, growth factors, cytokines, lymphokines, receptors, hormones, diagnostic antigens, etc.

[0189] The method steps described herein will apply mutatis mutandis to these viruses, vaccines or biologicals.

General

[0190] The term "comprising" encompasses "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional e.g. X+Y.

[0191] The word "substantially" does not exclude "completely" e.g. a composition which is "substantially free" from Y may be completely free from Y. Where necessary, the word "substantially" may be omitted from the definition of the invention.

[0192] The term "about" in relation to a numerical value x is optional and means, for example, $x \pm 10\%$.

[0193] Unless specifically stated, a process comprising a step of mixing two or more components does not require any specific order of mixing. Thus components can be mixed in any order. Where there are three components then two components can be combined with each other, and then the combination may be combined with the third component, etc.

[0194] The various steps of the methods may be carried out at the same or different times, in the same or different geographical locations, e.g. countries, and by the same or different people or entities.

[0195] Where animal (and particularly bovine) materials are used in the culture of cells, they should be obtained from sources that are free from transmissible spongiform encephalopathies (TSEs), and in particular free from bovine spongiform encephalopathy (BSE). Overall, it is preferred to culture cells in the total absence of animal-derived materials.

[0196] Where a compound is administered to the body as part of a composition then that compound may alternatively be replaced by a suitable prodrug.

[0197] References to a percentage sequence identity between two amino acid sequences means that, when aligned, that percentage of amino acids are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of reference 85. A preferred alignment is determined by the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62. The Smith-Waterman homology search algorithm is taught in reference 86.

[0198] References to a percentage sequence identity between two nucleic acid sequences mean that, when aligned, that percentage of bases are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of reference 85. A preferred alignment program is GCG Gap (Genetics Computer Group, Wisconsin, Suite Version 10.1), preferably using default parameters, which are as follows: open gap=3; extend gap=1.

BRIEF DESCRIPTION OF THE DRAWINGS

[0199] FIG. 1. Method of synthetic gene segment assembly and error correction. (A) Process flow. Time for performance of each step is indicated on the right. (B) Schematic diagram of process. "X" indicates sites of oligonucleotide synthesis errors. In the circular DNA and final assembled gene diagrams (the bottom two), pKS10 sequences are white, and influenza coding sequences are black. (C) Ethidium bromide stained agarose gel of linear synthetic HA and NA genes, including regulatory elements used for virus rescue. MW—molecular weight marker.

[0200] FIG. 2. Timeline of rescue of synthetic H7N9 influenza viruses from transmission of oligonucleotide sequence information to confirmation of recovered viruses.

[0201] FIG. 3. Performance of synthetic H7N9 reassortant viruses from the simulated pandemic response. (A) Titers of influenza viruses in culture fluid harvested from MDCK-supplemented 293T cells 48 hours (dotted columns) and 72 hours (white columns) after co-transfection with the indicated backbone plasmids and synthetic HA and NA gene

constructs. Viral titers were determined by a focus formation assay using MDCK cell monolayers. (B) Replication kinetics of synthetic H7N9 reassortant viruses in MDCK 33016 PF suspension cultures. (C) HA yields from synthetic H7N9 viruses in MDCK suspension cultures, determined by RP-HPLC after purification of viruses on sucrose density gradients. The y-axis in FIGS. 3(A) and (B) shows infectious units (log 10 IU/mL). The y-axis in FIG. 3(C) shows HA yield in μ g/mL.

[0202] FIG. 4. Effect of MDCK feeder cell addition 24 hours after transfection of MDCK cells on rescue efficiency. Titers of recombinant viruses containing the PR8x backbone with HA and NA segments from either (A) A/WSN/1933 (H1N1) or (B) A/California/04/2009 were measured 72 hours after transfection by a focus formation assay. The dotted column shows the results with additional cells whilst the white column shows the results without additional cells. The y-axis indicates infectious units (log 10 IU/mL).

[0203] FIG. 5. Synthetic influenza virus rescue efficiencies. Representative data showing effect of optimized backbones on virus rescue efficiency from transfected cultures of MDCK cells. Detection of influenza viruses in culture fluid harvested at different time points after transfection with the indicated backbone plasmids and synthetic HA and NA constructs, or 24-48 hours after a blind passage using 500 μ l of the culture fluid on fresh MDCK cell monolayers (Passage 1). Viral titers were determined using a focus formation assay for (A) an H1N1 strain, (B) an H3N2 strain, (C) an attenuated H5N1 strain, (D) a swine origin H3N2v strain, (E) a B/Yamagata lineage strain, and (F) a B/Victoria lineage strain. The y-axis indicates infectious units (log 10 IU/mL).

[0204] FIG. 6. Rescue of synthetic H7N9a viruses from either MDCK-supplemented 293T cells or from MDCK cells only. Detection of influenza viruses in culture fluid harvested 48 hours (dotted columns) and 72 hours (white columns) after transfection with the #19 backbone plasmids and synthetic H7 and N9 constructs. Viral titers were determined on MDCK cell monolayers using a focus formation assay. The y-axis indicates infectious units (log 10 IU/mL).

[0205] FIG. 7. Replication kinetics of synthetic H7N9 reassortant viruses with alternative NA UTRs in MDCK 33016 PF suspension cultures. Replication kinetics of synthetic H₇N₉ viruses with alternative NA UTRs and different backbones, (A) PR8x, (B) #19, and (C) #21, in MDCK suspension cultures. Starting m.o.i. was 0.001. The x-axis indicates the hours post infection. The y-axis indicates infectious units (log 10 IU/mL).

[0206] FIG. 8. HA yield by turkey RBC agglutination by synthetic H7N9 viruses with alternative NA UTRs. The y-axis indicates the HA units.

[0207] FIG. 9 compares the HA content (determined by lectin-capture ELISA) of sucrose gradient-purified viruses harvested at 60 h post-infection from MDCK cell cultures infected with reverse genetics-derived 6:2 reassortants containing either the PR8-X or #21 backbone with the HA and NA segments from (A) a pandemic-like H1 strain (strain 1) or (B) a second pandemic-like strain (strain 2). In FIGS. 9A and 9B, the black bar represents a reference vaccine strain (derived from WHO-Collaborating Centre-supplied strain) as

control, the grey bar represents a reassortant virus containing the PR8-X backbone, and the white bar represents a reassortant virus containing the #21 backbone. The y-axis indicates HA yield in μ g/ml.

[0208] FIG. 10 compares the HA content (determined by a lectin-capture ELISA) of unpurified viruses harvested at 60 h post-infection from MDCK cell cultures infected with reverse genetics-derived 6:2 reassortants containing either the PR8-X or #21 backbone with the HA and NA segments from (A) a pre-pandemic H1 strain (strain 1) and (B) a second pre-pandemic H1 strain (strain 2). In FIGS. 10A and 10B, the black bar represents a reference vaccine strain (derived from WHO-Collaborating Centre-supplied strain) as control, the grey bar represents a reassortant virus containing the PR8-X backbone, and the white bar represents a reassortant virus containing the #21 backbone. The y-axis indicates HA yield in μ g/ml.

[0209] FIG. 11 compares the HA yield (determined by HPLC) of sucrose-purified viruses harvested at 60 h post-infection from MDCK cell cultures infected with reverse genetics-derived 6:2 reassortants containing either the PR8-X or #21 backbone with the HA and NA segments from an H3 strain (strain 1). The black bar represents a reference vaccine strain (derived from WHO-Collaborating Centre-supplied strain) as control, the grey bar represents a reassortant virus containing the PR8-X backbone, and the white bar represents a reassortant virus containing the #21 backbone. The y-axis indicates HA yield in μ g/ml.

[0210] FIG. 12 compares virus titers (determined by focus formation assay (FFA); FIG. 12A) and HA titers (determined by lectin-capture ELISA; FIG. 12B) of viruses harvested from embryonated chicken eggs at 60 h post-infection with a reference vaccine strain or reverse genetics-derived 6:2 reassortant viruses made with either the PR8-X or #21 backbone and the HA and NA segments from a pandemic-like H1 strain (strain 2). In FIG. 12A, the individual dots represent data from single eggs. The line represents the average of the individual data points. The y-axis indicates infectious units/ml. In FIG. 12B, the black bar represents the reference vaccine strain (derived from WHO-Collaborating Centre-supplied strain), the grey bar represents a reassortant virus containing the PR8-X backbone, and the white bar represents a reassortant virus containing the #21 backbone. The y-axis indicates HA yield in μ g/ml for pooled egg samples.

[0211] FIG. 13 compares the HA yield of different reassortant influenza B strains in MDCK cells relative to the wild-type (WT) or reverse genetics-derived (RG) B/Brisbane/60/08 strain. The viral segments of the tested influenza B viruses are shown in Table 1. The y-axis indicates the HA yield in μ g/mL.

[0212] FIG. 14 compares the HA yield of different reassortant influenza B strains in MDCK cells relative to the wild-type (WT) or reverse genetics-derived (RG) B/Panama/45/90 strain. The viral segments of the tested influenza B viruses are shown in Table 1. The y-axis indicates the HA yield in μ g/mL.

MODES FOR CARRYING OUT THE INVENTION

Increased Gene Synthesis Speed and Accuracy Through Enzymatic Assembly and In Vitro Error Correction.

[0213] A purely enzymatic one-step, isothermal assembly method of gene assembly, previously used to synthesize the

entire 16,299 base pair mouse mitochondrial genome from 600 overlapping 60-base oligonucleotides (6), was adapted for the generation of synthetic DNA copies of influenza virus genome segments. The method uses 5' T5 exonuclease (Epicentre), Phusion DNA polymerase (New England Biolabs [NEB]) and Taq DNA ligase (NEB) to join multiple DNA fragments during a brief 50° C. reaction (7). The method was selected to assemble genes for synthetic vaccine seeds because it is rapid and readily automated. All bases of the resulting synthetic genes have their origin in chemically synthesized oligonucleotides. Using current techniques, DNA oligonucleotide synthesis has an error rate of about 1 per 325 bases, typically due to missing bases from failed chemical coupling, and the error rate increases with the length of the oligonucleotide synthesized (6). When DNA copies of the 1.7 kb HA and 1.5 kb NA viral RNA genome segments are synthesized by this technique using oligonucleotides approximately 60 bases in length with 30 bases of overlap between oligonucleotides on opposite strands, only 3% of the synthetic products have the correct sequence. During the mouse mitochondrial genome synthesis, subassemblies were cloned and sequenced, and sets of error-free sequences were selected for subsequent rounds of assembly (6). For the purpose of rapid influenza vaccine seed virus generation, this method of error correction would introduce unacceptable delays.

[0214] The problem of synthesizing DNA copies of HA and NA genome segments with both accuracy and speed was solved by (i) increasing the overlap between oligonucleotides, (ii) introducing an enzymatic error correction step, and (iii) increasing the number of oligonucleotides assembled at once, eliminating the need for stepwise assembly via sub-assemblies (FIGS. 1a and b). Specifically, the length of oligonucleotides was increased to 60-74 bases, and full length genes (including 5' and 3' un-translated regions) were assembled from staggered sets of oligonucleotides that contained all residues of a double-stranded DNA molecule so that, prior to ligation, the full double-stranded gene can be annealed. In practice, a software algorithm generates a set of sequences for oligonucleotides (a maximum of 96 oligonucleotides per HA, NA pair) that meet these criteria. After chemical synthesis of the oligonucleotides, enzymatic isothermal assembly, and PCR amplification, error-containing DNA is removed enzymatically by treating melted and re-annealed DNA with the commercially available ErrASE error correction kit (Novici Biotech), which excises areas of base mismatch in double-stranded DNA molecules before another round of PCR amplification.

[0215] After agarose gel verification of the products' sizes, the control sequences (including Pol I and Pol II promoters and their terminator and polyadenylation signals) needed to generate RNA genome segments and mRNA for virus rescue are added by isothermally coupling the synthetic DNA with a linearized plasmid (pKS10) that contains these regulatory sequences (87). Nucleotide identity between the ends of the linearized plasmid and the 5' and 3' primers used for gene synthesis guide this assembly. The assembled molecule is the substrate for a round of high fidelity PCR amplification using primers outside the transcription control regions.

[0216] After purification and concentration of the amplicons, approximately 10 µg of assembled linear DNA cassettes

that contain the influenza gene flanked by control sequences are obtained, ready for transfection into the MDCK 33016 PF cell line for influenza virus rescue (FIG. 1c). The time from receipt of oligonucleotides to a purified HA or NA-encoding DNA cassette ready for transfection is approximately 10 hours. While virus rescue is underway using the enzymatically assembled, error corrected, and amplified DNA, parallel cloning and sequencing verifies the sequence of the assembled genes. Typically, 80-100% of the full-length sequences obtained are correct.

Optimized Rescue of Influenza Viruses from Synthetic DNA on a Vaccine Manufacturing Cell Line.

[0217] The rescue protocol for synthetic seed virus generation is adapted from a previously described eight-plasmid ambisense system in which each expression plasmid has a cDNA copy of a viral gene segment bounded at the 5' end by a Pol II promoter to drive transcription of messenger RNA and at the 3' end by a human Pol I promoter to drive transcription of negative-stranded influenza RNA genome segments (88). The manufacturing-qualified MDCK 33016 PF cell line is a less efficient substrate for transfection and influenza virus rescue by reverse genetics than 293T cells (which are not qualified for vaccine production). Influenza virus reverse genetic rescue has been described using Vero cells (some banks of which are qualified for vaccine production) (89, 90). However, using one cell line for vaccine virus rescue and a different cell line for antigen production would add adventitious agent risk and regulatory and manufacturing complexity. Therefore, we elected to increase the efficiency of reverse genetic DNA rescue in MDCK 33016 PF cells so that a single cell line can be used for seed generation and vaccine antigen production. Although Pol I promoters are generally species specific, human Pol I efficiently drives transcription in MDCK 33016 PF cells, which are of canine origin.

[0218] One µg of each linear synthetic cassette encoding HA or NA is co-transfected into MDCK 33016 PF cells together with 1 µg of each ambisense plasmid that encodes PA, PB1, PB2, NP, NS, or M and a helper plasmid that encodes the protease TMPRSS2 (91). To increase rescue efficiency, we add cultures of fresh (un-transfected) MDCK 33016 PF cells after transfection, which increases the probability of virus recovery, presumably by providing a healthier population of cells in which rescued viruses can further amplify (FIG. 4). Viruses are detected in cell culture medium within 72 hours after transfection (approximately 24 hours later than after transfection of Vero or 293T cells), using a focus-formation assay in which the medium from the transfected culture is added to a fresh MDCK cell monolayer, and infectious virus is detected by immuno-staining for expressed NP.

Improved Backbones for Synthetic Virus Rescue.

[0219] A significant increase in rescue efficiency was provided by using improved influenza backbones (sets of genome segments encoding influenza virus proteins other than HA and NA). The initial backbone improvement resulted from using genes from a PR8 variant (designated PR8x) that had been adapted over five passages to growth in MDCK 33016 PF cells. Additional improvements resulted from com-

bining backbone genome segments of multiple strains. During pilot manufacturing of influenza vaccines using MDCK 33016 PF cells, several human influenza viruses, such as strain 105p30 (an A/New Caldonia/20/1999 (H1N1)-like strain that was passaged 30 times in MDCK 33016 PF cells), were adapted to grow efficiently in cultured cells, although not as efficiently as strain PR8x. Synthesized viruses with HA and NA genes from historical H3N2 strains and a backbone (designated #19) composed of NP, PB1, and PB2 genome segments from strain 105p30 and M, NS, and PA genome segments from strain PR8x often outperformed equivalent viruses with entirely PR8x backbones in reverse genetic rescue efficiency and yield of HA (table 1 and FIG. 5). Similarly, synthesized viruses with HA and NA genes from H1N1 strains and a backbone (designated #21) with the PB1 genome segment of A/California/7/2009 and the other genome segments from strain PR8x often had greater rescue efficiencies and HA yields than equivalent viruses with entirely PR8x backbones (table 1 and FIG. 5). This finding is consistent with a report that the A/California PB1 genome segment is preferentially found in the reassortant progeny of co-infections of chicken eggs with A/California/7/2009 and a donor strain that has a PR8 backbone (18).

TABLE 1

Representative data showing virus titers and HA yields (in mass per volume of cell culture medium before purification) from synthetic influenza viruses relative to conventional vaccine viruses (reference strains obtained from the US CDC or the UK National Institute for Biological Standards and Control) in MDCK 33016PF cells.						
	Reference strain	FFA titer	HA yield by RP-HPLC	HA yield by ELISA	Best backbone	
<u>Synthetic H1N1 strain</u>						
A/Christchurch/16/2010 ^{a,b}	NIB74 ^b	4.9	1.6	2.3	#21	
A/Brisbane/10/2010 ^a	wild-type	19	2.1	7.2	#21	
A/Brisbane/59/2007	IVR-148	5.5	1.9	2.9	#21	
A/Solomon/3/2006	IVR-145	3.4	1.8	5.9	#21	
<u>Synthetic H3N2 strain</u>						
A/Victoria/361/2011 ^{a,b}	IVR-165 ^b	2.6	2.5	1.4	PR8x	
A/Victoria/210/2009 ^a	X187	2.6	2.3	1.7	PR8x	
A/Wisconsin/15/2009 ^b	X183 ^b	35	below detection	15	#19	
A/Uruguay/716/2007 ^b	X175C ^b	2.0	1.3	1.4	#19	
<u>Synthetic H5N1 strain</u>						
A/turkey/Turkey/1/2005 ^{a,b}	NIBRG23 ^b	1.9	1.6	n/a	#19	
<u>Synthetic H3N2v strain</u>						
A/Indiana/8/2011 ^{a,b}	X213 ^b	1.9	2.3	n/a	#21	

TABLE 1-continued

Representative data showing virus titers and HA yields (in mass per volume of cell culture medium before purification) from synthetic influenza viruses relative to conventional vaccine viruses (reference strains obtained from the US CDC or the UK National Institute for Biological Standards and Control) in MDCK 33016PF cells.

	Reference strain	FFA titer	HA yield by RP-HPLC	HA yield by ELISA	Best backbone
<u>Synthetic B-Yamagata strain</u>					
B/Wisconsin/1/2010 ^{a,b}	wild-type ^b		1.7	1.4	1.7
B/Brisbane/3/2007	wild-type		0.88	3.5	5.2
<u>Synthetic B-Victoria strain</u>					
B/Brisbane/60/2008 ^a	wild-type		0.72	1.8	0.67

Data values are normalized and shown as fold-improvement over reference strains, where values of the reference strains are set to 1.0. RP-HPLC or lectin-capture ELISA was used to detect HA antigen directly from the culture medium of virus-infected MDCK cells (m.o.i = 0.001 or 0.0001), unless specified.

^arecombinant viruses containing synthetic HA and NA segments

^bviruses from culture medium were purified by sucrose-density gradient prior to characterization

n/a = data not available because strain-specific anti-sera were not available for ELISA below detection = data not available because the reference strain had undetectable HA levels by RP-HPLC

[0220] Historically, most influenza type B vaccine seeds have been wild type viruses, not reassortants, because wild type influenza B viruses generally provide adequate yields. To use the synthetic procedures for influenza B viruses more readily, two optimized type B backbones that provide consistent rescue of synthetic influenza B viruses were developed (table 1 and FIG. 5). In the first (designated Brisbane), all backbone genome segments originate from B/Brisbane/60/2008; in the second (designated #B34), the genome segments encoding PA, PB1, PB2, and NP originate from B/Brisbane/60/2008, and those encoding M and NS originate from B/Panama/45/1990.

[0221] Overall, the use of optimized backbones for A strains increased rescue efficiencies up to 1000-fold (as measured by infectious titers obtained after transfection, FIG. 5) and increased HA yields in research scale infections of MDCK 33016 PF cells by 30% to 15-fold, depending on the strain and assay used for HA detection (table 1). In general, yields of HA from these viruses are also increased relative to those from viruses with PR8 backbones when the viruses are propagated in embryonated chicken eggs (table 2). To make use of such strain-specific differences, an optimal synthetic seed generation strategy would combine the HAs and NAs from circulating strains of interest with a panel of alternative backbones to maximize the chances of isolating a high-yielding vaccine virus.

TABLE 2

Representative data showing virus titers and HA yields (in mass per volume of egg allantoic fluid before purification) from synthetic influenza viruses relative to conventional vaccine viruses (reference strains obtained from the US CDC or the UK National Institute for Biological Standards and Control) in chicken eggs.						
Synthetic strain	Reference strains	FFA titer	HA titer by GP-RBC agglutination	HA yield by RP-HPLC	HA yield by ELISA	Best backbone
A/H1N1/Chirstchurh/16/2010 ^b	NIB74	3.0	3.5	18	8.4	#21
A/H3N2/Victoria/210/2009 ^b	X187	0.94	1.3	not tested	1.2	PR8x

TABLE 2-continued

Representative data showing virus titers and HA yields (in mass per volume of egg allantoic fluid before purification) from synthetic influenza viruses relative to conventional vaccine viruses (reference strains obtained from the US CDC or the UK National Institute for Biological Standards and Control) in chicken eggs.

Synthetic strain	Reference strains	FFA titer	HA titer by GP-RBC agglutination	HA yield by RP-HPLC	HA yield by ELISA	Best backbone
A/H3N2/Victoria/361/2011 ^a	IVR-165	6.4	2.6	not tested	3.4	#21
A/H3N2v/Indiana/8/2011 ^{a,b}	X213	not tested	3.0	1.6	n/a	PR8x
B/Yam/Wisconsin/1/2010 ^a	wild-type	4.7	3.4	not tested	3.5	Brisbane
B/Vic/Brisbane/60/2008 ^a	wild-type	1.1	0.82	not tested	0.79	Brisbane

Data values are normalized and shown as fold-improvement over reference strains, where values of the reference strains are set to 1.0. GP-RBC agglutination, RP-HPLC or lectin-capture ELISA was used to detect HA antigen directly from the allantoic fluid of virus-infected chicken eggs, unless specified.

^a= recombinant viruses containing synthetic HA and NA genome segments

^b= viruses from egg allantoic fluid were purified by sucrose density gradient before characterization

n/a = data not available because strain-specific antisera were not available for ELISA

not tested = data not available because assay was not performed

Speed of Synthetic Vaccine Virus Generation in a Simulated Pandemic Response.

[0222] In a timed proof-of-concept test of the synthetic system's first iteration, the virus synthesis group was provided with unidentified HA and NA genome segment sequences by collaborators not directly involved in the synthesis (17). The sequences included complete coding regions but incomplete un-translated regions (UTRs), mimicking the information likely to be available in the early days of a pandemic. Sequence analysis of the HA genome segment showed that it was very closely related (96% nucleotide sequence identity by Blast to GenBank) to a low pathogenicity North American avian H7N3 virus (A/Canada goose/BC/3752/2007), and that the NA genome segment was very closely related (96% nucleotide sequence identity by Blast to GenBank) to a low pathogenicity North American avian H10N9 virus (A/king eider/Alaska/44397-858/2008). Although our software generates the sequences of the oligonucleotides used for rescue, user intervention is needed when there are ambiguities in the available sequence data. In this case, the unknown terminal UTR sequences were generated based on sequence alignments with a limited number of related full-length H7 sequences and by comparison with consensus UTRs for H7 and N9 genomic segments created from high quality sequence data in GenBank. This analysis revealed heterogeneity in the non-coding regions of NA genes of H7N9 strains (U/C at 1434 in the positive-sense orientation). So, alternative sets of 5' NA oligonucleotides were used to construct two variants of the NA cassettes.

[0223] Oligonucleotide synthesis began at 8:00 am EDT on Monday, Aug. 29, 2011 (FIG. 2). By noon on Friday, September 4, immunostaining of a secondary culture confirmed that the virus had been rescued. The 4 days and 4 hours from start of synthesis to detection of rescued virus included time spent shipping DNA from the oligonucleotide synthesis and gene assembly laboratories in California to the virus rescue laboratory in Massachusetts. When all functions are consolidated in one location, the potential for delays and mishaps due to shipping will be reduced. The original proof-of-concept rescues were conducted using 293T cells; rescue of the strains using MDCK cells, as would be done during an actual pandemic response, slows detection of rescued virus by approximately 24 hours (FIG. 6). The sequences of the HA and NA genome segments of the synthetic H7N9 reassortant viruses from the proof-of-concept exercise were determined follow-

ing two rounds of virus amplification in MDCK 33016 PF cells and were identical to those used to program oligonucleotide synthesis. Two-way hemagglutination inhibition (HI) testing (reciprocal HI assays using antigen from the synthetic and natural strains and ferret sera drawn after synthetic and natural virus infection) (19, 20) demonstrated antigenic identity of the synthetic virus to A/goose/Nebraska/17097-4/2011 (H7N9), which had subsequently been revealed as the wild type virus from which the sequences that were electronically transmitted to the virus synthesis group had been obtained (Table 1).

[0224] The A/goose/Nebraska/17097-4/2011 HA and NA genes were rescued with PR8x, #19, and #21 backbones. Virus rescue was more efficient using the #19 and #21 backbones than the PR8x backbone, based on the titers of viruses harvested 48 and 72 hours after transfection (FIG. 3a). To test growth characteristics, the synthetic viruses were amplified once in MDCK 33016 PF monolayers and then used to infect suspension MDCK 33016 PF cultures at a multiplicity-of-infection (m.o.i.) of 0.001. Despite differences in the efficiency of virus recovery, viruses exhibited similar growth characteristics, regardless of backbone (FIG. 3b). The H7N9a set of viruses (C1434 positive sense NA) achieved infectious titers approximately 10-fold higher than their H7N9b counterparts (U1434 positive sense NA; FIG. 7). The viruses with the highest infectious yields also produced the most HA per volume of infected MDCK suspension culture (FIG. 3c). Thus, the single nucleotide substitution in the 5' NA non-coding region of the genomic RNA strongly influenced both infectious titer and HA yield (FIG. 8). The H₇N₉a virus with the #19 backbone produced 1.5-fold more HA than a virus with the same HA and NA in the context of the standard PR8x backbone (FIG. 3c). This demonstration confirmed the importance of rescuing multiple HA or NA variants with multiple backbones to increase the probability of identifying high yielding vaccine virus strains early in the vaccine seed generation process. Simultaneous rescue of multiple variants is faster and more easily accomplished using the synthetic approach than standard plasmid mutagenesis approaches. This example also indicates the importance for pandemic response of including as complete genome segment sequences as possible in genetic databases and of clearly delineating terminal sequences originating from viral genome segments from those originating from sequencing primers.

Robustness of the Synthetic Approach to Vaccine Virus Generation.

[0225] By combining gene synthesis, enzymatic error correction, optimized rescue protocols, and optimized backbones, the synthetic approach provides a robust tool to obtain influenza vaccine viruses. To date, the team has not encountered any influenza virus strain that cannot be rescued synthetically. The synthetic process has been used to generate a wide variety of influenza strains, including H1N1 (pre- and post-2009 variants), seasonal H3N2, swine origin H3N2v, B (Yamagata and Victoria lineages), attenuated H5N1, and H7N9 strains (table 3). The robustness of synthetic influenza virus recovery on MDCK cells is in striking contrast to the unreliability of conventional vaccine virus isolation using eggs, particularly for recent H3N2 strains (21).

TABLE 3

Diversity of synthetic influenza virus strains rescued.			
SEASONAL SEROTYPE A VIRUSES		Backbone	
Source of synthetic HA NA	PR8x	#19	#21
A/H1N1/Brisbane/10/2010	+	+	+
A/H1N1/Christchurch/16/2010 (NIB74)	+	+	+
A/H1N1/Christchurch/16/2010 NIB74-K170E	n/a	n/a	+
A/H1N1/Christchurch/16/2010 NIB74-K171E	n/a	n/a	+
A/H1N1/Christchurch/16/2010 NIB74-G172E	n/a	n/a	+
A/H1N1/Christchurch/16/2010 NIB74-G173D	n/a	n/a	+
A/H3N2/Uruguay/716/2007	+	+	+
A/H3N2/Victoria/210/2009 (X187)	+	+	+
A/H3N2/Victoria/361/2011 (CDC E3)	+	+	+
A/H3N2/Victoria/361/2011 (WHO E3)	+	+	+
A/H3N2/Victoria/361/2011 (MDCK)	+	+	+
A/H3N2/Berlin/93/2011 (egg-derived)	+	+	+
A/H3N2/Berlin/93/2011 (cell-derived)	+	+	+
A/H3N2/Brisbane/402/2011	+	+	+
A/H3N2/Victoria/304/2011 NVD p2/E3	-	-	+
A/H3N2/Brisbane/256/2011 MDCK P2	+	+	+
A/H3N2/Brisbane/256/2011 P2/E3	-	+	+
A/H3N2/South Australia/34/2011	-	+	+
A/H3N2/Brisbane/299/2011 (IVR164)	+	+	+
A/H3N2/Brisbane/299/2011 (E5)	+	+	+
A/H3N2/South Australia/3/2011	+	+	+
A/H3N2/Wisconsin/1/2011	+	+	+
SEASONAL SEROTYPE B VIRUSES		Backbone	
Source of synthetic HA NA	Bris	#B34	
B/Yam/Hubel-Wujiangang/158/2009	+	+	
B/Yam/Wisconsin/1/2010	+	+	
B/Yam/Brisbane/3/2007	+	+	
B/Yam/Jiangsu/10/2003	+	+	
B/Yam/Johannesburg/05/1999	+	+	
B/Yam/Yamanashi/166/1998	+	+	
B/Yam/Yamagata/16/1998	+	+	
B/Yam/Texas/6/2011	+	-	
B/Vic/New Hampshire/1/2012	+	+	
B/Vic/Malaysia/2506/2004	+	+	
B/Vic/Brisbane/32/2002	+	+	
B/Vic/Brisbane/60/2008 (cell)	+	+	
B/Vic/Brisbane/60/2008 (egg)	+	n/a	
B/Vic/Nevada/3/2011	+	+	
PANDEMIC VIRUSES		Backbone	
Source of synthetic HA NA	PR8x	#19	#21
A/H5N1/Hubel/1/2010	+	+	+
A/H5N1/Egypt/N03072/2010	+	+	+
A/H5N1/Turkey/Turkey/1/2005	+	+	+

TABLE 3-continued

Diversity of synthetic influenza virus strains rescued.		
A/H7N9/goose/Nebraska/11-017097-4/2011	+	+
A/H3N2v/Indiana/8/2011	+	+

n/a = not attempted;

+ = virus recovered in ≤6 days post-transfection;

- = virus not recovered by 6 days post-transfection.

Implications for the Global Strain Change and Pandemic Response Systems.

[0226] The speed, ease, and accuracy with which higher yielding influenza vaccine seeds can be produced using synthetic techniques promises more rapid future pandemic responses and a more reliable supply of better matched seasonal and pandemic influenza vaccines. The potential for propagation of adventitious agents from the human nasal secretions used for original influenza virus isolation will be eliminated when such materials are used only to generate sequence information, not for propagation into viruses used to seed vaccine production bioreactors or eggs. The speed of the technical steps of synthesis and virus rescue is actually a relatively minor component of the potential acceleration of seed generation based on synthetic technology. If the performance of synthetic vaccine viruses is sufficient, much greater time savings will result from the ability of synthetic technology to alleviate the need to ship viruses and clinical specimens between laboratories and use a classic reassortment approach to generate high-yielding vaccine strains.

[0227] Today, the more than 120 National Influenza Centers (NICs) that conduct influenza surveillance periodically ship clinical specimens to WHO Collaborating Centers, where attempts are made to propagate the wild type viruses in MDCK cells. With synthetic vaccine viruses, the system could realize increased efficiency. Sequence data obtained by directly sequencing HA and NA genomic RNAs in clinical specimens at the NICs could be posted on publically accessible websites, where they can be downloaded immediately by manufacturers, public health agencies, and other researchers worldwide. Continuous comparison of the stream of sequence data to databases of sequence and HI data by algorithms now under development could identify those emerging viruses that are most likely to have significant antigenic differences from current vaccine strains. Efficient primary synthetic rescue with a panel of high growth backbones will simultaneously generate the viruses needed for antigenic testing and the best vaccine seed candidates to be used if a virus is found to be antigenically distinct and epidemiologically important.

[0228] Today, vaccine viruses are only shipped from WHO Collaborating Centers or reassortant generating laboratories to manufacturers after they are fully tested, and testing often takes longer than the generation of the vaccine strains. The decentralization of seed generation permitted by these synthetic techniques could allow manufacturers to undertake scale up and process development at risk for strains that they could generate immediately after the NICs post sequences. Carrying out these manufacturing activities simultaneously with seed testing would cut additional weeks from pandemic response times. Libraries of synthetic influenza genes could further accelerate pandemic responses, if the pre-synthesized genes in the libraries match future pandemic strains.

Growth Characteristics of Reassortant Viruses Containing PR8-X or Canine Adapted PR8-X Backbones

[0229] In order to provide high-growth donor strains, the inventors found that a reassortant influenza virus comprising the PB1 segment of A/California/07/09 and all other backbone segments from PR8-X shows improved growth characteristics compared with reassortant influenza viruses which contain all backbone segments from PR8-X. This influenza backbone is referred to as #21.

[0230] In order to test the suitability of the #21 strain as a donor strain for virus reassortment, reassortant influenza viruses are produced by reverse genetics which contain the HA and NA proteins from various influenza strains (including zoonotic, seasonal, and pandemic-like strains) and the other viral segments from either PR8-X or the #21 backbone. The HA content, HA yield and the viral titres of these reassortant viruses are determined. As a control a reference vaccine strain which does not contain any backbone segments from PR8-X or A/California/07/09 is used. These viruses are cultured either in embryonated chicken eggs or in MDCK cells.

[0231] The results indicate that reassortant viruses which contain the #21 backbone consistently give higher viral titres and HA yields compared with the control virus and the virus which contains all backbone segments from PR8-X in both eggs and cell culture. This difference is due to the PB1 segment because this is the only difference between #21 reassortants and PR8-X reassortants (see FIGS. 8 to 11).

[0232] In order to test the effect of canine-adapted mutations on the growth characteristics of PR8-X, the inventors introduce mutations into the PA segment (E327K, N444D, and N675D), or the NP segment (A27T, E375N) of PR8-X. These backbones are referred to as PR8-X(cPA) and PR8-X(cNP), respectively. Reassortant influenza viruses are produced containing the PR8-X(cPA) and PR8-X(cNP) backbones and the HA and NA segments of a pandemic-like H1 influenza strain (strain 1) or a H3 influenza strain (strain 2). As a control a reference vaccine strain which does not contain any backbone segments from PR8-X is used. The reassortant influenza viruses are cultured in MDCK cells.

[0233] The results show that reassortant influenza viruses which contain canine-adapted backbone segments consistently grow to higher viral titres compared with reassortant

influenza viruses which contain unmodified PR8-X backbone segments (see FIGS. 8 and 9).

Growth Characteristics of Reassortant Viruses Containing PR8-X, #21 or #21C Backbones

[0234] In order to test whether canine-adapted mutations in the backbone segments improve the growth characteristics of the #21 backbone, the inventors modify the #21 backbone by introducing mutations into the PR8-X PB2 segment (R389K, T559N). This backbone is referred to as #21C. Reassortant influenza viruses are produced by reverse genetics which contain the HA and NA proteins from two different pandemic-like H1 strains (strains 1 and 2) and the other viral segments from either PR8-X, the #21 backbone or the #21C backbone. As a control a reference vaccine strain which does not contain any backbone segments from PR8-X or A/California/07/09 is used. These viruses are cultured in MDCK cells. The virus yield of these reassortant viruses is determined. For reassortant influenza viruses containing the HA and NA segments from the pandemic-like H1 strain (strain 1) and the PR8-X or #21C backbones the HA titres are also determined.

[0235] The results show that reassortant influenza viruses which contain the #21C backbone consistently grow to higher viral titres compared with reassortant influenza viruses which contain only PR8-X backbone segments or the #21 backbone (see FIGS. 5, 6 and 7). Reassortant influenza viruses comprising the #21C backbone also show higher HA titres compared with PR8-X reassortants.

Growth Characteristics of Reassortant Influenza B Viruses

[0236] Reassortant influenza B viruses are produced by reverse genetics which contain the HA and NA proteins from various influenza strains and the other viral segments from B/Brisbane/60/08 and/or B/Panama/45/90. As a control the corresponding wild-type influenza B strain is used. These viruses 30 are cultured either in embryonated chicken eggs or in MDCK cells. The following influenza B strains are used:

TABLE 4

TABLE 4-continued

combo #	Backbone segments						Antigenic determinants	
	PA	PB1	PB2	NP	NS	M	HA	NA
21	Panama	Brisbane	Panama	Panama	Panama	Panama	Panama	Panama
22	Panama	Panama	Brisbane	Panama	Panama	Panama	Panama	Panama
23	Panama	Panama	Panama	Brisbane	Panama	Panama	Panama	Panama
24	Brisbane	Brisbane	Panama	Panama	Panama	Panama	Panama	Panama
25	Brisbane	Panama	Brisbane	Panama	Panama	Panama	Panama	Panama
26	Brisbane	Panama	Panama	Brisbane	Panama	Panama	Panama	Panama
27	Panama	Brisbane	Brisbane	Panama	Panama	Panama	Panama	Panama
28	Panama	Brisbane	Panama	Brisbane	Panama	Panama	Panama	Panama
29	Panama	Panama	Brisbane	Brisbane	Panama	Panama	Panama	Panama
30	Brisbane	Brisbane	Brisbane	Panama	Panama	Panama	Panama	Panama
31	Brisbane	Brisbane	Panama	Brisbane	Panama	Panama	Panama	Panama
32	Brisbane	Panama	Brisbane	Brisbane	Panama	Panama	Panama	Panama
33	Panama	Brisbane	Brisbane	Brisbane	Panama	Panama	Panama	Panama
34	Brisbane	Brisbane	Brisbane	Brisbane	Panama	Panama	Panama	Panama
35	Brisbane	Brisbane	Brisbane	Brisbane	Brisbane	Panama	Panama	Panama

[0237] The results indicate that reassortant viruses #2, #9, #30, #31, #32, #33, #34 and #35 grow equally well or even better in the culture host (see FIGS. 13 and 14) than the corresponding wild-type strain. Most of these strains comprise the NP segment from B/Brisbane/60/08 and some (in particular those which grew best) further contain the PB2 segment from B/Brisbane/60/08. All of these viruses also contain viral segments from the B/Victoria/2/87-like strain and the B/Yamagata/16/88-like strain at a ratio 7:1, 6:2, 4:4, 3:4 or 1:7.

[0238] It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

REFERENCES

[0239] [1] WO2007/002008
 [0240] [2] WO2007/124327
 [0241] [3] WO2011/012999
 [0242] [4] Verity et al. (2012); *Influenza Other Respi Viruses*; 6(2):101-9.
 [0243] [5] Zhou et al. (2009) *J. Virol.*; 83(19):10309-13
 [0244] [6] Gibson et al. (2010); *Nature Methods* 7, 901-903.
 [0245] [7] Gibson et al. (2009) *Nature Methods* 6, 343-345.
 [0246] [8] U.S. Pat. No. 6,576,453
 [0247] [9] Yount et al. (2002) *J Virol* 76:11065-78.
 [0248] [10] Kodumal et al. (2004) *Proc Natl Acad Sci USA*. 101(44):15573-8.
 [0249] [11] Yount et al. (2002) *J Virol* 76:11065-78.
 [0250] [12] Sambrook et al, Molecular Cloning: A Laboratory Manual, 2 ed., 1989, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
 [0251] [13] WO2010/133964
 [0252] [14] WO2009/000891
 [0253] [15] Sambrook et al, Molecular Cloning: A Laboratory Manual, 2 ed., 1989, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
 [0254] [16] WO2011048560
 [0255] [17] Neumann et al. (2005) *Proc Natl Acad Sci USA* 102: 16825-9
 [0256] [18] Kistner et al. (1998) *Vaccine* 16:960-8.
 [0257] [19] Kistner et al., (1999) *Dev Biol Stand* 98:101-110.

[0258] [20] Bruhl et al. (2000) *Vaccine* 19:1149-58.
 [0259] [21] WO2006/108846.
 [0260] [22] Pau et al. (2001) *Vaccine* 19:2716-21.
 [0261] [23] <http://www.atcc.org/>
 [0262] [24] <http://locus.umdnj.edu/>
 [0263] [25] WO97/37000.
 [0264] [26] Brands et al. (1999) *Dev Biol Stand* 98:93-100.
 [0265] [27] Halperin et al. (2002) *Vaccine* 20:1240-7.
 [0266] [28] EP-A-1260581 (WO01/64846).
 [0267] [29] WO2006/071563.
 [0268] [30] WO2005/113758.
 [0269] [31] Grachev et al. (1998) *Biologicals*; 26(3):175-93.
 [0270] [32] Herlocher et al. (2004) *J Infect Dis* 190(9): 1627-30.
 [0271] [33] Le et al. (2005) *Nature* 437(7062):1108.
 [0272] [34] Needleman & Wunsch (1970) *J. Mol. Biol.* 48, 443-453.
 [0273] [35] Rice et al. (2000) *Trends Genet.* 16:276-277.
 [0274] [36] Rota et al. (1992) *J Gen Virol* 73:2737-42.
 [0275] [37] GenBank sequence GI:325176.
 [0276] [38] McCullers et al. (1999) *J Virol* 73:7343-8.
 [0277] [39] GenBank sequence GI:325237.
 [0278] [40] U.S. Pat. No. 6,468,544.
 [0279] [41] WO97/37001
 [0280] [42] WO02/28422.
 [0281] [43] WO02/067983.
 [0282] [44] WO02/074336.
 [0283] [45] WO01/21151.
 [0284] [46] WO02/097072.
 [0285] [47] WO2005/113756.
 [0286] [48] Huckriede et al. (2003) *Methods Enzymol* 373: 74-91.
 [0287] [49] Vaccines. (eds. Plotkins & Orenstein). 4th edition, 2004, ISBN: 0-7216-9688-0
 [0288] [50] Treanor et al. (1996) *J Infect Dis* 173:1467-70.
 [0289] [51] Keitel et al. (1996) *Clin Diagn Lab Immunol* 3:507-10.
 [0290] [52] Herlocher et al. (2004) *J Infect Dis* 190(9): 1627-30.
 [0291] [53] Le et al. (2005) *Nature* 437(7062):1108.
 [0292] [54] WO2008/068631.
 [0293] [55] Gennaro (2000) *Remington: The Science and Practice of Pharmacy*. 20th edition, ISBN: 0683306472.

[0294] [56] Banzhoff (2000) *Immunology Letters* 71:91-96.

[0295] [57] Nony et al. (2001) *Vaccine* 27:3645-51.

[0296] [58] EP-B-0870508.

[0297] [59] U.S. Pat. No. 5,948,410.

[0298] [60] WO2007/052163.

[0299] [61] WO2007/052061

[0300] [62] WO90/14837.

[0301] [63] Podda & Del Giudice (2003) *Expert Rev Vaccines* 2:197-203.

[0302] [64] Podda (2001) *Vaccine* 19: 2673-2680.

[0303] [65] *Vaccine Design: The Subunit and Adjuvant Approach* (eds. Powell & Newman) Plenum Press 1995 (ISBN 0-306-44867-X).

[0304] [66] *Vaccine Adjuvants: Preparation Methods and Research Protocols* (Volume 42 of *Methods in Molecular Medicine* series). ISBN: 1-59259-083-7. Ed. O'Hagan.

[0305] [67] WO2008/043774.

[0306] [68] Allison & Byars (1992) *Res Immunol* 143:519-25.

[0307] [69] Hariharan et al. (1995) *Cancer Res* 55:3486-9.

[0308] [70] US-2007/014805.

[0309] [71] US-2007/0191314.

[0310] [72] Suli et al. (2004) *Vaccine* 22(25-26):3464-9.

[0311] [73] WO95/11700.

[0312] [74] U.S. Pat. No. 6,080,725.

[0313] [75] WO2005/097181.

[0314] [76] WO2006/113373.

[0315] [77] Potter & Oxford (1979) *Br Med Bull* 35: 69-75.

[0316] [78] Greenbaum et al. (2004) *Vaccine* 22:2566-77.

[0317] [79] Zurbriggen et al. (2003) *Expert Rev Vaccines* 2:295-304.

[0318] [80] Piascik (2003) *J Am Pharm Assoc* (Wash DC). 43:728-30.

[0319] [81] Mann et al. (2004) *Vaccine* 22:2425-9.

[0320] [82] Halperin et al. (1979) *Am J Public Health* 69:1247-50.

[0321] [83] Herbert et al. (1979) *J Infect Dis* 140:234-8.

[0322] [84] Chen et al. (2003) *Vaccine* 21:2830-6.

[0323] [85] *Current Protocols in Molecular Biology* (F. M. Ausubel et al., eds., 1987) Supplement 30.

[0324] [86] Smith & Waterman (1981) *Adv. Appl. Math.* 2: 482-489.

[0325] [87] Supaphiphat et al. (2010), *Virology* J. 7, 157.

[0326] [88] Hoffmann et al. (2000) *PNAS* 97, 6108-6113.

[0327] [89] Nicolson et al. (2005) *Vaccine* 23, 2943-2952.

[0328] [90] Ozaki et al (2004) *J. Virol.* 78, 1851-1857.

[0329] [91] Boettcher et al. (2006) *J. Virol.* 80, 9896-9898.

 SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 104

<210> SEQ ID NO 1

<211> LENGTH: 716

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 1

```

Met Glu Asp Phe Val Arg Gln Cys Phe Asn Pro Met Ile Val Glu Leu
 1           5           10          15

Ala Glu Lys Thr Met Lys Glu Tyr Gly Glu Asp Leu Lys Ile Glu Thr
 20          25          30

Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr
 35          40          45

Ser Asp Phe His Phe Ile Asn Glu Gln Gly Glu Ser Ile Ile Val Glu
 50          55          60

Leu Gly Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu
 65          70          75          80

Gly Arg Asp Arg Thr Met Ala Trp Thr Val Val Asn Ser Ile Cys Asn
 85          90          95

Thr Thr Gly Ala Glu Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr
100         105         110

Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His
115         120         125

Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Lys Thr His
130         135         140

Ile His Ile Phe Ser Phe Thr Gly Glu Met Ala Thr Lys Ala Asp
145         150         155         160

Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe
165         170         175

Thr Ile Arg Gln Glu Met Ala Ser Arg Gly Leu Trp Asp Ser Phe Arg

```

-continued

180	185	190	
Gln Ser Glu Arg Gly Glu Glu	Thr Ile Glu Glu Arg	Phe Glu Ile Thr	
195	200	205	
Gly Thr Met Arg Lys Leu Ala Asp Gln Ser	Leu Pro Pro Asn Phe Ser		
210	215	220	
Ser Leu Glu Asn Phe Arg Ala Tyr Val Asp	Gly Phe Glu Pro Asn Gly		
225	230	235	240
Tyr Ile Glu Gly Lys Leu Ser Gln Met Ser	Lys Glu Val Asn Ala Arg		
245	250	255	
Ile Glu Pro Phe Leu Lys Thr Thr Pro Arg	Pro Leu Arg Leu Pro Asn		
260	265	270	
Gly Pro Pro Cys Ser Gln Arg Ser Lys Phe	Leu Leu Met Asp Ala Leu		
275	280	285	
Lys Leu Ser Ile Glu Asp Pro Ser His	Glu Gly Glu Ile Pro Leu		
290	295	300	
Tyr Asp Ala Ile Lys Cys Met Arg Thr Phe	Phe Gly Trp Lys Glu Pro		
305	310	315	320
Asn Val Val Lys Pro His Glu Lys Gly	Ile Asn Pro Asn Tyr Leu Leu		
325	330	335	
Ser Trp Lys Gln Val Leu Ala Glu	Leu Gln Asp Ile Glu Asn Glu Glu		
340	345	350	
Lys Ile Pro Lys Thr Lys Asn Met Lys	Lys Thr Ser Gln Leu Lys Trp		
355	360	365	
Ala Leu Gly Glu Asn Met Ala Pro Glu	Lys Val Asp Phe Asp Asp Cys		
370	375	380	
Lys Asp Val Gly Asp Leu Lys Gln Tyr Asp	Ser Asp Glu Pro Glu Leu		
385	390	395	400
Arg Ser Leu Ala Ser Trp Ile Gln Asn	Glu Phe Asn Lys Ala Cys Glu		
405	410	415	
Leu Thr Asp Ser Ser Trp Ile Glu Leu Asp	Glu Ile Gly Glu Asp Val		
420	425	430	
Ala Pro Ile Glu His Ile Ala Ser Met Arg	Arg Asn Tyr Phe Thr Ser		
435	440	445	
Glu Val Ser His Cys Arg Ala Thr Glu	Tyr Ile Met Lys Gly Val Tyr		
450	455	460	
Ile Asn Thr Ala Leu Leu Asn Ala Ser	Cys Ala Ala Met Asp Asp Phe		
465	470	475	480
Gln Leu Ile Pro Met Ile Ser Lys Cys Arg	Thr Lys Glu Gly Arg Arg		
485	490	495	
Lys Thr Asn Leu Tyr Gly Phe Ile Ile	Lys Gly Arg Ser His Leu Arg		
500	505	510	
Asn Asp Thr Asp Val Val Asn Phe	Val Ser Met Glu Phe Ser Leu Thr		
515	520	525	
Asp Pro Arg Leu Glu Pro His Lys Trp	Glu Lys Tyr Cys Val Leu Glu		
530	535	540	
Ile Gly Asp Met Leu Ile Arg Ser Ala	Ile Gly Gln Val Ser Arg Pro		
545	550	555	560
Met Phe Leu Tyr Val Arg Thr Asn	Gly Thr Ser Lys Ile Lys Met Lys		
565	570	575	
Trp Gly Met Glu Met Arg Arg Cys	Leu Leu Gln Ser Leu Gln Gln Ile		
580	585	590	

-continued

Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr
 595 600 605
 Lys Glu Phe Phe Glu Asn Lys Ser Glu Thr Trp Pro Ile Gly Glu Ser
 610 615 620
 Pro Lys Gly Val Glu Glu Ser Ser Ile Gly Lys Val Cys Arg Thr Leu
 625 630 635 640
 Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu
 645 650 655
 Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Ile Val Gln Ala Leu
 660 665 670
 Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Gly Leu Tyr Glu
 675 680 685
 Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala
 690 695 700
 Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Ser
 705 710 715

<210> SEQ ID NO 2
 <211> LENGTH: 757
 <212> TYPE: PRT
 <213> ORGANISM: Influenza
 <400> SEQUENCE: 2

Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Val Pro Thr Gln Asn
 1 5 10 15
 Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Asp Pro Pro Tyr Ser His
 20 25 30
 Gly Thr Gly Thr Gly Tyr Thr Met Asp Thr Val Asn Arg Thr His Gln
 35 40 45
 Tyr Ser Glu Lys Gly Arg Trp Thr Thr Asn Thr Glu Thr Gly Ala Pro
 50 55 60
 Gln Leu Asn Pro Ile Asp Gly Pro Leu Pro Glu Asp Asn Glu Pro Ser
 65 70 75 80
 Gly Tyr Ala Gln Thr Asp Cys Val Leu Glu Ala Met Ala Phe Leu Glu
 85 90 95
 Glu Ser His Pro Gly Ile Phe Glu Asn Ser Cys Ile Glu Thr Met Glu
 100 105 110
 Val Val Gln Gln Thr Arg Val Asp Lys Leu Thr Gln Gly Arg Gln Thr
 115 120 125
 Tyr Asp Trp Thr Leu Asn Arg Asn Gln Pro Ala Ala Thr Ala Leu Ala
 130 135 140
 Asn Thr Ile Glu Val Phe Arg Ser Asn Gly Leu Thr Ala Asn Glu Ser
 145 150 155 160
 Gly Arg Leu Ile Asp Phe Leu Lys Asp Val Met Glu Ser Met Asn Lys
 165 170 175
 Glu Glu Met Gly Ile Thr Thr His Phe Gln Arg Lys Arg Arg Val Arg
 180 185 190
 Asp Asn Met Thr Lys Lys Met Ile Thr Gln Arg Thr Met Gly Lys Lys
 195 200 205
 Lys Gln Arg Leu Asn Lys Arg Ser Tyr Leu Ile Arg Ala Leu Thr Leu
 210 215 220
 Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala
 225 230 235 240

-continued

Ile Ala Thr Pro Gly Met Gln Ile Arg Gly Phe Val Tyr Phe Val Glu
 245 250 255

Thr Leu Ala Arg Ser Ile Cys Glu Lys Leu Glu Gln Ser Gly Leu Pro
 260 265 270

Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ala Asn Val Val Arg Lys
 275 280 285

Met Met Thr Asn Ser Gln Asp Thr Glu Leu Ser Phe Thr Ile Thr Gly
 290 295 300

Asp Asn Thr Lys Trp Asn Glu Asn Gln Asn Pro Arg Met Phe Leu Ala
 305 310 315 320

Met Ile Thr Tyr Met Thr Arg Asn Gln Pro Glu Trp Phe Arg Asn Val
 325 330 335

Leu Ser Ile Ala Pro Ile Met Phe Ser Asn Lys Met Ala Arg Leu Gly
 340 345 350

Lys Gly Tyr Met Phe Glu Ser Lys Ser Met Lys Leu Arg Thr Gln Ile
 355 360 365

Pro Ala Glu Met Leu Ala Ser Ile Asp Leu Lys Tyr Phe Asn Asp Ser
 370 375 380

Thr Arg Lys Lys Ile Glu Lys Ile Arg Pro Leu Leu Ile Glu Gly Thr
 385 390 395 400

Ala Ser Leu Ser Pro Gly Met Met Met Gly Met Phe Asn Met Leu Ser
 405 410 415

Thr Val Leu Gly Val Ser Ile Leu Asn Leu Gly Gln Lys Arg Tyr Thr
 420 425 430

Lys Thr Thr Tyr Trp Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala
 435 440 445

Leu Ile Val Asn Ala Pro Asn His Glu Gly Ile Gln Ala Gly Val Asp
 450 455 460

Arg Phe Tyr Arg Thr Cys Lys Leu Leu Gly Ile Asn Met Ser Lys Lys
 465 470 475 480

Lys Ser Tyr Ile Asn Arg Thr Gly Thr Phe Glu Phe Thr Ser Phe Phe
 485 490 495

Tyr Arg Tyr Gly Phe Val Ala Asn Phe Ser Met Glu Leu Pro Ser Phe
 500 505 510

Gly Val Ser Gly Ile Asn Glu Ser Ala Asp Met Ser Ile Gly Val Thr
 515 520 525

Val Ile Lys Asn Asn Met Ile Asn Asn Asp Leu Gly Pro Ala Thr Ala
 530 535 540

Gln Met Ala Leu Gln Leu Phe Ile Lys Asp Tyr Arg Tyr Thr Tyr Arg
 545 550 555 560

Cys His Arg Gly Asp Thr Gln Ile Gln Thr Arg Arg Ser Phe Glu Ile
 565 570 575

Lys Lys Leu Trp Glu Gln Thr Arg Ser Lys Ala Gly Leu Leu Val Ser
 580 585 590

Asp Gly Gly Pro Asn Leu Tyr Asn Ile Arg Asn Leu His Ile Pro Glu
 595 600 605

Val Cys Leu Lys Trp Glu Leu Met Asp Glu Asp Tyr Gln Gly Arg Leu
 610 615 620

Cys Asn Pro Leu Asn Pro Phe Val Ser His Lys Glu Ile Glu Ser Met
 625 630 635 640

Asn Asn Ala Val Met Met Pro Ala His Gly Pro Ala Lys Asn Met Glu
 645 650 655

-continued

Tyr Asp Ala Val Ala Thr Thr His Ser Trp Ile Pro Lys Arg Asn Arg
 660 665 670

Ser Ile Leu Asn Thr Ser Gln Arg Gly Val Leu Glu Asp Glu Gln Met
 675 680 685

Tyr Gln Arg Cys Cys Asn Leu Phe Glu Lys Phe Phe Pro Ser Ser Ser
 690 695 700

Tyr Arg Arg Pro Val Gly Ile Ser Ser Met Val Glu Ala Met Val Ser
 705 710 715 720

Arg Ala Arg Ile Asp Ala Arg Ile Asp Phe Glu Ser Gly Arg Ile Lys
 725 730 735

Lys Glu Glu Phe Thr Glu Ile Met Lys Ile Cys Ser Thr Ile Glu Glu
 740 745 750

Leu Arg Arg Gln Lys
 755

<210> SEQ ID NO 3
 <211> LENGTH: 759
 <212> TYPE: PRT
 <213> ORGANISM: Influenza

<400> SEQUENCE: 3

Met Glu Arg Ile Lys Glu Leu Arg Asn Leu Met Ser Gln Ser Arg Thr
 1 5 10 15

Arg Glu Ile Leu Thr Lys Thr Thr Val Asp His Met Ala Ile Ile Lys
 20 25 30

Lys Tyr Thr Ser Gly Arg Gln Glu Lys Asn Pro Ala Leu Arg Met Lys
 35 40 45

Trp Met Met Ala Met Lys Tyr Pro Ile Thr Ala Asp Lys Arg Ile Thr
 50 55 60

Glu Met Ile Pro Glu Arg Asn Glu Gln Gly Gln Thr Leu Trp Ser Lys
 65 70 75 80

Met Asn Asp Ala Gly Ser Asp Arg Val Met Val Ser Pro Leu Ala Val
 85 90 95

Thr Trp Trp Asn Arg Asn Gly Pro Ile Thr Asn Thr Val His Tyr Pro
 100 105 110

Lys Ile Tyr Lys Thr Tyr Phe Glu Arg Val Glu Arg Leu Lys His Gly
 115 120 125

Thr Phe Gly Pro Val His Phe Arg Asn Gln Val Lys Ile Arg Arg Arg
 130 135 140

Val Asp Ile Asn Pro Gly His Ala Asp Leu Ser Ala Lys Glu Ala Gln
 145 150 155 160

Asp Val Ile Met Glu Val Val Phe Pro Asn Glu Val Gly Ala Arg Ile
 165 170 175

Leu Thr Ser Glu Ser Gln Leu Thr Ile Thr Lys Glu Lys Lys Glu Glu
 180 185 190

Leu Gln Asp Cys Lys Ile Ser Pro Leu Met Val Ala Tyr Met Leu Glu
 195 200 205

Arg Glu Leu Val Arg Lys Thr Arg Phe Leu Pro Val Ala Gly Gly Thr
 210 215 220

Ser Ser Val Tyr Ile Glu Val Leu His Leu Thr Gln Gly Thr Cys Trp
 225 230 235 240

Glu Gln Met Tyr Thr Pro Gly Gly Glu Val Arg Asn Asp Asp Val Asp
 245 250 255

-continued

Gln Ser Leu Ile Ile Ala Ala Arg Asn Ile Val Arg Arg Ala Ala Val
 260 265 270
 Ser Ala Asp Pro Leu Ala Ser Leu Leu Glu Met Cys His Ser Thr Gln
 275 280 285
 Ile Gly Gly Ile Arg Met Val Asp Ile Leu Arg Gln Asn Pro Thr Glu
 290 295 300
 Glu Gln Ala Val Asp Ile Cys Lys Ala Ala Met Gly Leu Arg Ile Ser
 305 310 315 320
 Ser Ser Phe Ser Phe Gly Gly Phe Thr Phe Lys Arg Thr Ser Gly Ser
 325 330 335
 Ser Val Lys Arg Glu Glu Val Leu Thr Gly Asn Leu Gln Thr Leu
 340 345 350
 Lys Ile Arg Val His Glu Gly Tyr Glu Glu Phe Thr Met Val Gly Arg
 355 360 365
 Arg Ala Thr Ala Ile Leu Arg Lys Ala Thr Arg Arg Leu Ile Gln Leu
 370 375 380
 Ile Val Ser Gly Arg Asp Glu Gln Ser Ile Ala Glu Ala Ile Ile Val
 385 390 395 400
 Ala Met Val Phe Ser Gln Glu Asp Cys Met Ile Lys Ala Val Arg Gly
 405 410 415
 Asp Leu Asn Phe Val Asn Arg Ala Asn Gln Arg Leu Asn Pro Met His
 420 425 430
 Gln Leu Leu Arg His Phe Gln Lys Asp Ala Arg Val Leu Phe Gln Asn
 435 440 445
 Trp Gly Val Glu Pro Ile Asp Asn Val Met Gly Met Ile Gly Ile Leu
 450 455 460
 Pro Asp Met Thr Pro Ser Ile Glu Met Ser Met Arg Gly Val Arg Ile
 465 470 475 480
 Ser Lys Met Gly Val Asp Glu Tyr Ser Ser Thr Glu Arg Val Val Val
 485 490 495
 Ser Ile Asp Arg Phe Leu Arg Ile Arg Asp Gln Arg Gly Asn Val Leu
 500 505 510
 Leu Ser Pro Glu Glu Val Ser Glu Thr Gln Gly Thr Glu Lys Leu Thr
 515 520 525
 Ile Thr Tyr Ser Ser Met Met Trp Glu Ile Asn Gly Pro Glu Ser
 530 535 540
 Val Leu Val Asn Thr Tyr Gln Trp Ile Ile Arg Asn Trp Glu Thr Val
 545 550 555 560
 Lys Ile Gln Trp Ser Gln Asn Pro Thr Met Leu Tyr Asn Lys Met Glu
 565 570 575
 Phe Glu Pro Phe Gln Ser Leu Val Pro Lys Ala Ile Arg Gly Gln Tyr
 580 585 590
 Ser Gly Phe Val Arg Thr Leu Phe Gln Gln Met Arg Asp Val Leu Gly
 595 600 605
 Thr Phe Asp Thr Ala Gln Ile Ile Lys Leu Leu Pro Phe Ala Ala Ala
 610 615 620
 Pro Pro Lys Gln Ser Arg Met Gln Phe Ser Ser Phe Thr Val Asn Val
 625 630 635 640
 Arg Gly Ser Gly Met Arg Ile Leu Val Arg Gly Asn Ser Pro Val Phe
 645 650 655
 Asn Tyr Asn Lys Ala Thr Lys Arg Leu Thr Val Leu Gly Lys Asp Ala

-continued

660	665	670	
Gly Thr Leu Thr Glu Asp Pro Asp Glu Gly Thr Ala Gly Val Glu Ser			
675	680	685	
Ala Val Leu Arg Gly Phe Leu Ile Leu Gly Lys Glu Asp Lys Arg Tyr			
690	695	700	
Gly Pro Ala Leu Ser Ile Asn Glu Leu Ser Asn Leu Ala Lys Gly Glu			
705	710	715	720
Lys Ala Asn Val Leu Ile Gly Gln Gly Asp Val Val Leu Val Met Lys			
725	730	735	
Arg Lys Arg Asp Ser Ser Ile Leu Thr Asp Ser Gln Thr Ala Thr Lys			
740	745	750	
Arg Ile Arg Met Ala Ile Asn			
755			

<210> SEQ ID NO 4

<211> LENGTH: 498

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 4

1	5	10	15
Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Asp			
Gly Glu Arg Gln Asn Ala Thr Glu Ile Arg Ala Ser Val Gly Lys Met			
20	25	30	
Ile Gly Gly Ile Gly Arg Phe Tyr Ile Gln Met Cys Thr Glu Leu Lys			
35	40	45	
Leu Ser Asp Tyr Glu Gly Arg Leu Ile Gln Asn Ser Leu Thr Ile Glu			
50	55	60	
Arg Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Lys Tyr Leu Glu			
65	70	75	80
Glu His Pro Ser Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile			
85	90	95	
Tyr Arg Arg Val Asn Gly Lys Trp Met Arg Glu Leu Ile Leu Tyr Asp			
100	105	110	
Lys Glu Glu Ile Arg Arg Ile Trp Arg Gln Ala Asn Asn Gly Asp Asp			
115	120	125	
Ala Thr Ala Gly Leu Thr His Met Met Ile Trp His Ser Asn Leu Asn			
130	135	140	
Asp Ala Thr Tyr Gln Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp			
145	150	155	160
Pro Arg Met Cys Ser Leu Met Gln Gly Ser Thr Leu Pro Arg Arg Ser			
165	170	175	
Gly Ala Ala Gly Ala Ala Val Lys Gly Val Gly Thr Met Val Met Glu			
180	185	190	
Leu Val Arg Met Ile Lys Arg Gly Ile Asn Asp Arg Asn Phe Trp Arg			
195	200	205	
Gly Glu Asn Gly Arg Lys Thr Arg Ile Ala Tyr Glu Arg Met Cys Asn			
210	215	220	
Ile Leu Lys Gly Lys Phe Gln Thr Ala Ala Gln Lys Ala Met Met Asp			
225	230	235	240
Gln Val Arg Glu Ser Arg Asn Pro Gly Asn Ala Glu Phe Glu Asp Leu			
245	250	255	
Thr Phe Leu Ala Arg Ser Ala Leu Ile Leu Arg Gly Ser Val Ala His			

-continued

260 265 270

Lys Ser Cys Leu Pro Ala Cys Val Tyr Gly Pro Ala Val Ala Ser Gly
275 280 285

Tyr Asp Phe Glu Arg Glu Gly Tyr Ser Leu Val Gly Ile Asp Pro Phe
290 295 300

Arg Leu Leu Gln Asn Ser Gln Val Tyr Ser Leu Ile Arg Pro Asn Glu
305 310 315 320

Asn Pro Ala His Lys Ser Gln Leu Val Trp Met Ala Cys His Ser Ala
325 330 335

Ala Phe Glu Asp Leu Arg Val Leu Ser Phe Ile Lys Gly Thr Lys Val
340 345 350

Leu Pro Arg Gly Lys Leu Ser Thr Arg Gly Val Gln Ile Ala Ser Asn
355 360 365

Glu Asn Met Glu Thr Met Glu Ser Ser Thr Leu Glu Leu Arg Ser Arg
370 375 380

Tyr Trp Ala Ile Arg Thr Arg Ser Gly Gly Asn Thr Asn Gln Gln Arg
385 390 395 400

Ala Ser Ala Gly Gln Ile Ser Ile Gln Pro Thr Phe Ser Val Gln Arg
405 410 415

Asn Leu Pro Phe Asp Arg Thr Thr Ile Met Ala Ala Phe Asn Gly Asn
420 425 430

Thr Glu Gly Arg Thr Ser Asp Met Arg Thr Glu Ile Ile Arg Met Met
435 440 445

Glu Ser Ala Arg Pro Glu Asp Val Ser Phe Gln Gly Arg Gly Val Phe
450 455 460

Glu Leu Ser Asp Glu Lys Ala Ala Ser Pro Ile Val Pro Ser Phe Asp
465 470 475 480

Met Ser Asn Glu Gly Ser Tyr Phe Phe Gly Asp Asn Ala Glu Glu Tyr
485 490 495

Asp Asn

<210> SEQ ID NO 5
<211> LENGTH: 252
<212> TYPE: PRT
<213> ORGANISM: Influenza

<400> SEQUENCE: 5

Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Ile Pro
1 5 10 15

Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asp Val Phe
20 25 30

Ala Gly Lys Asn Thr Asp Leu Glu Val Leu Met Glu Trp Leu Lys Thr
35 40 45

Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe
50 55 60

Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val
65 70 75 80

Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Lys Ala
85 90 95

Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala
100 105 110

Lys Glu Ile Ser Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met
115 120 125

-continued

Gly Leu Ile Tyr Asn Arg Met Gly Ala Val Thr Thr Glu Val Ala Phe
 130 135 140

Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Arg
 145 150 155 160

Ser His Arg Gln Met Val Thr Thr Thr Asn Pro Leu Ile Arg His Glu
 165 170 175

Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met
 180 185 190

Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Ser Gln
 195 200 205

Ala Arg Gln Met Val Gln Ala Met Arg Thr Ile Gly Thr His Pro Ser
 210 215 220

Ser Ser Ala Gly Leu Lys Asn Asp Leu Leu Glu Asn Leu Gln Ala Tyr
 225 230 235 240

Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys
 245 250

<210> SEQ ID NO 6

<211> LENGTH: 230

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 6

Met Asp Pro Asn Thr Val Ser Ser Phe Gln Val Asp Cys Phe Leu Trp
 1 5 10 15

His Val Arg Lys Arg Val Ala Asp Gln Glu Leu Gly Asp Ala Pro Phe
 20 25 30

Leu Asp Arg Leu Arg Arg Asp Gln Lys Ser Leu Arg Gly Arg Gly Ser
 35 40 45

Thr Leu Gly Leu Asp Ile Lys Thr Ala Thr Arg Ala Gly Lys Gln Ile
 50 55 60

Val Glu Arg Ile Leu Lys Glu Glu Ser Asp Glu Ala Leu Lys Met Thr
 65 70 75 80

Met Ala Ser Val Pro Ala Ser Arg Tyr Leu Thr Asp Met Thr Leu Glu
 85 90 95

Glu Met Ser Arg Asp Trp Ser Met Leu Ile Pro Lys Gln Lys Val Ala
 100 105 110

Gly Pro Leu Cys Ile Arg Met Asp Gln Ala Ile Met Asp Lys Asn Ile
 115 120 125

Ile Leu Lys Ala Asn Phe Ser Val Ile Phe Asp Arg Leu Glu Thr Leu
 130 135 140

Ile Leu Leu Arg Ala Phe Thr Glu Glu Gly Ala Ile Val Gly Glu Ile
 145 150 155 160

Ser Pro Leu Pro Ser Leu Pro Gly His Thr Ala Glu Asp Val Lys Asn
 165 170 175

Ala Val Gly Val Leu Ile Gly Leu Glu Trp Asn Asp Asn Thr Val
 180 185 190

Arg Val Ser Glu Thr Leu Gln Arg Phe Ala Trp Arg Ser Ser Asn Glu
 195 200 205

Asn Gly Arg Pro Pro Leu Thr Pro Lys Gln Lys Arg Glu Met Ala Gly
 210 215 220

Thr Ile Arg Ser Glu Val
 225 230

-continued

<210> SEQ ID NO 7
<211> LENGTH: 565
<212> TYPE: PRT
<213> ORGANISM: Influenza
<400> SEQUENCE: 7

Met Lys Ala Asn Leu Leu Val Leu Leu Cys Ala Leu Ala Ala Asp
1 5 10 15

Ala Asp Thr Ile Cys Ile Gly Tyr His Thr Asn Asn Ser Thr Asp Thr
20 25 30

Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn
35 40 45

Leu Leu Glu Asp Ser His Asn Gly Lys Leu Cys Arg Leu Lys Gly Ile
50 55 60

Ala Pro Leu Gln Leu Gly Lys Cys Asn Ile Ala Gly Trp Leu Leu Gly
65 70 75 80

Asn Pro Glu Cys Asp Pro Leu Leu Pro Val Arg Ser Trp Ser Tyr Ile
85 90 95

Val Glu Thr Pro Asn Ser Glu Asn Gly Ile Cys Tyr Pro Gly Asp Phe
100 105 110

Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe
115 120 125

Glu Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Asn His Asn
130 135 140

Thr Asn Gly Val Thr Ala Ala Cys Ser His Glu Gly Lys Ser Ser Phe
145 150 155 160

Tyr Arg Asn Leu Leu Trp Leu Thr Glu Lys Glu Gly Ser Tyr Pro Lys
165 170 175

Leu Lys Asn Ser Tyr Val Asn Lys Lys Gly Lys Glu Val Leu Val Leu
180 185 190

Trp Gly Ile His His Pro Pro Asn Ser Lys Glu Gln Gln Asn Leu Tyr
195 200 205

Gln Asn Glu Asn Ala Tyr Val Ser Val Val Thr Ser Asn Tyr Asn Arg
210 215 220

Arg Phe Thr Pro Glu Ile Ala Glu Arg Pro Lys Val Arg Asp Gln Ala
225 230 235 240

Gly Arg Met Asn Tyr Tyr Trp Thr Leu Leu Lys Pro Gly Asp Thr Ile
245 250 255

Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Met Tyr Ala Phe Ala
260 265 270

Leu Ser Arg Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Ser Met
275 280 285

His Glu Cys Asn Thr Lys Cys Gln Thr Pro Leu Gly Ala Ile Asn Ser
290 295 300

Ser Leu Pro Tyr Gln Asn Ile His Pro Val Thr Ile Gly Glu Cys Pro
305 310 315 320

Lys Tyr Val Arg Ser Ala Lys Leu Arg Met Val Thr Gly Leu Arg Asn
325 330 335

Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe
340 345 350

Ile Glu Gly Gly Trp Thr Gly Met Ile Asp Gly Trp Tyr Gly Tyr His
355 360 365

-continued

His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Lys Ser Thr
 370 375 380
 Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Thr Val Ile Glu
 385 390 395 400
 Lys Met Asn Ile Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu
 405 410 415
 Glu Lys Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu
 420 425 430
 Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Glu Asn Glu
 435 440 445
 Arg Thr Leu Glu Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys
 450 455 460
 Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys
 465 470 475 480
 Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu Ser Val Arg
 485 490 495
 Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn
 500 505 510
 Arg Glu Lys Val Asp Gly Val Lys Leu Glu Ser Met Gly Ile Tyr Gln
 515 520 525
 Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val
 530 535 540
 Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln
 545 550 555 560
 Cys Arg Ile Cys Ile
 565

<210> SEQ ID NO 8
 <211> LENGTH: 454
 <212> TYPE: PRT
 <213> ORGANISM: Influenza
 <400> SEQUENCE: 8

Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Ile Cys Leu Val
 1 5 10 15
 Val Gly Leu Ile Ser Leu Ile Leu Gln Ile Gly Asn Ile Ile Ser Ile
 20 25 30
 Trp Ile Ser His Ser Ile Gln Thr Gly Ser Gln Asn His Thr Gly Ile
 35 40 45
 Cys Asn Gln Asn Ile Ile Thr Tyr Lys Asn Ser Thr Trp Val Lys Asp
 50 55 60
 Thr Thr Ser Val Ile Leu Thr Gly Asn Ser Ser Leu Cys Pro Ile Arg
 65 70 75 80
 Gly Trp Ala Ile Tyr Ser Lys Asp Asn Ser Ile Arg Ile Gly Ser Lys
 85 90 95
 Gly Asp Val Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser His Leu
 100 105 110
 Glu Cys Arg Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys
 115 120 125
 His Ser Ser Gly Thr Val Lys Asp Arg Ser Pro Tyr Arg Ala Leu Met
 130 135 140
 Ser Cys Pro Val Gly Glu Ala Pro Ser Pro Tyr Asn Ser Arg Phe Glu
 145 150 155 160

-continued

Ser Val Ala Trp Ser Ala Ser Ala Cys His Asp Gly Met Gly Trp Leu
 165 170 175
 Thr Ile Gly Ile Ser Gly Pro Asp Asn Gly Ala Val Ala Val Leu Lys
 180 185 190
 Tyr Asn Gly Ile Ile Thr Glu Thr Ile Lys Ser Trp Arg Lys Lys Ile
 195 200 205
 Leu Arg Thr Gln Glu Ser Glu Cys Ala Cys Val Asn Gly Ser Cys Phe
 210 215 220
 Thr Ile Met Thr Asp Gly Pro Ser Asp Gly Leu Ala Ser Tyr Lys Ile
 225 230 235 240
 Phe Lys Ile Glu Lys Gly Lys Val Thr Lys Ser Ile Glu Leu Asn Ala
 245 250 255
 Pro Asn Ser His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Thr Asp Lys
 260 265 270
 Val Met Cys Val Cys Arg Asp Asn Trp His Gly Ser Asn Arg Pro Trp
 275 280 285
 Val Ser Phe Asp Gln Asn Leu Asp Tyr Gln Ile Gly Tyr Ile Cys Ser
 290 295 300
 Gly Val Phe Gly Asp Asn Pro Arg Pro Glu Asp Gly Thr Gly Ser Cys
 305 310 315 320
 Gly Pro Val Tyr Val Asp Gly Ala Asn Gly Val Lys Gly Phe Ser Tyr
 325 330 335
 Arg Tyr Gly Asn Gly Val Trp Ile Gly Arg Thr Lys Ser His Ser Ser
 340 345 350
 Arg His Gly Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Glu Thr
 355 360 365
 Asp Ser Lys Phe Ser Val Arg Gln Asp Val Val Ala Met Thr Asp Trp
 370 375 380
 Ser Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu
 385 390 395 400
 Asp Cys Met Arg Pro Cys Phe Trp Val Glu Leu Ile Arg Gly Arg Pro
 405 410 415
 Lys Glu Lys Thr Ile Trp Thr Ser Ala Ser Ser Ile Ser Phe Cys Gly
 420 425 430
 Val Asn Ser Asp Thr Val Asp Trp Ser Trp Pro Asp Gly Ala Glu Leu
 435 440 445
 Pro Phe Ser Ile Asp Lys
 450

<210> SEQ ID NO 9
 <211> LENGTH: 2233
 <212> TYPE: DNA
 <213> ORGANISM: Influenza

<400> SEQUENCE: 9

```

  agcgaaagca ggtactgatc caaaatggaa gatTTTgtgc gacaatgctt caatccgatg 60
  attgtcgagc ttgcggaaaa aacaatgaaa gagttatgggg aggacctgaa aatcgaaca 120
  aacaaatttg cagcaatatg cactcaatttga aagttatgtcttcatgttattc agatTTcac 180
  ttcatcaatg agcaaggcga gtcaataatc gttagacttgc gtgtatccaa tgcacttttgc 240
  aagcacagat ttgaaataat cgagggaaga gatcgcacaa tggcctggac agtagtaaac 300
  agtatttgca acactacagg ggctgagaaa ccaaagtttc taccagattt gtatgattac 360
  
```

-continued

aaggagaata	gatttatcga	aattggagta	acaaggagag	aagttcacat	atactatctg	420
gaaaaggcca	ataaaaattaa	atctgagaaa	acacacatcc	acatttctc	gttcactggg	480
gaagaaaatgg	ccacaaaggc	agactacact	ctcgatgaag	aaagcagggc	taggatcaaa	540
accagactat	tcaccataag	acaagaaaatg	gccagcagag	gcctctggg	ttcccttcgt	600
cagtccgaga	gaggagaaga	gacaattgaa	gaaaggttt	aatcacagg	aacaatgcgc	660
aagcttgccg	accaaagtct	cccgccgaac	ttctccagcc	ttgaaaattt	tagagctat	720
gtggatggat	tcgaaccgaa	cggctacatt	gagggcaagc	tgtctcaa	at gtccaaagaa	780
gtaaatgcta	gaattgaacc	ttttttgaaa	acaacaccac	gaccacttag	acttccgaat	840
gggcctccct	gttctcagcg	gtccaaattc	ctgctgtatgg	atgccttaaa	attaagcatt	900
gaggacccaa	gtcatgaagg	agagggataa	ccgctatatg	atgcaatcaa	atgcatgaga	960
acattcttg	gatggaaagg	acccaatgtt	gtttaaaccac	acgaaaagg	aataaatcca	1020
aattatcttc	tgtcatggaa	gcaagtaactg	gcagaactgc	aggacattga	gaatgaggag	1080
aaaattccaa	agactaaaaaa	tatgaagaaa	acaagtacgc	taaagtgggc	acttggtgag	1140
aacatggcac	cagaaaagg	agactttgac	gactgtaaag	atgttagtga	tttgaagcaa	1200
tatgatagtg	atgaaccaga	attgaggctcg	cttgcaagtt	ggattcagaa	tgagtttaac	1260
aaggcatg	actgacaga	ttcaagctgg	atagagctcg	atgagattgg	agaagatgtg	1320
gctccaattg	aacacattgc	aagcatgaga	aggaattatt	tcacatcaga	ggtgtctcac	1380
tgcagagcca	cagaatacat	aatgaagggg	gtgtacatca	atactgcctt	gtttaatgca	1440
tcttgtgcag	caatggatga	tttccaattt	attccaatga	taagcaagtg	tagaactaag	1500
gagggaaaggc	gaaagaccaa	cttgtatgg	ttcatcataa	aaggaagatc	ccacttaagg	1560
aatgacacccg	acgtggtaaa	ctttgtgagc	atggagttt	ctctcactga	cccaagactt	1620
gaaccacata	aatggggagaa	gtactgtgtt	cttgagatag	gagatatgt	tataagaagt	1680
gccataggcc	aggtttcaag	gcccatgttc	ttgtatgtga	gaacaaatgg	aacctcaaaa	1740
ataaaaatga	aatggggat	ggagatgagg	cgttgcctcc	tccagtca	tcaacaaatt	1800
gagagtatga	ttgaagctga	gtcctctgtc	aaagagaaaag	acatgaccaa	agagttttt	1860
gagaacaaat	cagaaacatg	gcccatgg	gagtccccca	aaggagtgg	ggaaagttcc	1920
attgggaagg	tctgcaggac	tttattagca	aagtccgtat	tcaacagctt	gtatgcatt	1980
ccacaactag	aggattttc	agctgaatca	agaaaaactgc	ttcttatcgt	tcaggcttt	2040
agggacaacc	ttgaacctgg	gacctttgat	cttggggggc	tatataa	aattgaggag	2100
tgcctgatta	atgatccctg	ggttttgctt	aatgcttctt	ggttcaactc	cttccttaca	2160
catgcattga	gttagttgt	gcagtgc	tatttgc	ccatactgtc	caaaaaagta	2220
cttgtttct	act					2233

<210> SEQ ID NO 10

<211> LENGTH: 2341

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 10

agcgaaagca	ggcaaaccat	ttgaatggat	gtcaatccga	ccttactttt	cttaaaagt	60
ccaaacacaaa	atgctataag	cacaactttc	ccttatactg	gagaccctcc	ttacagccat	120

-continued

gggacaggaa	caggatacac	catggatact	gtcaacaggaa	cacatcagta	ctcagaaaag	180
ggaagatgga	caacaacac	cgaaactgga	gcacccgcaac	tcaacccgat	tgatgggcca	240
ctgccagaag	acaatgaacc	aagtggttat	gcccaaacag	attgtgtatt	ggaggcgatg	300
gctttccttgc	aggaatccca	tcctggattt	tttggaaaact	cgtgtattga	aacgatggag	360
gttggttcagc	aaacacgagt	agacaagctg	acacaaggcc	gacagaccta	tgactggact	420
ctaaatagaa	accaacctgc	tgcaacagca	ttggccaaaca	caatagaagt	gttcagatca	480
aatggcctca	cggccaatga	gtctggagg	ctcatagact	tccttaagga	tgtaatggag	540
tcaatgaaca	aagaagaaat	ggggatcaca	actcatttc	agagaaagag	acgggtgaga	600
gacaatata	ctaagaaaat	gataacacag	agaacaatgg	gtaaaaagaa	gcagagattg	660
aacaaaagga	gttatcta	tagagcatttgc	accctgaaca	caatgacca	agatgtcgag	720
agagggaa	taaaacggag	agcaatttgc	accccaggga	tgcaaataag	ggggtttgc	780
tactttgttgc	agacactggc	aaggagtata	tgtgagaaac	ttgaacaatc	agggttgc	840
gttggaggca	atgagaagaa	agcaaagtgg	gcaatgttg	taaggaagat	gtgaccaat	900
tctcaggaca	ccgaaatccc	tttaccatc	actggagata	acaccaaata	gaacgaaaat	960
cagaatcctc	ggatgttttt	ggccatgatc	acatata	ccagaaatca	gcccgaatgg	1020
ttcagaaatg	ttcttaagtt	tgctccaata	atgttctcaa	acaaaatggc	gagactggag	1080
aaagggtata	tgtttgagag	caagagtatg	aaacttagaa	ctcaaataacc	tgcaagaaatg	1140
ctagcaagca	tcgat	tttgcata	gattcaacaa	gaaagaagat	tgaaaaatc	1200
cgaccgctct	taatagaggg	gactgcata	ttgagccctg	gaatgtatgat	gggcataat	1260
aatatgttac	gcactgtatt	aggcgatcc	atcctgaatc	ttggacaaaa	gagatacacc	1320
aagactactt	actgggtggg	ttgttctcaa	tcctctgacg	atttgtct	gattgtgaat	1380
gcaccaatc	atgaaggat	tcaagccgg	gtcgacaggt	tttatacgac	ctgtaaatg	1440
cttggaaatca	atatgagaa	aaaaaagtct	tacataaaca	gaacaggatc	atttgaattc	1500
acaagttttt	tctatcgta	tgggttgc	gccaatttca	gcatggagct	tcccagttt	1560
gggggtctg	ggatcaacga	gtcagcggac	atgagtattg	gagttactgt	catcaaaaac	1620
aatatgataa	acaatgatct	tggccagca	acagctcaa	tggcccttca	gttgttcatc	1680
aaagattaca	ggtacacgta	ccgatgccc	agaggtgaca	cacaaataca	acccgaaaga	1740
tcatttgc	aaaagaaact	gtgggagcaa	acccgttcca	aagctggact	gtcggtctcc	1800
gacggggcc	caaatttata	caacatttgc	aatctccaca	ttcctgaaat	ctgcctaaaa	1860
tggaaatttgc	tggatggat	ttaccagggg	cgtttatgca	acccactgaa	cccatttgc	1920
agccat	aaatttgc	aatgaaat	gtcgatgat	tgccagcaca	tggccagcc	1980
aaaaacatgg	agtatgtgc	tgttgcaca	acacactcct	ggatccccaa	aagaaatcga	2040
tccatcttgc	atacaagtca	aaggaggat	cttgaggatg	acacaaatgt	ccaaaggatgc	2100
tgcaatttat	ttgaaaaatt	cttccccagc	agttcata	gaagaccagt	cgggatatcc	2160
agtatggtgg	aggctatgg	ttccagagcc	cgaattgtat	cacggatgt	tttcgatct	2220
ggaaggataa	agaaagaaga	gttcaactgag	atcatgaa	tctgttccac	cattgaagag	2280
ctcagacggc	aaaaatagtg	aatttagctt	gtccttcatg	aaaaaaatgc	ttgttttac	2340
t						2341

-continued

```

<210> SEQ ID NO 11
<211> LENGTH: 2341
<212> TYPE: DNA
<213> ORGANISM: Influenza

<400> SEQUENCE: 11

agcgaaagca ggtcaattat attcaatatg gaaagaataa aagaactaag aaatctaattg      60
tcgcagtctc gcaccccgca gatactcaca aaaaccaccc tggaccatat ggcataatc      120
aagaagtaca catcaggaag acaggagaag aaccacgcac ttaggatgaa atggatgatg      180
gcaatgaaat atccaattac agcagacaag aggataacgg aatgattcc tgagagaaat      240
gagcaaggac aaacctttagt gactaaaatg aatgatgcgg gatcagaccc agtgcgtgtt      300
tcacctctgg ctgtgacatg gtggaaatagg aatggaccaa taacaaatac agttcattat      360
ccaaaaatct acaaaactta ttttggaaaga gtagaaaggc taaagcatgg aacctttggc      420
cctgtccatt tttagaaacca agtcaaaataa cgtcgagag ttgacataaa tcctggcat      480
gcagatctca gtgccaagga ggcacaggat gtaatcatgg aagttgttt ccctaacgaa      540
gtgggagcca ggatactaac atcggaatcg caactaacga taaccaaaga gaagaagaa      600
gaactccagg attgcaaaat ttctcccttg atggttgcat acatgttgg gagaactg      660
gtccgcaaaa cggattccct cccagtggtt ggtggaaacaa gcagtgtgtt cattgaagt      720
ttgcatttga ctcaggaaac atgctggaaat cagatgtata ctccaggagg ggaagtggg      780
aatgatgtatg ttgatcaaag cttgattatt gctgcttagg acatagtgg aagagctgca      840
gtatcagcag atccactagc atctttatgg gagatgtgcc acagcacaca gattgggg      900
attaggatgg tagacatct taggcagaac ccaacagaag agcaagccgt ggatataatgc      960
aaggctgcaaa tgggactgag aattatgtca tccttcagtt ttgggtggatt cacattaag      1020
agaacaagcg gatcatcagt caagagagag gaagagggtgc ttacggggaa tcttcaaaca      1080
ttgaagataa gagtgcatga gggatataatgg ggttcacaa tgggtgggg aagagcaaca      1140
gccataactca gaaaagcaac caggagattt attcagctga tagtgatgg gagagacgaa      1200
cagtcgattt ccgaagcaat aattgtggc atggatattt cacaagggg ttgtatgata      1260
aaagcagtca gaggtgatct gaatttcgtc aataggcgaa atcagcgatt gaatccatg      1320
catcaacttt taagacattt tcagaaggat gcgagatgtc tttttcaaaa ttggggagtt      1380
gaacctatcg acaatgtatg gggatatttc gggatatttc cccgacatgac tccaaacatc      1440
gagatgtcaa tgagaggagt gagaatcgcg aaaaatgggtg tagatgtatc ctccagcgc      1500
gagagggtggat tgggtggcat tgaccgtttt ttgagaatcc gggaccaacg aggaaatgtt      1560
ctactgtctc ccgaggaggt cagtggaaaca caggaaacag agaaactgac aataacttac      1620
tcatcgtcaa tgatgtgggat gattaatgtt cctgaatcgt tattggatcaaa tacatcaaa      1680
tggatcatca gaaactgggaa aactgtttaaa attcagtggtt cccagaaaccc tacaatgtt      1740
tacaataaaa tggatatttga accatttcag tcttttagtac ctaaggccat tagaggccaa      1800
tacagtgggt ttgtaagaac tctgttccaa caaatggggg atgtgctgg gacattgtt      1860
accgcacaga taataaaaact tcttcccttc gcagccgtc caccaaaacca aagttagatg      1920
cagttctctt catttactgt gaatgtgagg ggatcaggaa tgagaatact tgtaagggc      1980
aattctcctt tattcaacta taacaaggcc acgaagagac tcacagtctt cggaaaggat      2040
gctggactt taactgaaga cccagatgaa ggcacagctg gagtggagtc cgctgttctg      2100

```

-continued

aggggattcc	tcattctggg	caaagaagac	aagagatatg	ggccagcact	aagcatcaat	2160
gaactgagca	accttgcgaa	aggagagaag	gctaatgtgc	taattggca	aggagacgtg	2220
gtgttggtaa	tgaaacggaa	acgggactct	agcatactta	ctgacagcca	gacagcgacc	2280
aaaagaattc	ggatggccat	caatttagtgt	cgaatagttt	aaaaacgacc	ttgtttctac	2340
t						2341

<210> SEQ ID NO 12
 <211> LENGTH: 1565
 <212> TYPE: DNA
 <213> ORGANISM: Influenza

<400> SEQUENCE: 12

agcaaaagca	gggttagataa	tcactcactg	agtgacatca	aatcatggc	gtctcaaggc	60
accaaacgat	cttacgaaca	gatggagact	gatggagaac	gccagaatgc	cactgaaatc	120
agagcatccg	tcggaaaaat	gattgggtgg	attggacgt	tctacatcca	aatgtgcacc	180
gaactcaaac	tcagtgatta	tgagggacgg	ttgatccaa	acagcttaac	aatagagaga	240
atggtgctct	ctgctttga	cgaaaggaga	aataaatacc	ttgaagaaca	tcccagtgcg	300
gaaaaagatc	ctaagaaaac	tggaggacct	atatacagga	gagtaaacgg	aaagtggatg	360
agagaactca	tcctttatga	caaagaagaa	ataaggcgaa	tctggcgcca	agctaataat	420
gtgtacgtat	caacggctgg	tctgactcac	atgatgatct	ggcattccaa	tttgaatgat	480
gcaacttac	agaggacaag	agctcttgg	cgcacccgaa	tggatcccag	gatgtgtct	540
ctgtatgcaag	gttcaactct	cccttaggagg	tctggagccg	caggtgtcgc	agtcaaagga	600
gttggAACAA	ttggatggaa	attggtcaga	atgatcaaac	gtgggatcaa	tgatcggaac	660
ttctggaggg	gtgagaatgg	acgaaaaaca	agaattgctt	atgaaagaat	gtgcaacatt	720
ctcaaaggaa	aatttcaaac	tgctgcacaa	aaagcaatga	tggatcaagt	gagagagac	780
cggAACCCAG	ggaatgctga	gttcgaagat	ctcactttc	tagcacggtc	tgcactcata	840
ttgagagggt	cgggtgctca	caagtccctgc	ctgcctgcct	gtgtgtatgg	acctgcgcgt	900
gccagtgggt	acgactttga	aaggggggaa	tactctctag	tcggaataga	ccctttcaga	960
ctgttcaaa	acagccaagt	gtacagccata	atcagaccaa	atgagaatcc	agcacacaag	1020
agtcaactgg	tgtggatggc	atgccattct	gcccatttg	aagatctaag	agtattaagc	1080
ttcatcaaag	ggacgaaggt	gctcccaaga	gggaagcttt	ccactagagg	agttcaaatt	1140
gcttccatg	aaaatatgg	gactatggaa	tcaagtacac	ttgaactgag	aagcaggtac	1200
tggccataa	ggaccagaag	tggagggaaac	accaatcaac	agagggcatac	tgccggccaa	1260
atcagcatac	aacctacgtt	ctcagtagac	agaaatctcc	cttttgcacag	aacaaccatt	1320
atggcagcat	tcaatggaa	tacagagggg	agaacatctg	acatgaggac	cgaaatcata	1380
aggatgatgg	aaagtgcag	accagaagat	gtgtcttcc	aggggggggg	agtcctcgag	1440
ctctcgacg	aaaaggcagc	gagcccgatc	gtgccttcct	ttgacatgag	taatgaagga	1500
tcttatttct	tcggagacaa	tgcagaggag	tacgacaatt	aaagaaaaat	acccttgc	1560
ctact						1565

<210> SEQ ID NO 13
 <211> LENGTH: 1027
 <212> TYPE: DNA
 <213> ORGANISM: Influenza

-continued

<400> SEQUENCE: 13

agcaaaagca ggttagatatt	gaaagatgag ttttctaacc	gaggctgaaa cgtacgtact	60
ctctatcate cctgtcaggcc	ccctcaaaggc cgagatcgca	cagagacttg aagatgtctt	120
tgcagggaag aacaccgatc	ttgagggtctt catggaatgg	ctaaagacaa gaccaatcct	180
gtcacctctg actaaggggg	ttttaggatt tttgttcaacg	ctcacccgtgc ccagtgagcg	240
aggactgcag cgtagacgcgt	ttgtccaaaaa tgcccttaat	gggaacgggg atccaaataa	300
catggacaaa gcagttaac	tgtataggaa gtcacagagg	gagataacat tccatggggc	360
caaagaaatc tcactcagtt	attctgtctt tgcaacttgcc	agttgtatgg gcctcatata	420
caacaggatg ggggctgtga	ccactgaagt ggcatttggc	ctggatgtg caacctgtga	480
acagattgtc gactcccagc	atcggtctca taggcaaatg	gtgacaacaa ccaatccact	540
aatcagacat gagaacagaa	tggttttagc cagcaactaca	gctaaggcta tggagcaaat	600
ggctggatcg agtgagcaag	cagcagaggc catggaggtt	gctagtcagg ctagacaaat	660
ggtgcaagecg atgagaacca	ttgggactca tcttagctcc	agtgcggc tgaaaaatga	720
tcttctgaa aatttgcagg	cctatcagaaa acgaatgggg	gtgcagatgc aacgggtcaa	780
gtgatcctct cactattgcc	gcaaataatca ttgggatctt	gcacttgaca ttgtggattc	840
ttgatcgtct tttttcaaa	tgcatttacc gtcgctttaa	atacggactg aaaggagggc	900
cttctacgga aggagtgeca	aagtctatga gggagaata	tcgaaaggaa cagcagagt	960
ctgtggatgc tgacgatggt	cattttgtca gcatagagct	ggagtaaaaa actacccgt	1020
ttctact			1027

<210> SEQ ID NO 14

<211> LENGTH: 890

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 14

agcaaaagca gggtgacaaa	aacataatgg atccaaacac	tgtgtcaacg tttcaggtag	60
attgtttctt ttggcatgtc	cgcaaaacgag ttgcagacca	agaacttagt gatgccccat	120
tccttgatcg gtttcggca	gatcagaaat ccctaagagg	aaggggcagt actctcggtc	180
tggacatcaa gacagccaca	cgtgctggaa agcagatagt	ggagcggatt ctgaaagaag	240
aatccgatga ggcacttaaa	atgaccatgg cctctgtacc	tgcgtcgctg tacctaactg	300
acatgactct tgaggaaatg	tcaagggact ggtccatgct	catacccaag cagaaagtgg	360
caggccctct ttgtatcaga	atggaccagg cgatcatgga	taagaacatc atactgaaag	420
cgaacttcag tttgtatccc	gaccggctgg agactctaatt	attgctaagg gctttcaccc	480
aaggaggagc aattgttggc	gaaatttcac cattgccttc	tcttccagga catactgctg	540
aggatgtcaa aatgcagtt	ggagtccctca tcggaggact	tgaatggaa gataacacag	600
ttcgagtctc tggaaactcta	cagagattcg cttggagaag	cagtaatgag aatgggagac	660
ctccactcac tccaaaacag	aaacgagaaa tggcgaaaac	aatttaggtca gaagtttgaa	720
gaaataagat gtttgattga	agaagtgaga cacaactga	agataacaga gaatagttt	780
gagcaaataa catttatgca	agccttacat ctattgctt	aagtggagca agagataaga	840
actttctcgatc ttcagcttat	ttagtactaa aaaacaccct	tgtttctact	890

-continued

<210> SEQ ID NO 15

<211> LENGTH: 1775

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 15

agcaaaagca	ggggaaaata	aaaacaacca	aatgaaggc	aacctactg	gtcctgttat	60
gtgcacttgc	agctgcagat	gcagacacaa	tatgtatagg	ctaccatacg	aacaattcaa	120
ccgacactgt	tgacacagta	ctcgagaaga	atgtgacagt	gacacactct	gttaacctgc	180
tcgaagacag	ccacaacgga	aaactatgta	gattaaaagg	aatagccccca	ctacaattgg	240
gaaatgtaa	catcgccgga	tggcttgg	gaaacccaga	atgcgaccca	ctgcttccag	300
tgagatcatg	gtcctacatt	gtagaaacac	caaactctga	aatggaaaata	tgttatccag	360
gagatttcat	cgactatgag	gagctgaggg	agcaattttag	ctcagtgta	tcattcgaaa	420
gattcgaaat	atttccaaa	gaaagctcat	ggcccaacca	caacacaaac	ggagtaacgg	480
cagcatgctc	ccatgagggg	aaaagcagg	tttacagaaa	tttgctatgg	ctgacggaga	540
aggaggggctc	atacccaaag	ctgaaaaatt	cttatgtgaa	caaaaaagg	aaagaagtcc	600
ttgtactgtg	gggtattcat	cacccgccta	acagtaagga	acaacagaat	ctctatcaga	660
atgaaaatgc	ttatgtctct	gtagtgactt	caaattataa	caggagattt	accccgaaa	720
tagcagaaag	acccaaagta	agagatcaag	ctggggaggat	gaactattac	tggaccttgc	780
taaaacccgg	agacacaata	atatttgagg	caaatggaaa	tctaatacgca	ccaatgtatg	840
ctttcgact	gagtagaggg	tttgggtccg	gcatcatcac	ctcaaacgca	tcaatgcatg	900
agtgtAACAC	gaagtgtcaa	acacccctgg	gagctataaa	cagcagtctc	ccttaccaga	960
atatacaccc	agtccacaata	ggagagtgcc	caaaatacgt	caggagtgcc	aaatttggaga	1020
tggttacagg	actaaggaac	attccgtcca	ttaaatccag	aggcttattt	ggagccattt	1080
ccggtttat	tgaaggggga	tggactggaa	tgtatagatgg	atggatgtgt	tatcatccatc	1140
agaatgaaca	gggatcaggg	tatgcagcgg	atcaaaaaag	cacacaaaat	gccattaacg	1200
ggattacaaa	caaggtgaac	actgttatcg	agaaaaatgaa	cattcaattc	acagctgtgg	1260
gttaaagaatt	caacaaatta	gaaaaaagg	tggaaaattt	aaataaaaaa	gttgatgtat	1320
gatttctgga	catttggaca	tataatgcag	aattgttagt	tctactggaa	aatggaaagg	1380
ctctggaaatt	ccatgactca	aatgtgaaga	atctgtatga	gaaagtaaaa	agccaattaa	1440
agaataatgc	caaagaaatc	ggaaatggat	gttttgagtt	ctaccacaag	tgtgacaatg	1500
aatgcgttga	aagtgttga	aatggggactt	atgattatcc	caaatttca	gaagagtcaa	1560
agttgaacag	ggaaaaggta	gatggagtga	aatttggaaatc	aatggggatc	tatcagattc	1620
tggcgatcta	ctcaactgtc	gccagttcac	tggtgctttt	ggtctccctg	ggggcaatca	1680
gtttctggat	gtgttctaat	ggatcttgc	agtgcagaat	atgcatctga	gatttggat	1740
tcagagatat	gaggaaaaac	acccttggttt	ctact			1775

<210> SEQ ID NO 16

<211> LENGTH: 1413

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 16

agcaaaagca	ggggtttaaa	atgaatccaa	atcagaaaaat	aataaccatt	ggatcaatct	60
------------	------------	------------	-------------	------------	------------	----

-continued

gtctggtagt	cggactaatt	agcctaataat	tgcaaataagg	aatataatc	tcaatatgga	120
ttagccatc	aattcaaact	ggaagtcaaa	accatactgg	aatatgcaac	caaaacatca	180
ttacctataa	aaatagcacc	tgggtaaagg	acacaacttc	agtgatatta	accggcaatt	240
catctctttg	tcccatccgt	gggtgggcta	tatacagcaa	agacaatagc	ataagaattg	300
gttccaaagg	agacgtttt	gtcataagag	agcccttat	ttcatgttct	cacttggaat	360
gcaggacctt	tttctgacc	caaggtgcct	tactgaatga	caagcattca	agtgggactg	420
ttaaggacag	aagcccttat	agggccttaa	tgagctgccc	tgtcggtgaa	gctcgtccc	480
cgtacaattc	aagatttcaa	tccgttgott	ggtcagcaag	tgcatgtcat	gatggcatgg	540
gctggctaac	aatcggaaatt	tcaaggccag	ataatggagc	agtggctgta	ttaaaataca	600
acggcataat	aactgaaacc	ataaaaaatt	ggaggaagaa	aatattgagg	acacaagagt	660
ctgaatgtgc	ctgtgtaaat	ggttcatgtt	ttactataat	gactgatggc	ccgagtatgt	720
ggctggccctc	gtacaaaatt	ttcaagatcg	aaaaggggaa	ggttactaaa	tcaatagagt	780
tgaatgcacc	taattctcac	tatgaggaat	gttcctgtta	ccctgatacc	gacaaagtga	840
tgtgtgtgt	cagagacaat	tggcatggt	cgaaccggcc	atgggtgtct	ttcgatcaaa	900
acctggatta	tcaaataatg	tacatctgca	gtggggttt	cggtgacaac	ccgcgtcccc	960
aatgggaac	aggcagctgt	ggtccagtgt	atgttgcatt	agcaaaacgga	gtaaaggat	1020
tttcatatag	gtatggtaat	ggtgtttgga	taggaaggac	caaaagtcaac	agtccagac	1080
atgggttga	gatgatttgg	gatcctaatg	gatggacaga	gactgatagt	aagttctctg	1140
tgaggcaaga	tgttgtggca	atgactgatt	ggtcagggtt	tagcggaagt	ttcgatcaac	1200
atcctgagct	gacaggceta	gactgtatg	ggccgtgctt	ctgggttgaa	ttaatcaggg	1260
gacgaccta	agaaaaaaaca	atctggacta	gtgcgagcag	catttcttt	tgtggcgtga	1320
atagtgatac	tgttagattgg	tcttggccag	acggtgctga	gttgcattc	agcattgaca	1380
agttagtctgt	tcaaaaaact	ccttgtttct	act			1413

<210> SEQ ID NO 17

<211> LENGTH: 716

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 17

Met	Glu	Asp	Phe	Val	Arg	Gln	Cys	Phe	Asn	Pro	Met	Ile	Val	Glu	Leu
1								5			10			15	

Ala	Glu	Lys	Ala	Met	Lys	Glu	Tyr	Gly	Glu	Asp	Pro	Lys	Ile	Glu	Thr
							20			25			30		

Asn	Lys	Phe	Ala	Ala	Ile	Cys	Thr	His	Leu	Glu	Val	Cys	Phe	Met	Tyr
							35			40			45		

Ser	Asp	Phe	His	Phe	Ile	Asp	Glu	Arg	Gly	Glu	Ser	Ile	Ile	Val	Glu
							50			55			60		

Ser	Gly	Asp	Pro	Asn	Ala	Leu	Leu	Lys	Arg	Phe	Glu	Ile	Ile	Glu	
							65			70			75		80

Gly	Arg	Asp	Arg	Ile	Met	Ala	Trp	Thr	Val	Val	Asn	Ser	Ile	Cys	Asn
							85			90			95		

Thr	Thr	Gly	Val	Glu	Lys	Pro	Lys	Phe	Leu	Pro	Asp	Leu	Tyr	Asp	Tyr
							100			105			110		

Lys	Glu	Asn	Arg	Phe	Ile	Glu	Ile	Gly	Val	Thr	Arg	Arg	Glu	Val	His
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

-continued

115	120	125	
Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Lys Thr His			
130	135	140	
Ile His Ile Phe Ser Phe Thr Gly Glu Glu Met Ala Thr Lys Ala Asp			
145	150	155	160
Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe			
165	170	175	
Thr Ile Arg Gln Glu Met Ala Ser Arg Ser Leu Trp Asp Ser Phe Arg			
180	185	190	
Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Lys Phe Glu Ile Thr			
195	200	205	
Gly Thr Met Arg Lys Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Pro			
210	215	220	
Ser Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly			
225	230	235	240
Cys Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Asn Ala Lys			
245	250	255	
Ile Glu Pro Phe Leu Arg Thr Thr Pro Arg Pro Leu Arg Leu Pro Asp			
260	265	270	
Gly Pro Leu Cys His Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu			
275	280	285	
Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Gly Ile Pro Leu			
290	295	300	
Tyr Asp Ala Ile Lys Cys Met Lys Thr Phe Phe Gly Trp Lys Glu Pro			
305	310	315	320
Asn Ile Val Lys Pro His Glu Lys Gly Ile Asn Pro Asn Tyr Leu Met			
325	330	335	
Ala Trp Lys Gln Val Leu Ala Glu Leu Gln Asp Ile Glu Asn Glu Glu			
340	345	350	
Lys Ile Pro Arg Thr Lys Asn Met Lys Arg Thr Ser Gln Leu Lys Trp			
355	360	365	
Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Asp Asp Cys			
370	375	380	
Lys Asp Val Gly Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Pro			
385	390	395	400
Arg Ser Leu Ala Ser Trp Val Gln Asn Glu Phe Asn Lys Ala Cys Glu			
405	410	415	
Leu Thr Asp Ser Ser Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Val			
420	425	430	
Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ala			
435	440	445	
Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr			
450	455	460	
Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe			
465	470	475	480
Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg			
485	490	495	
Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg			
500	505	510	
Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr			
515	520	525	

-continued

Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu
 530 535 540

Ile Gly Asp Met Leu Leu Arg Thr Ala Ile Gly Gln Val Ser Arg Pro
 545 550 555 560

Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Ile Lys Met Lys
 565 570 575

Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile
 580 585 590

Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr
 595 600 605

Lys Glu Phe Phe Glu Asn Lys Ser Glu Thr Trp Pro Ile Gly Glu Ser
 610 615 620

Pro Arg Gly Val Glu Glu Gly Ser Ile Gly Lys Val Cys Arg Thr Leu
 625 630 635 640

Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu
 645 650 655

Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Ile Val Gln Ala Leu
 660 665 670

Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Gly Leu Tyr Glu
 675 680 685

Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala
 690 695 700

Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Lys
 705 710 715

<210> SEQ ID NO 18

<211> LENGTH: 757

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 18

Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Ile Pro Ala Gln Asn
 1 5 10 15

Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Asp Pro Pro Tyr Ser His
 20 25 30

Gly Thr Gly Thr Gly Tyr Thr Met Asp Thr Val Asn Arg Thr His Gln
 35 40 45

Tyr Ser Glu Lys Gly Lys Trp Thr Thr Asn Thr Glu Thr Gly Ala Pro
 50 55 60

Gln Leu Asn Pro Ile Asp Gly Pro Leu Pro Glu Asp Asn Glu Pro Ser
 65 70 75 80

Gly Tyr Ala Gln Thr Asp Cys Val Leu Glu Ala Met Ala Phe Leu Glu
 85 90 95

Glu Ser His Pro Gly Ile Phe Glu Asn Ser Cys Leu Glu Thr Met Glu
 100 105 110

Val Val Gln Gln Thr Arg Val Asp Lys Leu Thr Gln Gly Arg Gln Thr
 115 120 125

Tyr Asp Trp Thr Leu Asn Arg Asn Gln Pro Ala Ala Thr Ala Leu Ala
 130 135 140

Asn Thr Ile Glu Val Phe Arg Ser Asn Gly Leu Thr Ala Asn Glu Ser
 145 150 155 160

Gly Arg Leu Ile Asp Phe Leu Lys Asp Val Met Glu Ser Met Asn Lys
 165 170 175

-continued

Glu Glu Ile Glu Ile Thr Thr His Phe Gln Arg Arg Lys Arg Arg Val Arg
 180 185 190
 Asp Asn Met Thr Lys Lys Met Val Thr Gln Arg Thr Ile Gly Lys Lys
 195 200 205
 Lys Gln Arg Leu Asn Lys Arg Gly Tyr Leu Ile Arg Ala Leu Thr Leu
 210 215 220
 Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala
 225 230 235 240
 Ile Ala Thr Pro Gly Met Gln Ile Arg Gly Phe Val Tyr Phe Val Glu
 245 250 255
 Thr Leu Ala Arg Ser Ile Cys Glu Lys Leu Glu Gln Ser Gly Leu Pro
 260 265 270
 Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ala Asn Val Val Arg Lys
 275 280 285
 Met Met Thr Asn Ser Gln Asp Thr Glu Ile Ser Phe Thr Ile Thr Gly
 290 295 300
 Asp Asn Thr Lys Trp Asn Glu Asn Gln Asn Pro Arg Met Phe Leu Ala
 305 310 315 320
 Met Ile Thr Tyr Ile Thr Arg Asn Gln Pro Glu Trp Phe Arg Asn Ile
 325 330 335
 Leu Ser Met Ala Pro Ile Met Phe Ser Asn Lys Met Ala Arg Leu Gly
 340 345 350
 Lys Gly Tyr Met Phe Glu Ser Lys Arg Met Lys Ile Arg Thr Gln Ile
 355 360 365
 Pro Ala Glu Met Leu Ala Ser Ile Asp Leu Lys Tyr Phe Asn Glu Ser
 370 375 380
 Thr Lys Lys Ile Glu Lys Ile Arg Pro Leu Leu Ile Asp Gly Thr
 385 390 395 400
 Ala Ser Leu Ser Pro Gly Met Met Gly Met Phe Asn Met Leu Ser
 405 410 415
 Thr Val Leu Gly Val Ser Ile Leu Asn Leu Gly Gln Lys Lys Tyr Thr
 420 425 430
 Lys Thr Ile Tyr Trp Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala
 435 440 445
 Leu Ile Val Asn Ala Pro Asn His Glu Gly Ile Gln Ala Gly Val Asp
 450 455 460
 Arg Phe Tyr Arg Thr Cys Lys Leu Val Gly Ile Asn Met Ser Lys Lys
 465 470 475 480
 Lys Ser Tyr Ile Asn Lys Thr Gly Thr Phe Glu Phe Thr Ser Phe Phe
 485 490 495
 Tyr Arg Tyr Gly Phe Val Ala Asn Phe Ser Met Glu Leu Pro Ser Phe
 500 505 510
 Gly Val Ser Gly Val Asn Glu Ser Ala Asp Met Ser Ile Gly Val Thr
 515 520 525
 Val Ile Lys Asn Asn Met Ile Asn Asn Asp Leu Gly Pro Ala Thr Ala
 530 535 540
 Gln Met Ala Leu Gln Leu Phe Ile Lys Asp Tyr Arg Tyr Thr Tyr Arg
 545 550 555 560
 Cys His Arg Gly Asp Thr Gln Ile Gln Thr Arg Arg Ser Phe Glu Leu
 565 570 575
 Lys Lys Leu Trp Asp Gln Thr Gln Ser Lys Val Gly Leu Leu Val Ser
 580 585 590

-continued

Asp Gly Gly Pro Asn Leu Tyr Asn Ile Arg Asn Leu His Ile Pro Glu
 595 600 605
 Val Cys Leu Lys Trp Glu Leu Met Asp Asp Asp Tyr Arg Gly Arg Leu
 610 615 620
 Cys Asn Pro Leu Asn Pro Phe Val Ser His Lys Glu Ile Asp Ser Val
 625 630 635 640
 Asn Asn Ala Val Val Met Pro Ala His Gly Pro Ala Lys Ser Met Glu
 645 650 655
 Tyr Asp Ala Val Ala Thr Thr His Ser Trp Ile Pro Lys Arg Asn Arg
 660 665 670
 Ser Ile Leu Asn Thr Ser Gln Arg Gly Ile Leu Glu Asp Glu Gln Met
 675 680 685
 Tyr Gln Lys Cys Cys Asn Leu Phe Glu Lys Phe Phe Pro Ser Ser Ser
 690 695 700
 Tyr Arg Arg Pro Val Gly Ile Ser Ser Met Val Glu Ala Met Val Ser
 705 710 715 720
 Arg Ala Arg Ile Asp Ala Arg Val Asp Phe Glu Ser Gly Arg Ile Lys
 725 730 735
 Lys Glu Glu Phe Ser Glu Ile Met Lys Ile Cys Ser Thr Ile Glu Glu
 740 745 750
 Leu Arg Arg Gln Lys
 755

<210> SEQ ID NO 19
 <211> LENGTH: 759
 <212> TYPE: PRT
 <213> ORGANISM: Influenza
 <400> SEQUENCE: 19

Met Glu Arg Ile Lys Glu Leu Arg Asp Leu Met Ser Gln Ser Arg Thr
 1 5 10 15
 Arg Glu Ile Leu Thr Lys Thr Thr Val Asp His Met Ala Ile Ile Lys
 20 25 30
 Lys Tyr Thr Ser Gly Arg Gln Glu Lys Asn Pro Ala Leu Arg Met Lys
 35 40 45
 Trp Met Met Ala Met Arg Tyr Pro Ile Thr Ala Asp Lys Arg Ile Met
 50 55 60
 Asp Met Ile Pro Glu Arg Asn Glu Gln Gly Gln Thr Leu Trp Ser Lys
 65 70 75 80
 Thr Asn Asp Ala Gly Ser Asp Arg Val Met Val Ser Pro Leu Ala Val
 85 90 95
 Thr Trp Trp Asn Arg Asn Gly Pro Thr Thr Ser Thr Val His Tyr Pro
 100 105 110
 Lys Val Tyr Lys Thr Tyr Phe Glu Lys Val Glu Arg Leu Lys His Gly
 115 120 125
 Thr Phe Gly Pro Val His Phe Arg Asn Gln Val Lys Ile Arg Arg Arg
 130 135 140
 Val Asp Thr Asn Pro Gly His Ala Asp Leu Ser Ala Lys Glu Ala Gln
 145 150 155 160
 Asp Val Ile Met Glu Val Val Phe Pro Asn Glu Val Gly Ala Arg Ile
 165 170 175
 Leu Thr Ser Glu Ser Gln Leu Ala Ile Thr Lys Glu Lys Lys Glu Glu
 180 185 190

-continued

Leu Gln Asp Cys Lys Ile Ala Pro Leu Met Val Ala Tyr Met Leu Glu
 195 200 205
 Arg Glu Leu Val Arg Lys Thr Arg Phe Leu Pro Val Ala Gly Gly Thr
 210 215 220
 Gly Ser Val Tyr Ile Glu Val Leu His Leu Thr Gln Gly Thr Cys Trp
 225 230 235 240
 Glu Gln Met Tyr Thr Pro Gly Gly Glu Val Arg Asn Asp Asp Val Asp
 245 250 255
 Gln Ser Leu Ile Ile Ala Ala Arg Asn Ile Val Arg Arg Ala Ala Val
 260 265 270
 Ser Ala Asp Pro Leu Ala Ser Leu Leu Glu Met Cys His Ser Thr Gln
 275 280 285
 Ile Gly Gly Val Arg Met Val Asp Ile Leu Arg Gln Asn Pro Thr Glu
 290 295 300
 Glu Gln Ala Val Asp Ile Cys Lys Ala Ala Ile Gly Leu Arg Ile Ser
 305 310 315 320
 Ser Ser Phe Ser Phe Gly Gly Phe Thr Phe Lys Arg Thr Ser Gly Ser
 325 330 335
 Ser Val Lys Lys Glu Glu Glu Val Leu Thr Gly Asn Leu Gln Thr Leu
 340 345 350
 Lys Ile Arg Val His Glu Gly Tyr Glu Glu Phe Thr Met Val Gly Arg
 355 360 365
 Arg Ala Thr Ala Ile Leu Arg Lys Ala Thr Arg Arg Leu Ile Gln Leu
 370 375 380
 Ile Val Ser Gly Arg Asp Glu Gln Ser Ile Ala Glu Ala Ile Ile Val
 385 390 395 400
 Ala Met Val Phe Ser Gln Glu Asp Cys Met Ile Lys Ala Val Arg Gly
 405 410 415
 Asp Leu Asn Phe Val Asn Arg Ala Asn Gln Arg Leu Asn Pro Met His
 420 425 430
 Gln Leu Leu Arg His Phe Gln Lys Asp Ala Lys Val Leu Phe Gln Asn
 435 440 445
 Trp Gly Ile Glu Ser Ile Asp Asn Val Met Gly Met Ile Gly Ile Leu
 450 455 460
 Pro Asp Met Thr Pro Ser Thr Glu Met Ser Leu Arg Gly Ile Arg Val
 465 470 475 480
 Ser Lys Met Gly Val Asp Glu Tyr Ser Ser Thr Glu Arg Val Val Val
 485 490 495
 Ser Ile Asp Arg Phe Leu Arg Val Arg Asp Gln Arg Gly Asn Val Leu
 500 505 510
 Leu Ser Pro Glu Glu Val Ser Glu Thr Gln Gly Thr Glu Lys Leu Thr
 515 520 525
 Ile Thr Tyr Ser Ser Ser Met Met Trp Glu Ile Asn Gly Pro Glu Ser
 530 535 540
 Val Leu Val Asn Thr Tyr Gln Trp Ile Ile Arg Asn Trp Glu Ile Val
 545 550 555 560
 Lys Ile Gln Trp Ser Gln Asp Pro Thr Met Leu Tyr Asn Lys Met Glu
 565 570 575
 Phe Glu Pro Phe Gln Ser Leu Val Pro Lys Ala Thr Arg Ser Arg Tyr
 580 585 590
 Ser Gly Phe Val Arg Thr Leu Phe Gln Gln Met Arg Asp Val Leu Gly

-continued

595	600	605
Thr Phe Asp Thr Val Gln Ile Ile Lys Leu Leu Pro Phe Ala Ala Ala		
610	615	620
Pro Pro Glu Gln Ser Arg Met Gln Phe Ser Ser Leu Thr Val Asn Val		
625	630	635
Arg Gly Ser Gly Leu Arg Ile Leu Val Arg Gly Asn Ser Pro Val Phe		
645	650	655
Asn Tyr Asn Lys Ala Thr Lys Arg Leu Thr Val Leu Gly Lys Asp Ala		
660	665	670
Gly Ala Leu Thr Glu Asp Pro Asp Glu Gly Thr Ser Gly Val Glu Ser		
675	680	685
Ala Val Leu Arg Gly Phe Leu Ile Leu Gly Lys Glu Asp Lys Arg Tyr		
690	695	700
Gly Pro Ala Leu Ser Ile Asn Glu Leu Ser Asn Leu Ala Lys Gly Glu		
705	710	715
720		
Lys Ala Asn Val Leu Ile Gly Gln Gly Asp Val Val Leu Val Met Lys		
725	730	735
Arg Lys Arg Asp Ser Ser Ile Leu Thr Asp Ser Gln Thr Ala Thr Lys		
740	745	750
Arg Ile Arg Met Ala Ile Asn		
755		

<210> SEQ ID NO 20

<211> LENGTH: 319

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 20

Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Gly		
1	5	10
15		
Gly Glu Arg Gln Asp Ala Thr Glu Ile Arg Ala Ser Val Gly Arg Met		
20	25	30
Ile Gly Gly Ile Gly Arg Phe Tyr Ile Gln Met Cys Thr Glu Leu Lys		
35	40	45
Leu Ser Asp Tyr Asp Gly Arg Leu Ile Gln Asn Ser Ile Thr Ile Glu		
50	55	60
Arg Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Lys Tyr Leu Glu		
65	70	75
80		
Glu His Pro Ser Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile		
85	90	95
Tyr Arg Arg Val Asp Gly Lys Trp Met Arg Glu Leu Ile Leu Tyr Asp		
100	105	110
Lys Glu Glu Ile Arg Arg Val Trp Arg Gln Ala Asn Asn Gly Glu Asp		
115	120	125
Ala Thr Ala Gly Leu Thr His Ile Met Ile Trp His Ser Asn Leu Asn		
130	135	140
Asp Ala Thr Tyr Gln Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp		
145	150	155
160		
Pro Arg Met Cys Ser Leu Met Gln Gly Ser Thr Leu Pro Arg Arg Ser		
165	170	175
Gly Ala Ala Gly Ala Ala Val Lys Gly Val Gly Thr Ile Ala Met Glu		
180	185	190
Leu Ile Arg Met Ile Lys Arg Gly Ile Asn Asp Arg Asn Phe Trp Arg		

-continued

195	200	205
Gly Glu Asn Gly Arg Arg Thr Arg Val Ala Tyr Glu Arg Met Cys Asn		
210	215	220
Ile Leu Lys Gly Lys Phe Gln Thr Ala Ala Gln Arg Ala Met Met Asp		
225	230	235
240		
Gln Val Arg Glu Ser Arg Asn Pro Gly Asn Ala Glu Ile Glu Asp Leu		
245	250	255
Ile Phe Leu Ala Arg Ser Ala Leu Ile Leu Arg Gly Ser Val Ala His		
260	265	270
Lys Ser Cys Leu Pro Ala Cys Val Tyr Gly Leu Ala Val Ala Ser Gly		
275	280	285
His Asp Phe Glu Arg Glu Gly Tyr Ser Leu Val Gly Ile Asp Pro Phe		
290	295	300
Lys Leu Leu Gln Asn Ser Gln Val Val Ser Leu Met Arg Pro Asn		
305	310	315
<210> SEQ ID NO 21		
<211> LENGTH: 252		
<212> TYPE: PRT		
<213> ORGANISM: Influenza		
<400> SEQUENCE: 21		
Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Ile Pro		
1	5	10
15		
Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Ser Val Phe		
20	25	30
Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr		
35	40	45
Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe		
50	55	60
Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val		
65	70	75
80		
Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Arg Ala		
85	90	95
Val Lys Leu Tyr Lys Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala		
100	105	110
Lys Glu Val Ser Leu Ser Tyr Ser Thr Gly Ala Leu Ala Ser Cys Met		
115	120	125
Gly Leu Ile Tyr Asn Arg Met Gly Thr Val Thr Thr Glu Ala Ala Phe		
130	135	140
Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Arg		
145	150	155
160		
Ser His Arg Gln Met Ala Thr Thr Asn Pro Leu Ile Arg His Glu		
165	170	175
Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met		
180	185	190
Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Asn Gln		
195	200	205
Thr Arg Gln Met Val His Ala Met Arg Thr Ile Gly Thr His Pro Ser		
210	215	220
Ser Ser Ala Gly Leu Lys Asp Asp Leu Leu Glu Asn Leu Gln Ala Tyr		
225	230	235
240		
Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys		

-continued

245

250

<210> SEQ ID NO 22
 <211> LENGTH: 219

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 22

Met Asp Ser Asn Thr Met Ser Ser Phe Gln Val Asp Cys Phe Leu Trp
 1 5 10 15

His Ile Arg Lys Arg Phe Ala Asp Asn Gly Leu Gly Asp Ala Pro Phe
 20 25 30

Leu Asp Arg Leu Arg Arg Asp Gln Lys Ser Leu Lys Gly Arg Gly Asn
 35 40 45

Thr Leu Gly Leu Asp Ile Glu Thr Ala Thr Leu Val Gly Lys Gln Ile
 50 55 60

Val Glu Trp Ile Leu Lys Glu Glu Ser Ser Glu Thr Leu Arg Met Thr
 65 70 75 80

Ile Ala Ser Val Pro Thr Ser Arg Tyr Leu Ser Asp Met Thr Leu Glu
 85 90 95

Glu Met Ser Arg Asp Trp Phe Met Leu Met Pro Arg Gln Lys Ile Ile
 100 105 110

Gly Pro Leu Cys Val Arg Leu Asp Gln Ala Ile Met Glu Lys Asn Ile
 115 120 125

Val Leu Lys Ala Asn Phe Ser Val Ile Phe Asn Arg Leu Glu Thr Leu
 130 135 140

Ile Leu Leu Arg Ala Phe Thr Glu Glu Gly Ala Ile Val Gly Glu Ile
 145 150 155 160

Ser Pro Leu Pro Ser Leu Pro Gly His Thr Tyr Glu Asp Val Lys Asn
 165 170 175

Ala Val Gly Val Leu Ile Gly Gly Leu Glu Trp Asn Gly Asn Thr Val
 180 185 190

Arg Val Ser Glu Asn Ile Gln Arg Phe Ala Trp Arg Asn Cys Asp Glu
 195 200 205

Asn Gly Arg Pro Ser Leu Pro Pro Glu Gln Lys
 210 215

<210> SEQ ID NO 23

<211> LENGTH: 2151

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 23

atggaagact ttgtgcgaca atgcttaat ccaatgatcg tcgagettgc ggaaaaggca 60

atgaaagaat atggggaaga tccgaaaatc gaaactaaca agtttgctgc aatatgcaca 120

catttggaaat tttgtttcat gtattcgat ttccatttca tcgacgaacg gggtaatca 180

ataatttgtat aatctggatca cccgaatgca ctattgaagc accgatttga gataattgaa 240

ggaagagagacc gaatcatggc ctggacagtgt gtaacagta tatgttaaacac aacagggtta 300

gagaaggctta aatttcttcc tgattttgtat gattacaag agaaccgggtt cattgaaatt 360

ggagtaacac ggaggaaagt ccacatatac tacctagaga aagccaaaca aataaaatct 420

gagaagacac acattcacat cttttcattc actggagagg agatggcac caaaggcgac 480

tacacccttg acgaagagag cagggcaaga atcaaaaacta ggctttcac tataagacaa 540

-continued

aaaaatggcca gtaggagatct atgggatcc tttcgctcgtt ccgaaagagg cgaagagaca 600
attnaagaaa aattttagat tacaggaact atgcgcacgc ttgcccacca aagtctccca 660
ccgaacttcc ccagccttga aaactttaga gcctatgtat atggattcga gccgaacggc 720
tgcattgagg gcaagcttcc ccaaattgtca aaagaagtga acgccaaaat tgaaccattc 780
ttgaggacga caccacgccc cctcagattt cctgatgggc ctcttgcca tcagcggtca 840
aagttccctgc tgcattgtgc tctgaaattt agtattgtat aacccgagtca cgaggggggag 900
ggaataccac tatatgtatgc aatcaaattgc atgaagacat tctttggctg gaaagagcct 960
aacatagtca aaccacatga gaaaggcata aatcccaattt acctcatggc ttggaagcag 1020
gtgcttagcag agtacagga cattgaaaat gaagagaaga tcccaaggac aaagaacatg 1080
aagagaacaa gccaatttgc gttggggactc ggtgaaaata tggcaccaga aaaagttagac 1140
tttgcattgtact gcaaaagatgt tggagaccc ttccactatgc aacatgtatgc gccagagccc 1200
agatctctag caagctgggt cccaaatgtca ttcaataattt catgtatgcattt gactgtatca 1260
agctggatag aacttgcattgtatgc aataggagaa gatgttgcctt cgatttgcata tatgcac 1320
atgaggagga actatatttac agcagaagtg tcccaacttgc gggctacttgc atacataatg 1380
aagggagttgtt acataaataac ggccttgcctt aatgcacatgc gttggccat ggtatgtttt 1440
cagctgtatcc caatgtatgc aatgtatgttgc accaaagaag gaagacggaa aacaacactg 1500
tatgggttca ttataaaagg aaggctctcat ttgagaaatg atactgtatgtt ggtgaactttt 1560
gtaagttatgg agttctcaact cactgacccg agactggagc cacacaaatg ggaaaaatac 1620
tgtgttcttgc aataggagaa catgtcttgc aggacttgcga taggccaatgt gtcggggccc 1680
atgttccat atgttgcataac caatggaaacc tccaaatgtca agatgtatgc gggcatggaa 1740
atgaggcgc tgccttgc tgccttgc tgcattgtatgc gcatgtatgc ggcggactt 1800
tctgttcaatgg aagaaagacat gaccaaggaa ttctttgaaa acaaatttgc aacatggcca 1860
atcgaggatg caccgggggg agtggaggaa ggctcttattt gggaaatgttgc caggacccat 1920
ctggccaaat tgcattgtatgc cacttgc tgcattgtatgc gcatgtatgc ggcggactt 1980
gaatcttagaa aatttgcatttgc tattgttgc tgcattgtatgc gcatgtatgc ggcggactt 2040
ttcgtatcttgc gggggctata tgaagcaatc gaggagtgcc tgattaaatgc tccctgggtt 2100
ttgttcaatgttgc tgcattgtatgc cacttgc tgcattgtatgc gcatgtatgc ggcggactt 2160

<210> SEQ ID NO 24
<211> LENGTH: 2341
<212> TYPE: DNA
<213> ORGANISM: Influenza

<400> SEQUENCE: 24

agcggaaaggc	ggcaaaccat	ttgtatggat	gtcaatccga	ctctactttt	cctaaaaatt	60
ccagcgcaaa	atgccataag	caccacattc	ccttatactg	gagatccctcc	atacagccat	120
ggaaacagggaa	caggatacac	catggacaca	gtaaacagaa	cacaccaata	ctcagaaaag	180
ggaaagtgg	cgacaaaacac	agagactgg	gcaccccagc	tcaacccgat	tgatggacca	240
ctacctgagg	ataatgaacc	aagtgggtat	gcacaaaacag	actgtgttct	agaggctatg	300
gtttccttg	aagaatccca	cccaaggaata	tttgagaatt	catgccttga	aacaatggaa	360
gttgttcaac	aaacaagggt	agataaacta	actcaagggtc	gccagactta	tgattggaca	420

-continued

ttaaacagaa	atcaaccggc	agcaactgca	ttggccaaca	ccatagaagt	ctttagatcg	480	
aatggcctaa	cagctaatga	gtcaggaagg	ctaatacgatt	tcttaaaggaa	tgtaatggaa	540	
tcaatgaaca	aagagggaaat	agagataaca	acccacttgc	aaagaaaaag	gagagtaaga	600	
gacaacatga	ccaagaagat	ggtcacgc	agaacaatag	ggaagaaaaa	acaaagactg	660	
aataagagag	gctatcta	aagagcactg	acat	cgatgacca	agatgcagag	720	
agaggcaagt	taaaaagaag	ggctatcgca	acac	ttcgg	tgcagat	780	
tactttgtt	aaactttagc	taggacatt	tgcgaaa	ttgaacagtc	ttggctccc	840	
gtagggggca	atgaaaagaa	ggccaaactg	gcaatgtt	tgagaaagat	gtgactaat	900	
tcacaagaca	cagagattc	tttcacaatc	actgggg	acacta	aatg	960	
caaaatcc	aatgtt	ggcgatgatt	acatata	ccaga	aaatca	1020	
ttcagaaaca	tcctgagcat	ggcacccata	atgtt	ctcaa	acaaaatggc	1080	
aaagggtaca	tgttcgagag	taaaagaatg	aagattcgaa	cacaaatacc	agcagaaatg	1140	
ctagcaagca	ttgacctgaa	gtacttca	aatca	agaagaaat	tgagaaata	1200	
aggcctt	taatagatgg	cacagcatca	ctgagtc	ggat	gtatgatgat	1260	
aacatgctaa	gtacgg	ttc	ggagatc	atactgaatc	ttggacaaa	1320	
aagacaat	actgg	ttt	ggg	tcatccgac	at	tttgc	1380
gcaccaaa	acc	atgagg	aaat	acaagc	gagat	1440	
gtgg	aatca	acatg	gac	aaatgtcc	tttgc	1500	
acaagc	ttt	ttatcg	tggat	tttgc	at	tttgc	1560
ggagtgt	tctg	gagtaat	atc	agctg	at	gat	1620
aaatgataa	acaatg	actt	ttgac	ccat	tttgc	1680	
aaagacta	ata	acata	ttgtgc	at	ggat	1740	
tcatttg	at	aaaga	act	ccat	tttgc	1800	
gatggagg	acaa	acttata	ttgtgc	at	tttgc	1860	
tggagct	aa	ttatcg	ttatcg	tttgc	at	tttgc	1920
agtcat	aa	atcg	ttatcg	tttgc	at	tttgc	1980
aaaagc	at	atcg	ttatcg	tttgc	at	tttgc	2040
tctattct	ca	acata	ttatcg	tttgc	at	tttgc	2100
tgcaatct	tc	gat	ttatcg	tttgc	at	tttgc	2160
agcatgg	gg	gat	ttatcg	tttgc	at	tttgc	2220
ggacggat	ca	gat	ttatcg	tttgc	at	tttgc	2280
ctcagacgg	aaa	ataat	ttatcg	tttgc	at	tttgc	2340
t						2341	

<210> SEQ ID NO 25

<211> LENGTH: 2280

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 25

atggagagaa	taaaagaact	gagagatcta	atgtcg	cagt	cccg	cactcg	cgagat	actc	60
actaagacca	ctgtggacca	tatggccata	atcaaaa	agt	acacat	cagg	aagg	caagag	120

-continued

aagaaccccg	cactcagaat	gaagtggatg	atggcaatga	gatacccaat	tacagcagac	180
aagagaataa	tggacatgt	tccagagagg	aatgaacaag	gacaaaccct	ctggagcaaa	240
acaaacgatg	ctggatcaga	ccgagtgtat	gtatcaccc	tggccgtAAC	atggtgaaat	300
aggaatggcc	caacaacaag	tacagttcat	taccctaagg	tatataaaac	ttatTTcgaa	360
aaggctgaaa	ggttgaaaca	tggtaccc	ggccctgtcc	acttcagaaa	tcaagttaaa	420
ataaggagga	gagttgatac	aaaccctggc	catgcagatc	tcagtgcAAC	ggaggoacag	480
gatgtgatta	tggaagttgt	tttcccaat	gaagtggggg	caagaatact	gacatcagag	540
tcacagctgg	caataacaaa	agagaagaaa	gaagagctcc	aggattgtaa	aattgtccc	600
ttgatggtgg	cgtacatgt	agaaagagaa	ttggtccgtA	aaacaaggtt	tctcccagta	660
ggccggcggaa	caggcagtgt	ttatattgaa	gtgtgcact	taaccaagg	gacgtgctgg	720
gagcagatgt	acactccagg	aggagaagt	agaaatgt	atgttgacca	aagtttgatt	780
atcgctgcta	gaaacatagt	aagaagagca	gcagtgtcag	cagaccatt	agcatctc	840
ttggaaatgt	gccacagcac	acagattgga	ggagtaagga	tggtgacat	ccttagacag	900
aatccaactg	aggaacaacgc	cgttagacata	tgcaaggcag	caatagggtt	gaggattagc	960
tcatcttca	gtttggtgg	gttcactt	aaaaggacaa	gcggatc	agtcaagaaa	1020
gaagaagaag	tgctaacccgg	caaccccaaa	acactgaaaa	taagagtaca	tgaagggtat	1080
gaagaattca	caatggttgg	gagaagagca	acagctattc	tcagaaaggc	aaccaggaga	1140
ttgatccagt	tgatagtaag	cgggagagac	gagcagtcaa	ttgctgaggc	aataattgt	1200
gccatggtat	tctcacagga	ggattgc	atcaaggcag	ttagggcga	tctgaacttt	1260
gtcaataggg	caaaccagcg	actgaacccc	atgcaccaac	tcttgaggc	tttccaaaaaa	1320
gatgcaaaag	tgctttcca	gaactgggg	attgaatcca	tcgacaatgt	gatggatgt	1380
atcggaaatac	tgcggacat	gaccccaacgc	acggagatgt	cgctgagagg	gataagatc	1440
agcaaaatgg	gagtagatga	atactccagc	acggagagag	tggtagtgag	tattgaccga	1500
tttttaaggg	ttagagatca	aagagggaaac	gtactattgt	ctcccaaga	agtcagtgaa	1560
acgcaaggaa	ctgagaagtt	gacaataact	tattcgtcat	caatgtgt	ggagatcaat	1620
ggccctgagt	cagtgcgt	caacacttat	caatggataa	tcaggaactg	ggaaattgt	1680
aaaattcaat	ggtcacaaga	tcccacaatg	ttatacaaca	aatggatt	tgaaccat	1740
cagtctcttg	tcccttaaggc	aaccagaacgc	cggtacagt	gattcgt	gacactgtt	1800
cagcaaatgc	gggatgtgt	tggcacattt	gacactgtcc	aaataataaa	acttctccc	1860
tttgctgctg	ccccaccaga	acagagttag	atgcaattt	cctcattgac	tgtgaatgt	1920
agaggatcag	ggttgaggat	actggtaaga	ggcaattt	cagtattca	ttacaacaag	1980
gcaacccaaac	gacttacagt	tcttggaaag	gatgcaggt	cattgactga	agatccagat	2040
gaaggcacat	ctgggggtgg	gtctgctgtc	ctgagaggat	ttctcattt	ggccaaagaa	2100
gacaagagat	atggcccagc	attaagcatc	aatgaactga	gcaatctgc	aaaaggagag	2160
aaggctaatg	tgctaattgg	gcaaggggac	gtagtgttgg	taatgaaacg	aaaacgggac	2220
tctagcatac	ttactgacag	ccagacagcg	acccaaagaa	ttcggatgc	catcaattag	2280

<210> SEQ ID NO 26
 <211> LENGTH: 958
 <212> TYPE: DNA

-continued

<213> ORGANISM: Influenza

<400> SEQUENCE: 26

atggcgtctc aaggcaccaa acgatcatat gaacaaatgg agactggtgg ggagggccag 60
gatgccacag aaatcagagc atctgtcgg aagaatgattt gtggaatcgg gagattctac 120
atccaaatgt gcactgaact caaactcaagt gattatgatg gacgactaat ccagaatagc 180
ataacaatag agaggatggt gcttctgtt tttgatgaga gaagaataa atacctagaa 240
gagcatccca gtgctggaa ggaccctaag aaaacaggag gaccatata tagaagagta 300
gacggaaagt ggatgagaga actcatcctt tatgacaaaag aagaataaag gagagttgg 360
cgccaagcaa acaatggcga agatgcaaca gcaggtctta ctcataatcat gatttggcat 420
tccaacctga atgatgccac atatcagaga acaagagcgc ttgttcgcac cggaatggat 480
cccagaatgt gctctctaattt gcaaggttca acacttccca gaaggctgg tgccgcaggt 540
gctgcggta aaggagttgg aacaatagca atggagttaa tcagaatgat caaacgtgga 600
atcaatgacc gaaatttctg gaggggtgaa aatggaccaa ggacaagggt tgcttatgaa 660
agaatgtgca atatcctcaa aggaaaattt caaacagctg cccagaggc aatgtatggat 720
caagtaagag aaagtgcaaa cccagggaaac gctgagattt aagacctcat tttctggca 780
cggtcagcac tcattctgag gggatcagtt gcacataat cctgcctgccc tgcttgcgtg 840
tatgggctt cagtagcaag tgggcatgac tttgaaaggg aagggtactc actggtcggg 900
atagaccat tcaaattact cccaaacagc caagtggta gcctgtatgag accaaatg 958

<210> SEQ ID NO 27

<211> LENGTH: 982

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 27

atgatgtttc taaccgaggt cgaaaatgtac gtttttctta tcatccgtc aggccccctc	60
aaagccgaga tcgcgcagag actggaaagt gtctttgcag gaaagaacac agatcttgag	120
gctctcatgg aatggctaaa gacaagacca atcttgcac ctctgactaa gggattttta	180
ggatttgtgt tcacgctcac cgtgcccagt gagcgaggac tgcagcgtac acgctttgtc	240
caaaatgccc taaatggaa tggggacccg aacaacatgg atagagcagt taaactatac	300
aagaagctca aaagagaaaat aacgttccat ggggccaagg aggtgtcaact aagctattca	360
actgggtcac ttggccatgt catgggcctc atatacaaca ggatggaaac agtgaccaca	420
gaagctgctt ttggcttagt gtgtgccact tgtgaacaga ttgctgattc acagcatcg	480
tctcacagac agatggctac taccaccaat ccactaatca ggcataaaaa cagaatggtg	540
ctggctagca ctacggcaaa ggctatggaa cagatggctg gatcgagtga acaggcagcg	600
gaggccatgg aggttgctaa tcagactagg cagatggtaat atgcaatgag aactattgg	660
actcatctta gtcggcgtgc tggctgtaaa gatgaccctc ttgaaaattt gcaggcgtac	720
cagaagegaa tggggagtgca gatgcagcga ttcaagtgtat cctctcgta ttgcacgaaa	780
tatcattggg atcttgcacc tgatattgtg gattactgtat cgtctttttt tcaaattgtat	840
ttatcgatcg tttaaaatcg gtttggaaatggggcccttc acggaaaggag tgcctgatgc	900
catgagggaa gaatatcaac aggaacagca gagtgctgtg gatgttgacg atggtcattt	960
tgtcaacata gagcttagagt aa	982

-continued

<210> SEQ ID NO 28
<211> LENGTH: 865
<212> TYPE: DNA
<213> ORGANISM: Influenza

<400> SEQUENCE: 28

```

atggactcca acaccatgtc aagcttcag gtagactgtt tcccttgca tatccgcaag      60
cgatttgcag acaatggatt gggtgatgcc ccattccttg atcggctccg ccgagatcaa     120
aagtccctaa aaggaagagg caacaccott ggccctcgata tcgaaacagc cactcttgc     180
gggaaacaaa tcgttgcattt gatcttgcattt gggaaatcca gcgagacact tagaatgaca     240
attgcacatcg tacctacttc gcgctacattt tctgacatga ccctcgagga aatgtcacga     300
gactgggtca tgcgtcatgcc taggcaaaagc ataataggcc ctcttgcgt gcgattggac     360
caggcgatca tggaaaagaa catagtactg aaagcgaact tcagtgtaat cttaaccga     420
tttagagaccc ttgatactact aagggtttc actgaggagg gagcaatagt tggagaaatt     480
tcaccattac cttctttcc aggacatact tatgaggatg tcaaaaatgc agttgggtc     540
ctcatcgagg gacttgaatg gaatggtaac acgggtcgag tctctgaaaa tatacagaga     600
ttcgcttggaa gaaactgtga tgagaatggg agaccttcac tacctccaga gcagaaatga     660
aaagtggcga gagcaattgg gacagaaattt tgaggaaata aggtggtaa ttgaagaaat     720
gcggcacaga ttgaaagega cagagaatag tttcgaacaa ataacattt tgcaagcctt     780
acaactactg cttgaagtag aacaagagat aagagcttc tcgtttcagc ttatattatg     840
ataaaaaaca cccttgcattt tactg                                         865

```

<210> SEQ ID NO 29
<211> LENGTH: 758
<212> TYPE: PRT
<213> ORGANISM: Influenza

<400> SEQUENCE: 29

```

Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Ile Pro Ala Gln Asn
1           5           10           15

Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Asp Pro Pro Tyr Ser His
20          25          30

Gly Thr Gly Thr Gly Tyr Thr Met Asp Thr Val Asn Arg Thr His Gln
35          40          45

Tyr Ser Glu Lys Gly Lys Trp Thr Thr Asn Thr Glu Thr Gly Ala Pro
50          55          60

Gln Leu Asn Pro Ile Asp Gly Pro Leu Pro Glu Asn Glu Pro Ser
65          70          75          80

Gly Tyr Ala Gln Thr Asp Cys Val Leu Glu Ala Met Ala Phe Leu Glu
85          90          95

Glu Ser His Pro Gly Ile Phe Glu Asn Ser Cys Leu Glu Thr Met Glu
100         105         110

Val Val Gln Gln Thr Arg Val Asp Arg Leu Thr Gln Gly Arg Gln Thr
115         120         125

Tyr Asp Trp Thr Leu Asn Arg Asn Gln Pro Ala Ala Thr Ala Leu Ala
130         135         140

Asn Thr Ile Glu Val Phe Arg Ser Asn Gly Leu Thr Ala Asn Glu Ser
145         150         155         160

```

-continued

Gly Arg Leu Ile Asp Phe Leu Lys Asp Val Met Glu Ser Met Asp Lys
 165 170 175

Glu Glu Ile Glu Ile Thr Thr His Phe Gln Arg Lys Arg Arg Val Arg
 180 185 190

Asp Asn Met Thr Lys Lys Met Val Thr Gln Arg Thr Ile Gly Lys Lys
 195 200 205

Lys Gln Arg Val Asn Lys Arg Ser Tyr Leu Ile Arg Ala Leu Thr Leu
 210 215 220

Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala
 225 230 235 240

Ile Ala Thr Pro Gly Met Gln Ile Arg Gly Phe Val Tyr Phe Val Glu
 245 250 255

Thr Leu Ala Arg Ser Ile Cys Glu Lys Leu Glu Gln Ser Gly Leu Pro
 260 265 270

Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ala Asn Val Val Arg Lys
 275 280 285

Met Met Thr Asn Ser Gln Asp Thr Glu Leu Ser Phe Thr Ile Thr Gly
 290 295 300

Asp Asn Thr Lys Trp Asn Glu Asn Gln Asn Pro Arg Met Phe Leu Ala
 305 310 315 320

Met Ile Thr Tyr Ile Thr Lys Asn Gln Pro Glu Trp Phe Arg Asn Ile
 325 330 335

Leu Ser Ile Ala Pro Ile Met Phe Ser Asn Lys Met Ala Arg Leu Gly
 340 345 350

Lys Gly Tyr Met Phe Glu Ser Lys Arg Met Lys Leu Arg Thr Gln Ile
 355 360 365

Pro Ala Glu Met Leu Ala Ser Ile Asp Leu Lys Tyr Phe Asn Glu Ser
 370 375 380

Thr Arg Lys Lys Ile Glu Lys Ile Arg Pro Leu Leu Ile Asp Gly Thr
 385 390 395 400

Ala Ser Leu Ser Pro Gly Met Met Gly Met Phe Asn Met Leu Ser
 405 410 415

Thr Val Leu Gly Val Ser Ile Leu Asn Leu Gly Gln Lys Lys Tyr Thr
 420 425 430

Lys Thr Thr Tyr Trp Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala
 435 440 445

Leu Ile Val Asn Ala Pro Asn His Glu Gly Ile Gln Ala Gly Val Asp
 450 455 460

Arg Phe Tyr Arg Thr Cys Lys Leu Val Gly Ile Asn Met Ser Lys Lys
 465 470 475 480

Lys Ser Tyr Ile Asn Arg Thr Gly Thr Phe Glu Phe Thr Ser Phe Phe
 485 490 495

Tyr Arg Tyr Gly Phe Val Ala Asn Phe Ser Met Glu Leu Pro Ser Phe
 500 505 510

Gly Val Ser Gly Ile Asn Glu Ser Ala Asp Met Ser Ile Gly Val Thr
 515 520 525

Val Ile Lys Asn Asn Met Ile Asn Asn Asp Leu Gly Pro Ala Thr Ala
 530 535 540

Gln Met Ala Leu Gln Leu Phe Ile Lys Asp Tyr Arg Tyr Thr Tyr Arg
 545 550 555 560

Cys His Arg Gly Asp Thr Gln Ile Gln Thr Arg Arg Ser Phe Glu Leu
 565 570 575

-continued

Lys Lys Leu Trp Glu Gln Thr Arg Ser Lys Ala Gly Leu Leu Val Ser
 580 585 590

Asp Gly Gly Pro Asn Leu Tyr Asn Ile Arg Asn Leu His Ile Pro Glu
 595 600 605

Val Cys Leu Lys Trp Glu Leu Met Asp Glu Asp Tyr Gln Gly Arg Leu
 610 615 620

Cys Asn Pro Leu Asn Pro Phe Val Ser His Lys Glu Ile Glu Ser Val
 625 630 635 640

Asn Asn Ala Val Val Met Pro Ala His Gly Pro Ala Lys Ser Met Glu
 645 650 655

Tyr Asp Ala Val Ala Thr Thr His Ser Trp Ile Pro Lys Arg Asn Arg
 660 665 670

Ser Ile Leu Asn Thr Ser Gln Arg Gly Ile Leu Glu Asp Glu Gln Met
 675 680 685

Tyr Gln Lys Cys Cys Asn Leu Phe Glu Lys Phe Phe Pro Ser Ser Ser
 690 695 700

Tyr Arg Arg Pro Val Gly Ile Ser Ser Met Val Glu Ala Met Val Ser
 705 710 715 720

Arg Ala Arg Ile Asp Ala Arg Ile Asp Phe Glu Ser Gly Arg Ile Lys
 725 730 735

Lys Glu Glu Phe Ser Glu Ile Met Lys Ile Cys Ser Thr Ile Glu Glu
 740 745 750

Leu Arg Arg Gln Lys Gln
 755

<210> SEQ ID NO 30
 <211> LENGTH: 716
 <212> TYPE: PRT
 <213> ORGANISM: Influenza

<400> SEQUENCE: 30

Met Glu Asp Phe Val Arg Gln Cys Phe Asn Pro Met Ile Val Glu Leu
 1 5 10 15

Ala Glu Lys Thr Met Lys Glu Tyr Gly Glu Asp Leu Lys Ile Glu Thr
 20 25 30

Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr
 35 40 45

Ser Asp Phe His Phe Ile Asn Glu Gln Gly Glu Ser Ile Ile Val Glu
 50 55 60

Leu Gly Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu
 65 70 75 80

Gly Arg Asp Arg Thr Met Ala Trp Thr Val Val Asn Ser Ile Cys Asn
 85 90 95

Thr Thr Gly Ala Glu Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr
 100 105 110

Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His
 115 120 125

Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Lys Thr His
 130 135 140

Ile His Ile Phe Ser Phe Thr Gly Glu Glu Met Ala Thr Lys Ala Asp
 145 150 155 160

Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe
 165 170 175

-continued

Thr Ile Arg Gln Glu Met Ala Ser Arg Gly Leu Trp Asp Ser Phe Arg
 180 185 190
 Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Arg Phe Glu Ile Thr
 195 200 205
 Gly Thr Met Arg Lys Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Ser
 210 215 220
 Ser Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly
 225 230 235 240
 Tyr Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Asn Ala Arg
 245 250 255
 Ile Glu Pro Phe Leu Lys Thr Thr Pro Arg Pro Leu Arg Leu Pro Asn
 260 265 270
 Gly Pro Pro Cys Ser Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu
 275 280 285
 Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Gly Ile Pro Leu
 290 295 300
 Tyr Asp Ala Ile Lys Cys Met Arg Thr Phe Gly Trp Lys Glu Pro
 305 310 315 320
 Asn Val Val Lys Pro His Glu Lys Gly Ile Asn Pro Asn Tyr Leu Leu
 325 330 335
 Ser Trp Lys Gln Val Leu Ala Glu Leu Gln Asp Ile Glu Asn Glu Glu
 340 345 350
 Lys Ile Pro Lys Thr Lys Asn Met Lys Lys Thr Ser Gln Leu Lys Trp
 355 360 365
 Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Asp Asp Cys
 370 375 380
 Lys Asp Val Gly Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Leu
 385 390 395 400
 Arg Ser Leu Ala Ser Trp Ile Gln Asn Glu Phe Asn Lys Ala Cys Glu
 405 410 415
 Leu Thr Asp Ser Ser Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Val
 420 425 430
 Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ser
 435 440 445
 Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr
 450 455 460
 Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe
 465 470 475 480
 Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg
 485 490 495
 Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg
 500 505 510
 Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr
 515 520 525
 Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu
 530 535 540
 Ile Gly Asp Met Leu Ile Arg Ser Ala Ile Gly Gln Val Ser Arg Pro
 545 550 555 560
 Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Ile Lys Met Lys
 565 570 575
 Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile

-continued

580	585	590	
Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr			
595	600	605	
Lys Glu Phe Phe Glu Asn Lys Ser Glu Thr Trp Pro Ile Gly Glu Ser			
610	615	620	
Pro Lys Gly Val Glu Ser Ser Ile Gly Lys Val Cys Arg Thr Leu			
625	630	635	640
Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu			
645	650	655	
Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Ile Val Gln Ala Leu			
660	665	670	
Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Leu Tyr Glu			
675	680	685	
Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala			
690	695	700	
Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Ser			
705	710	715	

<210> SEQ ID NO 31

<211> LENGTH: 326

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 31

1	5	10	15
Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Asp			
20	25	30	
Gly Glu Arg Gln Asn Ala Thr Glu Ile Arg Ala Ser Val Gly Lys Met			
35	40	45	
Ile Gly Gly Ile Gly Arg Phe Tyr Ile Gln Met Cys Thr Glu Leu Lys			
50	55	60	
Leu Ser Asp Tyr Glu Gly Arg Leu Ile Gln Asn Ser Leu Thr Ile Glu			
65	70	75	80
Arg Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Lys Tyr Leu Glu			
85	90	95	
Glu His Pro Ser Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile			
100	105	110	
Tyr Arg Arg Val Asn Gly Lys Trp Met Arg Glu Leu Ile Leu Tyr Asp			
115	120	125	
Lys Glu Glu Ile Arg Arg Ile Trp Arg Gln Ala Asn Asn Gly Asp Asp			
130	135	140	
Ala Thr Ala Gly Leu Thr His Met Met Ile Trp His Ser Asn Leu Asn			
145	150	155	160
Asp Ala Thr Tyr Gln Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp			
165	170	175	
Pro Arg Met Cys Ser Leu Met Gln Gly Ser Thr Leu Pro Arg Arg Ser			
180	185	190	
Gly Ala Ala Gly Ala Ala Val Lys Gly Val Gly Thr Met Val Met Glu			
195	200	205	
Leu Val Arg Met Ile Lys Arg Gly Ile Asn Asp Arg Asn Phe Trp Arg			
210	215	220	
Gly Glu Asn Gly Arg Lys Thr Arg Ile Ala Tyr Glu Arg Met Cys Asn			
Ile Leu Lys Gly Lys Phe Gln Thr Ala Ala Gln Lys Ala Met Met Asp			

-continued

225	230	235	240
Gln Val Arg Glu Ser Arg Asp Pro Gly Asn Ala Glu Phe Glu Asp Leu			
245	250	255	
Thr Phe Leu Ala Arg Ser Ala Leu Ile Leu Arg Gly Ser Val Ala His			
260	265	270	
Lys Ser Cys Leu Pro Ala Cys Val Tyr Gly Pro Ala Val Ala Ser Gly			
275	280	285	
Tyr Asp Phe Glu Arg Glu Gly Tyr Ser Leu Val Gly Ile Asp Pro Phe			
290	295	300	
Arg Leu Leu Gln Asn Ser Gln Val Tyr Ser Leu Ile Arg Pro Asn Glu			
305	310	315	320
Asn Pro Ala His Lys Ser			
325			

<210> SEQ ID NO 32

<211> LENGTH: 252

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 32

Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Ile Pro			
1	5	10	15
Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asp Val Phe			
20	25	30	
Ala Gly Lys Asn Thr Asp Leu Glu Val Leu Met Glu Trp Leu Lys Thr			
35	40	45	
Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe			
50	55	60	
Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val			
65	70	75	80
Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Lys Ala			
85	90	95	
Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala			
100	105	110	
Lys Glu Ile Ser Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met			
115	120	125	
Gly Leu Ile Tyr Asn Arg Met Gly Ala Val Thr Thr Glu Val Ala Phe			
130	135	140	
Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Arg			
145	150	155	160
Ser His Arg Gln Met Val Thr Thr Asn Pro Leu Ile Arg His Glu			
165	170	175	
Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met			
180	185	190	
Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Ser Gln			
195	200	205	
Ala Arg Gln Met Val Gln Ala Met Arg Thr Ile Gly Thr His Pro Ser			
210	215	220	
Ser Ser Ala Gly Leu Lys Asn Asp Leu Leu Glu Asn Leu Gln Ala Tyr			
225	230	235	240
Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys			
245	250		

-continued

-continued

gaagatagaa gatatggcc	agcattaagc atcaatgaat	tgagcaacct tgcgaaagg	2160
gaaaaagcta atgtgctaat	tgggcaaggag gacgtatgt	tggtaatgaa acgaaaacgg	2220
gactctagca tacttactga	cagccagaca gcgaccaaaa	gaattcggat ggccatcaat	2280
taatttcgaa taatttaaa			2299

<210> SEQ ID NO 34

<211> LENGTH: 2277

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 34

atggAACGCA	ttaagaact gcgcAACCTG	atgagccaga gcccACCCG	cgaaATTCTG	60		
accAAAACCA	ccgtggatca	tatggcgattt	ataccagcg	ccgCCAGGAA	120	
aaaaACCCGA	gcctgcgcAT	gaaatggatg	atggcgatga	aatatccgat	taccgoggat	180
aaacgcATTA	ccgaaatgat	tccggAACGc	aacgaacagg	gccagACCCt	gtggagcaaa	240
gtgaacgatG	cgggcAGCGA	tcgcgtatg	attagcccgc	tggcggtgac	ctgggtggAAC	300
cgcaacggcc	cggtgccgag	caccattcat	tatccgaaaa	tttataaaAC	ctatTTGAA	360
aaagtggAAC	gcctgaaaca	tggcacCTT	ggcccggtgc	atTTTcgAA	ccaggtgaaa	420
attcgccGCC	gcgtggatAT	taacCCGGGC	catgcggatc	tgagcgcgaa	agaagcgcag	480
gatgtgatta	tggaaagtgt	gttccgAAC	gaagtgggg	cgcgcatTC	gaccagcgaa	540
agccagCTGA	ccattacca	agaaaaaaa	gaagaactgc	agaactgcaa	aattagcccG	600
ctgtatgtgg	cgtatATGCT	ggaacgcgaa	ctggtgcgca	aaacCCGCTT	tctgcccgtg	660
gcgggcggca	ccagcagcgt	gtatattgaa	gtgctgcATC	tgacCCAGGG	cacCTGCTGG	720
gaacagatgt	atacCCCGG	cggcgaAGT	cgcaacgcAT	atgtggatca	gagcctgatt	780
attgcggcgc	gcaacattgt	gcccgcgcg	gcccgtgagc	cggtatccgt	ggcgagcctg	840
ctggaaatgt	gccccAGCAC	ccagattggc	ggcacCCGCA	tggtgatAT	tctgcgcCAG	900
aacCCGACCG	aagaacAGGC	ggtggatATT	tgcaaAGCGG	cgatgggcT	gcgcattAGC	960
agcagCTTA	gcttgggg	cttacCTT	aaacgcacca	gcccgcgcg	cgtgaaACGC	1020
gaagaAGAG	tgcgtacGGG	caacCTGCAg	accCTGAAAC	tgaccgtgcA	tgaaggctAT	1080
gaagaATTa	ccatgggtgg	caaACGCGCg	accgcgatTC	tgcgcaAAAGC	gacCCGCCGc	1140
ctgattcAGC	tgattgtgag	cggccgcgat	gaacagAGCA	ttgtggaaGC	gattgtggTG	1200
gcgtatgtgt	ttagccAGGA	agattgcATG	gtgaaAGCGG	tgccgcggca	tctgactTT	1260
gtgaaccgcg	cgaaccAGCG	cctgaACCCG	atgcATCAGC	tgctgcgcCA	ttttcagaaa	1320
gatgcgAAAG	tgcgtttCT	gaactggggc	attgaACCGA	ttgataACGT	gtgggcATG	1380
attggcattc	tgccggatAT	gacCCGAGC	accgAAATGA	gcATgcgcgg	cgtgcgcgtG	1440
agcaAAATGG	gcgtggatGA	atataGCAc	gcggAACGCG	ttgggttgAG	cattgatcgc	1500
tttctgcgcg	tgcgcgatCA	gcgcggcaAC	gtgcgtGTC	gcccggaAGA	agtgagcGAA	1560
acCCAGGGCA	ccgaaaaACT	gaccattacc	tatAGCAGCA	gcATgtatG	ggAAATTAAC	1620
ggccCGGAAA	gcgtgctGAT	taacacCTAT	cagtggatta	ttcgcaACTG	ggAAACCGTG	1680
aaaattcAGT	ggagccAGAA	cccgaccatG	ctgtataACA	aaatggAAAT	tgaaccGTTT	1740
cagAGCCTG	tgccgaaAGC	gattcgcggc	cagtataGCG	gcttGtgCg	caccCTGTTT	1800
cagcagatGC	gcgtatgtGCT	gggcacCTT	gataccACCC	agattattAA	actgcgtccG	1860

-continued

tttgccggcg	cgccgcccga	acagagccgc	atgcagtta	gcagccgtac	cgtgaacgtg	1920
cggggcagcg	gcatgcccatt	tctgggtgcgc	ggcaacagcc	cggtgtttaa	ctataacaaa	1980
accaccaaaac	gcctgaccgt	gctggggcaaa	gatgcgggca	ccctgaccga	agatccggat	2040
gaaggcaccg	cggggcgtgga	aagegcggtg	ctgcgcggct	ttctgattct	gggcaaagaa	2100
gatgcggcgt	atggcccgcc	gctgagcatt	aacgaactga	gcaacctggc	gaaaggcggaa	2160
aaagcgaacg	tgctgattgg	ccagggcgat	gtggtgcgtgg	tgtatggaaacg	caaacgcgtat	2220
agcagcattc	tgaccgatacg	ccagaccgcg	accaaacgc	ttcgcatggc	gattaac	2277

<210> SEQ ID NO 35
<211> LENGTH: 2201
<212> TYPE: DNA
<213> ORGANISM: Influenza

<400> SEQUENCE: 35

gattcgaat ggaagattt gtgagacaat gcttcaatcc gatgattgtc gagcttcggg
aaaaggcaat gaaagagtat ggagaggacc tgaaaatcg aacaaacaaa tttcagcaat
tatgcactca cttgaaagta tgcttcatgt attcagatt tcatttcatc aatgagcaag
gcgaatcaat aatagtagag cctgaggacc caaatgcact tttaaagcac agatttgaga
taatagaggg acgagatcgt acaatggcat ggacagttgtt aaacagttt tgcaacacca
caggagctga gaaaccaaag tttctgcacatc atctgtatcg ttacaaagag aatagattca
tcgagattgg agtgacaagg agggaaagttc acatatactacta tctggaaaag gccaacaaaa
ttaaatctga gaagacacac attcacattt tctcatttcac tggcgaagaa atggccacaa
aggccgatttta cactctcgat gaagaaagca gggcttaggat taaaaccaga ctattcacca
taagacaaga aatggcaagc agaggtctttt gggactcttcc tcgtcagtc gaaagaggcg
aagaaacaat tgaagaaaga tttgaaatca cagggacaat ggcgcaggctc gctgacccaaa
gccttcggcc gaaacttctcc tcgtcagtc gaaagaggcg
cgaacggcta cattgaggc aagcttctc aaatgtccaa agaagtaat gctagaattt
agcctttttt gaaaacaaca ccacgaccaat ttagacttcc ggttggccct ctttgcattt
agcggctaaa attcctgctg atggatttctt taaaattaag cattgaggat ccaatcatg
aaggagagg aataaccacta tatgtacaa tcaagttgtat gagaacattt tttgatgg
aagaacccttc tggttgcag ccacacgggaa agggataaaa tccgaattt ctgtgtcat
ggaaagcaggat attgaaagag ctgcaggaca ttgagagtgaa ggagaagatt ccaagaacaaa
aaaacatgaa aaaaacgagt cagctaaagt gggcaacttgg tgagaacatcg gcaccagaga
aggtggattt tgatgactgt aaagatataa gcgatttgc gcaatatgtat agtgcacgaa
ctgaatttgc gtcatttca agttggatcc agaatgaggat caacaaggca tggcagctga
ccgattcaat ctggatagag ctgcgtgaga ttggagaaga tggcccccattgaacaca
ttgcaagcat gagaagaaaat tacttcacag ctgagggtgc ccattgcaga gcccacagaat
atataatgaa ggggtatac attaatactg ctttgcattaa tgcatctgt gcagcaatgg
atgatccacta attaattccc atgataagca aatgttagaa taaagaggga aggagaacaaa
ccaaatttgc gggcttcatc gtaaaaggaa gatctcaattt aaggaatgac accgatgtgg
taaactttgtt gggatggag tttccctca ctgacccaaq acttgcggca cacaatgg
160
120
180
240
300
360
420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620

-continued

agaagtactg	tgttctttag	ataggagata	tgcttctaag	gagtgcataa	ggccaagtgt	1680
caaggccccat	gttcttgtat	gtaaggacaa	atggAACCTC	aaaaattaaa	atgaaatggg	1740
gaatggagat	gaggcggtgc	ctcctccaat	cccttcaaca	aatagagagc	atgattgaag	1800
ctgagtccctc	cgtcaaggag	aaagacatga	caaaagagtt	ttttgagaat	agatcagaaa	1860
catggccccat	tggagagtca	ccaaaaggag	tggaagaagg	ttccattggg	aaagtatgca	1920
ggacactatt	ggcttaagtca	gtattcaata	gtctgtatgc	atctccacaa	ttagaaggat	1980
tttcagctga	gtcaagaaaag	ttgctcctca	ttgttcaggc	tcttagggac	aatctggaac	2040
ctgggacctt	tgatcttggg	gggctatatg	aagcaattga	ggagtgcctg	attaatgatc	2100
cctgggtttt	gcttaatgct	tcttggttca	actccttcct	aacacatgca	ttgagatagc	2160
tggggcaatg	ctactattta	ctatccatac	tgtccaaaaaa	a		2201

<210> SEQ ID NO 36

<211> LENGTH: 2301

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 36

aatggatgtc	aatccgacat	tacttttctt	aaaagtgcac	gcacaaaaatg	ctataaggcac	60
aacttttcct	tatactggtg	accctcctta	cagccatggg	acaggaacag	ggtacaccat	120
ggatacagtc	aacaggacac	atcagtaatc	agaaagagga	agatggacaa	aaaataccga	180
aactggagca	ccgcaactca	accatttgc	tggggccacta	ccaaaagaca	atgaaccaag	240
tggctatgcc	caaacagatt	gtgttatttgc	agcaatggct	ttccttgagg	aatccatcc	300
tggtattttt	gaaaactctt	gtattgaaac	aatggagggtt	gttcagcaaa	caagggtgga	360
caaactgaca	caaggccagac	agacctatga	ctggactcta	aataggaacc	agcctgctgc	420
cacagcattt	gcacaaacta	tagaagtgtt	cagatcaaacc	ggcctatag	caaataatgc	480
tggggggctt	atagacttcc	ttaaagatgt	aatggagtcg	atggacagag	acgaagtaga	540
gatcacaact	cattttcaaa	gaaagaggag	agtggagagac	aatgtacta	aaaaaaatgg	600
gacccaaaga	acaataggca	aaaagaaaaca	taaatttagac	aaaagaagtt	acctaattag	660
ggcattaacc	ctgaacacaa	tgaccaaaga	tgctgagagg	gggaaactaa	aacgcagagc	720
aattgcaacc	ccaggaatgc	aaataagggg	gtttgtatac	tttggggata	cactggcaag	780
aagcatatgt	gaaaagcttg	aacaatcagg	gttgccagtt	ggggaaatg	aaaagaaaagc	840
aaagttagca	aatgttgtaa	ggaagatgt	gaccaactcc	caggacactg	aaattttcttt	900
caccatcaat	ggagataaca	aaaaatggaa	cgaaaaatcaa	aaccctagaa	tgttcttggc	960
catgatcaca	tatataacca	aaaatcagcc	tgaatgggtc	aaaaatattc	taagtattgc	1020
tccataata	ttttcaaaaca	aaatggcgag	actaggtaag	gggtacatgt	ttgaaagcaa	1080
gagttatggaa	ctgagaactc	aaatacctgc	agagatgcta	gccaacatag	atttgaaata	1140
tttcaatgt	tcaactaaaa	agaaaattga	aaaaatccgg	ccattattaa	tagatggaaac	1200
tgcatttcatt	agtccctggaa	tgtatgtggg	catgttcaat	atgttaagca	ccgtcttggg	1260
cgtctccatt	ctgaatcttg	ggccaaaagag	atacacaag	actacttact	ggtgggatgg	1320
tcttcatacg	tctgtatgtt	ttgctctgt	tgtgaatgca	cccaactatg	caggaattca	1380
agctggagtt	gacaggtttt	atcgaacctg	taagctgctc	ggaattaata	tgagcaaaaa	1440
gaagtcttac	ataaacagaa	caggtacctt	ttagttcacg	agcttttct	atcgatgg	1500

-continued

gtttgttgc	aatttcagca	tggagcttcc	tagtttggg	gtgtctgggg	tcaatgaatc	1560
tgcagacatg	agtattggag	tcactgtcat	caaaaacaat	atgataaaca	atgaccttgg	1620
cccagcaact	gctcaaatgg	cccttcagtt	atttataaaa	gattacaggt	acacgtatcg	1680
atgcccacaga	ggtgacacac	aaatacacaac	ccggagatca	tttgagataa	agaaaactatg	1740
ggaccaaacc	cgctccaaag	ctgggctgtt	ggtctctgat	ggaggcccca	atttatataa	1800
cattagaaat	ctccatattc	ctgaagtctg	cttggaaatgg	gagttgtatgg	atgaggattt	1860
ccagggcg	ttatgcaacc	cattgaaccc	gtttgcagt	cataaagaga	ttgaatcagt	1920
gaacaatgca	gtgtatgtgc	cggcacatgg	ttcagccaaa	aatatggagt	atgacgtgt	1980
tgcaacaaca	cactcctggg	ttcccaaag	gaatcgatcc	attttgaata	cgagccaaag	2040
ggggatactt	gaggatgagc	aatatgtatca	gaggtgctgc	attttatgg	aaaaattctt	2100
cccaagtagc	tcatacagaa	gaccagttgg	aatatccagt	atggtagagg	ctatggttcc	2160
cagagccccg	attgtatgcac	ggattgtattt	cgaatctgga	aggataaaaaa	aagaggaatt	2220
cgctgagatc	atgaagacct	gttccaccat	tgaagacctc	agacggccaa	aatagggaat	2280
ttggcttg	cttcatgaaa	a				2301

<210> SEQ ID NO 37

<211> LENGTH: 1527

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 37

atcactcact	gagtgcacatc	aaagtcatgg	cgccccagg	caccaaacgg	tcttacgaac	60
agatggagac	tgtatgggaa	cgccagaatg	caactgaaat	cagagcatcc	gtcgaaagaa	120
tgattgggt	aattgggca	ttctacatcc	aatgtgcac	cgagcttaaa	ctcaatgatt	180
atgagggacg	actgtatccag	aacagcttga	caatagagag	aatggtgc	tctgttttgc	240
atgagaggag	gaataaaat	cttggaaac	atcccagcgc	ggggaaagat	cctaagaaaa	300
ctggaggacc	catatacag	agagtagatg	gaaagtgggt	gagggaaactc	gtccctttag	360
acaaagaaga	aataaggcgg	atttggcgcc	aagccaacaa	tggtgatgt	gcaacggctg	420
gtttgactca	cattatgatc	tggcattcta	atttgaatga	tacaacttac	cagaggacaa	480
gagctcttgc	ccgcacccgga	atggatccca	ggatgtgc	tttgtgcaaa	ggttcaactc	540
tccctagaag	atctggagca	gcaggcgctg	cagtcaaagg	agttgggaca	atggtgttgg	600
agttaatcag	gatgtatcaa	cgtggatca	atgaccgaaa	cttctggagg	ggtgagaatg	660
gaagaaaaac	aaggattgt	tatgagagaa	tgtgcaacat	tctcaaaggaa	aaatttcaaa	720
cagctgcaca	aaaagcaatg	atggatcaag	tgagagaaaag	ccggaacccaa	ggaaatgctg	780
agatcgaaga	tctcactttt	ctggcacgg	ctgcactcat	attaagggg	tcagttgc	840
acaagtcttgc	cctgcctg	tgtgtgtatg	gaccagccgt	agccagtggg	tacgacttcg	900
aaaaagaggg	atactcttg	gtagggtag	accctttaa	actgcttcaa	accagtcagg	960
tatacagcct	aatcagacca	aacgagaatc	ccgcacacaa	gagtcaatgg	gtgtggatgg	1020
catgcaattc	tgctgcattt	gaagatctaa	gagtgtcaag	cttcatcaga	gggacaagag	1080
tacttccaag	ggggaaagctc	tccactagag	gagtacaaat	tgcttcaa	aaaaacatgg	1140
atgctattgt	atcaagtact	cttgcactga	gaagcagata	ctggccata	agaaccagaa	1200

-continued

gtggagggaa	caactaatcaa	caaagggcct	ctgcgggcca	aatcagcaca	caacctacgt	1260
tttctgtca	gagaaacctc	ccatTTgaca	aaacaaccat	catggcgaca	ttcactggaa	1320
atacggaggg	aagaacatca	gacatgaggg	cagaaatcat	aaagatgatg	gaaagtgc当地	1380
gaccagaaga	agtgtcctc	cagggggcggg	gagtcttga	gctctcgac	gaaaggc当地	1440
cgaacccgat	cgtgccctcc	tttgacatga	gtaatgaagg	atcttatttc	ttcggagaca	1500
atgcagagga	gtacgacaat	taatgaa				1527

<210> SEQ ID NO 38

<211> LENGTH: 984

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 38

gatgagtctt	ctaacccgagg	tcgaaacgta	cgttctctt	atcgccccgt	caggccccct	60
caaagccgag	atcgcacaga	gacttgaaaa	tgtctttgct	ggaaagaata	ccgatcttga	120
ggctctcatg	gaatggctaa	agacaagacc	aatcctgtca	cctctgacta	aggggatttt	180
aggatttgg	ttcacgctca	ccgtgcccag	tgagcgagga	ctgcagcgta	gacgcttgt	240
ccaaatgcc	cttaatggga	atggggatcc	aaataatatg	gacagagcag	ttaaactgtta	300
tcgaaagctt	aagagggaga	taacattcca	tggggccaaa	gaaatagcac	tcagttattc	360
tgctggtgca	cttgcagtt	gtatggact	catataaca	aggatgggg	ctgtgaccac	420
cgaatcagca	tttggccta	tatgcgcaac	ctgtgaacag	attgcccact	cccagcataa	480
gtctcatagg	caaatggtaa	caacaaccaa	cccattaata	agacatgaga	acagaatgg	540
tctggccage	actacagcta	aggctatgga	gcaaatggct	ggatcgagtg	aacaagcagc	600
tgaggccatg	gaggttgcta	gtcaggccag	gcagatggtg	caggcaatga	gagccattgg	660
gactcatctt	agctctagca	ctggctctgaa	aatgtatctc	cttggaaaatt	tgcaaggccta	720
tcagaaacga	atgggggtgc	agatgcAAC	attcaagtga	tcctcttggt	gttgcggcaa	780
gtataattgg	gattgtgcac	ctgatattgt	ggattattga	tcgcctttt	tccaaaagca	840
tttatacgat	ctttaaacac	ggttaaaaaa	gagggcctc	tacggaaagg	gtaccagagt	900
ctatgaggg	agaatatcga	gaggaacagc	agaatgctgt	ggatgctgac	gatggtcatt	960
ttgtcagcat	agagctagag	taaa				984

<210> SEQ ID NO 39

<211> LENGTH: 844

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 39

atggattccc	acactgtgtc	aagctttcag	gtagattgt	tcctttggca	tgtccgcaaa	60
caagttgcag	accaagatct	aggcgatgcc	ccatTCCTG	atcgccctcg	ccgagatcag	120
aagtctctaa	agggaaagagg	cagcactctc	ggtctgaaca	tcgaaacagc	cacttggtt	180
ggaaagcaaa	tagtagagag	gattctgaaa	gaagaatccg	atgaggcatt	taaaatgacc	240
atggcctccg	cacttgcttc	gccccatcta	actgacatga	ctattgaaga	aatgtcaagg	300
gactgggtca	tgctcatgcc	caagcagaaa	gtggctggcc	ctctttgt	cagaatggac	360
caggcgataa	tggataagaa	catcatactg	aaagcgaatt	tcagtgat	ttttgaccgg	420
ttggagaatc	tgacattact	aaggccttc	accgaagagg	gagcaattgt	tggcgaaatt	480

-continued

tcaccattgc	cttcttcc	aggacatact	aatgaggatg	tcaaaaatgc	aattgggtc	540
ctcatcgaaa	gacttgaatg	gaatgataac	acagttcgag	tctctgaaac	tctacagaga	600
ttagcttgg	gaagcagtaa	tgagactggg	ggacccat	tcaactcaac	acagaaacgg	660
aaaatggcg	gaacaattag	gtcagaatgt	tgaagaata	agatggctga	ttgaagaagt	720
gaggcataaa	ttgaagacga	cagagaatag	ttttgagcaa	ataacattta	tgcaagcatt	780
acagctattg	tttgaagtgg	aacaagagat	tagaacgtt	tgcgttca	tgctttaatg	840
ataaa						844

<210> SEQ ID NO 40

<211> LENGTH: 1728

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 40

ccaaaatgaa	agcaaaacta	ctggcctgt	tatgtacatt	tacagctaca	tatgcagaca	60
caatatgtat	aggctaccat	gccaacaact	caaccgacac	tgttgacaca	gtacttgaga	120
agaatgtgac	agtgcacac	tctgtcaacc	tacttgagga	cagtcacaat	ggaaaactat	180
gtctactaaa	aggaatagcc	ccactacaat	tggtaattg	cagcggtgcc	ggatggatct	240
taggaaaccc	agaatgcgaa	ttactgattt	ccaaggaaatc	atggcttac	atttgtagaaa	300
caccaaattcc	tgagaatgga	acatgttacc	cagggtat	cgccgactat	gaggaactga	360
gggagcaatt	gagttcagta	tcttcattt	agagattcga	aatattcccc	aaagaaagct	420
catggcccaa	ccacaccgta	accggagtat	cagcatcatg	ctccataat	gggaaaagca	480
gttttacag	aaatttgcata	tggctgacgg	ggaagaatgg	tttgcatacc	aacctgagca	540
agtcttatgt	aaacaacaaa	gagaaagaag	tccttgact	atgggtgtt	catcacccgc	600
ctaacatagg	gaaccaaagg	gcctctatc	atacagaaaa	tgcttatgtc	tctgtatgt	660
cttcacatta	tagcagaaga	ttcacccag	aaatagccaa	aagacccaaa	gtaagagatc	720
aggaaggaag	aatcaactac	tactggactc	tgctggacc	tggggataca	ataatattt	780
aggcaaatgg	aaatctaata	gcgcctatgg	atgccttgc	actgagtaga	ggcttggat	840
caggaatcat	cacctcaat	gcaccaatgg	atgaatgtga	tgcgaagtgt	caaacacctc	900
agggagctat	aaacagcagt	cttccttcc	agaatgtaca	cccagtacaca	ataggagagt	960
gtccaaagta	tgtcaggagt	gcaaaattaa	ggatggttac	aggactaagg	aacatccat	1020
ccattcaatc	cagaggttt	ttggagcca	ttggcggtt	cattgaaggg	gggtggactg	1080
gaatggtaga	tgggtggtat	ggttatcatc	atcagaatga	gcaaggatct	ggctatgctg	1140
cagatcaaaa	aagtacacaa	aatgccatta	acgggattac	aaacaagggt	aattctgtaa	1200
ttgagaaaaat	gaacactcaa	ttcacagctg	tggcacaaga	attcaacaaa	ttggaaagaa	1260
ggatggaaaa	cttaaataaa	aaagttgtat	atgggtttct	agacatttg	acatataatg	1320
cagaattgtt	ggttctactg	gaaaatgaaa	ggactttgga	tttccatgac	tccaatgtga	1380
agaatctgtat	tgagaaagta	aaaagccat	taaagaataa	tgccaaagaa	ataggaaacg	1440
ggtgtttgtat	attctatcac	aagtgtaca	atgaatgcat	ggagagtg	aaaaatggaa	1500
cttatgacta	tccaaaatat	tccgaagaat	caaagtaaa	cagggagaaa	attgtatggag	1560
tgaaatttgg	atcaatggga	gtctatcaga	ttctggcgat	ctactcaact	gtgcgcagtt	1620

-continued

ccctggctctt ttgggtctcc ctgggggcaa tcagctctg gatgtgtcc aatgggtctt 1680
 tgcagtgttag aatatgcata tgagaccaga atttcagaaa tataagaa 1728

<210> SEQ ID NO 41
 <211> LENGTH: 1414
 <212> TYPE: DNA
 <213> ORGANISM: Influenza

<400> SEQUENCE: 41

aatgaatcca aatcaaaaaa taataaccat tggatcaatc agtatacgaa tcggaataat 60
 tagtctaattt tagtctaattt gaaatattat ttcaatatgg gctagtcaatc caatccaaac 120
 tggaaagtcaaa aaccacactg gagtatgcaaa ccaaagaatc atcacatatg aaaacagcac 180
 ctgggtgaat cacacatatg ttaatattaa caacactaat gttgttgcgaaaggacaa 240
 aacttcagtg acattggccg gcaatttcattt tctttgttctt atcagtgatggat gggctatata 300
 cacaaaaagac aacagcataa gaattggctc caaaggagat gttttgtca taagagaacc 360
 tttcatatca tggatctact tggatgcag aacctttttt ctgacccaaatg gtgtcttatt 420
 aaatgacaaa cattcaaattt ggaccgttaa ggacagaatg cttataggg cttataggg 480
 ctgtccctcta ggtgaagctc cgtccccata caattcaaag tttgaatcag ttgcattggc 540
 agcaagcgca tgccatgtatg gcatgggctg gttaacaatc ggaatttctg gtccagacaa 600
 tggagctgtt gctgtactaa aatacaacgg cataataact gaaaccataa aaagttggaa 660
 aaagcgaata ttaagaacac aagagtctga atgtgtctgt gtgaacgggt catgtttcac 720
 cataatgacc gatggcccgaa gtaatggggc cgcctcgatc aaaatctca agatcgaaaa 780
 ggggaagggtt actaaatcaa tagagttgaa tgcacccaaat tttcattatg aggaatgttc 840
 ctgttaccca gacactggca cagtgtatgt tttatgcagg gacaactggc atggttcaaa 900
 tcgacatttttgg ttttttttta atcaaaaatc ggattatcaa ataggatata tctgcattgg 960
 ggtgttcgg gacaatccgc gtcggaaatggc tggagggggc agctgtatc cagtgtatgt 1020
 tggatggatca gacggatgaa aggggttttca atacaatataat ggtatggat tttggatagg 1080
 aaggactaaa agtaacacgac ttagaaaggg gtttggatgtt atttggatc ctaatggatg 1140
 gacagatacc gacagtgttattt tctcattgttca acaggatgtt gtggcaataa ctgattggc 1200
 agggatcagc ggaagtttccg ttcacatccca tggatggactt ggtatggact gtataagacc 1260
 ttgtttctgg gtttggatgttca tttttttttt gtttggatgttca atacaatataat ggtatggat 1320
 tggggatggc gacggatgaa aggggttttca atacaatataat ggtatggat tttggatagg 1380
 cgggtgtatgtt gtttggatgttca ccattgtacaa gtag 1414

<210> SEQ ID NO 42
 <211> LENGTH: 2220
 <212> TYPE: DNA
 <213> ORGANISM: Influenza

<400> SEQUENCE: 42

agcgaaagca ggtactgatt cgaaatggaa gatggatgtgc gacaatgtttt caatccgtat 60
 attgtcgatc ttgcggaaaa ggcaatgaaa gagttggag aggacctgaa aatcgaaaca 120
 aacaaattttgc cagcaatatg cacccacttgc gaagttgttgc tcatgttattc agatttcat 180
 ttcatcaatg agcaaggcga atcaataataat gtagagccctg aggacccaaatg tgcactttt 240
 aacacacatgtt gtttggatgttca ccattgtacaa gtag 300

-continued

agtatttgca	acaccacagg	agctgagaaa	ccaaagttc	tgccagatct	gtatgattac	360
aaagagaata	ggttcatcgaa	aattggagt	acaaggagag	aagttcacat	atactatctg	420
gaaaaggcca	acaaaattaa	atctgagaag	acacatattc	acatttctc	atttactggc	480
gaagaaatgg	ccacaaaggc	cgattacact	ctcgatgaag	aaagcagggc	tagaattaaa	540
accagactat	tcaccataag	gcaagaaatg	gcaagcagag	gtctttggga	ctccttcgt	600
cagtccgaaa	gaggcgaaga	gacaattgaa	gaaaggttt	aatcacagg	gacaatgcgc	660
aggctcgctg	atcaaagect	tccgccgaac	ttctcctgca	ttgagaattt	tagagctat	720
gtggatggat	ttgaaccgaa	cggctacatt	gaggcgaagc	tttctcaat	gtccaaagaa	780
gtaaatgcta	aaattgagcc	tttttgaaa	acaacaccc	gaccaattag	acttccgaat	840
ggcctcctt	gttttcagcg	gtcaaaaattc	ctgctatgg	attctttaaa	attaaggatt	900
gaggatccaa	atcatgaagg	ggagggata	ccactatatg	atgcaatcaa	gtgtatgaga	960
acattcttg	gatggaaaga	accactgtt	gtcaagccac	acgagaagg	aataaatccg	1020
aattatctgc	tgtcgtggaa	gcaggtgtt	gaagagctgc	aggacattga	gagtgaggag	1080
aaagattccaa	gaacaaaaaa	catgaaaaaa	acgagtca	taaagtgggc	acttggtag	1140
aacatggcac	cagagaaggt	ggattttgat	gactgtaaag	atataagcga	tttgaagcaa	1200
tatgatagtg	acgaacctga	attaaggta	tttcaagtt	ggatccgaa	tgagttcaac	1260
aaggcatg	agctgacca	ttcaatctgg	atagagctcg	atgagattgg	agaagatgtg	1320
gccccgattt	aacacattgc	aagcatgaga	agaaattact	tcacagctga	ggtgtcccat	1380
tgcagagcca	ctgaatata	aatgaaagg	gtatacat	atactgctt	gcttaatgca	1440
tcctgtgcag	caatggatga	tttccaacta	attcctatga	taagcaaatg	tagaactaaa	1500
gagggaaagga	gaaagacca	tttgcacggc	ttcatcataa	aaggaagatc	tcacttaagg	1560
aatgataccg	atgtggtaaa	ctttgtgac	atggagttt	ccctcactga	cccaagactt	1620
gagccacaca	aatggggagaa	gtactgtgtt	cttgagatag	gagatatgt	tctaaggagt	1680
gcaataggcc	aagtgtcaag	gcccattgtt	ttgtatgtaa	gaacaaatgg	aacctaaaaa	1740
attaaaatga	aatggggaaat	ggagatgagg	cgttgcctcc	tccaatccct	ccaacaaata	1800
gagagcatga	ttgaagctga	gtcctctgtc	aaggagaaag	acatgacaaa	agagttttt	1860
gagaatagat	cagaacatg	gcccattgga	gagtccacaa	aaggagtgg	agaagggtcc	1920
attggggaaag	tatgcaggac	actattggct	aaatcagtat	tcaatagtct	gtatgcac	1980
ccacaattag	aaggattttc	agctgagtca	agaaagttgc	tccttattgt	tcaggctt	2040
agggacaatc	tggAACCTGG	gacctttgat	cttggggac	tatataa	attgaggag	2100
tgcctgatta	atgatccctg	gttttgctt	aatgcttctt	ggttcaactc	cttcctaaaa	2160
catgcattga	gatagctgag	gcaatgtac	tatttgtat	ccatactgtc	aaaaaaagta	2220

<210> SEQ ID NO 43

<211> LENGTH: 2341

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 43

agcgaaagca	ggcaaaccat	ttgaatggat	gtcaatccga	cattactttt	cttaaaagt	60
ccagcacaaa	atgctataag	cacaactttt	cttataactg	gtgaccctcc	ttacagccat	120

-continued

ggaacaggaa	caggatacac	catggataca	gtcaacaggaa	cacatcagta	ctcagaaaaga	180
ggaagatgga	cggaaaatac	cggaaaactgga	gcacccgcaac	tcaacccaaat	tgtatggccca	240
ctaccagaag	acaatgaacc	aagtggctat	gccccaaacag	attgtgtatt	agaggcaatg	300
gctttccttgc	aagaatccca	tcctggattt	tttggaaaact	cttgttattga	aacaatggag	360
gttggcagc	aaacaagggt	ggacaaaactg	acacaaggca	gacaaaccta	tgactggact	420
ctaaatagga	accagcctgc	tgccacagca	ttggcaaaaca	ccatagaagt	attcagatca	480
aatggcctca	tagcaaatga	atctggagg	ctaatacgact	tccttaaaga	tgtaatggag	540
tcgatggaca	gagacgaagt	agaggtcaca	actcatttc	aaagaaaagag	gagagtgaga	600
gacaatgtaa	ctaaaaaaat	ggtgacccaa	agaacaatag	aaaaaaagaa	acataaaatta	660
gacaaaagaa	gttacctaatt	tagggcattt	accctgaaca	caatgaccaaa	agatgtcgag	720
agggggaaac	taaaacgcag	agcaatttgc	accccaggaa	tgcaaaataag	ggggtttgc	780
tactttgttgc	agacactggc	aagaagcata	tgtgaaaagc	ttgaacaatc	agggttgc	840
gttggaggaa	atgagaagaa	agcaaagtta	gcaaatgttgc	taaggaaat	gatgaccaac	900
tcccaggaca	ctgaaatttc	tttaccatc	actggagata	acacaaaatg	gaacgaaaat	960
caaaacccta	gaatgttctt	ggccatgatc	acatatataa	ccaaagatca	gcctgaatgg	1020
ttcagaaata	ttcttaagtt	tgctccaata	atgttttca	acaaaatggc	gagactaggt	1080
agggggatata	tgttggaaag	caagagtatg	aaactgagaa	cccaaataacc	tgcaagatgt	1140
ctagccaaaca	tagatttgaa	atatttcaat	gattcaacta	aaaagaaaaat	tgaaaaaattt	1200
cgaccattat	taatagatgg	aactgcattca	ttgagtcctg	gaatgtatgt	gggcattgttgc	1260
aatatgttaa	gcaccgttcc	gggcgtttcc	attctgaatc	ttggggcaaaa	aagatacacc	1320
aagactactt	actgggtggaa	tggcttcaaa	tcgtctgttgc	attttgc	gattgtgaat	1380
gcacccaaatt	atgcaggaaat	tcaagctggaa	gttgcacagg	tttgc	atgtcaatgc	1440
ctcggaaatta	atatgagcaaa	aaagaagtct	tacataaaaca	gaacaggatc	ctttgcatttgc	1500
acgagctttt	tctatcgat	tgggtttgttgc	ccaaatttca	gcatggagct	tccttagtttgc	1560
gggggtgtctg	gggtcaatga	atctgcacac	atgagtatttgc	gagtcactgt	catcaaaaac	1620
aatatgataa	acaatgaccc	tggcccagca	actgctcaaa	tggcccttca	gttatttata	1680
aaagattaca	ggtacactta	tcgatgcccac	agaggtgacaa	cacaaataca	acccggaga	1740
tcatttgaaa	taaagaaaact	atgggaccaaa	acccgctcca	aagctgggct	gttgggtctct	1800
gatggggcc	ccaaatttata	taacatttgc	aatctacata	ttcctgaatgt	ctgttttgc	1860
tgggagttga	tggatggaa	ttaccagggg	cgtttatgca	acccatttgc	cccggttgc	1920
agccataaaag	agattgaatc	agtgcacaaat	gcagtgat	tgccggcaca	tggtccagcc	1980
aaaaatatgg	agtatgacgc	tgttgcacaa	acacacttgc	gggtccccaa	aagaaatcgaa	2040
tccatatttaa	acacgacca	aagaggata	cttgcacatgc	agcaatgttgc	ccaaagggtgc	2100
tgcaatttat	ttgaaaaattt	cttcccaatgt	agctcataca	gaagaccatgt	tggaatatcc	2160
agtatggtag	aggctatgg	ttcaagaccc	cgttgcatttgc	cacggatgttgc	tttcgtatct	2220
ggaaggataa	agaaagagga	attcgctgag	atcatgaa	cctgttccac	cattgaagac	2280
ctcagacggc	aaaaataggg	aatttggctt	gtccttcatg	aaaaaaatgc	ttgttttgc	2340
t					2341	

-continued

<210> SEQ ID NO 44
<211> LENGTH: 2341
<212> TYPE: DNA
<213> ORGANISM: Influenza

<400> SEQUENCE: 44

agcgaaagca ggtcaattat attcaatatg gaaagaataa aagagctaag gaatctgatg	60
tcacaatctc gcactcgca gatacttacc aaaactactg tagaccacat ggccataata	120
aagaatacaca catcaggaag acaggagaaa aaccatcac tttagatgaa atggatgatg	180
gcaatgaaat acccaattac agotgataaa aggataacgg aatgattcc tgaaagaaat	240
gagcaaggac agacactatg gagtaaagt aatgatgccc gatcagaccc agtgcgtata	300
tcacccctag ctgtgacatg gtggAACAGA aatggaccag tggcaaACAC tatccactat	360
ccaaaaatct acaaaactta ctttggAAAG gtggAAAGGT taaaacatgg aacctttggc	420
cctgtacact tttagAAACCA agtcaaaata cgccgaaAGAG tcgcataAA tcctggcat	480
gcagacctca gcgccaaAGGA ggcacaggat gtaattatgg aagttgtttt ccctaattgaa	540
gtgggagcca gaataactaac atcagaatcg caattaacga taactaagga gaaaaaagag	600
gaactccaga attgcaaaat ttcccctttt atgggttgc acatgtttaga gagggaaactt	660
gtccgcaaaa caagatttct cccgggttgc ggtggAAACAA gcagtgtgtt cattgaagtt	720
ttgcattttaa cacaggggac atgctggggag cagatgtaca ctccagggtt ggaggtgagg	780
aatgatgatg ttgatcaaAG cctaattttt gctgcttaga acatagttag aagagctgca	840
gtatcagcag atccactagc atctttttaa gaaatgtgcc atagcacaca gattgggttga	900
acaaggatgg tggatattct caggcaaaat ccaacacaAG aacaagctgt ggacatgtc	960
aaagcagcaa tggggcttag aatcagttaa tccttcagggtt ttggcggatt cacatTTAAG	1020
agaacaagtg gatcgtcagt caaaaggggag gaagaagtgc taacggcaaa tctgcaaaaca	1080
ttgaagctaa ctgtgcatga gggatATGAA gaattcacaA tagttggaa aaaggcaaca	1140
gctataactca gaaaagcaac caggagattt attcaactaa tagtgcgttgg aagagacgaa	1200
cagtcaatag tcgaagcaat agttgttaga atggatTTCT cacaagaAGA ttgcgttggta	1260
aaagcggTTTA gaggtgatct gaatttgcgtt aatagagcga atcagcggTTT gaatccatgt	1320
catcaacttt tgagacattt tcagaaggat gctaaagtac ttttccTAA ttggggaaATT	1380
gaacatattt acaatgtgtatgg gggatattac ctgatATGAC tccaaAGTAC	1440
gagatgtcaa tgagaggagt gagagtgcgc AAAATGGGGT tagatgaaata ctccaaatgt	1500
gaaagggttag tggtaagcat tgaccgtttt ttgagggtcc gggacAAAG agggAAATGTA	1560
ttactgtctc cagaggaagt cagtggAAACA caagggAACAG agaaACTGAC aataacttac	1620
tcttcatcat tgatgtggga gattaatggc cctgaggtcag tggatgttcaaa tacctaccaa	1680
tggatcatca gaaactggga gactgttAAATTGTTT attcagtgtgtt ctcagaACCC tacaatgtca	1740
tacaataaaaa tggaaATTGAA gccatttcaa tctctgttcc ccaaggccat tagaggccaa	1800
tacagtgggt ttgttagaacat tctatTTCAAA caaatgaggg atgtgcgtgg gacctttgac	1860
acaactcaga taataaaaact tcttcccttgc gcaGGCGCTC caccaAGCA aagttagaaatgt	1920
caattctcgta cattaactgt gaatgtgagg ggttcaggaa tgagaataact tgtaagggt	1980
aattctccag tattcaacta caacaAGACCA actaAGAGAC tcacaatcct cggAAAGGAT	2040
gctggactt taactgaaga cccagatgaa ggcacagctg gagttggaaatc tgctgttttA	2100

-continued

aggggattcc	tcattctagg	caaagaagat	agaagatatg	ggccagcatt	aagcatcagt	2160
gaattgagca	accttgcgaa	aggggagaaa	gctaatgtgc	taattggca	agggatgtta	2220
gtgttggtaa	tgaaacgaaa	acgggactct	agcatactta	ctgacagcca	gacagcgacc	2280
aaaagaattc	ggatggccat	caattaattt	cgaataattt	aaaaacgacc	ttgtttctac	2340
t						2341

<210> SEQ ID NO 45
 <211> LENGTH: 1565
 <212> TYPE: DNA
 <213> ORGANISM: Influenza

<400> SEQUENCE: 45

agcaaaagca	gggttagataa	tcactcactg	agtgacatca	aagtcatggc	gtcccaaggc	60
acccaaacggt	cttacgaaca	gatggagact	gatggggAAC	gccagaatgc	aactgaaatc	120
agagcatccg	tcggaagaat	gattgggggA	attgggcgtat	tctacatcca	aatgtgcacc	180
gagcttaagc	tcaatgatta	tgagggacga	ctgatccaga	acagcttaac	aatagagaga	240
atggtgcttt	ctgctttga	tgagaggaga	aataaatatc	tggaagaaca	tcccagcgca	300
gggaaagatc	ctaagaaaac	tggaggaccc	atatacaaga	gagtagatgg	aaagtgggtg	360
agggaaactcg	tcctttatga	caaagaagaa	ataaggcgg	tttggcgcca	agccaaacaat	420
gttcatgtat	caacagctgg	tttgactcac	attatgatct	ggcattctaa	tttgaatgat	480
acaacttacc	agaggacaag	agctcttgc	cgcacccgaa	tggatcccag	gatgtgtct	540
tttcatgtat	gttcaactct	ccctagaaga	tctggagcag	caggcgctgc	agtcaaagga	600
gttgggacaa	ttgttattgga	gttaatcagg	atgatcaaac	gtgggatcaa	cgaccgaaac	660
ttcttgggg	gtgagaatgg	gagaaaaaca	aggattgctt	atgagagaat	gtgcaacatt	720
ctcaaaaggaa	aatttcaaacc	agctgcacaa	aaagcaatga	tggatcaagt	gagagaaagc	780
cggaacccag	gaaatgctga	gatcgaagat	ctcaactttc	tggcacggtc	tgcactcata	840
tttggggat	cagttgctca	caagtcttgc	ctgcctgctt	gtgtgtatgg	accagccgta	900
ggcagtgggt	atgacttcga	aaaagagggaa	tactcttgg	tgggagtaga	ccctttcaaa	960
ctgtttcaaa	ccagtcaggt	atacagccta	attagaccaa	acgagaatcc	cgcacacaag	1020
agccagttgg	tgtggatggc	atgcaattct	gtgcatttg	aagatctaag	agtgtcaagc	1080
tttcatcagag	ggacaagagt	acttccaagg	gggaagctct	ccactagagg	agtacaattt	1140
gtttcaatgt	aaaacatgga	tgttattgtc	tcaagtactc	ttgaactgag	aagcagatac	1200
tggccataa	gaaccagaag	tggagggAAC	accaatcaac	aaagggcctc	tgcgggcca	1260
atcagcacac	aacctacgtt	ttctgtcag	agaaacctcc	catttgacaa	aacaaccatc	1320
atggcagcat	tcactggaa	tacagagggaa	agaacatcag	acatgegggc	agaaatcata	1380
aaatgtatgg	aaagtgcag	accagaagaa	gtgtccctcc	agggacgggg	agtctttgag	1440
ctctcggaacg	aaagggcaac	gaacccgatc	gtgcctctt	ttgacatgag	taatgaagga	1500
tcttatttct	tcggagacaa	tgcagaggag	tacgacaatt	aatgaaaaat	acccttgc	1560
ctact						1565

<210> SEQ ID NO 46
 <211> LENGTH: 1027
 <212> TYPE: DNA
 <213> ORGANISM: Influenza

-continued

<400> SEQUENCE: 46

agcaaaagca ggttagatatt	gaaagatgag ttttcttaacc	gaggctgaaa cgtacgttct	60
ctctatcgcc ccatcaggcc	ccctcaaaggc cgagatcgca	cagagacttg aagatgtatt	120
tgctggaaag aataccgatc	ttgaggtctt catggaatgg	ctaaagacaa gaccaatcct	180
gtcacctctg actaaggggg	ttttaggatt tttgttcaacg	ctcacccgtgc ccagtgagcg	240
aggactgcag cgtagacgcgt	ttgtccaaaa tgcgccttaat	gggaatgggg atccaaataa	300
tatggacaag gctgtcaaac	tgtatcgaaa gcttaagagg	gagataacat tccatggggc	360
caaagaaaata gcactcagtt	attctgtcg	agcacttgcc agttgtatgg	420
caacaggatg ggggctgtga	ccaccgaatc	agcatttggc cttatatgtg	480
acagattgcc gactcccagc	ataagtctca	taggcaaatg gtaacaacaa	540
aataagacat gagaacagaa	tggttctggc	cagcaactaca gctaaggcta	600
ggctggatcg agtgaacaag	cagctgaggc	catggaggtt gctagtcagg	660
ggtgcaggca atgagagcca	ttgggactca	tcctagctt agcactggc	720
tctccttgc aatttgcagg	cctatcagaa	acgaatgggg gtgcagatgc	780
gtgatcctct tttttccaaa	gcaagtataa	ttgggattgt gcacctgata	840
ttgatcgcc tttttccaaa	agcattttatc	gtatttttaa acacgggtt	900
cttctacgga aggagtaccg	gagtctatga	gggaagaata tcgagaggaa	960
ctgtggatgc tgacgatggt	cattttgtca	gcatacgtt agagtaaaaa	1020
ttctact			1027

<210> SEQ ID NO 47

<211> LENGTH: 889

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 47

agcaaaagca gggtggcaaa	gacataatgg attcccacac	tgtgtcaagc tttcaggttag	60
attgtttctt ttggcatgtc	cgcaaacaag ttgcagacca	agatctaggc gatgccccct	120
tccttgatcg gcttcgcga	gatcagaagt ctctaaaggg	acgaggcaac actctcggtc	180
tgaacatcga aacagccact	tgtgttggaa	agcaaatagt agagaggatt	240
aatccgatga gacattdaga	atgaccatgg	cctccgcact tgcttcgcgg	300
acatgactgt tgaagaaatg	tcaagggact	ggttcatgtt catgccccag	360
ctggccctct ttgtgtcaga	atggaccagg	cgataatgga taagaacatc	420
cgaacttcag tttttttt	gaccgggtgg	agaatctgac attactaagg	480
aaggaggagc aatttttggc	gaaatttcac	cattgccttc ttttccagga	540
aggatgtcaa aatgcaatt	ggggtcctca	tcgggggact tgaatggaa	600
ttcgagtctc tgaagctcta	cagagattcg	cttggagaag cagtaatgag	660
ctccattcac tacaacacag	aaacggaaaa	tggcgaaaaac aatttaggtca	720
gaaataagat ggctgattga	agaagtgagg	cataaaatga agacgacaga	780
gaacaaataa catttatgca	agcattacag	ctattgtttt aagtggaaaca	840
acgttctcgat	ttcagcttat	ttaatgataa aaacacccctt	889
		gtttctact	

-continued

<210> SEQ ID NO 48

<211> LENGTH: 1775

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 48

agcgaaagca gggaaaata aaagcaacca aatgaaagt aaaactactg gttctgttat	60
gtacatttac agtacatata gcagacacaa tatgtatagg ctaccatgcc aacaactcaa	120
ccgacactgt tgacacagta cttgagaaga atgtaacagt gacacactct gtcaacctac	180
ttgaggacag tcacaatgga aaactatgtc tactaaaagg aatagccccca ctacaattgg	240
gtaattgcag cgttgcggga tggatcttag gaaacccaga atgcgaatta ctgatttcca	300
aggaatcatg gtcctacatt gtagaaacac caaatcctga gaatggaaaca tggatccag	360
ggtatttcgc cgactatgag gaactgaggg agcaattttag ttcagttatct tcattttgaaa	420
ggttcgaaat attcccaaa gagagctcat ggcccaacca caccgttaacc ggagtatcag	480
catcatgctc ccataacggg aaaagcagg tttacagaaa tttgctatgg ctgacgggga	540
agaatggttt gtacccaaac ctgagcaagt cctatgcaaa caacaaagag aaagaagtcc	600
ttgtactatg ggggtttcat caccgcctt acatagggga ccaaagggcc ctctatcata	660
cagaaaatgc ttatgtctct gtatgtctt cacattatag cagaagattc accccagaaa	720
tagccaaaag acccaaggtg agagaccagg aaggaagaat caactactac tggactctgc	780
tggaaacccgg ggatacaata atatggagg caaatggaaa tctaatacg ccaaggatgt	840
ctttcgact gagtagaggg ttggatcaag gaatcatcac ctcaaatgca ccaatggatg	900
aatgtgatgc aaagtgtcaa acacccagg gagctataaa cagcagtctt ctttccaga	960
atgtacaccc agtcacaata ggagagtgtc caaagtatgt caggagtgc aaattaagga	1020
tggttacagg actaaggaac atccatcca ttcaatccag aggtttttt ggagaatttgc	1080
ccggtttcat tgaagggggg tggactggaa tggtagatgg ttggatggat tatcatccatc	1140
agaatgagca aggatctggg tatgctgcag atcaaaaaag cacacaaaat gccattaacg	1200
ggattacaaa caaggtgaat tctgtatgg agaaaaatgaa cactcaattc acagctgtgg	1260
gcaaaagaatt caacaaattt gaaagaagga tggaaaactt aaataaaaaa gttgatgtat	1320
ggtttctaga cattggacc tataatgcag aattgttgg tctactggaa aatgaaagga	1380
cttggattt ccatgactcc aacgtgaaga atctgtatga gaaagtaaaa agccaattaa	1440
agaataatgc caaagaaata gggaaacgggt gttttgaatt ctatcacaag tgtaacgtat	1500
aatgcgttgc gaggatgtaaa aatggaaactt atgactatcc aaaatattcc gaagaatcaa	1560
agttaaacag agagaaaaatt gatggatgtca aattggatcc aatggggatc tatcagattc	1620
tggcgatcta ctcaacagtc ggcaggccc tggatctttt ggtctccctg gggcaatca	1680
gcttcgttggat gtgttccat gggatctttt ggtctccctg gggcaatca gaccagaatt	1740
tcagaaatat aaggaaaaac acccttgc tctact	1775

<210> SEQ ID NO 49

<211> LENGTH: 1462

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 49

agcaaaagca ggaggtaaaa atgaatccaa atcaaaaaat aataaccatt ggatcaatca	60
---	----

-continued

<210> SEQ ID NO 50

<211> LENGTH: 566

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 50

Met Lys Ala Lys Leu Leu Val Leu Leu Cys Ala Leu Ser Ala Thr Asp
1 5 10 15

Ala Asp Thr Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr
20 25 30

Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn
35 40 45

Leu Leu Glu Asp Asn His Asn Gly Lys Leu Cys Lys Leu Lys Gly Ile
50 55 60

Ala Pro Leu Gln Leu Gly Lys Cys Ser Ile Ala Gly Trp Ile Leu Gly
65 70 75 80

Asn	Pro	Glu	Cys	Glu	Ser	Leu	Phe	Ser	Lys	Lys	Ser	Trp	Ser	Tyr	Ile
				85					90					95	

Ala Glu Thr Pro Asn Ser Glu Asn Gly Thr Cys Tyr Pro Gly Tyr Phe
100 105 110

-continued

Ala Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe
 115 120 125
 Glu Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Lys His Asn
 130 135 140
 Val Thr Lys Gly Val Thr Ala Ala Cys Ser His Lys Gly Lys Ser Ser
 145 150 155 160
 Phe Tyr Arg Asn Leu Leu Trp Leu Thr Glu Lys Asn Gly Ser Tyr Pro
 165 170 175
 Asn Leu Ser Lys Ser Tyr Val Asn Asn Lys Glu Lys Glu Val Leu Val
 180 185 190
 Leu Trp Gly Val His His Pro Ser Asn Ile Glu Asp Gln Lys Thr Ile
 195 200 205
 Tyr Arg Lys Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Asn
 210 215 220
 Arg Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asn Gln
 225 230 235 240
 Glu Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr
 245 250 255
 Ile Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Trp Tyr Ala Phe
 260 265 270
 Ala Leu Ser Arg Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Ser
 275 280 285
 Met Asp Glu Cys Asp Ala Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn
 290 295 300
 Ser Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys
 305 310 315 320
 Pro Lys Tyr Val Arg Ser Thr Lys Leu Arg Met Val Thr Gly Leu Arg
 325 330 335
 Asn Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly
 340 345 350
 Phe Ile Glu Gly Gly Trp Thr Gly Met Ile Asp Gly Trp Tyr Gly Tyr
 355 360 365
 His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Lys Ser
 370 375 380
 Thr Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Ile Ile
 385 390 395 400
 Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys
 405 410 415
 Leu Glu Lys Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe
 420 425 430
 Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn
 435 440 445
 Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu
 450 455 460
 Lys Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly
 465 470 475 480
 Cys Phe Glu Phe Tyr His Lys Cys Asn Asn Glu Cys Met Glu Ser Val
 485 490 495
 Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu
 500 505 510
 Asn Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr

-continued

515	520	525
-----	-----	-----

Gln	Ile	Leu	Ala	Ile	Tyr	Ser	Thr	Val	Ala	Ser	Ser	Leu	Val	Leu	Leu
530															
Val	Ser	Leu	Gly	Ala	Ile	Ser	Phe	Trp	Met	Cys	Ser	Asn	Gly	Ser	Leu
545															
Gln	Cys	Arg	Ile	Cys	Ile										
						565									

<210> SEQ ID NO 51

<211> LENGTH: 470

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 51

Met	Asn	Pro	Asn	Gln	Lys	Ile	Ile	Thr	Ile	Gly	Ser	Ile	Cys	Met	Thr	
1																
								10						15		
Ile	Gly	Ile	Ile	Ser	Leu	Ile	Leu	Gln	Ile	Gly	Asn	Ile	Ile	Ser	Ile	
								20						25		
															30	
Trp	Val	Ser	His	Ser	Ile	Gln	Thr	Gly	Ser	Gln	Asn	His	Thr	Gly	Ile	
								35						40		
															45	
Cys	Asn	Gln	Arg	Ile	Ile	Thr	Tyr	Glu	Asn	Ser	Thr	Trp	Val	Asn	Gln	
								50						55		
															60	
Thr	Tyr	Val	Asn	Ile	Asn	Asn	Thr	Asn	Val	Val	Ala	Gly	Lys	Asp	Thr	
								65						70		
															75	
															80	
Thr	Ser	Val	Thr	Leu	Ala	Gly	Asn	Ser	Ser	Leu	Cys	Pro	Ile	Arg	Gly	
								85						90		
															95	
Trp	Ala	Ile	Tyr	Ser	Lys	Asp	Asn	Ser	Ile	Arg	Ile	Gly	Ser	Lys	Gly	
								100						105		
															110	
Asp	Val	Phe	Val	Ile	Arg	Glu	Pro	Phe	Ile	Ser	Cys	Ser	His	Leu	Glu	
								115						120		
															125	
Cys	Arg	Thr	Phe	Phe	Leu	Thr	Gln	Gly	Ala	Leu	Leu	Asn	Asp	Lys	His	
								130						135		
															140	
Ser	Asn	Gly	Thr	Val	Lys	Asp	Arg	Ser	Pro	Tyr	Arg	Ala	Leu	Met	Ser	
								145						150		
															155	
															160	
Cys	Pro	Ile	Gly	Glu	Ala	Pro	Ser	Pro	Tyr	Asn	Ser	Arg	Phe	Glu	Ser	
								165						170		
															175	
Val	Ala	Trp	Ser	Ala	Ser	Ala	Cys	His	Asp	Gly	Met	Gly	Trp	Leu	Thr	
								180						185		
															190	
Ile	Gly	Ile	Ser	Gly	Pro	Asp	Asp	Gly	Ala	Val	Ala	Val	Leu	Lys	Tyr	
								195						200		
															205	
Asn	Gly	Ile	Ile	Thr	Glu	Thr	Ile	Lys	Ser	Trp	Arg	Lys	Arg	Ile	Leu	
								210						215		
															220	
Arg	Thr	Gln	Glu	Ser	Glu	Cys	Val	Cys	Val	Asn	Gly	Ser	Cys	Phe	Thr	
								225						230		
															235	
															240	
Ile	Met	Thr	Asp	Gly	Pro	Ser	Asn	Gly	Pro	Ala	Ser	Tyr	Arg	Ile	Phe	
								245						250		
															255	
Lys	Ile	Glu	Lys	Gly	Lys	Ile	Thr	Lys	Ser	Ile	Glu	Leu	Asp	Ala	Pro	
								260						265		
															270	
Asn	Ser	His	Tyr	Glu	Glu	Cys	Ser	Cys	Tyr	Pro	Asp	Thr	Gly	Thr	Val	
								275						280		
															285	
Met	Cys	Val	Cys	Arg	Asp	Asn	Trp	His	Gly	Ser	Asn	Arg	Pro	Trp	Val	
								290						295		
															300	
Ser	Phe	Asn	Gln	Asn	Leu	Asp	Tyr	Gln	Ile	Gly	Tyr	Ile	Cys	Ser	Gly	

-continued

305	310	315	320
Val Phe Gly Asp Asn Pro Arg Pro Lys Asp Gly Lys Gly Ser Cys Asp			
325	330	335	
Pro Val Thr Val Asp Gly Ala Asp Gly Val Lys Gly Phe Ser Tyr Arg			
340	345	350	
Tyr Gly Asn Gly Val Trp Ile Gly Arg Thr Lys Ser Asn Ser Ser Arg			
355	360	365	
Lys Gly Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Asp Thr Asp			
370	375	380	
Ser Asn Phe Leu Val Lys Gln Asp Val Val Ala Met Thr Asp Trp Ser			
385	390	395	400
Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu Asp			
405	410	415	
Cys Met Arg Pro Cys Phe Trp Val Glu Leu Val Arg Gly Arg Pro Arg			
420	425	430	
Glu Gly Thr Thr Val Trp Thr Ser Gly Ser Ser Ile Ser Phe Cys Gly			
435	440	445	
Val Asn Ser Asp Thr Ala Asn Trp Ser Trp Pro Asp Gly Ala Glu Leu			
450	455	460	
Pro Phe Thr Ile Asp Lys			
465	470		

<210> SEQ ID NO 52

<211> LENGTH: 469

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 52

1	5	10	15
Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Val Cys Met Thr			
20	25	30	
Ile Gly Met Ala Asn Leu Ile Leu Gln Ile Gly Asn Ile Ile Ser Ile			
35	40	45	
Trp Ile Ser His Ser Ile Gln Leu Gly Asn Gln Asn Gln Ile Glu Thr			
50	55	60	
Cys Asn Gln Ser Val Ile Thr Tyr Glu Asn Asn Thr Trp Val Asn Gln			
65	70	75	80
Thr Tyr Val Asn Ile Ser Asn Thr Asn Phe Ala Ala Gly Gln Ser Val			
85	90	95	
Val Ser Val Lys Leu Ala Gly Asn Ser Ser Leu Cys Pro Val Ser Gly			
100	105	110	
Trp Ala Ile Tyr Ser Lys Asp Asn Ser Val Arg Ile Gly Ser Lys Gly			
115	120	125	
Asp Val Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser Pro Leu Glu			
130	135	140	
Cys Arg Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys His			
145	150	155	160
Ser Asn Gly Thr Ile Lys Asp Arg Ser Pro Tyr Arg Thr Leu Met Ser			
165	170	175	
Val Ala Trp Ser Ala Ser Ala Cys His Asp Gly Ile Asn Trp Leu Thr			
180	185	190	
Ile Gly Ile Ser Gly Pro Asp Asn Gly Ala Val Ala Val Leu Lys Tyr			

-continued

195	200	205
Asn Gly Ile Ile Thr Asp Thr Ile Lys Ser Trp Arg Asn Asn Ile Leu		
210	215	220
Arg Thr Gln Glu Ser Glu Cys Ala Cys Val Asn Gly Ser Cys Phe Thr		
225	230	235
Val Met Thr Asp Gly Pro Ser Asn Gly Gln Ala Ser Tyr Lys Ile Phe		
245	250	255
Arg Ile Glu Lys Gly Lys Ile Val Lys Ser Val Glu Met Asn Ala Pro		
260	265	270
Asn Tyr His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Ser Ser Glu Ile		
275	280	285
Thr Cys Val Cys Arg Asp Asn Trp His Gly Ser Asn Arg Pro Trp Val		
290	295	300
Ser Phe Asn Gln Asn Leu Glu Tyr Gln Ile Gly Tyr Ile Cys Ser Gly		
305	310	315
Ile Phe Gly Asp Asn Pro Arg Pro Asn Asp Lys Thr Gly Ser Cys Gly		
325	330	335
Pro Val Ser Ser Asn Gly Ala Asn Gly Val Lys Gly Phe Ser Phe Lys		
340	345	350
Tyr Gly Asn Gly Val Trp Ile Gly Arg Thr Lys Ser Ile Ser Ser Arg		
355	360	365
Asn Gly Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Gly Thr Asp		
370	375	380
Asn Asn Phe Ser Ile Lys Gln Asp Ile Val Gly Ile Asn Glu Trp Ser		
385	390	395
Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu Asp		
405	410	415
Cys Ile Arg Pro Cys Phe Trp Val Glu Leu Ile Arg Gly Arg Pro Lys		
420	425	430
Glu Asn Thr Ile Trp Thr Ser Gly Ser Ser Ile Ser Phe Cys Gly Val		
435	440	445
Asn Ser Asp Thr Val Gly Trp Ser Trp Pro Asp Gly Ala Glu Leu Pro		
450	455	460
Phe Thr Ile Asp Lys		
465		

<210> SEQ ID NO 53

<211> LENGTH: 716

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 53

Met	Glu	Asp	Phe	Val	Arg	Gln	Cys	Phe	Asn	Pro	Met	Ile	Val	Glu	Leu
1			5		10			15							
Ala Glu Lys Ala Met Lys Glu Tyr Gly Glu Asp Pro Lys Ile Glu Thr															
			20		25			30							
Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr															
			35		40			45							
Ser Asp Phe His Phe Ile Asp Glu Arg Gly Glu Ser Ile Ile Val Glu															
			50		55			60							
Ser Gly Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu															
			65		70			75			80				
Gly Arg Asp Arg Ile Met Ala Trp Thr Val Val Asn Ser Ile Cys Asn															

-continued

85	90	95	
Thr Thr Gly Val Glu Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr			
100	105	110	
Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His			
115	120	125	
Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Lys Thr His			
130	135	140	
Ile His Ile Phe Ser Phe Thr Gly Glu Glu Met Ala Thr Lys Ala Asp			
145	150	155	160
Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe			
165	170	175	
Thr Ile Arg Gln Glu Met Ala Ser Arg Ser Leu Trp Asp Ser Phe Arg			
180	185	190	
Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Lys Phe Glu Ile Thr			
195	200	205	
Gly Thr Met Arg Lys Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Pro			
210	215	220	
Ser Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly			
225	230	235	240
Cys Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Asn Ala Lys			
245	250	255	
Ile Glu Pro Phe Leu Arg Thr Thr Pro Arg Pro Leu Arg Leu Pro Asp			
260	265	270	
Gly Pro Leu Cys His Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu			
275	280	285	
Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Gly Ile Pro Leu			
290	295	300	
Tyr Asp Ala Ile Lys Cys Met Lys Thr Phe Phe Gly Trp Lys Glu Pro			
305	310	315	320
Asn Ile Val Lys Pro His Glu Lys Gly Ile Asn Pro Asn Tyr Leu Met			
325	330	335	
Ala Trp Lys Gln Val Leu Ala Glu Leu Gln Asp Ile Glu Asn Glu Glu			
340	345	350	
Lys Ile Pro Arg Thr Lys Asn Met Lys Arg Thr Ser Gln Leu Lys Trp			
355	360	365	
Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Asp Asp Cys			
370	375	380	
Lys Asp Val Gly Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Pro			
385	390	395	400
Arg Ser Leu Ala Ser Trp Val Gln Asn Glu Phe Asn Lys Ala Cys Glu			
405	410	415	
Leu Thr Asp Ser Ser Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Val			
420	425	430	
Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ala			
435	440	445	
Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr			
450	455	460	
Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe			
465	470	475	480
Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg			
485	490	495	

-continued

Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg
 500 505 510

Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr
 515 520 525

Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu
 530 535 540

Ile Gly Asp Met Leu Leu Arg Thr Ala Ile Gly Gln Val Ser Arg Pro
 545 550 555 560

Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Ile Lys Met Lys
 565 570 575

Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile
 580 585 590

Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr
 595 600 605

Lys Glu Phe Phe Glu Asn Lys Ser Glu Thr Trp Pro Ile Gly Glu Ser
 610 615 620

Pro Arg Gly Val Glu Gly Ser Ile Gly Lys Val Cys Arg Thr Leu
 625 630 635 640

Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu
 645 650 655

Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Ile Val Gln Ala Leu
 660 665 670

Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Leu Tyr Glu
 675 680 685

Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala
 690 695 700

Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Lys
 705 710 715

<210> SEQ ID NO 54

<211> LENGTH: 757

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 54

Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Val Pro Ala Gln Asn
 1 5 10 15

Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Asp Pro Pro Tyr Ser His
 20 25 30

Gly Thr Gly Thr Gly Tyr Thr Met Asp Thr Val Asn Arg Thr His Gln
 35 40 45

Tyr Ser Glu Arg Gly Arg Trp Thr Lys Asn Thr Glu Thr Gly Ala Pro
 50 55 60

Gln Leu Asn Pro Ile Asp Gly Pro Leu Pro Lys Asp Asn Glu Pro Ser
 65 70 75 80

Gly Tyr Ala Gln Thr Asp Cys Val Leu Glu Ala Met Ala Phe Leu Glu
 85 90 95

Glu Ser His Pro Gly Ile Phe Glu Asn Ser Cys Ile Glu Thr Met Glu
 100 105 110

Val Val Gln Gln Thr Arg Val Asp Lys Leu Thr Gln Gly Arg Gln Thr
 115 120 125

Tyr Asp Trp Thr Leu Asn Arg Asn Gln Pro Ala Ala Thr Ala Leu Ala
 130 135 140

-continued

Asn Thr Ile Glu Val Phe Arg Ser Asn Gly Leu Ile Ala Asn Glu Ser
 145 150 155 160
 Gly Arg Leu Ile Asp Phe Leu Lys Asp Val Met Glu Ser Met Asp Arg
 165 170 175
 Asp Glu Val Glu Val Thr Thr His Phe Gln Arg Lys Arg Arg Val Arg
 180 185 190
 Asp Asn Val Thr Lys Lys Met Val Thr Gln Arg Thr Ile Gly Lys Lys
 195 200 205
 Lys His Lys Leu Asp Lys Arg Ser Tyr Leu Ile Arg Ala Leu Thr Leu
 210 215 220
 Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala
 225 230 235 240
 Ile Ala Thr Pro Gly Met Gln Ile Arg Gly Phe Val Tyr Phe Val Glu
 245 250 255
 Thr Leu Ala Arg Ser Ile Cys Glu Lys Leu Glu Gln Ser Gly Leu Pro
 260 265 270
 Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ala Asn Val Val Arg Lys
 275 280 285
 Met Met Thr Asn Ser Gln Asp Thr Glu Ile Ser Phe Thr Ile Thr Gly
 290 295 300
 Asp Asn Thr Lys Trp Asn Glu Asn Gln Asn Pro Arg Met Phe Leu Ala
 305 310 315 320
 Met Ile Thr Tyr Ile Thr Lys Asn Gln Pro Glu Trp Phe Arg Asn Ile
 325 330 335
 Leu Ser Ile Ala Pro Ile Met Phe Ser Asn Lys Met Ala Arg Leu Gly
 340 345 350
 Lys Gly Tyr Met Phe Glu Ser Lys Ser Met Lys Leu Arg Thr Gln Ile
 355 360 365
 Pro Ala Glu Met Leu Ala Asn Ile Asp Leu Lys Tyr Phe Asn Asp Ser
 370 375 380
 Thr Lys Arg Lys Ile Glu Lys Ile Arg Pro Leu Leu Ile Asp Gly Thr
 385 390 395 400
 Ala Ser Leu Ser Pro Gly Met Met Met Gly Met Phe Asn Met Leu Ser
 405 410 415
 Thr Val Leu Gly Val Ser Ile Leu Asn Leu Gly Gln Lys Arg Tyr Thr
 420 425 430
 Lys Thr Thr Tyr Trp Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala
 435 440 445
 Leu Ile Val Asn Ala Pro Asn Tyr Ala Gly Ile Gln Ala Gly Val Asp
 450 455 460
 Arg Phe Tyr Arg Thr Cys Lys Leu Leu Gly Ile Asn Met Ser Lys Lys
 465 470 475 480
 Lys Ser Tyr Ile Asn Arg Thr Gly Thr Phe Glu Phe Thr Ser Phe Phe
 485 490 495
 Tyr Arg Tyr Gly Phe Val Ala Asn Phe Ser Met Glu Leu Pro Ser Phe
 500 505 510
 Gly Val Ser Gly Val Asn Glu Ser Ala Asp Met Ser Ile Gly Val Thr
 515 520 525
 Val Ile Lys Asn Asn Met Ile Asn Asn Asp Leu Gly Pro Ala Thr Ala
 530 535 540
 Gln Met Ala Leu Gln Leu Phe Ile Lys Asp Tyr Arg Tyr Thr Tyr Arg
 545 550 555 560

-continued

Cys His Arg Gly Asp Thr Gln Ile Gln Thr Arg Arg Ser Phe Glu Ile
 565 570 575

Lys Lys Leu Trp Asp Gln Thr Arg Ser Lys Ala Gly Leu Leu Val Ser
 580 585 590

Asp Gly Gly Pro Asn Leu Tyr Asn Ile Arg Asn Leu His Ile Pro Glu
 595 600 605

Val Cys Leu Lys Trp Glu Leu Met Asp Glu Asp Tyr Gln Gly Arg Leu
 610 615 620

Cys Asn Pro Ser Asn Pro Phe Val Ser His Lys Glu Ile Glu Ser Val
 625 630 635 640

Asn Asn Ala Val Met Met Pro Ala His Gly Pro Ala Lys Asn Met Glu
 645 650 655

Tyr Asp Ala Val Ala Thr Thr His Ser Trp Val Pro Lys Arg Asn Arg
 660 665 670

Ser Ile Leu Asn Thr Ser Gln Arg Gly Ile Leu Glu Asp Glu Gln Met
 675 680 685

Tyr Gln Arg Cys Cys Asn Leu Phe Glu Lys Phe Pro Ser Ser Ser
 690 695 700

Tyr Arg Arg Pro Val Gly Ile Ser Ser Met Val Glu Ala Met Val Ser
 705 710 715 720

Arg Ala Arg Ile Asp Ala Arg Ile Asp Phe Glu Ser Gly Arg Ile Lys
 725 730 735

Lys Glu Glu Phe Ala Glu Ile Met Lys Thr Cys Ser Thr Ile Glu Asp
 740 745 750

Leu Arg Arg Gln Lys
 755

<210> SEQ ID NO 55

<211> LENGTH: 759

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 55

Met Glu Arg Ile Lys Glu Leu Arg Asn Leu Met Ser Gln Ser Arg Thr
 1 5 10 15

Arg Glu Ile Leu Thr Lys Thr Val Asp His Met Ala Ile Ile Lys
 20 25 30

Lys Tyr Thr Ser Gly Arg Gln Glu Lys Asn Pro Ser Leu Arg Met Lys
 35 40 45

Trp Met Met Ala Met Lys Tyr Pro Ile Thr Ala Asp Lys Arg Ile Thr
 50 55 60

Glu Met Ile Pro Glu Arg Asn Glu Gln Gly Gln Thr Leu Trp Ser Lys
 65 70 75 80

Val Asn Asp Ala Gly Ser Asp Arg Val Met Ile Ser Pro Leu Ala Val
 85 90 95

Thr Trp Trp Asn Arg Asn Gly Pro Val Ala Ser Thr Ile His Tyr Pro
 100 105 110

Lys Ile Tyr Lys Thr Tyr Phe Glu Lys Val Glu Arg Leu Lys His Gly
 115 120 125

Thr Phe Gly Pro Val His Phe Arg Asn Gln Val Lys Ile Arg Arg Arg
 130 135 140

Val Asp Ile Asn Pro Gly His Ala Asp Leu Ser Ala Lys Glu Ala Gln
 145 150 155 160

-continued

Asp Val Ile Met Glu Val Val Phe Pro Asn Glu Val Gly Ala Arg Ile
 165 170 175
 Leu Thr Ser Glu Ser Gln Leu Thr Ile Thr Lys Glu Lys Lys Glu Glu
 180 185 190
 Leu Gln Asn Cys Lys Ile Ser Pro Leu Met Val Ala Tyr Met Leu Glu
 195 200 205
 Arg Glu Leu Val Arg Lys Thr Arg Phe Leu Pro Val Ala Gly Gly Thr
 210 215 220
 Ser Ser Val Tyr Ile Glu Val Leu His Leu Thr Gln Gly Thr Cys Trp
 225 230 235 240
 Glu Gln Met Tyr Thr Pro Gly Gly Glu Val Arg Asn Asp Asp Val Asp
 245 250 255
 Gln Ser Leu Ile Ile Ala Ala Arg Asn Ile Val Arg Arg Ala Ala Val
 260 265 270
 Ser Ala Asp Pro Leu Ala Ser Leu Leu Glu Met Cys His Ser Thr Gln
 275 280 285
 Ile Gly Gly Thr Arg Met Val Asp Ile Leu Arg Gln Asn Pro Thr Glu
 290 295 300
 Glu Gln Ala Val Asp Ile Cys Lys Ala Ala Met Gly Leu Arg Ile Ser
 305 310 315 320
 Ser Ser Phe Ser Phe Gly Gly Phe Thr Phe Lys Arg Thr Ser Gly Ser
 325 330 335
 Ser Val Lys Arg Glu Glu Glu Val Leu Thr Gly Asn Leu Gln Thr Leu
 340 345 350
 Lys Leu Thr Val His Glu Gly Tyr Glu Glu Phe Thr Met Val Gly Lys
 355 360 365
 Arg Ala Thr Ala Ile Leu Arg Lys Ala Thr Arg Arg Leu Ile Gln Leu
 370 375 380
 Ile Val Ser Gly Arg Asp Glu Gln Ser Ile Val Glu Ala Ile Val Val
 385 390 395 400
 Ala Met Val Phe Ser Gln Glu Asp Cys Met Val Lys Ala Val Arg Gly
 405 410 415
 Asp Leu Asn Phe Val Asn Arg Ala Asn Gln Arg Leu Asn Pro Met His
 420 425 430
 Gln Leu Leu Arg His Phe Gln Lys Asp Ala Lys Val Leu Phe Leu Asn
 435 440 445
 Trp Gly Ile Glu Pro Ile Asp Asn Val Met Gly Met Ile Gly Ile Leu
 450 455 460
 Pro Asp Met Thr Pro Ser Thr Glu Met Ser Met Arg Gly Val Arg Val
 465 470 475 480
 Ser Lys Met Gly Val Asp Glu Tyr Ser Asn Ala Glu Arg Val Val Val
 485 490 495
 Ser Ile Asp Arg Phe Leu Arg Val Arg Asp Gln Arg Gly Asn Val Leu
 500 505 510
 Leu Ser Pro Glu Glu Val Ser Glu Thr Gln Gly Thr Glu Lys Leu Thr
 515 520 525
 Ile Thr Tyr Ser Ser Ser Met Met Trp Glu Ile Asn Gly Pro Glu Ser
 530 535 540
 Val Leu Ile Asn Thr Tyr Gln Trp Ile Ile Arg Asn Trp Glu Thr Val
 545 550 555 560
 Lys Ile Gln Trp Ser Gln Asn Pro Thr Met Leu Tyr Asn Lys Met Glu

-continued

565	570	575	
Phe Glu Pro Phe Gln Ser Leu Val Pro Lys Ala Ile Arg Gly Gln Tyr			
580	585	590	
Ser Gly Phe Val Arg Thr Leu Phe Gln Gln Met Arg Asp Val Leu Gly			
595	600	605	
Thr Phe Asp Thr Thr Gln Ile Ile Lys Leu Leu Pro Phe Ala Ala Ala			
610	615	620	
Pro Pro Lys Gln Ser Arg Met Gln Phe Ser Ser Leu Thr Val Asn Val			
625	630	635	640
Arg Gly Ser Gly Met Arg Ile Leu Val Arg Gly Asn Ser Pro Val Phe			
645	650	655	
Asn Tyr Asn Lys Thr Thr Lys Arg Leu Thr Val Leu Gly Lys Asp Ala			
660	665	670	
Gly Thr Leu Thr Glu Asp Pro Asp Glu Gly Thr Ala Gly Val Glu Ser			
675	680	685	
Ala Val Leu Arg Gly Phe Leu Ile Leu Gly Lys Glu Asp Arg Arg Tyr			
690	695	700	
Gly Pro Ala Leu Ser Ile Asn Glu Leu Ser Asn Leu Ala Lys Gly Glu			
705	710	715	720
Lys Ala Asn Val Leu Ile Gly Gln Gly Asp Val Val Leu Val Met Lys			
725	730	735	
Arg Lys Arg Asp Ser Ser Ile Leu Thr Asp Ser Gln Thr Ala Thr Lys			
740	745	750	
Arg Ile Arg Met Ala Ile Asn			
755			

<210> SEQ ID NO 56

<211> LENGTH: 498

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 56

Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Asp			
1	5	10	15
Gly Glu Arg Gln Asn Ala Thr Glu Ile Arg Ala Ser Val Gly Arg Met			
20	25	30	
Ile Gly Gly Ile Gly Arg Phe Tyr Ile Gln Met Cys Thr Glu Leu Lys			
35	40	45	
Leu Asn Asp Tyr Glu Gly Arg Leu Ile Gln Asn Ser Leu Thr Ile Glu			
50	55	60	
Arg Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Lys Tyr Leu Glu			
65	70	75	80
Glu His Pro Ser Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile			
85	90	95	
Tyr Lys Arg Val Asp Gly Lys Trp Val Arg Glu Leu Val Leu Tyr Asp			
100	105	110	
Lys Glu Glu Ile Arg Arg Ile Trp Arg Gln Ala Asn Asn Gly Asp Asp			
115	120	125	
Ala Thr Ala Gly Leu Thr His Ile Met Ile Trp His Ser Asn Leu Asn			
130	135	140	
Asp Thr Thr Tyr Gln Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp			
145	150	155	160
Pro Arg Met Cys Ser Leu Met Gln Gly Ser Thr Leu Pro Arg Arg Ser			

-continued

165	170	175	
Gly Ala Ala Gly Ala Ala Val Lys	Gly Val Gly Thr Met	Val Leu Glu	
180	185	190	
Leu Ile Arg Met Ile Lys Arg Gly	Ile Asn Asp Arg	Asn Phe Trp Arg	
195	200	205	
Gly Glu Asn Gly Arg Lys Thr Arg	Ile Ala Tyr	Glu Arg Met Cys Asn	
210	215	220	
Ile Leu Lys Gly Lys Phe Gln Thr Ala Ala Gln	Lys Ala Met Met Asp		
225	230	235	240
Gln Val Arg Glu Ser Arg Asn Pro Gly	Asn Ala Glu Ile	Glu Asp Leu	
245	250	255	
Thr Phe Leu Ala Arg Ser Ala Leu	Ile Leu Arg Gly	Ser Val Ala His	
260	265	270	
Lys Ser Cys Leu Pro Ala Cys Val	Tyr Gly Pro Ala Val	Ala Ser Gly	
275	280	285	
Tyr Asp Phe Glu Lys Glu Gly	Tyr Ser Leu Val	Gly Val Asp Pro Phe	
290	295	300	
Lys Leu Leu Gln Thr Ser Gln Val	Tyr Ser Leu Ile	Arg Pro Asn Glu	
305	310	315	320
Asn Pro Ala His Lys Ser Gln Leu Val	Trp Met Ala Cys Asn	Ser Ala	
325	330	335	
Ala Phe Glu Asp Leu Arg Val Ser	Ser Phe Ile Arg	Gly Thr Arg Val	
340	345	350	
Leu Pro Arg Gly Leu Ser	Thr Arg Gly Val	Gln Ile Ala Ser Asn	
355	360	365	
Glu Asn Met Asp Ala Ile Val Ser	Ser Thr Leu Glu	Leu Arg Ser Arg	
370	375	380	
Tyr Trp Ala Ile Arg Thr Arg Ser Gly	Gly Asn Thr Asn	Gln Gln Arg	
385	390	395	400
Ala Ser Ala Gly Gln Ile Ser Thr Gln	Pro Thr Phe Ser	Val Gln Arg	
405	410	415	
Asn Leu Pro Phe Asp Lys Thr	Thr Ile Met Ala	Ala Phe Thr Gly Asn	
420	425	430	
Thr Glu Gly Arg Thr Ser Asp Met	Arg Ala Glu Ile	Ile Lys Met Met	
435	440	445	
Glu Ser Ala Arg Pro Glu Glu Val	Ser Phe Gln Gly	Arg Gly Val Phe	
450	455	460	
Glu Leu Ser Asp Glu Arg Ala Thr	Asn Pro Ile Val	Pro Ser Phe Asp	
465	470	475	480
Met Ser Asn Glu Gly Ser Tyr	Phe Phe Gly Asp	Asn Ala Glu Glu Tyr	
485	490	495	
Asp Asn			

<210> SEQ ID NO 57

<211> LENGTH: 252

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 57

Met Ser Leu Leu Thr Glu Val Glu Thr	Tyr Val Leu Ser	Ile Val Pro	
1	5	10	15

Ser Gly Pro Leu Lys Ala Glu Ile	Ala Gln Arg	Leu Glu Asn Val Phe
20	25	30

-continued

Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr
 35 40 45
 Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe
 50 55 60
 Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val
 65 70 75 80
 Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Arg Ala
 85 90 95
 Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala
 100 105 110
 Lys Glu Ile Ala Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met
 115 120 125
 Gly Leu Ile Tyr Asn Arg Met Gly Ala Val Thr Thr Glu Ser Ala Phe
 130 135 140
 Gly Leu Ile Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Lys
 145 150 155 160
 Ser His Arg Gln Met Val Thr Thr Asn Pro Leu Ile Arg His Glu
 165 170 175
 Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met
 180 185 190
 Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Ser Gln
 195 200 205
 Ala Arg Gln Met Val Gln Ala Met Arg Ala Ile Gly Thr His Pro Ser
 210 215 220
 Ser Ser Thr Gly Leu Lys Asn Asp Leu Leu Glu Asn Leu Gln Ala Tyr
 225 230 235 240
 Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys
 245 250

<210> SEQ ID NO 58

<211> LENGTH: 470

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 58

Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Ile Ser Ile Ala
 1 5 10 15
 Ile Gly Ile Ile Ser Leu Met Leu Gln Ile Gly Asn Ile Ile Ser Ile
 20 25 30
 Trp Ala Ser His Ser Ile Gln Thr Gly Ser Gln Asn His Thr Gly Val
 35 40 45
 Cys Asn Gln Arg Ile Ile Thr Tyr Glu Asn Ser Thr Trp Val Asn His
 50 55 60
 Thr Tyr Val Asn Ile Asn Asn Thr Asn Val Val Ala Gly Lys Asp Lys
 65 70 75 80
 Thr Ser Val Thr Leu Ala Gly Asn Ser Ser Leu Cys Ser Ile Ser Gly
 85 90 95
 Trp Ala Ile Tyr Thr Lys Asp Asn Ser Ile Arg Ile Gly Ser Lys Gly
 100 105 110
 Asp Val Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser His Leu Glu
 115 120 125
 Cys Arg Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys His
 130 135 140

-continued

Ser Asn Gly Thr Val Lys Asp Arg Ser Pro Tyr Arg Ala Leu Met Ser
 145 150 155 160
 Cys Pro Leu Gly Glu Ala Pro Ser Pro Tyr Asn Ser Lys Phe Glu Ser
 165 170 175
 Val Ala Trp Ser Ala Ser Ala Cys His Asp Gly Met Gly Trp Leu Thr
 180 185 190
 Ile Gly Ile Ser Gly Pro Asp Asn Gly Ala Val Ala Val Leu Lys Tyr
 195 200 205
 Asn Gly Ile Ile Thr Glu Thr Ile Lys Ser Trp Lys Lys Arg Ile Leu
 210 215 220
 Arg Thr Gln Glu Ser Glu Cys Val Cys Val Asn Gly Ser Cys Phe Thr
 225 230 235 240
 Ile Met Thr Asp Gly Pro Ser Asn Gly Ala Ala Ser Tyr Lys Ile Phe
 245 250 255
 Lys Ile Glu Lys Gly Lys Val Thr Lys Ser Ile Glu Leu Asn Ala Pro
 260 265 270
 Asn Phe His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Thr Gly Thr Val
 275 280 285
 Met Cys Val Cys Arg Asp Asn Trp His Gly Ser Asn Arg Pro Trp Val
 290 295 300
 Ser Phe Asn Gln Asn Leu Asp Tyr Gln Ile Gly Tyr Ile Cys Ser Gly
 305 310 315 320
 Val Phe Gly Asp Asn Pro Arg Pro Lys Asp Gly Glu Gly Ser Cys Asn
 325 330 335
 Pro Val Thr Val Asp Gly Ala Asp Gly Val Lys Gly Phe Ser Tyr Lys
 340 345 350
 Tyr Gly Asn Gly Val Trp Ile Gly Arg Thr Lys Ser Asn Arg Leu Arg
 355 360 365
 Lys Gly Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Asp Thr Asp
 370 375 380
 Ser Asp Phe Ser Val Lys Gln Asp Val Val Ala Ile Thr Asp Trp Ser
 385 390 395 400
 Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu Asp
 405 410 415
 Cys Ile Arg Pro Cys Phe Trp Val Glu Leu Val Arg Gly Leu Pro Arg
 420 425 430
 Glu Asn Thr Thr Ile Trp Thr Ser Gly Ser Ser Ile Ser Phe Cys Gly
 435 440 445
 Val Asn Ser Asp Thr Ala Asn Trp Ser Trp Pro Asp Gly Ala Glu Leu
 450 455 460
 Pro Phe Thr Ile Asp Lys
 465 470

<210> SEQ ID NO 59
 <211> LENGTH: 716
 <212> TYPE: PRT
 <213> ORGANISM: Influenza
 <400> SEQUENCE: 59

 Met Glu Asp Phe Val Arg Gln Cys Phe Asn Pro Met Ile Val Glu Leu
 1 5 10 15
 Ala Glu Lys Ala Met Lys Glu Tyr Gly Glu Asp Leu Lys Ile Glu Thr
 20 25 30

-continued

Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr
 35 40 45
 Ser Asp Phe His Phe Ile Asn Glu Gln Gly Glu Ser Ile Val Val Glu
 50 55 60
 Leu Asp Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu
 65 70 75 80
 Gly Arg Asp Arg Thr Met Ala Trp Thr Val Val Asn Ser Ile Cys Asn
 85 90 95
 Thr Thr Gly Ala Gly Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr
 100 105 110
 Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His
 115 120 125
 Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Asn Thr His
 130 135 140
 Ile His Ile Phe Ser Phe Thr Gly Glu Met Ala Thr Lys Ala Asp
 145 150 155 160
 Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe
 165 170 175
 Thr Ile Arg Gln Glu Met Ala Asn Arg Gly Leu Trp Asp Ser Phe Arg
 180 185 190
 Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Lys Phe Glu Ile Thr
 195 200 205
 Gly Thr Met Arg Arg Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Ser
 210 215 220
 Cys Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly
 225 230 235 240
 Cys Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Asn Ala Gln
 245 250 255
 Ile Glu Pro Phe Leu Lys Thr Thr Pro Arg Pro Ile Lys Leu Pro Asn
 260 265 270
 Gly Pro Pro Cys Tyr Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu
 275 280 285
 Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Ile Pro Leu
 290 295 300
 Tyr Asp Ala Ile Lys Cys Met Lys Thr Phe Phe Gly Trp Lys Glu Pro
 305 310 315 320
 Tyr Ile Val Lys Pro His Glu Lys Gly Ile Asn Ser Asn Tyr Leu Leu
 325 330 335
 Ser Trp Lys Gln Val Leu Ser Glu Leu Gln Asp Ile Glu Asn Glu Glu
 340 345 350
 Lys Ile Pro Arg Thr Lys Asn Met Lys Lys Thr Ser Gln Leu Lys Trp
 355 360 365
 Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Glu Asn Cys
 370 375 380
 Arg Asp Ile Ser Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Leu
 385 390 395 400
 Arg Ser Leu Ser Ser Trp Ile Gln Asn Glu Phe Asn Lys Ala Cys Glu
 405 410 415
 Leu Thr Asp Ser Val Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Val
 420 425 430
 Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ala

-continued

435	440	445
Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr		
450	455	460
Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe		
465	470	475
Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg		
485	490	495
Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg		
500	505	510
Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr		
515	520	525
Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu		
530	535	540
Ile Gly Asp Met Leu Leu Arg Ser Ala Ile Gly Gln Ile Ser Arg Pro		
545	550	555
Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Val Lys Met Lys		
565	570	575
Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile		
580	585	590
Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr		
595	600	605
Lys Glu Phe Phe Glu Asn Lys Ser Glu Ala Trp Pro Ile Gly Glu Ser		
610	615	620
Pro Lys Gly Val Glu Glu Gly Ser Ile Gly Lys Val Cys Arg Thr Leu		
625	630	635
Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu		
645	650	655
Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Val Val Gln Ala Leu		
660	665	670
Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Gly Leu Tyr Glu		
675	680	685
Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala		
690	695	700
Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Lys		
705	710	715

<210> SEQ ID NO 60

<211> LENGTH: 757

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 60

Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Val Pro Ala Gln Asn		
1	5	10
Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Asp Pro Pro Tyr Ser His		
20	25	30
Gly Thr Gly Thr Gly Tyr Thr Met Asp Thr Val Asn Arg Thr His Gln		
35	40	45
Tyr Ser Glu Lys Gly Lys Trp Thr Thr Asn Thr Glu Thr Gly Ala Pro		
50	55	60
Gln Leu Asn Pro Ile Asp Gly Pro Leu Pro Glu Asp Asn Glu Pro Ser		
65	70	75
Gly Tyr Ala Gln Thr Asp Cys Val Leu Glu Ala Met Ala Phe Leu Glu		

-continued

85	90	95	
Glu Ser His Pro Gly Ile Phe Glu Asn Ser Cys Leu Glu Thr Met Glu			
100	105	110	
Ala Val Gln Gln Thr Arg Val Asp Arg Leu Thr Gln Gly Arg Gln Thr			
115	120	125	
Tyr Asp Trp Thr Leu Asn Arg Asn Gln Pro Ala Ala Thr Ala Leu Ala			
130	135	140	
Asn Thr Ile Glu Val Phe Arg Ser Asn Gly Leu Thr Ala Asn Glu Ser			
145	150	155	160
Gly Arg Leu Ile Asp Phe Leu Lys Asp Val Met Glu Ser Met Asp Lys			
165	170	175	
Glu Glu Met Glu Ile Thr Thr His Phe Gln Arg Lys Arg Arg Val Arg			
180	185	190	
Asp Asn Met Thr Lys Lys Met Val Thr Gln Arg Thr Ile Gly Lys Lys			
195	200	205	
Lys Gln Arg Val Asn Lys Arg Gly Tyr Leu Ile Arg Ala Leu Thr Leu			
210	215	220	
Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala			
225	230	235	240
Ile Ala Thr Pro Gly Met Gln Ile Arg Gly Phe Val Tyr Phe Val Glu			
245	250	255	
Thr Leu Ala Arg Ser Ile Cys Glu Lys Leu Glu Gln Ser Gly Leu Pro			
260	265	270	
Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ala Asn Val Val Arg Lys			
275	280	285	
Met Met Thr Asn Ser Gln Asp Thr Glu Leu Ser Phe Thr Ile Thr Gly			
290	295	300	
Asp Asn Thr Lys Trp Asn Glu Asn Gln Asn Pro Arg Met Phe Leu Ala			
305	310	315	320
Met Ile Thr Tyr Ile Thr Lys Asn Gln Pro Glu Trp Phe Arg Asn Ile			
325	330	335	
Leu Ser Ile Ala Pro Ile Met Phe Ser Asn Lys Met Ala Arg Leu Gly			
340	345	350	
Lys Gly Tyr Met Phe Glu Ser Lys Arg Met Lys Leu Arg Thr Gln Ile			
355	360	365	
Pro Ala Glu Met Leu Ala Ser Ile Asp Leu Lys Tyr Phe Asn Glu Ser			
370	375	380	
Thr Arg Lys Lys Ile Glu Lys Ile Arg Pro Leu Leu Ile Asp Gly Thr			
385	390	395	400
Ala Ser Leu Ser Pro Gly Met Met Met Gly Met Phe Asn Met Leu Ser			
405	410	415	
Thr Val Leu Gly Val Ser Ile Leu Asn Leu Gly Gln Lys Lys Tyr Thr			
420	425	430	
Lys Thr Thr Tyr Trp Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala			
435	440	445	
Leu Ile Val Asn Ala Pro Asn His Glu Gly Ile Gln Ala Gly Val Asn			
450	455	460	
Arg Phe Tyr Arg Thr Cys Lys Leu Val Gly Ile Asn Met Ser Lys Lys			
465	470	475	480
Lys Ser Tyr Ile Asn Lys Thr Gly Thr Phe Glu Phe Thr Ser Phe Phe			
485	490	495	

-continued

Tyr Arg Tyr Gly Phe Val Ala Asn Phe Ser Met Glu Leu Pro Ser Phe
 500 505 510

Gly Val Ser Gly Ile Asn Glu Ser Ala Asp Met Ser Ile Gly Val Thr
 515 520 525

Val Ile Lys Asn Asn Met Ile Asn Asn Asp Leu Gly Pro Ala Thr Ala
 530 535 540

Gln Met Ala Leu Gln Leu Phe Ile Lys Asp Tyr Arg Tyr Thr Tyr Arg
 545 550 555 560

Cys His Arg Gly Asp Thr Gln Ile Gln Thr Arg Arg Ser Phe Glu Leu
 565 570 575

Lys Lys Leu Trp Asp Gln Thr Gln Ser Arg Ala Gly Leu Leu Val Ser
 580 585 590

Asp Gly Gly Pro Asn Leu Tyr Asn Ile Arg Asn Leu His Ile Pro Glu
 595 600 605

Val Cys Leu Lys Trp Glu Leu Met Asp Glu Asn Tyr Arg Gly Arg Leu
 610 615 620

Cys Asn Pro Leu Asn Pro Phe Val Ser His Lys Glu Ile Glu Ser Val
 625 630 635 640

Asn Asn Ala Val Val Met Pro Ala His Gly Pro Ala Lys Ser Met Glu
 645 650 655

Tyr Asp Ala Val Ala Thr Thr His Ser Trp Ile Pro Lys Arg Asn Arg
 660 665 670

Ser Ile Leu Asn Thr Ser Gln Arg Gly Ile Leu Glu Asp Glu Gln Met
 675 680 685

Tyr Gln Lys Cys Cys Asn Leu Phe Glu Lys Phe Pro Ser Ser Ser
 690 695 700

Tyr Arg Arg Pro Ile Gly Ile Ser Ser Met Val Glu Ala Met Val Ser
 705 710 715 720

Arg Ala Arg Ile Asp Ala Arg Ile Asp Phe Glu Ser Gly Arg Ile Lys
 725 730 735

Lys Glu Glu Phe Ser Glu Ile Met Lys Ile Cys Ser Thr Ile Glu Glu
 740 745 750

Leu Arg Arg Gln Arg
 755

<210> SEQ ID NO 61

<211> LENGTH: 759

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 61

Met Glu Arg Ile Lys Glu Leu Arg Asn Leu Met Ser Gln Ser Arg Thr
 1 5 10 15

Arg Glu Ile Leu Thr Lys Thr Val Asp His Met Ala Ile Ile Lys
 20 25 30

Lys Tyr Thr Ser Gly Arg Gln Glu Lys Asn Pro Ser Leu Arg Met Lys
 35 40 45

Trp Met Met Ala Met Lys Tyr Pro Ile Thr Ala Asp Lys Arg Ile Thr
 50 55 60

Glu Met Val Pro Glu Arg Asn Glu Gln Gly Gln Thr Leu Trp Ser Lys
 65 70 75 80

Met Ser Asp Ala Gly Ser Asp Arg Val Met Val Ser Pro Leu Ala Val
 85 90 95

-continued

Thr Trp Trp Asn Arg Asn Gly Pro Val Thr Ser Thr Val His Tyr Pro
 100 105 110
 Lys Val Tyr Lys Thr Tyr Phe Asp Lys Val Glu Arg Leu Lys His Gly
 115 120 125
 Thr Phe Gly Pro Val His Phe Arg Asn Gln Val Lys Ile Arg Arg Arg
 130 135 140
 Val Asp Ile Asn Pro Gly His Ala Asp Leu Ser Ala Lys Glu Ala Gln
 145 150 155 160
 Asp Val Ile Met Glu Val Val Phe Pro Asn Glu Val Gly Ala Arg Ile
 165 170 175
 Leu Thr Ser Glu Ser Gln Leu Thr Ile Thr Lys Glu Lys Lys Glu Glu
 180 185 190
 Leu Arg Asp Cys Lys Ile Ser Pro Leu Met Val Ala Tyr Met Leu Glu
 195 200 205
 Arg Glu Leu Val Arg Lys Thr Arg Phe Leu Pro Val Ala Gly Gly Thr
 210 215 220
 Ser Ser Ile Tyr Ile Glu Val Leu His Leu Thr Gln Gly Thr Cys Trp
 225 230 235 240
 Glu Gln Met Tyr Thr Pro Gly Glu Val Arg Asn Asp Asp Val Asp
 245 250 255
 Gln Ser Leu Ile Ile Ala Ala Arg Asn Ile Val Arg Arg Ala Ala Val
 260 265 270
 Ser Ala Asp Pro Leu Ala Ser Leu Leu Glu Met Cys His Ser Thr Gln
 275 280 285
 Ile Gly Gly Thr Arg Met Val Asp Ile Leu Arg Gln Asn Pro Thr Glu
 290 295 300
 Glu Gln Ala Val Asp Ile Cys Lys Ala Ala Met Gly Leu Arg Ile Ser
 305 310 315 320
 Ser Ser Phe Ser Phe Gly Gly Phe Thr Phe Lys Arg Thr Ser Gly Ser
 325 330 335
 Ser Val Lys Lys Glu Glu Glu Val Leu Thr Gly Asn Leu Gln Thr Leu
 340 345 350
 Lys Ile Arg Val His Glu Gly Tyr Glu Glu Phe Thr Met Val Gly Lys
 355 360 365
 Arg Ala Thr Ala Ile Leu Arg Lys Ala Thr Arg Arg Leu Val Gln Leu
 370 375 380
 Ile Val Ser Gly Arg Asp Glu Gln Ser Ile Ala Glu Ala Ile Ile Val
 385 390 395 400
 Ala Met Val Phe Ser Gln Glu Asp Cys Met Ile Lys Ala Val Arg Gly
 405 410 415
 Asp Leu Asn Phe Val Asn Arg Ala Asn Gln Arg Leu Asn Pro Met His
 420 425 430
 Gln Leu Leu Arg His Phe Gln Lys Asp Ala Lys Val Leu Phe Gln Asn
 435 440 445
 Trp Gly Ile Glu His Ile Asp Ser Val Met Gly Met Val Gly Val Leu
 450 455 460
 Pro Asp Met Thr Pro Ser Thr Glu Met Ser Met Arg Gly Ile Arg Val
 465 470 475 480
 Ser Lys Met Gly Val Asp Glu Tyr Ser Ser Thr Glu Arg Val Val Val
 485 490 495
 Ser Ile Asp Arg Phe Leu Arg Val Arg Asp Gln Arg Gly Asn Val Leu
 500 505 510

-continued

Leu Ser Pro Glu Glu Val Ser Glu Thr Gln Gly Thr Glu Arg Leu Thr
 515 520 525
 Ile Thr Tyr Ser Ser Ser Met Met Trp Glu Ile Asn Gly Pro Glu Ser
 530 535 540
 Val Leu Val Asn Thr Tyr Gln Trp Ile Ile Arg Asn Trp Glu Ala Val
 545 550 555 560
 Lys Ile Gln Trp Ser Gln Asn Pro Ala Met Leu Tyr Asn Lys Met Glu
 565 570 575
 Phe Glu Pro Phe Gln Ser Leu Val Pro Lys Ala Ile Arg Ser Gln Tyr
 580 585 590
 Ser Gly Phe Val Arg Thr Leu Phe Gln Gln Met Arg Asp Val Leu Gly
 595 600 605
 Thr Phe Asp Thr Thr Gln Ile Ile Lys Leu Leu Pro Phe Ala Ala Ala
 610 615 620
 Pro Pro Lys Gln Ser Arg Met Gln Phe Ser Ser Leu Thr Val Asn Val
 625 630 635 640
 Arg Gly Ser Gly Met Arg Ile Leu Val Arg Gly Asn Ser Pro Val Phe
 645 650 655
 Asn Tyr Asn Lys Thr Thr Lys Arg Leu Thr Ile Leu Gly Lys Asp Ala
 660 665 670
 Gly Thr Leu Ile Glu Asp Pro Asp Glu Ser Thr Ser Gly Val Glu Ser
 675 680 685
 Ala Val Leu Arg Gly Phe Leu Ile Ile Gly Lys Glu Asp Arg Arg Tyr
 690 695 700
 Gly Pro Ala Leu Ser Ile Asn Glu Leu Ser Asn Leu Ala Lys Gly Glu
 705 710 715 720
 Lys Ala Asn Val Leu Ile Gly Gln Gly Asp Val Val Leu Val Met Lys
 725 730 735
 Arg Lys Arg Asp Ser Ser Ile Leu Thr Asp Ser Gln Thr Ala Thr Lys
 740 745 750
 Arg Ile Arg Met Ala Ile Asn
 755

<210> SEQ ID NO 62
 <211> LENGTH: 498
 <212> TYPE: PRT
 <213> ORGANISM: Influenza
 <400> SEQUENCE: 62

Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Asp
 1 5 10 15
 Gly Asp Arg Gln Asn Ala Thr Glu Ile Arg Ala Ser Val Gly Lys Met
 20 25 30
 Ile Asp Gly Ile Gly Arg Phe Tyr Ile Gln Met Cys Thr Glu Leu Lys
 35 40 45
 Leu Ser Asp Tyr Glu Gly Arg Leu Ile Gln Asn Ser Leu Thr Ile Glu
 50 55 60
 Lys Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Lys Tyr Leu Glu
 65 70 75 80
 Glu His Pro Ser Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile
 85 90 95
 Tyr Arg Arg Val Asp Gly Lys Trp Met Arg Glu Leu Val Leu Tyr Asp
 100 105 110

-continued

Lys Glu Glu Ile Arg Arg Ile Trp Arg Gln Ala Asn Asn Gly Glu Asp
 115 120 125
 Ala Thr Ala Gly Leu Thr His Ile Met Ile Trp His Ser Asn Leu Asn
 130 135 140
 Asp Ala Thr Tyr Gln Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp
 145 150 155 160
 Pro Arg Met Cys Ser Leu Met Gln Gly Ser Thr Leu Pro Arg Arg Ser
 165 170 175
 Gly Ala Ala Gly Ala Ala Val Lys Gly Ile Gly Thr Met Val Met Glu
 180 185 190
 Leu Ile Arg Met Val Lys Arg Gly Ile Asn Asp Arg Asn Phe Trp Arg
 195 200 205
 Gly Glu Asn Gly Arg Lys Thr Arg Ser Ala Tyr Glu Arg Met Cys Asn
 210 215 220
 Ile Leu Lys Gly Lys Phe Gln Thr Ala Ala Gln Arg Ala Met Val Asp
 225 230 235 240
 Gln Val Arg Glu Ser Arg Asn Pro Gly Asn Ala Glu Ile Glu Asp Leu
 245 250 255
 Ile Phe Leu Ala Arg Ser Ala Leu Ile Leu Arg Gly Ser Val Ala His
 260 265 270
 Lys Ser Cys Leu Pro Ala Cys Val Tyr Gly Pro Ala Val Ser Ser Gly
 275 280 285
 Tyr Asn Phe Glu Lys Glu Gly Tyr Ser Leu Val Gly Ile Asp Pro Phe
 290 295 300
 Lys Leu Leu Gln Asn Ser Gln Val Tyr Ser Leu Ile Arg Pro Asn Glu
 305 310 315 320
 Asn Pro Ala His Lys Ser Gln Leu Val Trp Met Ala Cys His Ser Ala
 325 330 335
 Ala Phe Glu Asp Leu Arg Leu Leu Ser Phe Ile Arg Gly Thr Lys Val
 340 345 350
 Ser Pro Arg Gly Lys Leu Ser Thr Arg Gly Val Gln Ile Ala Ser Asn
 355 360 365
 Glu Asn Met Asp Asn Met Gly Ser Gly Thr Leu Glu Leu Arg Ser Gly
 370 375 380
 Tyr Trp Ala Ile Arg Thr Arg Ser Gly Gly Asn Thr Asn Gln Gln Arg
 385 390 395 400
 Ala Ser Ala Gly Gln Thr Ser Val Gln Pro Thr Phe Ser Val Gln Arg
 405 410 415
 Asn Leu Pro Phe Glu Lys Ser Thr Ile Met Ala Ala Phe Thr Gly Asn
 420 425 430
 Thr Glu Gly Arg Thr Ser Asp Met Arg Ala Glu Ile Ile Arg Met Met
 435 440 445
 Glu Gly Ala Lys Pro Glu Glu Val Ser Phe Arg Gly Arg Gly Val Phe
 450 455 460
 Glu Leu Ser Asp Glu Lys Ala Thr Asn Pro Ile Val Pro Ser Phe Asp
 465 470 475 480
 Met Ser Asn Glu Gly Ser Tyr Phe Phe Gly Asp Asn Ala Glu Glu Tyr
 485 490 495
 Asp Asn

-continued

<211> LENGTH: 252
 <212> TYPE: PRT
 <213> ORGANISM: Influenza

<400> SEQUENCE: 63

```

Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Val Leu Ser Ile Val Pro
1           5           10          15

Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asp Val Phe
20          25          30

Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr
35          40          45

Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe
50          55          60

Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val
65          70          75          80

Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Lys Ala
85          90          95

Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala
100         105         110

Lys Glu Ile Ala Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met
115         120         125

Gly Leu Ile Tyr Asn Arg Met Gly Ala Val Thr Thr Glu Val Ala Phe
130         135         140

Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Arg
145         150         155         160

Ser His Arg Gln Met Val Ala Thr Thr Asn Pro Leu Ile Arg His Glu
165         170         175

Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met
180         185         190

Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Ile Ala Ser Gln
195         200         205

Ala Arg Gln Met Val Gln Ala Met Arg Ala Ile Gly Thr His Pro Ser
210         215         220

Ser Ser Thr Gly Leu Arg Asp Asp Leu Leu Glu Asn Leu Gln Thr Tyr
225         230         235         240

Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys
245         250
  
```

<210> SEQ ID NO 64
 <211> LENGTH: 97
 <212> TYPE: PRT
 <213> ORGANISM: Influenza

<400> SEQUENCE: 64

```

Met Ser Leu Leu Thr Glu Val Glu Thr Pro Ile Arg Asn Glu Trp Gly
1           5           10          15

Cys Arg Cys Asn Asp Ser Ser Asp Pro Leu Val Val Ala Ala Asn Ile
20          25          30

Ile Gly Ile Leu His Leu Ile Leu Trp Ile Leu Asp Arg Leu Phe Phe
35          40          45

Lys Cys Val Tyr Arg Leu Phe Lys His Gly Leu Lys Arg Gly Pro Ser
50          55          60

Thr Glu Gly Val Pro Glu Ser Met Arg Glu Glu Tyr Arg Lys Glu Gln
65          70          75          80
  
```

-continued

Gln Asn Ala Val Asp Ala Asp Asp Ser His Phe Val Ser Ile Glu Leu
85 90 95

Glu

<210> SEQ ID NO 65
<211> LENGTH: 846
<212> TYPE: DNA
<213> ORGANISM: Influenza

<400> SEQUENCE: 65

aatggattcc aacactgtgt caagtttcca ggttagattgc tttctttggc atatccggaa	60
acaagttgta gaccaagaac tgagtgtatgc cccatccctt gatccggatcc gccgagatca	120
gaggtcccta agggaaagag gcaatactct cggcttagac atcaaagcag ccacccatgt	180
tggaaagcaa attgttagaaa agattctgaa agaagaatct gatgaggcac ttaaaatgac	240
catggctcc acacactgtttt cgcgatacat aactgacatg actattgagg aattgtcaag	300
aaactggttc atgctaatgc ccaagcagaa agtggaaagga cctctttgca tcagaatggaa	360
ccaggcaatc atggagaaaa acatcatgtt gaaagcgaat ttcaagtgtga tttctgaccg	420
actagagacc atagtttattttttaa taagggtttt caccgaagag ggagcaatttggcggaaat	480
cttcaccatttgc ctttttttttcc caggacatac tatttttttttggat gtcaaaaatggcggaaat	540
cctcatcgaa ggacttggat ggaatgataa cacagttcgaa gtctctaaaa atctacagag	600
attcgcttgg agaagcagta atgagaatgg gggaccccca cttactccaa aacagaaaacg	660
gaaaatggcg agaacagacta ggtcaaaaatggat ttgaagagat aagatggctg attgaagaag	720
tgagacacag actaaaaaca actgaaaata gctttgaaca aataacatttccat atgcaagcat	780
tacaactgtt gtttgaagtggat gaaacaggaga taagaactttt ctcatttcag cttatttaat	840
gataaa	846

<210> SEQ ID NO 66
<211> LENGTH: 566
<212> TYPE: PRT
<213> ORGANISM: Influenza

<400> SEQUENCE: 66

Met Lys Thr Ile Ile Ala Leu Ser Tyr Ile Leu Cys Leu Val Phe Ala
1 5 10 15

Gln Lys Leu Pro Gly Asn Asp Asn Ser Thr Ala Thr Leu Cys Leu Gly
20 25 30

His His Ala Val Pro Asn Gly Thr Ile Val Lys Thr Ile Thr Asn Asp
35 40 45

Gln Ile Glu Val Thr Asn Ala Thr Glu Leu Val Gln Ser Ser Ser Thr
50 55 60

Gly Gly Ile Cys Asp Ser Pro His Gln Ile Leu Asp Gly Glu Asn Cys
65 70 75 80

Thr Leu Ile Asp Ala Leu Leu Gly Asp Pro Gln Cys Asp Gly Phe Gln
85 90 95

Asn Lys Lys Trp Asp Leu Phe Val Glu Arg Ser Lys Ala Tyr Ser Asn
100 105 110

Cys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu Arg Ser Leu Val
115 120 125

Ala Ser Ser Gly Thr Leu Glu Phe Asn Asp Glu Ser Phe Asn Trp Thr
130 135 140

-continued

Gly Val Thr Gln Asn Gly Thr Ser Ser Ser Cys Lys Arg Arg Arg Ser Asn
 145 150 155 160
 Asn Ser Phe Phe Ser Arg Leu Asn Trp Leu Thr His Leu Lys Phe Lys
 165 170 175
 Tyr Pro Ala Leu Asn Val Thr Met Pro Asn Asn Glu Lys Phe Asp Lys
 180 185 190
 Leu Tyr Ile Trp Gly Val His His Pro Val Thr Asp Asn Asp Gln Ile
 195 200 205
 Phe Leu Tyr Ala Gln Ala Ser Gly Arg Ile Thr Val Ser Thr Lys Arg
 210 215 220
 Ser Gln Gln Thr Val Ile Pro Asn Ile Gly Ser Arg Pro Arg Ile Arg
 225 230 235 240
 Asn Ile Pro Ser Arg Ile Ser Ile Tyr Trp Thr Ile Val Lys Pro Gly
 245 250 255
 Asp Ile Leu Leu Ile Asn Ser Thr Gly Asn Leu Ile Ala Pro Arg Gly
 260 265 270
 Tyr Phe Lys Ile Arg Ser Gly Lys Ser Ser Ile Met Arg Ser Asp Ala
 275 280 285
 Pro Ile Gly Lys Cys Asn Ser Glu Cys Ile Thr Pro Asn Gly Ser Ile
 290 295 300
 Pro Asn Asp Lys Pro Phe Gln Asn Val Asn Arg Ile Thr Tyr Gly Ala
 305 310 315 320
 Cys Pro Arg Tyr Val Lys Gln Asn Thr Leu Lys Leu Ala Thr Gly Met
 325 330 335
 Arg Asn Val Pro Glu Lys Gln Thr Arg Gly Ile Phe Gly Ala Ile Ala
 340 345 350
 Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Val Asp Gly Trp Tyr Gly
 355 360 365
 Phe Arg His Gln Asn Ser Glu Gly Ile Gly Gln Ala Ala Asp Leu Lys
 370 375 380
 Ser Thr Gln Ala Ala Ile Asn Gln Ile Asn Gly Lys Leu Asn Arg Leu
 385 390 395 400
 Ile Gly Lys Thr Asn Glu Lys Phe His Gln Ile Glu Lys Glu Phe Ser
 405 410 415
 Glu Val Glu Gly Arg Ile Gln Asp Leu Glu Lys Tyr Val Glu Asp Thr
 420 425 430
 Lys Ile Asp Leu Trp Ser Tyr Asn Ala Glu Leu Leu Val Ala Leu Glu
 435 440 445
 Asn Gln His Thr Ile Asp Leu Thr Asp Ser Glu Met Asn Lys Leu Phe
 450 455 460
 Glu Arg Thr Lys Lys Gln Leu Arg Glu Asn Ala Glu Asp Met Gly Asn
 465 470 475 480
 Gly Cys Phe Lys Ile Tyr His Lys Cys Asp Asn Ala Cys Ile Gly Ser
 485 490 495
 Ile Arg Asn Gly Thr Tyr Asp His Asp Val Tyr Arg Asp Glu Ala Leu
 500 505 510
 Asn Asn Arg Phe Gln Ile Lys Gly Val Glu Leu Lys Ser Gly Tyr Lys
 515 520 525
 Asp Trp Ile Leu Trp Ile Ser Phe Ala Ile Ser Cys Phe Leu Leu Cys
 530 535 540
 Val Ala Leu Leu Gly Phe Ile Met Trp Ala Cys Gln Lys Gly Asn Ile

-continued

545	550	555	560
-----	-----	-----	-----

Arg Cys Asn Ile Cys Ile			
	565		

<210> SEQ ID NO 67

<211> LENGTH: 469

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 67

Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Val Ser Leu Thr			
1	5	10	15

Ile Ser Thr Ile Cys Phe Phe Met Gln Ile Ala Ile Leu Ile Thr Thr			
20	25	30	

Val Thr Leu His Phe Lys Gln Tyr Glu Phe Asn Ser Pro Pro Asn Asn			
35	40	45	

Gln Val Met Leu Cys Glu Pro Thr Ile Ile Glu Arg Asn Ile Thr Glu			
50	55	60	

Ile Val Tyr Leu Thr Asn Thr Thr Ile Glu Lys Glu Ile Cys Pro Lys			
65	70	75	80

Leu Ala Glu Tyr Arg Asn Trp Ser Lys Pro Gln Cys Asn Ile Thr Gly			
85	90	95	

Phe Ala Pro Phe Ser Lys Asp Asn Ser Ile Arg Leu Ser Ala Gly Gly			
100	105	110	

Asp Ile Trp Val Thr Arg Glu Pro Tyr Val Ser Cys Asp Pro Asp Lys			
115	120	125	

Cys Tyr Gln Phe Ala Leu Gly Gln Gly Thr Thr Leu Asn Asn Val His			
130	135	140	

Ser Asn Asp Thr Val His Asp Arg Thr Pro Tyr Arg Thr Leu Leu Met			
145	150	155	160

Asn Glu Leu Gly Val Pro Phe His Leu Gly Thr Lys Gln Val Cys Ile			
165	170	175	

Ala Trp Ser Ser Ser Cys His Asp Gly Lys Ala Trp Leu His Val			
180	185	190	

Cys Val Thr Gly Asp Asp Lys Asn Ala Thr Ala Ser Phe Ile Tyr Asn			
195	200	205	

Gly Arg Leu Val Asp Ser Ile Val Ser Trp Ser Lys Glu Ile Leu Arg			
210	215	220	

Thr Gln Glu Ser Glu Cys Val Cys Ile Asn Gly Thr Cys Thr Val Val			
225	230	235	240

Met Thr Asp Gly Ser Ala Ser Gly Lys Ala Asp Thr Lys Ile Leu Phe			
245	250	255	

Ile Glu Glu Gly Lys Ile Val His Thr Ser Thr Leu Ser Gly Ser Ala			
260	265	270	

Gln His Val Glu Glu Cys Ser Cys Tyr Pro Arg Tyr Leu Gly Val Arg			
275	280	285	

Cys Val Cys Arg Asp Asn Trp Lys Gly Ser Asn Arg Pro Ile Val Asp			
290	295	300	

Ile Asn Ile Lys Asp Tyr Ser Ile Val Ser Ser Tyr Val Cys Ser Gly			
305	310	315	320

Leu Val Gly Asp Thr Pro Arg Lys Asn Asp Ser Ser Ser Ser His			
325	330	335	

Cys Leu Asp Pro Asn Asn Glu Glu Gly His Gly Val Lys Gly Trp

-continued

340	345	350	
Ala Phe Asp Asp Gly Asn Asp Val Trp Met Gly Arg Thr Ile Ser Glu			
355	360	365	
Lys Leu Arg Ser Gly Tyr Glu Thr Phe Lys Val Ile Glu Gly Trp Ser			
370	375	380	
Asn Pro Asn Ser Lys Leu Gln Ile Asn Arg Gln Val Ile Val Asp Arg			
385	390	395	400
Gly Asn Arg Ser Gly Tyr Ser Gly Ile Phe Ser Val Glu Gly Lys Ser			
405	410	415	
Cys Ile Asn Arg Cys Phe Tyr Val Glu Leu Ile Arg Gly Arg Lys Glu			
420	425	430	
Glu Thr Glu Val Leu Trp Thr Ser Asn Ser Ile Val Val Phe Cys Gly			
435	440	445	
Thr Ser Gly Thr Tyr Gly Thr Gly Ser Trp Pro Asp Gly Ala Asp Ile			
450	455	460	
Asn Leu Met Pro Ile			
465			

<210> SEQ ID NO 68

<211> LENGTH: 716

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 68

Met Glu Asp Phe Val Arg Gln Cys Phe Asn Pro Met Ile Val Glu Leu			
1	5	10	15
Ala Glu Lys Ala Met Lys Glu Tyr Gly Glu Asp Pro Lys Ile Glu Thr			
20	25	30	
Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr			
35	40	45	
Ser Asp Phe His Phe Ile Asp Glu Arg Gly Glu Ser Ile Ile Val Glu			
50	55	60	
Ser Gly Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu			
65	70	75	80
Gly Arg Asp Arg Ile Met Ala Trp Thr Val Ile Asn Ser Ile Cys Asn			
85	90	95	
Thr Thr Gly Val Glu Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr			
100	105	110	
Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His			
115	120	125	
Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Lys Thr His			
130	135	140	
Ile His Ile Phe Ser Phe Thr Gly Glu Glu Met Ala Thr Lys Ala Asp			
145	150	155	160
Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe			
165	170	175	
Thr Ile Arg Gln Glu Met Ala Ser Lys Ser Leu Trp Asp Ser Phe Arg			
180	185	190	
Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Lys Phe Glu Ile Thr			
195	200	205	
Gly Thr Met Arg Lys Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Pro			
210	215	220	
Ser Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly			

-continued

225	230	235	240
Cys Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Asn Ala Lys			
245	250	255	
Ile Glu Pro Phe Leu Arg Thr Thr Pro Arg Pro Leu Arg Leu Pro Asp			
260	265	270	
Gly Pro Leu Cys His Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu			
275	280	285	
Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Gly Ile Pro Leu			
290	295	300	
Tyr Asp Ala Ile Lys Cys Met Lys Thr Phe Phe Gly Trp Lys Glu Pro			
305	310	315	320
Asn Ile Val Lys Pro His Glu Lys Gly Ile Asn Pro Asn Tyr Leu Met			
325	330	335	
Ala Trp Lys Gln Val Leu Ala Glu Leu Gln Asp Ile Glu Asn Glu Glu			
340	345	350	
Lys Ile Pro Arg Thr Lys Asn Met Lys Arg Thr Ser Gln Leu Lys Trp			
355	360	365	
Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Asp Asp Cys			
370	375	380	
Lys Asp Val Gly Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Pro			
385	390	395	400
Arg Ser Leu Ala Ser Trp Val Gln Asn Glu Phe Asn Lys Ala Cys Glu			
405	410	415	
Leu Thr Asp Ser Ser Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Val			
420	425	430	
Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ala			
435	440	445	
Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr			
450	455	460	
Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe			
465	470	475	480
Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg			
485	490	495	
Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg			
500	505	510	
Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr			
515	520	525	
Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu			
530	535	540	
Ile Gly Asp Met Leu Leu Arg Thr Ala Ile Gly Gln Val Ser Arg Pro			
545	550	555	560
Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Ile Lys Met Lys			
565	570	575	
Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile			
580	585	590	
Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr			
595	600	605	
Lys Glu Phe Phe Glu Asn Lys Ser Glu Thr Trp Pro Ile Gly Glu Ser			
610	615	620	
Pro Arg Gly Val Glu Glu Gly Ser Ile Gly Lys Val Cys Arg Thr Leu			
625	630	635	640

-continued

Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu
645 650 655

Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Ile Val Gln Ala Leu
660 665 670

Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Gly Leu Tyr Glu
675 680 685

Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala
690 695 700

Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Lys
705 710 715

<210> SEQ ID NO 69

<211> LENGTH: 252

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 69

Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Val Pro
1 5 10 15

Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asn Val Phe
20 25 30

Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr
35 40 45

Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe
50 55 60

Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val
65 70 75 80

Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Lys Ala
85 90 95

Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala
100 105 110

Lys Glu Ile Ala Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met
115 120 125

Gly Leu Ile Tyr Asn Arg Met Gly Ala Val Thr Thr Glu Ser Ala Phe
130 135 140

Gly Leu Ile Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Lys
145 150 155 160

Ser His Arg Gln Met Val Thr Thr Asn Pro Leu Ile Arg His Glu
165 170 175

Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met
180 185 190

Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Ser Gln
195 200 205

Ala Arg Gln Met Val Gln Ala Met Arg Ala Ile Gly Thr His Pro Ser
210 215 220

Ser Ser Thr Gly Leu Lys Asn Asp Leu Leu Glu Asn Leu Gln Ala Tyr
225 230 235 240

Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys
245 250

<210> SEQ ID NO 70

<211> LENGTH: 566

<212> TYPE: PRT

<213> ORGANISM: Influenza

-continued

<400> SEQUENCE: 70

Met Lys Ala Ile Leu Val Val Leu Leu Tyr Thr Phe Ala Thr Ala Asn
 1 5 10 15

Ala Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr
 20 25 30

Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn
 35 40 45

Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Arg Gly Val
 50 55 60

Ala Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu Gly
 65 70 75 80

Asn Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser Tyr Ile
 85 90 95

Val Glu Thr Pro Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe
 100 105 110

Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe
 115 120 125

Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp
 130 135 140

Ser Asn Lys Gly Val Thr Ala Ala Cys Pro His Ala Gly Ala Lys Ser
 145 150 155 160

Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gly Asn Ser Tyr Pro
 165 170 175

Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gly Lys Glu Val Leu Val
 180 185 190

Leu Trp Gly Ile His His Pro Ser Thr Ser Ala Asp Gln Gln Ser Leu
 195 200 205

Tyr Gln Asn Ala Asp Thr Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser
 210 215 220

Lys Lys Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg Asp Gln
 225 230 235 240

Glu Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly Asp Lys
 245 250 255

Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe
 260 265 270

Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp Thr Pro
 275 280 285

Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala Ile Asn
 290 295 300

Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly Lys Cys
 305 310 315 320

Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Ala Thr Gly Leu Arg
 325 330 335

Asn Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly
 340 345 350

Phe Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr
 355 360 365

His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Leu Lys Ser
 370 375 380

Thr Gln Asn Ala Ile Asp Glu Ile Thr Asn Lys Val Asn Ser Val Ile
 385 390 395 400

-continued

Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn His
 405 410 415
 Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe
 420 425 430
 Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn
 435 440 445
 Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Glu
 450 455 460
 Lys Val Arg Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly
 465 470 475 480
 Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Thr Cys Met Glu Ser Val
 485 490 495
 Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ala Lys Leu
 500 505 510
 Asn Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Thr Arg Ile Tyr
 515 520 525
 Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Val
 530 535 540
 Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu
 545 550 555 560
 Gln Cys Arg Ile Cys Ile
 565

<210> SEQ ID NO 71
 <211> LENGTH: 2305
 <212> TYPE: DNA
 <213> ORGANISM: Influenza
 <400> SEQUENCE: 71

agcagaagcg	gtgcgtttga	tttgtcataa	tggatacttt	tattacaaga	aacttccaga	60
ctacaataat	acaaaaggcc	aaaaacacaa	tggcagaatt	tagtgaagat	cctgaattgc	120
aaccagcaat	gctattcaat	atctgcgtcc	atcttagaggt	ttgctatgta	ataagtgaca	180
tgaattttct	tgacgaagaa	ggaaaagcat	atacagcatt	agaaggacaa	gggaaagaac	240
aaaacttgag	accacaatat	gaagtaattt	agggaatgcc	aagaaccata	gcatggatgg	300
tccagagatc	cttagctcaa	gagcatggaa	tagagactcc	caagtatctg	gctgatttgt	360
tttgattataa	aaccaaaga	tttatagaag	ttggaaataac	aaaggattt	gctgtatgtt	420
acttttggaa	aaagaaaagaa	aagttggaa	atagcatgga	actgtatgtt	ttcagctaca	480
atcaagacta	ctcgatgtt	aatgaatcc	cattggatga	ggaaggaaa	gggagatgtc	540
taagcagact	cacagaactt	caggctgaat	taagtctgaa	aaatttatgg	caagttctca	600
taggagaaga	agatgttcaa	aagggatattt	atttttaact	tggacaaaca	atatctatgt	660
taagggatat	atctgttcca	gctggtttct	ccaaatttga	aggaatgagg	agctatcatag	720
acaatata	cccaaaaagga	gcaatagaga	gaaatctagc	aaggatgtct	cccttagtat	780
cagtcacacc	taaaaagtt	acatgggagg	acctaagacc	aatagggct	cacattacg	840
accatgagct	accagaagtt	ccatataatg	cctttcttct	aatgtctgtat	gaactggat	900
tggccaaat	gactgaggaa	aagtccaaaa	aaccgaagac	attagccaaa	aatgtcttag	960
aaaagtactc	aacactacgg	gatcaaactg	acccaaatatt	aataatgaaa	agcgaaaaag	1020
ctaacgaaaa	tttcctatgg	aagcttggaa	gagactgtgt	aaataacaata	agtaatgagg	1080

-continued

aaacgagtaa	cgagttacag	aaaaccaatt	atgccaaatg	ggccacaggg	gatggattaa	1140
cataccagaa	aataatgaaa	gaagtagcaa	tagatgacga	aacaatgtc	caagaagagc	1200
ctaaaatccc	taacaaatgt	agagtggtcg	cttgggttca	aacagagatg	aatctattga	1260
gcactctgac	aagtaaaaga	gctctggacc	taccagaaat	agggccagac	atagcacccg	1320
tggagcatgt	aggaagtgaa	agaagggaaat	actttgttaa	tgaaatcaac	tactgttaagg	1380
cctctacagt	tatgtgaag	tatgtgttt	ttcacactc	attgttgaat	gaaagcaatg	1440
ccagcatggg	aaaatacataa	gtaataccaa	taaccaatag	agtagtaat	aaaaaggag	1500
aaagttcga	catgctttac	ggtctggcg	ttaaaggaca	atctcatctg	aggggagata	1560
ctgatgttgt	aacagttgta	actttcgat	tttagtagtac	agatccaaga	gtggactcag	1620
gaaagtggcc	aaaatatact	gtgttttagga	ttggctccct	atttgtgagt	gggagggaaa	1680
aatctgtgta	cttgttattgc	cgagtgaatg	gcacaaataa	gatccaaatg	aaatggggaa	1740
tggaaagctag	aagatgtttg	cttcaatcaa	tgcaacaaat	ggaggcaatt	gttgaacagg	1800
aatcatcaat	acaaggatata	gacatgacca	aagcctgttt	caaggggagac	agagtaataa	1860
gcccccaaaac	tttcagttatt	ggaactcaag	aggaaaaact	agtaaaagga	tcctttggaa	1920
aagcactaag	agtaatattt	actaaatgt	tgtgcacta	tgtatttgg	aatgccaat	1980
tggaggggtt	tagtgccgag	tctaggagac	ttctactgtt	gattcaagca	ttaaaggaca	2040
gaaagggccc	ttgggtgttc	gacttagagg	gaatgtattc	tggaaatagaa	gaatgtattt	2100
gcaacaaccc	ttgggtataa	cagagtgtat	actggttcaa	tgaatgggtg	ggctttgaaa	2160
aggaggggaa	taaagtgttg	gaatcagtgg	atgaaataat	ggatgaataa	aaggaaatgg	2220
tactcaattt	ggtacttattt	tgttcattat	gtatctaaac	atccaataaa	aagaaccaag	2280
aatcaaaaat	gcacgtgttt	ctact				2305

<210> SEQ ID NO 72

<211> LENGTH: 2369

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 72

agcagaagcg	gagccttaa	gatgaatata	aatccttatt	ttctcttcat	agatgtgccc	60
gtacaggcag	caatttcaac	aacattccca	tacactggtg	ttccccccta	ttcccatgga	120
acaggaacag	gctacacaat	agacaccgtg	atcagaacgc	atgagtaactc	aaacaagggg	180
aaacagtaca	tttctgatgt	tacaggatgc	acaatggtag	atccaacaaa	tggaccatta	240
cccgaaagata	atgagccgag	tgcctatgcg	caatttagatt	gcgttttaga	ggctttggat	300
agaatggatg	aagaacaccc	aggctttttt	caaggcagct	cacagaatgc	tatggaggcc	360
ctaatggtca	caactgtaga	caaattaacc	caggggagac	agacttttg	ttggacagta	420
tgcagaaaacc	aacctgctgc	aacggcactg	aacacaacaa	taacctttt	taggttgaat	480
gatttaaatg	gagccgacaa	agggtggatta	atacctttt	gccaggatat	cattgattca	540
ttagaccgac	ctgaaatgac	tttcttctca	gtaaagaata	taaagaaaaa	attgcctgcc	600
aaaaacagaa	agggtttct	cataaagagg	ataccaatga	aggtaaaaga	caaataacc	660
aaagtggaat	acatcaaaag	agcattatca	ttaaacacaa	tgacaaaaga	cgctgaaaga	720
ggcaaactga	aaagaagagc	gattgccact	gctggaatac	aaatcagagg	gtttgttata	780
gtagttgaaa	acttggctaa	aaatatatgt	gaaaatctag	aacaaagtgg	tttaccagta	840

-continued

ggtggaaacg agaagaaaac	900
ccaccaggag ggatttagcat	960
gacagtaaca ggagacaata	
caaaaatggaa tgaatgttta	
aacccaagaa tcttttggc tatgactgaa	1020
agaataacca gagacagccc	
agtttggttc 1080	
agggattttt gtatgtatgc	
acccgtctg ttctccaata	
agatagcaag attggggaaa	1080
gggtttatga taacaagcaa	
aacaaaaga ctgaaggctc	
aaatacccttgc tcttgatctg	1140
tttagtatac cgtagaaag atataatgaa	
gaaacaaggg caaaaattgaa	
aaagctaaaa	1200
ccattcttca atgaagaagg	
aactgcacatct ttgtcgccctg	
ggatgtatgtatggaaatggatgtt	1260
aatatgctat ctaccgtgtt	
gggatgtatgtatggatgtt	
gcactatgtatggatgtt	1320
gaaatacttat gggatggact	
gcaatcttct gatgattttg	
ctctgtttgtt taatgcaaaag	1380
gatgaagaaa catgtatggaa	
aggaataaac gacttttacc	
gaacatgtaa attattggaa	1440
gtaaacatga gcaaaaagaa	
aagttaactgt aatgagactg	
aatgttttga atttacaaggc	1500
atgttctaca gagatggatt	
tgtatctaat tttgcaatgg	
aactcccttc gtttggggtt	1560
gctggagtaa atgaatcagc	
agatatggca ataggaatga	
caataataaa gaacaacatg	1620
atcaacaatg gaatgggtcc	
ggcaacagcaca aacacagcc	
tacagttattt catagctgat	1680
tatagataca cctacaaatg	
ccacaggggaa gattccaaag	
tagaaggaaa gagaatgaaa	1740
atcataaaagg agttatggaa	
aaacactaaa ggaagagatg	
gtcttattgtt agcagatgg	1800
gggccccaaaca tttacaattt	
gagaaacctg catatcccag	
aaatagtatt aaagtataat	1860
ctaatggacc ctgaatacaa	
agggcggtta cttcatccctc	
aaaatccctt tttggggacat	1920
ttgtctattt agggcatcaa	
agaggcgacatcataacccag	
cacatggtcc agttaagaaaa	1980
atggactaeg atgcgggtgtc	
tggacttcat agttggagaa	
ccaaaagaaa cagatctata	2040
ctaaacactg atcagaggaa	
catgattctt gaggaacaat	
gctacgctaa atgttgcaac	2100
ctatttgagg cctgttttaa	
cagtgcacatca tacaggaagc	
cagtgggtca acatagctg	2160
cttgaggcta tggccccacag	
attaagaatg gatgcacat	
tagattatga atcagggaga	2220
atgtcaaagg atgatgttga	
gaaagcaatg gtcacccctg	
gtgagatgg gtacatataa	2280
gcttcgaaga tttttatggg	
gttattggtc atcattgaat	
acatgcgata cacaatgat	2340
taaaatgaaa aaaggctcg	
gtttctact	2369

<210> SEQ ID NO 73

<211> LENGTH: 2396

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 73

agcagaagcg gagcgttttc	60
aaatgtacat tggccaaaat	
tgaattgtta aaacaactgc	
taagggacaa tgaagccaaa	120
acagttttga agcaaacaac	
ggttagaccaa tataacataa	
taagaaaatt caatacatca	
aggattgaaa agaatccctc	
actaaggatg aagtggggcca	180
tgtgttctaa tttcccttg	
gctctaacca agggcgat	
ggcaaacaga atcccttgg	240
aatacaaagg gatacaactt	
aaaacaaatg ctgaagacat	
aggaacccaa ggccaaatgt	300
gctcaatgc agcagttact	
tggtggata catatggacc	
aataggatg actgaaggtt	360
tcgaaagggt ctacgaaagc	
tttttctca gaaaaatgag	
acttgacaaac gccacttggg	420
gccgaataac ttttggccca	
gttgaagag tgagaaaaag	
ggtactgcta aaccctctca	480

-continued

ccaaggaaat	gcctccggat	gaggcgagca	atgtgataat	ggaaatattg	ttccctaaag	540
aagcaggaat	accaagagaa	tccacttgg	tacataggga	actgataaaa	aaaaaaagag	600
aaaaattgaa	aggaacaatg	ataactccaa	tcgtactggc	atacatgctt	gaaagagaac	660
tggttgctcg	aagaagattc	ttgccagtgg	caggagcaac	atcagctgag	ttcatagaaa	720
tgctacactg	cttacaaggt	gaaaattgga	gacaaatata	tcacccagga	gggataaat	780
taactgagtc	caggtctcaa	tcaatgatag	tagcttggtag	aaaataatc	agaagatcaa	840
tagtcgcttc	aaacccactg	gagctagctg	tagaaattgc	aaacaagact	gtgatagata	900
ctgaaccttt	aaagtcatgt	ctggcagcca	tagacggagg	tgtatgtact	tgtgacataa	960
taaagagctgc	attaggacta	aagatcagac	aaagacaaag	atttggacgg	cttgagctaa	1020
aaagaatatac	aggaagagga	ttcaaaaatg	atgaagaaat	attaataggg	aacggaacaa	1080
tacagaagat	tggaatatgg	gacggggaaag	aggagttcca	tgttaagatgt	ggtgaatgca	1140
gggaaatatt	aaaaaagagt	aaaatgaaac	tggaaaaact	actgataat	tcagccaaaa	1200
aggaggatata	gagagattt	ataatctt	gcatggatt	ttctcaagac	actaggatgt	1260
tccaaaggat	gagaggagaa	ataaatttc	ttaatcgagc	aggccaaactt	ttatctccaa	1320
tgtaccaact	ccaacgat	tttttgaata	gaagcaacga	ccttttgat	caatgggggt	1380
atgaggaatc	acccaaagca	agtgaactac	atgggataaa	tgaatcaatg	aatgcac	1440
actatacatt	gaaagggatt	gtatgtacaa	gaaatgttaat	tgacgacttt	agctctattg	1500
aaacagaaaa	agtatccata	acaaaaatc	ttagttaat	aaaaaggact	gggaaagtca	1560
taatgggagc	taatgacgtg	agtgaattag	aatcacaagc	acagctgtat	ataacatatg	1620
atacacctaa	aatgtggaa	atgggaacaa	ccaaagaact	ggtgcacaaac	acttatcaat	1680
gggtgctaaa	aaacttggtg	acactgaagg	ctcagttct	tcttagaaaa	gaggacatgt	1740
tccaatggga	tgcatggaa	gcatttgaga	gcataattcc	tcagaagatg	gctggcagt	1800
acagtggatt	tgcaagagca	gtgctcaac	aatgagaga	ccaggaggtt	atgaaaactg	1860
accagttcat	aaagttgtt	ccttttgtt	tctcaccacc	aaaattaagg	agcaatgggg	1920
agccttatca	attttaaaa	cttggatgtt	aaggaggagg	ggaaaatttc	atcgaaat	1980
ggaaagggtc	ccctctattt	tctataatc	cacaaacaga	agtcctaact	atatgoggca	2040
gaatgatgtc	attaaaagg	aaaatgaaag	atgaagaaag	aatatgtca	atgggtat	2100
cagtattagc	aggcttctc	gttagtggca	agtatgaccc	agatcttgg	gatttcaaa	2160
ctattgttgc	acttgcgg	ctggatgttgc	ggggaaaaggc	aaatgttca	ctttatcaag	2220
gaaaaccagt	taaagttagt	aaaaggaaaa	ggtatgtgc	tttgcacat	gacatttcac	2280
aaggaaattaa	gagacaaaga	atgacagttt	agtctatgg	gtgggcctt	agctaata	2340
aatttatcca	ttaattcaat	gaacgcaatt	gagtgaaaa	tgctcggtt	tctact	2396

<210> SEQ ID NO 74

<211> LENGTH: 1844

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 74

agcagaagca	cagcatttc	ttgtgaactt	caagcaccag	taaaagaact	ggaaatcaa	60
atgtccaaaca	tggatattga	cggtataaac	actgggacaa	ttgacaaaac	accggaaagaa	120
ataacttctg	gaaccagtgg	gacaaccaga	ccaatcat	gaccagcaac	ccttgccccca	180

-continued

ccaagcaaca aacgaacccg taacccatcc ccggaaagag caaccacaag cagtgaagat	240
gatgtcgaa ggaaaaccca aaagaaaacag accccgacag agataaaagaa gagcgtctac	300
aacatggtgg tgaacttggg cgaattctat aaccagatga tggtaaagc tggactcaat	360
gatgacatgg agagaaaatct aatccaaat ggcgcattgcg tggaaagaat tctattggct	420
gccactgatg acaagaaaac cgagttccag aagaaaaaga atgccagaga tgtcaaagaa	480
ggggaaagaag aaatagatca caacaaaaca ggaggcacct ttacaagat ggtaagagat	540
gataaaacca tctacttcag ccctataaga attaccttt taaaagaaga ggtgaaaaca	600
atgtacaaa ccaccatggg gagtgcgtggc ttcaactggc taaatcacat aatgattggg	660
cattcacaga tgaatgatgt ctgttccaa agatcaaagg cactaaaaag agttggactt	720
gatccttcat taatcgtac ctttgcggg agcacatgc ccagaagatc aggtgcgact	780
ggtgttgc当地 tcaaaggagg tggacccctt gtggctgaag ccattcgatt tataggaaga	840
gcaatggcag acagagggtt attgagagac atcaaagccca agactgccta tgaaaagatt	900
cttctgaatc taaaaaacaat atgctctgcg ccccaacaaa aggctctagt tgatcaagt	960
atcggaaagca gaaatccggg gattgcagac attgaagatc taaccctgc tgctcgtagt	1020
atggtcgttg ttaggcctc tgcgtggcagg aaagtgggtc ttccataag cattacgcc	1080
aaaataccctc aactagggtt caatgttcaa gagtactcta tggttggta cgaaggccatg	1140
gctcttaca atatggcaac acctgtgtcc atattaagaa tgggagatga tgcaaaagat	1200
aaatcgcaat tattcttcat gtctgttcc ggagctgcct atgaagacct gagagtttg	1260
tctgcattaa caggcacaga attcaagccct agatcagcat taaaatgca gggttccat	1320
gttccagcaa aggaacaggt agaaggaatg ggagcagctc tgatgtccat caagctccag	1380
ttttggcgc当地 ccatgttgggg aacgaagttag gtggagacgg agggctggc	1440
caaataagct gcagccagg tttgcagtg gaaagacca ttgctctaag caagcaagct	1500
gtaagaagaa tgctgtcaat gaatattgag ggacgtgtatc cagatgtcaa aggaatctaa	1560
ctcaagatga tgaatgactc aatggctaaag aaaaccatgt gaaatgc当地 cattggaaag	1620
aaaatgttcc aatatcaga caaaaacaaa accaatccca ttgaaatcc aattaagcag	1680
accatccccca atttcttctt tgggagggac acagcagagg attatgtga cctcgattat	1740
taaggcaaca aaatagacac tatgactgtg attgttccaa tacgtttggaa atgtgggtgt	1800
ttattcttat taaaataat ataaaaatgt ctgttgc当地 tact	1844

<210> SEQ ID NO 75

<211> LENGTH: 1189

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 75

agcagaagca cgcactttct taaaatgtcg ctgtttggag acacaattgc ctacctgctt	60
tcattgacag aagatggaga aggcaaaagca gaactagcag aaaaattaca ctgttggttt	120
ggtggaaag aatttgcact agactctgc当地 ttggaaatggaa taaaacaaa aagatgttta	180
actgatatac aaaaagcact aatttgc当地 tctatatgtt tttaaaacc caaagaccag	240
gaaagaaaaa gaagattcat cacagagccc ttatcaggaa tggaaacaac agcaacaaaa	300
aagaaaggcc tgattctggc tgagagaaaa atgagaagat gtgtgagctt tcatgaagca	360

-continued

tttgaatatgc	cagaaggcca	tcaaagtc	gcgtactat	actgtctcat	ggtcgtat	420
ctgaatcctg	gaaattatttc	aatgc	aacttagaa	cgctctgtgc	tttatgcgag	480
aaacaagcat	cacattcaca	cagggtcat	agcagagcag	cgagatctc	agtgcgttgc	540
gtgagacgag	aaatgcgat	ggtctcgact	atgaacacag	caaaaacaat	aatggaaatg	600
gaaaaaggag	aagacgtcca	aaagctggca	gaagagttgc	aaagcaacat	tggagtgcgt	660
agatctcttgc	gggcaagcca	aaagaatggg	gaagggatttgc	caaaggatgt	aatggaaatg	720
ctaaaggcaga	gctccatggg	aaattcagct	cttgc	aataatctata	atgcgtcaac	780
catttcagat	tcttacaattt	tgttcttttgc	tcttgc	tctccatttc	atgggttgg	840
caataggcgttgc	tttgc	aaataaagag	gaataaaacat	gaaaatacga	ataaaaaggc	900
caaacaaga	gacaataaac	agagaggtat	caattttgc	acacagttac	caaaaagaaa	960
tccaggccaa	agaaacaatg	aagggat	tctctgacaa	catggaggttgc	ttgaatgacc	1020
acataataat	tgaggggctt	tctgc	agataataaa	aatgggttgc	acagtttgg	1080
agatagaaga	attgcattaa	attcaattttgc	actgttatttgc	ttactatgc	tttaagcaaa	1140
ttgtatcaatgc	tgtcagcaaa	taaaactggaa	aaagtgcgtt	gtttctact		1189

<210> SEQ ID NO 76

<211> LENGTH: 1101

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 76

agcagaagca	gaggatttgc	ttagtca	gc	aaaaatggcg	aacaacaaca	60
tgaccacaac	acaaatttgc	gtgggtccgg	gagcaaccaa	tgccaccata	aactttgc	120
caggaaatttgc	agagtgc	tat	gaaaggcttgc	catggca	agcccttgc	180
aagaccgcct	aaacagacta	aagagaaaat	tagagtca	aataaagact	cacaacaaa	240
gtgagcctgaa	aaatggggcttgc	atgtcccttgc	aagagagaaa	agcaatttgc	gtaaaaatgc	300
tgaaaatgttgc	cctat	aatccgtctgc	ctggaaatttgc	agggttgc	ccataactgt	360
tgaaaatgttgc	ctcaaata	actgtac	aatacaatttgc	gactgattac	ccttcaacac	420
cagagaggttgc	ccttgc	atagagga	aaccagagga	tgttgc	ccaaactgaaa	480
tagtattaag	ggcatgttgc	aacaaagat	caaggc	aaaaatgggg	gaagtaaaca	540
ctcagaaaga	agggaaatgc	cg	tttgc	ataatgttgc	gtattgt	600
tgagagtgttgc	ggtaa	acat	tttgc	tttgc	tttgc	660
ctctgcata	at	tttgc	tttgc	tttgc	tttgc	720
ctgtatgttgc	ta	tttgc	tttgc	tttgc	tttgc	780
agcgtttaatgc	tgaaggacat	tcaaa	ttc	tttgc	tttgc	840
tatcccaatttgc	tgg	tttgc	tttgc	tttgc	tttgc	900
acggaagaac	tttatcttttgc	aaatgggg	tttgc	tttgc	tttgc	960
gtaatagcttgc	acagctccat	aatagct	tttgc	tttgc	tttgc	1020
ttgtatgaaa	tgaaggatgt	gg	tgt	tttgc	tttgc	1080
aaaaatccttgc	ttgttactac	t				1101

<210> SEQ ID NO 77

<211> LENGTH: 2305

-continued

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 77

agcagaagcg	gtgcgtttga	tttgccataa	tggatacttt	tattacaaga	aacttcaga	60
ctacaataat	acaaaaggcc	aaaaacacaa	tggcagaatt	tagtgaagat	cctgaattac	120
aaccagcaat	gctattcaac	atotgcgtcc	atctagaggt	ttgctatgt	ataagtgaca	180
tgaattttct	tgacgaagaa	ggaaaatcat	atacagcatt	agaaggacaa	ggaaaagaac	240
aaaacttgag	accacaatat	gaagtaattt	agggaatgcc	aagaaccata	gcatggatgg	300
tccaaagatc	cttagctaa	gagcatggaa	tagagactcc	aaagtatctg	gctgatttgt	360
ttgattataa	aaccaagaga	tttataagaag	tttggataaa	aaaaggattt	gctgtatgtt	420
acttttgaa	aaagaaagaa	aagctggaa	atagcatgga	actgtatgt	ttcagctaca	480
atcaagacta	ttcgtaagt	aatgaatccc	cattggatga	ggaaggaaaa	gggagagtgc	540
taagcagact	cacagaactt	caggctgaat	taagtctgaa	aaaccttatgg	caagttctca	600
taggagaaga	agatgttga	aaggaaattt	actttaaact	tggacaaaca	atatctagac	660
taagggatat	atctgttcca	gctggttct	ccaaatttga	aggaatgagg	agctacatag	720
acaatataga	tcctaaagga	gcaatagaaa	gaatcttagc	aaggatgtct	cccttagtat	780
cagccacacc	taaaaagtt	aaatgggagg	acctaagacc	aatagggct	cacattaca	840
accatgagtt	accagaagtt	ccatataatg	cctttcttct	aatgtctgt	gaattggggc	900
tggccaatat	gactgaggga	aagtccaaaa	aaccgaagac	attagccaaa	aatgtcttag	960
aaaagtactc	aacactacgg	gatcaaactg	acccaaatatt	aataatgaaa	agcggaaaaag	1020
ctaacaaaa	tttccatgg	aagctgtgaa	gggactgtgt	aaatacaata	agtaatgagg	1080
aaatgagtaa	cgagttacag	aaaaccaatt	atgccaatgt	ggccacagga	gatggattaa	1140
cataccagaa	aataatgaaa	gaagtagcaa	tagatgacga	aacaatgtgc	caagaagac	1200
ctaaaatccc	taacaaatgt	agagtggtgt	cttgggttca	aacagagatg	aatttattga	1260
gcactctgac	aagtaaaaaga	gctctggacc	taccagaaat	agggccagac	gtggccccg	1320
tggagcatgt	agggagtgaa	agaaggaaat	actttgttta	tgaaatcaac	tgctgtttagg	1380
cctctacagt	tatgtatgt	tatgtgtttt	ttcacacttc	attattgtat	gaaagcaatg	1440
ccagcatggg	aaaatataaa	gtaataccaa	taaccaatag	agtagtaat	aaaaaggag	1500
aaagtttcga	catgctttat	ggtctggcg	ttaaaggaca	atctcatctg	aggggagata	1560
ctgatgttgt	aacagttgt	actttcaat	ttagtggtac	agatcccaga	gtggactcag	1620
gaaagtggcc	aaaatatact	gtgttttagg	ttggctccct	atttgtgagt	gggagggaaa	1680
aatctgtgt	cctatattgc	cgagtgaatg	gcacaaataa	gatccaaatg	aaatggggaa	1740
tggaaagctag	aagatgtctg	cttcaatcaa	tgcaacaaat	ggaagcaatt	gttgaacaag	1800
aatcatcgat	acaaggatat	gacatgacca	aagcttgttt	caagggagac	agagtaataa	1860
gccccaaac	tttttagtatt	gggactcaag	aaggaaaact	agtaaaagga	tcctttggga	1920
aagcactaag	agtaatattt	accaaattgtt	tgatgcacta	tgtatttgg	aatgcoccaat	1980
tggaggggtt	tagtgcgcag	tcttaggagac	ttctactgtt	aattcaagca	ctaaaggaca	2040
gaaagggccc	ttgggtgttc	gacttagagg	gaatgtatc	tggatagaa	aatgttattt	2100
gtaacaaccc	ttgggtataa	cagagtgcata	actggttcaa	tgaatggttg	ggctttgaaa	2160

-continued

```
aggggggggg taaagtattt aaatcagttt atggaaataat gaatgaatgg aaaaaacatgg 2220
tactcaattt ggtactattt tgttcatttt gtatctaaac atccaaataaa aagaatcgag 2280
```

<210> SEQ ID NO 78
<211> LENGTH: 2369
<212> TYPE: DNA
<213> ORGANISM: Influenza

<400> SEQUENCE: 78

-continued

ttatctattt	agggcatcaa	agaagcagat	ataacccag	cacatggcc	cgtaaagaaa	1980
atggattatg	atgcagtatc	tggactcat	agttggagaa	ccaaaaggaa	cgatctata	2040
ctaaatactg	accagaggaa	catgatttt	gaggaacaat	gctacgtaa	gtgttgcac	2100
ctttttgagg	cctgtttaa	tagtgcata	tacagggaaac	cagtaggtca	gcacagcatg	2160
cttggggcta	tggcccacag	attaagagt	gatgcacgac	tagattatga	atcagggaga	2220
atgtcaaaagg	atgatTTGA	gaaagcaatg	gatcacctg	gtgagatgg	gtacatataa	2280
gctccgaaga	tgttatggg	gttattggc	atcattgaat	acatgtgata	aacaaatgat	2340
taaaatgaaa	aaaggctcg	gtttctact				2369

<210> SEQ ID NO 79

<211> LENGTH: 2396

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 79

agcagaagcg	gagcgtttc	aagatgacat	tggctaaaat	tgaattgtt	aaacaactgt	60
taagggacaa	tgaagccaa	acagtattga	aacaaacaac	ggttagacca	tataacataa	120
taagaaaatt	caatacatca	agaattgaaa	agaacccttc	attgaggatg	aagtggccaa	180
tgtgttctaa	ttttcccttg	gctctgacca	agggtgatat	ggcaaaacaga	atccccttgg	240
aatacaaggg	aatacaactt	aaaacaaatg	ctgaagacat	aggaactaaa	ggccaaatgt	300
gctcaatagc	agcagttacc	tggtggata	catatggacc	aataggagat	actgaaggat	360
tgcggaaaggt	ctacgaaagc	tttttctca	gaaagatgag	acttgacat	gccacttggg	420
gccgaataac	tttggccca	gttggaaagag	taagaaaaag	ggtactgcta	aaccctctca	480
ccaaggaaat	gcctccagat	gaagcaagta	atgtgataat	ggaaatattt	ttccctaagg	540
aagcaggaat	accaagagaa	tctacttgg	tacataggga	actgataaaa	aaaaaaagag	600
aaaaattgaa	aggaacaatg	ataactccca	ttgtactggc	atacatgctt	gagagagaat	660
tggttgccag	aagaagggtc	ctgcccgtgg	caggagcaac	atcagctgag	ttcatagaaa	720
tgctacactg	cttacaaggt	gaaaattgga	gacaaatata	tcacccagga	ggaaataaac	780
taactgaatc	taggtctcaa	tcgatgattt	tagttgttag	aaagataatc	agaagatcaa	840
tagtcgcac	aaacccatta	gagctagctg	tagaaattgc	aaacaagact	gtgatagata	900
ctgaacctt	aaaatcatgt	ctgacagcca	tagacggagg	tgtatgtacc	tgtgacataa	960
taagagctgc	attaggacta	aaagatcgac	aaagacaaag	atttggacga	cttgaactaa	1020
agagaatatc	aggaagagga	ttcaaaaatg	atgaagaaat	attaatcggg	aacggaaacaa	1080
tacagaagat	tggaatatgg	gacggagaag	aggagttcca	tgtaaatgt	ggtgaatgca	1140
ggggaaatatt	aaaaaaagac	aaaatgagaa	tggaaaaact	actaataat	tcaagtaaaa	1200
aggaagacat	gaaagattt	ataatctgt	gcatggatt	ttctcaagac	acttaggatgt	1260
tccaaggagt	gagaggagaa	ataaatTTTC	ttaatagac	aggccaactt	ttatctccaa	1320
tgttaccaact	ccaaagatat	tttttgaata	gaagcaacga	tctctttgat	caatgggggt	1380
atgaggaatc	acccaaagca	agtgagctac	atggaataaa	tgaattaatg	aatgcatactg	1440
actacacttt	gaaaggggtt	gtagtaacaa	aaaatgtaa	tgtatgtttt	agttctactg	1500
aaacagaaaa	agtatctata	acaaaaaaatc	ttagtttaat	aaaaaggact	ggggaaagtca	1560

-continued

taatggggc	taatgacgta	agtgaattag	aatcacaagc	tcagctaatg	ataacatatg	1620
atacacctaa	gatgtggag	atgggaacaa	ccaaagaact	ggtgcaaaac	acctaccaat	1680
gggtgctgaa	aaatttggta	acactgaagg	ctcagttct	tctaggaaaa	gaagacatgt	1740
tccaatggga	tgcatggaa	gcatttgaaa	gcataatccc	ccagaagatg	gctggccagt	1800
acagtggatt	tgcaagagca	gtgctcaaac	aatgagaga	ccaagaggtt	atgaaaactg	1860
accagttcat	aaagttgtt	ccctttgtt	tctcaccacc	aaaattaagg	agaaaatgggg	1920
agccttatca	gttcttgagg	cttgtattga	agggaggagg	agaaaatttc	atcgaagtaa	1980
gaaagggtc	ccctctattc	tcttacaatc	cacaaacaga	agtcctaact	atatgcggca	2040
gaatgatgtc	attaaaaggg	aaaatttgaag	atgaagaag	gaatagatca	atggggatg	2100
cagtatttgc	gggcttctc	gttagtggca	agatgaccc	agatcttgg	gatttcaaaa	2160
ctattgaaga	acttggaaag	ctgaaaccgg	gggagaaagc	aaacatctt	ctttatcaag	2220
gaaagccgt	taaagttagtt	aaaaggaaaa	gatatagtgc	tttatccat	gacatttcac	2280
aaggaattaa	gagacaaaga	atgacagttt	agtccatgg	gtgggccttg	agctaataata	2340
aatttatcca	ttaattcaat	aaacacaatt	gagtggaaaa	tgctcggtt	tctact	2396

<210> SEQ ID NO 80

<211> LENGTH: 1844

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 80

agcagaagca	cagcattttc	ttattaactt	caagtaccaa	caaaagaact	gaaaatcaaa	60
atgtccaaaca	tggatattga	cggtatcaac	actggacaa	ttgacaaaac	accggaagaa	120
ataacttctg	gaaccagtgg	gacaaccaga	ccaatcatca	gaccagaac	ccttgcucca	180
ccaagcaaca	aacgaacccg	gaacccatcc	ccggaaagag	caaccacaag	cagtgaagct	240
gatgtcgaa	ggaaaaccca	aaagaaacag	accccgacag	agataaagaa	gagcgtctac	300
aatatggtag	tgaaactggg	tgaattctat	aaccagatga	tggtcaaagc	tggactcaac	360
gatgacatgg	agagaaaccc	aatccaaat	gcccacatgc	tggaaagaat	tctattggct	420
gccactgatg	acaagaaaac	tgaattccag	aggaaaaaga	atgccagaga	tgtcaaagaa	480
ggaaaagaag	aatagacca	caacaaaaca	ggggcacct	tttacaagat	ggtaagagat	540
gataaaacca	tctacttcag	ccctataaga	attacctttt	taaaagaaga	ggtgaaaaca	600
atgtacaaaa	ccaccatggg	gagtgtggc	ttcagtggac	taaatcacat	aatgattggg	660
cattcacaga	tgaatgtgt	ctgtttccaa	agatcaaagg	ccctaaaaag	agttggactt	720
gacccttcat	taatcgtac	cttgcagga	agcacactcc	ccagaagatc	aggtgcaact	780
ggtgttgc	caaaggagg	tggacttta	gtggctgaag	ccatcgatt	tataggaaga	840
gcaatggcag	acagagggt	attgagagac	atcaaagcc	agactgccta	tgaaaagatt	900
cttctgaatc	taaaaaacaa	atgctctgc	ccccacaaa	aggctctagt	tgatcaagt	960
atcggaaagta	gaaatccagg	gattgcacac	attgaagacc	taaccctgct	tgctcgtagt	1020
atggtcgtt	ttaggccctc	tgtggcgagc	aaagtagtgc	ttccataag	catttatgct	1080
aaaatacctc	aactagggtt	caatgttga	gaatactcta	tggggatga	tgaaggcatg	1140
gctctctaca	atatggcaac	acctgttcc	atattaagaa	tggggatga	tgcacaaagat	1200
aaatcgcaat	tattttcat	gtttgttcc	ggagctgcct	atgaagacct	gagagtttg	1260

-continued

tctgcattaa caggcataga attcaaggct agatcagcat taaaatgcaa gggttccat	1320
gttccagcaa aggaacaggt ggaaggaatg ggggcagctc tgatgtccat caagtcagg	1380
tttgggctc caatgaccag atctggaggg aacgaagtag gtggagacgg agggctggc	1440
caaataagt gcagccccagt gtttcagta gaaagaccta ttgccttaag caagaagct	1500
gtaagaagaa tgcttcaat gaatattgag ggacgtgtatc cagatgtcaa aggaaatcta	1560
ctcaagatgt tgaatgactc aatggctaa aaaaaccaatg gaaatgcttt cattggaaag	1620
aaaatgtttc aaatatcaga caaaaacaaa accaatccccg ttgaaattcc aattaagcag	1680
accatccccca atttcttctt tggggaggac acagcagagg attatgtatc cctcgattat	1740
taaagcaaca aaatagacac tatgactgtt attgtttcaa tacgtttgga atgtgggtgt	1800
ttactcttat tggaaataat ataaaaatg ctgttggc tact	1844

```
<210> SEQ ID NO 81
<211> LENGTH: 1190
<212> TYPE: DNA
<213> ORGANISM: Influenza
```

<400> SEQUENCE: 81

agcagaagca cgcaacttct taaaatgtcg ctgtttggag acacaattgc ctacccgtt 60
tcattgacag aagatggaga aggcaaagca gaactagcag aaaaattaca ctgttggtc 120
ggggggaaag aatttgaccc agactctgcc ttggaatggaa taaaaaaca aagatgctta 180
actgtatatac agaaagcaact aattgggtgcc tctatctgct ttttaaaacc aaaagaccaa 240
gaaagaaaaa gaagattcat cacagagccc ctatcagggaa tgggaacaac agcaacaaaa 300
aagaaggccc tgattctagc tgagaaaaa atgagaagat gtgtgagttt tcatagac 360
tttggaaatag cagaaggcca tgaaagctca gcgcctactat attgtctcat ggtcatgtac 420
ctgaaccctg gaaattattc aatgcagta aaacttagggaa cgctctgtgc tttgtgcgag 480
aaacaagcat cacattcaca cagggctcat agcagagcag caagatcttc agtgcctgga 540
gtgaggcggag aatgcagat ggtctcagct atgaacacag caaaaacaat gaatggaaatg 600
ggaaaggggag aagacgtcca aaaactggca gaagagctgc aaagcaacat tggagtattg 660
agatctcttg gggcaagtca aaagaatggg gaaggaatttgc caaaggatgt gatggaaatg 720
ctaaaggcaga gctctatggg aaattcagct cttgtgaaga aataccata atgctcgaac 780
catttcagat tctttcaatt tggtttca tcttacatcgc tctccatttc atgggttggaa 840
caatagggca tttgaatcaa ataaaaagag gagtaaacat gaaaatacga ataaaaaatac 900
caaataaaaga gacaataaaac agagaggatcaat ttttgc acacagttac caaaaagaaaa 960
tccaggccaa agaaacaatg aaggaagtac tctctgacaa catggaggta ttgagtgacc 1020
acatagtaat tgaggggcct tctctgtcaag agataataaa aatgggtgaa acagtttgg 1080
aggttagaaga attgcattaa attcaatttt tactgttattt cttgtatgc atttaagcaa 1140
attgttaatca atqtcaqcaa ataaaactggaa aaaaqtqcgat ttttttact 1190

<210> SEQ ID NO 82
<211> LENGTH: 1096
<212> TYPE: DNA
<213> ORGANISM: Influenza

<400> SEQUENCE: 82

-continued

agcagaagca	gaggatttgt	ttagtcactg	gcaaacgaaa	aatggcga	caacatgacc	60
acaacacaaa	ttgaggtggg	tccgggagca	accaatgcca	ccataaaactt	tgaagcagga	120
atttggagt	gctatgaaag	gctttcatgg	caaagagccc	ttgactaccc	tggtaagac	180
cgcctaaaca	aactaaagag	aaaattggaa	tcaagaataa	agactcacaa	caaaaagttag	240
ccagaaagta	aaaggatgtc	tcttgaagag	agaaaagcta	ttggggtaaa	aatgtgaaa	300
gtgctcctat	ttatgaaccc	atctgctgg	gttgaagggt	ttgagccata	ttgtatgaaa	360
aatccctcca	atagcaactg	tccagactgc	aattgggctg	attaccctcc	aacaccagga	420
aagtaccttg	atggcataga	agaagaaccc	gagaatgtg	gtgactcaac	tgaaatagta	480
ttaaggaca	tgaacaacaa	agatgcaagg	caaaaagataa	aagaggaagt	aaacactcg	540
aaagaaggga	aattccgtt	gacaataaaa	aggatatac	gtaatgtt	gtccttgaga	600
gtgttggtaa	acggaacatt	catcaagcac	cctaattggat	acaagtccctt	atcaactctg	660
catagattga	atgcatatga	ccagagtgg	agacttgg	ctaaactgt	tgctactgat	720
gatcttacag	tggaggatga	agaagatggc	catcgatcc	tcaactca	cttcgagcgt	780
cttaatgaag	gacattcaaa	gccaattcga	gcagctgaaa	ctgcggggg	agtcttatcc	840
caatttggtc	aagagcaccc	attatcacca	gaagagagag	acaatttagac	tggttacgga	900
agaactttat	cttttaagta	aaagaattga	tgataacata	ttgttccaca	aaacagtaat	960
agccaacacgc	tccataatag	ctgacatgat	tgtatcat	tcattatgg	aaacatgtt	1020
tgaaatgaag	gatgtggtt	aagtgtacag	caggcagtgc	ttgtgaattt	aaaataaaaa	1080
tcctcttgg	actact					1096

<210> SEQ ID NO 83

<211> LENGTH: 726

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 83

Met	Asp	Thr	Phe	Ile	Thr	Arg	Asn	Phe	Gln	Thr	Thr	Ile	Ile	Gln	Lys
1				5				10				15			

Ala	Lys	Asn	Thr	Met	Ala	Glu	Phe	Ser	Glu	Asp	Pro	Glu	Leu	Gln	Pro
				20				25				30			

Ala	Met	Leu	Phe	Asn	Ile	Cys	Val	His	Leu	Glu	Val	Cys	Tyr	Val	Ile
				35				40				45			

Ser	Asp	Met	Asn	Phe	Leu	Asp	Glu	Glu	Gly	Lys	Ala	Tyr	Thr	Ala	Leu
				50				55			60				

Glu	Gly	Gln	Gly	Lys	Glu	Gln	Asn	Leu	Arg	Pro	Gln	Tyr	Glu	Val	Ile
				65				70			75			80	

Glu	Gly	Met	Pro	Arg	Thr	Ile	Ala	Trp	Met	Val	Gln	Arg	Ser	Leu	Ala
				85				90			95				

Gln	Glu	His	Gly	Ile	Glu	Thr	Pro	Lys	Tyr	Leu	Ala	Asp	Leu	Phe	Asp
				100				105			110				

Tyr	Lys	Thr	Lys	Arg	Phe	Ile	Glu	Val	Gly	Ile	Thr	Lys	Gly	Leu	Ala
				115				120			125				

Asp	Asp	Tyr	Phe	Trp	Lys	Lys	Glu	Lys	Leu	Gly	Asn	Ser	Met	Glu	
				130				135			140				

Leu	Met	Ile	Phe	Ser	Tyr	Asn	Gln	Asp	Tyr	Ser	Leu	Ser	Asn	Glu	Ser
				145				150			155			160	

Ser	Leu	Asp	Glu	Glu	Gly	Lys	Gly	Arg	Val	Leu	Ser	Arg	Leu	Thr	Glu
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

-continued

165	170	175	
Leu Gln Ala Glu Leu Ser Leu Lys Asn Leu Trp Gln Val Leu Ile Gly			
180	185	190	
Glu Glu Asp Val Glu Lys Gly Ile Asp Phe Lys Leu Gly Gln Thr Ile			
195	200	205	
Ser Arg Leu Arg Asp Ile Ser Val Pro Ala Gly Phe Ser Asn Phe Glu			
210	215	220	
Gly Met Arg Ser Tyr Ile Asp Asn Ile Asp Pro Lys Gly Ala Ile Glu			
225	230	235	240
Arg Asn Leu Ala Arg Met Ser Pro Leu Val Ser Val Thr Pro Lys Lys			
245	250	255	
Leu Thr Trp Glu Asp Leu Arg Pro Ile Gly Pro His Ile Tyr Asp His			
260	265	270	
Glu Leu Pro Glu Val Pro Tyr Asn Ala Phe Leu Leu Met Ser Asp Glu			
275	280	285	
Leu Gly Leu Ala Asn Met Thr Glu Gly Lys Ser Lys Lys Pro Lys Thr			
290	295	300	
Leu Ala Lys Glu Cys Leu Glu Lys Tyr Ser Thr Leu Arg Asp Gln Thr			
305	310	315	320
Asp Pro Ile Leu Ile Met Lys Ser Glu Lys Ala Asn Glu Asn Phe Leu			
325	330	335	
Trp Lys Leu Trp Arg Asp Cys Val Asn Thr Ile Ser Asn Glu Glu Thr			
340	345	350	
Ser Asn Glu Leu Gln Lys Thr Asn Tyr Ala Lys Trp Ala Thr Gly Asp			
355	360	365	
Gly Leu Thr Tyr Gln Lys Ile Met Lys Glu Val Ala Ile Asp Asp Glu			
370	375	380	
Thr Met Cys Gln Glu Glu Pro Lys Ile Pro Asn Lys Cys Arg Val Ala			
385	390	395	400
Ala Trp Val Gln Thr Glu Met Asn Leu Leu Ser Thr Leu Thr Ser Lys			
405	410	415	
Arg Ala Leu Asp Leu Pro Glu Ile Gly Pro Asp Ile Ala Pro Val Glu			
420	425	430	
His Val Gly Ser Glu Arg Arg Lys Tyr Phe Val Asn Glu Ile Asn Tyr			
435	440	445	
Cys Lys Ala Ser Thr Val Met Met Lys Tyr Val Leu Phe His Thr Ser			
450	455	460	
Leu Leu Asn Glu Ser Asn Ala Ser Met Gly Lys Tyr Lys Val Ile Pro			
465	470	475	480
Ile Thr Asn Arg Val Val Asn Glu Lys Gly Glu Ser Phe Asp Met Leu			
485	490	495	
Tyr Gly Leu Ala Val Lys Gly Gln Ser His Leu Arg Gly Asp Thr Asp			
500	505	510	
Val Val Thr Val Val Thr Phe Glu Phe Ser Ser Thr Asp Pro Arg Val			
515	520	525	
Asp Ser Gly Lys Trp Pro Lys Tyr Thr Val Phe Arg Ile Gly Ser Leu			
530	535	540	
Phe Val Ser Gly Arg Glu Lys Ser Val Tyr Leu Tyr Cys Arg Val Asn			
545	550	555	560
Gly Thr Asn Lys Ile Gln Met Lys Trp Gly Met Glu Ala Arg Arg Cys			
565	570	575	

-continued

Leu Leu Gln Ser Met Gln Gln Met Glu Ala Ile Val Glu Gln Glu Ser
 580 585 590

Ser Ile Gln Gly Tyr Asp Met Thr Lys Ala Cys Phe Lys Gly Asp Arg
 595 600 605

Val Asn Ser Pro Lys Thr Phe Ser Ile Gly Thr Gln Glu Gly Lys Leu
 610 615 620

Val Lys Gly Ser Phe Gly Lys Ala Leu Arg Val Ile Phe Thr Lys Cys
 625 630 635 640

Leu Met His Tyr Val Phe Gly Asn Ala Gln Leu Glu Gly Phe Ser Ala
 645 650 655

Glu Ser Arg Arg Leu Leu Leu Ile Gln Ala Leu Lys Asp Arg Lys
 660 665 670

Gly Pro Trp Val Phe Asp Leu Glu Gly Met Tyr Ser Gly Ile Glu Glu
 675 680 685

Cys Ile Ser Asn Asn Pro Trp Val Ile Gln Ser Val Tyr Trp Phe Asn
 690 695 700

Glu Trp Leu Gly Phe Glu Lys Glu Gly Asn Lys Val Leu Glu Ser Val
 705 710 715 720

Asp Glu Ile Met Asp Glu
 725

<210> SEQ ID NO 84

<211> LENGTH: 752

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 84

Met Asn Ile Asn Pro Tyr Phe Leu Phe Ile Asp Val Pro Val Gln Ala
 1 5 10 15

Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Val Pro Pro Tyr Ser His
 20 25 30

Gly Thr Gly Thr Gly Tyr Thr Ile Asp Thr Val Ile Arg Thr His Glu
 35 40 45

Tyr Ser Asn Lys Gly Lys Gln Tyr Ile Ser Asp Val Thr Gly Cys Thr
 50 55 60

Met Val Asp Pro Thr Asn Gly Pro Leu Pro Glu Asp Asn Glu Pro Ser
 65 70 75 80

Ala Tyr Ala Gln Leu Asp Cys Val Leu Glu Ala Leu Asp Arg Met Asp
 85 90 95

Glu Glu His Pro Gly Leu Phe Gln Ala Ala Ser Gln Asn Ala Met Glu
 100 105 110

Ala Leu Met Val Thr Thr Val Asp Lys Leu Thr Gln Gly Arg Gln Thr
 115 120 125

Phe Asp Trp Thr Val Cys Arg Asn Gln Pro Ala Ala Thr Ala Leu Asn
 130 135 140

Thr Thr Ile Thr Ser Phe Arg Leu Asn Asp Leu Asn Gly Ala Asp Lys
 145 150 155 160

Gly Gly Leu Ile Pro Phe Cys Gln Asp Ile Ile Asp Ser Leu Asp Arg
 165 170 175

Pro Glu Met Thr Phe Phe Ser Val Lys Asn Ile Lys Lys Lys Leu Pro
 180 185 190

Ala Lys Asn Arg Lys Gly Phe Leu Ile Lys Arg Ile Pro Met Lys Val
 195 200 205

-continued

Lys Asp Lys Ile Thr Lys Val Glu Tyr Ile Lys Arg Ala Leu Ser Leu
 210 215 220

Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala
 225 230 235 240

Ile Ala Thr Ala Gly Ile Gln Ile Arg Gly Phe Val Leu Val Val Glu
 245 250 255

Asn Leu Ala Lys Asn Ile Cys Glu Asn Leu Glu Gln Ser Gly Leu Pro
 260 265 270

Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ser Asn Ala Val Ala Lys
 275 280 285

Met Leu Ser Asn Cys Pro Pro Gly Gly Ile Ser Met Thr Val Thr Gly
 290 295 300

Asp Asn Thr Lys Trp Asn Glu Cys Leu Asn Pro Arg Ile Phe Leu Ala
 305 310 315 320

Met Thr Glu Arg Ile Thr Arg Asp Ser Pro Val Trp Phe Arg Asp Phe
 325 330 335

Cys Ser Ile Ala Pro Val Leu Phe Ser Asn Lys Ile Ala Arg Leu Gly
 340 345 350

Lys Gly Phe Met Ile Thr Ser Lys Thr Lys Arg Leu Lys Ala Gln Ile
 355 360 365

Pro Cys Pro Asp Leu Phe Ser Ile Pro Leu Glu Arg Tyr Asn Glu Glu
 370 375 380

Thr Arg Ala Lys Leu Lys Leu Lys Pro Phe Phe Asn Glu Glu Gly
 385 390 395 400

Thr Ala Ser Leu Ser Pro Gly Met Met Gly Met Phe Asn Met Leu
 405 410 415

Ser Thr Val Leu Gly Val Ala Ala Leu Gly Ile Lys Asn Ile Gly Asn
 420 425 430

Lys Glu Tyr Leu Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala Leu
 435 440 445

Phe Val Asn Ala Lys Asp Glu Glu Thr Cys Met Glu Gly Ile Asn Asp
 450 455 460

Phe Tyr Arg Thr Cys Lys Leu Leu Gly Val Asn Met Ser Lys Lys Lys
 465 470 475 480

Ser Tyr Cys Asn Glu Thr Gly Met Phe Glu Phe Thr Ser Met Phe Tyr
 485 490 495

Arg Asp Gly Phe Val Ser Asn Phe Ala Met Glu Leu Pro Ser Phe Gly
 500 505 510

Val Ala Gly Val Asn Glu Ser Ala Asp Met Ala Ile Gly Met Thr Ile
 515 520 525

Ile Lys Asn Asn Met Ile Asn Asn Gly Met Gly Pro Ala Thr Ala Gln
 530 535 540

Thr Ala Ile Gln Leu Phe Ile Ala Asp Tyr Arg Tyr Thr Tyr Lys Cys
 545 550 555 560

His Arg Gly Asp Ser Lys Val Glu Gly Lys Arg Met Lys Ile Ile Lys
 565 570 575

Glu Leu Trp Glu Asn Thr Lys Gly Arg Asp Gly Leu Leu Val Ala Asp
 580 585 590

Gly Gly Pro Asn Ile Tyr Asn Leu Arg Asn Leu His Ile Pro Glu Ile
 595 600 605

Val Leu Lys Tyr Asn Leu Met Asp Pro Glu Tyr Lys Gly Arg Leu Leu
 610 615 620

-continued

His Pro Gln Asn Pro Phe Val Gly His Leu Ser Ile Glu Gly Ile Lys
625 630 635 640

Glu Ala Asp Ile Thr Pro Ala His Gly Pro Val Lys Lys Met Asp Tyr
645 650 655

Asp Ala Val Ser Gly Thr His Ser Trp Arg Thr Lys Arg Asn Arg Ser
660 665 670

Ile Leu Asn Thr Asp Gln Arg Asn Met Ile Leu Glu Glu Gln Cys Tyr
675 680 685

Ala Lys Cys Cys Asn Leu Phe Glu Ala Cys Phe Asn Ser Ala Ser Tyr
690 695 700

Arg Lys Pro Val Gly Gln His Ser Met Leu Glu Ala Met Ala His Arg
705 710 715 720

Leu Arg Met Asp Ala Arg Leu Asp Tyr Glu Ser Gly Arg Met Ser Lys
725 730 735

Asp Asp Phe Glu Lys Ala Met Ala His Leu Gly Glu Ile Gly Tyr Ile
740 745 750

<210> SEQ ID NO 85

<211> LENGTH: 770

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 85

Met Thr Leu Ala Lys Ile Glu Leu Leu Lys Gln Leu Leu Arg Asp Asn
1 5 10 15

Glu Ala Lys Thr Val Leu Lys Gln Thr Thr Val Asp Gln Tyr Asn Ile
20 25 30

Ile Arg Lys Phe Asn Thr Ser Arg Ile Glu Lys Asn Pro Ser Leu Arg
35 40 45

Met Lys Trp Ala Met Cys Ser Asn Phe Pro Leu Ala Leu Thr Lys Gly
50 55 60

Asp Met Ala Asn Arg Ile Pro Leu Glu Tyr Lys Gly Ile Gln Leu Lys
65 70 75 80

Thr Asn Ala Glu Asp Ile Gly Thr Lys Gly Gln Met Cys Ser Ile Ala
85 90 95

Ala Val Thr Trp Trp Asn Thr Tyr Gly Pro Ile Gly Asp Thr Glu Gly
100 105 110

Phe Glu Arg Val Tyr Glu Ser Phe Phe Leu Arg Lys Met Arg Leu Asp
115 120 125

Asn Ala Thr Trp Gly Arg Ile Thr Phe Gly Pro Val Glu Arg Val Arg
130 135 140

Lys Arg Val Leu Leu Asn Pro Leu Thr Lys Glu Met Pro Pro Asp Glu
145 150 155 160

Ala Ser Asn Val Ile Met Glu Ile Leu Phe Pro Lys Glu Ala Gly Ile
165 170 175

Pro Arg Glu Ser Thr Trp Ile His Arg Glu Leu Ile Lys Glu Lys Arg
180 185 190

Glu Lys Leu Lys Gly Thr Met Ile Thr Pro Ile Val Leu Ala Tyr Met
195 200 205

Leu Glu Arg Glu Leu Val Ala Arg Arg Arg Phe Leu Pro Val Ala Gly
210 215 220

Ala Thr Ser Ala Glu Phe Ile Glu Met Leu His Cys Leu Gln Gly Glu
225 230 235 240

-continued

Asn Trp Arg Gln Ile Tyr His Pro Gly Gly Asn Lys Leu Thr Glu Ser
 245 250 255
 Arg Ser Gln Ser Met Ile Val Ala Cys Arg Lys Ile Ile Arg Arg Ser
 260 265 270
 Ile Val Ala Ser Asn Pro Leu Glu Leu Ala Val Glu Ile Ala Asn Lys
 275 280 285
 Thr Val Ile Asp Thr Glu Pro Leu Lys Ser Cys Leu Ala Ala Ile Asp
 290 295 300
 Gly Gly Asp Val Ala Cys Asp Ile Ile Arg Ala Ala Leu Gly Leu Lys
 305 310 315 320
 Ile Arg Gln Arg Gln Arg Phe Gly Arg Leu Glu Leu Lys Arg Ile Ser
 325 330 335
 Gly Arg Gly Phe Lys Asn Asp Glu Glu Ile Leu Ile Gly Asn Gly Thr
 340 345 350
 Ile Gln Lys Ile Gly Ile Trp Asp Gly Glu Glu Phe His Val Arg
 355 360 365
 Cys Gly Glu Cys Arg Gly Ile Leu Lys Ser Lys Met Lys Leu Glu
 370 375 380
 Lys Leu Leu Ile Asn Ser Ala Lys Lys Glu Asp Met Arg Asp Leu Ile
 385 390 395 400
 Ile Leu Cys Met Val Phe Ser Gln Asp Thr Arg Met Phe Gln Gly Val
 405 410 415
 Arg Gly Glu Ile Asn Phe Leu Asn Arg Ala Gly Gln Leu Leu Ser Pro
 420 425 430
 Met Tyr Gln Leu Gln Arg Tyr Phe Leu Asn Arg Ser Asn Asp Leu Phe
 435 440 445
 Asp Gln Trp Gly Tyr Glu Glu Ser Pro Lys Ala Ser Glu Leu His Gly
 450 455 460
 Ile Asn Glu Ser Met Asn Ala Ser Asp Tyr Thr Leu Lys Gly Ile Val
 465 470 475 480
 Val Thr Arg Asn Val Ile Asp Asp Phe Ser Ser Ile Glu Thr Glu Lys
 485 490 495
 Val Ser Ile Thr Lys Asn Leu Ser Leu Ile Lys Arg Thr Gly Glu Val
 500 505 510
 Ile Met Gly Ala Asn Asp Val Ser Glu Leu Glu Ser Gln Ala Gln Leu
 515 520 525
 Met Ile Thr Tyr Asp Thr Pro Lys Met Trp Glu Met Gly Thr Thr Lys
 530 535 540
 Glu Leu Val Gln Asn Thr Tyr Gln Trp Val Leu Lys Asn Leu Val Thr
 545 550 555 560
 Leu Lys Ala Gln Phe Leu Leu Gly Lys Glu Asp Met Phe Gln Trp Asp
 565 570 575
 Ala Phe Glu Ala Phe Glu Ser Ile Ile Pro Gln Lys Met Ala Gly Gln
 580 585 590
 Tyr Ser Gly Phe Ala Arg Ala Val Leu Lys Gln Met Arg Asp Gln Glu
 595 600 605
 Val Met Lys Thr Asp Gln Phe Ile Lys Leu Leu Pro Phe Cys Phe Ser
 610 615 620
 Pro Pro Lys Leu Arg Ser Asn Gly Glu Pro Tyr Gln Phe Leu Lys Leu
 625 630 635 640
 Val Leu Lys Gly Gly Glu Asn Phe Ile Glu Val Arg Lys Gly Ser

-continued

645	650	655	
Pro Leu Phe Ser Tyr Asn Pro Gln Thr Glu Val Leu Thr Ile Cys Gly			
660	665	670	
Arg Met Met Ser Leu Lys Gly Lys Ile Glu Asp Glu Glu Arg Asn Arg			
675	680	685	
Ser Met Gly Asn Ala Val Leu Ala Gly Phe Leu Val Ser Gly Lys Tyr			
690	695	700	
Asp Pro Asp Leu Gly Asp Phe Lys Thr Ile Glu Glu Leu Glu Lys Leu			
705	710	715	720
Lys Pro Gly Glu Lys Ala Asn Ile Leu Leu Tyr Gln Gly Lys Pro Val			
725	730	735	
Lys Val Val Lys Arg Lys Arg Tyr Ser Ala Leu Ser Asn Asp Ile Ser			
740	745	750	
Gln Gly Ile Lys Arg Gln Arg Met Thr Val Glu Ser Met Gly Trp Ala			
755	760	765	
Leu Ser			
770			

<210> SEQ ID NO 86

<211> LENGTH: 560

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 86

Met Ser Asn Met Asp Ile Asp Gly Ile Asn Thr Gly Thr Ile Asp Lys			
1	5	10	15
Thr Pro Glu Glu Ile Thr Ser Gly Thr Ser Gly Thr Thr Arg Pro Ile			
20	25	30	
Ile Arg Pro Ala Thr Leu Ala Pro Pro Ser Asn Lys Arg Thr Arg Asn			
35	40	45	
Pro Ser Pro Glu Arg Ala Thr Thr Ser Ser Glu Asp Asp Val Gly Arg			
50	55	60	
Lys Thr Gln Lys Lys Gln Thr Pro Thr Glu Ile Lys Lys Ser Val Tyr			
65	70	75	80
Asn Met Val Val Lys Leu Gly Glu Phe Tyr Asn Gln Met Met Val Lys			
85	90	95	
Ala Gly Leu Asn Asp Asp Met Glu Arg Asn Leu Ile Gln Asn Ala His			
100	105	110	
Ala Val Glu Arg Ile Leu Ala Ala Thr Asp Asp Lys Lys Thr Glu			
115	120	125	
Phe Gln Lys Lys Asn Ala Arg Asp Val Lys Glu Gly Lys Glu Glu			
130	135	140	
Ile Asp His Asn Lys Thr Gly Gly Thr Phe Tyr Lys Met Val Arg Asp			
145	150	155	160
Asp Lys Thr Ile Tyr Phe Ser Pro Ile Arg Ile Thr Phe Leu Lys Glu			
165	170	175	
Glu Val Lys Thr Met Tyr Lys Thr Thr Met Gly Ser Asp Gly Phe Ser			
180	185	190	
Gly Leu Asn His Ile Met Ile Gly His Ser Gln Met Asn Asp Val Cys			
195	200	205	
Phe Gln Arg Ser Lys Ala Leu Lys Arg Val Gly Leu Asp Pro Ser Leu			
210	215	220	
Ile Ser Thr Phe Ala Gly Ser Thr Val Pro Arg Arg Ser Gly Ala Thr			

-continued

225	230	235	240
Gly Val Ala Ile Lys Gly Gly Gly	Gly Thr Leu Val Ala Glu Ala Ile Arg		
245	250	255	
Phe Ile Gly Arg Ala Met Ala Asp Arg Gly	Leu Leu Arg Asp Ile Lys		
260	265	270	
Ala Lys Thr Ala Tyr Glu Lys Ile Leu Leu Asn Leu Lys	Asn Lys Cys		
275	280	285	
Ser Ala Pro Gln Gln Lys Ala Leu Val Asp Gln Val Ile Gly Ser Arg			
290	295	300	
Asn Pro Gly Ile Ala Asp Ile Glu Asp Leu Thr Leu Leu Ala Arg Ser			
305	310	315	320
Met Val Val Val Arg Pro Ser Val Ala Ser Lys Val Val Leu Pro Ile			
325	330	335	
Ser Ile Tyr Ala Lys Ile Pro Gln Leu Gly Phe Asn Val Glu Glu Tyr			
340	345	350	
Ser Met Val Gly Tyr Glu Ala Met Ala Leu Tyr Asn Met Ala Thr Pro			
355	360	365	
Val Ser Ile Leu Arg Met Gly Asp Asp Ala Lys Asp Lys Ser Gln Leu			
370	375	380	
Phe Phe Met Ser Cys Phe Gly Ala Ala Tyr Glu Asp Leu Arg Val Leu			
385	390	395	400
Ser Ala Leu Thr Gly Thr Glu Phe Lys Pro Arg Ser Ala Leu Lys Cys			
405	410	415	
Lys Gly Phe His Val Pro Ala Lys Glu Gln Val Glu Gly Met Gly Ala			
420	425	430	
Ala Leu Met Ser Ile Lys Leu Gln Phe Trp Ala Pro Met Thr Arg Ser			
435	440	445	
Gly Gly Asn Glu Val Gly Gly Asp Gly Ser Gly Gln Ile Ser Cys			
450	455	460	
Ser Pro Val Phe Ala Val Glu Arg Pro Ile Ala Leu Ser Lys Gln Ala			
465	470	475	480
Val Arg Arg Met Leu Ser Met Asn Ile Glu Gly Arg Asp Ala Asp Val			
485	490	495	
Lys Gly Asn Leu Leu Lys Met Met Asn Asp Ser Met Ala Lys Lys Thr			
500	505	510	
Ser Gly Asn Ala Phe Ile Gly Lys Lys Met Phe Gln Ile Ser Asp Lys			
515	520	525	
Asn Lys Thr Asn Pro Ile Glu Ile Pro Ile Lys Gln Thr Ile Pro Asn			
530	535	540	
Phe Phe Phe Gly Arg Asp Thr Ala Glu Asp Tyr Asp Asp Leu Asp Tyr			
545	550	555	560

<210> SEQ ID NO 87

<211> LENGTH: 248

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 87

Met Ser Leu Phe Gly Asp Thr Ile Ala Tyr Leu Leu Ser Leu Thr Glu			
1	5	10	15

Asp Gly Glu Gly Lys Ala Glu Leu Ala Glu Lys Leu His Cys Trp Phe			
20	25	30	

Gly Gly Lys Glu Phe Asp Leu Asp Ser Ala Leu Glu Trp Ile Lys Asn			
---	--	--	--

-continued

35	40	45
----	----	----

Lys Arg Cys Leu Thr Asp Ile Gln Lys Ala Leu Ile Gly Ala Ser Ile 50 55 60		
Cys Phe Leu Lys Pro Lys Asp Gln Glu Arg Lys Arg Arg Phe Ile Thr 65 70 75 80		
Glu Pro Leu Ser Gly Met Gly Thr Thr Ala Thr Lys Lys Gly Leu 85 90 95		
Ile Leu Ala Glu Arg Lys Met Arg Arg Cys Val Ser Phe His Glu Ala 100 105 110		
Phe Glu Ile Ala Glu Gly His Glu Ser Ser Ala Leu Leu Tyr Cys Leu 115 120 125		
Met Val Met Tyr Leu Asn Pro Gly Asn Tyr Ser Met Gln Val Lys Leu 130 135 140		
Gly Thr Leu Cys Ala Leu Cys Glu Lys Gln Ala Ser His Ser His Arg 145 150 155 160		
Ala His Ser Arg Ala Ala Arg Ser Ser Val Pro Gly Val Arg Arg Glu 165 170 175		
Met Gln Met Val Ser Ala Met Asn Thr Ala Lys Thr Met Asn Gly Met 180 185 190		
Gly Lys Gly Glu Asp Val Gln Lys Leu Ala Glu Glu Leu Gln Ser Asn 195 200 205		
Ile Gly Val Leu Arg Ser Leu Gly Ala Ser Gln Lys Asn Gly Glu Gly 210 215 220		
Ile Ala Lys Asp Val Met Glu Val Leu Lys Gln Ser Ser Met Gly Asn 225 230 235 240		
Ser Ala Leu Val Lys Lys Tyr Leu 245		

<210> SEQ ID NO 88

<211> LENGTH: 109

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 88

Met Leu Glu Pro Phe Gln Ile Leu Thr Ile Cys Ser Phe Ile Leu Ser 1 5 10 15		
Ala Leu His Phe Met Ala Trp Thr Ile Gly His Leu Asn Gln Ile Lys 20 25 30		
Arg Gly Ile Asn Met Lys Ile Arg Ile Lys Gly Pro Asn Lys Glu Thr 35 40 45		
Ile Asn Arg Glu Val Ser Ile Leu Arg His Ser Tyr Gln Lys Glu Ile 50 55 60		
Gln Ala Lys Glu Thr Met Lys Glu Val Leu Ser Asp Asn Met Glu Val 65 70 75 80		
Leu Asn Asp His Ile Ile Ile Glu Gly Leu Ser Ala Glu Glu Ile Ile 85 90 95		
Lys Met Gly Glu Thr Val Leu Glu Ile Glu Glu Leu His 100 105		

<210> SEQ ID NO 89

<211> LENGTH: 282

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 89

-continued

Met Ala Asn Asn Asn Met Thr Thr Thr Gln Ile Glu Val Gly Pro Gly
 1 5 10 15

Ala Thr Asn Ala Thr Ile Asn Phe Glu Ala Gly Ile Leu Glu Cys Tyr
 20 25 30

Glu Arg Leu Ser Trp Gln Arg Ala Leu Asp Tyr Pro Gly Gln Asp Arg
 35 40 45

Leu Asn Arg Leu Lys Arg Lys Leu Glu Ser Arg Ile Lys Thr His Asn
 50 55 60

Lys Ser Glu Pro Glu Ser Lys Arg Met Ser Leu Glu Glu Arg Lys Ala
 65 70 75 80

Ile Gly Val Lys Met Met Lys Val Leu Leu Phe Met Asn Pro Ser Ala
 85 90 95

Gly Ile Glu Gly Phe Glu Pro Tyr Cys Met Lys Ser Ser Ser Asn Ser
 100 105 110

Asn Cys Thr Lys Tyr Asn Trp Thr Asp Tyr Pro Ser Thr Pro Glu Arg
 115 120 125

Cys Leu Asp Asp Ile Glu Glu Pro Glu Asp Val Asp Gly Pro Thr
 130 135 140

Glu Ile Val Leu Arg Asp Met Asn Asn Lys Asp Ala Arg Gln Lys Ile
 145 150 155 160

Lys Glu Glu Val Asn Thr Gln Lys Glu Gly Lys Phe Arg Leu Thr Ile
 165 170 175

Lys Arg Asp Met Arg Asn Val Leu Ser Leu Arg Val Leu Val Asn Gly
 180 185 190

Thr Phe Leu Lys His Pro Asn Gly His Lys Ser Leu Ser Thr Leu His
 195 200 205

Arg Leu Asn Ala Tyr Asp Gln Ser Gly Arg Leu Val Ala Lys Leu Val
 210 215 220

Ala Thr Asp Asp Leu Thr Val Glu Asp Glu Asp Gly His Arg Ile
 225 230 235 240

Leu Asn Ser Leu Phe Glu Arg Leu Asn Glu Gly His Ser Lys Pro Ile
 245 250 255

Arg Ala Ala Glu Thr Ala Val Gly Val Leu Ser Gln Phe Gly Gln Glu
 260 265 270

His Arg Leu Ser Pro Glu Glu Gly Asp Asn
 275 280

<210> SEQ ID NO 90

<211> LENGTH: 123

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 90

Met Ala Asn Asn Asn Met Thr Thr Thr Gln Ile Glu Trp Arg Met Lys
 1 5 10 15

Lys Met Ala Ile Gly Ser Ser Thr His Ser Ser Ser Val Leu Met Lys
 20 25 30

Asp Ile Gln Ser Gln Phe Glu Gln Leu Lys Leu Arg Trp Glu Ser Tyr
 35 40 45

Pro Asn Leu Val Lys Ser Thr Asp Tyr His Gln Lys Arg Glu Thr Ile
 50 55 60

Arg Leu Val Thr Glu Glu Leu Tyr Leu Leu Ser Lys Arg Ile Asp Asp
 65 70 75 80

-continued

Asn Ile Leu Phe His Lys Thr Val Ile Ala Asn Ser Ser Ile Ile Ala
85 90 95

Asp Met Val Val Ser Leu Ser Leu Leu Glu Thr Leu Tyr Glu Met Lys
100 105 110

Asp Val Val Glu Val Tyr Ser Arg Gln Cys Leu
115 120

<210> SEQ_ID NO 91

<211> LENGTH: 726

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 91

Met Asp Thr Phe Ile Thr Arg Asn Phe Gln Thr Thr Ile Ile Gln Lys
1 5 10 15

Ala Lys Asn Thr Met Ala Glu Phe Ser Glu Asp Pro Glu Leu Gln Pro
20 25 30

Ala Met Leu Phe Asn Ile Cys Val His Leu Glu Val Cys Tyr Val Ile
35 40 45

Ser Asp Met Asn Phe Leu Asp Glu Glu Gly Lys Ser Tyr Thr Ala Leu
50 55 60

Glu Gly Gln Gly Lys Glu Gln Asn Leu Arg Pro Gln Tyr Glu Val Ile
65 70 75 80

Glu Gly Met Pro Arg Thr Ile Ala Trp Met Val Gln Arg Ser Leu Ala
85 90 95

Gln Glu His Gly Ile Glu Thr Pro Lys Tyr Leu Ala Asp Leu Phe Asp
100 105 110

Tyr Lys Thr Lys Arg Phe Ile Glu Val Gly Ile Thr Lys Gly Leu Ala
115 120 125

Asp Asp Tyr Phe Trp Lys Lys Glu Lys Leu Gly Asn Ser Met Glu
130 135 140

Leu Met Ile Phe Ser Tyr Asn Gln Asp Tyr Ser Leu Ser Asn Glu Ser
145 150 155 160

Ser Leu Asp Glu Glu Gly Lys Gly Arg Val Leu Ser Arg Leu Thr Glu
165 170 175

Leu Gln Ala Glu Leu Ser Leu Lys Asn Leu Trp Gln Val Leu Ile Gly
180 185 190

Glu Glu Asp Val Glu Lys Gly Ile Asp Phe Lys Leu Gly Gln Thr Ile
195 200 205

Ser Arg Leu Arg Asp Ile Ser Val Pro Ala Gly Phe Ser Asn Phe Glu
210 215 220

Gly Met Arg Ser Tyr Ile Asp Asn Ile Asp Pro Lys Gly Ala Ile Glu
225 230 235 240

Arg Asn Leu Ala Arg Met Ser Pro Leu Val Ser Ala Thr Pro Lys Lys
245 250 255

Leu Lys Trp Glu Asp Leu Arg Pro Ile Gly Pro His Ile Tyr Asn His
260 265 270

Glu Leu Pro Glu Val Pro Tyr Asn Ala Phe Leu Leu Met Ser Asp Glu
275 280 285

Leu Gly Leu Ala Asn Met Thr Glu Gly Lys Ser Lys Lys Pro Lys Thr
290 295 300

Leu Ala Lys Glu Cys Leu Glu Lys Tyr Ser Thr Leu Arg Asp Gln Thr
305 310 315 320

-continued

Asp Pro Ile Leu Ile Met Lys Ser Glu Lys Ala Asn Glu Asn Phe Leu
 325 330 335
 Trp Lys Leu Trp Arg Asp Cys Val Asn Thr Ile Ser Asn Glu Glu Met
 340 345 350
 Ser Asn Glu Leu Gln Lys Thr Asn Tyr Ala Lys Trp Ala Thr Gly Asp
 355 360 365
 Gly Leu Thr Tyr Gln Lys Ile Met Lys Glu Val Ala Ile Asp Asp Glu
 370 375 380
 Thr Met Cys Gln Glu Glu Pro Lys Ile Pro Asn Lys Cys Arg Val Ala
 385 390 395 400
 Ala Trp Val Gln Thr Glu Met Asn Leu Leu Ser Thr Leu Thr Ser Lys
 405 410 415
 Arg Ala Leu Asp Leu Pro Glu Ile Gly Pro Asp Val Ala Pro Val Glu
 420 425 430
 His Val Gly Ser Glu Arg Arg Lys Tyr Phe Val Asn Glu Ile Asn Cys
 435 440 445
 Cys Lys Ala Ser Thr Val Met Met Lys Tyr Val Leu Phe His Thr Ser
 450 455 460
 Leu Leu Asn Glu Ser Asn Ala Ser Met Gly Lys Tyr Lys Val Ile Pro
 465 470 475 480
 Ile Thr Asn Arg Val Val Asn Glu Lys Gly Glu Ser Phe Asp Met Leu
 485 490 495
 Tyr Gly Leu Ala Val Lys Gly Gln Ser His Leu Arg Gly Asp Thr Asp
 500 505 510
 Val Val Thr Val Val Thr Phe Glu Phe Ser Gly Thr Asp Pro Arg Val
 515 520 525
 Asp Ser Gly Lys Trp Pro Lys Tyr Thr Val Phe Arg Ile Gly Ser Leu
 530 535 540
 Phe Val Ser Gly Arg Glu Lys Ser Val Tyr Leu Tyr Cys Arg Val Asn
 545 550 555 560
 Gly Thr Asn Lys Ile Gln Met Lys Trp Gly Met Glu Ala Arg Arg Cys
 565 570 575
 Leu Leu Gln Ser Met Gln Gln Met Glu Ala Ile Val Glu Gln Glu Ser
 580 585 590
 Ser Ile Gln Gly Tyr Asp Met Thr Lys Ala Cys Phe Lys Gly Asp Arg
 595 600 605
 Val Asn Ser Pro Lys Thr Phe Ser Ile Gly Thr Gln Glu Gly Lys Leu
 610 615 620
 Val Lys Gly Ser Phe Gly Lys Ala Leu Arg Val Ile Phe Thr Lys Cys
 625 630 635 640
 Leu Met His Tyr Val Phe Gly Asn Ala Gln Leu Glu Gly Phe Ser Ala
 645 650 655
 Glu Ser Arg Arg Leu Leu Leu Ile Gln Ala Leu Lys Asp Arg Lys
 660 665 670
 Gly Pro Trp Val Phe Asp Leu Glu Gly Met Tyr Ser Gly Ile Glu Glu
 675 680 685
 Cys Ile Ser Asn Asn Pro Trp Val Ile Gln Ser Ala Tyr Trp Phe Asn
 690 695 700
 Glu Trp Leu Gly Phe Glu Lys Glu Gly Ser Lys Val Leu Glu Ser Val
 705 710 715 720
 Asp Glu Ile Met Asn Glu

-continued

725

<210> SEQ ID NO 92

<211> LENGTH: 752

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 92

Met Asn Ile Asn Pro Tyr Phe Leu Phe Ile Asp Val Pro Ile Gln Ala
1 5 10 15

Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Val Pro Pro Tyr Ser His
20 25 30

Gly Thr Gly Thr Gly His Thr Ile Asp Thr Val Ile Arg Thr His Glu
35 40 45

Tyr Ser Asn Lys Gly Lys Gln Tyr Val Ser Asp Ile Thr Gly Cys Thr
50 55 60

Met Val Asp Pro Thr Asn Gly Pro Leu Pro Glu Asp Asn Glu Pro Ser
65 70 75 80

Ala Tyr Ala Gln Leu Asp Cys Val Leu Glu Ala Leu Asp Arg Met Asp
85 90 95

Glu Glu His Pro Gly Leu Phe Gln Ala Ala Ser Gln Asn Ala Met Glu
100 105 110

Ala Leu Met Val Thr Thr Val Asp Lys Leu Thr Gln Gly Arg Gln Thr
115 120 125

Phe Asp Trp Thr Val Cys Arg Asn Gln Pro Ala Ala Thr Ala Leu Asn
130 135 140

Thr Thr Ile Thr Ser Phe Arg Leu Asn Asp Leu Asn Gly Ala Asp Lys
145 150 155 160

Gly Gly Leu Val Pro Phe Cys Gln Asp Ile Ile Asp Ser Leu Asp Lys
165 170 175

Pro Glu Met Thr Phe Phe Ser Val Lys Asn Ile Lys Lys Lys Leu Pro
180 185 190

Ala Lys Asn Arg Lys Gly Phe Leu Ile Lys Arg Ile Pro Met Lys Val
195 200 205

Lys Asp Arg Ile Thr Arg Val Glu Tyr Ile Lys Arg Ala Leu Ser Leu
210 215 220

Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala
225 230 235 240

Ile Ala Thr Ala Gly Ile Gln Ile Arg Gly Phe Val Leu Val Val Glu
245 250 255

Asn Leu Ala Lys Asn Ile Cys Glu Asn Leu Glu Gln Ser Gly Leu Pro
260 265 270

Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ser Asn Ala Val Ala Lys
275 280 285

Met Leu Ser Asn Cys Pro Pro Gly Gly Ile Ser Met Thr Val Thr Gly
290 295 300

Asp Asn Thr Lys Trp Asn Glu Cys Leu Asn Pro Arg Ile Phe Leu Ala
305 310 315 320

Met Thr Glu Arg Ile Thr Arg Asp Ser Pro Ile Trp Phe Arg Asp Phe
325 330 335

Cys Ser Ile Ala Pro Val Leu Phe Ser Asn Lys Ile Ala Arg Leu Gly
340 345 350

Lys Gly Phe Met Ile Thr Ser Lys Thr Lys Arg Leu Lys Ala Gln Ile

-continued

355	360	365	
Pro Cys Pro Asp Leu Phe Ser Ile Pro Leu Glu Arg Tyr Asn Glu Glu			
370	375	380	
Thr Arg Ala Lys Leu Lys Lys Leu Lys Pro Phe Phe Asn Glu Glu Gly			
385	390	395	400
Thr Ala Ser Leu Ser Pro Gly Met Met Gly Met Phe Asn Met Leu			
405	410	415	
Ser Thr Val Leu Gly Val Ala Ala Leu Gly Ile Lys Asn Ile Gly Asn			
420	425	430	
Lys Glu Tyr Leu Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala Leu			
435	440	445	
Phe Val Asn Ala Lys Asp Glu Glu Thr Cys Met Glu Gly Ile Asn Asp			
450	455	460	
Phe Tyr Arg Thr Cys Lys Leu Leu Gly Ile Asn Met Ser Lys Lys Lys			
465	470	475	480
Ser Tyr Cys Asn Glu Thr Gly Met Phe Glu Phe Thr Ser Met Phe Tyr			
485	490	495	
Arg Asp Gly Phe Val Ser Asn Phe Ala Met Glu Ile Pro Ser Phe Gly			
500	505	510	
Val Ala Gly Val Asn Glu Ser Ala Asp Met Ala Ile Gly Met Thr Ile			
515	520	525	
Ile Lys Asn Asn Met Ile Asn Asn Gly Met Gly Pro Ala Thr Ala Gln			
530	535	540	
Thr Ala Ile Gln Leu Phe Ile Ala Asp Tyr Arg Tyr Thr Tyr Lys Cys			
545	550	555	560
His Arg Gly Asp Ser Lys Val Glu Gly Lys Arg Met Lys Ile Ile Lys			
565	570	575	
Glu Leu Trp Glu Asn Thr Lys Gly Arg Asp Gly Leu Leu Val Ala Asp			
580	585	590	
Gly Gly Pro Asn Ile Tyr Asn Leu Arg Asn Leu His Ile Pro Glu Ile			
595	600	605	
Val Leu Lys Tyr Asn Leu Met Asp Pro Glu Tyr Lys Gly Arg Leu Leu			
610	615	620	
His Pro Gln Asn Pro Phe Val Gly His Leu Ser Ile Glu Gly Ile Lys			
625	630	635	640
Glu Ala Asp Ile Thr Pro Ala His Gly Pro Val Lys Lys Met Asp Tyr			
645	650	655	
Asp Ala Val Ser Gly Thr His Ser Trp Arg Thr Lys Arg Asn Arg Ser			
660	665	670	
Ile Leu Asn Thr Asp Gln Arg Asn Met Ile Leu Glu Glu Gln Cys Tyr			
675	680	685	
Ala Lys Cys Cys Asn Leu Phe Glu Ala Cys Phe Asn Ser Ala Ser Tyr			
690	695	700	
Arg Lys Pro Val Gly Gln His Ser Met Leu Glu Ala Met Ala His Arg			
705	710	715	720
Leu Arg Val Asp Ala Arg Leu Asp Tyr Glu Ser Gly Arg Met Ser Lys			
725	730	735	
Asp Asp Phe Glu Lys Ala Met Ala His Leu Gly Glu Ile Gly Tyr Ile			
740	745	750	

-continued

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 93

Met Thr Leu Ala Lys Ile Glu Leu Leu Lys Gln Leu Leu Arg Asp Asn
1 5 10 15

Glu Ala Lys Thr Val Leu Lys Gln Thr Thr Val Asp Gln Tyr Asn Ile
20 25 30

Ile Arg Lys Phe Asn Thr Ser Arg Ile Glu Lys Asn Pro Ser Leu Arg
35 40 45

Met Lys Trp Ala Met Cys Ser Asn Phe Pro Leu Ala Leu Thr Lys Gly
50 55 60

Asp Met Ala Asn Arg Ile Pro Leu Glu Tyr Lys Gly Ile Gln Leu Lys
65 70 75 80

Thr Asn Ala Glu Asp Ile Gly Thr Lys Gly Gln Met Cys Ser Ile Ala
85 90 95

Ala Val Thr Trp Trp Asn Thr Tyr Gly Pro Ile Gly Asp Thr Glu Gly
100 105 110

Phe Glu Lys Val Tyr Glu Ser Phe Phe Leu Arg Lys Met Arg Leu Asp
115 120 125

Asn Ala Thr Trp Gly Arg Ile Thr Phe Gly Pro Val Glu Arg Val Arg
130 135 140

Lys Arg Val Leu Leu Asn Pro Leu Thr Lys Glu Met Pro Pro Asp Glu
145 150 155 160

Ala Ser Asn Val Ile Met Glu Ile Leu Phe Pro Lys Glu Ala Gly Ile
165 170 175

Pro Arg Glu Ser Thr Trp Ile His Arg Glu Leu Ile Lys Glu Lys Arg
180 185 190

Glu Lys Leu Lys Gly Thr Met Ile Thr Pro Ile Val Leu Ala Tyr Met
195 200 205

Leu Glu Arg Glu Leu Val Ala Arg Arg Arg Phe Leu Pro Val Ala Gly
210 215 220

Ala Thr Ser Ala Glu Phe Ile Glu Met Leu His Cys Leu Gln Gly Glu
225 230 235 240

Asn Trp Arg Gln Ile Tyr His Pro Gly Gly Asn Lys Leu Thr Glu Ser
245 250 255

Arg Ser Gln Ser Met Ile Val Ala Cys Arg Lys Ile Ile Arg Arg Ser
260 265 270

Ile Val Ala Ser Asn Pro Leu Glu Leu Ala Val Glu Ile Ala Asn Lys
275 280 285

Thr Val Ile Asp Thr Glu Pro Leu Lys Ser Cys Leu Thr Ala Ile Asp
290 295 300

Gly Gly Asp Val Ala Cys Asp Ile Ile Arg Ala Ala Leu Gly Leu Lys
305 310 315 320

Ile Arg Gln Arg Gln Arg Phe Gly Arg Leu Glu Leu Lys Arg Ile Ser
325 330 335

Gly Arg Gly Phe Lys Asn Asp Glu Glu Ile Leu Ile Gly Asn Gly Thr
340 345 350

Ile Gln Lys Ile Gly Ile Trp Asp Gly Glu Glu Glu Phe His Val Arg
355 360 365

Cys Gly Glu Cys Arg Gly Ile Leu Lys Lys Ser Lys Met Arg Met Glu
370 375 380

-continued

Lys Leu Leu Ile Asn Ser Ala Lys Lys Glu Asp Met Lys Asp Leu Ile
 385 390 395 400
 Ile Leu Cys Met Val Phe Ser Gln Asp Thr Arg Met Phe Gln Gly Val
 405 410 415
 Arg Gly Glu Ile Asn Phe Leu Asn Arg Ala Gly Gln Leu Leu Ser Pro
 420 425 430
 Met Tyr Gln Leu Gln Arg Tyr Phe Leu Asn Arg Ser Asn Asp Leu Phe
 435 440 445
 Asp Gln Trp Gly Tyr Glu Glu Ser Pro Lys Ala Ser Glu Leu His Gly
 450 455 460
 Ile Asn Glu Leu Met Asn Ala Ser Asp Tyr Thr Leu Lys Gly Val Val
 465 470 475 480
 Val Thr Lys Asn Val Ile Asp Asp Phe Ser Ser Thr Glu Thr Glu Lys
 485 490 495
 Val Ser Ile Thr Lys Asn Leu Ser Leu Ile Lys Arg Thr Gly Glu Val
 500 505 510
 Ile Met Gly Ala Asn Asp Val Ser Glu Leu Glu Ser Gln Ala Gln Leu
 515 520 525
 Met Ile Thr Tyr Asp Thr Pro Lys Met Trp Glu Met Gly Thr Thr Lys
 530 535 540
 Glu Leu Val Gln Asn Thr Tyr Gln Trp Val Leu Lys Asn Leu Val Thr
 545 550 555 560
 Leu Lys Ala Gln Phe Leu Leu Gly Lys Glu Asp Met Phe Gln Trp Asp
 565 570 575
 Ala Phe Glu Ala Phe Glu Ser Ile Ile Pro Gln Lys Met Ala Gly Gln
 580 585 590
 Tyr Ser Gly Phe Ala Arg Ala Val Leu Lys Gln Met Arg Asp Gln Glu
 595 600 605
 Val Met Lys Thr Asp Gln Phe Ile Lys Leu Leu Pro Phe Cys Phe Ser
 610 615 620
 Pro Pro Lys Leu Arg Arg Asn Gly Glu Pro Tyr Gln Phe Leu Arg Leu
 625 630 635 640
 Val Leu Lys Gly Gly Glu Asn Phe Ile Glu Val Arg Lys Gly Ser
 645 650 655
 Pro Leu Phe Ser Tyr Asn Pro Gln Thr Glu Val Leu Thr Ile Cys Gly
 660 665 670
 Arg Met Met Ser Leu Lys Gly Lys Ile Glu Asp Glu Glu Arg Asn Arg
 675 680 685
 Ser Met Gly Asn Ala Val Leu Ala Gly Phe Leu Val Ser Gly Lys Tyr
 690 695 700
 Asp Pro Asp Leu Gly Asp Phe Lys Thr Ile Glu Glu Leu Glu Lys Leu
 705 710 715 720
 Lys Pro Gly Glu Lys Ala Asn Ile Leu Leu Tyr Gln Gly Lys Pro Val
 725 730 735
 Lys Val Val Lys Arg Lys Arg Tyr Ser Ala Leu Ser Asn Asp Ile Ser
 740 745 750
 Gln Gly Ile Lys Arg Gln Arg Met Thr Val Glu Ser Met Gly Trp Ala
 755 760 765
 Leu Ser
 770

-continued

<211> LENGTH: 560
 <212> TYPE: PRT
 <213> ORGANISM: Influenza
 <400> SEQUENCE: 94

Met	Ser	Asn	Met	Asp	Ile	Asp	Gly	Ile	Asn	Thr	Gly	Thr	Ile	Asp	Lys
1					5				10				15		
Thr	Pro	Glu	Glu	Ile	Thr	Ser	Gly	Thr	Ser	Gly	Thr	Thr	Arg	Pro	Ile
					20			25			30				
Ile	Arg	Pro	Ala	Thr	Leu	Ala	Pro	Pro	Ser	Asn	Lys	Arg	Thr	Arg	Asn
	35					40				45					
Pro	Ser	Pro	Glu	Arg	Ala	Thr	Thr	Ser	Ser	Glu	Ala	Asp	Val	Gly	Arg
	50					55				60					
Lys	Thr	Gln	Lys	Lys	Gln	Thr	Pro	Thr	Glu	Ile	Lys	Lys	Ser	Val	Tyr
65					70				75			80			
Asn	Met	Val	Val	Lys	Leu	Gly	Glu	Phe	Tyr	Asn	Gln	Met	Met	Val	Lys
	85					90			95						
Ala	Gly	Leu	Asn	Asp	Asp	Met	Glu	Arg	Asn	Leu	Ile	Gln	Asn	Ala	His
	100					105				110					
Ala	Val	Glu	Arg	Ile	Leu	Leu	Ala	Ala	Thr	Asp	Asp	Lys	Lys	Thr	Glu
	115					120			125						
Phe	Gln	Arg	Lys	Lys	Asn	Ala	Arg	Asp	Val	Lys	Glu	Gly	Lys	Glu	Glu
130					135				140						
Ile	Asp	His	Asn	Lys	Thr	Gly	Gly	Thr	Phe	Tyr	Lys	Met	Val	Arg	Asp
145					150				155			160			
Asp	Lys	Thr	Ile	Tyr	Phe	Ser	Pro	Ile	Arg	Ile	Thr	Phe	Leu	Lys	Glu
	165					170				175					
Glu	Val	Lys	Thr	Met	Tyr	Lys	Thr	Thr	Met	Gly	Ser	Asp	Gly	Phe	Ser
	180					185				190					
Gly	Leu	Asn	His	Ile	Met	Ile	Gly	His	Ser	Gln	Met	Asn	Asp	Val	Cys
	195					200				205					
Phe	Gln	Arg	Ser	Lys	Ala	Leu	Lys	Arg	Val	Gly	Leu	Asp	Pro	Ser	Leu
210					215				220						
Ile	Ser	Thr	Phe	Ala	Gly	Ser	Thr	Leu	Pro	Arg	Arg	Ser	Gly	Ala	Thr
225					230				235			240			
Gly	Val	Ala	Ile	Lys	Gly	Gly	Gly	Thr	Leu	Val	Ala	Glu	Ala	Ile	Arg
	245					250				255					
Phe	Ile	Gly	Arg	Ala	Met	Ala	Asp	Arg	Gly	Leu	Leu	Arg	Asp	Ile	Lys
	260					265				270					
Ala	Lys	Thr	Ala	Tyr	Glu	Lys	Ile	Leu	Leu	Asn	Leu	Lys	Asn	Lys	Cys
	275					280				285					
Ser	Ala	Pro	Gln	Gln	Lys	Ala	Leu	Val	Asp	Gln	Val	Ile	Gly	Ser	Arg
	290					295				300					
Asn	Pro	Gly	Ile	Ala	Asp	Ile	Glu	Asp	Leu	Thr	Leu	Leu	Ala	Arg	Ser
305					310				315			320			
Met	Val	Val	Val	Arg	Pro	Ser	Val	Ala	Ser	Lys	Val	Val	Leu	Pro	Ile
	325					330				335					
Ser	Ile	Tyr	Ala	Lys	Ile	Pro	Gln	Leu	Gly	Phe	Asn	Val	Glu	Glu	Tyr
	340					345				350					
Ser	Met	Val	Gly	Tyr	Glu	Ala	Met	Ala	Leu	Tyr	Asn	Met	Ala	Thr	Pro
	355					360				365					
Val	Ser	Ile	Leu	Arg	Met	Gly	Asp	Asp	Ala	Lys	Asp	Lys	Ser	Gln	Leu
	370					375				380					

-continued

Phe Phe Met Ser Cys Phe Gly Ala Ala Tyr Glu Asp Leu Arg Val Leu
 385 390 395 400
 Ser Ala Leu Thr Gly Ile Glu Phe Lys Pro Arg Ser Ala Leu Lys Cys
 405 410 415
 Lys Gly Phe His Val Pro Ala Lys Glu Gln Val Glu Gly Met Gly Ala
 420 425 430
 Ala Leu Met Ser Ile Lys Leu Gln Phe Trp Ala Pro Met Thr Arg Ser
 435 440 445
 Gly Gly Asn Glu Val Gly Gly Asp Gly Ser Gly Gln Ile Ser Cys
 450 455 460
 Ser Pro Val Phe Ala Val Glu Arg Pro Ile Ala Leu Ser Lys Gln Ala
 465 470 475 480
 Val Arg Arg Met Leu Ser Met Asn Ile Glu Gly Arg Asp Ala Asp Val
 485 490 495
 Lys Gly Asn Leu Leu Lys Met Met Asn Asp Ser Met Ala Lys Lys Thr
 500 505 510
 Asn Gly Asn Ala Phe Ile Gly Lys Lys Met Phe Gln Ile Ser Asp Lys
 515 520 525
 Asn Lys Thr Asn Pro Val Glu Ile Pro Ile Lys Gln Thr Ile Pro Asn
 530 535 540
 Phe Phe Phe Gly Arg Asp Thr Ala Glu Asp Tyr Asp Asp Leu Asp Tyr
 545 550 555 560

<210> SEQ ID NO 95

<211> LENGTH: 248

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 95

Met Ser Leu Phe Gly Asp Thr Ile Ala Tyr Leu Leu Ser Leu Thr Glu
 1 5 10 15
 Asp Gly Glu Gly Lys Ala Glu Leu Ala Glu Lys Leu His Cys Trp Phe
 20 25 30
 Gly Gly Lys Glu Phe Asp Leu Asp Ser Ala Leu Glu Trp Ile Lys Asn
 35 40 45
 Lys Arg Cys Leu Thr Asp Ile Gln Lys Ala Leu Ile Gly Ala Ser Ile
 50 55 60
 Cys Phe Leu Lys Pro Lys Asp Gln Glu Arg Lys Arg Arg Phe Ile Thr
 65 70 75 80
 Glu Pro Leu Ser Gly Met Gly Thr Thr Ala Thr Lys Lys Gly Leu
 85 90 95
 Ile Leu Ala Glu Arg Lys Met Arg Arg Cys Val Ser Phe His Glu Ala
 100 105 110
 Phe Glu Ile Ala Glu Gly His Glu Ser Ser Ala Leu Leu Tyr Cys Leu
 115 120 125
 Met Val Met Tyr Leu Asn Pro Gly Asn Tyr Ser Met Gln Val Lys Leu
 130 135 140
 Gly Thr Leu Cys Ala Leu Cys Glu Lys Gln Ala Ser His Ser His Arg
 145 150 155 160
 Ala His Ser Arg Ala Ala Arg Ser Ser Val Pro Gly Val Arg Arg Glu
 165 170 175
 Met Gln Met Val Ser Ala Met Asn Thr Ala Lys Thr Met Asn Gly Met
 180 185 190

-continued

Gly Lys Gly Glu Asp Val Gln Lys Leu Ala Glu Glu Leu Gln Ser Asn
195 200 205

Ile Gly Val Leu Arg Ser Leu Gly Ala Ser Gln Lys Asn Gly Glu Gly
210 215 220

Ile Ala Lys Asp Val Met Glu Val Leu Lys Gln Ser Ser Met Gly Asn
225 230 235 240

Ser Ala Leu Val Lys Lys Tyr Leu
245

<210> SEQ ID NO 96

<211> LENGTH: 109

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 96

Met Leu Glu Pro Phe Gln Ile Leu Ser Ile Cys Ser Phe Ile Leu Ser
1 5 10 15

Ala Leu His Phe Met Ala Trp Thr Ile Gly His Leu Asn Gln Ile Lys
20 25 30

Arg Gly Val Asn Met Lys Ile Arg Ile Lys Asn Pro Asn Lys Glu Thr
35 40 45

Ile Asn Arg Glu Val Ser Ile Leu Arg His Ser Tyr Gln Lys Glu Ile
50 55 60

Gln Ala Lys Glu Thr Met Lys Glu Val Leu Ser Asp Asn Met Glu Val
65 70 75 80

Leu Ser Asp His Ile Val Ile Glu Gly Leu Ser Ala Glu Glu Ile Ile
85 90 95

Lys Met Gly Glu Thr Val Leu Glu Val Glu Glu Leu His
100 105

<210> SEQ ID NO 97

<211> LENGTH: 281

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 97

Met Ala Asp Asn Met Thr Thr Gln Ile Glu Val Gly Pro Gly Ala
1 5 10 15

Thr Asn Ala Thr Ile Asn Phe Glu Ala Gly Ile Leu Glu Cys Tyr Glu
20 25 30

Arg Leu Ser Trp Gln Arg Ala Leu Asp Tyr Pro Gly Gln Asp Arg Leu
35 40 45

Asn Lys Leu Lys Arg Lys Leu Glu Ser Arg Ile Lys Thr His Asn Lys
50 55 60

Ser Glu Pro Glu Ser Lys Arg Met Ser Leu Glu Glu Arg Lys Ala Ile
65 70 75 80

Gly Val Lys Met Met Lys Val Leu Leu Phe Met Asn Pro Ser Ala Gly
85 90 95

Val Glu Gly Phe Glu Pro Tyr Cys Met Lys Asn Pro Ser Asn Ser Asn
100 105 110

Cys Pro Asp Cys Asn Trp Ala Asp Tyr Pro Pro Thr Pro Gly Lys Tyr
115 120 125

Leu Asp Gly Ile Glu Glu Pro Glu Asn Val Gly Asp Ser Thr Glu
130 135 140

-continued

Ile Val Leu Arg Asp Met Asn Asn Lys Asp Ala Arg Gln Lys Ile Lys
 145 150 155 160

Glu Glu Val Asn Thr Gln Lys Glu Gly Lys Phe Arg Leu Thr Ile Lys
 165 170 175

Arg Asp Ile Arg Asn Val Leu Ser Leu Arg Val Leu Val Asn Gly Thr
 180 185 190

Phe Ile Lys His Pro Asn Gly Tyr Lys Ser Leu Ser Thr Leu His Arg
 195 200 205

Leu Asn Ala Tyr Asp Gln Ser Gly Arg Leu Val Ala Lys Leu Val Ala
 210 215 220

Thr Asp Asp Leu Thr Val Glu Asp Glu Glu Asp Gly His Arg Ile Leu
 225 230 235 240

Asn Ser Leu Phe Glu Arg Leu Asn Glu Gly His Ser Lys Pro Ile Arg
 245 250 255

Ala Ala Glu Thr Ala Val Gly Val Leu Ser Gln Phe Gly Gln Glu His
 260 265 270

Arg Leu Ser Pro Glu Glu Arg Asp Asn
 275 280

<210> SEQ ID NO 98
 <211> LENGTH: 122
 <212> TYPE: PRT
 <213> ORGANISM: Influenza

<400> SEQUENCE: 98

Met Ala Asp Asn Met Thr Thr Thr Gln Ile Glu Trp Arg Met Lys Lys
 1 5 10 15

Met Ala Ile Gly Ser Ser Thr His Ser Ser Ser Val Leu Met Lys Asp
 20 25 30

Ile Gln Ser Gln Phe Glu Gln Leu Lys Leu Arg Trp Glu Ser Tyr Pro
 35 40 45

Asn Leu Val Lys Ser Thr Asp Tyr His Gln Lys Arg Glu Thr Ile Arg
 50 55 60

Leu Val Thr Glu Glu Leu Tyr Leu Leu Ser Lys Arg Ile Asp Asp Asn
 65 70 75 80

Ile Leu Phe His Lys Thr Val Ile Ala Asn Ser Ser Ile Ile Ala Asp
 85 90 95

Met Ile Val Ser Leu Ser Leu Leu Glu Thr Leu Tyr Glu Met Lys Asp
 100 105 110

Val Val Glu Val Tyr Ser Arg Gln Cys Leu
 115 120

<210> SEQ ID NO 99
 <211> LENGTH: 469
 <212> TYPE: PRT
 <213> ORGANISM: Influenza

<400> SEQUENCE: 99

Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Val Cys Met Thr
 1 5 10 15

Ile Gly Met Ala Asn Leu Ile Leu Gln Ile Gly Asn Ile Ile Ser Ile
 20 25 30

Trp Ile Ser His Ser Ile Gln Leu Gly Asn Gln Asn Gln Ile Glu Thr
 35 40 45

Cys Asn Gln Ser Val Ile Thr Tyr Glu Asn Asn Thr Trp Val Asn Gln

-continued

50	55	60	
Thr Tyr Val Asn Ile Ser Asn Thr Asn Phe Ala Ala Gly Gln Ser Val			
65	70	75	80
Val Ser Val Lys Leu Ala Gly Asn Ser Ser Leu Cys Pro Val Ser Gly			
85	90	95	
Trp Ala Ile Tyr Ser Lys Asp Asn Ser Val Arg Ile Gly Ser Lys Gly			
100	105	110	
Asp Val Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser Pro Leu Glu			
115	120	125	
Cys Arg Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys His			
130	135	140	
Ser Asn Gly Thr Ile Lys Asp Arg Ser Pro Tyr Arg Thr Leu Met Ser			
145	150	155	160
Cys Pro Ile Gly Glu Val Pro Ser Pro Tyr Asn Ser Arg Phe Glu Ser			
165	170	175	
Val Ala Trp Ser Ala Ser Ala Cys His Asp Gly Ile Asn Trp Leu Thr			
180	185	190	
Ile Gly Ile Ser Gly Pro Asp Asn Gly Ala Val Ala Val Leu Lys Tyr			
195	200	205	
Asn Gly Ile Ile Thr Asp Thr Ile Lys Ser Trp Arg Asn Asn Ile Leu			
210	215	220	
Arg Thr Gln Glu Ser Glu Cys Ala Cys Val Asn Gly Ser Cys Phe Thr			
225	230	235	240
Val Met Thr Asp Gly Pro Ser Asn Gly Gln Ala Ser Tyr Lys Ile Phe			
245	250	255	
Arg Ile Glu Lys Gly Lys Ile Val Lys Ser Val Glu Met Asn Ala Pro			
260	265	270	
Asn Tyr His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Ser Ser Glu Ile			
275	280	285	
Thr Cys Val Cys Arg Asp Asn Trp His Gly Ser Asn Arg Pro Trp Val			
290	295	300	
Ser Phe Asn Gln Asn Leu Glu Tyr Gln Ile Gly Tyr Ile Cys Ser Gly			
305	310	315	320
Ile Phe Gly Asp Asn Pro Arg Pro Asn Asp Lys Thr Gly Ser Cys Gly			
325	330	335	
Pro Val Ser Ser Asn Gly Ala Asn Gly Val Lys Gly Phe Ser Phe Lys			
340	345	350	
Tyr Gly Asn Gly Val Trp Ile Gly Arg Thr Lys Ser Ile Ser Ser Arg			
355	360	365	
Asn Gly Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Gly Thr Asp			
370	375	380	
Asn Asn Phe Ser Ile Lys Gln Asp Ile Val Gly Ile Asn Glu Trp Ser			
385	390	395	400
Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu Asp			
405	410	415	
Cys Ile Arg Pro Cys Phe Trp Val Glu Leu Ile Arg Gly Arg Pro Lys			
420	425	430	
Glu Asn Thr Ile Trp Thr Ser Gly Ser Ser Ile Ser Phe Cys Gly Val			
435	440	445	
Asn Ser Asp Thr Val Gly Trp Ser Trp Pro Asp Gly Ala Glu Leu Pro			
450	455	460	

-continued

Phe Thr Ile Asp Lys
465

<210> SEQ ID NO 100
<211> LENGTH: 1812
<212> TYPE: DNA
<213> ORGANISM: Influenza
<400> SEQUENCE: 100

agcattttct tgtgagcttc gagcactaat aaaactgaaa atcaaaatgt ccaacatgga 60
tattgacagt ataaataccg gaacaatcga taaaaaaccg gaagaactga ctcccgaaac 120
cagtggggca accagaccaa tcatcaagcc agcaacccctt gctccgccaa gcaacaaacg 180
aaccgaaaat ccatccccag aaaggacaac cacaaggcgt gaaacgata tcggaaggaa 240
aatccaaaag aaacaaaccc caacagagat aaagaagac gtctacaaca tggtgtaaa 300
gctgggtgaa ttctacaacc agatgatggt caaagctgga cttaatgatg acatggaaag 360
gaatctaatac caaaatgcac aagctgtgga gagaatccctt ttggctgcaa ctgatgacaa 420
gaaaactgaa tacaaaaga aaaggaatgc cagagatgtc aaagaaggaa aggaagaaat 480
agaccacaac aagacaggag gcaccccttta taagatggta agagatgata aaaccatcta 540
cttcagccct ataaaaatttta cttttttaaa agaagaggtg aaaacaatgt acaagaccac 600
catggggagt gatggtttca gtggactaaa tcacattatg attggacatt cacagatgaa 660
cgatgtctgt ttccaaagat caaaggcact gaaaagggtt ggacttgacc cttcattat 720
cagtttttgc gccggaaagca cactaccag aagatcaggt acaactgggt ttgcaatcaa 780
aggaggtgga acttttagtgg cagaaggcat tcgattttta ggaagagcaa tggcagacag 840
agggctactg agagacatca agggcaagac agcctatgaa aagattttc tgaatctgaa 900
aaacaagtgc tctgcgcccc aacaaaaggc tctagttgat caagtatcg gaagtaggaa 960
cccaggatt gcagacatag aagacctaactc tctgcttgc agaagcatga tagtttcag 1020
accctctgttta gcgagcaag tggtgcttcc cataaggcatt tatgtaaaa tacctcaact 1080
aggattcaat atcgaagaat actctatggt tgggtatgaa gccatggctc ttataatat 1140
ggcaacaccc tttccatata taagaatggg agatgacgca aaagataaat ctcaactatt 1200
cttcattgtcg tgcttcggag ctgcctatgaa agatctaaga gtgttatctg cactaacggg 1260
caccgaattt aagccttagat cagcactaaa atgcaagggtt ttccatgtcc cggctaagga 1320
gcaagtagaa ggaatggggg cagctctgat gtccatcaag cttcagtttccat 1380
gaccagatct ggagggatg aagtaagtgg agaaggaggg tctggtcaaa taagttcag 1440
ccctgtgttt gcagtagaaa gacctattgc tctaaagcaag caagctgtaa gaagaatgct 1500
gtcaatgaaac gttgaaggac gtgtatgcaga tgtcaaagga aatctactca aatgtatgaa 1560
tgattcgtatg gcaaaagaaaa ccagtgaaaa tgctttcattt gggaaagaaaa tgtttcaaatt 1620
atcagacaaa aacaaagtca atccattgtt gattcaattt aagcagacca tccccagttt 1680
cttctttggg agggacacag cagaggatta tgatgaccc gattttaaaa gcaataaaat 1740
agacactatg gctgtactg tttcagtgatc tttggatgtt ggggtttac tcttattgaa 1800
ataaatgtaa aa 1812

<210> SEQ ID NO 101
<211> LENGTH: 560
<212> TYPE: PRT

-continued

<213> ORGANISM: Influenza

<400> SEQUENCE: 101

Met Ser Asn Met Asp Ile Asp Gly Ile Asn Thr Gly Thr Ile Asp Lys
1 5 10 15

Thr Pro Glu Glu Ile Thr Ser Gly Thr Ser Gly Ala Thr Arg Pro Ile
20 25 30

Ile Lys Pro Ala Thr Leu Ala Pro Pro Ser Asn Lys Arg Thr Arg Asn
35 40 45

Pro Ser Pro Glu Arg Ala Thr Thr Ser Ser Glu Ala Ile Val Gly Arg
50 55 60

Arg Thr Gln Lys Lys Gln Thr Pro Thr Glu Ile Lys Lys Ser Val Tyr
65 70 75 80

Asn Met Val Val Lys Leu Gly Glu Phe Tyr Asn Gln Met Met Val Lys
85 90 95

Ala Gly Leu Asn Asp Asp Met Glu Arg Asn Leu Ile Gln Asn Ala His
100 105 110

Ala Val Glu Arg Ile Leu Leu Ala Ala Thr Asp Asp Lys Lys Thr Glu
115 120 125

Tyr Gln Lys Lys Asn Ala Arg Asp Val Lys Glu Gly Lys Glu Glu
130 135 140

Ile Asp His Asn Lys Thr Gly Gly Thr Phe Tyr Lys Met Val Arg Asp
145 150 155 160

Asp Lys Thr Ile Tyr Phe Ser Pro Ile Arg Ile Thr Phe Leu Lys Glu
165 170 175

Glu Val Lys Thr Met Tyr Lys Thr Thr Met Gly Ser Asp Gly Phe Ser
180 185 190

Gly Leu Asn His Ile Met Ile Gly His Ser Gln Met Asn Asp Val Cys
195 200 205

Phe Gln Arg Ser Lys Ala Leu Lys Arg Val Gly Leu Asp Pro Ser Leu
210 215 220

Ile Ser Thr Phe Ala Gly Ser Thr Leu Pro Arg Arg Ser Gly Ala Thr
225 230 235 240

Gly Val Ala Ile Lys Gly Gly Thr Leu Val Ala Glu Ala Ile Arg
245 250 255

Phe Ile Gly Arg Ala Met Ala Asp Arg Gly Leu Leu Arg Asp Ile Arg
260 265 270

Ala Lys Thr Ala Tyr Glu Lys Ile Leu Leu Asn Leu Lys Asn Lys Cys
275 280 285

Ser Ala Pro Gln Gln Lys Ala Leu Val Asp Gln Val Ile Gly Ser Arg
290 295 300

Asn Pro Gly Ile Ala Asp Ile Glu Asp Leu Thr Leu Leu Ala Arg Ser
305 310 315 320

Met Val Val Val Arg Pro Ser Val Ala Ser Lys Val Val Leu Pro Ile
325 330 335

Ser Ile Asn Ala Lys Ile Pro Gln Leu Gly Phe Asn Val Glu Glu Tyr
340 345 350

Ser Met Val Gly Tyr Glu Ala Met Ala Leu Tyr Asn Met Ala Thr Pro
355 360 365

Val Ser Ile Leu Arg Met Gly Asp Asp Ala Lys Asp Lys Ser Gln Leu
370 375 380

Phe Phe Met Ser Cys Phe Gly Ala Ala Tyr Glu Asp Gln Arg Val Leu

-continued

385	390	395	400
Ser Ala Leu Thr Gly Thr Glu Phe Lys Pro Arg Ser Ala Leu Lys Cys			
405	410	415	
Lys Gly Phe His Val Pro Ala Lys Glu Gln Val Glu Gly Met Gly Ala			
420	425	430	
Ala Leu Met Ser Ile Lys Leu Gln Phe Trp Ala Pro Met Thr Arg Ser			
435	440	445	
Gly Gly Asn Glu Val Gly Gly Asp Gly Ser Gly Gln Ile Ser Cys			
450	455	460	
Ser Pro Val Phe Ala Val Glu Arg Pro Ile Ala Leu Ser Lys Gln Ala			
465	470	475	480
Val Arg Arg Met Leu Ser Met Asn Ile Glu Gly Arg Asp Ala Asp Val			
485	490	495	
Lys Gly Asn Leu Leu Lys Met Met Asn Asp Ser Met Ala Lys Lys Thr			
500	505	510	
Asn Gly Asn Ala Phe Ile Gly Lys Lys Met Phe Gln Ile Ser Asp Lys			
515	520	525	
Asn Lys Ile Asn Pro Val Asp Ile Pro Ile Lys Gln Thr Ile Pro Asn			
530	535	540	
Phe Phe Phe Gly Arg Asp Thr Ala Glu Asp Tyr Asp Asp Leu Asp Tyr			
545	550	555	560

<210> SEQ ID NO 102

<211> LENGTH: 560

<212> TYPE: PRT

<213> ORGANISM: Influenza

<400> SEQUENCE: 102

Met Ser Asn Met Asp Ile Asp Gly Ile Asn Thr Gly Thr Ile Asp Lys			
1	5	10	15
Thr Pro Glu Glu Ile Thr Ser Gly Thr Ser Gly Ala Thr Arg Pro Ile			
20	25	30	
Ile Lys Pro Ala Thr Leu Ala Pro Pro Ser Asn Lys Arg Thr Arg Asn			
35	40	45	
Pro Ser Pro Glu Arg Ala Ala Thr Ser Ser Glu Ala Asp Val Gly Arg			
50	55	60	
Arg Thr Gln Lys Lys Gln Thr Pro Thr Glu Ile Lys Lys Ser Val Tyr			
65	70	75	80
Asn Met Val Val Lys Leu Gly Glu Phe Tyr Asn Gln Met Met Val Lys			
85	90	95	
Ala Gly Leu Asn Asp Asp Met Glu Arg Asn Leu Ile Gln Asn Ala His			
100	105	110	
Ala Ala Glu Arg Ile Leu Leu Ala Ala Thr Asp Asp Lys Lys Thr Glu			
115	120	125	
Phe Gln Lys Lys Asn Ala Arg Asp Val Lys Glu Gly Lys Glu Glu			
130	135	140	
Ile Asp His Asn Lys Thr Gly Gly Thr Phe Tyr Lys Met Val Arg Asp			
145	150	155	160
Asp Lys Thr Ile Tyr Phe Ser Pro Ile Arg Ile Thr Phe Leu Lys Glu			
165	170	175	
Glu Val Lys Thr Met Tyr Lys Thr Met Gly Ser Asp Gly Phe Ser			
180	185	190	
Gly Leu Asn His Ile Met Ile Gly His Ser Gln Met Asn Asp Val Cys			

-continued

195	200	205
Phe Gln Arg Ser Lys Ala Leu Lys Arg Val Gly Leu Asp Pro Ser Leu		
210	215	220
Ile Ser Thr Phe Ala Gly Ser Thr Leu Pro Arg Arg Ser Gly Ala Thr		
225	230	235
240		
Gly Val Ala Ile Lys Gly Gly Thr Leu Val Ala Glu Ala Ile Arg		
245	250	255
Phe Ile Gly Arg Ala Met Ala Asp Arg Gly Leu Leu Arg Asp Ile Arg		
260	265	270
Ala Lys Thr Ala Tyr Glu Lys Ile Leu Leu Asn Leu Lys Asn Lys Cys		
275	280	285
Ser Ala Pro Gln Gln Lys Ala Leu Val Asp Gln Val Ile Gly Ser Arg		
290	295	300
Asn Pro Gly Ile Ala Asp Ile Glu Asp Leu Thr Leu Leu Ala Arg Ser		
305	310	315
320		
Met Val Val Val Arg Pro Ser Val Ala Ser Lys Val Val Leu Pro Ile		
325	330	335
Ser Ile Asn Ala Lys Ile Pro Gln Leu Gly Phe Asn Val Glu Glu Tyr		
340	345	350
Ser Met Val Gly Tyr Glu Ala Met Ala Leu Tyr Asn Met Ala Thr Pro		
355	360	365
Val Ser Ile Leu Arg Met Gly Asp Asp Ala Lys Asp Lys Ser Gln Leu		
370	375	380
Phe Phe Met Ser Cys Phe Gly Ala Ala Tyr Glu Asp Gln Arg Val Leu		
385	390	395
400		
Ser Ala Leu Thr Gly Thr Glu Phe Lys His Arg Ser Ala Leu Lys Cys		
405	410	415
Lys Gly Phe His Val Pro Ala Lys Glu Gln Val Glu Gly Met Gly Ala		
420	425	430
Ala Leu Met Ser Ile Lys Leu Gln Phe Trp Ala Pro Met Thr Arg Ser		
435	440	445
Gly Gly Asn Glu Val Gly Gly Asp Gly Gly Ser Gly Gln Ile Ser Cys		
450	455	460
Ser Pro Val Phe Ala Val Glu Arg Pro Ile Ala Leu Ser Lys Gln Ala		
465	470	475
480		
Val Arg Arg Met Leu Ser Met Asn Ile Glu Gly Arg Asp Ala Asp Val		
485	490	495
Lys Gly Asn Leu Leu Lys Met Met Asn Asp Ser Met Thr Lys Lys Thr		
500	505	510
Asn Gly Asn Ala Phe Ile Gly Lys Lys Met Phe Gln Ile Ser Asp Lys		
515	520	525
Asn Lys Thr Asn Pro Ile Glu Ile Pro Ile Lys Gln Thr Ile Pro Asn		
530	535	540
Phe Phe Phe Gly Arg Asp Thr Ala Glu Asp Tyr Asp Asp Leu Asp Tyr		
545	550	555
560		

<210> SEQ ID NO 103

<211> LENGTH: 1842

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 103

agcagaagca cagcatttc ttgtgaactt caagtaccaa caaaaactga aaatcaaaat 60

-continued

gtccaacatg gatattgacg gcatcaacac tggaacaatt gacaaaacac cagaagaaat	120
aacttccgga accagtgggg caaccagacc aatcatcaag ccagcaaccc ttgccccacc	180
aagcaataaa cgaacccgaa acccatcccc agaaaggca accacaagca gcgaagcgat	240
tgtcggaagg agaacccaa agaaacaaac cccgacagag ataaagaaga gcgtctacaa	300
tatggtagtg aaactgggtg aattctacaa ccagatgtg gtcggatctg gactcaacga	360
tgacatggag agaaacctaa tccaaaatgc acatgtgtg gaaagaattc tattggctgc	420
tactgatgac aagaaaactg aataccaaaa gaaaaagaat gccagagatg tcaaagaagg	480
gaaagaagaa atagaccaca acaaaacagg aggcacctt tataagatgg taagagatga	540
taaaaccatc tacttcagcc ctataagaat tacctttta aaagaagagg tgaaaacaat	600
gtacaagacc accatgggaa gtatggttt cagtgacta aatcacatca tgattggca	660
ttcacagatg aacgatgtct gttccaaag atcaaaggca ctaaaaagag ttggacttga	720
cccttcatta atcgtactt ttgcaggaag cacactcccc agaagatcg gtgcaactgg	780
tgttgcgatc aaaggagggtg gaacttttagt ggcagaagcc attcgattt taggaagagc	840
aatggcagac agaggcgtat tgagagacat cagagccaag acggcctatg aaaagattct	900
tctgaatctg aaaaacaagt gctctgcgcc ccaacaaaag gctctagtt atcaagtgtat	960
cggaaatgaa aacccagggaa ttgcagacat agaagaccta accctgttgc cccgaagcat	1020
ggtcgttgctc agggcctctg tagcgagcaa agtgggtctt cccataagca ttaatgtctaa	1080
aataacctaa ctagggttca atgttgaaga atactctatg gttgggtatg aagccatggc	1140
tctttataat atggcaacac ctgtttccat attaagaatg ggagacatg caaaagataa	1200
atcacaattt ttcttcatgt ctgttttgg agctgcctat gaagacaaa gagttttgtc	1260
tgcactaacc ggcacagaat tcaagcctag gtcagcatta aagtgcagg gttccacgt	1320
tccagcaaag gagcaagtgg aaggaatggg ggcagctctg atgtccatca agctccagtt	1380
ttggggccca atgaccagat ctggggggaa cgaagtaggt ggagacggag ggtctggtca	1440
aataagttgc agccccgtgt ttgcagtaga gagacctatt gctctaaagca agcaagctgt	1500
aagaagaatg ctgtcaatga atattgaggg acgtgtatgca gatgtcaaag gaaatctact	1560
caagatgtg aatgattcaa tggctaagaa aaccaatgga aatgcttca ttggaaagaa	1620
aatgtttcaa atatcagaca aaaacaaaat caatccccgtt gatattccaa ttaagcagac	1680
catcccccaat ttcttcatttgg ggagggacac agcagaggat tatgtatgacc tcgatttattt	1740
aagcaacaaa atagacacta tggctgtgac tggcttgcata cgtttggaaat gtgggttctt	1800
actcttatttgg aaataaatgt aaaaaatgt gttgtttctta ct	1842

<210> SEQ ID NO 104

<211> LENGTH: 1842

<212> TYPE: DNA

<213> ORGANISM: Influenza

<400> SEQUENCE: 104

agcagaagca cagcattttc ttgtgaactt caagtaccaa caaaaactga aaatcaaaaat	60
gtccaacatg gatattgacg gcatcaacac tggaacaatt gacaaaacac cagaagaaat	120
aacttccgga accagtgggg caaccagacc aatcatcaaa ccagcaaccc ttgccccacc	180
aagcaacaaa cgaacccgaa acccatcccc ggaaaggca gccacaagca gtgaagctga	240

-continued

tgtcggagg	agaacccaaa	agaaacaaac	cccgacagag	ataaaagaaga	gcgtctacaa	300
tatggtagt	aaactgggt	aattctacaa	ccagatgtat	gtcaaagctg	gactcaacga	360
tgacatggag	agaaacctaa	tccaaaatgc	acatgctgct	gaaagaattc	tattggctgc	420
tactgtat	aagaaaactg	aattccaaaa	aaaaaagaat	gccagagatg	tcaaagaagg	480
gaaagaagaa	atagaccaca	acaaaacagg	aggcacctt	tacaagatgg	taagagatga	540
taaaaccatc	tacttcagcc	ctataagaat	taccttttta	aaagaagagg	tgaaaacaat	600
gtacaaaacc	accatgggg	gtgatggttt	cagtggacta	aatcacatca	tgattggca	660
ttcacatgt	aacgatgtct	gtttccaaag	atcaaaggca	ctaaaagag	ttggacttga	720
cccttcattt	atcagttactt	ttgcaggaa	cacactcccc	agaagatcg	gtcaactgg	780
tgttgcgatc	aaaggaggtg	gaacttttagt	ggcagaagcc	attcgatttta	taggaagagc	840
aatggcagac	agagggctat	tgagagacat	cagagccaa	acggcctatg	aaaagattct	900
tctgaatctg	aaaaacaagt	gctctgcgcc	ccaacaaaag	gctcttagtt	atcaagtgtat	960
cggaaagtata	aatccaggaa	ttgcagacat	agaagaccta	accctgttgc	cccgaaagcat	1020
ggtcgttg	aggccctctg	tagcgagcaa	agtggtgctt	cccataagca	ttaatgcca	1080
aataacctaa	ctagggttca	atgttgaaga	atactctatg	gttgggtatg	aagccatggc	1140
tcttataat	atggcaacac	ctgtttccat	attaagaatg	ggagacgtat	caaaagataa	1200
atcacaattt	ttcttcatgt	cttgcttcgg	agctgcctat	gaagacaaa	gagttttgtc	1260
tgcactaaca	ggcacagaat	tcaagcatag	gtcagcatta	aagtgcagg	gtttccacgt	1320
tccagcaaaag	gagcaagtgg	aaggaatggg	ggcagctctg	atgtccatca	agctccagtt	1380
ttgggctcca	atgaccagat	ctggggggaa	tgaagtaggt	ggagacggag	ggtctggtca	1440
aataagttgc	agccccgtgt	ttgcagtaga	aagacctt	gctctaagca	agcaagctgt	1500
aagaagaatg	ctgtcaatga	atattgaggg	acgtgtatgc	gatgtcaaag	gaaatctact	1560
caagatgtat	aatgattcaa	tgactaagaa	aaccaatgg	aatgcttca	ttggaaagaa	1620
aatgttcaat	atatcagaca	aaaacaaaac	caatcccatt	gagattccaa	ttaagcagac	1680
catccccat	ttcttccttg	ggagggacac	agcagaggat	tatgtatgacc	tcgatttta	1740
aagcaacaaa	atagacacta	tggctgtgac	tgtttcagta	cgtttggaa	gtgggtgttt	1800
acttttattt	aaataaaatgt	aaaaaaatgt	gttggttctat	ct		1842

1. A method of preparing an influenza virus, comprising:
 - a) preparing one or more expression construct(s) which comprise(s) coding sequences for expressing at least one segment of an influenza virus genome;
 - b) introducing into a cell which is not 293T one or more expression construct(s) which encode(s) the viral segments of an influenza virus, wherein at least one expression construct is the expression construct prepared in step (a); and
 - c) culturing the cell in order to produce a reassortant influenza virus from the expression construct(s) introduced in step (b);

wherein steps (a) to (c) are performed in a time period of 124 hours or less.
2. The method of claim 1, wherein the cell is a non-human cell or a human non-kidney cell.
3. A method of preparing an influenza virus comprising the steps of
 - a) preparing one or more expression construct(s) which comprise(s) coding sequences for expressing at least one segment of an influenza virus genome;
 - b) introducing into a cell one or more expression construct(s) which encode(s) the viral segments of an influenza virus, wherein at least one expression construct is the expression construct prepared in step (a); and
 - c) culturing the cell in order to produce a reassortant influenza virus from the expression construct(s) introduced in step (b);

wherein steps (a) to (c) are performed in a time period of 100 hours or less.
4. The method of claim 3, wherein the cell is a non-human cell or a human non-kidney cell.
5. A method of preparing a reassortant influenza virus, comprising:
 - a) providing a synthetic expression construct which comprises coding sequences for expressing at least one seg-

ment of an influenza virus genome by (i) synthesising a plurality of overlapping fragments of the synthetic expression construct, wherein the overlapping fragments span the complete synthetic expression construct, and (ii) joining the fragments to provide the synthetic expression construct;

- b) introducing into a cell which is not 293T one or more expression construct(s) which encode(s) the viral segments required to produce an influenza virus, wherein at least one expression construct is the synthetic expression construct prepared in step (a); and
- c) culturing the cell in order to produce a reassortant influenza virus from the viral segments introduced in step (b); wherein steps (a) to (c) are performed in a time period of 124 hours or less.

6. The method of claim 5, wherein the cell is a non-human cell or a human non-kidney cell.

7. The method of claim 5, further comprising (d) contacting a cell which is of the same cell type as the cell used in step (c) with the virus produced in step (c) to produce further reassortant influenza virus.

8. A method of preparing an influenza virus, comprising:

- a) providing a synthetic expression construct which comprises coding sequences for expressing at least one segment of an influenza virus genome by (i) synthesising a plurality of overlapping fragments of the synthetic expression construct, wherein the overlapping fragments span the complete synthetic expression construct, and (ii) joining the fragments to provide the synthetic expression construct;
- b) introducing into a cell one or more expression construct(s) which encode(s) the viral segments of an influenza virus, wherein at least one expression construct is the synthetic expression construct prepared in step (a);
- c) culturing the cell in order to produce a reassortant influenza virus from the viral segments introduced in step (b); and
- d) contacting a cell which is of the same cell type as the cell used in step (c) with the virus produced in step (c) to produce further reassortant influenza virus;

wherein steps (a) to (c) are performed in a time period of 124 hours or less.

9. The method of claim 8, wherein the cell used in steps (c) and (d) is not 293T.

10. The method of claim 8, wherein the cell used in steps (c) and (d) is a non-human cell or a human non-kidney cell.

11. The method of claim 8, wherein the synthetic expression construct comprises coding sequences for the HA and/or NA segment.

12. The method of claim 8, wherein the synthetic expression construct is linear.

13. The method of claim 8, wherein the fragments have a length between 61 and 100 nucleotides.

14. The method of claim 13, wherein the fragments have a length between 61 and 74 nucleotides.

15. The method of claim 8, wherein the fragments have an overlap of about 40 nucleotides.

16. The method of claim 8, wherein at least part of the synthetic expression construct obtained in step (a) is amplified.

17. The method of claim 1, wherein the step of providing the synthetic expression construct comprises: (i) synthesising a plurality of overlapping fragments of the synthetic expression construct, wherein the overlapping fragments span the

complete synthetic expression construct, (ii) joining the fragments to provide a DNA molecule; (iii) melting the DNA molecule; (iv) re-annealing the DNA in the presence of an agent which excises mismatched nucleotides from the DNA molecule; and (v) amplifying the DNA to produce the synthetic expression construct.

18. The method of claim 1, wherein the reassortant influenza virus is a reassortant influenza A virus.

19. The method of claim 18, wherein the reassortant influenza A virus comprises one or more backbone segments having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NOS 9 to 14.

20. The method of claim 18, wherein the reassortant influenza A virus comprises one or more backbone segments having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to the sequence of SEQ ID NOS 42 to 47.

21. The method of claim 18, wherein the reassortant influenza A virus comprises backbone segments from two or more influenza A strains.

22. The method of claim 18, wherein the reassortant influenza A virus comprises the PB1 segment of SEQ ID NO: 43; the PB2 segment of SEQ ID NO: 44; the PA segment of SEQ ID NO: 9; the NP segment of SEQ ID NO: 45; the M segment of SEQ ID NO: 13; and the NS segment of SEQ ID NO: 14.

23. The method of claim 18, wherein the reassortant influenza A virus comprises the PB1 segment of SEQ ID NO: 18; the PB2 segment of SEQ ID NO: 11; the PA segment of SEQ ID NO: 9; the NP segment of SEQ ID NO: 12; the M segment of SEQ ID NO: 13; and the NS segment of SEQ ID NO: 14.

24. The method of claim 1, wherein the reassortant influenza virus is a reassortant influenza B virus.

25. The method of claim 24, wherein the reassortant influenza B viruses comprises the PA segment of SEQ ID NO: 71, the PB1 segment of SEQ ID NO: 72, the PB2 segment of SEQ ID NO: 73, the NP segment of SEQ ID NO: 74, the NS segment of SEQ ID NO: 76 and the M segment of SEQ ID NO: 75.

26. The method of claim 24, wherein the reassortant influenza B viruses comprises the PA segment of SEQ ID NO: 71, the PB1 segment of SEQ ID NO: 72, the PB2 segment of SEQ ID NO: 73, the NP segment of SEQ ID NO: 74, the NS segment of SEQ ID NO: 76 and the M segment of SEQ ID NO: 81.

27. A method of preparing an influenza vaccine, comprising:

- a) contacting a cell with a reassortant influenza virus prepared by the method of any preceding claim;
- b) culturing the cell in order to produce an influenza virus; and
- c) preparing a vaccine from the influenza virus produced in step (b).

28. The method of claim 27, wherein the cell is a human non-kidney cell or a non-human cell.

29. The method of claim 27, wherein the cell used in step (a) is of the same cell type as the cell used to prepare the reassortant influenza virus.

30. The method of claim 27, wherein step (c) involves inactivating the virus.

31. The method of claim 27, wherein the vaccine is a whole virion vaccine.

32. The method of claim 27, wherein the vaccine is a split virion vaccine.

33. The method of claim **27**, wherein the vaccine is a surface antigen vaccine.

34. The method of claim **27**, wherein the vaccine is a virosomal vaccine.

35. The method of claim **27**, wherein the vaccine contains less than 10 ng of residual host cell DNA per dose.

36. A method of preparing a synthetic expression construct which encodes a viral segment from an influenza virus, comprising:

- a) providing the sequence of at least part of the coding region of the HA or NA segment from an influenza virus;
- b) identifying the HA and/or NA subtype of the influenza virus from which the coding region is derived;
- c) providing a UTR sequence from an influenza virus with the same HA or NA subtype as the subtype identified in step (b); and
- d) preparing a synthetic expression construct which encodes a viral segment comprising the coding sequence and the UTR.

37. The method of claim **1**, wherein the cell is a mammalian cell or an avian cell.

38. The method of claim **37**, wherein the cell is an MDCK, Vero or PerC6 cell.

39. The method of claim **38**, wherein the cell is of the cell line MDCK 33016 (DSM ACC2219).

40. The method of claim **1**, wherein the cell grows in suspension.

41. The method of claim **1**, wherein the cell grows adherently.

42. A library comprising two or more influenza backbones.

* * * * *